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Summary

The main objective of the thesis is to identify the optimal set-up for future satellite
gravimetry missions aimed at monitoring mass transport in the Earth’s system.

The recent variability of climatic patterns, the spread of arid regions and associ-
ated changes in the hydrological cycle, and vigorous modifications in the ice coverage
at polar regions have been attributed to anthropogenic influence. As such, it is
important to continue monitoring the Earth system in order to properly constrain
and improve the geophysical and climatic models and to better interpret the causes
and consequences of climate change. Satellite gravimetric data are also exploited to
further the knowledge on other geophysical processes with high societal and scientific
impact, such as megathrust earthquakes, drought monitoring and Glacial Isostatic
Adjustment (GIA).

The primary focus of the study is to properly quantify the errors in the gravimetric
data to be collected by future gravimetric satellites, in particular those related to
the measurement of the temporal gravitational field variations.

One source of errors comes from the background force models describing rapid
mass transport processes; another error source is related to the background static
gravity field model. These models are used to complement geophysical signals that
are missing or improperly represented in the gathered satellite gravity data. However,
they are built on the basis of in situ data that lack global coverage and, therefore,
suffer from a limited accuracy (particularly in remote areas). Although the fidelity of
these models is constantly improving, the satellite data accuracy is also increasing
with the on-going technological and methodological advances. Determining the net
effect of these conflicting trends is the main driver to study the propagation of errors
in background models into the estimated models.
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Summary

Other sources of errors arise from imperfections of the on-board sensors, such as
the ranging sensor or the Global Navigation Satellite System (GNSS) receiver. The
influence of the sensors errors is divided into the major independent contributions,
with the corresponding frequency description, and assembled into a detailed noise
model. The model predicts the effects of i) the inaccurately known orbital positions,
ii) the noise in the inter-satellite metrology system, iii) the noise in the on-board
accelerometers, iv) the wrongly-estimated Line of Sight (LoS) frame accelerations
resulting from errors in the radial orbital velocities, and v) errors in the orientation of
the LoS vector. The model has been validated with the help of actual Gravity Recov-
ery And Climate Experiment (GRACE) a posteriori residuals, which are compared to
the output of the noise model considering a simulated GRACE mission. Therefore,
once the assumptions describing sensor and model accuracies are modified to reflect
those predicted for future gravimetric missions, it is reasonable to expected that this
noise model reproduces realistic errors for those missions.

Also relevant is the analysis of the sensitivity of the data in terms of isotropy.
As learned from the GRACE mission, the nearly-constant North-South alignment of
the measurement direction makes the data less sensitive to gravitational changes
along the East-West direction. Although formally not an error itself, the anisotropic
data sensitivity amplifies the errors in the data.

The sensor and model errors are propagated firstly to the gravimetric data and
further to the gravitational field, in full-scale simulations of the cartwheel, trailing and
pendulum satellite formations. The results are analysed in terms of i) the observation
error in the frequency domain and ii) the estimated gravity field model error in the
frequency and spatial domains. The error budgets for these formations are also
quantified. The results indicate that the pendulum formation with no along-track
displacement is least sensitive to model and sensors errors, in particular to temporal
aliasing. The conducted study reveals serious limitations in the cartwheel mission
concept, since the orbit errors are considerably amplified by the diagonal components
of the gravity gradient tensor, while the pendulum and trailing formations are only
affected by (small) off-diagonal components. The spatial error patterns provide
valuable clues on how to best combine the different formation geometries in order to
produce minimum anisotropy in the sensitivity of collected data. The data from the
pendulum formation show some anisotropic sensitivity but the combination of such
data with those from a trailing formation, such as the GRACE Follow On (GFO),
would eliminate this disadvantage (as well as the low accuracy near the poles of the
pendulum formation). Unlike alternative proposals for dual-pair satellite missions,
such as the Bender constellation, the dual trailing/pendulum constellation would
provide global coverage in case of failure of one satellite pair and dense temporal
sampling at high latitudes.
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Furthermore, the data from gravimetric missions are shown to benefit greatly
from the data gathered by numerous non-dedicated satellites. From the conducted
simulations, it is predicted that the achievable temporal resolution is increased to a
few days for the degrees below 10 and, crucially, with no significant level of temporal
aliasing. Longer estimation periods allow for higher degrees to be estimated, with
greatly reduced effects of temporal aliasing in the resulting gravity field models.
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Samenvatting

Het hoofddoel van dit proefschrift is de identificatie van de optimale opstelling
voor toekomstige gravimetrie-missies die als doel hebben het massatransport in het
aardesysteem te meten.

De recente variabiliteit in klimaat patronen, de toename van droge gebieden en
gerelateerde veranderingen in de hydrologische cyclus, en grote veranderingen in de
ijsdekking van de poolgebieden hebben geleid tot de hypothese van antropogene
invloed. In dit kader is het van belang de observatie van het aardesysteem te
handhaven om zodoende de geofysische en klimaat modellen beter af te bakenen en
te verbeteren alsook de oorzaken en gevolgen van klimaatverandering van verfijndere
interpretaties te voorzien. Satelliet gravitatie data worden ook ingezet om de kennis
van andere geofysische processen met een hoge maatschappelijk en wetenschappelijke
impact, zoals megathrust aardbevingen, monitoring van droogte en postglaciale
opheffing, verder uit te diepen.

Het primaire doel van dit onderzoek is om de fouten in gravimetrische data die
door toekomstige gravimetrische satellieten verzameld zullen worden te quantificeren,
in het bijzonder de data die gefocust zijn op het meten van de tijdsafhankelijke
variaties van het gravitatieveld.

Één bron van fouten is de achtergrond krachtmodellen die snelle massatrans-
portprocessen beschrijven; een andere bron van fouten heeft te maken met het
achtergrond statische gravitatieveldmodel. Deze modellen worden gebruikt om
geofysische signalen te completeren die ontbreken of onjuist vertegenwoordigd zijn
in de verzamelde satelliet gravitatiedata. Echter, deze modellen zijn gebaseerd
op in-situ data die geen wereldwijde dekking kennen en dus lijden onder beperkte
nauwkeurigheid (in het bijzonder in afgelegen gebieden). Terwijl de waarheidsget-
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rouwheid van deze modellen continu verbeterd wordt, wordt de nauwkeurigheid van
satellietdata ook steeds hoger met de huidige technologische en methodologische
vooruitgangen. Het bepalen van het netto effect van deze tegenstrijdige ontwikkelin-
gen is de voornaamste impuls om de propagatie van fouten in achtergrondmodellen
naar schattingsmodellen te bestuderen.

Andere foutenbronnen vloeien voort uit de imperfecties van de sensoren aan boord
van de satelliet, bijvoorbeeld de ranging sensor of wel de Global Navigation Satellite
System (GNSS) ontvanger. De invloed van de sensorafwijkingen kan onderverdeeld
worden naar de voornaamste onafhankelijke bijdragen, met bijbehorende frequen-
tiebeschrijving, en verzameld worden in een gedetailleerde ruismodel. Het model
voorspelt de effecten van i) de onnauwkeurige maar bekende baanposities, ii) de ruis
in het intersatelliet metrologiesysteem, iii) de ruis in de aan-boord versnellingsmeters,
iv) de incorrect-geschatte “Line-of-Sight” (LoS) niet-inertiaal versnellingen als gevolg
van de afwijkingen in de radiale baansnelheden, en v) afwijkingen in de oriëntatie
van de LoS vector. Het model is gevalideerd met behulp van Gravity Recovery
And Climate Experiment (GRACE) a posteriori residuen, die vergeleken zijn met
de output van het ruismodel gegeven een gesimuleerde GRACE missie. Dus, als
de aannames die de sensor en modelnauwkeurigheden beschrijven aangepast zijn
om die weer te geven voor toekomstige gravimetrische missies, is het redelijk om te
verwachten dat dit ruismodel realistische afwijkingen voor die missies reproduceert.

Ook relevant is de analyse van de sensitiviteit van de data in termen van isotropie.
Van de GRACE missie is geleerd dat de haast constante Noord-Zuid collineairiteit
van de metingsrichting de data minder gevoelig maakt voor gravitatieveranderingen
in de Oost- West richting. Alhoewel dit zelf geen formele fout is, versterkt de
anisotripische datasensitiviteit de afwijkingen in de data.

De sensor- en modelafwijkingen zijn eerst gepropageerd naar de gravimetrische
data en verder naar het gravitatieveld, in volledige simulaties van de cartwheel,
trailing en slinger satellietformaties. De resultaten zijn geanalyseerd in termen van i)
de waargenomen afwijking in het frequentiedomein en ii) de geschatte gravitatieveld
modelafwijking in de frequentie- en ruimtelijke domeinen. Het afwijkingsbudget voor
deze formaties zijn ook gekwantificeerd. De resultaten geven aan dat de slingerform-
atie zonder along-track verplaatsing het minst gevoelig is voor model- en sensor-
afwijkingen, in het bijzonder voor tijdsgerelateerde aliasing. Dit onderzoek onthult
belangrijke beperkingen in het cartwheel missieconcept omdat de baanafwijkingen
significant versterkt zijn door de diagonale componenten van de gravitatiegradiënt
tensor, terwijl de slinger en trailing formaties uitsluitend beïnvloed worden door
(kleine) niet-diagonale componenten. De ruimtelijke afwijkingspatronen leveren
waardevolle aanwijzingen hoe de verschillende formatieopstellingen het beste te com-
bineren zijn om de minimale anisotropie in de sensitiviteit van de verzamelde data te
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produceren. De data van de slingerformatie laten enige anisotropische sensitiviteit
zien maar de combinatie van zulke data met die van de trailing formatie, zoals de
GRACE Follow-On (GFO), zou dit voordeel opheffen (alsook de lage nauwkeurigheid
dicht bij de polen van de slingerformatie). In tegenstelling tot andere voorstellen voor
dual-pair satellietmissies, zoals de Bender constellatie, zou de dual- trailing/slinger
constellatie wereldwijde dekking bieden in het geval van de mislukking van één
satelliet-paar en dichte tijdsbemonstering op hoge breedtegraden.

Bovendien is gedemonstreerd dat de data van gravimetrische missies significant
gebaat zijn bij de toevoeging van data verzameld door talrijke niet-toegespitste
satellieten. Op basis van de uitgevoerde simulaties wordt voorspeld dat de haalbare
tijdsresolutie verbeterd is naar enkele dagen onder graad 10 en, essentieel, zonder
een significant niveau aan aliasing in het tijdsdomein. Schattingen over langere
periodes maken schattingen voor hogere graden mogelijk, met sterk gereduceerde
tijdsaliasing verschijnselen in de resulterende gravitatiemodellen.
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Introduction 1
The accurate and continued measurement of the movement of mass on the Earth’s
surface is important for the understanding the on-going global climatic changes.
The recent variability of climatic patterns, the spread of arid regions and associated
changes in the hydrological cycle and vigorous modifications in the ice coverage at
polar regions have prompted the hypothesis of likely anthropogenic influence. As such,
it is important to continue monitoring the Earth system in order to properly constrain
and improve the geophysical and climatic models, so that a better understanding of
the causes and consequences of climate change is gained. These models provide, in
turn, the fundamental tools that allow society to understand its role and act in the
most efficient way towards an equilibrium with the environment. This can only be
done with data collected over many years, if not many decades, at the global scale,
for which satellites are well suited.

1.1 Background
The gravitational field of the Earth is for the most part constant in time. The
temporal variability is less than 0.001 % of the long-term mean. In spite of this,
much can be learned about the underlying geophysical processes by monitoring those
variations. Measuring changes in the gravitational field is equivalent to quantifying
how much mass is in motion, with the notable exception of buoyant mass, such as
icebergs. To accomplish this with any other type of observation is more difficult,
if not impossible. The problem is that non-gravimetric observations can only be
indirectly related to mass by using additional measurements or models, which are
needed in order to close the observation equations. One example is satellite altimetry,
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which measures the height of polar ice sheets with high spatial resolution and
centimetre accuracy. However, without knowing the density depth profile of the ice
and the underlying bedrock topography, there is no accurate way of determining the
amount of ice under the exposed surface. The major drawback of gravimetric data
is that they cannot distinguish vertical mass distributions, without prior knowledge
about the density profile with depth. In spite of this, gravimetric data can be used
to pin-point the location of sharp density differences, such as underground cavities
or the Mohorovičić discontinuity, the boundary separating the Earth’s solid crust
from the viscous mantle. If an ice sheet is melting but the bed rock underneath is
uplifting due to Glacial Isostatic Adjustment (GIA), gravimetric data do not give
information about the ice mass balance alone. They describe the net effect of mass
change.

The gravitational field at the global scale is mostly determined by measuring
accurately the motion of gravimetric satellites. It can be done in the absolute
sense when taking advantage of a Global Navigation Satellite System (GNSS) to
continuously track the position of the satellite. This constitutes the high-low Satellite-
to-Satellite Tracking (hl-SST) measurement principle. It can also be done in the
relative term when at least a pair of satellites fly in formation and track each other,
collecting low-low Satellite-to-Satellite Tracking (ll-SST) data. The third alternative,
which is exceptional in the sense that is does not depend heavily on the motion
of the satellite, is to measure the differential motion of pairs of proof-masses in
a gradiometer. The satellites dedicated to measuring small gravitational signals
are remarkable in many respects. These satellites have a solid structure that does
not vibrate nor bend significantly, they contain no external moving parts and are
equipped with extremely accurate sensors that collect high quality data. They need
to orbit the Earth as low as possible in order to be closer to the Earth’s surface
where the movement of mass takes place. Additionally, the monitoring role of these
satellites demand that they work continuously for years.

The knowledge gained from gravimetric satellite data goes far beyond the innate
curiosity for the natural world. The measurement of the hydrological cycle has
enabled the better understanding of the water cycle and the quantification of the
extremes associated with drought and flood conditions. The accurate measurement
of mass variation on polar areas has quantified the effects of climate change in those
regions, as well as globally. The integrated contribution of shrinking ice sheets and
many other mass transport processes has increased the accuracy of the predictions
of sea level rise.
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1.1.1 A dynamic Earth
In the Earth system there is movement of mass on a wide range of temporal and
spatial scales. The post-glacial rebound, associated with the uplift of the crust
after the end of a glaciation age in response to the melting of ice, is an example
of mass transport process that takes places over large temporal and long spatial
scales, namely several hundred kilometres and thousands of years. The movement of
mass in the atmosphere, on the other hand, is much faster, with cycles lasting from
hours to a few years, over spatial scales from tens to several thousands of kilometres.
Some of the processes have sufficiently large influence on the Earth system to be
measured from space, see Table 1.1.

Geophysical Process Amplitude [m/s2] Spatial Scale [km] Temporal Scale [yrs]
Min Max Min Max Min Max

Atmosphere and
Ocean 3×10−10 7×10−9 20 10000 1×10−3 2

Hydrology 3×10−9 2×10−7 ≈ 0 10000 2×10−2 10
Glaciology 4×10−9 4×10−7 ≈ 0 1000 8×10−2 100

GIA 4×10−10 4×10−8 500 10000 10000 100000
Solid Eartha 9×10−9 4×10−6 ≈ 0 2000 ≈ 0 0.5

aSpecifically co- and post-seismic mass changes associated with large earthquakes.

Table 1.1 – Overview of typical values for the amplitude (in gravitational acceleration) and
spatial and temporal scales for the most significant mass transport processes occurring at
the surface of the Earth. Source: Rummel (2005); Ilk et al. (2005); Sneeuw et al. (2005);
Panet et al. (2012).

To the casual observer, the most visible geophysical mass transport processes
occur in the atmosphere. The free surface of the ocean reacts to the changes in
atmospheric pressure and the shear force from winds, creating currents. Determining
how much mass is being moved around by the atmosphere and respective oceanic
response is not trivial. Measurements are taken at discrete locations at the Earth’s
surface and that may not be sufficient to accurately reconstruct the whole process.
To an orbiting satellite, the frequency with which it revisits a particular location is
much lower than the frequency with which the atmospheric mass variations take
place, so all measurements include a component which is impossible to reconstruct
unequivocally. For this reason, it is important to consider the effect of rapid-changing
atmospheric mass on the data collected by future gravimetric mission.

Anthropogenic activity is believed to be accelerating the current de-glaciation
cycle of the Earth. One tool to determine the driving factor behind climatic changes
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is gravimetric data resulting from continued monitoring, in view of the fact that it is
one of the few accurate ways of estimating the mass balance of ice sheets.

During the Last Glacial Maximum (LGM), ice covered the surface of the Earth
to much lower latitudes that it does today. Large quantities of water were trapped
as ice, which meant that the sea level was at a lower height, exposing large patches
of land. Over the dry surface at high latitudes, most notably northern Europe and
Canada, the thick ice sheets created sufficiently strong loading on the crust to induce
a downwards deformation. As the ice receded with the onset of de-glaciation, the
crust was no longer under the ice-loading and it slowly bounced upwards in response.
As a consequence of this crustal adjustment, there is movement of material in Earth’s
interior to balance the changes in surface height, to which the term Glacial Isostatic
Adjustment (GIA) refers to. From satellite gravimetric data, it is possible to observe
the gravity changes corresponding to this mass movement. GIA modelling is an
important ingredient in determining the extent of which the ice sheets are melting
and the corresponding sea-level rise.

One geophysical process that moves large quantities of mass is the water cycle.
Water is taken from the ocean through evaporation and is dumped on land as
precipitation. The water collects in storage basins, percolates through soil, evaporates
back to the atmosphere or runs off to the ocean. The combined effect of all these
processes occurring in large hydrological basins are visible from space. The challenge is
to distinguish the Terrestrial Water Storages (TWSs) from neighbouring hydrological
system and to be able to derive frequent accurate estimates. Apart from the better
understanding of the water cycle, gravimetric data can expose the location where
the depletion of water resources is under way, enabling local authorities to produce
plans in anticipation and handle the situation more effectively.

The earthquakes that are readily measurable by gravimetric missions are those
where there is a strong vertical movement of the crust (Han, 2006). Resulting
from this motion is the rearrangement of mass within the lithosphere, in addition
to changes in its density. Unfortunately, only the largest earthquakes of this kind
are measurable but the larger sensitivity of future missions will likely improve this
situation.

1.1.2 Observing a planet
Measuring the minuscule gravitational accelerations resulting from the mass transport
processes taking place at or in the immediate vicinity the surface of the Earth from
an orbiting satellite requires three crucial ingredients: i) a stable observing platform
to collect high quality data, ii) state-of-the-art models that make it possible for
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innocuous signals to be removed from the data and iii) apt processing techniques to
distil the data into usable representations of the phenomenon under analysis.

The orbit of the spacecraft is mainly determined by the gravitational forces. The
way through which gravimetric data are collected is by determining the (relative)
motion of the satellite(s) as accurately as possible, or by the on-board gradiometer.
The collected data do not discriminate between the various effects to which the
sensor is sensitive to. Often, it is necessary to predict some signals and remove
them from the data. For example, the gravitational tidal force exerted by the Moon
is clearly visible in the data but is of no interest if the objective is to study mass
transport processes. The same can be said for the tidal effects of the ocean and solid
Earth, polar motion and relativistic effects. To clean the data of these innocuous
signals, appropriate models are used to quantify them at every data point to subtract
them from the data.

The data distributed by the ground segment processing infrastructure is the result
of a long sequence of actions. The gravimetric sensors on-board the satellite capture
the geophysical process and transform it into an electrical signal. An analogue-
to-digital converter discretises the signals voltage and records it in the on-board
computer, so that it can be downloaded to the ground segments data storage
systems. These data, often called Level 0 (L0), are decoded from the compressed
telemetry format in which they are sent from the satellites and saved in the so-called
Level 1A (L1A) data, which represent the original data, except they do not require
dedicated software to understand the telemetry format. In turn, these data are
decimated, calibrated, corrected and attributed quality descriptors, resulting in the
so-called Level 1B (L1B) data. The purpose of this procedure is to reduce the data
size, calibrate the data and clean them of measurement errors, making it easier for
the users of these data to process them and extract the information of interest.

The main stage of data processing aims at estimating a number of parameters that
describe the gravity field model. The data collected by the satellite is transformed
into suitable observations, which are then connected to the parameters of the
gravitational field by means of mathematical relationships called functional model.

1.2 Motivation
The continued global monitoring of the Earth system is of paramount importance
to understanding the role of mankind in the climatic changes observed in recent
decades. It provides valuable data used to constrain climatic models that predict
the environment in which future generations will live. Additionally, it facilitates
the accurate forecasting of changes in the distribution of water resources and the
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determination of the locations under threatened by sea-level rise. Satellite gravimetric
data are in the for-front of the means through which these objectives are met. The
clear understanding of the difficulties in measuring mass transport processes with
gravimetric satellites is critical to the design of mission concepts that are able to
provide the most accurate data.

Although gravimetric satellite data has revolutionized the knowledge of the
Earth’s system, a number of priorities for future missions have been identified. For
example, Panet et al. (2012) and Reubelt et al. (2014) prioritize the study of ice
sheet mass balance (together with GIA), ocean and sea-level rise, hydrology and
post-seismic deformation. In terms of the study of ice sheet mass balance, higher
spatial resolution would make it possible to i) distinguish the effects of GIA; ii)
compare gravimetric data with other data types, such as satellite altimetry and
iii) assimilate gravimetric data into climatic models. The quantification of ocean
bottom pressure with the purpose of monitoring deep ocean circulation and the
associated global heat transport balance is limited by the current spatial resolution.
The hydrological studies would benefit greatly from increased spatial resolution of
the estimated models, since the signals from different drainage basins are often too
close together to be distinguishable in currently available gravimetric data. Panet
et al. (2012) indicates that the currently available models are only able to resolve
18 % of the main drainage basins, while a factor of two improvement in spatial
resolution would include 75 %. Finally, the study of earthquakes is currently limited
to the largest events, at Mw ~ 9 (Tanaka and Heki, 2014) and models with higher
spatial resolution would extent it to earthquakes of smaller magnitude (Mw 7-8).

1.2.1 Limitations of GRACE
The data gathered by Gravity Recovery And Climate Experiment (GRACE) (Tapley
et al. 1996; Tapley 2004b), although of sufficient high quality to permit the ad-
vancement of the knowledge of mass transport processes in an unprecedented way
(refer to Section 2.3), is not free from limitations. The information content of the
data decreases with smaller scales, as a result of the corresponding smaller signal
amplitude in combination with the increasing noise amplitude (Swenson and Wahr,
2006). The most accurate monthly GRACE models predict a cumulative geoid height
noise amplitude at mm level at degree 60 (e.g. Dahle et al., 2014, Figure 4.5).

The signals which are not properly described by these models are related to fast
temporal variations, such as those present in the atmosphere and associated oceanic
response, as well as fast changes associated with hydrology and glaciology. These fast
movements of mass on Earth’s surface contribute to temporal aliasing, as discussed
in Section 2.1 and are one of the main challenges for future gravimetric missions. In
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the spatial domain, the errors in the data make it impossible to determine features
of the gravitational field smaller than 300 km. This constitutes a limitation in the
study of hydrology and glaciology, since variations within many storage basins, lakes
and glaciers cannot be determined. The last limitation of the GRACE models results
from the anisotropic sensitivity of the data. It affects both temporal and spatial
resolution and is also identified as an issue to be mitigated as much as possible in
future gravimetric missions.

Temporal aliasing

Early simulations studies predicted that the cumulative degree geoid height error
would be approximately 0.1mm at degree 60 (Kim, 2000; Han, 2004b), often known
as the “GRACE baseline”. It was assumed that K-Band Ranging (KBR) measurement
noise was the dominant factor limiting the accuracy of the monthly models. In
reality, after the launch of the GRACE satellite, a number of studies have shown that
the error in the estimated models (and also in the measurements) is as much as 5 to
15 times larger, e.g. Schmidt et al. (2008a); Horwath et al. (2010); Bandikova et al.
(2012); Ditmar et al. (2012). It was quickly understood that temporal aliasing and
error sources other than KBR measurement noise were underestimated in pre-launch
studies. This is supported by numerical studies demonstrating that improved sensor
accuracy results in higher than expected errors in the recovered gravity field models
in the presence of temporal aliasing (Wiese et al., 2009; Loomis et al., 2011). The
initial assumption was the effect of temporal aliasing was proportional to the signal
intensity, i.e. decreasing in magnitude with increased degree (Velicogna et al., 2001),
but many studies proved otherwise (Thompson et al., 2004; Han, 2004b; Ray and
Luthcke, 2006; Schrama et al., 2007; Zenner et al., 2010). In spite of this, Zenner
et al. (2012); Ditmar et al. (2012) have shown that model errors are not sufficient
to explain the errors in GRACE data.

The only effective procedure to minimize the effect of temporal aliasing, assuming
the de-aliasing models are not perfect, is to increase the temporal sampling of the
gravitational field. In this way, the short-period variations are properly characterized
in the data and these variations are reconstructed. In practice, such large number of
measurement satellite systems make it economically impossible to accomplish the
higher sampling rate with dedicated gravimetric satellites. Under this consideration,
most research focuses on proposing a limited number of satellite formation pairs,
which, if positioned in carefully selected orbits (usually with different inclinations and
repeat periods), produce combined data that is less sensitive to temporal aliasing
(Bender et al., 2008; Wiese et al., 2011a).
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Limited spatial resolution

The attenuation of the gravitational field is increasingly severe for the smaller
disturbances, so that their measurement is limited by the accuracy of the sensors.
Although the sensors on-board GRACE provide high-quality data, several limitations
have been identified. Horwath et al. (2010) have lowered the error in the CNES/
GRGS 10-days gravity field models (CNES/GRGS-10d) (Lemoine et al. 2007b;
Bruinsma et al. 2010; Lemoine et al. 2013b) model by as much as 60 % by co-
estimating attitude bias along with the gravitational field and orbit parameters. This
research looked into the RL01 of L1B data; meanwhile, processing improvements
have resulted in the RL02 L1B data, which does not show these issues in such
a significant way. Recently, Bandikova et al. (2012) has uncovered unexplained
systematic errors in these corrections attributed to the magnetic torquer, star cameras
and KBR antenna calibration. Bandikova and Flury (2014) have also combined the
L1A attitude data from the two star-trackers on-board the GRACE satellites in an
optimal way, reducing the noise by a factor of 3 to 4 when compared with the official
RL02 attitude data. Inácio et al. (2014) have identified harmonic and random errors
in the attitude data, which corrupt the KBR antennas phase centre correction. The
harmonic errors component reaches 18% of the total errors in the optimally-filtered
gravity field models and are higher when there are numerous gap in the attitude
data. Peterseim et al. (2014) have investigated non-geophysical signals present in
the accelerometer data, the so-called twangs, caused mainly by the activation of
magnetic torquers and heaters, indicating that correcting for them would improve
the resulting gravity field models in a small but non-negligible manner.

The strategies that make it possible to increase the spatial resolution all depend
on a higher quality of the sensors involved in collecting gravimetric data. For this
reason, the planned GRACE Follow On (GFO) (Sheard et al. 2012; Larkin 2012;
Zaragoza 2013) will measure the inter-satellite distance (in the form of a biased
range) with a laser ranging sensor (Dehne et al., 2009) and many other proposal
assume the same type of ranging sensor (cf. Table 1.2). Additionally, the design of
the formation satellites with the ranging sensor placed at the Centre of Mass (CoM)
makes the ranging data insensitive to attitude errors (Cesare et al., 2010b).

Anisotropic data sensitivity

The most prominent artefact of the GRACE solutions is a pronounced north-
south striping error pattern (Ramillien et al., 2005; Chen, 2005), which is strong
enough to be dominant over the small-scale features, making it difficult to determine
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mass variations at regional scales. This pattern is associated with the lower quality
of the sectorial and near-sectorial coefficients in the spherical harmonic expansion
of these solutions (Tapley et al., 2005). The reason for the large errors in these
coefficients results from the ranging data being collected always in the along-track
direction, i.e. predominantly aligned with the meridional (i.e. North-South) direction.
Consequently, the GRACE data lacks East-West sensitivity (except near the poles),
therefore having anisotropic sensitivity.

The anisotropic sensitivity of the GRACE data, by itself, is not the cause of the
errors in the data. It only amplifies them, predominantly along the direction it is
least sensitive to, i.e. the East-West direction, introducing fluctuations which are
not of a physical nature. The errors in the GRACE data originate from measurement
and processing imperfections. The measurement error has its source in the various
sensors that collect the data. The processing errors are mainly caused by the
imperfect models used to describe the forces acting on the spacecraft, i.e. often
being referred to as model errors. After the Gravity field and steady-state Ocean
Circulation Explorer (GOCE) mission and the associated improvement of the static
gravity field models, these errors are mainly the result of temporal aliasing in ocean
and atmospheric mass transport models.

To address anisotropic sensitivity of the GRACE data, there are numerous
strategies. Some models limit the maximum order (e.g. Meyer et al., 2012b). It is
also possible to post-process the estimated gravity field models so as to mitigate this
error, e.g by exploiting the error covariance information (Kusche, 2007; Klees et al.,
2008), resorting to empirical orthogonal functions (Schrama et al., 2007; Schmidt
et al., 2008b; Wouters and Schrama, 2007) or by employing Gaussian filtering (Wahr
et al., 1998; Guo et al., 2010, 2014). In all cases, it is unavoidable to have as a
side-effect the dampening and/or distortion of the signal of interest.

Regarding future gravimetric missions, the study of different satellite formations
has demonstrated that other formation geometries reduce considerably the anisotropic
sensitivity of the collected data. Refer to Table 1.2 for an overview of the research
done in this subject and also refer to Chapter 8 for a description of the possible
formation geometries.

1.2.2 Limitations of future gravimetric mission proposals
There have been many studies on the topic of future gravimetric missions simulation.
The current section describes some points in those studies with room for improvement.
In contrast, Section 2.6 aims at discussing the concepts and particularities of the
most visible and concrete mission proposals and measurement principles.
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The proposed solutions for future gravimetric missions have so far focused on
increased sensor accuracy (e.g. Silvestrin et al., 2012), minimizing the effect of errors
in the background force models with a limited number of satellites (e.g. Elsaka
et al., 2012), the previous two issues simultaneously (e.g. Massotti et al., 2013;
Reubelt et al., 2014; Panet et al., 2012) or the immediate continuation of monitoring
(Zaragoza, 2013).

In the simulation of future missions, such as the ones listed in Table 1.2, the
simulation of the error time series typically neglects or over-simplifies the dependency
of the error amplitude on frequency. This is particularly the case for the simulation of
positioning noise, which is exclusively done with uncorrelated time series (although
Sharifi et al. (2007) considered a short correlation length). In what concerns the
simulation of the ranging sensor errors, the number of studies that consider correlated
errors is higher.

Furthermore, the list of error sources is usually trimmed down to those that are
seen as the most dominant, determined on the basis of the knowledge provided
by the GRACE mission. That might be a reasonable approximation for mission
concepts which have produced actual data. For future concepts, e.g. novel satellite
formations, such assumption might not be valid, e.g. there is no assurance that
an insignificant error source in proven missions remains so in different mission
configurations. Referring to Table 1.2, it is obvious that important error sources
are missing, such as the non-inertial accelerations acting on the Line of Sight (LoS)
vector and the accuracy with which the attitude of this vector is measured.

Last but not least, none of the mission proposals provides the means to measure
with sufficiently high sampling rate the rapid temporal variations in order to signific-
antly mitigate the effect of the errors in the background force models. Efforts in this
direction are usually restricted to the simulation dual satellite pairs, which cannot
resolve daily variations in spite of improving considerably the temporal sampling.
The measurement of (bi) daily variations is needed in order to reduce the temporal
aliasing caused by atmospheric and non-tidal oceanic mass transport.
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Table 1.2 – Overview of the research conducted on gravimetric satellite formations.

formation type(s)
ranging
noise

[nm/s/
p
Hz]

accelerometer
noise

[nm/s2/
p
Hz]

positioning
noise
[cm]a

temporal
aliasing

mis-modelled
static signal reference

GRACE-type
pendulum
cartwheel
LISA-typeb

1000 STD 0.6c Sharifi et al.
(2007)

single, duald GRACE-type
single, doublee cartwheel

f −1 +5
nm/
p
Hz 4×10−4 f based on

AOD1B
Wiese et al.
(2009)

GRACE-type
pendulumg

cartwheel
T-formationh

10µm
STD

1 abs.
0.1 rel.

Encarnação
et al. (2008)

singlei, dualj, quadralkl

GRACE-type
1000 and
10 STD 1 ∆(FES2004,

TPXO)
Visser et al.
(2010)

dual GRACE-typem 5 nm/
p
Hz 0.01f 1 n Wiese et al.

(2011a)
GRACE-type
pendulum
cartwheel
LISA-typeb

pendulum-3So

50/(2π f )
nm/
p
Hz 1 p Elsaka et al.

(2012)

single, dual ∆M q, dual ∆Ωl

GRACE-type
∆(GLDAS,

LaD)
Elsaka
(2013)

single, dualr GRACE-type
singles, dualt pendulum
cartwheel
helixu

f −1 +50v

nm/
p
Hz 9.8 10%

AOD1B
∆(EGM96,

EIGEN-GL04C)
Elsaka et al.

(2013)

single, dualr GRACE-type
pendulums

cartwheel
helixu

f −1 +50v

nm/
p
Hz 0.003w

10%
AOD1B +
∆(EOT08a,
GOT4.7)

∆(EGM96,
EIGEN-GL04C)

Reubelt et al.
(2014)

pendulum
single, dualr GRACE-type f −2 +0.01x SST-AUX-2y Murböck and

Pail (2014)
GRACE-type
pendulum
cartwheel

10000 and
10 STD 1 ∆(FES2004,

EOT08a)
∆(EGM96,
EIGEN-5C)

Zhao et al.
(2014)

a3D RMS
bA combination of cartwheel with pendulum, without along-track displacement.
cCorrelation length of 3 minutes.
d In the same orbital plane.
eWith a total of 4 satellites in the same formation.
fFrom a Drag-Free Attitude Control Systems (DFACS).
gWithout any along-track displacement between the satellites.
hCombination of pendulum and GRACE-type, i.e. a total of four satellites and two sets of range measurements.
iOne with 125 revolutions over 8 nodal days, another with 79 revolutions over 5 nodal days.
jOne with both pairs in polar orbits, the other with one pair in a polar orbit and the other pair in an orbit with 117.4◦ inclination.
kAll four pairs in polar orbits.
l In planes with different values of right ascension of the ascending node.

mDifferent orbital inclinations.
n ∆(FES2004,GOT00)(ocean tides)+∆(ECMWF,NCEP)(atmosphere)+∆(OMCT,MOG2D-G)(ocean)+GLDAS(hydrology)+van Dam et al. (2008)(ice)
oComposed of 3 satellites, 2 of which in a GRACE-type configuration.
p ∆(EOT08a,FES2004)(ocean tides)+∆(ECMWF,NCEP)(atmosphere)+∆(OMCT,PPHA)(ocean)
q In the same orbital plane.
rOne pair at an orbit with 89.5◦ inclination and another pair at an orbit with 63◦ inclination.
s220 km and 96 km along-track displacement combined with 25 km and 43 km maximum cross-track displacement, respectively.
tBoth pairs in a polar orbit, one with along-track and cross-track maximum displacement of 166 km and another with 83 km.
uSimilar to the LISA-type formation but with a 100 km along-track displacement.
v50 nm/

p
Hz+100/f(0.355ρ

�

avg
�

/100km) nm/
p
Hz

wU-shaped PSD, measurement bandwidth is [1,100]mHz
x∼ f −2 for f <1mHz, includes ranging errors.
yGOCE HPF non-tidal dealiasing product.
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1.3 Objectives and methods
The objective of the dissertation is to predict the accuracy of future gravimetric
missions to observe geophysical mass transport processes occurring at the surface
of the Earth. The focus is on how sensor errors, mission concepts and errors
in the background force models propagate to the errors in the observations and
corresponding gravity field models. The previous and current gravimetric missions,
although unquestionably a success, have uncovered deficiencies in the observation
systems and unexpected data corruption. Understanding and modelling these
deficiencies is critical to devise strategies to mitigate and circumvent them in future
missions. The methodology of inverting observations into gravity field parameters is
not the object of analysis, since proven procedures are exploited.

For this reason, the thesis largely focuses on the accurate modelling of the
aforementioned errors, so that the reliable and meaningful prediction of the error
budget of future gravimetric missions can be assessed. A few design options for future
gravimetric satellite formations are analysed. It is also demonstrated that dedicated
gravimetric missions can benefit considerably from a constellation of non-dedicated
Low-Earth Orbit (LEO) satellites with an on-board geodetic-quality GNSS receiver,
i.e. gathering data of comparable quality to those in dedicated missions.

The conducted research focuses on the following aspects of data quality:

i. Minimizing the detrimental effect of temporal aliasing, caused by the rapid
mass transport processes that are too fast to be recovered by satellite gravimetry
data. This introduces errors in the data because, in reality, the models
that describe these processes have deficiencies in remote regions where no
measurements are available to constrain them. Consequently, the gravimetric
data are not perfectly cleaned of signals associated with rapid mass changes,
leaving a residual signal that deceases the accuracy of the estimated gravity
field parameters. The use of numerous non-dedicated satellite systems, in
view of providing independent data with a very high temporal sampling,
makes it possible to minimize the effects of temporal aliasing, as described
in Chapter 5. Additionally, sensitivity to temporal aliasing of the co-called
cartwheel, pendulum and trailing formations is quantified in Chapter 8.

ii. Improving the accuracy of the predictions of future gravimetric data
quality. The use of accurate sensor error models and the proper modelling of
errors in the background force models are ways to accomplish this. In the thesis,
these aspects are addressed by considering the realistic noise characteristics of
future sensors as well as estimating the influence of errors in the force models.
In Chapter 6 the GRACE data is analysed in order to make it possible to
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validate the noise model. Chapter 7 is dedicated to studying the positioning
noise, which may become significant in view of the increased accuracy of other
sensors in comparison to GNSS. In Chapter 8, the noise model is updated
to reflect future sensor accuracies and is applied in the simulation of future
gravimetric satellite formations.

iii. Understanding the limitations and strengths of different satellite formation
geometries, in what regards the anisotropic sensitivity of the data (caused
by the nearly-constant direction along which measurement are taken) and
the sensitivity to different noise types (namely those arising from the
orbit position noise). The anisotropic sensitivity of the data is a well-known
problem of the GRACE satellites since they collect data mainly along the
North-South direction (particularly away from polar regions), causing artefacts
in the estimated gravity field models and making it more difficult to derive
a precise description of geophysical processes. The relative influence of
different noise types is particular to each satellite formation geometry and
requires full-scale simulations to be derived accurately. Other studies (cf.
Table 1.2) often ignore noise types resulting from orbit position noise, mostly
because they are not severe in case of GRACE (if the data is high-pass filtered,
refer to Section 2.5.6). Different mission concepts and the respective orbit
configuration result in different error magnitudes and data sensitivity, which is
investigated in Chapter 8, considering the full-scale inversions of error time
series produced on the basis of a realistic noise model. On the basis of this
understanding, propose the best candidate formation geometry for a
future gravimetric mission.

1.4 Outline
The thesis is divided into 9 chapters, with the first 4 chapters setting the stage for
the original contribution presented in the remaining chapters.

In the Chapter 2, the general concepts of satellite geodesy are discussed, namely
temporal aliasing, the techniques used to measure Earth’s gravitational field, including
the GRACE mission and the state-of-the-art of satellite gravimetry.

Chapter 3 looks into satellite formations, which are used in the context of ll-SST
observations. Different types of formations and the methodology needed to compute
their orbits are presented.

Chapter 4 describes the functional model, background force models and noise
models used in the thesis. This is a fundamental chapter to understand the method-
ology used in the simulations.
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Chapter 5 looks into the added value to gravity field recovery of dozens of
non-dedicated LEO satellites equipped with GNSS receivers. The large number of
satellites, though collecting much less accurate data, are suitable to remove the
effect of temporal aliasing and improve the accuracy of the estimated models.

In Chapter 6, the data of the GRACE mission are exploited to better understand
the errors in processing ll-SST data. The accuracy of the orbits used in the processing
of actual data is estimated, the magnitude of errors found in the data is quantified
and the considered noise model is evaluated.

Chapter 8 looks into three generic candidates for a future ll-SST mission, with
the objective of identifying the strengths and weaknesses of each concept.

Finally, Chapter 9 discusses the conclusions of the conducted research and puts
forward suggestions for future work on this research topic.

Section 6.2 contain excerpts from Ditmar et al. (2012), used in the thesis with
permission. Chapter 5 contains excerpts from Gunter et al. (2009b), used with
permission.
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Satellite gravimetry for
monitoring mass transport in
the Earth system 2
The task of predicting the accuracy of future gravimetric missions invariably starts
from understanding problems in monitoring global mass transport processes of
geophysical origin and recognising limitations of existing missions. The reasons why
it is non-trivial to measure the time-varying gravitational field are firstly explained
in Section 2.1. The way in which gravimetric measurements are gathered is the
issue addressed in Section 2.2, explaining the main types of such observations. The
knowledge of time-varying gravitational field has benefited greatly from the Gravity
Recovery And Climate Experiment (GRACE) mission. For this reason, Section 2.3
aims at giving a brief overview of this mission, the advances based on its data
and, most importantly, its limitations (in Section 1.2.1). The main reasons for the
studies presented in the thesis can be traced back to this section. The discussion
proceeds by an overview of the state-of-the-art of satellite gravimetry. In particular,
the accuracy of the orbits derived from Global Navigation Satellite System (GNSS)
data reported in literature is summarized in Section 2.4. The overview of some
processing strategies is presented Section 2.5. Finally, a few concepts for future
gravimetric missions are described, along with the expected improvements of the
estimated gravity field models inSection 2.6.

2.1 Temporal aliasing in measuring mass transport
processes

When the objective is to measure Earth’s gravitational field with an orbiting satellite,
the observation system is unavoidably sensitive to signals at various spatial and
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temporal scales. In general, the shortest observable spatial scales are limited by
the sensor accuracy, while the shortest temporal periods are limited by the period
the satellite revisits the vicinity of a geographical location. On top of this, there is
no possibility to discern between the underlying causes. The satellite measures the
gravitational acceleration as the summation of the signals resulting from all physical
processes taking place at a certain location on surface of the Earth and at certain
time. Each of these processes has a particular spatial and temporal scale. While
the satellite is away from that location, the variations of short periods continue
without being measured. Those mass transport processes contribute with a signal
that cannot be reconstructed from the data. As such, these signals distort the
observable mass transport processes and act as noise in the data. To refer to this
distortion, the term temporal aliasing is usually used. The shorter the estimation
periods, the lower the effect of the under-sampled mass transport processes and,
consequentially, the lower the effect of temporal aliasing (Encarnação et al., 2008).

2.1.1 Spatio-temporal resolution
Evidently the orbit configuration plays a role in the severity to temporal aliasing.
Particularly, its mitigation requires frequent revisits to the same geographic location.
The direct consequence of this requirement is that the ground track pattern exhibits
large gaps, which limits the recoverable spatial resolution, making it unsuitable to
be represented by the spherical harmonic coefficients above a certain degree. Some
authors refer to this fact as the Heisenberg uncertainty principle of spatio-temporal
sampling (Reubelt et al., 2010; Elsaka, 2013; Pour, 2013).

The following analysis illustrates the limitation in measuring sub-weekly mass
variations by a single satellite system. If the orbit is chosen so that the ground
tracks are homogeneously distributed over the equator, the revisit period T (revisit) is
dependent on the maximum degree L (max) and the orbital revolution period T (rev) as
(Reubelt et al., 2010)

T (revisit) = 2T (rev)L (max). (2.1)
However, the relation described above is conservative. On one hand, as indicated

by Visser et al. (2012), only the observations of the type collected by GRACE
follow this rule; other observation types that collect information along perpendicular
directions, such as those collected by CHallenging Mini-Satellite Payload (CHAMP)
and Gravity field and steady-state Ocean Circulation Explorer (GOCE), allow the
gravity field parameters to be estimated to comparatively higher degrees (if one
ignores the noise in the data). On the other hand, Weigelt et al. (2013b) demonstrates
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that it is the maximum order, not degree, that is the limiting factor and even for
one-dimensional type of observations the most relevant consideration is the unique
equator crossings, related to the parity of the difference between the number of
complete revolutions of the corresponding number of nodal days.

In any case, the relation given by (Reubelt et al., 2010) has the advantage
of being simple and useful if one is interested in the most conservative scenario.
Considering that the T (rev) of Low-Earth Orbit (LEO) satellites is around 5000 s, the
complete globe could be sampled once up, for example, to degree 26 in 3 days. Mass
changes at the spatial scale smaller than 770 km or that occur with a period smaller
than 6 days are impossible to measure. In any practical situation, the case is made
worse by the fact that the ground tracks are not homogeneously distributed over the
equator, or that happens only after a large number of revolutions.

There is, therefore, a trade-off between temporal and spatial resolution. As a
consequence, if both spatial and temporal resolutions are to be improved, multiple
satellite systems should be used (Reubelt et al., 2010). This is a fundamental
characteristic of the recovery of Earth’s gravitational field by satellites and imposes
severe limitations regarding the minimum resolvable spatial wavelength or the
minimum observable temporal cycle.

2.1.2 Mitigating temporal aliasing
The usual strategy to mitigate the effect of temporal aliasing in satellite gravimetric
data is to subtract from them the high-frequency mass variations computed on the
basis of models that are constrained by measurements gathered from other sources.
Such models are usually called a de-aliasing product, e.g. Atmosphere and Ocean
De-aliasing Level 1B (AOD1B) product (Flechtner et al. 2006; Flechtner 2007, 2011),
and the correction for rapid mass variations is called temporal de-aliasing.

Model-based de-aliasing is not perfect, as a result of model deficiencies, errors in
the data exploited to estimate model parameters or even conversion from meteor-
ological parameters to spherical harmonics representing gravitational disturbances
(Engels et al., 2012). These imperfections are particularly significant for the models
describing the motion of atmospheric mass along with the corresponding ocean
inverse-barometer response and, to a lesser extent, the tidal displacement of the
oceans due to lunar and solar gravitational pull (Zenner et al., 2010; Ray and Luthcke,
2006; Han, 2004a; Seo et al., 2008). The de-aliasing process will not completely
remove the high-frequency signals. The effect of the de-aliasing model error in the
estimated gravitational field solutions is also called temporal aliasing.

To mitigate the effects of temporal aliasing, several approaches are available.
The so-called Wiese-approach (Wiese et al., 2011c) takes advantage of low degree
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models estimated over short-periods (one or two days) to act as de-aliasing product
for the estimation of gravity field models over longer periods (19 days in Wiese et al.
(2011c)). Another possibility that is conceptually similar but more robust relies on
the estimation of daily solutions constrained by temporal covariance derived from
geophysical models (Kurtenbach et al., 2009; Mayer-Gürr et al., 2012; Kurtenbach
et al., 2012). In other words, the daily solutions are not independent of each
other; they are constrained to the way the gravitational field “usually” changes and
updated on the locations where the observations of that day have been collected.
An alternative techniques to mitigate temporal aliasing relies on a time-varying
parametrisation of the gravity field parameters. This approach is very computationally
expensive in view of a large number of parameters to be estimated. Furthermore, the
number of time-related parameters is tied to the number of space-related parameters,
so that it is only possible to describe smooth changes in the gravitational field if
the resulting model describes spatial features small enough to represent interesting
time-variable mass transport processes, cf. Table 1.1.

The isotropic sensitivity of the collected gradiometric data plays a role in temporal
aliasing. Isotropic data sensitivity means that the associated errors are not more or
less severe along a preferential direction, so that the resulting gravity field model
errors are homogeneous along orthogonal directions in the spatial domain. Wiese
et al. (2011c) demonstrates that anisotropic measurements are more sensitive to
temporal aliasing. Consequentially, improving the isotropic sensitivity of the data,
along with the direct benefits, also has the welcome advantage of decreasing the
effects of temporal aliasing.

2.2 Measuring Earth’s gravitational field from satel-
lites

The study of the Earth’s gravitational field with satellites emerged soon after the
launch of the first artificial satellites in the end of the 1950’s. The first data collected
from these early satellites was either optical, using sensitive cameras, or the Doppler
shift of the transmitted radio signals (Seeber, 2003), from which the lower degrees
of the spherical harmonic coefficients representing Earth’s static gravitational field
could be estimated (Merson and King-Hele, 1958).

Presently, gravimetric satellites are equipped with dedicated sensors that provide
data allowing their orbital position to be known with centimetre accuracy. The
tracking data are either ground-based, as is the case of Satellite Laser Ranging (SLR)
(Smith and Turcotte 1993; Combrinck 2010) and Doppler Orbit Determination and
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Radio-positioning Integrated on Satellite (DORIS) (Dorrer et al. 1991; Barlier 2005;
Willis et al. 2006) or space-based if exploiting a GNSS. In case of ground-based
systems, the tracking information is only available close to the locations where a SLR
station or a DORIS beacon is located and is generally not suitable for the estimation
of Earth’s gravity field parameters globally, except for the variations of the lower
spherical harmonic degrees over long periods of time, e.g. Bianco et al. (1998) and
Cox et al. (2004). In case of GNSS, a constellation of GNSS satellites continuously
emits radio signals containing all necessary information for a receiver to determine
its location, providing the opportunity for global coverage.

The high-low Satellite-to-Satellite Tracking (hl-SST) and low-low Satellite-to-
Satellite Tracking (ll-SST) observation types are described in detail in the following
sections. The Satellite Gravity Gradient (SGG) observations are also addressed for
completeness although they are not relevant to the remaining chapters of the thesis.
Together with the measurement principles, the main sensors associated with them,
i.e. GNSS receivers, the ranging sensors and the accelerometers, respectively, are
also discussed.

2.2.1 high-low Satellite-to-Satellite Tracking
The high-low Satellite-to-Satellite Tracking (hl-SST) measurement principle exploits
the tracking signals being continuously emitted from GNSS constellation(s). The
foremost example of a satellite gravimetric mission producing hl-SST observations
is the CHallenging Mini-Satellite Payload (CHAMP) (Reigber et al. 1996, 2002)
satellite.

Each GNSS satellite broadcasts its ephemerides, the accurate time of when the
signals are sent and the necessary corrections for the receiver to be able to synchronise
its clock to the Global Positioning System (GPS) time. With this information, the
receiver is capable of determining its range to the GNSS satellite. In the field of
GNSS data processing, this range is often called pseudo-range, owing to the fact that
the range is calculated as the product of the speed of light with the time the signal
took to reach the receiver and that there are timing errors. In conjunction with the
pseudo-ranges of at least four GNSS satellites, the three-dimensional (3D) location
of the receiver can be determined. These are called code measurements and provide
a real-time estimate of the satellite’s position, with a few meters accuracy. The
more accurate phase measurements result from measuring the fraction of the phase
of the carrier frequency of the code observations, after resolving for fractions of the
wave-length (or, in some cases, integer wave-lengths), in a process called ambiguity
resolution. The phase observations permit the distance between the receiver and
the GPS satellites to be estimated with centimetre accuracy but their real-time
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processing, although only needed for some applications, produces orbits that are
roughly a factor of 10 less accurate that the orbits produced with traditional ground
processing Montenbruck et al. (2012).

According to Newton’s second law, it is possible to determine the total force
acting on a satellite from its acceleration, which is inferred from the observed motion.
The total force consists of gravitational and non-gravitational forces, also referred to
as conservative and non-conservative forces. In LEO, the non-gravitational forces
are composed mainly of atmospheric drag, solar radiation pressure, Earth albedo
and infra-red radiation pressures. In order to consider the effect of non-gravitational
forces, there are several options. The non-gravitational forces can be modelled and
corrected; another possibility is to co-estimate drag and radiation pressure force
coefficients along with the parameters defining the gravitational field. Another
way is to measure the non-gravitational accelerations by means of an on-board
accelerometer, as is the case with all gravimetric satellite missions.

Earlier investigations by Ditmar et al. (2007) into the refinement of (static) grav-
ity field models from the CHAMP mission discovered that by properly accounting
for the presence of correlated noise in the data, i.e., by using Frequency-Dependent
Data Weighting (FDDW), the on-board accelerometers become essentially unneces-
sary. In short, the gravity field models computed from CHAMP could be derived
entirely from the accelerations obtained from the on-board GNSS receiver. Further
numerical studies (Ditmar et al., 2008) supported the conclusion that the effects of
non-gravitational accelerations acting on the satellite are not the limiting factor in
determining gravity field models. As a result, satellites that exploit hl-SST observa-
tions are not required to have an on-board accelerometer, only a GNSS receiver and
an attitude determination/control system is needed. Note that the satellite attitude
is required in order to derive the motion of the spacecraft’s centre of mass, given
the measured position of the GNSS receiver antenna.

Temporal variations of the gravitational field have been estimated solely from
hl-SST data. For example:

• Zhu et al. (2004) have produced gravity field models up to degree 20 every
1.5 days based on hl-SST data from the GRACE and CHAMP missions, with
the orbit accuracy improved with the addition of accelerometer and K-Band
Ranging (KBR) data (the latter in case of GRACE and only for Precise Orbit
Determination (POD));

• Hwang et al. (2008a) have produced a gravity field model up to degree 25
from one month of FORMOSAT-3/COSMIC (F3C) hl-SST data;

• Lin et al. (2012) has produced monthly gravitational field solutions up to
degree 5 based on Kinematic Orbits (KOs) from the GRACE and F3C missions;
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• Weigelt et al. (2013a) have computed monthly gravity field models from
CHAMP data up to degree 10, from January 2002 to December 2009, and
demonstrating that it is possible to estimate accurate mass-change trends in
Greenland and

• Bezděk et al. (2014) computed satellite-specific monthly models up to degree
10 with hl-SST data gathered by CHAMP and GRACE.

It is unlikely that hl-SST data are sensitive degrees higher than 20 – 30 since the
associated gravitational disturbances have a lower amplitude than the errors of the
orbits computed from GNSS data.

The largest advantage of the hl-SST measurement principle is that it requires
a small set of sensors: a GNSS receiver and an attitude measurement system.
Nowadays, this set of sensors is almost universal in LEO satellites. Examples are:
FORMOSAT-3/COSMIC (F3C) (Kuo et al. 1999, 2005), FORMOSAT-7/COSMIC-2
(F7C2) (Ector et al. 2010; Cook et al. 2013), the Meteorological Operational satellite
programme (MetOp) (Edwards and Pawlak 2000) satellites and Iridium Next (Gupta,
2008) (to name a few). As such, there is potentially a high density of hl-SST
observations, both in the spatial and temporal sense, which make these large sets
of hl-SST data less sensitive to temporal aliasing and particularly suitable to derive
low-degree (up to degree 10 to 20) high-frequency (daily) gravity field models, see
Chapter 5. These models are particularly suitable as de-aliasing products in the
processing of more accurate data collected from dedicated gravimetric missions.

The disadvantage of hl-SST observations is their low accuracy, in comparison to
other measurement principled. This limitation is associated with the quality of GNSS
data, from which orbits are derived with an accuracy no better than a few centimetres
(refer to Section 2.4 for more details on this issue), in spite of the millimetre-level
precision of the carrier phase observations. Furthermore, accelerations derived from
hl-SST data are corrupted with high-frequency noise. As a consequence, the gravity
field models estimated from hl-SST data have typically a lower maximum degree
than other observation techniques.

2.2.2 Satellite gradiometry
The Satellite Gravity Gradient (SGG) observation principles relies on the differential
measurement of the gravitational acceleration at two distinct but neighbouring
locations. To accomplish this, the gradiometer is composed of a rigid structures
supporting (one or more) pairs of accelerometers, placed symmetrically with respect
to the Centre of Mass (CoM) of the satellite. The accelerometers pairs are under the
influence of the gravitational field in difference places and, as a result, their proof-
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masses are under the influence of slightly different gravitational forces. Therefore,
the data in the differential mode contain, in addition to centrifugal accelerations,
the measured gravity gradients. The non-gravitational effects cancel out in this
mode because the non-gravitational forces influence the motion of the spacecraft, to
which both accelerometer are rigidly attached. In practice, however, the imperfect
calibration of the gradiometer due to minute misalignments of the accelerometer
axes during construction causes the non-gravitational accelerations to leak into
the SGG differential mode data. The gradiometer is also delivers common mode
data, in which case the accelerometer measurements in opposing pairs are averaged.
Consequentially, the measured gravitational and centrifugal accelerations cancel each
other since they are equal in absolute value and of opposite sign.

The main advantage of SGG data is that they have isotropic sensitivity. Addition-
ally, the redundancy of the measurements, i.e. six 3D accelerometers measuring five
independent components of the gravity gradient tensor, in conjunction with the iso-
tropic nature of the measurements allows the gravity field model to be computed up
to a higher degree at shorter estimation periods, in comparison to other measurement
principles (Anselmi et al., 2010). This is because the five independent measurements
increased the numerical stability of the gravity field parameters estimation, decreasing
the influence of coverage gaps, e.g. on the poles due to a non-polar orbit or in the
rest of the globe due to short repeat period of the orbit (Visser et al., 2012). For
these reasons, SGG data are very attractive to estimate short-period (sub-weekly to
daily) gravity field models, which are suitable for de-aliasing purposes.

High quality SGG data is technically demanding. GOCE’s gradiometer contains
extremely accurate accelerometers and a very stable structure to support them. It is
encapsulated in a thermally-controlled environment, to ensure a high thermoelastic
stability of the structure and to limit temperature-dependent variations on the
accelerometer’s measurements. Additionally, the attitude of the spacecraft needs
to be measured with a very high accuracy, so that the angular accelerations can be
removed from the differential acceleration measurements.

In addition, technical limitations in accelerometers make the gradiometer of
GOCE unsuitable to measure the long-wavelength features of the gravitational
field. According to Marque et al. (2008), the accelerometer that compose GOCE’s
gradiometer have an error spectra that is, in spite of the thermal control, dominated by
the thermal sensitivity of the measurement bias at the low-frequencies. Additionally
but to a lesser extent, the gold wire responsible for continuously maintaining the
proof masses in neutral charge introduces damping in the proof-mass feedback
control loop, decreasing the accuracy of the measurements at low-frequencies.

The accelerometers are also used in non-SGG gravimetric satellite missions. They
typically contain a proof mass that is suspended at the centre of the device by means
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of a restoring electrostatic force. This force is generated by electrodes on the sides of
the proof mass cavity. In case of capacitive accelerometers, such as those on-board
the CHAMP, GRACE and GOCE satellites, the capacitance between the proof mass
and the electrodes provides the input necessary to control the voltage to be applied
to the electrodes in order to create the restoring electrostatic force (Marque et al.,
2008). As a results, the non-gravitational forces acting on the spacecraft are equal
to the electrostatic force. The voltage applied to the electrodes constitutes the
corresponding measurement exploited in gravimetric data processing.

The accuracy of the accelerometers used in gravimetric missions is often referred
to as resolution. This is because the measurements have high internal accuracy
(precision) but require calibration in order to derive observations with a useful
physical meaning. The measured electrode voltages are translated into accelerations
by a scale factor and a bias, with the largest variations occurring in the latter,
although slowly with time (Helleputte et al., 2009). In addition, the assembly of
the accelerometers and their integration in the spacecraft is not perfect, resulting
in errors from the non-orthogonality of their axes and misalignments with respect
to a pre-defined reference frame. These errors are measured after launch, since
the accelerometers can only operate accurately in a micro-gravity environment,
resulting in the so-called inverse calibration matrices in case of the GOCE satellite
Siemes et al. (2012). The calibration of accelerometers is a vast research topic, see
e.g. Bruinsma et al. (2004); Tianhe and Yuanxi (2005); Bezděk (2010). Recently,
Lenoir et al. (2013a,b) proposed to mitigate the accelerometer bias by mounting
the accelerometer on a rotating platform, the so-called Bias Rejection System. It
rotates with a modulated (i.e. pre-defined time-varying) angular velocity, so that the
centrifugal acceleration can be exploited to calibrate the accelerometer.

The capacitive accelerometers on-board gravimetric missions are very sensitive
instruments. According to Touboul et al. (2012) and Marque et al. (2008), the
STAR accelerometer of CHAMP has an error STandard Deviation (STD) equal to
3×10−9 m/s2, the SuperSTAR accelerometers of GRACE produce measurements with
10−10 m/s2 error STD (although Frommknecht et al. (2006) reports 3×10−10 m/s2
and Flury et al. (2008) specifies less than 10−10 m/s2) and GOCE’s GRADIO accel-
erometers introduce noise in the data with a STD equal to 3×10−12 m/s2 over the
measurement bandwidth from 0.5mHz to 100mHz (Christophe et al., 2010).

2.2.3 low-low Satellite-to-Satellite Tracking
The low-low Satellite-to-Satellite Tracking (ll-SST) measurements require that the
involved satellites fly in formation, which is to say that they remain close to each other
at all times. Under these conditions, on-board tracking sensors have the opportunity
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to continuously measure the distance between the satellites very accurately. This
is the measurement principle of the Gravity Recovery And Climate Experiment
(GRACE) (Tapley et al. 1996; Tapley 2004b) mission.

The same type of sensors is not suitable for hl-SST because they are generally
highly directional. The GNSS satellites that make it possible to gather hl-SST
data are placed at a high altitude orbit. There two main reasons for this choice:
the gravitational and non-gravitational accelerations are more predictable at those
altitude and, important to the current discussion, the tracking signals can be directed
to the complete globe and LEO with the limited view angle of roughly 45 degrees.
In comparison, the instruments responsible for ll-SST have an angular beam width
of a few degrees. The narrow tracking beam makes it possible to exploit high-
frequency electromagnetic signals for ranging purposes. In general terms, higher
signal frequency produces more accurate data but more power is required to emit
the signal. In case of GRACE, the gravimetric mission that first exploited ll-SST
data, the ranging sensor emits signal in the K-band, at 24 and 32 GHz. The GPS
tracking signals, on the hand, operate in the L-band, at 1.2 and 1.5 GHz. Future
ll-SST gravimetric mission have been proposed to use LASER in infra-red band, at
around 200THz (Sheard et al., 2012).

The success of the GRACE mission is the direct result of the extremely accurate K-
Band Ranging system and the resulting high quality ll-SST data. It makes it possible
to measure the distance between the satellites with an accuracy of around 1 µm
(Biancale et al., 2005; Frommknecht et al., 2006). This remarkable accomplishment,
considering that the satellites are travelling at 7.5 km/s at the distance of around
200 km from each other, resorts to the Dual One-Way Ranging (DOWR) concept.
Each one-way ranging sensor measures the carrier phase of the other instrument
and subtracts it from the internal reference phase, resulting in two so-called one-
way phases measurements. The dual one-way phase measurement is the sum of
the two one-way phases, which benefits from the fact that the phase noise in the
one-way phases has not changed significantly over the time of signal propagation,
less than 1 ms, thus mostly cancelling it. Evidently, high-frequency phase noise
occurring at periods less than 1 ms is still present in the measurements but does
not play a significant role. Another source of measurement error results form
the ionospheric signal propagation delay, which is mitigated by using two carrier
frequencies, much in the same way as the ionosphere-free combination of double-
frequency GPS observations (Kim and Lee, 2009). The internal oscillator of both
satellites is disciplined by the GPS clock corrections, effectively keeping the clocks
in both satellites within 10−10 s of each other. A feature of this concept is that the
range measurements are known up to an unknown bias, which changes when the
carrier phase lock is lost, as a result of (e.g.) sudden changes in the attitude of the
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spacecraft or obfuscation by direct sunlight. On the other hand, the range-rates,
i.e. the time derivative of the ranges, are measured directly and do not require such
pre-processing

The accuracy of the KBR system does not translate directly into the accuracy of
the measured distance between the GRACE satellites. The microwave horn antennas
are located on the front and rear surfaces of the trailing and leading satellites,
respectively. Consequently, they measure the distance between these two surface.
In order to derive the distance between the CoM of the two satellites, the antenna
phase centre correction has to be applied. This correction is mostly related to the
attitude of the satellites, which can be such that the CoM is not exactly aligned
with the direction connecting the two microwave antennas.

Unlike hl-SST where multiple GNSS satellites provide opportunity for multiple
segmented range measurements, there is only one range measurement. The main
consequence is that the measurements are taken along one single Line of Sight (LoS)
direction and, depending on the geometry of the formation, this direction may
be roughly constant in the Local Orbital Reference Frame (LORF, Section A.4).
Therefore, the resulting gravimetric measurement is taken strictly along the LoS
direction and is, therefore, insensitive to changes in the gravitational potential along
perpendicular directions. This lack of sensitivity along all directions is referred to as
anisotropic sensitivity of the data. In case of GRACE, this issue is further discussed
in Section 1.2.1.

Another disadvantage of the ll-SST concept is that the tracking signal has to be
emitted with a constant frequency and the received signals need to be compared
with the stable internal oscillator, increasing the technical complexity. Additionally,
it is mandatory to include an accurate accelerometer in order to measure the non-
gravitational forces which would otherwise be indistinguishable from the gravitational
ones.

As for advantages, the ll-SST data allows for the gravity field models to be
determined with very high accuracy; in case of GRACE the mid to long wavelengths
(below degree 70). Unlike the SGG data, the ll-SST data depicts accurately the
long wavelength features of the gravitational field, making it possible to measure
the temporal variations of the gravitational field with very high accuracy. The small
features of the gravitational field, however, are limited by the accuracy of the ranging
sensor, since these errors are dominant at the high frequencies.
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2.3 The GRACE mission
Since its launch in 2002, the Gravity Recovery And Climate Experiment (GRACE)
(Tapley et al. 1996; Tapley 2004b) has been measuring the temporal variations of
Earth’s gravitational field with extremely high accuracy. The two twin satellites that
constitute the measuring system fly in a leader/follower formation, also known as a
trailing formation. The two near-polar orbits have nearly the same orbital planes and
the satellites fly with a nearly-constant 200 km along-track distance between them,
at 500 km altitude. The KBR system makes it possible to measure the distance
between the satellites with an accuracy estimated to be of a few micrometers. The
satellites are also equipped with accelerometers to measure non-gravitational forces,
making it possible to accurately remove them from the measured inter-satellite
acceleration at the stage of data processing.

Prior to the launch of the GOCE satellite, the GRACE data was the preferential
source of data for static gravity field recovery. On the basis of these data, many
models were computed, namely the ones listed i.a. in Table 2.1.

2.3.1 Contribution of GRACE to the advances in modelling
the time-variable gravitational field

The high quality data gathered by the GRACE satellites makes it possible to measure
the movement of mass on the surface of the Earth described in Section 2.1, down
to spatial scales of a few hundred kilometres and temporal scales of sub-monthly
to monthly. The temporal gravity field models produced from GRACE data are
listed i.a. in Table 2.2, which in combination with Table 1.1 illustrates the observ-
able geophysical signals. The most important signals present in the GRACE data
are related to hydrological and glaciological processes, as well as Glacial Isostatic
Adjustment (GIA).

It is possible with GRACE models to monitor hydrological processes and determine
the availability of water as resource. The large number of publications illustrated in
Table 2.3 attests not only the importance of gaining a better understanding of the
water cycle but also the fruitfulness of the GRACE data to this purpose.

The understanding of other geophysical processes has also benefited from GRACE
data. The data is also used to study the processes shown in Table 2.4, most notably
the determination of the depletion of ice mass at high latitudes and the application
of these data to sea-level rise studies.

The publications listed in Tables 2.2, 2.3 and 2.4 intends to summarise the
contributions of the GRACE mission to the understanding of mass transport processes
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Model name Max.
Deg. SLRa CHAMP

hl-SSTa
GRACE
ll-SSTa

GOCE
grad.a Other Data Reference(s)

GGM02 360 – – 0.99 – high-frequency information
from EGM96

Tapley
et al.
(2005)

EIGEN-CG03C 360 – 2.36 1.05 – altimetry, terrestrial
gravimetry

Förste
et al.
(2005)

GGM03 360 – – 4.00 – altimetric mean sea surface,
terrestrial gravimetry

Tapley
et al.
(2007)

EIGEN-GL04C 360 3 – 3.41 – altimetry, terrestrial
gravimetry

Förste
et al.

(2008b)
EGM2008 2190b – – 4.5 – altimetry, terrestrial

gravimetry
Pavlis et al.
(2008)

EIGEN-5C 360 6 – 5.33 – altimetry, terrestrial
gravimetry

Förste
et al.

(2008a)

ITG-GRACE2010s 180 – – 7.0 – –
Mayer-Gürr

et al.
(2010)

AIUB-GRACE03S 160 – – 6.25 – – Jäggi et al.
(2011a)

GOCO02S 250 5 8 7.5 0.66 –
Goiginger
et al.
(2011)

DGM-1S 250 0 0 6.83 0.83 –
Farahani
et al.

(2013b)
GOCO03S 250 5 8 7.5 1.5 – Mayer-Gürr

(2012)

EIGEN-6C 1420 6.5 – 6.5 0.55
high-frequency information
from DTU10 (Andersen,

2010)
Shako et al.
(2014)

EIGEN-6C2 1949 15 – 7.75 0.96
high-frequency information

from DTU12 and
EGM2008

Förste
et al.
(2012)

EIGEN-6C4 1949 15 6.5 9.6 3.5
high-frequency information

from DTU12 and
EGM2008

Förste
et al.
(2014)

aData period in years, not necessarily contiguous.
bThe maximum order is 2159.

Table 2.1 – Overview of the main static gravity field models derived from GRACE data.

at the Earth’s surface. It is not a complete list; for that the interested reader is
directed to the web page grace.jpl.nasa.gov/publications.

In spite of the revolutionary and numerous advances in the understanding of mass
transport processes at Earth’s surface, the GRACE data has some critical limitation,
as discussed in Section 1.2.1, that constitute one of the main motivations for the
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Model name Max.
Deg. Period Validity Particularities Reference(s)

GSFC-mfs 60 monthly Jul
2003

Jul
2004a

More accurate
than

contemporary
official L2
products

Luthcke et al.
(2006a)

ITG-GRACE2010 40b,
120c

daily and
monthly

Aug
2002

Aug
2009

Modelled
temporal

correlations
constrain the daily

solutions d

Kurtenbach
et al. (2009)

JPL-R05 60, 90 monthly Apr
2002 present

Formulated as
MasConse, official

GRACE L2
product

Watkins and
Yuan (2012)

AIUB 60f monthly Jul
2003

Dec
2009g – Meyer et al.

(2012b)

CNES/GRGS-10d 80
10 daily
and

monthly
Jan
2003

Dec
2012h –

Lemoine et al.
(2007b);
Bruinsma

et al. (2010);
Lemoine et al.

(2013b)

DMT 120 monthly Feb
2003 2011

Available as both
unconstrained and
optimally filtered

solutions

Liu et al.
(2010);

Ditmar et al.
(2013)

GFZ-R05 90 weekly and
monthly

Jan
2003 presenti Official GRACE

L2 product
Dahle et al.
(2013)

CSR-R05 96 monthly Apr
2002 present Official GRACE

L2 product
Kruizinga
(2014)

aExcept January 2004.
bDaily solutions
cMonthly solutions
dMonthly solutions use daily solutions for de-aliasing, in addition to the AOD1B model.
eMass Concentration (MasCon) approach (Rowlands et al. 2005; Lemoine et al. 2007a)
fMaximum order is 45.
gExcept November 2003, January and November 2004
hExcept June 2003, January 2011 and October 2012.
iExcept June 2003, January 2011, June 2011, May 2012, October 2012 and March 2013.

Table 2.2 – Overview of the main temporal gravity field models derived from GRACE data.

research described in the thesis.
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Geographical location Research subjecta Reference(s)

South-western India anthropogenic ground water
depletion Rodell et al. (2009)

Bengal Basin Shamsudduha et al.
(2012)

South-western China drought events Tang et al. (2014)
China Zhao et al. (2010b)

Yangtze River basin modelling, evapo-transpiration
estimation Corbari et al. (2014)

Siberia Vey et al. (2012)
Aral Sea, Central Asia Singh et al. (2013)

Central Asia Dapeng et al. (2014)
Asia Minor Lenk (2013)

Middle-East anthropogenic ground water
depletion Joodaki et al. (2014)

Tigris-Euphrates and
Lower Nile basins

Longuevergne et al.
(2013)

Europe modelling, drought monitoring Li et al. (2012)
North America and

Scandinavia Wang et al. (2012a)

Great Lakes, North
America Huang et al. (2012)

North America modelling, drought detection Houborg et al. (2012);
Sun (2013)

North America Swenson (2003)

Great Plains, USA Longuevergne et al.
(2010)

Western Kansas, USA Wang et al. (2013)
Mississippi River basin,

USA Rodell et al. (2006)

Southern USA drought events Long et al. (2013)
South America Ramillien et al. (2012)

Amazon river basin drought events Chen et al. (2009b)
Amazon river basin Papa et al. (2013)

Nile Basin Awange et al. (2014)
Africa Hassan and Jin (2014)

West Africa modelling, ground water storage
prediction Forootan et al. (2014)

East Africa Becker et al. (2010)

Zambezi river basin
Winsemius et al.

(2006); Klees et al.
(2007)

Southern Mali, Africa Henry et al. (2011)
Lake Naivasha, Kenya Awange et al. (2013)

Australia Seoane et al. (2013)

aAn empty entry means ground water monitoring.

Table 2.3 – Overview of the application of GRACE data in hydrological studies.
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Geographical
location

Geophysical
process Reference(s)

Sumatra-Andaman
earthquake Seismology Han (2006); Li and Shen (2012); Wang et al.

(2012b)
Tohoku-Oki
earthquake Seismology Yong-zhi et al. (2011); Fuchser and Ward (2013)

Okhotsk
earthquakea Seismology Tanaka et al. (2015)

Maule earthquake Seismology Heki and Matsuo (2010); Han et al. (2010)
Large earthquakesb Seismology Tanaka and Heki (2014)
Antarctica and
Greenland Glaciology Cazenave (2006); Velicogna (2009); Ramillien et al.

(2006); Groh et al. (2014); Velicogna et al. (2014)

Greenland Glaciology

Baur et al. (2009); Harig and Simons (2012);
Schrama et al. (2011); Svendsen et al. (2013);

Luthcke et al. (2006b); Slobbe et al. (2009); Siemes
et al. (2012); Chen et al. (2011); Chen (2006); Baur
et al. (2012); Wouters et al. (2008); Schrama and

Wouters (2011); van Angelen et al. (2013)

Antarctica Glaciology
Chen et al. (2008a); Sasgen et al. (2007); Földváry
(2012); Chen et al. (2009a); Gunter et al. (2009a);
Bouman et al. (2014); Horwath and Dietrich (2009)

Canada GIA Tamisiea et al. (2007)
Fennoscandia GIA Steffen et al. (2008)
Antarctica and
Greenland GIA Barletta et al. (2008)

Canada and
Fennoscandia GIA van der Wal et al. (2011)

Western Antarctica GIA Groh et al. (2012)
Tibetan Plateau GIA Zhang and Jin (2013)

Global GIA Wu and Wang (2008); Wu et al. (2010)

Global Geo-centre
motion

Argus (2012); Roy and Peltier (2011); Swenson et al.
(2008); Kang et al. (2009)

Global Ocean
circulation Chambers and Schröter (2011)

Global Sea-level rise

Jacob et al. (2012); Riva et al. (2010); Wouters et al.
(2011); Baur et al. (2013); Ivins et al. (2013); Spada
and Galassi (2012); Spada et al. (2013); Cazenave
et al. (2009); Llovel et al. (2010); Woodworth et al.
(2011); Vergos et al. (2012); Lombard et al. (2007);

Garcia et al. (2007); Piecuch et al. (2013)

Global Land-ocean
mass balance Boening et al. (2012)

aThe first deep-focus earthquake to be observed by satellite gravimetric data.
bThe 2004 Sumatra-Andaman, 2010 Chile (Maule), and 2011 Tohoku-Oki earthquakes

Table 2.4 – Overview of the application of GRACE data in geophysical studies other than
hydrology.
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2.4 Orbit accuracy of LEO satellites
One important ingredient in computing gravity field models is the orbits of the
satellites. They result from measurements collected by the GNSS receiver. Unlike
the accelerometers and ranging sensors discussed in Section 2.2, the accuracy of
the measurements collected by the GNSS receiver are not of immediate interest
to geodetic applications. Much more relevant is the result of processing these
measurements into a set of orbital positions and velocities. For this reason, the
characteristics of the GNSS receiver not discussed and more attention is devoted to
the accuracy of the resulting orbits.

With the exception of the SGG type of observation, the accuracy in which orbital
positions and velocities are estimated is of critical importance. In case of hl-SST, the
orbits are themselves the main gravimetric observations, and their errors propagate
directly to the estimated gravity field parameters. In case of ll-SST, in addition to
the obvious geo-location information, the orbit is needed in order to characterize the
direction of the ll-SST gravimetric observation. In case of SGG observations, the
orbits are only used to geo-locate the gradiometric measurements and their error
has a small impact on the quality of the final gravity field model.

A proper characterisation of the current LEO orbit errors is needed to quantify
their role in the total noise budget of a future gravimetric mission. The information
gathered in this analysis is a realistic estimate of the amplitude of the relative and
absolute orbit errors.

2.4.1 Orbit determination methods
The procedure that transforms the GPS pseudo-ranges into a useful and congruent
set of position and velocity data is referred to as Precise Orbit Determination (POD).
There are three types of orbits that result from the respective POD methods:

1. Kinematic Orbit (KO)
2. Reduced Dynamic Orbit (RDO) and
3. Purely Dynamic Orbit (PDO).

The first type of orbit is the result of purely kinematic positioning, i.e. fundamentally
of a geometric nature, produced without any knowledge of the dynamics of motion.
The last type of orbit is produced by the unconstrained integration of the equations of
motion on the basis of an assumed force model. The role of geometrical information
is restricted to the computation of the initial state vectors, needed to initiate the
integration. The RDO is somewhere in-between the previous two types, in the sense
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that orbit integration takes both geometrical and dynamic information into account.
More precisely, the pseudo-ranges derived from GPS measurements are processed
with the additional constraint that the resulting orbit obeys to a predefined dynamic
model.

The KOs do not contain any information related to a force model. They are
estimated solely from the GPS measurements. Since they are determined epoch-wise
and the accuracy of data point is dependent on the number of the visible GPS
satellites, KOs are characteristically less smooth than the orbits of other types.
Additionally, KOs are plagued with frequent data gaps, which can result from e.g. a
low quality of GPS observations which have to be removed as outliers or from a small
number of satellites in view, see e.g. Götzelmann et al. (2006). To illustrate this
argument, Hwang et al. (2009) reports that as many as 70% percent of kinematic
orbit arcs were unsuitable for gravity field recovery during the POD of the F3C orbits.
This number can be seen as a worst-case scenario in view of the fact that the F3C
satellites gather radio occultation data, for which the GPS antenna placement on
the satellite is not optimal for POD.

The RDOs are the result of the integration of the equations of motion constrained
by GPS data (Yunck et al., 1994). Orbits of this type are not subject to data gaps
because at those times when GPS measurements are unavailable or erroneous, the
orbit follows the assumed dynamic model. On the other hand, RDOs require the
estimation of empirical parameters or the co-estimation of force parameters to
compensate for errors in the (often simplified) force model (Švehla and Rothacher,
2005). These errors might be of gravitational or non-gravitational origin, of static
or time-varying nature. More critical is the fact that the computed RDOs tend
to reflect deficiencies in the assumed force model, particularly if the number of
estimated empirical parameters is low. On the other hand, setting a large number
of empirical parameters tends to absorb most unmodelled signals, making the co-
estimation of gravity field parameters less accurate. On this topic, van den IJssel
and Visser (2007) has exploited linear-piecewise empirical accelerations to estimate
the non-gravitational accelerations solely based on GNSS data.

Since integrated solely from the equations of motion and on the basis of an
assumed force model, the PDOs require only six parameters (the initial state vector)
to be completely defined for each orbit arc. The length of each arc is usually long
enough to decrease the frequency of the arc boundary discontinuities and short
enough to limit the build-up of integration errors; orbits arcs are often computed
with daily periods, or fractions thereof. The initial state vectors can be derived from
a KO or, in the case of simulation studies, determined analytically.

Each orbit type has different roles and purposes. The lack of any a priori
information regarding the dynamic model makes the KOs suitable to estimate

32



Orbit accuracy of LEO satellites 2.4

Earth’s gravitational field, if care is taken to mitigate the large high-frequency
noise resulting from the differentiation of the kinematic positions. For the same
reason, the KO is also exploited to estimate the initial state vectors used for the
integration of PDO, since they are not biased towards any background force model.
The PDOs describe the unconstrained motion of a satellite under the influence of a
background force model, which means that the computed velocities tend to have
lower differentiation errors than the KOs, provided that the background force model
is adequately complete. This fact is advantageous in some ll-SST data processing
strategies, when the centrifugal accelerations of the reference frame fixed to the LoS
vector need to be removed from the data, refer to Section 4.3.3. Since the GRACE
satellites have their LoS vector constantly aligned with the along-track direction,
this vector rotates in inertial space. Associated with this motion are frame rotation
accelerations which are not related to the gravitational field and need to be cleaned
from the data. In those processing strategies, the PDOs provides a more accurate
estimation of the frame accelerations than other orbit types, improving the accuracy
of the final gravitational field solutions. The RDOs are typically “rapid” orbits, used
in the preliminary data processing stages, since they can be computed very quickly
and do not suffer from data gaps. Another application particular to the RDOs is
associated with the co-estimation of parameters which are not known accurately,
such as non-gravitational force parameters (e.g. the drag or lift coefficients and
surface reflectivity parameters).

2.4.2 Absolute LEO orbit positioning accuracy
In this section, a literature study concerning the absolute orbit accuracy of LEO is
presented. There are numerous studies on POD of LEO satellites, so the analysis
is limited to a few representative and important Earth Observation (EO) missions:
TOPEX/Poseidon, CHAMP, Jason-1, GRACE, first satellite of the Meteorological
Operational satellite programme (MetOp-A), GOCE and F3C. The type of GPS
observation is either Zero-differenced (ZD), Single-Differenced (SD) – either Single-
Differenced phase measurements between GPS Satellites (SD-S) or Single-Differenced
phase measurements between Epochs (SD-E) – or Double-differenced (DD). The
study covers GPS data from 1997 to 2007 and considers data periods from one day
to nearly one year.

The accuracy of the POD scheme is estimated using one of the following
validation methods: overlap analysis, RDO - KO difference, comparison with an
independently-computed orbit and comparison with independent measurements, such
as SLR and/or DORIS.
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The overlap analysis is done by computing the difference between the overlapping
extremities of successive arcs, since generally the POD procedure is done independ-
ently over arcs of limited length (normally 1 day) that start/end (generally a few
hours) before/after the staring/ending date of previous/following arcs, respectively.

It is also possible to gain some insight into the accuracy of the POD procedure
if the difference between the RDO and KO is computed. The drawback is that it is
impossible to discern between the deficiencies of the assumed force model considered
in the RDO computation from the errors in processing GNSS data, in particular
because the latter originates in different ways in RDO and KO processing.

The most obvious validation method is to compare the computed orbit with
another that is obtained independently. The disadvantage is that it is not possible
to say which of the two is more accurate, when the reported accuracies are of a few
centimetres.

Ideally, the comparison should be made with respect to independent and accurate
measurements of the satellite motion. To that end, SLR and DORIS data can be
used. The accuracy of SLR is highly dependent on the elevation angle because of
the difficulties in modelling the effects of the troposphere on the path of the LASER
beam at low elevation angles. Along the zenith direction, the SLR data is accurate
within a few millimetres and a few centimetres at low elevation angles (Wijaya
and Brunner, 2011). DORIS boast similar accuracy, reportedly at centimetre-level
along the radial direction (Luthcke et al., 2003). As a consequence, misfits of
comparable magnitudes to SLR and/or DORIS data cannot be solely attributed to
orbit determination error.

Referring to Table 2.5, the lowest absolute error of GPS-derived orbits refers to
RDOs and can be as little as 2 cm (Jäggi et al., 2007), if considering validation with
SLR data. If the validation is done by comparing two independently-computed orbits,
without making use of any measurement principles other than GPS, the precision is
as high as 1 cm (Hwang et al., 2009). Considering a simulated environment, Visser
et al. (2009) reports a 1.34 cm error for the GOCE mission.

Comparing the accuracies of the kinematic and reduced-dynamic processing
strategies, the most obvious finding is that KOs are systematically less accurate
than RDOs. This is an expected outcome, since the force model used in the RDO
provides additional information which is not available in the KO processing. This is
true because over typical integration periods, the accumulation of integration and
model errors is small enough to be negligible. However, the difference in accuracy of
KOs vs. RDOs is not large, e.g. 3.4 cm vs. 2.8 cm (Zhao et al., 2010a), 3.8 cm vs.
2.4 cm (Jäggi et al., 2007) and 2.8 cm vs. 2.7 cm (Švehla and Rothacher, 2005). One
explanation to this fact is that the independent validation techniques for absolute
positioning, i.e. SLR and DORIS, have limited accuracy, which might obscure the
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comparison.
Of the satellites in Table 2.5, one can identify dedicated mission, which rely

heavily on accurate positioning: gravimetric satellites (CHAMP, GRACE and GOCE)
and altimetry satellites (TOPEX/Poseidon and JASON-1); and the non-dedicated
missions F3C and MetOp-A, which are launched for the purpose of atmospheric
research and meteorology, respectively. Although the number of satellites under
analysis is not sufficient to draw definitive conclusions, this distinction is nonetheless
illustrative of the higher orbital positioning accuracy of the dedicated satellites. Notice
that Hwang et al. (2009) reports 1∼ 3 cm accuracy but using internal validation
methods, such as overlap analysis and the difference between KOs and RDOs, thus
making the comparison with other references not possible. The reason for the higher
accuracy of the orbits of dedicated satellites is due to a number of factors, namely
GPS receiver performance, a large number of receiver channels (i.e. the maximum
number of trackable GPS satellites), wide field-of-view, optimal (zenith-pointing)
direction, absence of multi-path effects caused by moving appendices, e.g. solar
panels, and the shape of the satellite body that does not cause signal blockage
(Hwang et al., 2008b, 2009). Taking as examples the GRACE and F3C satellites,
the former has no moving solar panels and the placement of the GPS antenna is
optimal, unlike in the latter. The ratio between the number of visible and tracked
GPS satellites is on average 37 % lower for F3C than for GRACE and the multipath
effect is 40 cm larger; over a period of 300 days, the average number of observations
per day for satellites FM2 and FM4 of the F3C constellation is 30000, while for
GRACE it is 60000 (Hwang et al., 2009).

It is also worth mentioning that in the study performed by Zhu et al. (2004) on
GRACE RDOs, the inclusion of accelerometer data has lowered the error Root Mean
Squared (RMS) from 6.5 cm to 3.2 cm, thus increasing the accuracy of the estimated
orbit by a factor of two. Additionally to the accelerometer data, the inclusion of
KBR data has further improved the accuracy to 2.9 cm.

From Table 2.5 it is possible to infer that the absolute accuracy of orbits from
LEO satellites is around 2 cm (Jäggi et al., 2007; Qile et al., 2006; Švehla and
Rothacher, 2005).
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3Da

RMS
(cm)

Mission Orbit
type

Meas.
type Validation method

Analysis
period
(days)

Starting
date Author

2.8 GRACE RDO ZD SLR 101 DoY 101,
2003

Zhao et al.
(2010a)3.3 KO

3 F3C RDO
ZD

Overlap analysis
300 DoY 100,

2007
Hwang et al.

(2009)
1 GRACE
1 F3C RDO

/KO RDO - KO difference2 GRACE
4.0 F3C RDO ZD Overlap analysis 25 DoY 214,

2006
Hwang et al.
(2008b)4.6 KO

1.34 GOCEb RDO ZD Comparison w/ E2Ec

simulation 55 DoY 86,
2008

Visser et al.
(2009)1.62 KO

5
MetOp-A

RDO
varies

Inter-agency
comparison 3 DoY 360,

2006
Montenbruck
et al. (2008)10 RDO

/KO RDO - KO difference

2.44/
2.47

GRACE
A/B

RDO
ZD

SLR 335 DoY 31,
2003

Jäggi et al.
(2007)

3.08/
2.88 KO
2.03/
1.81 RDO DD

10.2 CHAMP RDO ZD
Comparison w/ PSO

of GFZ 6 DoY 126,
2002

Qile et al.
(2006)2.2 SLR

2.67
CHAMP

RDO ZD
SLR 8 DoY 195,

2002
Švehla and
Rothacher
(2005)

2.77 KO
2.69 RDO DD2.56 KO

4.7 JASON-1 RDO ZD
Orbit independently
estimated from GPS

and SLR
1 DoY 97,

2002
Colombo and

Luthcke
(2004)

6.5
GRACE

RDO ZD
SLR 4 DoY 121,

2002
Zhu et al.
(2004)3.2 RDOd ZD

2.9 RDOe ZD
4.9

CHAMP

RDO ZDf

SLR 11 DoY 139,
2001

Svehla et al.
(2003)

5.0 RDO DDg

5.6 KO DDh

4.9 RDO DDi

4.4 RDO DDj

2.8 TOPEX/
Poseidon RDO SD-E SLR and DORIS 8 DoY 54,

1997
Bock et al.
(2002)

aNotice that validations with SLR are relative to station-to-satellite uni-dimensional (1D)
distance RMS.

bSimulated
cEnd-to-End
dConsidering accelerometer data.
eConsidering accelerometer and KBR data.
fAcceleration pulses every 15 minutes.
gFloat ambiguity resolution, acceleration pulses every 15 minutes.
hInteger ambiguity resolution.
iInteger ambiguity resolution, acceleration pulses every 15 minutes.
jFloat ambiguity resolution, acceleration pulses every 9 minutes.

Table 2.5 – Summary of the absolute POD accuracy reported in literature.36
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2.4.3 Relative LEO orbit positioning accuracy
In addition to absolute POD errors, it is possible also to consider how accurate
are the relative positions of LEO satellites that fly in formation. This section
presents a short literature study that illustrates the state-of-the-art accuracy of
relative positioning. The reported sources deal exclusively with the GRACE mission,
exploiting the opportunity to use the KBR system for validation. This system
only provides observation of changes in the inter-satellite LoS vector length and is
unable to derive any information along the orthogonal directions. The motivation
for studying the relative positioning accuracy is that errors in the attitude of the
LoS vector, particularly the vertical component, may significantly deteriorate the
estimated gravity field model. Additionally, Ditmar et al. (2012) showed analytically
that gravity field models derived from GRACE KBR data show more sensitivity to
relative than to absolute positioning errors.

Relative positioning accuracy is inherently different to absolute positioning
accuracy. The close proximity of the satellites in the formation greatly facilitates the
integer ambiguity fixing of the carrier phase (Kroes, 2006; van Barneveld, 2012). As
a consequence, the relative positioning accuracy is higher than the absolute one, in
particular the low-frequency errors that dominate the latter.

The relative accuracy of RDOs is higher than that of KOs. For example, Zhao
et al. (2010a) shows a two-fold improvement in the accuracy of the RDO relative
to the KO. The computation of RDOs takes into account the constraint that both
orbits follow the same pre-defined force model, which effectively restricts the solution.

Table 2.6 relays the message that relative accuracy of the POD of GRACE can
reach 1 mm in the along-track direction (Kroes et al., 2005; Jäggi et al., 2007).
For this reason, white-noise with amplitude of 1mm is assumed in the thesis as
the near-future relative orbit error for the simulation of next-generation gravimetric
missions in Chapter 5. The analysis done in Section 6.1 confirms that this is a
reasonable assumption.
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RMS
(cm)

Orbit
type

Meas.
type

Analysis
period (days) Starting date Author

0.22 RDO ZD 101 DoY 190, 2003 Zhao et al.
(2010a)0.46 KO

1.25 RDO ZD
335 DoY 31, 2003

Jäggi et al.
(2007)

1.14

55 DoY 243, 20072.05 KO
0.31 RDO DD
0.09 DDa

0.09 RDO ZD 101 DoY 190, 2003 Kroes et al.
(2005)4.15 KO

aAlong- and cross-track relative acceleration constrained to 1.4µm/s

Table 2.6 – Summary of relative POD accuracy of GRACE reported in literature.

2.5 Processing strategies
The methodologies used to retrieve the relevant information from gravimetric data
and condense it in the form of a gravity field model are numerous. In this section, a
brief description of gravimetric processing strategies is presented, pointing out the
respective strengths and weaknesses.

2.5.1 Variational equations approach
The variational equations approach (Reigber, 1989) connects the measured distances
from the GPS satellites (or other GNSS measurements, SLR observations, KO data
or ll-SST tracking data) and a set of unknown parameters which may include Stokes
coefficients, initial state vectors, empirical accelerations, drag coefficients, instrument
calibration parameters (e.g. accelerometer or inter-satellite metrology system) and
other parameters which play a role in the dynamic equations of motion of the satellite.
This is accomplished by linearising the mathematical model describing the motion of
the satellite when considering a priori reference gravity field model and remaining
a priori assumptions (such analytically-derived initial state vectors, initial guess for
drag coefficients, calibration parameters provided by instruments manufacturer, etc.).
The linearisation is performed (usually numerically) around the reference model
response, i.e. the values of the unknown parameters computed from the reference
model when considering the a priori assumptions.
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As a disadvantage, the reference model needs to be iteratively updated with
the newly-computed model corrections, thereby explicitly assembling the the normal
equations in every iteration.

The advantage of this approach is that it is flexible enough to contemplate a
wide range of observation types as well as different types of unknown parameters,
such as demonstrated by Reigber et al. (2005) and Tapley (2004a) when processing
GRACE KBR data. Additionally, the estimation of initial state vectors ensures that
there is agreement between the orbital positions and the estimated gravity field
model, making this approach relatively robust to positioning errors.

There are numerous gravity field models produced using the classical variational
equations approach, such as AIUB GRACE-only model, version 2 (AIUB-GRACE02S)
(Jäggi et al. 2012), CNES/GRGS 10-days gravity field models (CNES/GRGS-10d)
(Lemoine et al. 2007b; Bruinsma et al. 2010; Lemoine et al. 2013b) and the official
time-variable gravity field solutions of the GRACE mission: JPL-R05 (Watkins
and Yuan, 2012), GFZ-R05 Dahle et al. (2013) and CSR-R05 Kruizinga (2014).
Additionally, this approach has been used to retrieve the gravity field of the moon
using Gravity Recovery and Interior Laboratory (GRAIL) data (Lemoine et al., 2013a;
Konopliv et al., 2013; Arnold et al., 2015).

2.5.2 Energy balance approach
The energy balance approach (also known as energy integral approach) is based
on the energy conservation principle (O’Keefe, 1957; Jekeli, 1999; Gerlach, 2003;
Gerlach et al., 2003). This principle states that the variations in kinetic energy of
the satellite are equal to the work done by the all forces directed parallel to the
velocity vector. Furthermore, conservative forces, such as gravity, can be related to
their potential, providing a direct connection to the unknown spherical harmonics
coefficients. Consequentially, the application of this methodology to ll-SST data
connects the range-rates (which in the case of GRACE are directly given as unbiased
quantities, unlike the ranges) to gravitational potential differences; Han et al. (2003)
uses the term potential difference observables to refer to this method.

The advantage of this approach is its numerical efficiency.
As for disadvantages, the satellite velocities need to be computed from kinematic

positions (in case of hl-SST data), requiring numerical differentiation that amplifies
the noise at high-frequencies even if dedicated numerical integration schemes are
employed (Ilk and Löcher, 2005; Reubelt et al., 2012). An additional disadvantage
is related to the intrinsic scalar formulation of the energy balance approach, which
leads to the loss of information perpendicular to the velocity direction (Ditmar
and Sluijs, 2004; Baur et al., 2014). This disadvantage is addressed by defining
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energy integrals for all directions and integrals of motions following the linear and
angular momentum conservations (Ilk, 2007). A number of gravity field models
were estimated considering this approach, such as the TUG CHAMP 2004 (TUG-
CHAMP04) gravity field model (Badura et al. 2006) and the TUM 2Sp (TUM-2Sp)
gravity field model (Földváry et al. 2004), to name a few.

2.5.3 Boundary value problem for short arcs
The boundary value problem for short arcs, or short arcs approach in short, considers
the double-integration of Newton’s equation of motion, resulting in a boundary
value problem in the time domain (Mayer-Guerr et al., 2005; Mayer-Gürr et al.,
2005; Mayer-Gürr, 2006). The relation between the unknowns parameters and the
observations, i.e. the satellite trajectory in case of hl-SST data and the range in the
case of ll-SST data, is not linear, requiring linearisation (much like the variational
equations approach). The unknown parameters are the Stokes coefficients; the
observations are defined by the orbit and additionally by the range if ll-SST data is
also available. It is also possible to consider as unknowns the boundary state vectors
of each orbit arc, as is done in case of the data processing from the GRAIL mission,
as described by Klinger et al. (2013).

As a consequence the linearisation, this method should have the disadvantage of
requiring iterative parameter estimation but in practice it is shown that convergence is
reached after the first iteration (Klinger et al., 2013). As an advantage, the iterative
parameter estimation in conjunction with the co-estimation of the arc-boundary
state vectors make the approach very insensitive to orbit position errors. This is the
case because the orbit is automatically kept consistent with the estimated gravity
field parameters. Furthermore, since the orbital positions are treated without any
form of differentiation, there is no amplification of high-frequency noise. Another
advantage is that the short arc approach makes it easy to use any kind of positioning
data, such as SLR, hl-SST and ll-SST. A number of models have been derived
on the basis of the short arcs approach, namely ITG CHAMP-only model, version
1 (ITG-CHAMP01) (Mayer-Gürr et al. 2005), ITG GRACE-only model, version
2 (ITG-GRACE02s) (Mayer-Gürr et al. 2007) and ITG GRACE-only model, 2010
(ITG-GRACE2010) (Mayer-Gürr et al. 2010; Kurtenbach et al. 2009).

It has also been applied to the determination of the gravitational field of the
Moon (Klinger et al., 2013).

The integral nature of the method has some undesirable consequences: localized
errors, e.g. those associated with the temporal aliasing at one geographical location,
are accumulated over the whole arc (which is no longer than 30min for this reason),
propagating these errors to other geographical locations. This disadvantage is
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addressed i) by exploiting spherical splines as local base functions, thus restricting
the error propagation to small geographical regions (Mayer-Gürr et al., 2006), and
ii) by estimating daily snapshots of the gravitational field which are then used as an
improved de-aliasing product (Kurtenbach et al., 2012).

2.5.4 Acceleration approach
The acceleration approach exploits Newton’s equation of motion directly (Rum-
mel, 1979). The method connects the double-differentiated orbital positions (or
double-differentiated range) to the (relative) forces acting on the satellite. This
is regarded as an elegant formulation because i) it avoids numerical integration
operations characteristic of other approaches, using instead the numerically efficient
differentiation operator, and ii) uses the force model directly. The observations are
usually transformed to the (quasi-) inertial reference frame before differentiation
to avoid frame accelerations. The differentiation of noisy observations leads to
the amplification of the high-frequency noise; however, it is possible to handle the
high-frequency noise with a decorrelation procedure, such as FDDW.

There are two sub-categories of the acceleration approach: the point-wise (Austen
et al., 2002; Reubelt et al., 2003; Chen et al., 2008b) and averaged (Ditmar
and Sluijs, 2004; Liu, 2008; Bezděk et al., 2014). The point-wise acceleration
approach differentiates interpolating functions fitted to the observations instead of
the observations themselves, while the averaged acceleration approach differentiates
the observations directly.

There are numerous advantages in using the acceleration approach, in addition to
the already mentioned elegance of the formulation, which results in a comparatively
high numerical efficiency. Foremost is that the observations are local quantities,
since they do not suffer any numerical integration (unlike in the variational equations
and short arcs approaches). In addition, the measured or modelled nuisance forces
(i.e. those not related to the gravitational field, such as non-gravitational forces
and known gravitational forces, e.g. tidal) also retain the localized nature. As a
result, errors located in one section of the data period (and/or a certain geographical
location) do not propagate far. This is particularly beneficial when errors associated
with temporal aliasing are present, which means that the acceleration approach is
not particularly sensitive to them (Ditmar et al., 2012).

As a major drawback, the orbital positions are treated as pre-existing quantities
and are not co-estimated, see Section 2.5.6. Another disadvantage of the point-
wise acceleration approach is that it does not handle gaps efficiently, since the
warm-up behaviour of the double differentiation operator unavoidably discards the
observations at the vicinity of gaps. For data with numerous gaps, this can lead to
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a substantial loss of observations. In case of the averaged acceleration approach,
the differentiation only consider three consecutive epochs, making it very efficient
in this respect. As an example of the application of the acceleration approach, the
Delft Mass Transport (DMT) model (Liu et al. 2010; Ditmar et al. 2013) and Delft
Gravity Model (DGM-1S) (Farahani et al. 2013b) models are derived considering
this methodology.

2.5.5 Classification
Ilk et al. (2008) classifies some of the methods above in three categories. The
short arcs approach falls into the analysis level 1 category, since the orbital positions
are used directly in conjunction with a double integration of the force model. The
energy balance approach is classified as analysis level 2 because there is the need to
differentiate the orbits and integrate the force model. The analysis level 3 includes
the acceleration approach, since the orbital positions are double-differentiated, while
the force model is used directly.

2.5.6 Correlated noise in gravimetric data
Gravimetric data are invariably corrupted by correlated noise. A particular source of
correlated noise are the errors in the orbital position and velocity data (Švehla and
Rothacher, 2005; Švehla and Földváry, 2006), which appear as low-frequency noise
in gravimetric data, as demonstrated by Ditmar et al. (2012). The accuracy of the
GNSS is limited, resulting in orbits with errors of a few centimetres, cf. Section 2.4.2,
The orbit errors are dominant at low-frequencies, particular close to those frequencies
associated with 1 and 2 Cycles Per Revolution (CPRs) (Jäggi et al., 2011b). This
is the case for KOs, RDOs and PDOs, as shown by Reubelt et al. (2006) and in
Section 6.1. Liu (2008) refers to the effect of these errors in the observations
as resonance effects. Another source of correlated noise particular to the GRACE
data is the KBR instrument, which manifests as high-frequency noise as a result of
the double-differentiation of the ranges. All processing strategies are affected by
correlated noise, since it is a property of the data, not of the exploited methodology.

The low-frequency noise corrupts the gravity field parameters considerably, since
its effect are not restricted to low degrees. The slowly-changing amplitude of
the noise maps mainly to sectorial and near-sectorial coefficients because of the
polar orbit of the satellites. Over the course of the data period, there is the
accumulation of numerous ascending and descending tracks with observations that
produce a spatial pattern that is characterised by i) a slowly changing mean values
along the latitudinal direction and ii) rapidly changing values over the longitudinal
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direction. Consequentially, the error in sectorial and near-sectorial coefficients
becomes dominant over the error in zonal and tesseral coefficients and significant up
to a high degree. Although manifesting in a similar way to the anisotropic sensitivity
of ll-SST data (refer to Section 2.2.3 and Section 1.2.1), the low-frequency noise is
of a different nature.

Some processing strategies are not significantly affected by the low-frequency
noise. The short arc approach, by means of initially estimating the gravity field
parameters up to a modest degree (Mayer-Gürr et al., 2006), naturally averages the
strong longitudinal variations in the spatial pattern of the accumulated ascending
and descending tracks. In variational equations approach, there are co-estimated
empirical parameters that absorb the low-frequency errors in the data. On the other
hand, the acceleration approach applied to ll-SST data is comparatively sensitive to
the low-frequency noise. It regards the orbits as pre-existing quantities, i.e. none
of the estimated parameters relate to them explicitly. Furthermore, this functional
model requires the derivation of parameters from the orbits, which are themselves
not errors free. As a result, the errors in the orbits propagate directly to the range
combinations and ultimately to the estimated gravity field parameters.

In practice, it is necessary to apply some form of filtering to the data before the
inversion to handle the low-frequency noise, even when FDDW is used (as is the
case of the DMT model). One immediate way to do that is to filter the observation
vector, with the purpose of suppressing the frequencies where the correlations are
most dominant. The result is, however, that not only the noise will be damped
but also the geophysical signal of interest present at those frequencies, which may
otherwise be recoverable. It is also possible to subtract from the observations an
analytical function with a period close to the orbital period (and optionally a few
multiples). The set of parameters that describe the analytical function are estimated
by least-squares fitting. This approach is used in the production of the DMT model
and the data is effectively cleaned from these errors (Ditmar et al., 2012).

Frequency-Dependent Data Weighting (FDDW) is the process of assigning
weights to the observation data in the frequency domain, so that the temporal
correlations present in the data noise, assumed to be stationary, are taken into
account (Klees et al., 2003; Klees and Ditmar, 2004). Some gravitational field
modelling approaches employ FDDW implicitly; an example of that are the empirical
parameters used in the variational equations. FDDW is accomplished by building a
suitable noise covariance matrix, usually considering the a posteriori residuals. To
improve numerical efficiency, the stochastic models of noise can be produced in the
form of an Auto-Regressive Moving-Average (ARMA) model. The ARMA model
representation of noise is computationally efficient for the purpose of multiplying
the noise covariance matrix to the vectors of observation which is needed for proper
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data weighting. If the order of ARMA model is not sufficiently high, peaks in the
error spectrum may not be effectively suppressed and, for this reason, the analytical
approach described above is complementary. FDDW has been applied to CHAMP
data (Ditmar et al., 2007), GRACE data (Liu et al., 2010) and GOCE data (Farahani
et al., 2013b).

It is also possible to consider a decorrelation filter applied to the data before
inversion, as used by Bezděk et al. (2014), but the disadvantage is that data is lost
near gaps due to the filter warm-up behaviour.

In the context of future gravimetric missions, there is the possibility that the
low-frequency noise affects a wider frequency range in comparison the case of
GRACE. The reason is that accuracy improvement of future gravimetric sensors is
probably higher than that of future (multi) GNSS receivers. As a consequence, the
influence of the errors in the orbital position and velocity data are not restricted to
the frequencies associated with 1 and 2 CPRs. It is, therefore, not assured that the
measures used currently on GRACE data are equally successful in future missions.
This argument provides the motivation to consider the errors in position and velocity
data in the simulation of future missions.

2.6 Future gravimetric missions
With the experience gained from the recent gravimetric satellite missions, particularly
CHAMP, GRACE and GOCE, the geodetic community has learned that the next-
generation gravimetric mission needs to address issues other than a higher sensor
accuracy. The consensus is that the main improvements to be included in future
missions are a) lower sensitivity to temporal aliasing, b) higher measurement isotropic
sensitivity and, most importantly, c) continuation of the monitoring of Earth’s mass
transport processes, particularly those pertaining to climate change.

Of the three main observation principles, hl-SST, SGG and ll-SST, the latter
is the most promising one for monitoring mass transport processes in the near
future. The reasons are unavoidably related to the accuracy of the sensor systems as
compared to the measured signal. In case of hl-SST, the quality of GNSS tracking
data is not sufficient to provide accurate measurements that enable the mid to
high frequency features of Earth’s gravitational field to be resolved, although for
low-frequency features this can be done, refer to Section 2.2.1. In what regards SGG
data, current technology level does not allow temporal gravitational field variations
to be observed with a sufficiently high accuracy. This is largely because temperature
variations introduce slowly-changing accelerometer bias that increase dramatically the
error magnitude at low frequencies, decreasing the sensitivity of the gradiometer to
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low-degrees, where most of the temporal gravitational field variations is concentrated.
Consequentially, the ll-SST observation principle, particularly after the success of
the GRACE mission, is favoured as most promising.

One promising concept for increased accuracy of acceleration measurements
comes from atomic interferometry (Peters et al., 1999). Silvestrin et al. (2012)
conservatively predicts a flat error spectrum that is one order of magnitude lower
error at the measurement bandwidth of GOCE’s accelerometers and several orders of
magnitude at low frequencies. Considering that the GOCE cannot observe temporal
gravitational field variations because of high accelerometer errors at low frequencies,
such development would effectively enable the collected SGG data to be sensitive to
those variations.

One research direction that promises significant improvements in terms of the
sensitivity and isotropy of ll-SST data is the investigation of different configurations
of satellite formations, refer to Chapter 3. In case of GRACE, the LoS direction is
nearly aligned with the meridional direction. The constant alignment of the LoS
direction constitutes the worst case scenario in what regards anisotropy. The only
way to minimise anisotropic data sensitivity, without resorting to other measurement
principles, is to design a formation that causes the LoS direction to change as
the satellites go around the Earth, in the case of a single measurement system.
Table 1.2 summarizes the formation types that have recently been under investigation,
considering full-scale simulations.

Future gravimetric formations are envisioned to exploit laser interferometry
(Nerem et al., 2004; Cesare et al., 2008; Pierce et al., 2008), with an expected
improvement in the accuracy of the inter-satellite metrology system by 2 to 3 orders
of magnitude (Bender et al., 2003). Simulations have shown that a GRACE-type
formation equipped with a interferometric ranging sensor with an accuracy of 5 nm
is capable of resolving the gravitational field with an accuracy 2.5 times higher than
GRACE (Wiese et al., 2009). The proposed inter-satellite metrology system have
the advantage of being insensitive to pointing errors (Sheard et al., 2012) or of
being able to measure the attitude of the satellites relatively to the LoS direction
(the so-called Angle Metrology and Lateral Displacement Metrology) to provide
feedback control to the Attitude Control System (ACS) (Cesare et al., 2010a). Since
the errors in laser interferometry increase with the distance between the satellites,
it is expected that the future gravimetric ll-SST missions will fly in a much tighter
formation than GRACE (e.g. as close as 10 km in case of the study done by Cesare
et al. (2010a)).

As a consequence of the requirement to continue monitoring the Earth system,
the GRACE Follow On (GFO) (Sheard et al. 2012; Larkin 2012; Zaragoza 2013)
mission is set to replace GRACE, albeit no sooner than in 2017. It will consist
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of a pair of satellites nearly identical to GRACE, with an identical micro-wave
ranging sensor. An innovative component is a laser ranging sensor (Dehne et al.,
2009; Sheard et al., 2012), included for the purpose of technology demonstration.
Schültze et al. (2012) reports that it is an adapted version of the one on-board
the Laser Interferometer Space Antenna (LISA) (Merkowitz 2003) satellites. The
distance between the GFO satellites will be known with an accuracy of 80 nm at
the measurement bandwidth of 1 to 100 mHz (Schültze et al., 2012). In spite of
these improvements, Loomis et al. (2011) have concluded that the added accuracy
of the laser interferometry will not improve significantly the quality of the estimated
gravity field models due to temporal aliasing. This conclusion has been confirmed
by other studies (Visser et al., 2010; Wiese et al., 2011c).

A similar proposals has been put forth but exploiting laser interferometry ex-
clusively (Cesare et al., 2010b). In this proposal, a GRACE-like formation equipped
with a drag-free system flies at 325 km altitude in a Sun-Synchronous Orbit (SSO),
with 10 km inter-satellite separation. The satellites are equipped with identical laser
ranging sensors, although only one operates at a given time; the ranging sensor
on-board of the other satellites acts as backup. The laser signal emitted by one
satellite is reflected on the Corner-Cube Retroreflector (CCR) located at the CoM of
the other satellite, permitting the distance to be measured with an error magnitude
of 50 nm between 10 and 1000mHz. The placement of the CCR at the CoM intends
to minimise ranging errors arising from attitude uncertainty but creates a problem
regarding the placement of the accelerometer. Unless placed at the CoM, the accel-
erometer will register angular acceleration in addition to linear accelerations. The
solution is to include a cross-track gradiometer arm, with two accelerometers placed
in a rigid bench along with the laser ranging sensor. As a benefit, the cross-track
gravity gradient is measured, which can be used for improving the accuracy of gravity
field models describing short-period mass changes (Anselmi et al., 2010).

It is most likely that the GRACE satellites will cease operation before the launch
of the GFO mission. Between these two events, there will be no gravimetric mission
monitoring the mass transport processes at the surface of the Earth. Under these
conditions, there is the need to resort to alternative satellites that can provide data
to mitigate the monitoring gap, such as The Earth’s Magnetic Field and Environment
Explorers (Swarm) (Friis-Christensen et al. 2006). Although this mission’s primary
object is to monitor Earth’s magnetic field, it is equipped with a dual-frequency
GPS receiver and accurate star cameras. Wang et al. (2012c) demonstrates through
simulations that the Swarm satellites are capable of measuring hydrological cycle at
monthly intervals up to degree 5 to 10.

The so-called e.motion proposal (Panet et al., 2012) is in many ways similar to
the previous one, namely one satellite pair, 370 km altitude, laser ranging sensor and
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a drag-free control system. The novel component is related to the configuration of
the formation, employing the pendulum formation with a maximum inter-satellite
distance of 207 km. The pendulum formation requires the two satellites to be placed
in orbits with different right ascension of the ascending node. Consequently, there is
a cross-track component in the LoS vector, which is maximum at the equator and
zero at the poles. The formation has been designed in such a way that the azimuth
of the LoS vector is 15◦ when the satellites are close to the equator. The complete
coverage of the Earth is reached every 10 days, with a claimed spatial resolution of
200 km.

The widely accepted feasible solution to mitigate the effect of temporal aliasing
in the near future considers two GRACE-type formations (Wiese et al., 2011a),
also known as the Bender constellation after Bender et al. (2008), in which each
GRACE-type satellite pair is placed in orbits with different inclinations. Through
simulations and the use of empirical orthogonal functions, Wiese et al. (2011b) has
shown, for example, up to 80 % lower error level in the recovered hydrological signals
at some basins, leading to the possibility to measure mass variations in small basins,
which are invisible to one satellite pair. Unfortunately, the number of formations
needed to reduce the temporal aliasing significantly, in particular that resulting from
high-frequency gravitational field variations, would be too many to make this option
practical.

On the topic of constellations, one promising option is to utilise a large number
of LEO satellites to measure high-frequency long wavelength features of Earth’s
gravitational field. One possibility is to use non-dedicated satellites, see Chapter 5;
another option is to use nano-satellites such as CubeSats, used in the QB50 initiative
(Gill et al., 2013). These small satellites have tight constraints in what concerns
the power or mass budget, so all components have to be miniaturised. Virgili and
Roberts (2013) proposed to equip one of such CubeSats with a GPS receiver in
order to derive thermospheric density variations. Recently, Pesyna et al. (2014)
have demonstrated that phase measurements can be acquired with smartphone-type
GNSS antennas, instead of bulkier survey-grade antennas (which are also part of
gravimetric satellites, albeit in a compact form), if the signal is processed by a
Software Defined Radio (SDR). In other words, the higher weight and mechanical
complexity of traditional GNSS antennas are replaced by higher power and software
complexity of an SDR, which are more suitable for miniaturization. Dubovskoi
et al. (2012) reports developments in the production of micro-accelerometers that
enables the measurement of accelerations with 10−8 m/s2 accuracy. CubeSats are
routinely equipped with capable ACS. Including these technologies into one CubeSat
effectively demonstrates that the CHAMP satellite (in what concerns the geodetic
payload and assuming comparable performance of the ACS) is very close to being
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scaled down from 4 m and 500 kg to 30 cm and 3 kg, with marginal decrease in
performance (although formally the accelerometer is not mandatory for gravimetric
purposes, according to Ditmar et al. (2007, 2008)). This remarkable accomplishment
in miniaturisation is noteworthy and should be taken seriously in the design of future
gravimetric missions, particularly those intended to tackle the measurement of fast
mass transport processes.

Beyond the traditional gravimetric measurements, efforts have been taken to
exploit the relativistic effects associated with the curvature of the space-time domain
under the influence of the gravitational attraction of a planet. The sensitivity of
such measurements is inherently homogeneous and isotropic. Mayrhofer and Pail
(2012) conducted a (simplified) feasibility study on this type of observation, which
is referred to as the Post-Newtonian Method. The conclusions where that the lower
to medium spherical harmonic degrees (below degree 120) are recoverable as long
as the on-board clock stability is better than 10−18 s and the orbital velocity error
is lower than 10−6 m/s. In what regards the requirement on orbital velocity error,
Section 2.4.3 shows a relative orbit accuracy of a few µm/s (in case of the PDOs of
GRACE). Although the absolute orbit accuracy is lower, better dynamic modelling,
more stable on-board clocks and more GNSSs, mean that the required orbital velocity
accuracy is certainly attainable in the near future. Regarding the clock accuracy,
Hinkley et al. (2013) has developed in laboratory two so-called optical lattice clocks
that deviate from each other less by than 1.6×10−18 s after 7 hours. It should be
noted that the required clock stability for the Post-Newtonian method is related to
short-term periods, i.e. a few minutes, and that the clock stability increases as the
averaging period increases (up to a minimum, after which random walk make the
errors increase with longer periods). Fortunately, Bloom et al. (2014) has reached
a comparable level of accuracy but with a two-order of magnitude decrease in
the measurement time. In conclusion, the relativistic frequency shift measurement
exploited by the Post-Newtonian Method is an attractive and emerging development.

2.7 Summary
Satellite gravimetry is a technique by which data collected by LEO satellites is used
to estimate the gravitational field. Three types of gravimetric data exist: high-
low Satellite-to-Satellite Tracking (hl-SST), low-low Satellite-to-Satellite Tracking
(ll-SST) and Satellite Gravity Gradient (SGG). Of the three types, the Gravity
Recovery And Climate Experiment (GRACE) mission has shown that ll-SST data
provides the most accurate data to estimate the temporal variations of Earth’s
gravitational field. For this reason, it is generally regarded as the preferential
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measurement concept to be used in future satellite missions to monitor mass
transport processes. The understanding the of the limitation of ll-SST data is of
utmost importance, so that future gravimetric missions effectively circumvent those
limitations and deliver the highest quality data.

Temporal aliasing errors corrupt the models produced on the basis of gravimetric
data gathered by satellites. The limited temporal resolution in which a geographical
location is sampled by satellites in combination with the errors in the models
describing fast mass transport processes, also know as de-aliasing products, is the
main cause for temporal aliasing. Satellite observations, albeit inherently global,
are unsuitable to be used in the production of the de-aliasing products because of
the limited temporal resolution. Ground observations, which have sufficiently high
temporal sampling, lack in terms of spacial coverage. In this context, the challenge is
to find ways to minimize the influence of temporal aliasing in the accuracy of gravity
field models produced by data collected by future gravimetric satellite missions.

Also of relevance is to understand the state-of-the-art in what regards the sensors
on-board gravimetric satellites. The knowledge of the way these instruments collect
data and the associated errors are crucial in deriving credible and realistic simulation
results.

Much research has been done on the topic of future gravimetric missions. The
most proposals aim at legitimate incremental improvements over the GRACE concept.
However, there are ideas that step out of this paradigm. Most notable are the use
of inexpensive CubeSats, potentially in large numbers and suitable to be developed
at University level, equipped with miniaturized technology sufficiently advanced to
make them competitive in terms of data quality with previous dedicated missions,
such as CHAMP. Another exciting proposal is to place highly accurate clocks on a
satellite and in this way collect data that is sensitive to the relativistic effects of the
motion on LEO. These measurements are appealing since they are homogeneous
and isotropic. The current technological level is not quite up to the task but near
future advances may motivate a more dedicated development of this idea.

In spite of the recent research on satellite gravimetry, many issues still remain.
In the following chapters, some of these open issues are addressed, namely the
mitigation of temporal aliasing and the proper modelling of data errors. In Chapter 5,
it is proposed to use numerous non-dedicated LEO satellites to measure the long
wavelength features of the temporal changes of the gravitational field, effectively
decreasing the detrimental effects of temporal aliasing in dedicated gravimetric
missions. At the same time, the data collected by the non-dedicated satellites may
provide valuable global measurements on the fast movement of mass on Earth’s
surface, potentially improving the understanding of weather patterns and other
applications in Atmospheric studies. In Chapter 6, the knowledge gained from the
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GRACE mission is used to validate an accurate noise model, which is exploited in
Chapter 8 to study the errors in the gravity field models estimated by a number of
satellite formations.

50



Satellite formations for gravity
field recovery 3
The major goal of future gravimetric satellite missions is to determine the time-
varying gravitational field, with the purpose of better understanding of the processes
of mass transport in the Earth’s system. A much higher accuracy and spatial
resolution than what is currently available would be highly beneficial for this goal.

One of the most promising observation concepts of satellite gravimetry is based
on satellite formations.

A satellite formation is defined as a group of satellites flying close together in
such a way that they passively, or with minimal active orbit corrections, remain in
relative proximity. Active formations, i.e. those require (near-) continuous thruster
firing are not suitable for gravimetric applications because the fuel requirements
tend to limit the mission lifetime. Particularly to passive formations with significant
altitude difference or with a large maximum range, the motion of the satellites
can be affected differently due to disturbances, such as atmospheric drag, solar
radiation or gravitational forces, requiring frequent orbit maintenance manoeuvres
and consequently lowering the mission’s lifetime. There is, therefore, a small subset
of satellite formations that are suitable to gravimetric purposes.

The distinction should be made between a formation and a constellation. The
latter is composed of a large number of satellites, generally evenly spaced around
the Earth to provide global coverage and performing independent tasks. Satellite
telephone communication services, for example, require a satellite constellation to
operate.

Satellite formations are characterised by the relative motion between the individual
constituent satellites. Three satellite formations can be devised that exhibit totally
different motion along the along-track, cross-track and vertical directions. These
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are the trailing, pendulum and cartwheel formations, respectively. This section looks
into their particularities, such as the relative orbital elements for each formation
and qualitative considerations on the dependence of the attitude of the Line of
Sight (LoS) vector, altitude and range on latitude. To simplify the analysis, it is
assumed that the formation is orbiting a spherically-symmetric planet, so that the
orbits are purely Keplerian.

3.1 Orbital elements
The orbital position of satellite j in the formation is adequately represented by the
orbital elements o :

o (j) =
�

a (j), e (j), i (j),Ω(j),ω(j), M (j)
�T

, (3.1)

called semi-major axis a , eccentricity e , inclination i , right ascension of the
ascending node Ω, argument of perigee ω and mean anomaly M . These parameters
are suitable to describe orbits because they remain constant, with the exception of
mean anomaly, if the gravitational field is spherically symmetric. The semi-major
axis determines the size of the orbit. The shape of a closed orbit is described by
eccentricity, which ranges from zero (circular orbit) a value less than one (elliptical
orbits). In case of an open orbit, e has a value from one (parabolic orbit) to infinity
(hyperbolic orbits). The three angles (inclination, right ascension of the ascending
node and argument of perigee) define the orientation of the orbit in 3D space. Finally,
the mean anomaly defines the position of the satellite along the orbit relative to a
reference epoch.

In the context of satellite formation orbits, the term relative orbital elements of
satellite 1 relatively to satellite 2 o (12) is introduced, which is simply the difference
between the orbital elements of the satellites that compose the formation:

o (12) =o (1)−o (2) =
�

a (12), e (12), i (12),Ω(12),ω(12), M (12)
�T

. (3.2)

3.2 Orbit stability
For the formation to be stable, there is the obvious constraint that the semi-major
axis of the orbits must be similar, i.e. a (12) ≈ 0. If not, the orbits have different
periods and the satellites tend to travel away from each other. It could be considered
that a formation-like motion occurs at those epochs when the satellites are in close
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proximity but such type of intermittent formations, i.e. not maintained during the
whole orbital period, is not considered.

The equality of the semi-major axes is the fundamental criteria for forma-
tion stability. It is only applicable when the motion is under the influence of
purely spherically-symmetric gravitational fields; in realistic gravitational fields, this
simplistic requirement is not sufficient. This is due to cross-track disturbances
associated with the asymmetry of the gravitational field.

3.3 The trailing formation
In this formation both satellites follow exactly the same orbit, with the trailing
satellite lagging at a distance behind the leading satellite. The LoS vector is nearly
co-linear with the orbital track at all times.

If the eccentricity of both orbits is not zero, there is a relative motion in the
vertical plane, as seen in Figure 3.1. In the top left-hand plot, one of the satellites
is placed at the zero-coordinate and the relative motion of the other satellite is
represented in the orbital plane, in the plane that contains the radial and cross-track
vectors, also known as the Cross-track plane, and in the horizontal plane, which is
perpendicular to the radial direction.

Alignment of the LoS vector :
• along-track
• radial, if e (1) or e (2) or e (12) 6= 0

Inter-satellite motion :
• static, if e (1) = e (2) = e (12) = 0
• cyclic non-zero-crossing, if e (1) or e (2) or e (12) 6= 0

Formation characteristics :
• range: proportional to M (12)

• relative motion: cyclic vertical component if e (1) or e (2) or e (12) 6= 0

The eccentricity, when equal and non-zero in both orbits, introduces a circular
relative motion in the orbital plane, refer to Figure 3.1, top left. Increasing the
common eccentricity of the orbits leads to a larger amplitude of the circular motion,
Figure 3.1, top right. In contrast, if the eccentricity is not the same for both orbits,
then the relative motion is elliptical instead of circular, as shown in Figure 3.1,
bottom left. Increasing the difference in eccentricity between both orbits results
in a larger amplitude of the elliptical motion. In addition to the larger along-track
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Figure 3.1 – The relative motion of the eccentric trailing formation, with one of
the satellites located at the point with zero-coordinates. The top left-hand plot
shows the relative motion of the satellites in the cross-track, orbital and horizontal
planes, with o (1)=[9000km,0.20,90o,0o,0o,0.00o] and o (12)=[0km,0.00,0o,0o,0o,−2.00o].
The cross-track plane is defined as the plane that contains the radial and cross-
track vectors, with the DoF perpendicular to the paper. The horizontal plane
is perpendicular to the radial direction. On the top right-hand plot, the effect
of different values for the eccentricity common to both orbits is depicted, with
o (1)=[9000km, e ,90o,0o,0o,0.00o] and o (12)=[0km,0.00,0o,0o,0o,−2.00o]. The bottom left-
hand plot shows the effect of different values of eccentricity of satellite 1 relatively to
satellite 2, with o (1)=[9000km, 0.20, 90o, 0o, 0o, 0.00o] and o (12)=[0km, e (12), 0o, 0o, 0o,−114.59o].
The bottom right-hand plot shows the effect of different values of the mean anom-
aly of satellite 1 relatively to satellite 2, with o (1)=[9000km,0.20,90o,0o,0o,0.00o] and
o (12)=[0km, 0.00, 0o, 0o, 0o, M (12)].
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distance, increasing the value of the M (12) introduces a small eccentricity and larger
amplitude in the relative motion, as illustrated in Figure 3.1, bottom right. Larger
values of the M (12) accentuate the eccentricity of the relative motion. As the
eccentricity approaches zero, the relative motion converges to a point. In all cases,
such formations are still regarded as a trailing formation, as long as the along-track
distance is larger than the amplitude of the elliptical or circular motion.

For the purpose of Earth Observation, circular orbits are more desirable simply
because the altitude is always at the minimum. On the other hand, truly circular
orbits, i.e. when the eccentricity is formally zero, are a theoretical idealization without
any practical application because they are impossible due to the Earth’s non-spherical
gravitational field. The trailing formation has, therefore, limited relative motion in
the vertical direction.

3.4 The pendulum formation
The pendulum formation is characterised by a cross-track cyclic motion. Term
pendulum can be traced to Sharifi et al. (2007), although Sneeuw and Schaub
(2005) already considers formations with cross-track displacements in the context of
gravity field parameter estimation. Bezděk et al. (2014) shows that the East-West
sensitivity of the data reduces the errors in the estimated sectorial coefficients and
mitigates the effects of a large polar gap, in the likely case that the satellites fly in a
sun-synchronous orbit to meet the power requirements of a drag-free control system.

As shown in Figure 3.2, top left, the cyclic motion of this particular pendulum
formation is restricted to the cross-track and horizontal planes. The amplitude of
the cross-track motion is controlled by the inclination of satellite 1 relatively to
satellite 2, i (12), as shown in the top right of Figure 3.2, or by the right ascension of
the ascending node of satellite 1 relatively to satellite 2, Ω(12), shown in the bottom
right (notice the scales of the axes is not the same). The eccentricity of both orbits
distorts the symmetric pattern of the cross-track motion, as shown in Figure 3.2,
bottom left. The orbits of gravimetric satellites are usually (nearly) circular; the
dependency of the relative motion of the pendulum formation on eccentricity is
reported here to illustrate the possibilities within the limitations of orbital mechanics.

The formations are identical in their relative motion, as long as one of i (12) or Ω(12)

is zero. Figure 3.2, top right, is identical if Ω(12) = 0∧ i (12) 6= 0 or Ω(12) 6= 0∧ i (12) = 0.
The difference between considering these two cases is that the minimum range is
located at the equator or at the poles, respectively. The terms Equatorial and Polar
pendulum formations are henceforth respectively associated with these cases. In
practice, the Equatorial pendulum is not stable because the different inclinations of
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Figure 3.2 – The relative motion of the pendulum formation, with one of the satellites loc-
ated at the zero-coordinate. The top left-hand plot shows the relative motion of the satellites
in the cross-track, orbital and horizontal planes, with o (1)=[9000km,0.00,90o,0o,0o,0.00o]
and o (12)=[0km,0.00,2o,0o,0o,0.00o]. The cross-track plane is defined as the plane that
contains the radial and cross-track vectors, with the DoF perpendicular to the paper.
The horizontal plane is perpendicular to the radial direction. The top right-hand plot
shows the effect of different values of the inclination of satellite 1 relatively to satellite 2,
with o (1)=[9000km,0.00,90o,0o,0o,0.00o] and o (12)=[0km,0.00, i (12),0o,0o,0.00o]. The bot-
tom left-hand plot depicts the relative motion when changing the eccentricity of both
orbits, o (1)=[9000km, e , 90o, 0o, 0o, 0.00o] and o (12)=[0km, 0.00, 2o, 0o, 0o, 0.00o]. The bottom
right-hand plot illustrates the effect of increasing the right ascension of the ascending
node of satellite 1 relatively to satellite 2, with o (1)=[9000km,0.00,90o,0o,0o,0.00o] and
o (12)=[0km, 0.00, 2o,Ω(12), 0o, 0.00o].
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the orbits lead to different precession rates, changing Ω(12) over time. Nevertheless,
the discussion includes this case for completeness.

It is possible to set the location of the intersection of the ground-tracks of both
satellties, the cross-over point, at a designated latitude, different from 0◦ or 90◦, by
combining the relative polar and equatorial rotations, i (12) and Ω(12) respectively, of
the orbital planes of the satellites. The latitude of the cross-over point is:

λ= tan−1

�

Ω(12)

i (12)

�

. (3.3)

In this way, the range is more homogeneously distributed over latitude. For
example, if i (12) = Ω(12), then both the cross-over and maximum range points are
located at latitudes ±45◦ and the formation exhibits an intermediate range at the
poles and equator. The rotation of the Earth carries the cross-over points to different
longitudes, alternating the geographical locations under larger and small ranges.
This is in contrast to the equatorial and polar pendulum formations that lead to a
distribution of range constant with latitude. In practice, a satellite formation with
i (12) 6= 0 is unstable; only if i (12) is very small and i (1) ≈ i (2) ≈ 90◦, is there any reason
to consider this case. Under these conditions, the latitude of the cross-over point
will be close to the poles. It should be noted that setting the cross-over point a few
degrees away from the poles might be beneficial to avoid having the minimum range
consistently at the same location. If the location of minimum range is always at the
poles, there is a detrimental effect on the accuracy of the estimated gravity field
model at those locations (Encarnação et al., 2008).

Figure 3.2, bottom right, shows the pendulum formation with cross-over latitudes
of 0◦, 26.6◦, 45◦, 56.3◦ and 63.4◦, for Ω(12) equal to 0◦, 1◦, 2◦, 3◦ and 4◦, respectively.
The along-track displacement becomes larger with increasing Ω(12) because the orbital
plane of the second satellite is rotated relative to the orbital plane of the first satellite
by two rotations, i.e. by i (12), which does not change the along-track displacement,
and consequentially by Ω(12), which does. This effect can be compensated with the
adequate choice of M (12).

3.4.1 The pendulum formation with along-track displacement
It is also possible to define the pendulum formation so that there is a combination
of the along- and cross-track offsets. Some authors (e.g. Sharifi et al., 2007; Elsaka
et al., 2013; Massotti et al., 2013; Reubelt et al., 2014) restrict the definition of
the pendulum formation to this case. Formally, no distinction is made in this text
between the pendulum formation with or without along-track displacement.
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Figure 3.3 – The relative motion of the trailing-pendulum formation, with one of the
satellites located at the point with zero-coordinates. The left-hand plot shows the re-
lative motion of the satellites in the cross-track, orbital and horizontal planes, with
o (1)=[9000km, 0.00, 90o, 0o, 0o, 0.00o] and o (12)=[0km, 0.00, 2o, 0o, 0o,−2.00o]. The cross-track
plane is defined as the plane that contains the radial and cross-track vectors, with the
DoF perpendicular to the paper. The horizontal plane is perpendicular to the radial
direction. The top right-hand plot shows the effect of different values of the inclina-
tion of satellite 1 relatively to satellite 2, with o (1)=[9000km,0.00,90o,0o,0o,0.00o] and
o (12)=[0km, 0.00, i (12), 0o, 0o,−2.00o].

It is possible to add an along-track displacement by setting M (12) 6= 0, as illustrated
in Figure 3.3, left-hand side (cf. with Figure 3.2, top left). It should be noted that
in this type of pendulum formation, the LoS vector is never orientated along the
cross-track direction, since there is always an along-track component. The relative
motion is identical, compare Figure 3.3 right-hand plot with Figure 3.2 top-right-hand
plot, only differing in the along-track distance between the two satellites as shown
by the values on the ordinate axes.

Additionally, it is possible to introduce vertical in-plane relative motion by setting
e (12) 6= 0 (not shown) or e (1) = e (2) 6= 0, refer to Figure 3.4 left-hand plot. Increasing
the value of eccentricity leads to a larger amplitude of the vertical and along-track
relative motion, as shown in Figure 3.4 right-hand plot. The relative motion in
the orbital plane is equal to that of the trailing formation with i (12) = 0, cf. with
Figure 3.1 bottom right-hand plot.

Alignment of the LoS vector :
• cross-track
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Figure 3.4 – The relative motion of the eccentric trailing-pendulum formation, with
one of the satellites located at the zero-coordinate. The left-hand plot shows the re-
lative motion of the satellites in the cross-track, orbital and horizontal planes, with
o (1)=[9000km, 0.20, 90o, 0o, 0o, 0.00o] and o (12)=[0km, 0.00, 2o, 0o, 0o,−2.00o]. The cross-track
plane is defined as the plane that contains the radial and cross-track vectors, with the DoF
perpendicular to the paper. The horizontal plane is perpendicular to the radial direction.
The right-hand plot shows the relative motion in the orbital plane for different values of the
eccentricity, with o (1)=[9000km, e , 90o, 0o, 0o, 0.00o] and o (12)=[0km, 0.00, 2o, 0o, 0o,−2.00o].
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• along track, if M (12) 6= 0
• radial, if e (1) 6= 0 or e (2) 6= 0

Inter-satellite motion :
• absent in the along track direction, if e (1) = e (2) = e (12) = 0
• cyclic

Formation characteristics :
• maximum range: function of i (12), Ω(12) (cross-track), M (12) (along-track)

and e (1) or e (2) or e (12) (radial)
• latitude of cross-over: function of Ω(12)/i (12)

3.5 The cartwheel formation
The cartwheel formation makes it is possible to measure the range along the radial
direction, which is an advantage because the sensitivity of such measurements is
more isotropic. This can be understood from the fact that the spherical harmonics
representing a gravitational field are dependent on the radial direction for all degrees
and orders. On the other hand, the zonal and sectorial spherical harmonic coefficients
do not depend on the longitudinal and latitudinal directions, respectively. As a
consequence, measuring the range along the longitudinal or latitudinal directions, as
happens in the case of the polar pendulum (M (12) = 0) or trailing formations (both
non-eccentric), leads to the inaccurate estimation of zonal or sectorial coefficients,
respectively. The cartwheel formation, since it samples the gravitational field along
the vertical direction, is less sensitive to this limitation. The cartwheel formation is
mentioned conceptually by Rummel et al. (1978), although the term is later used in
the context of gravity field recovery by Sneeuw et al. (2005).

Due to orbital dynamics, the radial motion is always coupled with the along-track
motion, so that the satellites follow a relative elliptical motion in the common orbital
plane. For this to happen, the eccentricity and argument of perigee of satellite 1
relatively to satellite 2 must be different from zero, in addition to a proper choice
of the relative mean anomaly. The major axis of this ellipse is aligned with the
horizontal plane, so that the along-track maximum range is twice as large as the
vertical maximum range.

The simplest form of cartwheel formation is one where both orbits have their
argument of perigee in opposite sides, i.e. 180◦ apart. In Figure 3.5 left-hand plot,
the relative motion of this formation is represented in green. This curve is not exactly
an ellipse because the relative motion is plotted in the Local Horizontally-aligned
Reference Frame (LHRF), which does not follow the curvature of the orbit. Therefore,

60



The cartwheel formation 3.5

−5000 0 5000

−6000

−4000

−2000

0

2000

4000

6000

[km]

[k
m

]

 

 

Cross−track plane (DOF=⊥)

Orbital plane (DOF=←)

Horizontal plane (DOF=←)

N

S

Figure 3.5 – The relative motion of the cartwheel formation, with vertical orientation of the
LoS vector at the equator and horizontal on the poles. One of the satellites located at the
point with zero-coordinates. The left-hand plot shows the relative motion of the satellites
in the cross-track, orbital and horizontal planes, with o (1)=[9000km,0.20,90o,0o,0o,0.00o]
and o (12)=[0km, 0.00, 0o, 0o, 180o, 180.00o]. The cross-track plane is defined as the plane that
contains the radial and cross-track vectors, with the DoF perpendicular to the paper. The
horizontal plane is perpendicular to the radial direction. The right-hand plot illustrates the
orbits (in blue and red) of the satellites in the formation (green dots) and the LoS vector
(green lines) at horizontal and vertical orientation. The Earth is represented by the black
circle. The dotted line connects the centre of the Earth to the perigee of each orbit.

a distant object at the same altitude appears to be below the local horizontal plane.
The elliptical relative motion of the cartwheel formation is visible when plotted in
the LHRF only for small values of the maximum ranges.

It is interesting to note that the LoS vector is in the horizontal plane on the
full and half-period, while being vertical on the quarter and three-quarter period.
This means that an argument of perigee of 0◦ and 180◦ produces a formation with
vertical orientation of the LoS vector at the equator and horizontal on the poles,
refer to Figure 3.5, right-hand plot.

On the other hand, considering an argument of perigee of 45◦ and 225◦ forces the
attitude of the formation to be more homogeneous with latitude, since both vertical
and horizontal orientations are over latitude ±45◦, refer to Figure 3.6, right-hand
plot. At the poles and equators, this formation has the LoS vector with an attitude
of 45◦. The relative motion shown in Figure 3.6 left-hand plot, is the same as in the
cartwheel formation with vertical orientation of the LoS vector at the equator, cf.
with Figure 3.5, left-hand plot.

If ω(12) is not 180◦, the satellites are closer at a certain latitude (centred around
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Figure 3.6 – The relative motion of the cartwheel formation, with vertical orientation of
the LoS vector at the latitude ±45◦. One of the satellites is located at the point with
zero-coordinates. The left-hand plot shows the relative motion of the satellites in the
cross-track, orbital and horizontal planes, with o (1)=[9000km,0.20,90o,0o,45o,0.00o] and
o (12)=[0km,0.00,0o,0o,180o,180.00o]. The cross-track plane is defined as the plane that
contains the radial and cross-track vectors, with the DoF perpendicular to the paper. The
horizontal plane is perpendicular to the radial direction. The right-hand plot illustrates the
orbits (in blue and red) of the satellites in the formation (green dots) and the LoS vector
(green lines) at horizontal and vertical orientation. The Earth is represented by the black
circle. The dotted line connects the centre of the Earth to the perigee of each orbit.
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Figure 3.7 – The relative motion of the off-centred cartwheel formation, with one of
the satellites is located at the point with zero-coordinates. The left-hand plot shows the
relative motion of the satellites in the cross-track, orbital and horizontal planes, with
o (1)=[9000km,0.20,90o,0o,30o,0.00o] and o (12)=[0km,0.00,0o,0o,300o,60.00o]. The cross-
track plane is defined as the plane that contains the radial and cross-track vectors, with
the DoF perpendicular to the paper. The horizontal plane is perpendicular to the radial
direction. The right-hand plot illustrates the orbits (in blue and red) of the satellites in
the formation (green dots) and the LoS vector (green lines) at horizontal and vertical
orientation. The Earth is represented by the black circle. The dotted line connects the
centre of the Earth to the perigee of each orbit.

the angular mean of both arguments of perigee) and further apart on the other
side of the globe (at the symmetric latitude). In this case the ellipse is not centred,
as shown in Figure 3.7, left-hand plot. The orientation of the LoS vector of the
off-centred cartwheel formation is rotating slowly close to the horizontal direction
when M≈ 180◦ and changing rapidly between the vertical, horizontal and back to the
vertical direction when M≈ 0◦. This motion is illustrated in Figure 3.7, right-hand
plot, by the close location of the points of vertical attitude of the LoS vector,
identified by the dashed lines connecting to the centre of the Earth, and the point
of horizontal attitude of the LoS vector, situated in-between.

A cartwheel formation with ω(12)=180◦ maintains the orientation of the LoS vector
constant relative to the inertial frame, as seen in Figure 3.5 and Figure 3.6, right-
hand plots. In principle, this is technically favourable, since it relieves the Attitude
Control System (ACS) of one satellite from actively tracking the other satellite.
On closer inspection, however, it is possible that the differential drag experienced
by the satellites, particularly at Low-Earth Orbit (LEO), requires frequent active
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thrust control in order to maintain the formation, introducing black-out periods and
increasing the demand on the ACS.

Alignment of the LoS vector :
• along-track
• vertical

Inter-satellite motion :
• cyclic, non-zero-crossing

Formation characteristics :
• maximum range: function of ω(12), M (12), e (1), e (2) or e (12)

• latitude of vertical/horizontal LoS: function of ω(1), ω(12)

• centred/off-centred elliptical relative motion: function of ω(12)

3.6 Relative orbital elements
Table 3.1 summarises the relative orbital elements required to define a particular
formation considered in the thesis.

trailing pendulum cartwheel
a (12) 0 0 0
e (12) 0a 0a e (1) 6= 0∨ e (2) 6= 0∨ e (12) 6= 0
i (12) 0 6= 0b 0
Ω(12) 0 6= 0c 0
ω(12) 0 0 6= 0

M (12) 6= 0 0d 6= 0

aOptionally, vertical motion if e (1) 6= 0∨ e (2) 6= 0∨ e (12) 6= 0
bor 0 if Ω(12) 6= 0
cor 0 if i (12) 6= 0
dOptionally, along-track displacement if M (12) 6= 0

Table 3.1 – Orbital elements difference for basic formations

3.7 Distinction between similar formations
In Section 3.3, Section 3.4 and Section 3.5, the trailing, pendulum and cartwheel
formations were presented. It is possible to come up with a formation in such a way
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that it can be defined in more than one of above-mentioned types. For example, the
trailing formation can be composed of satellites following an eccentric orbit, so as to
introduce vertical relative motion. In that case it can be argued that such formation
can also be regarded as a cartwheel formation. This section separates formation
types from each other unambiguously. The definitions presented in this section are
valid for the thesis, although they are not in conflict with the terminology found in
literature.

3.7.1 Distinction between the pendulum and all other forma-
tions

The pendulum formation always has cross-track relative motion. The trailing and
cartwheel formations, on the other hand, exhibit only in-plane relative motions. In
this case, the distinction is immediate: as long as there is cross-track motion, such
formation will be associated with the pendulum type.

The pendulum formation always has non-zero relative inclination and/or relative
right ascension of the ascending node, in contrast with the trailing cartwheel
formations, which, due to their in-plane requirement, have these two relative orbital
elements equal to zero.

3.7.2 Distinction between trailing and cartwheel formations
The trailing formation always has along-track displacement, while the cartwheel
formation always shows vertical relative motion. The distinction is made when the
relative motion is such that the satellites revolve around each other, in which case
it is referred to as a cartwheel formation. If the ellipse that defines the motion of
one satellite relative to the other does not enclose the latter, then such formation is
defined as the trailing formation.

With this in mind, Figure 3.7 represents the motion of a cartwheel formation,
since the zero-coordinate is located inside the ellipse that defines the relative motion.
On the other hand, Figure 3.1 clearly depicts an example of the Trailing formation.

3.8 Orbit simulation of Satellite Formations
With the purpose of simulating the motion of satellite formations in the context of
studying future gravimetric satellite missions, there is the need to derive the orbital
elements of formations with a pre-defined relative motion. This section presents the
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methodology that allows for the relative orbital elements o (12) to be computed, given
the required relative motion x(12) and the orbital elements of satellite 2, o (2).

3.8.1 The Hill equations
The Hill equations (Hill, 1878), also known as the Clohessy-Wiltshire equations
(Clohessy and Wiltshire, 1960), describe the relative motion of two satellites in
close proximity, around a circular Keplerian orbit in the Hill Reference Frame (HRF,
Section A.8). The solution to this linearised system of differential equations, after
inverse linear mapping, determines unambiguously the orbital elements of a given
formation. This approach is accurate if used to calculate the orbital elements of a
close formation (i.e. with a range of less than a few hundred meters) and around a
circular reference orbit. Nevertheless, as it will be shown later, it is still applicable
to formations with a large maximum range, i.e. up to hundreds of kilometres, and
to eccentric reference orbits.

The Hill equations describe in the HRF the linearised relative motion of the
satellites flying in a circular orbit (Schaub and Junkins, 2003). Let the orbit position
of satellite 1 relatively to satellite 2 be represented by x(12)= [x , y , z , ẋ , ẏ , ż ]T , the
Hill equations are:

ẍ −2n ẏ −3n 2 x = 0
ÿ +2n ẋ = 0
z̈ +n 2z = 0.

(3.4)

The HRF, centred on the chief satellite is defined as follows (refer to Figure 3.8):

x-axis : parallel to the radial vector, perpendicular to the horizontal plane;
z-axis : parallel to the orbital angular momentum vector, perpendicular to the

orbital plane;
y-axis : right-hand perpendicular to the x- and z-axis, parallel to the DoF if circular

orbit.

The mean angular orbital rate n is:

n =

√

√

√

G0M⊕

r 3
c

, (3.5)

with rc the radius of the circular orbit of the chief satellite and G0M⊕ the
geocentric gravitational constant.
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Figure 3.8 – Hill Reference Frame with the boundary conditions of the Hill equations
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3.8.2 The formation parameters
The set of ordinary differential equations has the explicit solution given by Schaub
and Junkins (2003):

x = A0 cos (n t +α) + xoff

y = −2 A0 sin (n t +α)+ yoff

z = B0 cos
�

n t +β
�

.
(3.6)

The following boundary conditions are relevant, refer to Figure 3.8:

xoff: radial offset between the two satellites;
yoff: along-track offset between the two satellites;
A0: amplitude of the elliptical relative motion on the orbital plane. Due to orbital

mechanics, it is always an ellipse with the major axis twice as large as the
minor axis. Therefore, the horizontal amplitude is twice that of the vertical
amplitude.

B0: amplitude of the motion perpendicular to the orbital plane;
α: initial phase angle of the deputy satellite in the orbital plane, relative to the

x-axis;
β : initial phase angle of the deputy satellite in the horizontal plane, relative to the

z-axis.

These parameters also define the initial position of the deputy satellite relatively
to the chief satellite:

x0 = A0 cos (α) + xoff

y0 = −2 A0 sin (α)+ yoff

z0 = B0 cos
�

β
�

.
(3.7)

The first requirement for a stable formation is that the semi-major axis of satellite
1 relatively to satellite 2 is zero. Consequently, Eq. (3.6) meets this requirement if
the radial offset xoff is set to zero:

xoff ≡
2

n

�

ẏ0+2n x0

�

= 0⇒ ẏ0 =−2n x0. (3.8)

The importance of these parameters is that they inherently provide a way to
describe a feasible formation within the constraints of orbital mechanics. Their
definition forbids impossible formations such as, for example, formations with constant
cross-track or radial offset. These parameters are henceforth referred to as formation
parameters.
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As an example, Table 3.2 shows the typical values of the formation parameters
of some formations. The vertical and horizontal phases are not included since they
are free parameters that define the initial position of the deputy satellite relative to
the chief satellite within the relative motion defined by the other three parameters.

Parameter symbol trailing pendulum cartwheel
along-track offset yoff 6= 0 ( 6= 0a) 0
radial amplitude A0 (6= 0b) ( 6= 0b) 6= 0

cross-track amplitude B0 0 6= 0 0
aOptional, to introduce along-track displacement.
bOptional, to introduce vertical motion.

Table 3.2 – Formation parameters

3.8.3 Formations in elliptical mean orbits
So far, the requirement that the mean orbit is circular has been maintained. This
section looks at relaxing this limitation, so that elliptical orbits can be considered.
Although circular mean orbits are most desirable to Earth Observation satellite
missions, orbits with near-zero eccentricity are not to be disregarded, should other
requirements dictate so, e.g. orbit repeat period or orbit stability under a realistic
gravitational field.

In Sharifi et al. (2007), the formation parameters are expressed as function of
the initial conditions in the Hill reference frame, i.e. substituting t = 0 in Eq. (3.6)
and solving for the formation parameters:

A0 = 1
n

Ç

ẋ 2
0 +

�

2 ẏ0+3n x0

�2

B0 = 1
n

Æ

ż 2
0 +n 2z 2

0

α = arctan
�

ẋ0
3n x0+2 ẏ0

�

β = arctan
�

− ż0
n z0

�

yoff = y0− 2
n ẋ0.

(3.9)

In Schaub and Junkins (2003), a more general constraint than that in Eq. (3.8)
is derived, in which eccentric orbits are contemplated (e > 0):

xoff = ẏ0+n x0
2− e

Æ

(1+ e ) (1− e )3
= 0. (3.10)
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For a given set of formation parameters
�

yoff, A0, B0,α,β
�

T , the system of equa-
tions given by Eq. (3.9) and Eq. (3.10) can be solved for x(12)

0 =
�

x0, y0, z0, ẋ0, ẏ0, ż0

�

T ,
using a non-linear Least-Squares (LS) solver, for example.

The motivation to consider Eq. (3.10) instead of Eq. (3.8) is that the computa-
tions of the x(12) initial state vector are more robust. The Hill equations are valid
under strict conditions which are not particularly useful to simulation of gravimetric
satellite formations. With the improvement of the procedure with the inclusion of
Eq. (3.10), the requirements are more relaxed and the resulting x(12) is associated
with orbits of more stable formations.

3.8.4 Inverse linear mapping
Although it is interesting to know the relative motion of the satellites in the HRF, it
is much more useful to know their absolute motion so that their orbits can be used
for the simulation of gravimetric satellite missions.

One possibility is to add the orbit position of satellite 1 relatively to satellite 2
given by Eq. (3.6) to the orbit position of satellite 2, after appropriate coordinate
transformations so that both quantities are in the same reference frame. However,
the resulting orbit positions of satellite 1 have physical meaning only when the
maximum range is small, since only in that case Eq. (3.4) is accurate. For a large
maximum range, the resulting orbit violates the laws of motion.

The solution is to calculate the relative orbital elements o (12) using the so-called
inverse linear mapping procedure. Since the result are two sets of orbital elements,
the corresponding orbits comply with the laws of motion. The relative motion x(12) is
connected to the relative orbital elements via the matrix A

�

o (2)
�−1, which is function

of the orbital elements of satellite 2, o (2):

o (12) = A
�

o (2)
�−1

x(12). (3.11)

The inverse mapping matrix A
�

o (2)
�−1 is given in Schaub and Junkins (2003,

pp. 697–698) and duplicated in Appendix B.
It should be noted that only one epoch of x(12) is needed to derive o (12). The

current analysis is done strictly under the assumption that the motion is governed
by Keplerian dynamics; consequently, o (2) and o (12) are constant in time, with the
exception of the mean anomaly, which changes in time according to Kepler’s equation
(see e.g. Weisstein, 2015). For this reason it is easier to consider x(12) at t = 0.

Having computed o (12) (and given o (2)), the Keplerian reference orbits of the first
satellite are derived from o (2)+o (12), from which the orbital positions in Cartesian
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coordinates in the Celestial Reference Frame (CRF) can be computed (see e.g.
Cornelisse et al., 1979, p. 381).

The computation of the Keplerian reference orbits is simple and efficient but
evidently do not accurately represent the motion of spacecraft orbiting the Earth.
They are used when the accuracy of the orbital positions is not required to be high,
such as the cases of high-low Satellite-to-Satellite Tracking and Satellite Gravity
Gradient simulations.

The Keplerian reference orbits are used directly in the simulation of high-low
Satellite-to-Satellite Tracking (hl-SST) observations, since the accuracy of the orbital
positions (for simulation purposes) is not required to be high. In case of low-low
Satellite-to-Satellite Tracking simulations, where there is the need to derive realistic
range observations, the Keplerian reference orbits serve as a reference for the
computation of Modelled orbits, which are integrated on the basis of a high-degree
gravity field model.

The inverse linear mapping procedure is validated in Section B.1.

3.8.5 Orbits of satellites formations under an aspherical grav-
itational field

In the numerical analysis done in the thesis, two types of orbits are considered:
Keplerian reference orbits and non-Keplerian orbits, henceforth called Modelled
orbits. The former are needed in order to compute the latter, which results in a
two-step procedure. In the first step, the Keplerian reference orbits are produced
according to the procedure presented in Section 3.8.3. These orbits serve as basis
for the estimation of the initial state-vector of the Modelled orbits in the second
step. The Modelled orbits are the result of highly-accurate numerical integration on
the basis of a realistic gravity field model and the estimated initial state vectors.

Keplerian reference orbits

The Keplerian reference orbits are computed by exploiting the procedure described
in Section 3.8, summarized in Figure 3.9. The formation is defined by a set of
formation parameters, refer to Section 3.8.2 and by the orbit position of satellite 2,
described by the respective orbital elements, o (2). The corresponding position at t = 0
in the Hill reference frame x(12)

0 is determined by solving the system of equations
given by Eq. (3.9) and Eq. (3.10), considering the known o (2), Section 3.8.3. Using
linear mapping between the Hill frame coordinates and orbital elements differences,
as described in Section 3.8.4, the relative orbital elements of satellite 1 relatively to
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satellite 2, o (12) are determined from which the orbital elements of satellite 1, o (1)

are readily computed. Consequentially, the orbits of the satellites that compose the
formation are described by o (1) and o (2), which are treated as mean orbital elements,
i.e. constant throughout the simulation (with the obvious exception of the mean
anomaly, which is function of time as defined by Kepler’s equation).

The motivation to start with Keplerian reference orbits is that it is simpler to
determine the stable relative motion of the satellites that compose a formation
without the influence of the higher degree terms gravitational disturbances. The
motion of a satellite integrated on the basis of a high-order gravity field model suffers
from many gravitational disturbances that make it impossible to use the available
analytical tools, such as the linearised Hill equations (Section 3.8.1).

Modelled orbits

The Keplerian reference orbit serves as input for the second step, the computation
of the Modelled orbit. This orbit is a collection of successive 6-hours arcs, each of
which is integrated considering the initial state vector that minimises its distance to
the Keplerian reference orbit. As a result of this procedure, there are discontinuities
at the extremities of arcs and the bordering data is discarded. The estimation of
the initial state vectors and the orbit integration is done with the Position And
Navigation Data Analyst (PANDA) software (Zhao 2004).
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Solve Eq. (3.9)
and Eq. (3.10)

Formation
Parameters,
Section 3.8.2

orbital elements
of satellite 2, o (2)
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x(12)
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Use inverse
linear mapping,

Eq. (3.11)
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relatively to

satellite 2, o (12)

Keplerian
reference orbits

Estimate initial
state vectors
and integrate
orbits in 6 hour
arcs (PANDA)

Modelled orbits

Force model

Figure 3.9 – Diagram illustrating the procedure used to simulate Keplerian reference orbits
and Modelled orbits.
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3.9 Summary
Satellite formations are promising for future gravimetric because they make it
possible to use dedicated instruments to derive extremely accurate ranging data.
In addition, the concept has been proven by the Gravity Recovery And Climate
Experiment (GRACE) satellites and the high quality data they have produced. In
spite of the accomplishments of the GRACE mission, the trailing formation is not
the most optimal formation for measuring the gravitational field of the Earth and
its variations in time. The nearly constant alignment of the LoS vector with the
meridional direction amplifies errors in the data, in particular decreasing the accuracy
of the sectorial and near-sectorial coefficients of the estimated gravity field models.
For this reason, the research on the topic of satellite formations for gravimetric
applications is an on-going topic of debate.

The formations of interest to gravimetric applications are a small subset of all
possible satellite formations. Active formations, those where frequent or continuous
thrusters firing are required to maintain the close proximity of the satellites, are
not desirable because of the possible addition of errors and gaps in the data. This
requirement also excludes formations with orbital planes with different inclinations,
in order to keep the precession rate of the orbital plane the same. Additionally, the
differential drag of formation with large altitude differences also requires frequent
orbit maintenance manurers, which decreases the lifetime of the mission.

In this chapter, the definition of trailing, pendulum and cartwheel formations is
provided in Section 3.3, Section 3.4 and Section 3.5, respectively. The reason to
classify the formation into these three types is related to that fact that they exhibit
totally different motion along the along-track, cross-track and vertical directions. It
was also clarified how to distinguish between formations that have similar character-
istic (Section 3.7). The chapter ends with the presentation of the methodology used
in the simulation of the orbits of satellite formations, in Section 3.8. This procedure
is used in throughout the thesis. It is relevant for the production of the orbits of
the GRACE-type formation considered in Chapter 5 and Section 6.3, and in the
simulation of the formations analysed in Chapter 8.
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The simulation of future gravimetric satellite missions relies on mathematical models
that describe the gravitational signal to be observed, the strategy to exploit this
signal in order to estimate the underlying gravitational field and the appropriate
representation of the errors in the data. These mathematical models are the signal,
functional and noise models, respectively.

The first aspect to be mentioned is what signal is, since there is the need to
define what is going to be simulated. The signal is represented by measurements,
which need to be synthesised on the basis a representative gravity field model. They
possibly result from the sum of a number of different components, each related to a
particular geophysical processes of a static or time-varying nature. This defines the
signal model.

The second step is to extract information about the gravitational field from
the measurements. For that to be done, the observation equation relates the
measurements of the gravitational signal to a set of parameters that describe
the gravitational field. In the thesis, the gravitational field is parameterised by a
set of Stokes coefficients and the associated spherical harmonics. The estimated
gravitational field is given by the set of Stokes coefficients, on the basis of which
results a gravitational signal that best fits to the measured signal, in the Least-
Squares (LS) sense. The functional model is composed by the observation equations
and parametrisation.

Finally, the simulations are useless unless they are somehow infused with some
degree of realism. For that purpose, there is the need to define the noise model.
The accurate simulation of the errors in the measurements is of utmost importance
for the analysis of future gravimetric missions. Without it, there is no assurance
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that the results are realistic and the conclusions drawn from them are valid. The
simulated noise requires three ingredients: i) a stochastic model, ii) a procedure to
generate noise realizations, and iii) a data weighting scheme to mitigate data noise
appropriately during the computation of the gravity field model.

In this chapter the functional, signal and noise models are presented in Section 4.1,
Section 4.2 and Section 4.3, respectively, for the two measurement principles under
discussion in the thesis (Section 2.2): high-low Satellite-to-Satellite Tracking (hl-SST)
and low-low Satellite-to-Satellite Tracking (ll-SST). The discussion goes deep into
technical details in order to facilitate the reproducibility of the results and to better
identify the limitations of the conducted study.

4.1 Functional Model
The objective of this section is to present the processing algorithms used in satellite
geodesy, covering the two main types of observations: hl-SST in Section 4.1.1 and
ll-SST in Section 4.1.2. The details of the simulation procedure is given for each
type of observations. The set-up of the simulations is meant to replicate real-data
processing, even though the latter is not the main topic of the dissertation.

According to Ditmar (2009b), the functional model Φ defines the numerical
relation between a set of unknown model parameters m and the observed data y(obs).
In view of y(obs) generally being corrupted with noise, this relation is not exact:

y(obs) ≈Φ (m) . (4.1)
The unknown model parameters m are a collection of parameters that define the

model unambiguously, such as the Stokes coefficients C of Earth’s gravity field model,
plus any additional unknown parameters such as data biases or empirical parameters.
The observed data y(obs) are the measurements obtained by the sensors, which take
the form of either ll-SSTor hl-SST observations. In the simulation environment, m
is exclusively the set of coefficients C and the observed data y(obs) are synthetic
signals corrupted by synthetic noise.

In order to cope with a possible non-linearity of the functional model and improve
the quality of the results at the data inversion stage, it is advisable to consider the
best possible reference model parameters m(ref), generally representing the state-of-
the-art knowledge of Earth’s gravitational field. On its basis the forecasted data
y(for) are computed considering the functional model Φ:

y(for) =Φ
�

m(ref)
�

. (4.2)
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Making use of the zero and first order terms of the Taylor expansion of Φ at
vicinity of m(ref), Eq. (4.1) can be approximated by

y(obs) = y(for)+A
�

m−m(ref)
�

. (4.3)
The design matrix A is the matrix of partial derivatives of Φ over m, taken at

m=m(ref):

Ai j =
∂ Φi

∂m j

�

�

�

�

m=m(ref)
. (4.4)

Considering that the residual data y(res) is y(obs) − y(for) and that the model
correction m̂(res) is m−m(ref), Eq. (4.3) leads to a linearised functional model

y(res) =Am̂(res). (4.5)
The statistically optimal solution to the linear system, minimizing the squares of

y(res), requires the data noise covariance matrix C(res) and the reference model noise
covariance matrix C(ref):

m̂(res) =N−1AT C(res)−1y(res), where N=AT C(res)−1A+C(ref)−1. (4.6)
The inverse of the reference model noise covariance matrix C(ref)−1 can also be

interpreted as a regularization matrix.
The reference model noise covariance matrix C(ref) describes the error of m(ref).

If m(ref) is very inaccurate, C(ref)−1 is small relatively to AT C(res)−1A and will not
contribute significantly to m̂(res), the latter being therefore largely driven by the
information in y(res). The simulations conducted in the thesis are not regularized, i.e.
C(ref)−1 is zero and no other matrix is added to N.

In this formulation, the estimated model m̂ is the sum of the model correction
m̂(res) and the reference model parameters m(ref). This is the origin of the terminology
used in Section 4.2, so that the estimated “true” gravitational potential V̂ (true), is
the sum of the residual gravitational potential V (res) and the reference gravitational
potential V (ref). Notice that in case of the data, the terminology is slightly different:
the observed data y(obs) is the sum of the residual data y(res) and the forecasted data
y(for).

4.1.1 Processing of hl-SST observations
The working principle behind the use of hl-SST observations for gravity field determ-
ination relies on the ability to compute accurate accelerations from precise Kinematic
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Orbit (KO) provided by Global Positioning System (GPS) tracking data. In actual
data processing, the correction for the GPS antenna offset relative to the Centre of
Mass (CoM) with the satellite attitude information is needed. In the study of future
gravimetric missions, this correction is ignored under the assumption that it is done
with sufficient accuracy.

The link between the Stokes coefficients of the gravity field model and a point-
wise acceleration is straightforward, and starts with the relationship between the
acceleration a, and the gravitational potential V

a=∇V +a(ng), (4.7)

where a(ng) represents the non-gravitational acceleration of the satellite measured
by the on-board accelerometer.

Theoretically, the observations associated with the instantaneous acceleration a
can be obtained by the double-differentiation of the estimated orbital positions x

a=
d 2x

d t 2
. (4.8)

In practice, the double-differentiation is conducted in the thesis with a 3-point
double differentiation scheme, applied to the positions xi −1, xi and xi +1 at three
consecutive epochs, considering a constant sampling rate ∆t (Ditmar and Sluijs,
2004):

ai =
xi −1−2xi +xi +1

∆t 2
. (4.9)

The distinction between the instantaneous acceleration a and the averaged
acceleration a is that the former is valid for one particular epoch, while the latter
contains information that spans 3 epochs.

In an inertial frame, an averaged acceleration at epoch i , ai , is related to the
point-wise accelerations, a j =

h

a (x)j , a
(y)
j , a (z)j

iT

,
�

i −n ≤ j ≤ i +n
�

by the expression

ai =







a (x)i−n :i+n ·w−n :n

a
(y)
i−n :i+n ·w−n :n

a (z)i−n :i+n ·w−n :n






, (4.10)

where the vector w defines the averaging filter of length 2n +1 and is composed
of constant (pre-defined) coefficients (Ditmar and Sluijs, 2004). The number 2n is
called the order of the averaging filter. For instance, for the second-order averaging
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filter, it holds: w= (1/12;5/6;1/12)T , i.e. the x -component of Eq. (4.10) can be
explicitly represented as follows

a (x)i =
1

12

�

a (x)i −1+10a (x)i +a (x)i +1

�

. (4.11)

In other words, a time-series of averaged accelerations can be interpreted as a
slightly smoothed time-series of point-wise accelerations. At low frequencies, average
and point-wise accelerations are almost identical.

Eq. (4.10) can be represented shorter as

ai = ai ∗w, (4.12)
where ∗ is the convolution operation, a is the point-wise acceleration, w is the

averaging filter and a is the averaged acceleration.

Simulation of accelerations derived from hl-SST observations

The total accelerations are computed as the sum of the “observed” gravitational
accelerations g(obs) and non-gravitational accelerations a(ng)

a= g(obs)+a(ng). (4.13)

As pointed out in Section 2.2.1, the use of non-gravitational acceleration meas-
urements does not contribute significantly to the improvement of the accuracy of
the estimated gravity field parameters, as long as proper Frequency-Dependent Data
Weighting (FDDW) is considered (refer to Section 2.5.6 for more details on FDDW).
As a consequence, tracking data from non-dedicated satellites, i.e. those without an
on-board accelerometer, can be used for gravimetric purposes. In case of dedicated
satellites, evidently, the accelerometer measurements can be used to correct the “ob-
served” gravitational acceleration. The error introduced by neglecting this correction,
in case of non-dedicated satellites, is not significant because the correction modifies
the data in frequencies to which hl-SST data is not sensitive to the gravitational field
(Ditmar et al., 2007). Therefore, non-gravitational accelerations are not considered
in the simulation environment, i.e. it is assumed that a(ng) = 0.

The “observed” gravitational accelerations g(obs) are synthesised at each epoch
using the “true” gravitational potential model V (true), represented by the Stokes
coefficients C (true) and the orbit position of the satellite, x:

g(obs) =∇V
�

x, C (true)
�

∗w. (4.14)
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The orbit positions x, which are assumed to be know perfectly in order to avoid
the introduction of positioning errors, are simulated for the satellite by integrating the
equations of motion considering simple Keplerian dynamics. The choice of Keplerian
orbits is motivated by the need to keep the constellation geometry unchanged.

As usual, the observations of interest are of a residual nature, since they are
better suited for the LS inversion:

g(res) = g(obs)−g(for). (4.15)
The forecasted quantities represent the state-of-the-art knowledge of the gravita-

tional field, in order to minimize the effect of errors on older models (in particular
related to temporal variation), and are computed on the basis of the reference
gravitational potential V (ref):

g(for) =∇V
�

x, C (ref)
�

∗w. (4.16)
When considering the Keplerian orbit x to generated the residual average grav-

itational acceleration g(res), there is discrepancy between force model originating x
and V (true). The error associated with this discrepancy is, fortunately, not significant.
The orbit positions are merely used as locations where the gravity field model is
(accurately) synthesized. Whether or not those positions agree with the dynamic
motion resulting from said gravity field model is not critical in what concerns for
the computation of g(obs) or g(for). It also does not influence the estimation of the
residual gravity field model from the set of observations g(res), since the Keplerian
orbit x is considered when building the associated design matrix.

Evidently, it is desirable to keep the discrepancy limited to no more than a
few kilometres (which is a representative value of the Root Mean Squared (RMS)
difference between a Keplerian and an orbit integrated on the basis of a high-
degree gravity field model). The resulting set of g(res) represents the gravitational
accelerations acting on the satellite under study. In fact, the differences between
g(res) generated on the basis of a Keplerian orbit and one integrated on the basis
of a high-degree gravity field model is not significant. In Figure 4.1, the difference
between two sets of g(res) computed from the same pair of gravity field models
evaluated at two orbits, one Keplerian and another integrated from a completed
gravity field model, is shown to be on average a factor of 30 smaller than either set
of g(res).

To emulate the numerical differentiation of the orbit positions in the simulated
GPS observations, the series of “observed” and forecasted point-wise accelerations,
represented by the terms ∇V

�

x, C (true)
�

and ∇V
�

x, C (ref)
�

in Eq. (4.14) and Eq. (4.16),
respectively, require the use of the averaging filter w defined in Eq. (4.10). In
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Figure 4.1 – Example of the residual average gravitational acceleration g(res) computed
from the difference of the “observed” average gravitational acceleration g(obs) generated on
the basis of EIGEN-5C and the forecasted average gravitational acceleration g(for) generated
on the basis of EIGEN-CG03C. On the top, two lines are plotted, corresponding to different
orbit positions x, where the gravity field models are synthesized: a Keplerian and an orbit
integrated on the basis of EIGEN-5C. On the bottom, their difference is shown.

practice, the application of the averaging filter is performed in the Celestial Reference
Frame (CRF) in order to prevent that frame accelerations are averaged over the
2n +1 epochs spanning the filter length. With that in mind and in the context of
hl-SST data, e.g. Eq. (4.14) and Eq. (4.16), the convolution operation ∗ implicitly
represent the following:

gi =R i
(LHRF)←(CRF)

��

R i
(CRF)←(LHRF)∇V

�

xi , C
��

∗w
�

. (4.17)

4.1.2 Processing of ll-SST observations
The Gravity Recovery And Climate Experiment (GRACE) mission has proven that
ll-SST data provide accurate information about the Earth’s gravitational field and
its changes in time. The success of this mission prompts that any investigation into
future gravimetric missions should take this measurement principle into consideration.

The procedure that is considered in the thesis is the range combination approach
(Liu et al., 2007), which is a variant of the acceleration approach (Rummel, 1979),
It is based on the so-called range combinations a , each of which is formed as a
linear combination of three successive range measurements ρi −1, ρi , and ρi +1

a i =
cosθ i − ·ρi −1−2ρi + cosθ i + ·ρi +1

(∆t )2
, (4.18)

where θ i − is the angle between the Line of Sight (LoS) vector at epoch i and
that at the previous epoch and θ i + is the angle between the LoS vector at epoch i
and that at the following epoch.
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Figure 4.2 – Direction of line-of-sight vectors at three successive epochs and the angles
between them. This information is used for computing range combinations, Eq. (4.18).

The angles θ i − and θ i + are derived from the precise dynamic orbits x(1) and
x(2) of the leading and trailing satellite, respectively. In addition to permitting the
computation of θ i − and θ i +, x(1) and x(2) accurately relate the observed range
combinations to particular positions above the surface of the Earth.

In real-data processing, the orbits are integrated on the basis of the reference
gravitational potential V (ref) and non-gravitational accelerations measured by the
on-board accelerometers, minimising the distance to the KOs. The reference grav-
itational potential V (ref) is composed of a number of state-of-the-art force models
that accurately describe the gravitational forces acting on the satellites.

Simulation of ll-SST observations

Having identified the functional model used in real data processing, the way in which
it is applied to the simulation of ll-SST observations is described in detail.

The “observed” range combinations a (obs) are the equivalent of the observations
in real-data processing. They are computed on the basis of the observation equation,
Eq. (4.18). The forecasted range combinations a (for) represent the observations as
predicted by the reference gravitational potential model. These two types of range
combinations are scalars and represent time-averaged inter-satellite accelerations
projected onto the LoS direction. Their difference is the residual range combinations
a (res), which is used to estimate the model correction, see Eq. (4.6).

In the following paragraphs, the simulation procedure used to generate the
observed range combinations a (obs) and forecasted range combinations a (for) is
presented.

Observed range combinations

The simulation of observed range combinations requires the computation of the
range observations ρ. Unlike in real-data processing where these quantities are
measured by the ranging data, these have to be generated from the orbits of the
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two satellites in the formation x(j), j = 1, 2. These orbits are the result of numerical
integration on the basis of the “true” gravitational potential V (true) and following the
initial conditions specific to the formation given by the orbital elements of satellite
j , o (j):

x(j) = f(V (true),o (j)). (4.19)

The quantities o (j) are adequate to this context because they can be easily
associated with the required relative motion of the satellites (see Section 3.8). The
integration of the orbits on the basis of V (true), even assuming the initial conditions
given by o (j), results in a relative motion that diverges after a few days. For
this reason, the integration is re-started periodically, usually every 6 hr, each time
exploiting the Keplerian orbit o (j) to derive the new initial conditions.

From the simulated orbits, the range observations are derived as:

ρi =
�

�

�x(1)i −x(2)i

�

�

� . (4.20)

After this point, there is no further use for x(j) since these quantities are not
known with sufficient accuracy in real data processing. The orbital positions of the
satellites used in that context are by definition forecasted quantities. The forecasted
orbit positions x(for)(j) are integrated on the basis of the reference gravitational
potential V (ref), also taking as initial conditions the orbital elements of satellite j :

x(for)(j) = f(V (ref),o (j)). (4.21)

The orbital elements of satellite j , o (j) should not be associated with V (true) or
V (ref); they are only used to provide the means to compute the orbit of satellite
formations with a bounded relative motion. Although x(j) and x(for)(j) have the
same initial conditions, they follow different paths, as imposed by V (true) and V (ref),
respectively.

The forecasted orbit positions provide the necessary information to compute
the quantities θ i ,k , defined as the angle between the LoS vector at the k -th epoch
before (k is negative) or after (k is positive) epoch i :

θi ,k = cos−1

�

x(for)(1)
i+k −x(for)(2)

i+k

�

ρ(for)
i+k

·

�

x(for)(2)
i −x(for)(2)

i

�

ρ(for)
i

. (4.22)

Following Eq. (4.18) and the notation of Eq. (4.22), the observed range combin-
ations a (obs) are:
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a (obs)
i =

cosθi ,−1 ·ρi−1−2ρi + cosθi ,+1 ·ρi+1

(∆t )2
. (4.23)

Forecasted range combinations

The forecasted range combinations can be computed in two ways: either from
Eq. (4.18) or by averaging of point-wise inter-satellite accelerations. In the former
procedure, the forecasted range ρ(for) is considered in the functional model:

a (for)
i =

cosθi−1 ·ρ
(for)
i−1 −2ρ(for)

i + cosθi ,+1 ·ρ
(for)
i+1

(∆t )2
. (4.24)

The forecasted range ρ(for) is computed in the same way as the “observed” range ρ,
with Eq. (4.20), but considering the forecasted orbit position x(for).

The latter procedure is based on the fact that the resulting quantity of Eq. (4.24),
a (for)

i , can be interpreted as a weighted average of the inter-satellite accelerations
in the time interval [t i −∆t ; t i +∆t ] projected onto the LoS at the epoch i .
Consequently, the average accelerations a i can be produced from a time-series
of point-wise inter-satellite accelerations a(12) by applying the averaging filter w,
mentioned in Section 4.1.1. The detailed description of this procedure follows.

At each epochs i , the forecasted gravitational acceleration g(for) is computed on
the basis of the reference gravitational potential V (ref), represented by the Stokes
coefficients C (ref), at the forecasted orbit positions of the satellites:

g(for)(j) =∇V
�

x(for)(j), C (ref)
�

. (4.25)

The difference between the gravitational accelerations of the two satellites are
the point-wise inter-satellite accelerations a(12)

a(12) = g(for)(1)−g(for)(2). (4.26)
The point-wise inter-satellite accelerations need to be averaged in order to be

compared at the same level with the range combinations; that is done as shown in
Eq. (4.10):

a(12)
i = a(12)

i ∗w. (4.27)
The averaged inter-satellite acceleration a(12) is projected onto the forecasted

unit vector defining the LoS direction e(LoS)(for), resulting in the scalar forecasted
range combinations a (for):
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a (for) = a(12) ·e(LoS)(for). (4.28)
In practice, there is the need to perform average filtering in the inertial frame, oth-

erwise the frame accelerations associated with the rotation of the Local Horizontally-
aligned Reference Frame (LHRF) will be averaged over the 2n + 1 epochs where
the filter is valid. For this reason, the point-wise inter-satellite accelerations a(12)

are first rotated to the CRF where filtering operation is performed, rotated to the
Terrestrial Reference Frame (TRF) and only then is the projection onto the LoS
direction conducted:

a (for)
i =

�

R (TRF)←(CRF)
i

��

R (CRF)←(LHRF)
i a(12)

i

�

∗w
��

·e(LoS)
i . (4.29)

Implied in Eq. (4.29) is that e(LoS) is defined in the TRF. This is usually the case
since a (for)

i are computed from the forecasted orbit positions. The x(for) are needed
in that reference frame in order to perform the Spheric Harmonic synthesis shown
in Eq. (4.25). Evidently the transformation R (TRF)←(CRF) can be skipped if e(LoS) are
derived from x(for) defined in the CRF.

For the sake of brevity, the procedure depicted by Eq. (4.29) is represented as:

a (for) = a(12)∗w ·e(LoS). (4.30)
According to Ditmar and Sluijs (2004), the approach of Eq. (4.24) and the one

leading to Eq. (4.30) are equivalent as long as the force model used to compute the
forecasted orbit position x(for), Eq. (4.21), is the same as the one used to compute
the forecasted gravitational acceleration g(for), Eq. (4.25). It has been verified that
the results obtained with the two approaches coincide (within numerical round-off
errors).

The forecasted range combinations a (for) are subtracted from the observed range
combinations a (obs), producing the residual range combinations a (res):

a (res) = a (obs)−a (for). (4.31)
The residual range combinations define the observation vector that is the input

to the LS estimation. As a result, the estimated residual gravitational potential
V̂ (res) is the update to the reference gravitational potential, so that the estimated
“true” gravitational potential V̂ (true) is recovered as

V̂
(true)

= V̂
(res)
+V (ref). (4.32)
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4.2 Signal Model
In the simulation environment, the gravitational signal has to be simulated on the
basis of numerical models related to different geophysical processes such as ocean
tides, solid-earth tides, hydrological and glaciological processes, atmospheric mass
transport process, post-glacial rebound, etc., in addition to the long-term mean (i.e.
static) gravitational field. Each component contains a characteristic period, ranging
from a few hours for the rapidly moving atmospheric masses to thousands of years
for post-glacial rebound.

Generally, global gravity field models take the form of a collection of Stokes
coefficients. The relationship between a set of Stokes coefficients C and the
gravitational potential V at a point defined by the spherical coordinates x= [r ,ϑ,λ]T ,
with r the radius, ϑ the co-latitude and λ the longitude, is described as

V (x, C ) =V ([r ,ϑ,λ]T , C ) =
G0M⊕

R

L (max)
∑

`,m=0

C `m

�

R

r

�`+1

Y `m (ϑ,λ) , (4.33)

with R the semi-major axis of a reference ellipsoid, L (max) the maximum de-
gree contemplated in the gravity field model, M⊕ the mass of the Earth, G0 the
universal gravitational constant and Y the 4π-normalised surface spherical har-
monic function, given as function of P `|m |, the associated Legendre functions (e.g.
Hofmann-Wellenhof and Moritz, 2006, Eq. 1-91):

Y `m (ϑ,λ) =







p

(2`+1) P`0(cos (ϑ)) if m = 0
Ç

2(2`+1) (`−m )!
(`+m )! P`|m |(cos (ϑ))

�

cos (mϑ) , if m > 0
sin (|m |ϑ) , if m < 0

. (4.34)

The summation in Eq. (4.33) has the following meaning:

L (max)
∑

`,m=0

=
L (max)
∑

`=0

∑̀

m=−l

. (4.35)

In case of a time-varying model, each spherical harmonic coefficient is a function
of time.

4.2.1 The “true” and reference force models
Every simulation begins by choosing representative “true” and reference gravita-
tional potentials, V (true) and V (ref), respectively. The “true” gravitational potential
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represents the gravitational potential of a fictious Earth, chosen to be close to the
most up-to-date knowledge about the gravitational field to provide realistic simu-
lation results. The reference gravitational potential represents the state-of-the-art
knowledge of the gravitational potential.

This set-up is designed to mimic the actual data processing of gravimetric satellite
data (Section 4.1). The purpose of the estimation process is to determine the update
to be added to the reference gravitational potential in order to represent accurately
the actual one. This update is called residual gravitational potential V (res).

The choice of “true” and reference gravitational potentials is defined by the
purpose of the simulation. Should the sensitivity of a certain satellite formation
to the static gravitational field be studied, then the observations measured by
the satellite would be simulated on the basis of one static gravity field model,
for example the Gravity Observation COmbination release 03 satellite-only gravity
field model (GOCO03S), which is taken as the “true” model, and the reference
observations would be computed on the basis of another static gravity field model,
e.g. NGA’s Earth Gravitational Model 2008 (EGM2008). In order to determine how
sensitive a satellite mission would be to the atmospheric de-alliasing model error, the
“true” gravitational field is simulated on the basis of a time-variable representation
of the atmospheric model error plus a suitable static gravity field model and the
reference gravitational field taken as the same static gravity field model plus the
time average, e.g. monthly averages, of said model error (refer to Section 4.3.1 for
details).

In addition to an overview of static gravity field models in Section 4.2.2, this
section discusses the Atmosphere and Ocean De-aliasing Level 1B (AOD1B) in
section Section 4.2.3 and the Delft Mass Transport (DMT) in Section 4.2.4. The
latter models decribe, respectively, daily and monthly temporal gravitational field
variations. They are considered in the conducted studies because the signals they
describe play the largest role in the temporal aliasing.

4.2.2 Static gravity field models
Earth’s global static gravity field models are produced from long periods of gravimetric
satellite data, optionally augmented by terrestrial gravimetric surveying, altimeter
satellite data and Satellite Laser Ranging (SLR) data. Modern gravity field models
are estimated up to a high degree, up to 250 if only SLR and gravimetric satellite
data are used and up to 2190 if altimetry and terrestrial data are involved as well.
As implied, the satellite data typically dominate the lower range of degrees, below
spheric harmonic degree 150 – 200, while the terrestrial data dominate the higher
degrees, above degree 250.
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The models relevant to this thesis are. cf. Table 2.1:

• GFZ/GRGS EIGEN, version 3 (EIGEN-CG03C) (Förste et al. 2005),
• GFZ/GRGS EIGEN, version 4 (EIGEN-GL04C) (Förste et al. 2008b),
• GFZ/GRGS EIGEN, version 5 (EIGEN-5C) (Förste et al. 2008a) and
• Gravity Observation COmbination release 02 satellite-only gravity field model

(GOCO02S) (Goiginger et al. 2011).

The EIGEN-CG03C model is estimated on the basis of hl-SST data from the
CHallenging Mini-Satellite Payload (CHAMP) satellite mission, hl-SST and ll-SST
data from GRACE, as well as altimetry and terrestrial gravimetry data from various
sources. The GRACE ll-SST data set is 376 days long and the CHAMP hl-SST data
set covers 860 days.

The EIGEN-GL04C model is the update to EIGEN-CG03C and is estimated on
the basis of data from the same sources. The exceptions are that CHAMP data are
not considered and LAser GEOdynamics Satellite (LAGEOS) SLR data are. The
GRACE ll-SST data cover a period of 3 years and 5 months and the LAGEOS data
span 3 years. Compared to EIGEN-CG03C, an updated ocean model was used for
temporal de-aliasing of the satellite data and the altimetry data include an updated
mean sea-level height model.

The EIGEN-5C model is the update to EIGEN-GL04C and estimated on the basis
of data from the same sources but using more satellite data: 5 years and 4 months
of GRACE ll-SST data and 6 years of LAGEOS data. Additionally, the airborne,
maritime and terrestrial gravity data for Europe, Australia and the Arctic region
were updated.

The GOCO02S model is based solely on satellite data, namely Satellite Laser
Ranging tracking data and data from the missions CHAMP, GRACE, and Gravity
field and steady-state Ocean Circulation Explorer (GOCE). It exploits 8 months of
GOCE gradiometric data, 12 months of GOCE hl-SST data, 7.5 years of GRACE
data, 8 years of CHAMP hl-SST data and 5 years of SLR tracking data.

4.2.3 The Atmosphere and Ocean De-aliasing Level 1B product
The Atmosphere and Ocean De-aliasing Level 1B (AOD1B) product (Flechtner et al.
2006; Flechtner 2007, 2011), produced by Helmholtz-Zentrum Potsdam Deutsches
GeoForschungsZentrum (GFZ), is computed from the European Centre for Medium-
Range Weather Forecasts (ECMWF) atmospheric data and from the Ocean Model
for Circulation and Tides (OMCT). In satellite data processing, it is frequently
used as correction for non-tidal high frequency mass variations associated with the
atmospheric pressure changes and corresponding oceanic response.
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It is a time series of Stokes coefficients from degree and order 0 to 100, with
a 6 hour time step, from 1976 to today. Starting from release 04, four models
are provided at each epoch: global atmosphere and ocean combination (codename
“GLO”), global atmosphere (codename “ATM”), ocean area (codename “OCN”)
and ocean bottom pressure analysis (codename “OBA”).

This product can be used to simulate rapid mass transport processes occurring
at the surface of the Earth, in order to derive the level of temporal aliasing in the
estimated gravity field models. More interesting and relevant would be to have
an estimation of the errors in the AOD1B product, but unfortunately that is not
available.

4.2.4 The Delft Mass Transport model
The Delft Mass Transport (DMT) model (Liu et al. 2010; Ditmar et al. 2013)
is a collection of Stokes coefficient defined in the degree range from 2 to 120,
describing the monthly variation of Earth’s gravitational field derived from GRACE
data. Relevant to the numerical studies conducted in the thesis is the version 1 of this
model. The temporal gravitational field variations are relative to the EIGEN-GL04C
model, corrected for the linear trends in low-degree coefficients that are a part
of this static model. The rapid changes in surface mass are corrected with the
release 2004 of the Finite Element Solution (FES2004) global tide model (Lyard
et al. 2006) and the AOD1B product. A statistically optimal Wiener-type filter that
takes into account the full covariance matrices of signal and noise is used to reduce
the influence of noise (Klees et al., 2008; Liu et al., 2010).

This model is used to simulate the temporal gravitational variations with a
characteristic time of a month and longer. It is somewhat complementary to the
AOD1B product, since the latter is associated with mass transport processes with
much shorter characteristic times. Additionally, the signal associated with rapid
atmospheric and ocean mass transport processes is nearly absent in the DMT model,
since the AOD1B signal was removed from the data.

4.3 Noise Model
Conceptually, defining noise is not a trivial task. Consider a collection of ideal
observations ξ(obs) describing a given phenomenon. They can also be predicted
based on an ideal physical model of said phenomenon, thus producing a collection
of forecasts ξ(for). Under these conditions, the model completely describes the
observations so that
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ξ(obs) = ξ(for). (4.36)
In reality, neither are the observations perfect, since all sensors have certain

amount of uncertainty δ(obs), nor does the physical model perfectly describe the
phenomenon, mis-representing it by δ(for), i.e.

ξ̂(obs) = ξ(obs)+δ(obs) = ξ(for)+δ(for). (4.37)
The forecast noise δ(for) comprehends the errors in the background models. They

are composed of residual signals which result from errors in the background force
model, i.e. discrepancies between the signal predicted by the background force
models and the actual signal. These errors take the form of the mis-modelled time-
variable signal δ(tv), the omission signal δ(sp) and the mis-modelled static signal δ(st).
Particular to the context of ll-SST measurements, the forecast noise is additionally
composed of the positioning noise δ(P) and the orientation noise δ(L), as well as the
term associated with non-inertial frame accelerations called correction noise δ(C).

The observation noise has a different origin, depending on the instrument provid-
ing the ll-SST and hl-SST measurements. It is the ranging sensor and accelerometer
in case of ll-SST observations and the GPS receiver for hl-SST observations.

This section presents the details needed to properly simulate noise of various
types, which are divided into two categories: model and measurement errors. The
model errors are conceptually common to hl-SST and ll-SST observations, while the
measurement errors are only applicable to the respective type of observation.

The model errors are addressed in Section 4.3.1 and comprise:

• the mis-modelled time-variable signal,
• the omission signal and
• the mis-modelled static signal.

The measurement errors relevant to hl-SST data are explained in Section 4.3.2.
The measurement errors in ll-SST data are described in Section 4.3.3 and include:

• the accelerometer noise,
• the ranging noise,
• the positioning noise,
• the orientation noise and
• the correction noise.

Table 4.1 summarizes the distinction between observed/forecasted and measure-
ment/model categories of all noise types.
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symbol name noise
model

observation
type

observed/
forecasted

measurement/
model

δ(tv) mis-modelled time-variable
signal both both forecasted model

δ(sp) omission signal both both forecasted model
δ(st) mis-modelled static signal both both forecasted model
δ(C) correction noise advanced ll-SST forecasted measurement
δ(L) orientation noise advanced ll-SST forecasted measurement
δ(P) positioning noise advanced ll-SST forecasted measurement
δ(acc) accelerometer noise advanced ll-SST observed measurement
δ(R) ranging noise botha ll-SST observed measurement
δ(rP) relative position noise simplistic ll-SST observed measurement
δ(aP) absolute position noise simplistic ll-SST observed measurement
δ(obs)(hl-SST) hl-SST observation noise N/A hl-SST observed measurement

aThe ranging noise δ(R) is simulated differently for the simplistic and advanced noise models
but both cases are conceptually equivalent, refer to Section 4.3.3 and Section 4.3.3.

Table 4.1 – Overview of the categories of all noise types.

4.3.1 Model errors
Model errors refer to limitations in existing background force models that result in
an erroneous description of Earth’s gravitational field and corresponding forecasted
quantities. Relevant to the thesis is the simulation of:

• temporal aliasing associated with the mis-modelled time-variable signal,
• omission signal and
• mis-modelled static signal.

The definition of these model errors is given in the following sections; before
that, the motivation to consider model errors is explained.

Determining how sensitive future gravimetric missions are to model errors may
be seen as a academic exercise, in view of the fact that the knowledge of Earth’s
gravitational field is improving as more data from satellites, aircraft, ships and surface
surveying is gathered. Nevertheless, there still remains, albeit increasingly smaller, a
level of errors in the state-of-the-art models. In parallel, the data accuracy is also
increasing with the technological and methodological advances. Better sensors and
processing strategies become available and, consequently, a higher sensitivity to
modelling errors. Determining the net effect of these conflicting trends is the main
reason to study the sensitivity of future gravimetric missions to model errors.

Although the analysis of model errors does not offer a procedure that mitigates
them, it provides an accurate quantification of how significant one error type is
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relative to the other. Additionally, the analysis also permits determining which
mission configuration is more sensitive to a particular error type, since the latter
propagates differently to the gravity field parameters depending on the gravimetric
mission.

Mis-modelled time-variable signal

In the course of processing gravimetric data, the use of the models describing the
motion of mass in the Earth system is mandatory in order to correct the observations
for signals which have a temporal time scale shorter than what is measurable by the
satellite system, i.e. in the order of days or less. The surface transport processes
responsible for the high-frequency changes in Earth’s gravitational field are mainly
associated with changes in atmospheric pressure, the corresponding oceanic response
and tides. If this model-based correction is not done, the resulting gravity field
models will be heavily corrupted by temporal aliasing.

To make matters worse, the level of uncertainty in these models is not known
but certainly not zero. This error is responsible for the mis-modelling of the high-
frequency temporal gravitational field variations, which manifests itself as temporal
aliasing in gravimetric data.

However, there is another aliasing contribution present in the data, associated
with all mass transport processes that are not described by any model during the
processing of gravimetric data. The most significant process that contributes to
temporal aliasing is due to hydrology and, to a lesser extent, due to glaciological
changes.

Omission signal

The omission error, also known as spatial aliasing, is associated with the truncation
of the spherical harmonic series summation, Eq. (4.33). Formally, in order to describe
Earth’s gravitational field, an infinite number of coefficients is required. In practice,
the series is truncated at a maximum degree L (max), negating the high-frequency
signal associated with degrees above L (max).

In real data processing, the omission error is introduced into the estimated gravity
field models through two distinct ways:

In the first way, the omission error is incurred when the forecasted signal fails
to represent the high-frequency features of the actual gravitational field because the
reference background force model is of limited degree. This constitutes a problem
with a trivial solution: one simply increases the maximum degree of the reference
gravity field model. There is no problem in doing so, since it is possible to represent
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the static gravitational field of the Earth up to a very high degree and order, namely
2159 as is the case of the EGM2008 model.

The second form of omission error has its origin in the truncation of the
spherical harmonic series at the stage of data inversion. As a consequence, the
associated residual high frequency signal (i.e. the update to the forecasted data
given by the high-frequency content of the measurements) is mis-represented by
the estimated parameters because their degree is not sufficiently high. The lack
of high-degree coefficients in the model to be estimated becomes a problem when
the satellite gravimetric measurements are sensitive to signals represented by those
coefficients, unless filtered out prior to the data inversion. If the choice of L (max) is
unsuitable, the mis-represented high-frequency signals map onto the set of Stokes
coefficients with degrees lower than L (max), which may lead to noticeable distortions,
such as Gibbs artefacts. This form of omission signal is present even when the
reference model forecasts the signal up to sufficiently high-frequency (but does so
imperfectly, otherwise there is nothing to be estimated).

Mis-modelled static signal

Although the long-term mean of the Earth’s gravitational field, also known as the
static gravitational field, is known to an unprecedented level of accuracy, particularly
after the GRACE and GOCE satellite missions, there is room for further improvement.
In the context of satellite-only static gravitational field modelling, with increasing
number of GRACE and GOCE data, increasing quality of gravimetric data and better
data combination strategies, the following trend is observed: every new static model
released supersedes the predecessors. This is an indication that the current state-of-
the-art satellite-based gravity field models contain errors, although progressively in
lesser magnitude and towards the highest degrees and orders.

The accuracy of the small-features described by the high degrees of models is not
homogeneous in all geographical locations. The information that is used to estimate
the high degrees comes largely from terrestrial, aerial and ship-born data, which are
limited to certain geographical areas. Consequentially, the locations not covered by
gravimetric measurement campaigns are described poorly by the high degrees of any
model. It is, therefore, unavoidable that some level of static commission error is
present in the gravitational field solutions derived from satellite data, particularly at
high degrees.

The mis-modelled static signal is particularly relevant when the ground-track
of the satellite’s orbits changes significantly over time. This does not happens
when there is active maintenance of the ground-track pattern, which is very costly
in terms of fuel, if one considers the whole lifetime of a satellite mission. The
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change in ground track pattern results in different spacial coverage of the data
and also different orbital repeat periods. When the repeat period is smaller, the
satellite revisits the same locations more often but the spatial gaps are larger. This
unfavourable situation limits the sensitivity of the data to the high-frequency features
of the gravitational field and amplifies the errors in the static background force
model at the high degrees.

Simulation of model errors

Irrespectively of the measuring principle, simulating model errors follows consistently
the same procedure. To explain the idea better, the following abstraction is made in
this section and summarised in Table 4.2: the symbol η represents either the range
combinations a from a satellite formation or the average gravitational accelerations
g of a single satellite. Recall that these quantities are relevant for the simulation of
ll-SST (Section 4.1.2) and hl-SST (Section 4.1.1) observations, respectively. The
symbol η represents a scalar quantity in case of range combinations or a vector
quantity in case of average gravitational accelerations.

Additionally, let the symbol ∇̃ define the following operators: ∇′ for the scalar/
ll-SST case or gradient ∇′ for the vector/hl-SST case.

The operator ∇′ assumes the usual form of the gradient ∇ (refer to Eq. (4.33)
for the meaning of V

�

x, C
�

), with the addition of the averaging operation described
in Eq. (4.10) and Eq. (4.17):

∇′V
�

x, C
�

= g (4.38)
= g∗w

=∇V
�

x, C
�

∗w.

The operator ∇′ applies the averaging filter w (see Eq. (4.10) and Eq. (4.27))
to the difference between the three-dimensional (3D) accelerations at x(1) and x(2)

(see Eq. (4.25) and Eq. (4.26)) and projects the result onto the LoS vector e(LoS) as
shown in Eq. (4.28) and Eq. (4.29).

∇′V
�

x, C , e(LoS)
�

= a (4.39)
= a(12) ·e(LoS)

= a(12)∗w ·e(LoS)

=
�

∇V
�

x(1), C
�

−∇V
�

x(2), C
��

∗w ·e(LoS).
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The symbol x always refers to a single orbit for the hl-SST case. For the case of
ll-SST and if no superscript is indicated, it refers to two orbits, one for each satellite
that composes the formation.

Table 4.2 summarizes the meaning of the symbols η and ∇̃.

measurement
principle physical quantity η ∇̃ dimension

hl-SST
average

gravitational
acceleration

g ∇′ vector

ll-SST range
combination a ∇′ scalar

Table 4.2 – Meaning of the symbols η and ∇̃ for different measurement principles.

Simulation of temporal aliasing

The time-variable signal that is used to study temporal aliasing in the estimated
gravity field model is simulated by synthesising the observations η(tv) on the basis of
a set of Stokes coefficients representing the error in the time-variable gravity field
model C (tv). In order to model a time variable signal with zero mean, i.e. unbiased
towards a static signal, the synthesis is made considering C (tv) corrected for its mean
over the period under analysis, C (tv), which is typically one month:

η(tv) = ∇̃V
�

x, C (tv)−C (tv)
�

. (4.40)

The model C (tv) represents the error in the modelled gravitational acceleration due
to rapid mass changes in the atmosphere and oceans (as is considered in Chapter 5,
Section 6.2 and Chapter 8), as well as due to monthly changes associated with
hydrological and glaciological processes (as is considered in Section 6.2). This error
is not known accurately, so it is a reasonable assumption to define it as a fraction of
the total signal (e.g Ditmar et al., 2012; van Dam et al., 2008; Visser, 2010; Reubelt
et al., 2014; Gunter et al., 2010).

Simulation of omission errors

In the simulation environment, the omission error is represented as a discrepancy in
the maximum spatial frequency of observed and forecasted quantities (Gunter et al.,
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2006). As such, the “true” gravitational potential V (true) and reference gravitational
potential V (ref) are given by the same model C with the exception that the maximum
degree in the reference model, L (max)(for), is lower than that in the “true” model,
L (max)(obs):

η(obs) = ∇̃V
�

x,
�

C `m

��

, l = 2 . . . L (max)(obs)

η(for) = ∇̃V
�

x,
�

C `m

��

, l = 2 . . . L (max)(for)

L (max)(for) < L (max)(obs).

Assuming that the link between the Stokes coefficients and the observations is
linear, the omission signal η(sp) can also be represented as

η(sp) =η(obs)−η(for)

= ∇̃V
�

x,
�

C `m

��

, l = L (max)(for)+1 . . . L (max)(obs). (4.41)

Crucially, η(sp) is propagated into the gravity field parameters, considering the
maximum degree of the LS estimation to be L (max)(for).

For Earth observation satellites, the maximum degree that is possible to estimate
is given by the largest ground-track gap, usually located at or at the vicinity of the
equator. By considering a larger data set, it is possible to decrease the equatorial
gap sufficiently so that the maximum degree is large enough for the omission errors
to be insignificant. Nevertheless, the orbit configuration must be such that there is
no ground track repeat pattern or the associated repeat period is sufficiently long,
as is the case of GOCE. This satellite had a repeat period of 2 months, resulting
in a ground-track separation of less that 40 km at the end of this period (Balmino
et al., 1999). A repeat orbit is avoided by allowing the orbit to naturally decay
due to atmospheric drag over the course of time, with periodic orbit-maintenance
manoeuvres to extend the life-time of the mission, as is the case with CHAMP
and GRACE. However, this strategy does not avoid occasional short repeat periods
occurring over the course of a few weeks (Weigelt et al., 2009).

Simulation of static gravity field model errors

The simulation of static gravity field model errors considers two different static
gravity field models for the observed and forecasted quantities. It is assumed that
one of them is an improvement over the other, so their difference mainly depicts
the error of the less accurate one. If two independent models of similar accuracy
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are considered, such as those derived from data of similar origin and period, their
difference is limited mainly to discrepancies in the processing strategies, which is
not the objective of the analysis.

As an example, let it be assumed that the observed quantities are generated
on the basis of the EIGEN-5C and the forecasted quantities on the basis of the
EIGEN-CG03C:

η(obs) = ∇̃V
�

x, C (EIGEN-5C)
�

η(for) = ∇̃V
�

x, C (EIGEN-CG03C)
�

.

Recognising the linearity of the Spherical Harmonic Synthesis and the linearity
of the considered functional model, the mis-modelled static signal δ(st) can be
represented as

δ(st) =η(obs)−η(for)

= ∇̃V
�

x, C (EIGEN-5C)−C (EIGEN-CG03C)
�

. (4.42)

The maximum degree of the estimated gravity field parameters resulting from
δ(st) should be in agreement with the maximum degree considered in the simulation,
so as to avoid the additional spatial aliasing effect.

4.3.2 Modelling hl-SST noise
In the following sections, the errors associated with random noise in hl-SST and
ll-SST data are presented. These errors differ from the modelling errors in the
sense that they arise due to imperfect sensors, instead of deficient knowledge of the
geophysical processes that are not comprehensively observable by the gravimetric
satellite mission.

Measurement noise in the satellite accelerations derived from GPS observations is
simulated by generating coloured noise which realistically reproduces the uncertainty
associated with GPS positioning, as determined by experiments with CHAMP mission
data conducted by Ditmar et al. (2007). The Amplitude Spectral Density (ASD)
of the noise along each component (along-track, cross-track and radial) is shown
in Figure 4.3. The analytical representation of the curves in Figure 4.3 is given as
function of frequency f by

Æ

u ( f ) =
2σ

∆t
3
2

�

1− cos
�

2π f ∆t
�

+
�

∆t

4τ

�2
�

. (4.43)
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Figure 4.3 – ASD of the orbit errors, in terms of absolute accelerations used in the
simulation of hl-SST errors.

The parameter σ is associated with the amplitude of the GPS positioning error
and takes the values of 2, 1.5 an 5mm for the along-track, cross-track and radial
directions, respectively. The empirical parameter τ, controls the amplitude of noise
at low frequencies and is typically set to 180 s.

A realization of this noise δ(obs)(hl-SST), with the frequency description represented
by Eq. (4.43) is added directly to the averaged accelerations generated on the basis
of the “true” gravitational potential.

4.3.3 Modelling ll-SST noise
The errors in ll-SST data are the less understood in comparison to those in hl-SST
data. There is a large number of publications dedicated to the study of errors
in the data (Frommknecht et al., 2003, 2006; Gerlach et al., 2004; Flury et al.,
2008; Horwath et al., 2010; Meyer et al., 2012a; Touboul et al., 2012; Bandikova
et al., 2012), many of which focus on a dedicated instrument or on how errors
of a particular instrument propagate to the gravity field parameters. It is rare to
find an analysis of the a posteriori residuals, where the sources of noise are clearly
identified. Even when that is done, as presented in Section 6.2.2, it is difficult to
fully understand the origin of noise in GRACE data.

In this section, two noise models are presented: the simplistic and advanced
noise model. The simplistic noise model was implemented at an earlier study stage.
With the progress of the research, it became evident that the simplistic model was
not contemplating all the errors in the ll-SST measurement principle. In order to
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overcome this limitation, the advanced noise model was developed. The reason to
present the simplistic noise model is to describe the initial naive attempts undertaken
to model the errors in the GRACE data and in this way to justify the complexity of
the advanced noise model.

The simplistic noise model considers white noise in the orbit positions and ranges.
The assumption is that the added noise realisations propagate through the functional
model to re-create the most significant errors in the range combinations. The
advanced noise model, on the other hand, realistically describes a number of types of
errors explicitly at the level of the range combinations. For those noise types where
this approach is not possible, care is taken to produce error time series considering a
realistic simulation process. Such is the case of orbit position errors, where orbits
are integrated from force models which differ in a way representative of the gravity
field model errors.

Both simplistic and advanced noise models are the sum of several noise types.
In the simplistic model, they are:

• ranging noise δ(R),
• relative position noise δ(rP) and
• absolute position noise δ(aP).
The advanced noise model is composed of:
• ranging noise δ(R),
• accelerometer noise δ(acc),
• positioning noise δ(P),
• correction noise δ(C) and
• orientation noise δ(L).

Simplistic noise model

The simplistic noise model is based on the super-imposition of uncorrelated noise
with a pre-defined magnitude. The noise time series are added at the level of ll-SST
range data and satellite’s orbit positions. The errors in the ranges are represented
by the ranging noise δ(R). The error in the orbit positions is further divided into two
constituents: 1) the relative position noise δ(rP) representing the uncertainty of the
position of one satellite relative to the other and 2) the uncertainty in the position
of the satellites relative to the centre of the Earth, which makes up the absolute
position noise δ(aP).

The noise in accelerometer data has not been included in the simplistic noise
modelling, because their error is negligible in comparison to other error components
(Frommknecht et al., 2006; Flury et al., 2008).
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Table 4.3 summarises the noise types that form the simplistic noise model.

name symbol description

ranging noise δ(R)
ranging sensor noise propagated to the

range combinations

relative position noise δ(rP) noise in the orientation of the LoS vector
and relative orbit positions

absolute position noise δ(aP) noise in the orbit positions

Table 4.3 – Summary of the noise types in the simplistic noise model.

Simulating ranging noise The ranging noise represents the errors in measuring
the inter-satellite range. Inaccuracies in the ranging data of a ll-SST satellite system
are simulated as a time series of uncorrelated ranging sensor noise δ(ρ). It is added
to the computed ranges ρ, as obtained with Eq. (4.20), resulting in the estimated
ranges ρ̂

ρ̂ =ρ+δ(ρ). (4.44)
The estimated range combination â are computed from ρ̂, making use of

Eq. (4.23), thus propagating δ(ρ) to those quantities. Note that â is linear with ρ̂
and cosθ i ,±1 ≈ 1. Consequently, from the ranging sensor noise δ(ρ), it is possible to
explicitly derive the propagated δ(ρ) on the average accelerations, henceforth called
ranging noise δ(R):

â i =
cosθ (obs)

i ,−1 ·
�

ρ(obs)
i−1 +δ

(ρ)
i−1

�

−2
�

ρ(obs)
i +δ(

ρ)
i

�

+ cosθ (obs)
i ,+1 ·

�

ρ(obs)
i+1 +δ

(ρ)
i+1

�

(∆t )2

=a (obs)
i +

cosθ (obs)
i ,−1 δ

(ρ)
i−1−2δ

(ρ)
i + cosθ (obs)

i ,+1 δ
(ρ)
i+1

(∆t )2

≈a (obs)
i +

δ
(ρ)
i−1−2δ

(ρ)
i +δ(

ρ)
i+1

(∆t )2
, cosθ (obs)

i ,±1 ·δ
(ρ)
i±1 ≈δ

(ρ)
i±1

≡a (obs)
i +δ(R)i . (4.45)
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As illustrated in Eq. (4.45) and relevant to the simplistic noise model, the ranging
noise δ(R) at time ti depends only on the K-Band Ranging (KBR) sensor errors δ(ρ)i−1,
δ
(ρ)
i , and δ(ρ)i+1.

Simulating relative position noise The relative position noise δ(rP) is the relative
orbit position noise δ(∆x) propagated to the range combinations. The relative orbit
position noise is function of the error in the orientation of the LoS direction vector.
The middle point between the positions of the two satellites does not depend on
the magnitude of δ(∆x). Uncorrelated relative orbit position noise δ(∆x) is added in a
symmetric way to the positions of both satellites:

�

x(for)(1) = x(obs)(1)+δ(∆x)/2
x(for)(2) = x(obs)(2)−δ(∆x)/2.

(4.46)

The relative orbit position noise δ(∆x) is a 3D random variable without a cross-
correlation between different components: it represents the errors of x(1) relative to
x(2). It should not be confused with the relative position noise δ(rP), which has units
of [m/s2].

The relative orbit position noise δ(∆x) is propagated to the relative position noise
δ(rP) by computing the difference between the noise-free and noisy observations.
Eq. (4.23) is used to derive the two types of observations, i.e. considering the
noise-free θ (obs) and noisy θ (for):

δ(rP)
i =

cosθ (obs)
i ,−1 ·ρ

(obs)
i−1 −2ρ(obs)

i + cosθ (obs)
i ,+1 ·ρ

(obs)
i+1

(∆t )2

−
cosθ (for)

i ,−1 ·ρ
(obs)
i−1 −2ρ(obs)

i + cosθ (for)
i ,+1 ·ρ

(obs)
i+1

(∆t )2
. (4.47)

The angles θ (for) and θ (obs) are computed using Eq. (4.22) from the noise-free
and noisy orbits, the x(for) and x(obs), respectively.

One could argue the same could be done considering Eq. (4.39), i.e.:

δ(rP) ?=∇′V
�

x(obs), C (ref), e(LoS)(for)
�

−∇′V
�

x(obs), C (ref), e(LoS)(obs)
�

. (4.48)

However, that is not the case. Eq. (4.47) projects the preceding and following LoS
vectors along the direction of the current LoS vector (before the double differentiation
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is done), as indicated by the terms θ (obs)
i ,±1 . As a consequence, the consecutive

differences between the errors over three epochs play a role. On the other hand,
Eq. (4.48) projects point-wise inter-satellite accelerations along error-free and noisy
unit vectors defining the LoS direction and only the error of the LoS vector at the
current epoch is relevant. The type of noise depicted by Eq. (4.48) is considered in
the advanced noise model, cf. Section 4.3.3.

Simulating absolute position noise The absolute position noise δ(aP) represents
the noise in the observations resulting from the identical error in the orbital positions
of the two satellites. To simulate it, the same realization of uncorrelated absolute
orbit position noise δ(x) is added to the position of both satellites, independently
along each of the orthogonal coordinate directions:

�

x(for)(1) = x(obs)(1)+δ(x)

x(for)(2) = x(obs)(2)+δ(x). (4.49)

Unlike the relative position noise, the LoS vector is not modified, i.e.:

e(LoS)(for) = e(LoS)(obs) ≡ e(LoS).

As a consequence, absolute position noise does not propagate to the observations
if computed with Eq. (4.23). It is necessary to use Eq. (4.39) to complete its
propagation to the level of the observations. The difference between the uncorrupted
and corrupted observations, is the absolute position noise δ(aP) (the meaning of the
∇′ operator is defined in Eq. (4.39)):

δ(aP) =∇′V
�

x(for), C (ref), e(LoS)
�

−∇′V
�

x(obs), C (ref), e(LoS)
�

. (4.50)

Advanced noise model

The advanced noise model, originally proposed by Ditmar et al. (2012), describes
explicitly a number of noise types at range combinations level, which are not
accurately represented by considering noise in the orbit positions and propagating
it to the range combinations. The motivation is to gain deeper understanding of
the error budget in ll-SST data by implementing explicitly all the conceivable noise
types.

Another development associated with the advanced noise model, as compared
to the simplistic noise model, concerns an accurate description of the noise in the
frequency domain. Recall that in the simplistic noise model, the ranging sensor noise
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δ(ρ), absolute orbit position noise δ(x) and relative orbit position noise δ(∆x), are
all assumed to be white, i.e. only described by the standard deviation. A detailed
characterization of the noise in the frequency domain further makes the simulations
more representative of the actual noise.

Table 4.4 summarises the noise types that are part of the advanced noise model
and Appendix D presents the analytical derivation of the noise model, as well as of
the formulas describing the positioning noise, orientation noise, correction noise.

name symbol description

accelerometer noise δ(acc) noise in measuring non-gravitational
accelerations

correction noise δ(C)
noise resulting from the inaccurately

known relative radial velocity

orientation noise δ(L)
noise in the orientation of the LoS

vector

positioning noise δ(P) noise in the orbit positions

ranging noise δ(R) noise in the ranging sensor

Table 4.4 – Summary of the noise types in the advanced noise model.

Simulating accelerometer noise The accelerometer noise is directly related to
the inaccuracies in the data gathered by the on-board accelerometer. These data are
needed to take into account the non-gravitational accelerations, without having to rely
on radiation pressure and aerodynamic models, thus avoiding the associated modelling
errors. This error component is not part of the simplistic noise model because it is
known to be insignificant in comparison to other errors. However, keeping in mind
that future gravimetric missions are to be analysed, it is important to understand at
which point other noise types become comparable with the accelerometer noise.

Simulating accelerometer noise is a matter of using the ASD of the accelerometer’s
noise to generate the random time-series δ(acc)(j) for each satellite j . The quantities
δ(acc)(j) represent the accuracy of the accelerometer in 3D space. The accelerometer
noise δ(acc) is computed from the difference between accelerometer noise of satellite
1, δ(acc)(1) and accelerometer noise of satellite 2, δ(acc)(2). Considering that both
accelerometers are identical, i.e. ASD

�

δ(acc)(1)
�

=ASD
�

δ(acc)(2)
�

=ASD
�

δ(acc)(pw)
�

, the
total accelerometer noise is

p
2δ(acc)(pw).
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The point-wise accelerometer noise δ(acc)(pw) cannot be added directly to the
range combinations, which are averaged over three epochs. To correct for this,
the averaging filter must be applied, which can only be done in the inertial frame.
Additionally, δ(acc)(pw) are vector quantities that need to be projected onto the
forecasted unit vector defining the LoS direction e(LoS)(for), as described by Eq. (4.29):

δ(acc) =
p

2δ(acc)(pw)∗w ·e(LoS). (4.51)
Under the assumption that the accelerometer noise is isotropic in magnitude, i.e.

one accelerometer axis is not more accurate than the other, it is possible to skip
the rotation R (CRF)←(LoSRF) and define the accelerometer noise directly in the CRF.
The stochastic properties of a normally-distributed isotropic random vector do not
change if transformed into another reference frame, as long as the determinant of
that transformation is one. The same is not true in case the accelerometer axes have
different accuracies, in which case Eq. (4.51), with the meaning of the ∗w · e(LoS)

operations defined by Eq. (4.29), represents this general case.
The simulated range combinations a are corrupted by accelerometer noise δ(acc)

in order to produce the estimated range combinations â :

â = a +δ(acc). (4.52)

Simulating advanced ranging noise Unlike the simplistic noise model, the time
series of δ(ρ) in the advanced noise model is generated on the basis of a suitable
ASD, characteristic of a particular inter-satellite metrology system. For example, the
estimated ASD of the ranging noise in GRACE is shown in Figure 6.12b and what is
assumed in the simulation of future gravimetric missions is shown in Figure 8.7a.

Unlike the ranging noise in the simplistic noise model, cf. Eq. (4.45), the ranging
noise in the advanced noise model is computed accurately, i.e. without the assumption
that θ (obs) is small:

cosθ (obs)
i ,±1 ·δ

(ρ)
i±1 6≈δ

(ρ)
i±1.

As a consequence, the ranging noise is given by:

δ(R)i =
cosθ (obs)

i ,−1 δ
(ρ)
i−1−2δ

(ρ)
i + cosθ (obs)

i ,+1 δ
(ρ)
i+1

(∆t )2
. (4.53)

The approximation incurred in the simplistic noise model does not modify
substantially the produced range combinations as long as consecutive changes in the
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attitude of the LoS direction are not too large. This is the case in most satellite
formations. Nevertheless, it was decided to model the propagation of the ranging
sensor noise δ(ρ) without any approximation, so that a more general and accurate
procedure is considered. As demonstrated in Section 8.2.1, the approximation may
modify the resulting range combinations in some particular cases but only at the
low frequencies.

Simulating correction noise The correction noise can be interpreted as inac-
curacies in the estimated centrifugal accelerations. The orbital positions provide
the means to reconstruct the accelerations associated with the rotation of the LoS
vector. In practice, this reconstruction is imperfect because of the errors in the
orbital positions.

Neglecting the out-of-plane motion, the point-wise inter-satellite centrifugal
acceleration a (12)(cent) is mainly a function of the orbit velocity of satellite 1 relatively
to satellite 2 projected onto the plane perpendicular to the LoS direction ẋ(12)⊥

(Rummel, 1979):

a (12)(cent) ≈−
1

ρ

�

ẋ(12)⊥
�2

. (4.54)

This means that the correction noise, or the inaccuracies in the estimated
centrifugal accelerations, can be represented approximately as

δ(C) =−2
ẋ(12)⊥

ρ
δ(ẋ

(12)⊥) +

�

ẋ(12)⊥

ρ

�2

δ(ρ). (4.55)

The derivation of this equation is shown in Section D.3.3.
Thus, the correction noise depends on i) errors in the estimated orbit velocity of

satellite 1 relatively to satellite 2 projected onto the plane perpendicular to the LoS
direction (the first term in the expression above) and ii) on KBR sensor errors (the
second term). Notice that Eq. (4.54) represents a continuous function, while the
functional model used in the study is a finite difference. Ditmar et al. (2012) shows
that in practice it is possible to use Eq. (4.55) to model the errors in the estimated
centrifugal accelerations without a significant loss of accuracy.

Simulating orientation noise The orientation noise δ(L) represents the error of
the LoS orientation in the computation of the forecasted point-wise inter-satellite
accelerations. The inter-satellite accelerations are computed accurately but projected
onto the wrongly-estimated unit vectors defining the LoS direction e(LoS)(for), instead
of the correct e(LoS)(obs).
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In the Line-of-sight Reference Frame (LoSRF), the forecasted LoS vector d(for)

differs from the observed LoS vector d(obs) by
�

0,δ(∆x)
y ,δ(∆x)

z

�

T , where δ(∆x) is the
relative orbit position noise. This means that, relative to d(obs), the d(for) is slightly
rotated along the axes perpendicular to the LoS vector. In terms of unit vectors,
the e(LoS)(for) differs from e(LoS)(obs) by the noise in the orientation of the LoS vector
δ(LoS):

δ(LoS)(LoSRF) =
1

ρ(for)





0
δ(∆x)

y
(LoSRF)

δ(∆x)
z

(LoSRF)



 . (4.56)

Note that, by definition, e(LoS) ≡ d/ρ.
In other reference frames, the x -component is not necessarily zero and δ(LoS) is

given by the more general expression:

δ(LoS) =
1

ρ(for)





δ(∆x)
x
δ(∆x)

y

δ(∆x)
z



=
δ(∆x)

ρ(for) . (4.57)

The orientation noise is simulated as the difference between the gravitational
accelerations ∇V , generated on the basis of the force model C (ref), at the orbital
positions x(for)(j), scaled by δ(LoS):

δ(L)(pw) =δ(L)(1)(pw)−δ(L)(2)(pw)

with δ(L)(j)(pw) =∇V
�

x(j), C (ref)
�

·δ(LoS) and j = 1, 2.
(4.58)

The derivation of this equation can be found in Section D.3.2.
The point-wise orientation noise δ(L)(pw) cannot be added directly to the range

combinations. In the same way as the accelerometer noise and as shown in Eq. (4.29),
the averaging filter and the projection onto the forecasted LoS direction need to be
considered in order to derive the averaged orientation noise.

Simulating positioning noise The positioning noise represents the error associated
with the forecasted inter-satellite gravitational accelerations taken at inaccurately
known orbit position x. In other words, the forecasted gravitational accelerations
are computed on the basis of a pre-defined force model accurately but at the wrong
locations. Unlike the orientation noise, the positioning noise assumes there is no
error in the LoS vector. This means that the point-wise inter-satellite accelerations
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computed at the inconsistent observed and forecasted orbital positions are projected
onto the same observed and forecasted LoS vector. This is in contrast to the
orientation noise, which projects the point-wise inter-satellite accelerations computed
at consistent observed and forecasted positions along the different observed and
forecasted LoS vectors. This distinction is also described in Appendix D, Eq. (D.2)
and Eq. (D.3).

The simulation of the positioning noise requires two sets of orbit positions,
the first integrated on the basis of the “true” gravitational potential V (true), called
observed orbit positions x(obs) and the second one integrated on the basis of the
reference gravitational potential V (ref), called forecasted orbit positions x(for). The
difference between x(obs) and x(for) represents the uncertainty of the orbital positions
of the satellites, since it is predicted that they are located at x(for) but in reality they
are at x(obs).

The simulation of positioning noise requires the explicit integration of two sets
of orbits in order to ensure that both the absolute and relative positioning error
propagate to the positioning noise. Corrupting x(obs) with only the relative orbit
position noise δ(∆x) (in the way described by Eq. (4.46)) does not change the middle-
point of the orbit and, therefore, ignores the effects of the absolute positioning
error. Contrary to the positioning noise, the absolute positioning error is irrelevant
to the simulation of the orientation noise because these errors, which are of equal
amplitude in the positions of both satellites, do not change the attitude of the LoS
vector. In that case, there is no strong reason to explicitly integrate two sets of
orbits, particularly when a suitable estimation of δ(∆x) is possible to derive from
actual GRACE data, cf. Section 6.1.

The point-wise positioning noise δ(P)(pw) is given by:

δ(P)(pw) =∇V
�

x(obs), C (ref)
�

−∇V
�

x(for)(adj), C (ref)
�

. (4.59)

The derivation of this equation is shown in Section D.3.1.
The adjusted forecasted orbit positions x(for)(adj) are the result of forcing the

ranges described by the forecasted orbit positions to be equal to those described by
the observed orbit positions:

x(for)(adj) = x(for)(12)±e(LoS)(for)

�

�x(obs)(1)−x(obs)(2)
�

�

2
. (4.60)

The purpose of this procedure, used in actual data processing, is to increase
the accuracy of the forecasted orbit, by assimilating the accurate measurements
provided by the ranging sensor.
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For the production of the time series of δ(P)(pw), V (true) and V (ref) describe no
mass transport processes because the resulting indirect effect associated with residual
temporal aliasing would be small in comparison to the effect of the full static signal.
For the same reason, the maximum degree of V (true) and V (ref) are the same in
the simulation of δ(P)(pw), in order to avoid the inclusion of an omission signal
(Section 4.3.1).

Additionally, the difference between the observed and forecasted orbits depends
on parameters that are relevant to the integration of the orbits. These parameters
are the length of the orbit arc where the integration is uninterrupted, the number
of empirical accelerations and the frequency in which they are estimated and how
the accelerometer calibration parameters are handled. In the case of simulations
conducted in the thesis, the only parameter that is relevant is the arc length, since
the no empirical accelerations nor calibration parameters are estimated. The arc
length considered in the simulations is 6 hrs, which in agreement with that used to
process actual GRACE data in the production of the DMT model.

In the same way as the orientation noise, the point-wise positioning noise δ(P)(pw)

cannot be added directly to the range combinations. For that reason, the same
sequence of operations shown in Eq. (4.29) has to be performed in order to derive
the averaged positioning noise.

4.3.4 Summary of the Noise types
With the purpose of facilitating the overview of the various noise types, Table 4.5
and Table 4.6 provide the connection between the symbols, names and the noise
model, where relevant, of the considered noise types as well as the page where the
they are defined.

The noise types associated with model errors, introduced in Section 4.3.1 are
summarised in Table 4.5.

symbol name page nr.
δ(tv) mis-modelled time-variable signal 95
δ(sp) omission signal 95
δ(st) mis-modelled static signal 96

Table 4.5 – Summary of the symbols and names of the model errors.

Table 4.6 summarises the hl-SST and ll-SST noise types, identifying the simplistic
and advanced noise models in case of the ll-SST observation principle.
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symbol name noise
model

observation
type

noise
magnitude

page
nr.

δ(obs)(hl-SST) hl-SST observation noise N/A hl-SST Figure 4.3 97
δ(R)a ranging noise simplistic ll-SST 10µm 100
δ(rP) relative position noise simplistic ll-SST 1mm 101
δ(aP) absolute position noise simplistic ll-SST 1 cm 102
δ(acc) accelerometer noise advanced ll-SST Figure 6.20a 103
δ(R)a ranging noise advanced ll-SST Figure 6.22a 104
δ(C) correction noise advanced ll-SST Figure 6.24a 105
δ(L) orientation noise advanced ll-SST Figure 6.25a 105
δ(P) positioning noise advanced ll-SST Figure 6.28a 106

aThe ranging noise δ(R) is simulated differently for the simplistic and advanced noise models
but both cases are conceptually equivalent, refer to Section 4.3.3 and Section 4.3.3.

Table 4.6 – Summary of the symbols and names of the noise types relevant to the ll-SST
and ll-SST observation principles.

4.4 Summary
Modelling satellite gravimetry requires the definition of the function, signal and
noise models. The functional model (Section 4.1) defines the mathematical relation
between the set of model parameters and the measurements taken by the satel-
lite system. The signal model (Section 4.2) is the a priori knowledge of Earth’s
gravitational field and is necessary in order to reduce the measurements to residual
quantities where the functional model is linear. The noise model (Section 4.3) is
introduced to properly quantify the observation and model uncertainties in order to
introduce a level of realism in the simulations.

The total error is divided into model and measurement errors. The model errors
are common in the case of hl-SST and ll-SST data, differing only in the simulation
procedure, refer to Section 4.3.1. In contrast, the measurement errors are specific
to each observation principle. The model and measurement errors are simulated
concurrently, as is the case of Chapter 5 and Chapter 8, in order to predict the effect
of model and sensor-related uncertainties.

The two observations principles, high-low Satellite-to-Satellite Tracking (hl-SST)
and low-low Satellite-to-Satellite Tracking (ll-SST), each have particular contributors
regarding the noise model. The noise in the hl-SST data (Section 4.3.2) is the most
simple to model in view of the fact that the errors in the Global Navigation Satellite
System (GNSS) receiver are dominant enough to justify neglecting all the errors
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in other sensors. The error in the ll-SST measurements (Section 4.3.3) required
the most attention when modelling the data noise. The ranging sensor noise is not
the only relevant error source, but also the errors in determining the LoS direction,
further requiring information about the accuracy of the computed satellite orbits.
Two measurement noise models are defined; the simplistic noise model being the
one initially used, as is the case with the combined inversion in Chapter 5; and
the advanced noise model, validated in Section 6.2 and later used to conduct a
numerical study on satellite formations in Chapter 8.

Although great effort was made to include every imaginable noise type, it is
possible that further research uncovers new error that have not been so far considered.
In any case, it is assumed that the (possibly incomplete) set of noise types analysed in
the thesis is sufficiently broad and substantial to produce results that are sufficiently
general and do not have to be significantly modified after the inclusion of new noise
types.
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Added Value of
non-Dedicated GPS-Equipped
Constellations 5
The spatio-temporal resolution of the time-variable gravity field models derived
from dedicated gravimetric satellite missions is inherently limited by their ground
track coverage. Those models are subject to aliasing effects caused by sub-monthly
mass transport signals, such as atmospheric and ocean processes. To address
these issues, this chapter explores the feasibility of using non-dedicated satellite
constellations, namely those from commercial communication networks or a low-
cost array of custom-built micro-satellites, as a complementary data source. The
positioning receivers on-board the constellation’s satellites would ideally provide a
high density of observations in the form of derived accelerations which, while much
less accurate than those obtained from dedicated gravimetric missions, may still
be sufficient to observe the longest wavelengths at even sub-daily intervals. Using
a series of simulated mission scenarios it is shown that such constellations, acting
either independently or when combined with dedicated gravimetric missions, may
offer a noticeable improvement in the recovery of the large scale (> 1000 km), high
frequency (< 1month) components of the time-varying gravitational field.

5.1 Introduction
The Gravity Recovery And Climate Experiment (GRACE) mission constitutes only a
single instrument pair, a fact that has implications on the temporal resolution of the
resulting gravity field models. As a general rule of thumb, it takes approximately
one month of GRACE data to produce a gravity field model of relatively high spatial
resolution and quality, i.e., spherical harmonic degree and order 60 (this translates
into a half-wavelength distance of roughly 330 km at the equator) or higher (up
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to degree 120 in particularly well covered regions) with standard deviations less
than 2 cm Equivalent Water Height (EWH) (Schmidt et al., 2008a; Liu et al.,
2010). The reason is that the ground track coverage needs to be dense enough to
adequately observe small features. Furthermore, Earth’s gravitational field is itself
changing during the chosen time interval, as there are many mass transport processes
(e.g., atmospheres, continental hydrology, tides, etc.) that have cycles much shorter
than one month. The high-frequency (i.e., < 1month) signals created from these
short-term processes introduce aliasing error into the monthly gravity field models.
The current approach for dealing with these errors is to use modelled estimates for
these short-period signals and adjust the K-Band Ranging (KBR) measurements
accordingly. Such an approach is naturally limited by the accuracy of the models
used, and introduces another potentially large error source into the GRACE gravity
field models. In order to measure rapid mass transport processes themselves with
satellite data, one has to get higher temporal resolution and, therefore, sacrifice
spatial resolution; the only way to improve both is to increase the number of satellites
involved.

One option is to fly multiple pairs of satellites equipped with ranging sensors
in different orbit planes, as proposed by Bender et al. (2008) and others (Sneeuw
et al., 2005; Sharifi et al., 2007; Encarnação et al., 2008; Wiese et al., 2009). The
number of GRACE-like pairs that would need to be flown depends on the accuracy
desired, but assuming more and more pairs are flown, the set of satellites would
begin to resemble a constellation. While the concept is intriguing, the resources
required to build, launch, and support more than one or two GRACE-like satellite
pairs is significant, making such proposals academically interesting, but not very
realistic in the near future. Another option is to fly gradiometer-equipped satellites
but the same type problems are not avoided. Recognising this, the focus of this
study is to explore alternative ideas that still involve constellations, but use satellites
from other missions that are not dedicated to gravitational field monitoring (i.e.,
non-dedicated satellites). The general concept is to utilise any available satellite that
is, at a minimum, equipped with a high-precision Global Positioning System (GPS)
receiver and an attitude determination system. The forces acting on the satellite can
be derived from the GPS positioning information, in essence providing low accuracy
acceleration measurements. While the measurements would have a lower level of
accuracy, the benefit is that there is a constant, high-volume stream of globally
distributed observations collected, especially in the case where tens or hundreds
of satellites are involved. In short, the high density of observations may permit
the observation of Earth’s time-variable gravitational field at much shorter time
scales than currently possible, i.e., at daily or sub-weekly intervals. The information
from these measurements can then be used as either an independent data set, or
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in combination with a dedicated gravimetric mission (e.g., a GRACE follow-on) to
help reducing the effects of aliasing and improving the overall accuracy of models
generated from such dedicated missions. Such constellations are expected to become
a reality in the near future. Foust (2015) reports that OneWeb (www.oneweb.world)
plans to build 900 micro-satellites for global communications, BlackSky Global
(www.blacksky.com) plans to launch 60 satellites for Earth imagery, UrtheCast
(www.urthecast.com) plans to launch 16 optical and Synthetic Aperture Radar
(SAR) imagery satellites. In addition, Iridium NEXT (www.iridium.com, Gupta,
2008) is soon to launch 66 global communication satellites, the FORMOSAT-3/
COSMIC (F3C) (Kuo et al. 1999, 2005) and FORMOSAT-7/COSMIC-2 (F7C2)
(Ector et al. 2010; Cook et al. 2013) constellations will add 12 radio occulation
satellites and the Community Initiative for Continuing Earth Radio Occultation
(CICERO, geooptics.com) project proposes to launch 24 or more satellites for
severe weather monitoring. Hsu (2015) also reports that SpaceX (www.spacex.com),
with support form Google (www.google.com/about), plans to provide Internet
access to developing regions of the world through a constellation of 4000 satellites.

This study will focus on the determination of the high-frequency gravitational
variations, i.e. those which change at time-scales less than one month, using the
proposed Iridium NEXT constellation as the primary case study. Announced in late
2007, Iridium NEXT is the next generation of the well-known satellite communication
network, with the added benefit that each satellite is expected to carry a secondary
scientific payload on-board. While the development of the constellation and associ-
ated payloads are still in progress, the current plan is to launch 66 satellites (in six
orbit planes, at 780 km altitude, and with an inclination of 86.4◦) beginning in 2015
de Selding (2015), with a scheduled mission lifetime of more than 15 years. Many
of these satellites (currently estimated at a minimum of 24) will fly geodetic quality
GPS receivers, which could be used for gravity field recoverys. As will be seen in this
chapterdesc, the case study into the Iridium NEXT constellation nicely demonstrates
the feasibility of using non-dedicated satellites in the context of time-variable gravity
field recovery.

Additionally, the smaller F3C constellation is considered in the simulation study
in order to gain insight into the immediate benefit of exploiting current constellations
for the purpose of augmenting dedicated gravimetric missions. The F3C mission is a
GPS occultation mission launched in 2006 as part of a joint US-Taiwan collaboration,
and consists of six satellites at an orbit inclination of 72◦ and an altitude of 800 km.
The CHallenging Mini-Satellite Payload (CHAMP) satellite is added to the F3C in
order to increased the measurement rate, resulting in the F3C/CHAMP constellation.
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5.2 Methodology
One of the obvious benefits of using constellations is that the high number of
satellites generates a large number of globally distributed measurements. For
example, using simulated orbits for the proposed Iridium NEXT (24 satellite case)
constellation, it takes GRACE data approximately 21 days to generate the same
density of observations as the constellation generates in about 21 hours (Figure 5.1).
While the observations would be much less accurate than those from dedicated
gravimetric missions such as GRACE, errors due to temporal aliasing would be
significantly reduced. The degree of spatial aliasing would be greatly reduced as
well, up to the maximum degree described in the data. The data of non-dedicated
missions describes mainly the long wavelength features of Earth’s gravitational field.
Nonetheless, there is a minimum coverage needed to allow the complete frequency
content of the data to be recovered. The constellations’ nearly homogeneous global
ground-track coverage minimizes the time needed to reach this coverage.

To examine whether this higher density of observations is sufficient to over-
come the lower accuracy of the GPS-derived accelerations, a series of simulations
are developed in which the GRACE Atmosphere and Ocean De-aliasing Level 1B
(AOD1B) product (Flechtner et al. 2006; Flechtner 2007, 2011) is used as a realistic
time-variable gravitational input signal. It should be noted that the AOD1B product
does not account for all short-term mass transport processes, such as tides and
continental hydrology; however, the AOD1B product does represent the primary
signals of interest at the daily to weekly time-frames. Neglecting the influence
of ocean tidal aliasing is justified, since these variations are fairly well understood
(Ray and Luthcke, 2006), although ocean tide models keep improving (Stammer
et al., 2014). Therefore, it is assumed that those models are of sufficiently high
quality by the time the proposed gravimetric mission is launched, in view of i) the
current and planned large number of altimetric satellite missions, ii) the errors in
those models are mainly restricted to the polar regions (resulting from little or poor
altimetry data) and areas covered with shallow seas (caused by frictional effects,
enhanced tidal motion and the presence of coastlines) (Schrama and Visser, 2006;
Ray et al., 2009; Visser et al., 2010; Müller et al., 2014). Furthermore, Thompson
et al. (2004), Visser (2010) and Reubelt et al. (2014) have demonstrated through
numerical simulations that the effects on the gravity field parameters of temporal
aliasing originating from the non-tidal atmosphere and ocean variations are compar-
able to those originating from ocean tides. If high-frequency atmospheric temporal
variations can be measured, it is reasonable to assume the same can be said for
ocean tides. The influence of continental hydrology is uncertain, as this occurs
across a range of spatial and temporal scales; however, for the purposes of the
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Figure 5.1 – Mean (solid line) and maximum/minimum (grey) ground track densities by
latitude (top row) and longitude (bottom row) for the 24-satellite Iridium Next constellation
(21 hours, left-hand column), the GRACE mission (21 days, centre column), and the F3C/
CHAMP constellation (3 days, right-hand column).
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simulations presented here, precise knowledge of hydrology is not required. This is
because the amplitude of the temporal aliasing associated with the AOD1B product
is of comparable amplitude as the temporal aliasing associated with hydrology, cf.
Section 6.2.2 as well as Figures 6.18 and 6.19).

The amplitude of the AOD1B signal, in terms of the Amplitude Spectral Density
(ASD) of geoid height variations, across a range of spatial and temporal scales is
shown in Figure 5.2. Shown is the degree amplitude of the per-coefficient ASD of
the 6 hourly AOD1B product. This is made possible by the assumptions that the
temporal variation of each Stokes coefficient are stationary. The data considered
Figure 5.2 covers the months of August and September in 2002. The figure
highlights the fact that the AOD1B signals have the largest amplitudes at the
lower degrees (i.e., less than degree 20, which translates into spatial wavelengths
larger than 1000 km), but that these amplitudes can span across all time scales
within a month (i.e., from sub-daily to 31 days). The signal shown in Figure 5.2
is in fact the signal that GRACE cannot observe, and which must be removed in
the data pre-processing. The AOD1B product is naturally subject to inaccuracies,
as they are produced from climate data of varying quality and global distribution.
Recent studies (Zenner et al., 2010, 2012) have shown that, for a mission such as a
GRACE follow-on, or even the current GRACE mission operating at the originally
projected baseline performance level, uncertainties in the AOD models could be one
of the dominant error sources. If such signals can be observed by the constellations
examined in this study, this would translate into improved gravity field models.

Accelerations are derived for each satellite in the Iridium NEXT or F3C/CHAMP
constellations from absolute position data, representative of what might be expected
from a GPS receiver, using a realistic coloured noise spectrum (refer to Figure 4.3)
derived from the earlier studies of CHAMP mission data (Ditmar et al., 2007). A
GRACE-like formation is also simulated, with accuracies similar to those of the
actual mission, considering the simplistic noise model described in Section 4.3.3. A
series of gravity field models are then computed over time spans ranging from 1 to
31 days, for both the individual (i.e., Iridium 24-satellite or GRACE) and combined
(i.e., Iridium 24-satellite and GRACE) scenarios. These models are then compared
to the actual time-varying AOD1B signal (i.e., the truth input signal), averaged over
the corresponding time interval. By using only the AOD1B product in the force
model, the results highlight what contributions such a constellation might make
towards resolving those short-term signals, which are not recoverable from GRACE
data alone.

116



Methodology 5.2

Figure 5.2 – ASD of the AOD1B model, across varying time-frames (1 to 31 days), in
decimal orders of magnitude of geoid height (log10(m/

p
H z )).
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5.2.1 Simulation Setup
To evaluate the influence of spatial and temporal aliasing errors for a given constel-
lation scenario, the development of a robust simulation environment is required.

The errors associated with inaccuracies in the instruments are introduced by
corrupting the simulated observations with noise (i.e., measurement noise). Temporal
aliasing is evaluated by examining the noise-free residual between a time-varying
gravitational field (the “true” force model) and a static one (the reference), refer to
Section 4.3.1. The maximum degree of the force models in the simulations is set to
100, which is the maximum degree of the AOD1B product. At the data inversion
step, spherical harmonic coefficients are estimated only up to degree 45 due to
restrictions caused by the polar gap of the Iridium constellation (45 is the maximum
degree allowable with a 4 degree polar gap) and degree 20 for the F3C/CHAMP
constellation. An additional error component is present in the simulations in the
form of spatial aliasing, already presented in Section 4.3.1.

An inversion of observations created using either measurement noise, spatial
aliasing or temporal aliasing results in a gravity field model which differs from the
time average of the true dynamic model, thereby providing an indication of the
magnitude of each error type. The assumption made in this study is that the
measurement error, spatial and temporal aliasing are independent, and can therefore
be computed separately and later combined. The validity of this assumption was
confirmed numerically (not shown). Note that since the AOD1B product is produced
in 6 hour time intervals, a linear piecewise interpolation scheme is used to compute
the time-varying gravitational signal during these intervals. The choice of the static
field used is essentially arbitrary, but for this study the GFZ/GRGS EIGEN, version
3 (EIGEN-CG03C) (Förste et al. 2005) is used.

In the simulation of the observations related to the constellations, use is made
of the functional model described in Section 4.1.1. Measurement noise is simulated
as realistic coloured noise, as described in Section 4.3.2. In other words, it is
assumed that the orbit position accuracies are essentially of the same level as in
case of CHAMP, or approximately 2−3 cm. In a study conducted by Iridium to
determine the requirements for the altimetry payload expected for the Iridium NEXT
constellation (Richard et al., 2008), the non time-critical orbit products (i.e., latencies
> 1month) are listed as having expected accuracies of < 2 cm, which fits well with
the measurement noise levels assumed in this study.

To generate simulated GRACE-like observations, the functional model presen-
ted in Section 4.1.2 is considered. The inclusion of measurement noise is done
according to the simplistic noise model described in Section 4.3.3. The assumed
noise magnitudes are absolute position noise δ(aP) equal to 1 cm, relative position
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noise δ(rP) is 1mm and ranging noise δ(R) is 10µm, which constitute a reasonable
approximation.

Measurement Noise Scenarios

To better understand the influence of the measurement noise onto the resulting
gravity field parameters, two different cases are examined. The first case, called the
high-noise case, represents what is believed to be the accuracy of current space-
borne GPS receivers and the GRACE KBR system. For GRACE, this translates
into absolute position errors with standard deviations on the order of 1 cm, relative
positioning errors of about 1mm, and ranging sensor noise of 10µm. For the
constellations, errors in the accelerations are implemented using the ASD shown in
Figure 4.3.

While the high-noise case represents the current state-of-the-art, there are many
advances expected in the future within the Global Navigation Satellite System (GNSS)
and geodesy communities that will likely improve upon the current accuracies, as
discussed in Section 6.1.7. As such, a second case called low-noise is considered,
in which it is assumed that there will be an order of magnitude improvement in
the accuracy of GPS-derived accelerations and ranging data in the near future (i.e.,
the high-noise errors are simply reduced by a factor of 10). While it is recognised
that this degree of improvement is likely optimistic, the goal of this low-noise
case is to establish a reasonable upper-bound of the performance that might be
achieved through future technological advancements. As expected, the influence of
the measurement noise on the final solution depends on the type and number of
observations collected.

Figure 5.3 shows the high and low measurement noise propagated to the gravity
field parameters for the three mission scenarios simulated in this study (Iridium,
GRACE, and F3C/CHAMP), over two different time spans (1 day and 31 days).
The figure also illustrates the level of the measurement noise with respect to other
sources of error present in the simulations, namely spatial and temporal aliasing error.
Note that the measurement noise for the constellations stays approximately the same
for both time-frames, meaning that the constellations achieve essentially the same
level of accuracy at 1 day that they do at 31 days (apart from the

p
31 times lower

noise amplitude in the latter case resulting from the larger number of observations).
In contrast, the GRACE-type formation is more sensitive to measurement noise at
the 1 day interval, with errors a factor 10 larger than in case of the constellations.
Notice that as more observations are collected, this error becomes significantly lower
than in case of the constellations, cf. bottom row of Figure 5.3.
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In what concerns the error due to spatial aliasing, it is essentially negligible
when compared with the other error sources (temporal aliasing and measurement
noise) for the constellations. However, for GRACE, the spatial aliasing is much more
significant and can exceed the measurement noise in some instances. Note that
for the experiments involving temporal aliasing described below, the solutions are
also estimated up to degree 20 or 45, but the observations are generated using a
time-varying (non-static) gravity field model. For these cases, the calculation of the
temporal aliasing error by nature includes a component due to spatial aliasing error.
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Figure 5.3 – Degree variance plots of the various noise types propagated to the gravity
field parameters. The considered scenarios are: Iridium 24-satellite (a,d), GRACE (b,e),
and F3C/CHAMP (c,f) over the 1 day (a-c) and 31 day (d-f) time intervals.
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5.3 Simulation Results
Focusing first on the performance of the constellation alone, Figure 5.4 shows the
error degree variances of the estimated gravity field parameters for the high and
low noise cases for a hypothetical Iridium 24 and 66 satellite constellation over a
31 day time span. As already illustrated in Figure 5.3, the error from temporal and
spatial aliasing is quite small in both cases, so the error levels shown are almost
entirely influenced by the performance of the GPS receivers. For comparison, the
31 day average of the AOD1B product is also shown. The figure demonstrates that
at least for the 31 day case, the 24 and 66 satellite constellation is able to observe
some of the AOD1B signal spectrum (up to degree 15 for the low-noise, 66-satellite
case). Naturally, more signal is observed as more satellites are added, and as the
accuracy of the GPS measurements improve. Many other time-frames are evaluated
in addition to the 31 day case. The left panel of Figure 5.5 shows a more complete
picture of the constellations’ performance for the Iridium 24-satellite, low-noise case.
The plot shows the solutions expressed in terms of signal-to-noise ratio, created by
comparing the computed solution in terms of geoid height for each time-frame with
the time averaged AOD1B product (i.e., the “truth”). The plot demonstrates the
spatio-temporal accuracy, with the vertical (log-scale) axis representing the duration
of the solution (i.e., 1 day, 2 day, etc.), and the horizontal axis the spatial resolution
in units of spherical harmonic degree. A ratio of 1.0 (delineated by a white line in
the plot) or higher implies that the gravitational signal can be observed at the given
time and spatial resolution, and corresponds to the point at which the AOD1B and
Iridium curves cross in Figure 5.4. In Figure 5.5b, the spatio-temporal accuracy of
the GRACE data is depicted, clearly illustrating its limited temporal sampling for
periods below 7 to 2 days.

The next step is to compare the performance of the combined mission scenarios,
i.e., using both GRACE and the constellation. The results are shown in Figure 5.5c,
and represent the combination of the Iridium 24 satellite low-noise case with the
GRACE high-noise case (with both spatial and temporal aliasing error also included).
Two important conclusions can be made from this figure. First, the Iridium constel-
lation observes the AOD1B time-variable signal up to degree 7 for all time scales,
where as a GRACE-like mission is limited to signals with time scales of approximately
4 days and longer. Secondly, the combined solution can observe a larger part of the
AOD1B spectrum than a solution based on the data from only one mission. This
indicates that of the constellation data are able to reduce the amount of aliasing
present in the GRACE-only solution.

The results of Figure 5.5 demonstrate a fairly realistic scenario. The GRACE
measurements represent those of the current GRACE mission. The low noise Iridium
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Figure 5.4 – Degree variances of the GPS high and low error, represented in shadowed
bands, for the 31 day Iridium 24 and 66 satellite constellation simulations using assumptions
of high and low measurement noise.

(a) (b) (c)

Figure 5.5 – Signal-to-noise ratios for a) the Iridium 24 satellite low-noise cases, b) the
GRACE high-noise cases, and c) the resulting combined solutions for a range of spatial
(spherical harmonic degree) and temporal values.
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24 constellation is also an intermediate option on the side of the constellation,
because there are options that are better, such as the low noise Iridium 66 solution.
In fact, the low noise Iridium 24 constellation, when considering Figure 5.4 again,
could also represent a 48 satellite constellation (twice as many observations) with,
(e.g.) only a factor 7 improvement in errors, (i.e the original factor 10 divided by

p
2),

relative to the current GNSS accuracy; or it could represent any other permutation of
number of satellites (assuming this number exceeds 24) and a level of improvement,
e.g., 66 satellites with a factor 6 improvement in GPS error.

This is done to maintain consistency of the orbit products used for the constella-
tion, even though dynamic orbit estimation techniques have been shown to achieve
more precise orbits for CHAMP.

The simulated results of the F3C/CHAMP constellation are shown in Figure 5.6,
where a series of high-noise (Figure 5.6a-c) and low-noise (Figure 5.6d-f) solutions
are created over time spans that varied from one day to one month. For each noise
case, a corresponding set of GRACE-like measurements is created, and a combined
F3C/CHAMP/GRACE solution generated. It is important to note again that the
only gravitational signal used in the simulations is that introduced by the AOD1B
product for August 2006.

The first observation that can be made from Figure 5.6 is that in the high-noise
case (top row), F3C/CHAMP is not able to clearly observe any of the AOD1B signal,
as the signal-to-noise ratio is much less than one at all degrees and time-frames.
The high-noise, GRACE-only case is sensitive to some signal up to approximately
degree 7-8, but only at periods greater than four days. The combined F3C/CHAMP/
GRACE solution for the high-noise case shows little difference from the GRACE-only
case, again confirming that at current positioning accuracies, the F3C/CHAMP
constellation is not able to sense the time-variable AOD1B signal.

The low-noise case is much different (bottom row), however, and shows that
the F3C/CHAMP constellation is able to observe some of the AOD1B signal. The
GRACE-only solution also benefits from the low noise level, as seen in the lower-
middle plot. Most importantly, the F3C/CHAMP/GRACE combination shows a
noticeable improvement over the GRACE-only case, indicating that the F3C/CHAMP
constellation data has a stabilising effect on the solution and allows the higher degrees
to be estimated with greater certainty. The results indicate that a combined low-noise
solution should be able to resolve time-variable features up to degree 15 at temporal
scales of two days and longer, and daily/sub-daily variations at spatial scales up to
degree 7-8.
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(a) (b) (c)

(d) (e) (f)

Figure 5.6 – Signal-to-noise ratios for the simulated F3C/CHAMP (a,d), GRACE (b,e)
and combined (c,f) solutions, using both high-noise (a-c) and low-noise (d-f) scenarios.
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5.4 Conclusions
Several important conclusions can be drawn from this study. The first one addresses
the question of whether a constellation of non-dedicated satellites (i.e., satellites
not specifically designed for collecting gravimetric data) can improve the knowledge
of Earth’s time-variable gravitational field. The simulations performed using the
proposed Iridium NEXT constellation demonstrated that such non-dedicated satellite
constellations should be able to observe the large scale (> 1000 km), short-term (i.e.,
< 1 month) gravitational signals accurately. Such a constellation would observe
a part of the spectrum of the gravitational field to which GRACE and the likely
GRACE Follow On (GFO) (Sheard et al. 2012; Larkin 2012; Zaragoza 2013) is
inherently insensitive. Furthermore, the incorporation of the constellation data would
improve the overall quality of the time-variable gravity field models as compared
to a GRACE-only solution, by reducing temporal aliasing. This option is especially
attractive considering that the constellation approach could potentially rely entirely
on existing (or future planned) satellites, making such improvements available for
a relatively small amount of extra cost, and would not impose any restrictions
to the development of a potential GRACE follow-on mission. Furthermore, these
constellations may be the only source of continuous global time-variable gravimetric
data if there is a gap between the GRACE and GRACE follow-on missions, in addition
to Satellite Laser Ranging (SLR) data.

Should the Iridium NEXT project fail to materialise, other suitable constellations
are currently under development, cf. Section 5.1 Independent of these, a similar
constellation could conceivably be developed through the use of low-cost mini-
or micro-satellites equipped with a GPS receiver and an attitude determination
system. All that is required is a series of small cannonball style satellites that could
periodically be launched in support of a much more complex and expensive dedicated
GRACE follow-on mission. These small satellites would ideally be inexpensive to
build and launch (no dedicated launchers required) and would likely have short
lifetimes, enabling replacements with improved technology.

The simulations that support these conclusions included error sources represent-
ative of the current GRACE mission. The analysis also made clear that the extent
to which the constellations can help depends largely on the quality of the computed
orbits. High orbit quality will require, in addition to accurate GPS receivers, also
precise satellite attitude data, the reduction of GPS errors caused by multi-path, as
well as accurate determination of time-varying shifts in the satellite’s centre of mass
(e.g., due to rotating solar panels). In spite of this, the predicted accuracy of the
Iridium NEXT orbits is of the order of a few centimetres (Richard et al., 2008). As
such, the results of the simulations presented here are encouraging, and highlight the
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notion that a GRACE follow-on mission could potentially benefit from a supporting
constellation of non-dedicated satellites.
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Lessons learned from GRACE6
Analysing future gravimetric missions that exploit low-low Satellite-to-Satellite
Tracking (ll-SST) measurements unavoidably requires accurate predictions of errors
in the data. Fortunately, the Gravity Recovery And Climate Experiment (GRACE)
(Tapley et al. 1996; Tapley 2004b) mission has provided high-quality data for over a
decade. Consequently, it is the primary source of information regarding the accuracy
of ll-SST measurements. Any attempt to predict the accuracy of a future gravimetric
mission demands a close analysis of the GRACE data, in order to learn as much as
possible and build accurate error models.

The current chapter groups all the analyses that exploit actual GRACE data for
the purpose of estimating the accuracy of the ll-SST measurement principle. The
chapter is divided into three sections. In Section 6.1, the K-Band Ranging (KBR)
is exploited to estimate errors in the orbits of GRACE in the Line of Sight (LoS)
direction. In Section 6.2, the estimated errors in the GRACE data are used to
obtain a better understanding of the error sources that are dominant. In Section 6.3,
the ll-SST noise models are considered in the simulation of noise in data from a
GRACE-like formation and the simulation results are compared with the GRACE a
posteriori residuals, for the purpose of validation.

The actual GRACE data used in this chapter were kindly provided by Dr. Hassan
Hashemi Farahani.

6.1 Relative orbit accuracy of GRACE
The Amplitude Spectral Density (ASD) of noise in the relative positions and velocities
of GRACE is computed and analysed in this section. With this information, it is
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possible to better quantify the errors present in the GRACE observations and
consequently predict more precisely the accuracy of future gravimetric satellite
missions. The noise types that depend on the orbit accuracy, apart from positioning
noise, are the correction noise, which depends explicitly on the accuracy of the
relative radial velocity and the orientation noise which is function of the relative
orbit position noise (refer to Section 4.3.3, particularly Eq. (4.55) and Eq. (4.58),
respectively). The positioning noise, although it represents the uncertainty in the
orbit positions themselves, refer to Eq. (4.59), does not depend on the ASDs derived
in this section. Those errors, as demonstrated in Chapter 7, are the result of a
combination of both absolute and relative orbit position noise. Simulating positioning
noise only on the basis of relative orbit position errors would omit the important
contribution of the absolute orbit position errors. The analysis results are exploited
in Section 6.3 when the noise models are validated and in Chapter 8 to quantify the
error budget of a number of formations.

It is noted that the frequency description of the orbital errors is restricted to
relative quantities, i.e. of one satellite with respect to the other. It is possible
to compute the relative accuracy of GRACE orbits because there are accurate
independent measurements to serve as the reference: the KBR observations. The
same cannot be said about the absolute accuracy of any satellite orbit, since relevant
independent measurement techniques, such as Satellite Laser Ranging (SLR) or
Doppler Orbit Determination and Radio-positioning Integrated on Satellite (DORIS),
lack the required accuracy. Furthermore, the data provided by those techniques
are only available above discrete locations on the surface of the globe, where SLR
stations or DORIS beacons are located. These sparse measurements are insufficient to
properly estimate the dependence of noise on frequency. Comparing orbits estimated
from Global Positioning System (GPS) measurements at different research centres
is also inadequate, since the same data are used to produce the orbits. Any such
analysis would only illustrate differences in the processing strategies. Nevertheless,
Chapter 7 illustrates that reasonable estimates of absolute orbit accuracy can be
derived from orbits integrated on the basis of difference background force models.

As a rule, the relative accuracy of GRACE’s orbits is provided by various authors
as a single Root Mean Squared (RMS) value, cf. Table 2.6, p. 38. Although this
representation gives a general idea of the orbit determination accuracy, it provides
no information concerning the dependency of error amplitude on frequency. The
frequency description of the error is important because the estimated gravity field
parameters have a different sensitivity to errors at different frequencies, therefore
motivating the study described in this section. As notable exception, Jäggi et al.
(2009) illustrates the Allan variances (variances of differences over a range of periods)
of the error in kinematic baselines.
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6.1.1 Considered orbits
The purpose of the analysis is not to determine the best possible orbit determination
accuracy. Although that is certainly the best measure to predict the accuracy of
the orbits to be used in future gravimetric missions, it would be an insurmountable
effort, requiring the analysis of orbits derived on the basis of a representative
number of processing strategies and/or from different sources. In face of the
difficulty of that task and considering the unavoidable time constraints, the analysis
is restricted to orbits relevant to the actual data processing in producing the Delft
Mass Transport (DMT) model. These orbits are assumed to be representative of
the state-of-the-art orbit accuracy, as demonstrated by Zhao et al. (2010a). The
orbits are kindly provided by Dr. Qile Zhao, Wuhan University, China.

Two distinct sets of orbits are considered: the Kinematic Orbit (KO) and the
Purely Dynamic Orbit (PDO), both already discussed in Section 2.4.1. The KOs
are similar to those presented by Zhao et al. (2010a) and are solely function of GPS
tracking data. The PDOs, described in Liu (2008, pp. 105 – 107), are computed in
the form of 6-hour arcs on the basis of the reference force model considered for the
computation of the DMT model, described in Section 4.2.4. In the course of the
computation of the PDOs, the initial state vectors, as well as accelerometer calibration
parameters, are estimated per arc, in order to ensure the best fit to the kinematic
positions. The computations are carried out with the Position And Navigation Data
Analyst (PANDA) software (Zhao 2004) software. The same algorithm and software
are used for the computation of GRACE orbits in the production of the DMT model.

It should be noted that the background force model used in the orbit integration
lacks the temporal gravitational field variations captured by the DMT model. Never-
theless, these variations are not significant to the current analysis because they are
at the level of 30µm if derived from double-integration of the time series related to
the green line in Figure 6.14. Note that this level of range variability corresponds
to the temporal aliasing caused by the mass transport processes described by the
DMT model, not by the corresponding total signal. In spite of this, the total signal
is unlikely to be two orders of magnitude larger than the corresponding temporal
aliasing; this would be needed to bring the level of 30µm up to mm level and modify
significantly the current analysis. On the other hand, the range variations associated
with the (total) Atmosphere and Ocean De-aliasing Level 1B (AOD1B) signal, if
estimated by the same process, are at the level of 2mm and, therefore, cannot be
ignored (and are not, cf. Section 4.2.4).

The PDO is relevant because it is the most accurate type of orbit, refer to
Section 2.4.2, in the sense that it allows for highest accuracy when computing the
angle between the LoS vectors at successive epochs and limits the error in the radial
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velocity between the satellites, resulting in a lower correction noise. The motivation
to analyse the KO is of less practical application than what is the case with the
PDO. It is nevertheless an interesting academic exercise, particularly in the context
of replacing PDOs with KOs in the actual processing of ll-SST data. Additionally,
the accuracy of the PDO is connected to the accuracy of the KO, since the latter is
used to derive initial state vectors for the integration of the former.

The various data sets are provided with different sampling intervals. The KOs
have 30 second sampling interval, the PDOs and KBR observations are defined every
5 seconds. As a consequence, the KBR data are down-sampled to synchronise their
time stamps with those of the KOs but unchanged when compared to the PDO.
The data after synchronisation are called the input data in Figure 6.1. The KOs are
provided as position information only. The velocity data are computed by numerical
differentiation of the position data, using an 11-point central differentiation scheme
(e.g. Abramowitz and Stegun, 1964, Section 25.1.2). It should be noted that the
KBR data are not used in any way to produce the considered KO or PDO. The
KBR data considered in this analysis are the same as in the production of the DMT
model, release 1. The unknown bias in the range data (refer to Section 2.2.2) was
estimated in the Least Square sense, as explained in Liu (2008, pp. 102 and 103).
The processing is done on a monthly basis, considering the complete year of 2006.
An exception is 8 days at the end of December, which are also discarded in the
computation of the DMT model.

6.1.2 Analysis set-up
The relative orbit accuracy is determined by comparing epoch by epoch the length
of the inter-satellite vector derived from the estimated GRACE satellite orbits with
the KBR observations. The analysis of orbit-derived relative velocities is also done,
for which purpose KBR range-rate data are used.

The precision of KBR measurements, estimated to be of a few µm (Kim, 2000;
Kim and Tapley, 2002; Frommknecht et al., 2006; Frommknecht, 2007; Kim and
Lee, 2009), is much higher than that of inter-satellite relative positioning, which is at
millimetre-level, refer to Section 2.4.3. With the exception of the high frequencies,
the amplitude of KBR errors in the frequency domain is lower than that of the
relative positioning. The same assumption is also made for the KBR-rate and relative
velocity accuracy. This validity of these assumptions is verified at a later stage.
Under this condition, the computed discrepancy between the orbit-derived ranges
and the KBR measurements mainly reflects the error in the relative orbits.
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Computation of the forecasted range

Consider the orbit positions of the GRACE satellites, represented by x(1) and x(2) and
their orbit velocities, ẋ(1) and ẋ(2). The relative position vector is

x(12) = x(1)−x(2), (6.1)
and the relative velocity vector is

ẋ(12) = ẋ(1)− ẋ(2). (6.2)
The range ρ is compared to the inter-satellite distance ‖x(12)‖, whereas the range-

rate ρ̇ is compared to the projection of the relative velocity vector ẋ(12), onto the unit
vector defining the LoS direction e(LoS). This results in the following representation of
relative orbit position noise δ(∆x) and relative orbit velocity noise δ(∆ẋ), respectively:

δ(∆x) =ρ−‖x(12)‖, (6.3)

δ(∆ẋ) = ρ̇−
�

ẋ(12)
�

T .e(LoS). (6.4)

The quantities δ(∆x) and δ(∆ẋ) are henceforth referred together as residuals, or
specifically position residuals and velocity residuals, respectively. The residuals are
a quantification of the relative orbit errors.

6.1.3 Data screening
The original data need to be processed in order to remove the epochs associated
with erroneous observations. There are a number of reasons for selectively discarding
data, all of which are addressed in this section.

The KBR observations are provided with information about the Signal-to-Noise
Ratio (SNR) at each epoch (Case et al., 2010). The observations flagged with
low SNR are discarded. Additionally, there are occasional gaps in the KBR data
associated with so-called phase break events, cf. Case et al. (2010, p. 14).

The orbits also contain invalid data. The KOs contain frequent data gaps
associated with those epochs when the number of GPS observations is not sufficient
to derive an accurate kinematic position. The PDOs are defined in arcs of 6 hours
duration, with discontinuities at the beginning and end of each arc. The epochs at
the beginning and at the end of each arc are discarded.

There is also a need to address the residuals which are too large in comparison to
the RMS, identified as outliers in Figure 6.1. A simple iterative n −σ rule is used to
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identify them: the STandard Deviation (STD) of the data set is computed and the
epochs with residuals larger than n times the computed STD are discarded. This
step is repeated, with a new value for the data set STD being computed at each
iteration, until the difference between STD values in successive iterations is less than
a factor of 10−5 of the STD of the current iteration. The outliers-removal procedure
is applied independently to each monthly set of range and range-rate data.

The analysis was repeated for three values of n : 3, 4 and 5, consistently applied
to all orbit types and months under consideration. When n is equal to 5, it was
observed that a large number of outliers were left in the month of May for the KO
(not shown). The RMS in that month is a factor of two larger than in the remaining
months. The difference between the analyses conducted with n equal to 3 and 4 is
not significant. Therefore, the results shown in this section are related to n = 4.

The preliminary analysis of the PDO data detected some months with unrealist-
ically large RMS. Looking at the time series of the position residuals, those months
show extremely large values in several 6 hr arcs (not shown), occasionally reaching
several meters in magnitude. The large residuals in these arcs are attributed to
imperfectly-estimated initial state vector that are used in the orbit integration within
each 6 hrs arc. In view of this, it was decided to regard the months of March to
June and October to December of the PDOs residuals as outliers for the remainder
of the analysis. Alternatively, these inaccurate arcs could be manually signalled as
outliers and explicitly removed from the analysis. This course of action was not
taken because a) it would be a very impractical and time consuming activity to
perform, b) it is not done in the routine computation of the DMT solutions and nor
in other models, as far as reported in literature, c) there is enough remaining data
to warrant that the results are statistically representative.

Table 6.1 gives a summary of the amount of data considered after all data
removal steps and Figure 6.1 presents a summary of the data quality for each month.

The total number of epochs is the sum of the values in the Table 6.1a and
Table 6.1b , i.e. 1028160 and 6168960 for KO and PDO, respectively. Considering a
sampling period of 30 and 5 seconds, the total number of epochs related to a total
of 357 days. This value corresponds to the number of days in one year minus the 8
days at the end of December, which were removed from the data set at the stage of
computing the DMT model.

6.1.4 Monthly RMS residuals
The RMS residuals computed on a monthly basis are shown in this section. This
statistics gives an overview of the general accuracy of the analysed KOs and PDOs
and show how it changes over the considered months, refer to Figure 6.2.
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Figure 6.1 – Summary of data quality for the 12 months of 2006. Input data are the
common data between the orbits and KBR, discarded data relates to data removed due
to low SNR of KBR data or orbit data gaps, outliers are data removed based on large
residuals.

KO PDO
position 901897 2940553
velocity 889950 2937814

(a) number of valid data

KO PDO
position 126263 (12.28%) 3228407 (52.33%)
velocity 138210 (13.44%) 3231146 (52.38%)

(b) number of discarded data

Table 6.1 – Number of valid epochs (top) and sum of discarded data and outliers (bottom)
of all data sets. The data periods are: KO, the year of 2006; PDO, the months of January,
February, and June to September of 2006.

A number of immediate observations can be made. The velocity RMS residual
of the KO is at least one order of magnitude larger than the one of PDOs. This is
an expected outcome because the position data are much smoother in the latter
orbit type. Also expected, is that the accuracy of the PDOs in terms of positions
is higher than that of the KOs, in view of additional information provided by the
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Figure 6.2 – Monthly RMS of the position (left) and velocity (right) residuals over 2006.
The data periods are: KO, the year of 2006; PDO, the months of January, February, and
June to September of 2006.

dynamic model exploited to estimate the PDOs.

6.1.5 Total RMS residuals
The RMS difference between positions or velocities derived from the orbits and KBR
data contain integrated information about the accuracy of the different types of
orbits. This information is presented in Table 6.2.

It is opportune to compare the relative positioning accuracy results shown in
Table 6.2 with the data shown in Table 2.6.

The Double-differenced (DD) Reduced Dynamic Orbit (RDO) of Jäggi et al.
(2007) (3.1mm, 38% larger relative to the estimated error in the PDO, 2.24mm)
is in fair agreement with the analysed PDO. Nevertheless, RDOs are typically more
accurate than PDOs if a background model of similar complexity is considered in
both cases. Jäggi et al. (2007) considered only a static-only background force model,
EIGEN-CG03C, while empirical accelerations estimated every 6min absorb to some
extent the remaining mis-modelling. In comparison, the PDOs under analysis in this
section are integrated on the basis of a more complete background force model in
addition to exploiting accelerometer data of GRACE; these factors lead to a higher
relative orbit accuracy in spite of lacking the co-estimation of empirical accelerations.
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The RDO of Zhao et al. (2010a) (RMS error of 2.2mm) is computed considering
a very comprehensive force model, which considered the GFZ/GRGS EIGEN, version
3 (EIGEN-CG03C) static gravitational field, astronomical tides, relativistic effects,
ocean tides, atmospheric drag and lift forces, solar radiation pressure and empirical
accelerations and drag coefficients estimated for every orbital period. The accuracy
of the RDO estimated by Zhao et al. (2010a) is close to that of the analysed PDO,
indicating that exploiting an exhaustive force model leads to good results.

The KO of Zhao et al. (2010a) (RMS error of 4.6mm) is less accurate than the
analysed KO by +18%. The difference is attributed to different GPS data used in
the processing of the orbits: 100 days from 2003 in Zhao et al. (2010a) vs. the year
of 2006 used in the production of the KOs under analysis.

KO PDO
position [mm] 3.94 2.24
velocity [µm/s] 87.18 2.19

Table 6.2 – Position and velocity RMS residual, derived from a comparison with KBR data,
for the following periods: KO, the year of 2006; PDO, the months of January, February,
and June to September of 2006.

6.1.6 Spectra
The frequency representation of the difference between the relative orbit and KBR
data is computed using the Lomb-Scargle periodogram method (Scargle, 1982),
which is suitable for the analysis of time series with gaps. The ASD of the residuals
for all data considered is shown in Figure 6.3. The interpretation of this figure is
given in the following paragraphs.

In the bandwidth from 0.01 to 0.23 mHz, the relative positions from the KO
are more accurate than those from the PDO. This bandwidth is associated with
the periods from 1.2 Cycles Per Revolution (CPRs) to 1.2 days. Contained in this
bandwidth is the frequency of 0.046mHz, which is marked in the ASD of the PDOs
by a distinct local maximum. The period associated with this frequency is 6 hrs,
which is the length of one interrupted integration arc. It is suggested that the
imperfectly-estimated initial state vectors are responsible for the decreased accuracy
of the PDOs relative to the KO in the 0.01mHz to 0.23mHz bandwidth.

A larger amplitude of the discrepancies between KBR data and the KO orbit
above 0.23 mHz is indication that kinematic positioning is unable to provide a
sequence of orbital positions that are as “smooth”, as a dynamic orbit over periods
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Figure 6.3 – Spectra of relative position (left) and velocity (right) residuals.

smaller than roughly 1 hour. For this reason, the estimation of initial state vectors
on the basis of KOs would be less accurate if done considering shorter lengths of
time. The error at high frequencies is of significant amplitude in case of the KO.
When the kinematic velocities are computed through numerical differentiation, the
orbit error is also differentiated, increasing the discrepancy with the KBR data at
high frequencies. In case of the PDO, the dynamic model ensures that the velocity
vector is mainly the derivative of the position vector and not of the positioning error.
For this reason, the amplitude of the relative kinematic velocities does not decrease
with increasing frequency, cf. right-hand side of Figure 6.3.

The assumption that the KBR data are more accurate than the estimated orbit
error amplitude across the complete frequency spectrum (at least up to 10mHz) is
now proven correct. The error of these measurements is of a few tens of µm/

p
Hz,

as shown in Figure 6.12, which makes them at least two orders of magnitude
more accurate than the computed position residuals, which represent the relative
positioning accuracy of the PDOs or KOs. In case of the velocities, the error in
terms of the KBR range-rates is predicted to be around 10−7 m/s

p
Hz at 10mHz,

cf. Gerlach et al. (2004, Figure 2), which is one order of magnitude lower than the
relative velocity errors derived for the PDO.
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Velocity and differentiated position spectra

One unexpected result is that the spectra of the velocity residuals of the KO and
PDO are not equal to the corresponding spectra of the position residuals multiplied by
the angular frequency, as predicted by the analytical differentiation in the frequency
domain.

To gain a better insight into this issue, the velocity residuals spectra for the
KO and PDO are plotted along side the spectra of the 11-points central-stencil
numerically-differentiated position residuals and the spectra of the position residuals
multiplied by the angular frequency, i.e. 2π f , see Figure 6.4.
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Figure 6.4 – Spectra of the velocity residuals (green) for the KO (left) and PDO (right)
compared with the numerically differentiated position residuals (blue) and the position
residuals multiplied by the angular frequency (pink).

The spectra of the numerically differentiated position residuals (blue) and of the
position residuals multiplied by the angular frequency (pink) derived from the KO
(left-hand plot) are, above 1mHz, very similar to the velocity residuals (green). Below
this frequency, the amplitude of the numerically differentiated position residuals
(blue) is lower than the velocity residuals (green) by no more than a factor of 3. This
discrepancy is attributed to different gaps in the position and velocity data, which can
change significantly the maximum length of the contiguous segments and, therefore,
modify the spectrum at low frequencies. The spectrum of the position residuals
multiplied by the angular frequency (pink), which is two orders of magnitude below
the numerically differentiated position residuals (blue) at 0.01mHz, is completely
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insensitive to this effect. As a consequence, it shows the theoretical spectrum as if
it were computed without any impact of gaps.

In what concerns the PDO, the same argumentation is applicable below 0.2mHz.
However, the largest differences are above this frequency, particularly between the
velocity residuals (green) and the other two spectra. This is an indication that
the direct differentiation shown in the numerically differentiated position residuals
(blue) and position residuals multiplied by the angular frequency (pink) suffer from
worse numeric conditioning in comparison to the dedicated numerical integration
scheme used in producing the velocity residuals (green). In other words, the input
errors, which are of equal magnitude in all procedures, are amplified more significantly
by the direct differentiation (either in the time or frequency domains) into larger
output errors. This effect is usually caused by poor numerical stability, e.g. due to
the rapid accumulation of round-off errors.

6.1.7 Future relative position and velocity accuracy
In the course of the conducted analysis, position and velocity residuals were produced,
which are a realistic representation of the relative position and velocity errors in the
KO and PDOs, projected onto the LoS direction.

The ASD of the KO allowed for deficiencies in the processing of the PDO to be
identified, which are mainly associated with the higher noise in the bandwidth of
0.01 to 0.23mHz resulting from imperfectly-estimated initial state vectors.

In the context of future gravimetric missions, it is expected that these limitations
are mitigated. With this in mind, the ASD of the relative orbit accuracies in terms
of position and velocity considered in the advanced noise model (Section 4.3.3) for
the simulation of future gravimetric satellite missions is the curve that minimises
the ASDs of the KO and PDOs, refer to Figure 6.5.

The assumption reflected in Figure 6.5 does not suggest that information in the
KO and PDO orbits is to be combined. In view of the fact that the KOs serve as
input for the processing of the PDOs, any information in the KOs that is lost at the
stage of producing the PDOs, as is the case with the analysed dynamic orbits, is
indicative of the opportunity to improve the orbit processing algorithms. Once such
improvements are implemented, it is reasonable to assume that the residuals in the
computed PDO will look similarly to the residuals in the KOs below 0.23mHz and
similarly to the current PDO residuals above this frequency.

Furthermore, there are good reasons to believe that the orbit determination
accuracy will improve in the future. The number of GNSSs is increasing and
the American GPS is no longer the sole provider of global positioning service. The
Russian Globalnaya Navigatsionnaya Sputnikovaya Sistema (GloNaSS) (Polischuk and
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Figure 6.5 – Spectra of relative position (left) and velocity (right) errors in the orbit for
the purpose of simulating future gravimetric satellite missions, determined from the spectra
in Figure 6.3, after downscaling by the factor of 3, attributed to the improved accuracy of
the combination of future GNSSs.

Revnivykh 2004), the European Galileo satellites and the Chinese BeiDou/Compass
Navigation Satellite System (BDNSS) (Chengzhi 2013) are quickly reaching a level
of maturity, which enables them to actively contribute to positioning. When fully
operational, these GNSS systems will have a total of 115 satellites; 32 GPS, 24
GloNaSS, 27 Galileo and 32 BDNSS satellites, excluding spares. All these systems
plan to take advantage of at least three-frequency measurements for an improved
mitigation of ionospheric delay errors and as much as four in case of Galileo (Li et al.,
2013). In addition to global navigation systems, there are also the regional systems,
such as Japan’s Quasi Zenith Satellite System (QZSS) (Inaba et al. 2009) and the
Indian Regional Navigation Satellite System (IRNSS) (Ganeshan et al. 2005). A
future gravimetric mission would gain significantly from taking advantage of the
variety of GNSS systems, by being equipped with a combined GNSS receiver, such as
the one proposed by Roselló et al. (2012). In combination with the state-of-the-art
GNSS tracking data, the methodology of Precise Orbit Determination (POD) is
continuously advancing, leading to more accurate KOs. In parallel, more accurate
PDOs will be computed taking advantage of more accurate KOs and the higher
accuracy of the dynamic models.

If it is possible to exploit all GNSS systems, once fully operational, the number
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of satellites visible to a Low-Earth Orbit (LEO) satellite increases roughly four times.
The additional third frequency means that on average six times more observations are
available. Statistical theory predicts that the accuracy of the computed KO would
improve by a factor of

p
6≈ 2.5. This number can be safely rounded to a factor of 3

in view of the advances in the POD methodology. Assuming the PDOs are able to
benefit from this improvement and remembering the expected improvement in the
force models, it is reasonable to attribute the same accuracy improvement factor to
the PDOs. In conclusion, the simulation of future gravimetric missions is carried out
under the assumption that the relative position and velocity error is represented by
the ASDs shown in Figure 6.5 (already scaled down by the factor of 3 to represent
future GNSS positioning accuracy).

6.2 Knowledge gained from GRACE data
The major objective of this section is to carry out an in-depth analysis of noise
in GRACE KBR data and, ideally, identify other noise sources than sensors and
inaccuracies in background models. The motivation of such research is two-fold.
Firstly, it may result in a further improvement of GRACE data processing tech-
niques. Secondly, it might be very helpful in designing GRACE follow-on missions.
Investigations of the optimal design of such a mission started a few years ago,
cf. Table 1.2, and have become the focus of research efforts of numerous groups
worldwide. The key element of such researches is assessing the performance of
various mission scenarios. However, this is only possible if all the major contributors
to the noise budget are well understood and can be reliably reproduced in the course
of simulations. The GRACE mission can be considered as a unique source of such
knowledge.

In order to reach the study goals, noise in GRACE Level-1B data is analysed in
the spectral domain. In different frequency bands, the properties of actually observed
noise level are compared with those of synthetic noise of various origins. In this way,
most probable sources of noise in GRACE data are identified.

6.2.1 Production of noise realisations in GRACE data
The realisations of noise considered for the numerical study are produced following
the procedures described in this section. For the most part, the text mostly references
previous sections where the basic concepts are introduced. The section starts with
the methodology, where the functional and signal models are identified, the details
of the production of GRACE data noise realisations are explained, and the inventory
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of the relevant noise types is presented in order to define the noise model. The
GRACE data considered for the study are described next, followed by a preliminary
analysis of the data.

Methodology

The conducted analysis relies heavily on the methods and algorithms used in the DMT
model processing, namely making use of the functional model generally referred to as
range combinations approach, refer to Section 4.1.2, and the force model described
in Section 4.2.4. The DMT model itself is added to the exploited force model as
a source of information about mass re-distribution at a monthly and longer time
scales. The orbits considered are the ones used in the production of DMT and are
presented in Section 6.1.1.

Computation of data noise In the conducted study, realisations of total GRACE
data noise are obtained by computing the difference between the observed and
forecasted range combinations. The observed range combinations are computed
directly with Eq. (4.18) on the basis of real GRACE data, which are provided with 5
second sampling period. These data are supplied with information about the LoS
direction, which is derived from the produced dynamic orbits. As far as the forecasted
range combinations are concerned, two approaches can be applied, as presented
in Section 4.1.2. In the analytical analysis of forecast errors presented in further
sections, the second approach, which relies on computed three-dimensional (3D)
point-wise accelerations, is exploited as more straightforward.

Noise in forecasted range combinations can occur due to several factors. One of
these is errors in the orbits, which result in an inaccurate definition of the positions
at which the force model is estimated. In addition, noise of this type leads to an
inaccurate estimation of the angles θ i − and θ i +. The second factor is inaccuracies
in the considered “ideal” force model itself.

As it was already pointed out, range combinations are close to the conventional
(point-wise) inter-satellite accelerations. This means that the errors in the force
model directly propagate into the data at the vicinity of the locations where the
force model is inaccurate. In other words, the functional model is local in this sense
(this is in contrast to ranges or range-rates, which depend on the forces not only at
the vicinity of the current point, but also at the points visited by the satellites in the
past). Such a feature, in principle, might help to identify more precisely the origin
of errors in the force model.
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Inventory of potential sources of noise in range combinations The advanced
noise model, refer to Section 4.3.3, is the grounds in which the inventory of noise
type is based. It describes the errors in the GRACE data as the combination of
ranging noise δ(R) (Eq. (4.45)), correction noise δ(C) (Eq. (4.55)), accelerometer
noise δ(acc) (Eq. (4.51)), positioning noise δ(P) (Eq. (4.59)) and orientation noise
δ(L) (Eq. (4.58)). The first two add up to the observation noise δ(obs), since the
observations, i.e. the range combinations, can be represented as the sum of (finite-
difference approximation of) range-accelerations and a correction for centrifugal
accelerations (Ditmar et al., 2012):

δ(obs) =δ(R)+δ(C). (6.5)
The last three enumerated noise types add up to the model errors given by the

mis-modelled static signal δ(st) (Eq. (4.42)) and mis-modelled time-variable signal
δ(tv) (Eq. (4.40)) to compose the forecast noise δ(for):

δ(for) =w∗
�

δ(st)+δ(tv)+δ(acc)+δ(P)+δ(L)
�

. (6.6)
The observation noise and the forecast noise, in turn define the total data noise

δ.
It is noted that in the conducted analysis, there is no distinction between the

mis-modelled static signal δ(st) and the omission signal δ(sp), since the latter is
implicitly included in the former.

Considered GRACE data and preliminary analysis of actual data noise

The methodology presented above was applied to produce realisations of noise in
the GRACE data for 11 months in 2006: from January to November (the month of
December was removed from the analysis because of a low data quality in the last 8
days of the month). Each monthly noise realisation is obtained by differencing the
corresponding sets of the observed and forecasted range combinations. Later on,
these realisations are referred to as “actual noise realisations”, in order to distinguish
them from the synthetic noise realisations that reflect the individual contributions of
the hypothetical sources to the overall noise budget. The actual noise realisations
reflect inaccuracies both the in the observations and in the predictions.

Spectra of the produced noise realisations are shown in Figure 6.6 in terms of the
ASD. One can see that all the monthly ASDs share a number of common features.
First of all, the plot reveals an increased noise level below the frequency of 1mHz.
This level shows large variations from month to month and, therefore, can hardly be
explained by sensor noise. In Ditmar et al. (2012) and Farahani (2013), this feature
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Figure 6.6 – ASDs of the actual realisations of noise in the GRACE-based range combin-
ations for January-November 2006, as well as a theoretical ASD of accelerometer noise
directly reproduced from Kim (2000) (thick black dashed line) and the same ASD trans-
formed into range combinations by multiplying with the averaging filter gain (thick black
solid line).

is explained by relative errors in the estimated GRACE orbits. Errors of this type are
not further analysed since they were extensively discussed in Section 6.1. Secondly,
all the ASDs show a peak between 10 and 20 mHz. Later in Section 6.2.2, it is
demonstrated that the origin of this feature is an imperfectness of the exploited static
gravity field model (EIGEN-GL04C, cf. Section 4.2.4). Thirdly, all the ASDs show a
rapid increase above the frequency of 10mHz, being practically independent on the
month. The likely cause of this feature is KBR sensor noise (Frommknecht et al.,
2006; Flury et al., 2008). Noise of this type is further discussed in Section 6.2.2.

Finally, Figure 6.6 shows the theoretical ASD of accelerometer noise (Kim, 2000)
(thick black dashed line). Strictly speaking, this curve is not directly comparable
with the actual noise ASDs, since the latter ones are shown in terms of range
combinations, which can be interpreted as averaged inter-satellite accelerations. In
order to eliminate this inconsistency, the theoretical ASD of accelerometer noise has
been scaled in Figure 6.6 with the averaging filter gain; the result being shown as
the thick black solid line. At low and intermediate frequencies, the application of
the averaging filter does not have a visible influence, but at the highest frequencies
it reduces the ASD about two times. It is worth adding that, according to Flury
et al. (2008), actual accelerometer noise fits the theoretical expectations only within
a few time intervals when the on-board heaters are de-activated. In the rest of the
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time, the actual accelerometer noise can exceed the theoretical one by an order
of magnitude (Frommknecht et al., 2006). Even in that case, accelerometer noise
would be much lower than actually observed noise at all frequencies (Figure 6.6b).
This means that the on-board GRACE accelerometers provide, most probably, only a
minor contribution to the GRACE noise budget. For this reason, the accelerometer
noise is not discussed further in the current study.

6.2.2 Sources of noise in GRACE data
In the following sections the sources of data noise that play (or may play) a role at
the intermediate and high frequencies are investigated. In doing so, the actual noise
is compared with synthetic noise realisations associated with various hypothetical
sources.

Three sources of noise are addressed:

• errors in the static gravity field model, which is a part of the set of background
force models,

• ranging sensor noise and
• possible inaccuracies in the models of temporal gravitational field variations

(associated with mass transport at processes the Earth’s surface)

In addition, a hypothesis is considered that the dominant noise in the frequency
range 1−9mHz is just random stationary noise (of an undefined origin).

As it was already demonstrated in the previous section, spectral analysis is a
powerful tool for comparing noise realisations. Unfortunately, such a comparison
may not be sufficiently informative if a noise is associated with a process or feature
at the Earth surface, so that the resulting noise variations manifest themselves in
the spatial rather than in the time or frequency domain. This is the reason why
the second way was also followed: to propagate noise into gravity field parameters
(spherical harmonic coefficients) and then to analyse it in the spatial domain. In
doing so, band-pass filtering is (optionally) applied to noise time-series in order to
highlight the frequency band where a certain noise source is presumably dominant.
Technically, filtering is performed with the 7th order Butterworth band-pass filter,
for which purpose the MATLAB function butterworth is exploited. The filter is
applied twice, in the forward and reverse direction, which is equivalent to applying
a zero-phase filter (of a different order), so that filtered signal is not subject to
any time shift. The Butterworth filter is selected due to having a maximally flat
magnitude frequency response at the bandwidth of interest.

For each epoch i , the filtered time series y is computed from the original time
series x as:
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Figure 6.7 – a) ASDs of actual GRACE data noise obtained after band-pass filtering applied
in order to highlight noise in one of the four frequency bands considered. ASDs of the
original noise (red curve) and of noise cleaned from the orbit inaccuracies (purple curve)
are also shown. The considered month is February, 2006. b) Amplitude response of the
considered Butterworth filters used to obtain the band-pass filtered noise time series.

y i =
n
∑

k=0

bk x i −k +
n
∑

k=1

ak y i −k , (6.7)

with the a1...an the feedback filter coefficients, b0...bn the feed-forward filter
coefficients and, considering that m is the filter order, n =m in case of the high-pass
filter and n = 2m in case of the band-pass filters. The values of the filter coefficients
are shown in Table 6.3.

In the frequency domain, the transfer function H (z ) of the filter is

H (z ) =

n
∑

k=0
bk z−k

1+
n
∑

k=1
ak z−k

. (6.8)

ASDs of actual noise obtained after band-pass filtering are shown in Figure 6.7a
and the amplitude response of the respective Butterworth filters in Figure 6.7b.

Computation of gravity field parameters without a band-pass filtering is considered
as well, so that the results can be interpreted as a reproduction of noise that is present
in actual GRACE-based gravitational field solutions. In that case, the realisations
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1−9mHz 1−3mHz 9−23mHz 23−∞mHz
k bk ak bk ak bk ak bk ak

0 3.094×10−7 −8.946×10−7 1.027×10−5 0.18809
1 −12.813 −13.697 −10.798 −1.3166 −3.7616
2 −2.166×10−6 76.314 6.262×10−6 87.130 −7.189×10−5 55.167 3.9498 6.5246
3 −280.01 −341.16 −176.66 −6.5831 −6.6013
4 6.498×10−6 707.18 −1.878×10−5 918.62 2.156×10−4 396.02 6.5831 4.1640
5 −1300.4 −1799.4 −657.18 −3.9498 −1.6260
6 −1.083×10−5 1795.6 3.131×10−5 2644.2 −3.594×10−4 832.41 1.3166 0.36220
7 −1891.2 −2961.2 −817.45 −0.1880 −0.0035377
8 1.083×10−5 1527.0 −3.131×10−5 2539.6 3.594×10−4 625.41
9 −940.44 −1659.9 −370.98
10 −6.498×10−6 434.94 1.878×10−5 813.90 −2.156×10−4 167.98
11 −146.47 −290.31 −56.318
12 2.166×10−6 33.952 −6.262×10−6 71.213 7.189×10−5 13.221
13 −4.8493 −10.752 −1.9464
14 −3.094×10−7 0.3219 8.946×10−7 0.7539 −1.027×10−5 0.1356

Table 6.3 – Filter coefficients.

of actual noise are cleaned from the effects of inaccurately known orbits, which
manifest themselves as an increased noise at low frequencies. To that end, the same
scheme is used as was applied by Liu et al. (2010) in producing the DMT model.

The inversion procedure used to propagate noise time series into gravity field
parameters is also somewhat similar to that designed for the production of the DMT
model (Liu et al., 2010). The gravity field parameters are estimated by solving the
corresponding system of linear equations. The minimum spherical harmonic degree
is set equal to 2, the maximum one is typically set equal to 120. Unlike Liu et al.
(2010), the Frequency-Dependent Data Weighting (FDDW) is applied (Klees et al.,
2003; Klees and Ditmar, 2004) based on the actual data noise ASD (red curve in
Figure 6.7). This is consistent with the statistically optimal approach to the inversion
of actual data.

The usage of the pre-conditioned conjugate-gradient scheme (Hestenes and
Stiefel, 1952) allows the inversion to be carried out with a high numerical efficiency.
The exploited pre-conditioner is based on the assumption that the input data are
defined as the x x -component of gravity gradient matrix (Ditmar and Klees, 2002)
scaled with the average range.

Finally, the integrated effect of the errors of all the considered types onto the
recovered gravity field parameters is presented and compared with that of the actual
noise.
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Figure 6.8 – ASD computed on the basis of the following noise types: actual noise (red
line); synthetic stationary noise (blue line); actual noise corrected for the contribution of
the residual static gravity field parameters estimated up to degree 120 (yellow line); and the
same, but for the maximum degree 180 (dark blue line). The month under consideration is
February, 2006.

Contribution of errors in the static gravity field model

In this section, the contribution of errors in the static gravity field model to the
produced data noise is analysed. As it will become clear later, those errors manifest
themselves mostly in the frequency band between 9 and 23 mHz. This band,
therefore, in the subject of the discussion.

To begin with, the hypothesis is considered that actual noise in the aforementioned
frequency band is purely random. Monthly realisations of a synthetic random
stationary noise are synthesised in such as way that the ASD of a particular realisation
coincides with the ASD of the actual noise in the corresponding month (see the blue
and red curves in Figure 6.8, respectively). It is important to mention that actual
noise realisations contain gaps due to, e.g., the elimination of outliers from the data
(Liu et al., 2010). All such gaps are fully reproduced in the realisations of simulated
stationary noise.

Noise realisations of both types – actual and synthetic – are band-pass filtered
(band 9−23mHz) and propagated into gravity field parameters. It turns out that
the resulting RMS geoid height error in case of the actually observed noise is more
than 2 times larger than in case of the synthetic noise for all the months (see the
red and light blue curve in Figure 6.9, respectively). This observation is interpreted
as an evidence that the actually observed noise is characterised by correlations in
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Figure 6.9 – RMS geoid height error computed after the propagation of monthly noise
realisations into gravity field parameters (as a function of month). Considered noise types:
actual noise (red line) and synthetic stationary noise (light blue line).

the spatial domain, which cannot be described by the ASD and, therefore, are not
reproduced by the synthetic noise. To reveal the nature of those spatial correlations,
the mean value of the gravity field parameters are computed over the considered 11
months. It turns out that the resulting RMS geoid height is 6.9 cm, i.e. close to the
mean monthly RMS value, 7.5 cm (the mean level of the red curve in Figure 6.9).
This is in contrast to the case of the synthetic noise, when the RMS geoid height of
the mean field is only 1 cm, which is about

p
11 times smaller than the mean monthly

RMS value, 3.3 cm (the mean level of the light blue curve in Figure 6.9). This is fully
consistent with the statistical theory. It is suggested that the observed phenomenon
is nothing but an evidence of a residual signal left in the noise realisations due to
inaccuracies in the exploited static gravity model (namely EIGEN-GL04C).

In order to verify this hypothesis, the procedure described above is repeated
without applying a band-pass filter. The mean gravity field parameters estimated
in this way up to degree 120 is used as a correction to the EIGEN-GL04C model.
More specifically, the residual average accelerations are computed on the basis of the
obtained mean field using Eq. (4.30) and the produced time series are subtracted
from the original realisations of actual noise. The ASD of the corrected noise
realisations is shown in Figure 6.8 in yellow. One can see that the updated noise is
indeed noticeably lower in the frequency band 9−23mHz. Thus, inaccuracies of the
exploited static gravity field model are one of the dominant contributors to the total
error budget in the aforementioned frequency range. In other words, the observed
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noise, which is rapidly increasing above 9mHz, is partly explained by the presence
of residual gravitational signal in the data, which is left after the subtraction of the
imperfectly forecasted range combinations.

At the first glance, such a conclusion is counter-intuitive. It is well-known that
gravitational signal observed at the satellite altitude decreases as the frequency
increases due to the upward continuation effect. One should keep in mind, however,
that the residual signal in this case is the signal caused by the difference between
the true mean gravitational field and the one described by the EIGEN-GL04C model,
i.e. the residual signal that is equal to the errors in the latter model. Those errors
increase with spherical harmonic degree, and so does the residual signal, which
apparently compensates the upward continuation effect.

It is also interesting to see that the corrected noise ASD still contains a peak
near the frequency of 20mHz or 120 CPR. This peak is explained by the presence of
residual signals above degree 120. In order to demonstrate that, the noise correction
procedure is repeated with the mean field recomputed up to degree 180. The
resulting ASD is shown in Figure 6.8 in dark blue. One can see that the peak at
20 mHz has vanished, but a new (though smaller) peak around the frequency of
33mHz (or 180 CPR) has appeared. Thus, even a gravity field model complete to
degree 180 cannot fully explain all the signal present in GRACE data.

Finally, it is analysed whether the computed correction may be considered
as an actual improvement of model EIGEN-GL04C (in other words, whether this
correction is close to the difference between the true field and the one described
by the EIGEN-GL04C model. To this end, the computed correction is compared
with the residual field defined as the difference between the state-of-the-art Gravity
Observation COmbination release 02 satellite-only gravity field model (GOCO02S)
(Goiginger et al. 2011) and the EIGEN-GL04C model, with the truncation at degree
120 being applied. In order to clean the computed correction from noise and nuisance
signals, the correction procedure presented above is used (maximum degree is set
equal to 120; band-pass filter is applied to the actual noise realisation in order to
highlight the 9−23 mHz bandwidth). After that, a visual comparison of the two
residual fields shows that some similarity between them indeed exists, but only in
the polar areas (see e.g. Figure 6.10).

In order to make a more objective comparison of the two residual fields, the
correlation between them is estimated as a function of latitude and longitude. The
procedure is the following. The two functions to be compared are computed on
the equiangular 1.5◦×1.5◦ grid. Then, a fragment of the grid of a certain size
2k + 1 by 2k + 1 grid-points is selected, the correlation coefficient between the
two functions within the selected fragment is computed, and then assigned to the
node at the centre of the fragment. The procedure is repeated until a global grid
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(a) (b)

Figure 6.10 – Static gravitational correction computed up to degree 120 from 11 months
of (a) actual noise (after the band-pass filtering to highlight the range 9−23mHz and (b)
difference between GOCO02S and EIGEN-GL04C static gravity field models truncated at
degree 120, in terms of geoid height [m]. The colour bar scale in the two plots is purposely
different in order to make the error patterns in both cases more evident.
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of correlation coefficients is obtained. Unfortunately, it turns out that the spatial
pattern shown in this grid is very dependent on the parameter k . The produced
spatial correlation map is strongly dominated by features of the size of k cells,
i.e., in general, not sufficiently representative. In order to eliminate a dependence
on a pre-defined fragment size, multiple correlation coefficient grids are produced,
changing the parameter k uniformly from 1 to 30 (i.e. each grid computed on the
basis of fragments of sizes between 3 by 3 and 61 by 61 cells), and then the mean
of all of these grids is computed. The obtained result is shown in Figure 6.11. This
map confirms a relatively high correlation between the two residual fields in the polar
regions and a much lower correlation at low latitudes.

This outcome is explained by the fact that the difference between the azimuths
of the ascending and descending tracks in the polar areas is large. This makes
the sensitivity of the GRACE mission to gravitational signals more isotropic and,
therefore, reduces the non-uniqueness of the gravity field recovery. An additional
factor, which also plays a role, is a relatively high density of measurements in the
polar areas. Thanks to the combination of these two factors, the computed correction
to the original static gravity field model allows that model to be improved near the
poles. As far as low-latitude areas are concerned, the intrinsic non-uniqueness of the
GRACE mission, which is caused by its anisotropic sensitivity, leads to the situation
that the computed correction is only one of many possible options. It can explain the
residual signal in the GRACE data, but cannot be treated as an actual improvement
of the static model of the Earth’s gravitational field.

It is worth adding that the actual noise corrected for the residual static field up
to degree 180 is called hereafter “corrected actual noise”. Only this type of actual
noise is considered in the analysis in the following sections.

Contribution of ranging sensor errors

The relatively strong noise at high frequencies, which is observed even after the
subtraction of the residual static field contribution, is attributed to the imperfectness
of the KBR sensor. In order to provide a further support of this statement, synthetic
realisations of the ranging noise δ(R) are generated. As input, noise ASD is defined
in terms of ranges. It is assumed that the ASD of the ranging sensor noise is
represented by a linear function in the logarithmic scale. On this basis, realisations
of noise in the ranges are computed, transformed into range-combinations with
Eq. (4.45), and then modified by introducing the appropriate data gaps. It is found
that the best fit to the corrected actual noise in the range 14−80mHz is obtained
if the noise in terms of ranges decreases with a rate of −6.4 dB per decade (see
Figure 6.12a). This parameter remained unchanged in the scaling procedure that
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Figure 6.11 – Spatial correlation between: (i) computed correction to the static gravity
field model EIGEN-GL04C and (ii) the difference between the state-of-the-art GOCO02S
model and EIGEN-GL04C (truncation at degree 120 is applied). Notice that there are no
negative correlation coefficients, this is the reason why the colour bar covers only positive
values.

fitted the synthetic noise realisations to the real noise data within each month.
It turns out that the ranging sensor noise STD varies between 0.72 and 0.94 µm
(in average, 0.81 µm). The estimated parameters of the ranging sensor noise are,
in general, consistent with those known from literature (Kim and Tapley, 2002;
Frommknecht et al., 2006; Kim and Lee, 2009).

The ASDs of the corrected actual noise and of the synthetic noise transformed
into range-combinations are presented for one of the months in Figure 6.12b. As
one can see, these two ASDs are very close to each other above the frequency of
∼ 14mHz. The other months also show a good consistency between the synthetic
and corrected actual noise in this frequency range (not shown). The peak at the
frequency of 30mHz observed in the corrected actual noise ASD can be explained
by a residual static field signal, as it is explained in the previous section. At the
frequencies below ∼ 14mHz, an increasing discrepancy between the synthetic noise
and the corrected actual one is observed. This suggests that some other contributors
to the noise budget start to play a role there.

A comparison of the synthetic and corrected actual noise is also performed in
terms of gravity field parameters. To achieve this, the noise time series of both
types are, first of all, subject to a high-pass filtering, so that the contribution of
frequencies below 23mHz is suppressed. After that, the noise realisations of both
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Figure 6.12 – a) ASD of synthetic ranging sensor errors; b) ASD of the synthetic ranging
noise obtained by the propagation of ranging sensor errors (in pink) and ASD of the
corrected actual noise (in dark blue). The month under consideration is February, 2006.

types are inverted into gravity field parameters as described above. It is worth
mentioning that the FDDW in this particular case is switched off in order to prevent
down-weighting of the high frequencies, which are the major focus of the conducted
comparison. The computed gravity field parameters are represented in terms of
geoid heights. It turns out that the spatial patterns of noise of the two considered
types are sufficiently similar to each other (see e.g., Figure 6.13). In both cases, the
noise forms along-track stripes, which vanish near the poles and reach maximum
near the equator. Otherwise, the regions with relatively low and high noise are
randomly distributed over the globe. It is necessary to add that the total RMS error
averaged over 11 months is somewhat larger in case of the corrected actual noise
than in case of the synthetic one: 9.2m and 5.2m, respectively. This discrepancy
can be attributed to the fact that corrected actual noise still contains a residual
gravitational signal, as indicated by the peak at degree 180. This signal is hardly
visible in the frequency domain, but apparently overwhelms noise of other types in
the spatial domain: it does not average out as the length of the time series increases.

Potential contribution of inaccuracies in models of temporal gravitational
variations

In the present section, it is analysed whether errors in the exploited background
models of mass transport can (at least, partly) explain the observed data noise. Two
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(a) (b)

Figure 6.13 – High-pass filtered noise propagated into gravity field parameters and rep-
resented in terms of equivalent water layer thickness (m): (a) corrected actual noise
(RMS=8.1m) and (b) synthetic ranging noise (RMS=5.2m). The month under considera-
tion is February, 2006. The average RMS for the 11 months considered is (a) 9.2m and
(b) 5.2m.

potential sources of errors are considered: (i) inaccuracies in the models of non-tidal
mass transport in the atmosphere and ocean; and (ii) an insufficiently accurate
description of slow mass transport given by the DMT model. Although the scope of
the conducted analysis is very limited, it still allows some general conclusions to be
drawn regarding the potential effect of errors in mass transport models.

There are a few possibilities to quantify errors in models of non-tidal mass
transport in the atmosphere and ocean. One of the possible approaches is to
consider the difference between two alternative meteorological models describing
atmospheric pressure variations, which are the major contributor to non-tidal mass
transport in the atmosphere and ocean (Velicogna et al., 2001; Thompson et al.,
2004; Han, 2004a). Another possible approach is to make use of the error estimations
provided by a meteorological model itself (Zenner et al., 2010). In the analysis of the
current section, errors in a model of non-tidal mass transport in the atmosphere and
ocean are defined as 10% of residual signal, which is derived as the difference between
the instantaneous signal and the monthly mean. In view of previous researches of
errors in mass transport models, such an assumption can be considered as sufficiently
reasonable (see, e.g., Thompson et al., 2004).

Of course, non-tidal mass re-distribution in the atmosphere and ocean is only
one of the on-going mass transport processes; an inaccurate description of other
processes contributes to the noise budget as well. Therefore, it was decided to
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Figure 6.14 – ASDs of synthetic noise caused by potential errors in background time-
varying gravity field models: based on the AOD1B product (purple line), and based on the
DMT model (green line). ASD of corrected actual data noise (dark blue line) is shown as
a reference. The month under consideration is February, 2006.

consider also the DMT model as a potential source of inaccuracies. This model is
based on GRACE data themselves and, therefore, describes the total mass transport
independently of its geophysical origin. An obvious limitation of the DMT model
stems from its limited temporal resolution. Like most of other GRACE-based models,
it consists of monthly solutions, so that a mass anomaly within each particular
month is assumed to be constant. The difference between the actual mass anomaly
at a certain moment and the mean monthly value is a source of additional errors.
In order to estimate their potential effect, an alternative scheme is used to derive
mass variations in the time domain from the DMT model. Instead of assuming that
mass variations are piece-wise constant, a quadratic spline approximation is applied
in such a way that the monthly mean computed on the basis of the spline is equal
to the original value from the DMT model (implementation by Christian Siemes).
The difference between the two representations in the time domain is taken as the
residual signal and used in the analysis.

The residual mass transport signals of both types (associated with the AOD1B
product and with the DMT model) are propagated into range combinations, as
discussed in Section 6.2.1. The result is interpreted as synthetic noise of δ(tv) type
(noise caused by the mis-modelled time-variable signal). The ASDs computed on
the basis of the obtained time-series for February 2006 are shown in Figure 6.14 (the
results for other months look similar).
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From a comparison of the presented ASD curves, one can conclude that synthetic
noise of both types is at least one order of magnitude smaller than the corrected
actual noise. Errors in time-varying gravity field models may contribute to the noise
budget substantially only if their level is about 10 times larger. In the AOD1B case,
this means that the errors must be comparable with the signal itself, which is likely
an overly pessimistic assumption. Furthermore, even in that case the contribution of
the errors under consideration would be limited to the frequency band 1−3 mHz.
At higher frequencies, the ASDs of the synthetic noise of both types decay rapidly,
which can be explained by the upward continuation effect.

One may argue that residual mass transport signals may not be stationary, so
that an attempt to quantify them in terms of ASD might be misleading. In order to
make the analysis more comprehensive, the forecasted range combinations based
on the residual mass transport signals, as well as corrected actual data noise, are
propagated into gravity field parameters. To isolate the frequency range where the
residual mass transport signals are mostly significant, the band-pass filtering (band
1−3mHz) is consistently applied to the time series of data noise and residual signal.
The results obtained in this way for February 2006 are shown in terms of equivalent
water layer thickness in Figure 6.15. One can see that in the spatial domain, the
corrected actual noise also shows a different behaviour than the synthetic noise. The
corrected actual noise reaches maximum near the equator; the RMS value averaged
over 11 months being equal to 42.7 m. On the contrary, synthetic noise based on
the AOD1B product is maximal at the intermediate latitudes and is much smaller
at the equator. Furthermore, the RMS value of noise of this type (average over 11
months) is only 0.5 m. One may argue that in reality noise in the AOD1B product
may not be proportional to signal and, therefore, may result in a very different spatial
pattern. Nevertheless, in order to explain the level of the corrected actual noise near
the equator, it would be needed to assume that the noise in AOD1B product in the
equatorial area exceeds the signal by orders of magnitude, which is very unlikely. As
far as synthetic noise based on the DMT model is concerned, the resulting spatial
pattern is much closer to that in case of the corrected actual noise. Nevertheless,
the level of synthetic noise is still too low. The RMS value of this noise averaged
over 11 months is equal to 7.0 m, which is an order of magnitude smaller than in
the case of corrected actual noise.

In conclusion, the inaccuracies in the AOD1B product as well as the limited
temporal resolution of the DMT model are, most probably, not the dominant source
of noise in the GRACE data, including the frequency range 1−3mHz. Furthermore,
it is unlikely that errors in the other background mass transport models significantly
exceed the residual signals considered in the analysis. Thus, no evidence is found that
GRACE-based models significantly suffer from errors in background mass transport
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(a) (b)

(c)

Figure 6.15 – Corrected actual noise and synthetic noise due to errors in models of temporal
gravitational variations, propagated into gravity field parameters after band-pass filtering
(band 1−3 mHz) and represented in terms of equivalent water layer thickness (m): (a)
case of corrected actual noise (RMS=31.6 m); (b) case of synthetic noise based on the
AOD1B product (RMS=0.6m); and (c) case of synthetic noise based on the DMT model
(RMS=4.8m). The month under consideration is February, 2006. The average RMS for
the 11 months considered is (a) 42.7m, (b) 0.5m and (c) 7.0m.
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(a) (b)

Figure 6.16 – Synthetic noise due to errors in models of temporal gravitational variations,
propagated into gravity field parameters represented in terms of equivalent water layer
thickness (m): (a) case of synthetic noise based on the AOD1B product (RMS=0.6m);
and (b) case of synthetic noise based on the DMT model (RMS= 5.1m). The month under
consideration is February, 2006. The average RMS for the 11 months considered is (a)
0.5m and (b) 7.3m.

models used for temporal de-aliasing. This does not exclude the option, however,
that such errors still play a role locally, i.e. in limited regions where their level
significantly exceeds the average one.

A realisation of synthetic noise δ(tv) is also propagated into gravity field parameters
without a band-pass filtering in order to demonstrate the total effect of those signals.
The obtained results turn out to be very similar to those obtained with the band-pass
filtering, as shown for February 2006 in Figure 6.17 in terms of equivalent water
layer thickness. One can see that the resulting spatial patterns are close to those
already observed in the case of bandpass-filtered residual signals. The RMS of
the propagated unfiltered residual signals is nearly identical to the filtered cases,
only 1.9% higher for the AOD1B product and 4.2% higher for the DMT model,
considering the mean RMS for the 11 months. This proves that the temporal aliasing
of natural mass transport processes originates mainly from the signals within the
1−3mHz bandwidth.

Contribution of random noise of unknown origin

After the analysis presented in the previous sections, the origin of data noise in
the frequency band 1−9mHz remains unclear. However, it is at least possible to
investigate whether the impact of this noise is similar to that of random stationary
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(a) (b)

Figure 6.17 – Corrected actual and empirically defined synthetic random noise propagated
into gravity field parameters after a band-pass filtering (band 1−9 mHz), in terms of
equivalent water layer thickness (m): (a) case of corrected actual data noise (RMS
= 51.8 cm); (b) case of synthetic random noise (RMS = 53.3 m). The month under
consideration is February, 2006. The average RMS for the 11 months considered is (a)
61.4m and (b) 59.1m.

noise characterized by the same ASD. To that end, realisations of stationary random
noise are generated using the ASDs of actual data noise. A band-pass filtering
(band 1−9mHz) is consistently applied to the corrected actual and synthetic noise
realisations in order to suppress the contribution of the content in the irrelevant
frequency bands. A comparison of ASDs of the computed noise realisations in the
target band demonstrates that they may differ by as much as 20%, which can be
explained as the effect of filtering and the gaps introduced into the synthetic noise.
Therefore, the synthetic noise is scaled in order to make its ASD close to that of the
corrected actual noise in the target frequency band. Finally, the corrected actual and
synthetic noise realisations are propagated into gravity field parameters. The results
obtained for February 2006 are shown in terms of equivalent water layer thickness in
Figure 6.17.

One can see that the spatial patterns of the propagated noise as well as the
RMS geoid height errors over the globe are very similar for the corrected actual and
the synthetic noise realisations in February 2006. The same result is obtained also
for other months (the RMS values averaged over 11 months are equal to 61.4m and
59.1 m, respectively). Thus, the assumption that the data noise in the frequency
band 1−9mHz is stationary cannot be proven false. This is an additional evidence
that the origin of this noise is not related to errors in the background models
describing the Earth’s static or time-varying gravitational field.
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Figure 6.18 – ASDs of the considered realisations of synthetic noise associated with middle-
and high-frequencies (February 2006). The considered types of synthetic noise are: ranging
noise in pink; noise δ(tv) caused by errors in the AOD1B product (in purple); noise δ(tv)

caused by errors in the DMT model (in green); empirically defined stationary random noise
occupying the frequency bad 1−9mHz (in brown). Results based on the corrected actual
data noise are shown as well (dark blue lines).

Integrated effect of noise of different origin

To conclude this analysis, the integrated effect of synthetic noise of four different
types considered in this section is estimated. This concerns:

1. ranging noise δ(R);
2. noise δ(tv) caused by the assumed errors in the AOD1B-derived product;
3. noise δ(tv) caused by a limited temporal resolution of the DMT model;
4. Empirically defined stationary random noise occupying the frequency band

1−9mHz.

ASDs of noise of the considered types, as well as of the corrected actual noise,
are shown in Figure 6.18.

The considered realisations of synthetic noise are propagated into gravity field
parameters. It is important to point out that band-pass filtering is not applied in
the context of this analysis (except for the case of empirically defined random noise,
which is the result of a band-pass filtering by definition). For a comparison, corrected
actual noise is also propagated into gravity field parameters, the low-frequency
contents being suppressed with the procedure explained in Ditmar et al. (2012,
Section 4, Eq. 52). The obtained results are presented in terms of RMS geoid height
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Figure 6.19 – Results of propagating the noise realisations show in Figure 6.18 into gravity
field parameters and shown in terms of RMS geoid heights per degree (average over the
11 months). The considered types of synthetic noise are: ranging noise in pink; noise δ(tv)

caused by errors in the AOD1B product (in purple); noise δ(tv) caused by errors in the DMT
model (in green); empirically defined stationary random noise occupying the frequency bad
1−9mHz (in brown); sum of all 4 synthetic noise types (dashed grey line). Results based
on the corrected actual data noise are shown as well (dark blue lines).
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per degree (averaged over 11 months) in Figure 6.19. The effects of synthetic noise
of various types are shown both separately and after the summation. From this
figure, it is obvious that random noise of unknown origin in the frequency band
1−9mHz is the dominant contributor to the errors in GRACE-based gravity field
models. The contribution of middle- and high-frequency noise of other types (due
to ranging errors and errors in background models of time-varying gravitational
field) is an order of magnitude lower. Such a high impact of random noise of the
unknown origin can be explained by the fact that it spans the frequency band from
5.4 to 49 cycles per revolution, i.e. overlaps with that containing the major part of
the gravitational spectrum. It is also remarkable that this noise remains dominant
up to the maximum considered degree (120). Most probably, this is because this
noise manifests itself in the form of along-track stripes in the spatial domain (see
Figure 6.17b). Thus, even high-degree coefficients are severely distorted, if they are
sectorial and nearly-sectorial. It is worth adding that the observed impact of ranging
noise alone is close to the baseline errors (Kim, 2000), which reflect the pre-launch
expectations regarding the GRACE mission performance.

6.2.3 Discussion and conclusions
The analysis presented in Section 6.2.2 leads to a better understanding of noise
in the data acquired by the GRACE satellite mission. Unfortunately, the dominant
source of noise in the range of intermediate frequencies (1−9 mHz) is still not
fully understood. In spite of that, the conducted analysis has led to a number of
important findings.

Firstly, the analysed realisations of data noise contains a residual static field
signal. It is shown that the inversion of produced noise realisations into a static field
update allows this signal to be reduced. On the other hand, it is important to realise
that the implementation of this update does not necessarily improve the static field
model. In the considered example, the update was somewhat meaningful in the polar
areas and fully unsuccessful at low latitudes. Most probably, this can be explained
by the intrinsic non-uniqueness of the GRACE mission caused by its anisotropic
sensitivity: different updates can explain the residual signal in the GRACE data
equally well. In other words, the situation is somewhat similar to that already existed
in pre-GRACE era, when the available data allowed “tailored” gravity field models
to be produced that perfectly explained those data. However, those tailored models
could be rather different from the real field, which became clear as soon as new data
became available.

Secondly, it has been demonstrated that the contribution of ranging errors
becomes dominant only at high frequencies (above 9mHz). After a propagation of
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such high-frequency noise in gravity field parameters, the resulting effect is about
one order of magnitude lower than that of the actual noise. It is worth adding that
errors in gravity field models caused by ranging noise are very close to the baseline
errors (Kim, 2000), which reflect the pre-launch expectations regarding the GRACE
mission performance.

It is also shown that errors in background models of time-varying gravitational
field cannot play a significant role in the observed noise spectrum. In addition, it
is demonstrated that those errors cannot, in general, explain noise in gravity field
models obtained by inversion of GRACE data.

It is now discussed whether the conclusions drawn on the basis of the conducted
study can be considered as sufficiently general. As it is explained in Ditmar et al.
(2012), the range combinations can be considered as a finite-difference approximation
of inter-satellite accelerations. On the one hand, those data can be directly related
to the forces acting on the satellites (including the Earth’s gravitational attraction).
On the other hand, they can be derived from double-differentiated ranges corrected
for the contribution of centrifugal accelerations. Let us assume for a moment that
the latter correction can be made exactly. In this case, the exploited functional
model would provide a unique link between the unknown parameters and the double-
differentiated observations (namely, ranges). As it was shown by (Ditmar and
Sluijs, 2004), the solution based on this functional model coincides with the solution
obtained by the inversion of the original observations (i.e., ranges) themselves or
their first-order derivatives (i.e., range-rates), provided that a statistically optimal
gravity field parameter estimation procedure is followed. In reality, the correction
for centrifugal accelerations is not error-free. However, the corresponding noise
manifests itself at low degrees (below 1mHz) only. Therefore, all obtained results
for the intermediate and high frequencies (the focus of Section 6.2.2) should be
considered as applicable to optimal estimation procedures in general, no matter
whether ranges, range-rates, or range-accelerations are used as input. Of course, the
conducted study does not allow anything to be said about non-optimal procedures
(e.g., lacking a proper data weighting). For instance, a non-optimal procedure might
show a much stronger influence of the ranging sensor noise than is observed in
the current study. However, all such problems of non-optimal procedures must be
considered as procedure-specific ones and should be treated on a case-by-case basis.

In the context of GRACE follow-on missions, a point of attention is the definition
of the static field in mass transport monitoring. Inaccuracies in the exploited static
field model can manifest themselves as a residual signal in the input data. One may
argue that this issue is not critical because the presence of such a signal simply
causes a static bias in the time-varying gravitational field solutions. It is, however,
not impossible that this residual signal propagates into different solutions differently
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due to a changing ground-track pattern and the intrinsic non-uniqueness of gravity
field recovery from GRACE follow-on mission data (particularly, at high degrees).
Then, a fictitious time-varying signal can be produced. A possible solution to this
problem is to start mass transport recovery from computing a static gravity field
model up to a very high spherical harmonic degree (in any case, above degree 180),
so that all static field signal in the data is absorbed as completely as possible. It is
important to stress that the static model produced in this way must be treated as a
tailored model, which can be far from reality. One may argue that compiling such
a tailored static field model is not needed if a state-of-the-art model is exploited
(e.g., the one produced by a combined inversion of GRACE and GOCE data). It is
important to realise, however, that future GRACE follow-on missions may be even
more sensitive than GRACE. Therefore it can happen that residual static field signal
is still present in the data, whereas the spherical harmonic degrees involved are too
high to benefit from GOCE data.

Another aspect tackled in the conducted analysis is the accuracy of the back-
ground force models (e.g., the AOD1B product). One might interpret the fact that it
is not possible to observe a significant influence of those errors as a recommendation
not to care about a further improvement of those models. Such interpretation would
be totally wrong. First of all, it is possible that those errors still play a role in limited
geographical areas (revealing such an effect would require a more detailed analysis
of errors in background force models, which is beyond the scope of the presented
analysis). Secondly, improvement of background force models is definitely needed in
the context of GRACE follow-on missions, as one of the necessary prerequisites to
improve the accuracy of mass transport models to be produced.

Finally, investigation of the remaining sources of noise in GRACE data must be
continued (in particular those responsible for the noise observable in the frequency
range 1−9mHz). For instance, the inaccuracies in satellite attitude data revealed
by Horwath et al. (2010) can be considered as a potential source of such noise.
It goes without saying that complete understanding of the noise budget would
be important not only for GRACE data processing, but also in designing GRACE
follow-on missions.

6.3 Validation and fine-tuning of the advanced noise
model

This section analyses the advanced noise model of ll-SST data, with the purpose of
validation. The noise model should be understood as the simulation procedure used
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to generate realistic error time series. In the current section, a set of assumptions
is considered with the aim at reproducing the actual GRACE errors as closely as
possible, refer to Table 6.4. In Chapter 8, a different set of assumptions intends to
reproduce the predicted error amplitudes relevant to future gravimetric mission. In
both cases, the same advanced noise model is relevant, i.e. the simulation procedure
is identical; the difference is only in what concerns the set of assumptions that define
the amplitude of the individual noise types.

Table 6.4 provides an overview of the assumptions made for the simulation of the
ll-SST noise type and quick reference to the page number where the corresponding
noise type is introduced. All noise types rely explicitly on the complete frequency
description of the underlying time series of noise (except for the positioning noise
δ(P), where that is done implicitly).

name symbol assumptions description page
nr.

accelerometer
noise δ(acc) ASD

�

δ(acc)
�

grey line in
Figure 6.20a

error in the
accelerometer
measurements

103

ranging noise δ(R) ASD
�

δ(ρ)
�

in Figure 6.21 error in the
measured ranges 104

correction
noise δ(C)

ASD
�

δ(ẋ
(12)⊥)

�

in
right-hand side plot of

Figure 6.5, ASD
�

δ(ρ)
�

in
Figure 6.21

error from the
inaccurately known
relative vertical

velocity

105

orientation
noise δ(L)

ASD
�

δ(∆x)
y

�

=
ASD

�

δ(∆x)
z

�

in left-hand
side plot of Figure 6.5

error in the
inaccurately known

LoS direction
105

positioning
noise δ(P)

x(for) integrated on the
basis of EIGEN-CG03C

and x(obs) integrated on the
basis of EIGEN-5C

error in the orbital
positions 106

Table 6.4 – Summary of the assumptions considered for the simulation of the ll-SST noise
type of the advanced noise model.

The purpose of the conducted analysis is to demonstrate that the simulated
errors are representative of the errors present in actual GRACE data. The validation
is fundamental in gaining confidence in the exploited noise model. The simulated
errors in the trailing formation data are compared with the GRACE a posteriori
residuals, which were produced in a similar way to those considered in Section 6.2.
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The comparison is made in terms of the ASD of range combinations and gravity
field parameters.

The assumptions listed in Table 6.4 are representative of the GRACE mission.
However, the simulations do not use actual GRACE data directly. The contribution
of actual data is restricted to the production of the GRACE a posteriori residuals,
which serves as validation reference. A formation consisting of a pair of satellites in
the same orbit 200 km apart, at the height of 500 km, is considered. The choice of
orbital altitude intends to be representative of the altitude of the GRACE mission, not
to accurately duplicate it. Unlike the GRACE formation, the formation considered
in the numerical analysis has a strictly polar orbit, i.e. the inclination is set equal to
90 degrees. No data gaps are added artificially to the simulated time series, apart
from those naturally arising from the orbit simulation procedure, cf. Section 3.8.5.
The discrepancy in the gap distribution does not influence significantly the results, as
explained in Section 6.3.2. The relative orbit position noise derived in Section 6.1.7 is
considered in the current analysis without scaling, because a scaling is only relevant
for future gravimetric missions.

The range combinations errors of various types are propagated to the gravity
field parameters considering FDDW, with the stochastic model derived from the
GRACE a posteriori residuals (see Section 2.5.6). The same stochastic model is
considered consistently in the computation of all gravity field model error models
describing the respective noise types. This makes it is possible to compare them
directly with each other.

It is assumed that no model errors are present in the GRACE a posteriori residuals
used to the derive the stochastic model for the FDDW. In other words, it is assumed
that the GRACE data residuals are not corrupted significantly by mis-modelled
static signal, mis-modelled time-variable signal or omission signal. In view of this
assumption, the error introduced by the static gravity field model has been mitigated,
as discussed in Section 6.2.2.

In most plots shown in this section, the simulation results are compared with
the ASDs computed from the GRACE a posteriori residuals for the complete year of
2006 (with the exception of the month of December).

The time series of GRACE a posteriori residuals is propagated to the gravity field
parameters and the resulting RMS geoid height error per degree, i.e. the GRACE-
derived error Degree Amplitude Spectrum (DAS), is shown. Any other month could
have been considered without a significant change in the degree amplitudes presented
in the figures and without any change in the conclusions drawn from this study.
Alternatively, a month-long time series of synthetic GRACE a posteriori residuals
could have been generated on the basis of the ASD derived from actual data, but the
resulting geoid height error would not be significantly difference from the considered
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one. The GRACE-derived error DAS are consistently represented by dark curves in
the plots.

The validation of the noise model starts by presenting the simulation results,
since the simulation procedure is already introduced in Section 4.3.2. The results
pertaining to different noise types are shown in Sections 6.3.1 to 6.3.5, with a brief
interpretation of the associated ASD and DAS. An integrated interpretation of the
results is postponed until Section 6.3.6, where the comparison with the GRACE a
posteriori residuals is discussed. In Figure 6.3.6, the results are summarised and
conclusions are drawn.

6.3.1 Accelerometer noise
In the case of GRACE, the accelerometers have the noise ASD as depicted by
Kim (2000, fig. 5.12). In the thesis, the accelerometer noise is assumed to be
a linear function in the logarithmic domain, i.e. showing a log-linear dependency
with frequency. It approximates the noise model from Kim (Figure 5.12 2000)
in the frequencies between 0.1 and 10 mHz, having the amplitudes of 10−9 and
10−10 m/s2/

p
Hz respectively, see Figure 6.20. Outside this frequency band, the

accelerometer noise deviates from the adopted model: it is under-estimated above
10mHz (by at most a factor of 3 at 100mHz, before applying the averaging filter)
and over-estimated below 0.1mHz (by not more than 40%). In comparison to the
model simulated by Frommknecht et al. (2003), the noise assumed in the thesis is
under-estimated below 0.1mHz by a factor of 2. In view of these discrepancies, the
assumed log-linear function was chosen to lie in-between. Above 40mHz, the curve
slightly slopes downwards, as the result of the averaging filter w, as already pointed
out in Figure 6.6.

In view of the fact that the accelerometer noise δ(acc) is at least two orders of
magnitude lower than the GRACE a posteriori residuals, cf. Figure 6.20a, it is not
surprising that in terms of gravity field parameters, it is 140 times smaller than the
actual GRACE gravity field model error, cf. Figure 6.20b. The accelerometers are
sufficiently accurate to measure the non-gravitational forces acting on the GRACE
satellites and it is safe to say that these errors do not contribute significantly to the
gravity field model error.
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Figure 6.20 – a) ASD of simulated accelerometer noise δ(acc), assumed to be linear in the
logarithmic scale between the points (0.1 mHz,10−9 m/s2) and (10 mHz,10−10 m/s2) and
valid the whole frequency domain; adapted from Kim (2000); b) DAS of the error in the
gravity field parameters resulting from the propagation of the simulated accelerometer
noise δ(acc). The black curves in both plots represent the actual data and the grey curves
represent the simulation results. The data period is 1 month for the simulation results. For
the actual data, the data period of the ASD is the year of 2006. For the DAS, it is the
month of February 2006.
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6.3.2 Ranging noise
As discussed in Section 6.2.2, the ASD of the ranging sensor noise δ(ρ) is assumed
to decrease with frequency at a constant rate per decade, i.e. it is represented by a
straight line in the logarithmic plot. Under this assumption, it is possible to find the
best fit between the amplitudes above 20mHz of the actual GRACE data noise and
the ranging noise δ(R) generated on the basis of the assumed ASD of δ(ρ), refer to
Figure 6.22. Figure 6.21 presents the analytic ASD considered in the simulation of
δ(ρ). The assumed ranging sensor noise ASD agrees well with the simulations of
Kim and Lee (2009, Fig. 4).

The analytical double differentiation of white noise in the frequency domain results
in a ASD equal to the original noise multiplied by the square of the angular frequency.
At first sight, the shape of the ASD of the ranging noise is in contradiction with
the analytical theory since the grey line becomes horizontal at the low frequencies.
In reality, the representation of the time series in the frequency domain by the
ASD is not perfect, giving rise to the low-frequency artefact. The low frequency
representation of a time series is less accurate in view of the fact that it is computed
on the basis of a lower number of complete cycles. This fact becomes increasingly
important for the lowest frequencies, since those signals span periods close to the
length of time over which the data is defined. This artefact is particularly severe
for the case of the ranging noise because that time series is dominated by the
high-frequencies, limiting the accuracy with which the (very low-amplitude) low
frequencies coefficients are represented in the ASD. In contrast, the high frequencies
are more accurately described, because there is a large number of cycles corresponding
to those frequencies. In Eq. (4.43), the parameter τ accounts for the low-frequency
artefact, since it influences the amplitude of δ(R) at those frequencies. The analytical
theory is reproduced by Eq. (4.43) if τ=∞.

When fitting a ASD of a δ(R) time series resulting from double differentiation
of the ranging sensor noise δ(ρ), the estimated value of τ is heavily dependent on
the maximum length of uninterrupted sequences in δ(R). To illustrate this effect,
gaps were introduced into several time series by applying an n −σ iterative outlier
removal procedure (this procedure is also exploited in Section 6.1.3), with the factor
n ranging from 5 (the least data removed) to 2 (the most data removed).

In addition the time series without gaps is considered (when the factor n is equal
to infinity). The resulting ASDs are shown in Figure 6.23. The empirically-estimated
values of τ, determined by fitting Eq. (4.43) to the each curve, have values ranging
from 5.5 s to 81.6 s. Notice that it is only possible to reproduce the theoretical ASD
of double-differentiated white noise if the δ(R) time series has infinite length and no
gaps.
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Figure 6.22 – a) ASD of simulated ranging noise δ(R) considering δ(ρ) with the ASD show
in Figure 6.21; b) DAS of the error in the gravity field parameters resulting from the
propagation of the simulated δ(R). The black curves in both plots represent the actual data
and the grey curves represent the simulation results. The data period is 1 month for the
simulation results. For the actual data, the data period of the ASD is the year of 2006. For
the DAS, it is the month of February 2006.
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Figure 6.23 – Effect of the nσ iterative outlier removal procedure on the low-frequency
amplitude of the simulated ranging noise.

The conducted simulations do not maintain the same gap distribution as the real
data. On one hand, it is not the purpose of the simulations to duplicate exactly of
the errors in GRACE data but only to show that the noise model predicts those errors
in a representative way. On the other hand, the low amplitude and low frequency
ranging noise plays no significant role in the total error, since it is one to two orders
of magnitude smaller (below 1mHz). Any efforts to ensure the highest fidelity of
the low frequency ranging noise are inconsequential to the analysis. Notice also
that the ranging noise is the only noise type where changing the gap distribution
could have a visible effect. All other noise types are insensitive to it, since in those
cases the amplitude at the low-frequencies is higher than at the high-frequencies
and, therefore, are well determined irrespective of the gap distribution.

The gravity field model error associated with the ranging noise δ(R) is 7.2 times
smaller than the propagated GRACE a posteriori residuals, see Figure 6.22. This
result supports the pre-launch error analysis of GRACE, which only addressed errors
in the accelerometers and ranging sensor (Kim, 2000) and, as a consequence, under-
estimated the actual errors by roughly one order of magnitude (Tapley, 2004a;
Schmidt et al., 2008a).

6.3.3 Correction noise
One ingredient needed to simulate the correction noise δ(C) is the ranging sensor
noise δ(ρ), as demonstrated by Eq. (4.55). For the conducted validation analysis,
the ranging sensor noise δ(ρ) is a random time series generated on the basis of the
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Figure 6.24 – a) ASD of simulated correction noise, δ(C); b) DAS of the error in the gravity
field parameters resulting from the propagation of the simulated correction noise, δ(C). The
black curves in both plots represent the actual data and the grey curves represent the
simulation results. The data period is 1 month for the simulation results. For the actual
data, the data period of the ASD is the year of 2006. For the DAS, it is the month of
February 2006.

pre-defined ASD used to simulate the ranging noise, see Figure 6.21.
The second ingredient is the noise in the orbit velocity of satellite 1 relatively

to satellite 2 projected onto the plane perpendicular to the LoS direction, δ(ẋ (12)⊥),
which is generated on the basis of the ASD shown in Figure 6.5, right-hand side,
up-scaling it by a factor of three in order to reflect the current level of orbital velocity
accuracy (relevant to GRACE, not the future level as depicted in that figure). Recall
that Figure 6.5 shows the estimated noise in the relative positions and velocities
projected on the LoS direction. The assumption is made, in view of the lack of any
further information, that the ASD of the noise in the orbit velocity of satellite 1
relatively to satellite 2 projected onto the plane perpendicular to the LoS direction
is equal to that of the noise in the x -component.

Figure 6.24 shows that the simulated correction noise closely matches that of
Ditmar et al. (2012, Fig. 5). The main difference is a slight under-estimation of
the noise below 2 mHz, but never by more than a factor of 2.4. The reason for
this discrepancy is that the amplitude of the correction noise varies from month to
month. Ditmar et al. (2012) considered July 2006, whereas the whole year of 2006 in
considered in the thesis. With increasing frequency, the difference grows to roughly
one order of magnitude at 10 mHz. These two frequencies, 2 mHz and 10 mHz,
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correspond roughly to degrees 11 and 57. The explanation for the different behaviour
of the ASD and DAS is found in the way how low-frequency noise propagates to the
gravity field parameters, as explained in Section 2.5.6.

6.3.4 Orientation noise
The ASD of the relative orbit position noise δ(∆x) is known accurately for the x -
component of the Line-of-sight Reference Frame (LoSRF), as depicted in Figure 6.5,
left-hand plot, after up-scaling it by the factor of 3 to represent the current orbital
positioning accuracy. As a first approximation in view of the lack of any other inform-
ation, the y and z -components are assumed to have the same ASD. Figure 6.25
presents the ASD of simulated orientation noise, calculated using Eq. (4.58).

Figure 6.25b shows that orientation noise is 3 orders of magnitude smaller (a
factor of 2.0×103) than the GRACE a posteriori residuals, i.e. not significant as was
also predicted by Ditmar et al. (2012).
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Figure 6.25 – a) ASD of simulated orientation noise with the ASD of δ(∆x)
y and δ(∆x)

z

equal to Figure 6.5, left-hand sided plot, up-scaled by a factor of 3; b) DAS of the error in
the gravity field parameters resulting from the propagation of the simulated orientation
noise δ(L). The black curves in both plots represent the actual data and the grey curves
represent the simulation results. The data period is 1 month for the simulation results. For
the actual data, the data period of the ASD is the year of 2006. For the DAS, it is the
month of February 2006.
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6.3.5 Positioning noise
In the current section, the analysis of the positioning noise δ(P) is conducted. The
positioning noise derived from actual GRACE data is first used to calibrate the
simulated positioning noise resulting from the relative orbit position noise along the
LoS direction δ(P)(LoS). The need for this calibration is identified. The positioning
noise defined in Section 4.3.3, where the orbits are adjusted by exploiting range data,
is compared with δ(P)(LoS). After the calibration, the simulated positioning noise is
compared with the GRACE a posteriori residuals.

Referring to Eq. (4.59), the positioning noise requires two sets of orbits: the
observed orbit position x(obs) and the forecasted orbit position x(for). In the presented
analysis below, they are integrated on the basis of EIGEN-5C and EIGEN-CG03C,
respectively. This choice of models is intended to ensure that the results are
conservative. The orbit integration in uninterrupted over 6-hour arcs, as is the case
in actual data processing.

Comparison with positioning noise estimated from actual GRACE data

The definition of the positioning noise is given by Eq. (4.59), ensures that there
is no contribution from the discrepancy (in the relative sense) between x(obs) and x(for)

along the LoS direction. This is accomplished by the adjustment of the forecasted
orbit position considering the highly accurate range data (Eq. (4.60)). However,
the difference between x(obs) and x(for) along the LoS direction provides important
clues about the (relative) positioning noise. In Section 6.1, the relative positioning
noise along the LoS direction is quantified on the basis of actual GRACE data, i.e.
KBR data and PDOs used in real data processing. The results of that analysis are
a suitable verification criterion for the simulation of positioning noise. With the
purpose of reproducing those results in the simulation environment, the positioning
noise resulting from the relative orbit position noise along the LoS direction δ(P)(LoS)

is considered, which has the corresponding point-wise quantities defined as:

δ(P)(LoS)(pw) =
�

∇V
�

x(for), C (ref)
�

−∇V
�

x(for)(adj)(LoS), C (ref)
��

·e(LoS)(for), (6.9)

where the forecasted orbit positions adjusteds with range data along the LoS
direction x(for)(adj)(LoS) is:

x(for)(adj)(LoS) = x(for)(12)±e(LoS)(for)
ρ(for)+ s (ρ)

�

ρ(obs)−ρ(for)
�

2
. (6.10)
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The parameter s (ρ) in Eq. (6.10) controls the level of adjustment. The case
s (ρ) = 1 corresponds to the nominal adjustment procedure, when the inter-satellite
distances in the adjusted orbits are set equal to the true ones (i.e., taken over from
the “observed” orbits). In the extreme case when s (ρ) = 0, the adjustment vanishes,
so that the output of the adjustment procedure is identical to the original unadjusted
orbits.

From the simulated orbits x(obs) and x(for), it is possible to compute the observed
and forecasted ranges. The difference between these quantities has a STD of
0.36mm, cf. Section 7.3. Comparing this value with real-data analysis results, i.e.
2.24 mm (Section 6.1.5), it is observed that it is 6.22 times lower than expected.
The observed discrepancy is attributed to way the initial state vectors of x(for) and
x(obs) are estimated in the thesis. In both cases, i.e. for the forecasted and observed
orbits, they are derived from the same Keplerian reference orbit and, as a result,
there is good agreement between them. In contrast, the orbit used to derive the
initial state vectors in real data processing is the KO (with the help of dynamic
orbit fitting). The KO is characterised by noise with STD of a few centimetres, as
determined from the optimally-fit RDO integrated on the basis of a complete force
model, cf. Section 2.4. The uncertainties in the KO results in the mis-representation
of the actual orbit and corresponding imperfectly-estimated initial state vectors. This
mis-representation is not present in the simulated orbits; their discrepancy is solely
driven by the differences in the gravity field models.

Alternatively, the error in the KO used in real data processing could be simulated
by adding noise to the Keplerian reference orbit, thus producing a synthetic KO.
Such orbit could then be considered when estimating the initial state vectors relevant
to the integration of x(for). However, the statistics and spectral properties of this
noise are unknown, so a number of assumptions would have to be made. Such
assumptions, in particular those pertaining to the spectral properties of the absolute
orbit position noise, are not well supported by observations or physical evidence.

Instead, it was decided to consider the following simple scaling procedure. As
discussed before, the difference between the observed and forecasted ranges resulting
from the simulations is a factor of 6.22 lower than that derived from actual GRACE
data. For that reason, the parameter s (ρ) is set equal to 6.22 in order to bring
the simulation of the positioning noise up to a representative level. It might seem
strange to “adjust” x(for) to produce x(for)(adj)(LoS) with a larger disparity relative to the
observed orbit positions x(obs). However, the purpose of the parameter s (ρ), in this
context, is not to produce adjusted orbits but to calibrate the simulated positioning
noise in order to produce a realistic level of positioning uncertainty.

As it is shown in Figure 6.26, the positioning noise simulated in this way (grey
line) matches well the one derived from real data (black line), traced from Ditmar
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Figure 6.26 – ASD of positioning noise resulting from the relative orbit position noise
along the LoS direction δ(P)(LoS), considering x(for) integrated on the basis of EIGEN-CG03C,
ρ(obs) derived from x(obs) integrated on the basis of EIGEN-5C (in both cases up to degree
120) and according to Eq. (6.9) and Eq. (6.10), considering s (ρ) = 6.22. The black curve
represents the actual data and the grey curve represents the simulation results. The data
period is 1 month for the simulation results. For the actual data, the data period of the
ASD is the year of 2006.

et al. (2012, blue curve of Fig. 5). There are a few discrepancies in narrow frequency
bands, namely 0.2mHz, which are attributed to the differences between the simulated
and actual GRACE orbits.

It is also possible to apply the calibration scaling factor of 6.22 to the positioning
noise resulting from the relative orbit position noise along the LoS direction δ(P)(LoS)

directly, instead of adjusting x(for) to produce x(for)(adj)(LoS), as indicated in Eq. (6.10).
The small adjustments described by this calibration parameter are well within the
linear regime of Eq. (4.59). This fact was tested numerically in the simulation
environment (now shown).

Comparison between δ(P)(LoS) and δ(P)

So far, the analysis of the positioning noise only considered the positioning
noise resulting from the relative orbit position noise along the LoS direction δ(P)(LoS).
This makes the comparison of the simulations results with actual data possible
and the subsequent calibration described in the previous section. Nevertheless, the
positioning noise that is relevant for the simulation of future gravimetric missions
mitigates the discrepancy between forecasted and observed range (cf. Eq. (4.59)
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Figure 6.27 – a) ASDs of the positioning noise resulting from the relative orbit position
noise along the LoS direction δ(P)(LoS) and the positioning noise δ(P), the former considering
s (ρ) = 6.22 and the latter up-scaled by a factor of 6.22; b) DAS of the error in the gravity
field parameters resulting from the propagation of the respective variants of the simulated
positioning noise. The data are sampled every 5 s. The simulation scenario is a GRACE-like
formation at a polar orbit of 500 km altitude.

and Eq. (4.60)), which is represented by the symbol δ(P). Note that δ(P) is the
sum of the contributions of the absolute positioning noise and positioning noise
resulting from the relative orbit position noise perpendicular to the LoS direction,
since the positioning noise resulting from the relative orbit position noise along the
LoS direction is eliminated when considering range data.

The comparison between δ(P) and δ(P)(LoS) is shown in Figure 6.27. The calibration
scale factor of 6.22 is applied to the results shown in this section.

What the simulations indicates is that, for a GRACE-type formation, the impact
on the positioning noise resulting from the relative orbit position noise along the
LoS direction is twice as large as the sum of the absolute positioning noise and
positioning noise resulting from the relative orbit position noise perpendicular to
the LoS direction. In other words, Figure 6.27 indicates that exploiting range
data to adjust the forecasted orbits reduces the amplitude of the errors related to
mis-positioning of the forecasted positions by half.

In terms of geoid heights per degree, the variant δ(P)(LoS) of the positioning noise
is lower for degree 16 and below, as shown in Figure 6.27b. This is in contradiction
to the fact that the amplitude in terms of residual range combination ASD, this
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Figure 6.28 – a) ASD of the simulated positioning noise δ(P), considering x(for) integrated
on the basis of EIGEN-CG03C, adjusted considering ρ(obs) derived from x(obs) integrated on
the basis of EIGEN-5C (in both cases up to degree 120) and according to Eq. (4.59) and
Eq. (4.60), considering the calibration factor of 6.22; b) DAS of the error in the gravity
field parameters resulting from the propagation of the simulated δ(P). The black curves in
both plots represent the actual data and the grey curves represent the simulation results.
The data period is 1 month for the simulation results. For the actual data, the data period
of the ASD is the year of 2006. For the DAS, it is the month of February 2006.

error is always higher (except for the small peak at 0.33mHz), cf. Figure 6.27a. This
results illustrates the different ways in which the two noise variants propagate to the
gravity field parameters.

In Chapter 7 a more detailed analysis of the contributions of each component of
the positioning noise is conducted.

Simulated positioning noise

The previous sections illustrated how the simulated positioning noise resulting
from the relative orbit position noise along the LoS direction δ(P)(LoS) and actual
GRACE data are exploited to scale the positioning noise δ(P) in order to make its
level realistic. The current section compares the simulated δ(P) with the GRACE a
posteriori residuals, in the same way as it is done for the remaining noise types.

Referring to Figure 6.28, the ASD of the simulated positioning noise is 5 to
10 times less intense than the GRACE a posteriori residuals, below 1 mHz. The
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difference increases above this frequency, since the amplitude of the positioning
noise decreases exponentially with increasing frequencies (roughly at the rate of one
order of magnitude per decade).

The propagated positioning noise δ(P) is 18 times smaller than the gravity field
model error from the GRACE a posteriori residuals. Between degrees 15 and 100,
the difference to the propagated GRACE a posteriori residuals remains relatively
constant, in spite of the ASDs diverging considerably in the range between 2.6 and
17mHz, which is roughly associated with the respective degrees. The explanation
for this disagreement is the same as in Section 6.3.3 for the correction noise.

6.3.6 Summary
Referring to Figure 6.29a, the advanced noise model is dominated by the ranging
noise above 5mHz and by the correction noise below 5mHz. The positioning noise
is roughly a factor of 5 smaller than the correction noise. The accelerometer noise
and orientation noise are at least one to two orders of magnitude below the actual
data noise. Importantly, the shape is remarkably consistent between the total error
and the actual data error. The discrepancy is at most a factor of 2 at around
6mHz, which falls within the frequency band of the actual data noise that is least
understood, see Section 6.2.2.

In terms of the gravity field model error, refer to Figure 6.29b, the advanced
noise model under-determines the actual data noise by a factor of 2.4, on average.
This discrepancy results mainly from the lower simulated noise in the frequency
band between 1 and 13mHz , relatively to the GRACE a posteriori residuals. The
accelerometer noise, ranging noise and orientation noise are not significant in the
total error budget. The error budget is consequentially driven by the correction noise
and by the positioning noise below degree 10.

The positioning noise and the correction noise, which dominate the low frequencies
at the level of range combinations, map mainly to the sectorial or nearly-sectorial
coefficients over a wide degree range; there are, nevertheless, ways to mitigate it, as
discussed in Section 2.5.6. The contribution of the ranging noise is not particular
significant in the conducted simulations, being a factor of 7.2 lower than the GRACE
a posteriori residuals. However, in view of the advances in data processing, improved
POD and the possibility to co-estimate orbit parameters in the data processing, the
ranging noise cannot be totally ignored.

To summarise, the STD of the range combination noise time series and the
corresponding geoid heights error per degree at degrees 60 and 100 are presented in
Table 6.5.
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Figure 6.29 – a) ASD of simulated noise from the advanced noise model and their total
contribution; b) DAS of the errors in the gravity field parameters resulting from the
propagation of the corresponding simulated noise. The dark-blue curves in both plots
represent the actual GRACE data noise for the year of 2006. The data period is 1 month
for the simulation results. For the actual data, the data period of the ASD is the year of
2006. For the DAS, it is the month of February 2006.
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noise type symbol STD [m/s2]
geoid error [mm]

per degree cumulative
degree 60 degree 100 degree 120

advanced noise model

accelerometer noise δ(acc) 4.8×10−11 0.028 0.22 2.0

correction noise δ(C) 4.1×10−9 1.9 14 110

orientation noise δ(L) 4.3×10−12 3.3×10−3 0.020 0.13

positioning noise δ(P) 1.4×10−9 0.25 2.0 20

ranging noise δ(R) 4.9×10−8 0.28 3.5 39

total 4.9×10−8 1.9 14 110

actual data

5.6×10−8 3.1 29 280

Table 6.5 – Summary of the advanced noise model, showing the STD of the time series of
range combination error and the geoid height error per degree at degrees 60 and 100, as
well as the cumulative geoid height error at degree 120. The statistics of the actual data
noise refer to the year of 2006 in case of the STD and to the February 2006 in case of the
geoid height errors.

The advanced noise model is built on a detailed modelling of all foreseeable
sources of error. Not included in the numerical analyses were the model errors, since
it is assumed that the GRACE data residuals are not corrupted significantly by them.
This assumption is shown to be reasonable in Section 6.2.2, considering that the
error introduced by the static gravity field model has been mitigated, as discussed in
Section 6.2.2. The noise model is yet to include the elusive error that is dominant
in the bandwidth between 1 and 13mHz, which leads to an optimistic estimate of
the errors in the error in the gravity field models. In any case, less than a factor of
two is hardly enough argument to question the simulation results in the context of
future gravimetric missions.

6.4 Conclusions
The current chapter groups all the analyses that exploit actual GRACE data for the
purpose of estimating the accuracy of the ll-SST measurement principle.
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The analysis conducted in Section 6.1 produces position and velocity residuals of
the considered KOs and PDOs, which are a realistic representation of the relative
position and velocity errors, projected onto the LoS direction. The ASDs of these
errors are estimated and exploited in order to model more accurately the errors in
future ll-SST gravimetric data, refer to Figure 6.5. It is assumed that, if all predicted
future GNSS systems as well as the additional frequency measurements are exploited,
the accuracy of the KOs and PDOs of future gravimetric missions will be a factor
of 3 higher. The reasoning behind this assumptions is presented in Section 6.1.7.

In Section 6.2, spectral analysis of data noise is performed in the context of
gravity field recovery from ranging data acquired by the satellite gravimetric mission
GRACE. The motivation of the study is to understand the primary contributions of
the error budget of real GRACE data. The analysed noise realisations are produced
as the difference between actual GRACE observations and predictions based on
state-of-the-art force models. It is demonstrated that the major contributors to
the noise budget at high frequencies (above 9 mHz) are: (i) ranging sensor noise
and (ii) limited knowledge of the Earth’s static gravitational field at high degrees.
Importantly, it is shown that updating the model of the static field on the basis of
the available data must be performed with caution, as the result may not be physical
due to a non-unique recovery of high-degree coefficients. The source of noise in
the range of intermediate frequencies (1−9mHz), which is particularly critical for
an accurate gravitational field recovery, is still not fully understood. It is shown,
however, that it cannot be explained by inaccuracies in background models of mass
transport. The conducted analysis also leads to a more general recommendation: it is
worth to design GRACE follow-on mission in such a way that the non-uniqueness of
gravity field recovery is minimised. In particular, an isotropic sensitivity of the future
mission would be a highly desirable feature, as it will reduce static field signals that
cannot be uniquely explained by the models produced on the basis of the collected
data. Another potential benefit of such a mission design is that it will presumably
reduce the impact of data noise in general. Consequentially, lower noise in gravity
field models can be achieved compared to the GRACE-type design, even if noise in
the Level-1B data is similar.

Section 6.3 analyses the advanced noise model of ll-SST data, by comparing the
simulation of the errors in the data of a GRACE-like formation with the GRACE a
posteriori residuals. The comparison is made in terms of range combination ASD and
geoid height per degree. In this way, a noise model is established that realistically
describes the accuracy of GRACE data. The accelerometer noise and orientation
noise are not significant in the total error budget. The error budget, as derived
from the analysis, is driven by the correction noise and positioning noise (the latter
exclusively below degree 10). However, as explained in Section 2.5.6, these errors
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are not dominant in actual data processing because appropriate measures are taken
to surpress it by high-pass filtering the data. The high-pass filtering procedure was
not considered in Section 6.3 because the purpose of the conducted analysis is to
determine the effect of the various noise sources and not to find ways to mitigate
them (refer to the discussion in Section 2.5.6). There is also a good match between
the sum of the noise types simulated on the basis of the advanced noise model and
the actual GRACE data errors.

The validation has demonstrated that the simulated noise is under-determined
by a factor of 2.4 relatively to the actual data noise. It would be instructive to clarify
the exact meaning of this number. This discrepancy results from the fact that the
noise dominant in the frequency band between 1 and 13mHz has not been modelled
properly because its cause has not been fully identified.

In Chapter 8, the advanced model is applied to predict errors in the measure-
ments to be collected by future satellite gravimetric missions. In those chapter,
the assumptions regarding orbit position and velocity errors (already discussed in
Section 6.1.7), as well as the amplitudes of accelerometer noise and ranging sensor
noise are modified to reflect the corresponding (expected) accuracy improvements
(cf. Section 8.1.4).
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The current chapter presents an in-depth analysis of the positioning noise. The
purpose of this analysis is to gain a deeper understanding on this noise, so that the
results of the simulations in the context of future gravimetric formations (discussed
in Chapter 8) can be better interpreted. The simulation of positioning noise is done
for the cartwheel, pendulum and trailing formations.

One important consideration in the current chapter is that the positioning noise
(which is defined at the level of range combinations) is best described as the
combination of its relative and absolute components. In this way, these components
can be related to the equivalent components in terms of orbital positioning noise.

The formations that are relevant here are presented and motivated in Section 7.1.
Section 7.2 discusses the simulation of the orbits. Section 7.3 looks into the relative
and absolute orbit position noise given by the difference between the positions of
two sets of orbits integrated from different force models. The analytical derivation
of the components of the positioning noise is presented in Section 7.4, so that their
amplitude is properly predicted. Finally, in Section 7.5, the simulation of individual
components of the positioning noise is presented and discussed.

7.1 Formation scenarios
The formations considered in the numerical study are the trailing, pendulum and
cartwheel formations. These formations are introduced in Section 3.3, Section 3.4
and Section 3.5, respectively. The motivation for choosing this set of formations
is mostly driven by the dominant orientation of the Line of Sight (LoS) vector,
relatively to the Local Horizontally-aligned Reference Frame (LHRF). Given the
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polar orbits of the formations, the LoS vector is mainly aligned with the North-South
direction in the trailing formation, with the East-West direction in the pendulum
formation and contains a radial component in the cartwheel formation (except at the
vicinity of the poles). This means that the orientation of the LoS vector is different
for each formation and perpendicular to those of the other formations. The only
exception is an overlap of the cartwheel and trailing formations in what regards
the alignment of the LoS vector along the North-South direction, particularly near
the poles. This is a requirement of orbital dynamics that cannot be circumvented.
Concerning the pendulum formation, there is a choice to include an along-track
offset (yoff in Table 7.1), but that would make the observations non-orthogonal to
the other formations. In the current set-up of the trailing and pendulum formations,
it is possible to quantify the contribution of collecting gravimetric data sampled
along the North-South and East-West directions separately, which would not be
possible if the pendulum formation’s yoff were different from zero.

The formation parameters relevant for the conducted numerical analysis are
presented in Table 7.1 (refer to Section 3.8.2 and Figure 3.8). These parameters
are expressed as functions of the maximum range ρ(max), which is 200 km in the
analysis presented in this chapter. The maximum range is approximately equal to the
amplitude of the cross-track motion in the pendulum formation (the B0 parameter
is the half cross-track amplitude), the relative distance between the satellites in
the trailing formation and twice the maximum altitude difference in the cartwheel
formation (the A0 parameter is the half maximum altitude difference).

formation parameter cartwheel pendulum trailing
A0 ρ(max)/4 0 0
B0 0 ρ(max)/2 0
α 0◦, 180 0 N/A
β 0 0◦, 180◦ N/A

yoff 0 0 ρ(max)

Table 7.1 – Formation parameters of the cartwheel, pendulum and trailing formations,
as function of the maximum range, ρ(max). The meaning of the formation parameters is
explained in Section 3.8.2.

The phase angles α and β define the initial position of the satellites in the ellipse
describing the relative motion. In case of the pendulum and cartwheel formations,
these angles are opposite in phase. In case of the trailing formation, there is no
(significant) relative motion and the phase angles are not relevant.

To simplify referring to a particular formation, the cartwheel, pendulum and
trailing formations are identified by the letters k, p and t, respectively. To refer to
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a particular formation with a particular ρ(max), the letter identifying the formation
is followed by ρ(max), e.g. k200 or p200 (in Chapter 8, other values of ρ(max) are
considered and this notation is maintained).

7.2 Orbit simulation
The numerical analysis makes use of the Keplerian reference orbits and orbits
simulated on the basis of a realistic gravity field model, called Modelled orbits,
according to the definitions introduced in Section 3.8.5. The Keplerian reference
orbits are exploited to derive the initial state vectors from which the Modelled orbits
are integrated under a realistic force model.

The simulations span a period of one month, with a sampling rate of 5 seconds.
In case of the trailing and pendulum formations, the mean orbital elements are
those of a polar circular orbit at 500 km altitude above the Earth’s equator; in case
of the cartwheel formation, the mean orbit is at 550 km altitude, so that there is
agreement between all formations regarding the minimum altitude. This altitude
was chosen because it is a proven compromise, as demonstrated by Gravity Recovery
And Climate Experiment (GRACE), between the increased signal strength at lower
altitudes and a long mission lifetime at higher altitudes. In any case, the value of this
parameter is relatively arbitrary when comparing the results of different formations,
since the increase in the signal amplitude associated with a lower orbital altitude
would be the same for all formations.

7.2.1 Keplerian reference orbits
For the conducted analysis, the relevant sets of formation parameters are presented
in Table 7.1. These parameters permit the orbital elements of the formation satellites
to be computed, refer to Section 3.8.4. The resulting orbital elements are reported
in Table 7.2.

7.2.2 Modelled orbits
The statistics about the length and attitude of the LoS vector for the case of the
Modelled orbits are now presented.

In Table 7.3, the statistics of the ranges are shown. From this table, it is seen that
the actual maximum range slightly differs from designated maximum ranges, equal
to 200 km. The reason is that the procedure used to derive the Keplerian reference
orbit, described in Section 3.8, is accurate for small maximum ranges, where the Hill
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formation sat.
nr

hmin

[km]
hmax

[km]
a [km] e [] i

[◦]
Ω [◦] ω [◦] M [◦]

k200 1 6918.14 180.00 182.94
k200 2 491 588 6918.13 0.007 90 0 352.30 10.75
p200 1 359.17
p200 2 500 500 6878.14 1.2×10−10 90 0.83 82.1 244.87

t200 1 82.9 262.16
t200 2 500 500 6878.14 1.2×10−10 90 0 89.5 257.16

Table 7.2 – Orbital elements of the Keplerian reference orbits. The minimum altitude hmin

and maximum altitude hmax are computed considering the equatorial radius of 6378.137 km.

equations, Eq. (3.4), are valid. It turns out that although the exploited procedure
is also applicable to larger maximum ranges, at least up to 200 km (Table 8.3
demonstrates that this is true up to 1000 km), the resulting relative motion is not
exactly the same as the one dictated by the original set of formation parameters.
Fortunately, the discrepancy is limited to a few percent. Noteworthy is that the
minimum range for the pendulum formation is of a few meters, which occurs over the
poles, when the orbits of the two satellites cross each other. This result is expected,
since the analytical Keplerian reference orbits predict zero range at the poles. It also
confirms that the Modelled orbits remain close to the idealization represented by
the Keplerian reference orbits, in spite of the aspherical gravity field model used in
the integration of those orbits.

orbit min(ρ) mean(ρ) max(ρ) std(ρ)
k200 97.0 150.0 207.0 34.3
p200 1.9×10−3 127.3 200.0 61.6
t200 199.8 199.9 200.1 6.9×10−2

Table 7.3 – Statistics of the ranges (in km).

In Table 7.4 and Table 7.5, the statistics of the inertial attitude are shown. The
first table refers to inertial elevation, defined as the angle between the LoS vector
and the Earth’s equatorial plane. The latter table shows the inertial azimuth angle,
the angle between the LoS vector and the (mean) orbital plane. These tables show
how the orientation of the LoS vector differs between the formations.

In the pendulum formation, the LoS vector has zero inertial elevation most of the
time, as shown by the low values of the mean and the standard deviation in Table 7.4.
Consequentially, the LoS vector is nearly-parallel to the equatorial plane. The inertial
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orbit min(Elev) mean(Elev) max(Elev) std(Elev)
k200 −19.0 3.9 26.7 13.8
p200 −7.8×10−1 −6.8×10−5 7.7×10−1 2.7×10−2

t200 −90.0 −5.1×10−3 90.0 51.9

Table 7.4 – Statistics of the inertial elevation in degrees. The inertial elevation is the angle
between the LoS vector and the Earth’s equatorial plane.

orbit min(Azim) mean(Azim) max(Azim) std(abs(Azim))
k200 −4.6×10−3 −2.5×10−6 4.6×10−3 7.2×10−4

p200 −90.0 −1.9×10−2 90.0 1.2
t200 −6.8×10−3 −5.7×10−8 1.3×10−2 1.2×10−4

Table 7.5 – Statistics of the inertial azimuth in degrees. The inertial azimuth is the angle
between the LoS vector and the (mean) orbital plane.

elevation of the LoS vector of the trailing formation changes between -90 and 90◦,
since the LoS vector continuously rotates in inertial space. The variations of the
LoS vector inertial elevation of the cartwheel formation are much lower, between
-19 and 27◦. The elevation angle oscillates between these extreme values every half
orbital period.

The small values of the mean and the standard deviation of the inertial azimuth
(Table 7.5) for the cartwheel and trailing formations confirm that the LoS vector
remains parallel to the orbital plane. In case of the pendulum formation, the standard
deviation of the absolute azimuth is close to 1◦, in spite of large maximum and
minimum values, ±90◦. This means that, in combination with the nearly-constant
zero inertial elevation, the transition between the extreme values occurs rapidly (and
at the poles). This happens in such a way that the LoS vector is most of the time
(nearly) orthogonal to the mean orbital plane.

7.3 Orbital noise
The current section explains how the orbit errors are simulated. These quantities
are defined at the level of orbit position errors, unlike the positioning noise, which is
defined at the level of range combinations.

In the context of the simplistic noise model, these errors are regarded as instrument
errors and, therefore, added to the observations, cf. Table 4.1. On the other hand,
the positioning noise is defined as errors in the forecasted quantities and, for that
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reason, the orbits corrupted by noise are regarded as the forecasted orbits, while the
original noiseless orbits are regarded as the observed orbits.

In the context of the positioning noise, the observed and forecasted orbits are
integrated explicitly from different gravity field models. In Section 4.3.3, relative to
the simplistic noise model, Eq. (4.46) and Eq. (4.49) demonstrate how the relative
and absolute orbit position errors, respectively, are added to a simulated orbit. In
that case, the errors were generated independently from the orbits and the noisy
orbits were computed as the sum of noiseless orbits and orbit errors. In case of the
simulation of the orbits errors relevant to the positioning noise, the orbits are already
available and the orbit errors are computed from them.

The relative orbit position noise δ(∆x) and absolute orbit position noise δ(x) can
be determined from the observed and forecasted orbits considering the following
operations:

δ(∆x) = d(obs)−d(for), with d= x(1)−x(2), (7.1)
and

δ(x) = x(obs)(12)−x(for)(12), with x(12) =
�

x(1)+x(2)
�

/2, (7.2)
respectively.
The noise amplitudes given by Eq. (7.1) and Eq. (7.2) can only be derived

from simulated orbits. From actual data, a possibility is to compute the relative
orbit position noise along the LoS direction δ(∆x)(LoS) from the Purely Dynamic
Orbits (PDOs), as extensively described in Section 6.1 and Section 6.3.5. The same
can be said about the Kinematic Orbits (KOs), although these are observed orbits
and not forecasted orbits, as is the case with PDOs, relevant to the current section.
Another source for this information, which follows the same approach of comparing
K-Band Ranging (KBR) data with orbit differences, is briefly mentioned in Ditmar
et al. (2012, Section 3.2).

Figure 7.1 shows the Amplitude Spectral Densitys (ASDs) of the relative and
absolute orbit position noise (column-wise), for the cartwheel, pendulum and trailing
formations (row-wise), estimated as the difference between the orbits integrated
on the basis of the EIGEN-5C and EIGEN-CG03C gravity field models. The plots
show the orbit differences in the Line-of-sight Reference Frame (LoSRF), i.e. the
x -component is always aligned with the LoS direction. Table 7.6 summarizes the
corresponding values of Root Mean Squared (RMS), as well as δ(∆x)(LoS) derived
from actual data of the GRACE satellites (relevant only to the trailing formation).

The second column of Figure 7.1 shows the ASDs of the components of the
absolute orbit position noise. Its shape is fairly consistent for all components and
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Figure 7.1 – ASD of the relative (first column) and absolute (second column) orbit position
errors in the LoSRF (i.e. δ(∆x)

x =δ(∆x)(LoS)), for the cartwheel (top row), pendulum (middle
row) and trailing (bottom row) formations. The orbit errors are simulated as the difference
between two sets of orbits integrated on the basis of the EIGEN-5C and EIGEN-CG03C
gravity field models. The relative orbit position noise curve labelled actual data in Figure
(e) refers to the difference between the range derived from actual KBR data and the PDO
of the GRACE satellites (cf. Section 6.1).

193



Chapter 7. Positioning noise

simulated data
δ(∆x)(LoS) RMS [mm] δ(x) 3D RMS [mm]

cartwheel 1.42 6.93
pendulum 2.58 8.07
trailing 0.36 8.56

actual data
δ(∆x)(LoS) RMS [mm]

trailing, Section 6.1 2.24
trailing, Ditmar et al. (2012) 3.7

Table 7.6 – RMS of the absolute orbit position noise δ(x) and the relative orbit position
noise along the LoS direction δ(∆x)(LoS) in the LoSRF , simulated as the difference between
two sets of orbits integrated on the basis of the EIGEN-5C and EIGEN-CG03C gravity field
models (top). RMS of the difference between the ranges derived from actual KBR data
and the PDOs of the GRACE satellites, according to Section 6.1 and Ditmar et al. (2012)
(bottom).

all formations: large amplitude below 0.2 mHz and logarithmic decrease above
this frequency. Among the components of the absolute orbit position noise, the
x -component is the one with the largest amplitude for the cartwheel and trailing
formations; for the pendulum formation, the y -component is the component with the
largest amplitude. The three-dimensional (3D) RMS of the absolute orbit position
noise is similar for all formations, between 7 and 8.5mm, see Table 7.6. The lowest
value is for the cartwheel formation, which is caused by the higher average altitude
of the satellites for this formation (resulting from a larger value of eccentricity e , cf.
Table 7.2).

Referring to the first column of Figure 7.1, all components of the relative orbit
position noise are of comparable magnitude for all formations, particularly above
0.2 mHz. This observation supports the assumption that the components of the
relative orbit position noise orthogonal to the LoS vector can also be estimated with
the help of range data (see Section 6.1).

In spite of a similar amplitude of the components of the relative orbit position
noise, the following exceptions are noteworthy: i) the y -component of the relative
orbit position noise of the cartwheel formation is of lower amplitude and ii) the
x -component and y -component of the relative orbit position noise of the pendulum
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formation are of larger amplitude in comparison to the z -component. This seems
to suggest that the directions with lowest relative motion amplitude, i.e. the y -
component in case of the cartwheel formation and the z -component in case of the
pendulum formation, are the ones least corrupted by relative orbit position noise. The
fact that the trailing formation shows similar amplitude for all components supports
this argument; recall that the relative motion in case of the trailing formation is
small along all directions. This argument is further supported by the 3D amplitude
of the relative orbit position noise between formations, refer to Table 7.6: the noise
for the trailing formation is seven times lower than for the pendulum formation and
4 times lower than for the cartwheel formation.

As a consequence of the exceptions discussed above, it can be expected that the
assumption of equal amplitude of the relative orbit position noise along all orthogonal
directions is conservative for the y -component of the cartwheel formation and for
the z -component of the pendulum formation. Notwithstanding, exploiting range
data (from hypothetical future pendulum and/or cartwheel formations) to estimate
the relative orbit position noise and assuming equal amplitude along all directions
is the only accurate option. Figure 7.1 shows that incurred over-estimation is, at
most, a factor of three, which is acceptable in the context of the simulation of future
gravimetric missions.

As discussed in Section 6.3.5, Figure 7.1e illustrates that the x -component of
the relative orbit position noise derived from actual data has a ASD with a similar
shape to the relative orbit position noise derived from the simulated orbits, with
some exceptions below 0.2mHz.

7.3.1 Calibration of the positioning noise
This section discusses the calibration procedure that is conducted in the simulation of
the positioning noise. A similar issue was discussed in Section 6.3.5, where the need
for the calibration procedure is identified when the simulation results are confronted
with actual GRACE data. In that section, the focus was exclusively to the trailing
formation. In the current section, the calibration of the positioning noise is put in
the context of the pendulum and cartwheel formations.

The positioning noise is calibrated in Section 6.3.5 so that influence of the
imperfectly-estimated initial state vectors is incorporated into the simulation envir-
onment. Figure 7.1e and Table 7.6 motivate this calibration procedure, since the
RMS of the relative orbit position noise derived from real data is 2.24 mm, while
the relative orbit position noise computed from the simulated orbits is 0.36 mm.
Considering these values for RMS, the resulting scale factor is 6.22.
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The RMS of the relative orbit position noise derived from real data is 2.24mm
in case of the analysis conducted in Section 6.1 and 3.7mm in case of Ditmar et al.
(2012). The discrepancy between these two values, which were obtained from the
same orbits, is attributed to the outlier removal scheme, which is much stricter
in Section 6.1 (recall that over 50 % of the data is discarded, cf. Table 6.1). The
RMS derived in Section 6.1 is favoured since it is most likely less affected by the
imperfectly-estimated initial state vectors, as discussed in Section 6.1.3.

As mentioned in Section 6.3.5, the calibration is done at the level of the residual
range combinations, not at the level of the relative orbit position noise. In this
way, both the relative orbit position noise and the absolute orbit position noise are
effectively calibrated. If the calibration factor of 6.22 is applied to the simulated
3D error amplitudes shown in Table 7.6, the absolute orbit position noise amplitude
becomes 5.3 cm. This value is in agreement with the 3D RMS values reported in
literature (albeit in a conservative way), cf. Table 2.5. Consequently, imperfectly-
estimated initial state vectors affect both relative and absolute components of the
orbit position noise.

In the context of the cartwheel and pendulum formations, there are two possibil-
ities for the calibration of the simulated positioning noise:

1. Consider the RMS values of the relative orbit position noise along the LoS
direction δ(∆x)(LoS) of each formation and derive from them individual calibration
factors;

2. Consider the calibration factor derived for the trailing formation to be common
to all formations.

The first option assumes that the actual relative orbit position noise estimated
on the basis of real GRACE data (with amplitude 2.24mm) is independent of the
formation geometry, while the second option assumes that the amplitudes of the
simulated relative orbit position noise are proportional to the real ones. Unfortunately,
there is no range data from a pendulum of cartwheel formation to determine which
assumption is correct. Nevertheless, there are other clues which make it possible to
make an educated guess. The first option would mean that the calibration factor
for the pendulum formation is close to unity. If that is the case, the absolute orbit
position noise would remain at sub-centimetre level for this formation, which is
unrealistic. Furthermore, the RMS of the absolute orbit position noise is comparable
across all formations; this is expected since the common differences introduced by
different force models on the orbits integrated with the same initial state vector is
not sensitive to the formation geometry. These arguments support the second option
as the most likely to be realistic. Consequently, the scale factor of 6.22 is applied
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consistently in the simulation of positioning noise of all formations. Note that this
scale factor addressed the issue of imperfectly-estimated initial state vectors; there is
an additional scale factor of 1/3, which predicts the improvement of the accuracy of
Global Navigation Satellite Systems (GNSSs), processing strategies and force models,
as discussed in Section 6.1.7. The latter scale factor concerns future gravimetric
missions, to be addressed in Chapter 8, and is not relevant in the current chapter.

7.4 Analytical derivation of the components of the
positioning noise

The current section derives analytical representations, particular to the trailing,
cartwheel and pendulum formations, of the relative and absolute positioning noise.
For the sake of simplicity, the averaging filter w described in Eq. (4.29) is ignored,
i.e. the discrepancy between point-wise and averaged quantities is assumed to
be negligible. This assumption is supported by Figure 6.6, which shows that the
point-wise and averaged accelerometer noise only differs at the highest frequencies
by no more than a factor of two. Starting from Eq. (4.59), the aforementioned
simplification allows the point-wise positioning noise δ(P)(pw) to be projected onto
the forecasted unit vector defining the LoS direction e(LoS)(for) directly:

δ(P)(pw) =δ(P)(pw) ·e(LoS)(for) =
�

∇V
�

x(obs), C (ref)
�

−∇V
�

x(for)(adj), C (ref)
��

·e(LoS)(for).

Let G be the gravity gradient tensor computed on the basis of C (ref), which
mainly describes features at spatial scales larger that the length of the LoS vector
d, and G (x) represents this tensor evaluated at the orbit positions x. Under these
assumptions, ∇V (x)≈G (x)d, so that:

δ(P)(pw) ≈
�

G
�

x(obs)(12)
�

d(obs)−G
�

x(for)(12)
�

d(for)(adj)
�

·e(LoS)(for). (7.3)

7.4.1 Relative positioning noise
In the context of deriving the contribution of the relative point-wise positioning
noise, it is assumed that G

�

x(for)(12)
�

≈G
�

x(obs)(12)
�

≡G
�

x(12)
�

. From Eq. (7.3), this
assumption means that the relative point-wise positioning noise is:

δ(P)(pw)(rel) ≈
�

G
�

x(12)
��

d(obs)−d(for)(adj)
��

·e(LoS)(for). (7.4)
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The relative point-wise positioning noise is now divided into the relative point-
wise positioning noise resulting from the relative orbit position noise perpendicular
to the LoS direction δ(P)(pw)(rel)⊥ and relative point-wise positioning noise resulting
from the relative orbit position noise parallel to the LoS direction δ(P)(pw)(rel)‖. The
contribution of δ(P)(pw)(rel)‖ could be ignored since the range data makes it possible
to reduce the orbit errors several orders of magnitude (from mm to µm in case of
GRACE). For completeness, this terms is not ignored in the derivation below.

In the case of δ(P)(pw)(rel)⊥, recalling that the adjustment given by Eq. (4.60)
ensures that

�

�d(obs)
�

�=
�

�

�d(for)(adj)
�

�

�=ρ:

δ(P)(pw)(rel)⊥ ≈ρ
�

G
�

x(12)
��

e(LoS)(obs)−e(LoS)(for)(adj)
��

·e(LoS)(for).

From Eq. (D.4), the difference between observed and forecasted unit vectors
defining the LoS direction is the noise in the orientation of the LoS vector δ(LoS),
which is a function of the relative orbit position noise perpendicular to the LoS
direction δ(∆x)⊥:

e(LoS)(obs)−e(LoS)(for)(adj) =δ(LoS) =
δ(∆x)⊥

ρ
;

so that:

δ(P)(pw)(rel)⊥ ≈
�

G
�

x(12)
�

δ(∆x)⊥
�

·e(LoS). (7.5)

In the case of δ(P)(pw)(rel)‖, the conditions are that e(LoS)(obs) = e(LoS)(for)(adj) ≡ e(LoS)

and ρ(obs)−ρ(for) ≡δ(∆x)(LoS). Under these conditions:

δ(P)(pw)(rel)‖ ≈δ(∆x)(LoS)
�

G
�

x(12)
�

e(LoS)
�

·e(LoS). (7.6)

7.4.2 Absolute positioning noise
In case of the absolute point-wise positioning noise δ(P)(pw)(abs), d(obs) = d(for)(adj) = d,
so that Eq. (7.3) simplifies to:

δ(P)(pw)(abs) ≈
�

G
�

x(obs)(12)
�

−G
�

x(for)(12)
��

d ·e(LoS).

Since d=ρe(LoS):

δ(P)(pw)(abs) ≈ρ
��

G
�

x(obs)(12)
�

−G
�

x(for)(12)
��

e(LoS)
�

·e(LoS).
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For brevity and only in the context of the absolute positioning noise, the equation
above henceforth represented as:

δ(P)(pw)(abs) ≈ρ
��

G(obs)−G(for)
�

e(LoS)
�

·e(LoS). (7.7)

7.4.3 Positioning noise magnitudes
In the Local Orbital Reference Frame (LORF) and for the formations considered in
the thesis, it holds that:

for the trailing formation, e(LoS) ≈ [1, 0, 0] T , i.e. the unit vector defining the LoS
direction is oriented mainly in the along-track direction, which means that:

• δ(∆x)⊥ ≈
�

0,δ(∆x)
y

⊥,δ(∆x)
z

⊥
�

T ;
• Ge(LoS) ≈

�

Gx x ,Gy x ,Gz x

�

T ;
for the pendulum formation, e(LoS) ≈ [0, 1, 0] T , i.e. the unit vector defining the

LoS direction is oriented mainly in the cross-track direction, which has as a
consequence:

• δ(∆x)⊥ ≈
�

δ(∆x)
x

⊥, 0,δ(∆x)
z

⊥
�

T ;
• Ge(LoS) ≈

�

Gx y ,Gy y ,Gz y

�

T ;
Implied in this analysis is that the change in the attitude of e(LoS) near the
poles, when the orbits of the satellites converge, happens quickly and localized
enough to have negligible influence on the stochastic properties of δ(P)

for the cartwheel formation, e(LoS) ≈
�

e(LoS)
x , 0,e(LoS)

z

�

T , i.e. the unit vector defining
the LoS direction has neglibigle cross-track direction, producing:

• δ(∆x)⊥ =
�

δ(∆x)
x

⊥,δ(∆x)
y

⊥,δ(∆x)
z

⊥
�

T (no neligible component in the relative
orbit position noise);

• Ge(LoS) ≈ e(LoS)
x

�

Gx x ,Gy x ,Gz x

�

T + e(LoS)
z

�

Gx z ,Gy z ,Gz z

�

T .

Assuming a polar circular orbit, the LORF is very similar to the LHRF, where
G
�

x(12)
�

is easily computed. During the ascending tracks, the two reference frames
nearly match; during the descending tracks, the x and y-axes have opposite directions.
The derived equations deal with random variables, which means that the change in
the direction of these two axes does not influence the magnitude of the resulting
positioning noise. On the other hand, this change in direction modifies the stochastic
properties of the positioning noise; this is not critical for the current analysis since
only the noise amplitude is relevant. It is also assumed that
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for the trailing and pendulum formations: Gi i �Gi j

and for the cartwheel formation: Gi j �Gi y .
Under these considerations and noting that Gi j are the entries of the tensor
∇∇V

�

x(12), C (ref)
�

, Table 7.7 presents approximate analytic expressions for the amp-
litudes of different variants of the positioning noise δ(P).

δ(P)(pw)

variant cartwheel penduluma trailing

δ(P)(pw)(rel)⊥ Gx xδ
(∆x)
x

⊥e(LoS)
x +Gz zδ

(∆x)
z

⊥e(LoS)
z Gy xδ

(∆x)
x

⊥+Gy zδ
(∆x)
z

⊥ Gx y δ
(∆x)
y

⊥+Gx zδ
(∆x)
z

⊥

δ(P)(pw)(rel)‖ δ(∆x)(LoS)
�

Gx x

�

e(LoS)
x

�2
+Gz z

�

e(LoS)
z

�2
�

δ(∆x)(LoS)Gy y δ(∆x)(LoS)Gx x

δ(P)(pw)(abs) ρ
�
�

e(LoS)
x

�2
G (res)

x x +
�

e(LoS)
z

�2
G (res)

z z +

2e(LoS)
z e(LoS)

x G (res)
z x

� ρG (res)
y y ρG (res)

x x

aIt is assumed that the attitude of e(LoS) remains constant, i.e. the rapid changes around the
poles do not play a significant role in the stochastic properties of δ(P).

Table 7.7 – Amplitude of the relative point-wise positioning noise resulting from the
relative orbit position noise perpendicular to the LoS direction δ(P)(pw)(rel)⊥, relative point-
wise positioning noise resulting from the relative orbit position noise parallel to the LoS
direction δ(P)(pw)(rel)‖ and absolute point-wise positioning noise δ(P)(pw)(abs), for the cartwheel,
pendulum and trailing formations, as derived analytically on the basis of Eq. (7.5), Eq. (7.6)
and Eq. (7.7). Note that G (res)

i j ≡G (obs)
i j −G (for)

i j and G (obs)
i j and G (for)

i j are the entries of the
tensors ∇∇V

�

x(obs)(12), C (ref)
�

and ∇∇V
�

x(for)(12), C (ref)
�

, respectively. Relevant to δ(P)(pw)(rel)⊥

and δ(P)(pw)(rel)‖ components, the term Gi j refers to ∇∇V
�

x(12), C (ref)
�

, in which case there
is no distinction between x(obs)(12) and x(for)(12).

Comparing the variants of the positioning noise and assuming that the compon-
ents of relative orbit position noise δ(∆x) are of equal magnitude, it is possible to say
that δ(P)(pw)(rel)‖ is of larger amplitude compared to δ(P)(pw)(rel)⊥ for the pendulum
and trailing formations. This is because the relative orbit position noise is scaled
by diagonal elements of the gravity gradient tensor in case of δ(P)(pw)(rel)‖ (G y y for
the pendulum formation and G x x for the trailing formation) and by off-diagonal
elements in case of δ(P)(pw)(rel)⊥ (G y x and G y z for the pendulum formation and
G x y and G x z for the trailing formation). In case of the cartwheel formation, the
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difference in amplitude between δ(P)(pw)(rel)⊥ and δ(P)(pw)(rel)‖ is not as large as for the
other two formations. These two noise variants differ only in the factors e(LoS)

i and
�

e(LoS)
i

�2
(if δ(∆x)

x
⊥ =δ(∆x)

z
⊥ =δ(∆x)(LoS)). The comparison between δ(P)(pw)(abs) and the

other two positioning noise variants is not straightforward. The amplitude of the
terms G (res)

i i cannot be determined analytically because it depends largely on the
discrepancy between x(obs)(12) and x(for)(12).

Table 7.7 makes it possible to predict that δ(P)(pw)(rel)⊥ are of comparable mag-
nitudes for the trailing and pendulum formations, as long as the relative orbit position
noise perpendicular to the LoS direction δ(∆x)⊥ is of comparable amplitude. The
analytic expressions for the two formations are nearly identical, only the x -component
and y -component are swapped. For the cartwheel formation, on the other hand,
this noise variant contains the contribution of diagonal terms of the gravity gradient
tensor and is, therefore, of larger amplitude. The amplitude of δ(P)(pw)(abs) is of
comparable amplitude for all formations, in view of the fact that diagonal elements
of the gravity gradient tensor play a role (in case of the cartwheel formation, there
is additionally the contribution of some off-diagonal elements).

7.5 Simulation of relative and absolute positioning
noise

Considering the observed orbit positions x(obs) and forecasted orbit positions x(for),
simulated with the procedure discussed in Section 7.1 and Section 7.2 on the basis
of the EIGEN-5C and EIGEN-CG03C gravity field models, respectively, it is possible
to simulate the individual contribution of the relative and absolute positioning noise.
In order to do that, the forecasted orbit position needs to be adjusted in order
to match its relative or absolute components to the observed orbit position. In
this context, the term adjustment is slightly different than in Section 6.3.5: the
adjustment does not aim to correct the orbit along the LoS direction with range
data but eliminate the differences in observed and forecasted orbital positions and,
consequently, mitigate the corresponding variant of the positioning noise. Each
relative and absolute positioning noise variant (k), either (abs), (rel)⊥ or (rel)‖, requires a
different adjustment of the forecasted orbit position:

δ(P)(pw)(k) =∇V
�

x(obs), C (ref)
�

−∇V
�

x(for)(adj)(k), C (ref)
�

. (7.8)

When simulating the absolute positioning noise δ(P)(abs), the forecasted LoS
vector d(for) is adjusted to be equal to the observed LoS vector d(obs):
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x(for)(adj)(abs) = x(for)(12)±d(obs). (7.9)

Eq. (7.9) ensures that x(for)(adj)(abs) differs from x(obs) only in what concerns the
middle-point between satellite 1 and satellite 2.

For the case of the relative positioning noise, two variants are relevant: the
positioning noise resulting from the relative orbit position noise along the LoS
direction δ(P)(rel)‖ and the positioning noise resulting from the relative orbit position
noise perpendicular to the LoS direction δ(P)(rel)⊥. In both cases, the forecasted orbit
positions require adjusting the middle-point between satellite 1 and satellite 2 so that
it matches the observed counterpart x(obs)(12). In addition to that, the adjustment
needed to simulated δ(P)(rel)‖ as to ensure that the forecasted unit vector defining
the LoS direction is equal to e(LoS)(obs):

x(for)(adj)(rel)‖ = x(obs)(12)±e(LoS)(obs)ρ(for). (7.10)

In practice, x(for)(adj)(rel)‖ is easily mitigated by exploiting range measurements, in
the way described by Eq. (4.60). The current analysis is only relevant to illustrate
its influence if the range data are not used for the orbit adjustment.

In case of the forecasted orbit positions adjusted to simulate positioning noise
resulting from the relative orbit position noise perpendicular to the LoS direction
x(for)(adj)(rel)⊥, the forecasted range is replaced by the observed range ρ(obs):

x(for)(adj)(rel)⊥ = x(obs)(12)±e(LoS)(for)ρ(obs). (7.11)
Table 7.8 summarizes the adjustment procedures applied in the thesis.

adjusted or-
bit x(for)(12) e(LoS)(for) ρ(for) equation

x(for)(adj)(abs) = e(LoS)(obs) ρ(obs) (7.9)

x(for)(adj)(rel)‖ x(obs)(12) e(LoS)(obs) = (7.10)

x(for)(adj)(rel)⊥ x(obs)(12) = ρ(obs) (7.11)

x(for)(adj) = = ρ(obs) (4.60)

Table 7.8 – Summary of the adjusted forecasted orbits considered in the thesis, in the
context of simulating positioning noise and its relative and absolute components.
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After conducting the aforementioned adjustments of the forecasted orbit positions,
all three variants of the positioning noise are simulated. This is done for the cartwheel,
pendulum and trailing formations, see Figures 7.2 and 7.3.

Referring to Figure 7.2a, the positioning noise resulting from the relative orbit
position noise perpendicular to the LoS direction is significantly more intense for the
cartwheel formation. In case of the trailing and pendulum formations, this variant
of the positioning noise is of similar amplitude (particularly above 1mHz). These
characteristics are predicted by the analytical analysis presented in Section 7.4.3, in
particular the first row of Table 7.7. The analytical analysis indicates that, for the
cartwheel formation, the positioning noise resulting from the relative orbit position
noise perpendicular to the LoS direction is contaminated by the diagonal components
of the gravity gradient tensor and, therefore, its amplitude is much larger than for
the other formations. The differences below 1mHz for the pendulum and trailing
formations are likely the result of the different average range, being smaller for the
pendulum formation.

In what concerns the positioning noise resulting from the relative orbit position
noise along the LoS direction shown in Figure 7.2b, the ASDs is mainly driven by the
amplitude of the relative orbit position noise parallel to the LoS vector. Referring to
Table 7.6, the relative amplitudes of the relative orbit position noise in the orbits of
the three formations is reproduced in Figure 7.2b: relative to the pendulum formation,
i) it is almost one order of magnitude smaller than for the trailing formation and
ii) it is 1.8 times smaller than for the cartwheel formation. This is because the
positioning noise resulting from the relative orbit position noise along the LoS
direction depends linearly on the diagonal components of the gravity gradient tensor
(and additional off-diagonal elements in case of the cartwheel formation), which
have similar amplitudes. Note that the positioning noise resulting from the relative
orbit position noise perpendicular to the LoS direction is effectively mitigated by
taking advantage of the range data collected by the ranging sensor (microwave or
interferometer).

Figure 7.2c illustrates that the ASDs of the simulated absolute positioning noise
are of similar amplitude. As an exception, the amplitude of the positioning noise
variant for the cartwheel formation is higher than for the other two formation between
0.3 and 3mHz. The reason is likely associated with the contribution of the G z z and
the 2G z x terms; G z z alone is of higher amplitude (roughly twice) than G y y and G x x

components that play a role in the pendulum and trailing formations, respectively
(cf. the last row of Table 7.7).
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Figure 7.2 – ASDs of the a) positioning noise resulting from the relative orbit position
noise perpendicular to the LoS direction, b) positioning noise resulting from the relative
orbit position noise along the LoS direction (which can be effectively mitigated with range
data) and c) absolute positioning noise variants, for the cartwheel (pink), pendulum (green)
and trailing (blue) formations.
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Figure 7.3 shows the same curves but now arranged such that the variants of
the positioning noise are compared for individual formations.

In case of the cartwheel formation, shown in Figure 7.3a, the amplitude of the
positioning noise resulting from the relative orbit position noise perpendicular to
the LoS direction is up to a factor of 5 larger than the amplitude of the positioning
noise resulting from the relative orbit position noise along the LoS direction. This is
a highly unfavourable situation, since it effectively means that adjusting the orbits
of the cartwheel formation with range data is futile for the purpose of limiting the
effect of the positioning noise.

Figure 7.3b shows the amplitude of the variants of the positioning noise for
the pendulum formation. Unlike for the cartwheel formation, the amplitude of
the positioning noise resulting from the relative orbit position noise along the LoS
direction is over one order of magnitude larger than the next significant variant,
the absolute positioning noise. In this case, the use of range data to suppress the
positioning noise is essential.

Finally, Figure 7.3c shows that the trailing formation may also benefits from
exploiting range data. Unlike for the pendulum formation, the improvement is more
modest, only decreasing the positioning noise by roughly a factor of two. Since the
absolute positioning noise is of comparable amplitude for the trailing and pendulum
formations, the use of range data reduces the amplitude of their positioning noise to
comparable levels. In the case of these formations, the positioning noise resulting
from the relative orbit position noise perpendicular to the LoS direction can safely be
ignored since its amplitude is two orders of magnitude below the absolute positioning
noise.
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(b) pendulum
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Figure 7.3 – ASDs of the positioning noise resulting from the relative orbit position noise
perpendicular to the LoS direction (pink), positioning noise resulting from the relative orbit
position noise along the LoS direction (green, which can be effectively mitigated with range
data) and absolute positioning noise (blue) variants, for the a) cartwheel formation, b)
pendulum formation and c) trailing formation.
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7.6 Conclusions
In this chapter, the absolute and relative components of the orbit position noise
are analysed for the cartwheel, pendulum and trailing formations. In the same way
as the orbit noise, the positioning noise is decomposed in its relative and absolute
components, with the latter further split into the components resulting from the
relative orbit position noise parallel and perpendicular to the LoS direction. The
influence of these components of the orbit position noise (i.e. distance error) on the
positioning noise (i.e. range combinations errors) is quantified both analytically and
through numerical simulations. The motivation for choosing this set of formations is
mostly driven by the dominant orientation of the LoS vector, relatively to the LHRF.

In contrast, the analysis of the positioning noise in Section 6.3.5 focuses on the
trailing formation and how the simulation of the positioning noise compares with the
GRACE a posteriori residuals and the positioning noise estimated from actual data.
In fact, the simulation of the trailing formation is consistent between Section 6.3.5
and the current chapter. In what regards future gravimetric missions, that analysis
is done exclusively in Chapter 8, although the orbits are the same.

The orbit noise is estimated as the difference between two sets of orbits integrated
on the basis of the EIGEN-5C and EIGEN-CG03C gravity field models, as defined
in Section 4.3.3. In Section 7.3, it is shown that the absolute orbit position noise
is of comparable magnitude for all formations, while the amplitude of the relative
orbit position noise changes considerably. It is expected that the amplitude of the
absolute orbit position noise remains relatively constant irrespective of the formation
because this component of the orbit error is insensitive to the formation geometry.

As discussed in Section 6.3.5, the simulation environment differs from actual
data processing, since the imperfectly-estimated initial state vectors considered in
actual data processing have a much larger variability than the initial state vectors
derived from the Keplerian reference orbits. This motivates the use of the calibration
factor of 6.22, derived with the help of GRACE range data. Given the fact that the
relative orbit position noise derived from the integrated orbits of the three formations
differs considerably, the most reasonable approach is to apply the calibration factor
derived for the trailing formation to the other two formations as it is. In this way, it
is assured that the magnitude of the relative orbit position noise duplicates that of
actual data in case of the trailing formation (cf. Section 6.3.5) and the amplitude of
the calibrated absolute orbit position noise is in agreement with other studies, e.g.
those listed in Table 2.5.

It is shown in Section 7.4 that the cartwheel formation suffers from a very high
sensitivity to the positioning noise resulting from the relative orbit position noise
perpendicular to the LoS direction. This is a fundamental characteristic of this
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formation that results from the amplification of the relative orbit position noise by
diagonal components of the gravity gradient tensor, while the pendulum and trailing
formations are only affected by off-diagonal components (which are small in their
case).

The pendulum formation, in spite of the higher amplitude of relative orbit position
noise, produces a lower level of positioning noise resulting from the relative orbit
position noise perpendicular to the LoS direction in comparison to the cartwheel
formation, cf. Section 7.5. In fact, the amplification effect in the cartwheel formation
is so severe that, in spite of the lower relative orbit position noise amplitude, the
positioning noise resulting from the relative orbit position noise perpendicular to
the LoS direction is 3 orders of magnitude larger than that of pendulum formation.
This means that any implementation of the cartwheel formation, e.g. those listed
in Table 1.2, will most likely produce data with relatively low quality, in particular
for future gravimetric missions, which are equipped with highly accurate ranging
sensors.

The simulations show that the adjustment of the orbit errors along the LoS
direction is futile in case of the cartwheel formation, owing to the high amplitude of
the positioning noise resulting from the relative orbit position noise perpendicular
to the LoS direction. In fact, the orbit adjustment is most effective in case of the
pendulum formation, with an improvement of around one order of magnitude, since
this formation is more sensitive to the positioning noise resulting from the relative
orbit position noise along the LoS direction than the trailing formation. In case of
the trailing formation, the orbit adjustment decreases the level of positioning noise
by a factor of two, as discussed in Section 6.3.5.
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Satellite Formations 8
The purpose of this chapter is to compare the performance of different types of
satellite formations exploiting low-low Satellite-to-Satellite Tracking (ll-SST) data.
In the course of a numerical study, the accuracy of the gravity field recovery is
quantified as function of the type of formation and maximum range. The main
purpose of the analysis is to deliver a realistic noise budget of the considered satellite
formations.

The formations considered are the trailing, pendulum and cartwheel formation,
presented in Chapter 3, their orbit simulation is described in Section 7.1 and further
detailed in Section 8.1.1. These formations are chosen because they sample the
gravitational field along different directions, resulting in the largest differences
between their sensitivity to various gravitational field features. The numerical study
does not take into account the technical complexity of each of the formations under
analysis. The purpose is to study the gravimetric measurement system concepts
associated with the considered scenarios. Nevertheless, in Section 8.1.1 the issue of
technical complexity is briefly addressed, in order to illustrate the technical challenges
of each formation concept.

In Section 8.1.2, the force model considered in the simulation of the orbits and
the relevant noise types are presented.

In Section 8.1.3, the details of the orbit integration step are presented. Three
scenarios of different maximum range are contemplated: 200, 400 and 1000 km.
The objective of extending the simulations to different values of maximum range
is to gain insight into the benefits of a larger maximum range and into how the
estimated gravity field model error correlates with this parameter.

The simulation of noise of different types is addressed in Section 8.1.4. This
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section starts with describing the procedure used to simulate the noise, while the
paragraph Assumptions in the simulation of noise of different types presents the
underlying assumptions. Two types of errors are considered: measurement and
model errors. The measurement error is associated with the performance of various
sensors on-board the spacecraft, as well as with orbit determination accuracies. The
model errors describe how inaccuracies in the background force models corrupt the
estimated gravity field models. The measurement errors considered in the numerical
study are the accelerometer noise, correction noise, orientation noise, positioning
noise and ranging noise. These are the noise types that make up the advanced noise
model presented in Section 4.3.3 and validated in Section 6.3. The only considered
model error is the mis-modelled time-variable signal, refer to Section 4.3.1 for the
definition of this noise type. The errors resulting from the omission signal and from
the mis-modelled static signal (Section 4.3.1) are not considered in the context of this
numerical study but are addressed in Appendix E. The reason to ignore these model
errors is associated with the underlying assumptions considered in their simulations.
In the case of errors resulting from the omission signal, the reference gravitational
field can be forecasted up to a sufficiently large degree, effectively eliminating this
error. In what concerns the signals described by the coefficients above that degree,
it is reasonable to assume that satellite formations for monitoring the temporal
gravitational field variations are not sensitive to them. In case of the errors caused by
the mis-modelled static signal, the Gravity field and steady-state Ocean Circulation
Explorer (GOCE) mission has improved considerably the knowledge of the static field.
For this reason, most research into future gravimetric formations ignores the effects
of the mis-modelled static signal and omission signal, cf. Table 1.2. Including these
model errors in the noise budget would be artificially unfavourable to the remaining
noise types, if over-conservative assumptions are considered in their production.
The question of which formations is most sensitive to these two model errors is
nevertheless analysed in Appendix E.

The measurement and model errors are propagated to the gravity field parameters
to quantify the sensitivity of the formations to each noise type. The methodology
considered in the numerical study consists of two major steps: (i) data simulation
(already mentioned) and (ii) data inversion, detailed in Section 8.1.5. Results of the
noise propagation are presented in Section 8.2.

The discussion in Section 8.3 applies the results of the numerical study to the
practical aspects of a possible future gravimetric mission. The proposed mission
makes use of a polar pendulum formation, therefore taking advantage of this
formation’s low sensitivity to temporal aliasing and orbital errors. This formation is
particularly favourable in conjunction with a polar trailing formation, thus resulting
in a dual gravimetric mission.
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The summary and concluding remarks can be found in Section 8.4.

8.1 Simulation set-up
The numerical analysis intends to follow as close as possible the procedure used for
the production of the Delft Mass Transport (DMT) model (Liu et al. 2010; Ditmar
et al. 2013), introduced in Section 4.1.2.

The range observations are computed from a pair of orbits, with the distance
between the satellites at each epoch being considered as the range observation. The
force model used in the orbit integration defines the signal in the range measurements.
The force model exploited in the step of orbit integration is not necessarily the
same as the one used for purpose of simulating some noise types, as described in
Section 8.1.2.

In the production of the DMT model, the influence of the low-frequency noise in
the Gravity Recovery And Climate Experiment (GRACE) data, resulting from errors
in the orbital positions and velocities (cf. Section 2.5.6), is minimized by estimating
the parameters of an empirical analytical function, cf. Ditmar et al. (2012, eq. 52)
and Farahani et al. (2013a). This procedure unequivocally results in more accurate
estimated models but it is not considered in the conducted study. There is no reason
to assume that this particular procedure would be beneficial in the processing of
data from other formations. Irrespective of the fact that it is suitable to suppress
the low-frequency noise in the GRACE data, it may be inadequate or sub-optimal for
the pendulum or cartwheel formations. In that case, the analysis results would be
biased towards the trailing formation. Consequentially, an appropriate low-frequency
noise suppression methodology would have to be developed for the pendulum and
cartwheel formations, which is outside the scope of the conducted study. The
comparison between the formations is done strictly on the basis of simulated errors
without any further processing.

Another difference between the numerical analysis in the thesis and the production
of the DMT model concerns the post-processing with a statistically optimal Wiener-
type filter based on full covariance matrices of signal and noise (Klees et al., 2008;
Liu et al., 2010). The DMT model takes advantage of this filtering technique, which
down-weights the sectorial and near-sectorial spherical harmonic coefficients poorly
estimated by GRACE, thus minimizing the North-South stripes in the resulting
gravity field models. This technique has not been employed in the analysis, because
the purpose of this section is to determine the sensitivity of each formations to
different noise types. One important aspect is to assess the level of isotropy in the
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data sensitivity for each satellite formation type. Such assessment could not be done
after applying the aforementioned filtering.

8.1.1 Formation scenarios
The formations considered in the numerical study are the trailing, pendulum and
cartwheel formations. These formations were introduced in Section 3.3, Section 3.4
and Section 3.5, respectively. Section 7.1 described the orbit simulation of these
formations. The maximum range ρ(max) considered in the current chapter, referred
in Table 7.1 is 200, 400 and 1000 km.

The trailing formation is a proven concept for measuring Earth’s gravitational
field, as demonstrated by the GRACE mission. It is the simplest formation and
also the easiest to achieve technically. The angle between the velocity vector and
the Line of Sight (LoS) vector is nearly constant and equals a few degrees. Unlike
for the other formations, this permits the ranging sensor to be mounted rigidly
on the body of the satellites and use the Attitude Control System (ACS) to point
it towards the other satellite. The disadvantage is that the collected data have
anisotropic sensitivity, they are insensitive to variations of the gravitational field
along the cross-track (predominantly East-West) direction.

The pendulum formation is characterized by a cross-track cyclic motion, with
a nearly zero along-track component. The amplitude of the cross-track motion is
controlled by the right ascension of the ascending node of satellite 1 relatively to
satellite 2 provided that the orbits cross at the poles and have maximum range at the
equator. The chosen distribution of range with latitude produces a higher sensitivity
to the gravitational field in equatorial regions, particularly the large wavelength
features. The increased localized sensitivity is beneficial to compensate for the larger
distance between neighbouring equator crossings. Near the poles, the large density of
observations compensates the small range. The pendulum formation, as considered
in the numerical study, has the same disadvantage as the trailing formation, i.e.
anisotropic sensitivity, with the difference that the data are more sensitive along
the cross-track direction. Furthermore, it is technically more challenging in view
of the fact that the angular difference between the LoS vector and the velocity
vector is in the -90 to 90◦ range. It is considered in the numerical study because
it samples the gravitational field along the direction orthogonal to the other two
formations. Any practical and technically feasible implementation of the pendulum
formation, such as the one suggested by Panet et al. (2012), includes a non-zero
along-track offset so that the largest angular difference between the velocity and
LoS vectors is reduced while the formation still benefits from sensing the East-West
gravitational component. Unfortunately, such configurations do not benefit from the
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inertially-frozen attitude of the LoS vector of the pendulum formation considered in
the present study, which considerably mitigates the effects of some noise types, see
Section 8.2.

The cartwheel formation is a promising configuration for future gravimetric
missions. Of the three formations considered, it is the only one capable of measuring
the relative acceleration in the radial direction. The gravitational field can be
unambiguously reconstructed if measurements are taken in the radial direction, while
that is not so if only one horizontal direction is sampled. As a result, the data
gathered with the cartwheel formation are expected to have more isotropic sensitivity,
at least while the attitude of the LoS vector contains a significant radial component.
Unfortunately, the ability of the cartwheel formation to sample the gravitational field
along the radial direction turns out to make it highly sensitivity to orbit errors, as
discussed in Chapter 7. This is a severe limitation of any formation with a significant
radial relative motion, which can only be mitigated with (much) more accurate orbits.
Another disadvantage of the cartwheel formation is related to the technical difficulty
in implementing it, namely the complete 360◦ angular difference between the LoS
vector and the velocity vector. Additionally, the differential drag associated with the
different altitudes of the satellites (except near the poles) introduces complexity in
formation control, unlike for the pendulum and trailing formations. The cartwheel
formation considered in the numerical study assumes a horizontal LoS vector over
the poles and radial over the equator. This choice aims at ensuring that the data
sensitivity is highly isotropic over the equator where the inter-track distance is the
largest. Over the poles, the anisotropic sensitivity is mitigated by different directions
in which the range is measured at the converging ground-tracks.

8.1.2 Force model
In the numerical studies of future satellite gravimetric missions, two gravity field
models are typically used. The “true” model, representing the real gravitational
field of the Earth, is used for the integration of the orbits and, from them, the
computation of the observed data. The reference model representing the current
knowledge of the Earth’s gravitational field is used to compute the forecasted data,
refer to Section 4.1.2.

In contrast, the purpose of the conducted numerical experiment described in
this chapter is to study the propagation of the noise, not signal, for different types
of formations. Consequently, the “true” and reference gravitational potentials are
often the same and the resulting residual quantities are equal to zero. In that case,
the errors are not influenced by the gravitational potentials. The exception are
the simulations concerning the positioning noise (Section 4.3.3) and mis-modelled
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time-variable signal (Section 4.3.1). In those sections, the difference between the
“true” and reference gravity field models is explained.

The temporal aliasing is assumed to be caused solely by the time-varying com-
ponent of the Earth’s gravitational field associated with the high-frequency processes
described by the Atmosphere and Ocean De-aliasing Level 1B (AOD1B) product,
namely non-tidal mass re-distribution in the atmosphere and oceans. The force
model components associated with the N-body perturbations and tides (both ocean
and solid-Earth), as well as the relativistic effects, are assumed to be forecasted
accurately enough and, therefore, not considered. Neglecting the influence of ocean
tidal aliasing is justified, since these variations are fairly well understood (Ray and
Luthcke, 2006), although ocean tide models keep improving (Stammer et al., 2014).
Therefore, it is assumed that those models are of sufficiently high quality by the time
the proposed gravimetric mission is launched, in view of i) the current and planned
large number of altimetric satellite missions, ii) the errors in those models are mainly
restricted to the polar regions (resulting from little or poor altimetry data) and areas
covered with shallow seas (caused by frictional effects, enhanced tidal motion and
the presence of coastlines) (Schrama and Visser, 2006; Ray et al., 2009; Visser et al.,
2010; Müller et al., 2014). Furthermore, Thompson et al. (2004), Visser (2010)
and Reubelt et al. (2014) have demonstrated through numerical simulations that
the effects on the gravity field parameters of temporal aliasing originating from the
non-tidal atmosphere and ocean variations are comparable to those originating from
ocean tides. Importantly, the mitigation of the effects of errors in tidal models is
best done at the level of careful orbit design to avoid aliasing periods. In other
words, this analysis cannot done without regard to the repeat periods of the orbits;
the results may be biased since these orbits may have repeat periods close to the
aliasing periods of the tide constituents. For this reason, the fair comparison of
the result of all formations must be based on orbits with similar repeat periods.
This consideration makes the production of those orbits much more complex and
outside the initial objectives of the study. The influence of continental hydrology is
uncertain, as this occurs across a range of spatial and temporal scales; however, for
the purposes of the simulations presented here, precise knowledge of hydrology is
not required. This is because the amplitude of the temporal aliasing associated with
the AOD1B product is of comparable amplitude as the temporal aliasing associated
with hydrology, cf. Section 6.2.2 as well as Figures 6.18 and 6.19). Low-frequency
temporal variations associated with glaciology are also not considered, since they
introduce a comparable or less significant level of temporal aliasing. In other words,
is assumed that considering components other than AOD1B would not change the
simulation results significantly.

The static gravity field models used in the numerical study are listed in Table 8.1
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and are henceforth identified by the number shown in the first column.

model nr gravity field model
0 point-mass
1 EIGEN-5C + AOD1B
2 EIGEN-CG03C
3 EIGEN-5C

Table 8.1 – Definition of the background force models. The point-mass gravity field model
is described by the C 00 coefficient only.

8.1.3 Orbit simulation
The orbits considered in the current study are the same as to those discussed
in Section 7.2. In addition to the orbits with maximum range equal to 200 km,
similar orbits with maximum range equal to 400 and 1000 km are considered. The
corresponding orbital elements are presented in Table 8.2.

Similarly to Tables 7.3, 7.4 and 7.5 in Section 7.2, Tables 8.3, 8.4 and 8.5
present, for completeness, the statistics about the length and attitude of the LoS
vector for the orbits with maximum range equal to 400 and 1000 km. These orbits
are integrated on the basis of a complete force model, specifically the sum of the
EIGEN-5C and AOD1B models (force model number 1 in Table 8.1). The statistics
related to other force models are very similar.

The interpretation of the statistics presented in Section 7.2 is the same for the
values of maximum range equal to 400 and 1000 km.

8.1.4 Data simulation
The simulation of various noise components follows the procedure presented in
Section 4.3.3. There are, however, a number of details particular to the current
analysis that need clarification.

Table 8.6 shows which “true” and reference background force model is used
to integrate the observed orbit positions x(obs) and forecasted orbit positions x(for),
respectively, for each simulated noise type. Referring to the distinction between
Keplerian reference orbit and Modelled orbit introduced in Section 3.8.5, the orbits
integrated on the basis of force model number 0 (the spherical gravity field model)
are Keplerians, while the remaining orbits are integrated on the basis of the force
models 1 to 3 (refer to Table 8.1 for the definition of the force models).
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formation sat.
nr

hmin

[km]
hmax

[km]
a [km] e [] i

[◦]
Ω [◦] ω [◦] M [◦]

k200 1 6918.14 180.00 182.94
k200 2 491 588 6918.13 0.007 90 0 352.30 10.75
k400 1 180.00 182.86
k400 2 505 700 6980.64 0.014 90 0 358.20 4.89
k1000 1 7130.64 0 180.00 182.66
k1000 2 503 1002 7130.63 0.035 90 0 357.10 6.00
p200 1 359.17
p200 2 500 500 6878.14 1.2×10−10 90 0.83 82.1 244.87

p400 1 358.33
p400 2 500 500 6878.14 1.2×10−10 90 1.66 82.8 262.22

p1000 1 355.83 82.1 244.87
p1000 2 500 500 6878.14 1.2×10−10 90 4.16 82.9 262.16
t200 1 82.9 262.16
t200 2 500 500 6878.14 1.2×10−10 90 0 89.5 257.16
t400 1 1.2×10−10 82.9 262.16
t400 2 500 500 6878.14

1.9×10−10 90 0 89.8 258.53
t1000 1 1.2×10−10 82.9 262.16
t1000 2 500 500 6878.14

4.8×10−10 90 0 95.4 275.97

Table 8.2 – Orbital elements of the Keplerian reference orbits. The minimum altitude hmin

and maximum altitude hmax are computed considering the equatorial radius of 6378.137 km.

orbit min(ρ) mean(ρ) max(ρ) std(ρ)
k200 97.0 150.0 207.0 34.3
k400 205.0 316.0 416.7 71.6
k1000 504.5 778.4 1035.7 176.7
p200 1.9×10−3 127.3 200.0 61.6
p400 4.4×10−3 254.5 400.0 123.1
p1000 2.0×10−2 635.8 999.2 307.5
t200 199.8 199.9 200.1 6.9×10−2

t400 399.6 399.8 400.2 1.4×10−1

t1000 998.2 998.9 999.7 3.4×10−1

Table 8.3 – Statistics of the ranges (in km) for the case of the force model number 1.

The ranging noise δ(R) and accelerometer noise δ(acc) do not dependent signific-
antly on the orbits. The choice of orbits used for their simulation is not critical, as
long as a representative orbit is considered. For that reason, these noise types are

216



Simulation set-up 8.1

orbit min(Elev) mean(Elev) max(Elev) std(Elev)
k200 −19.0 3.9 26.7 13.8
k400 −19.7 9.3×10−1 21.5 13.7
k1000 −19.5 1.5 22.5 13.7
p200 −7.8×10−1 −6.8×10−5 7.7×10−1 2.7×10−2

p400 −7.6×10−1 −6.4×10−5 7.7×10−1 2.7×10−2

p1000 −7.2×10−1 −4.4×10−5 7.2×10−1 2.5×10−2

t200 −90.0 −5.1×10−3 90.0 51.9
t400 −90.0 −1.6×10−2 90.0 51.9
t1000 −90.0 −6.2×10−3 90.0 51.9

Table 8.4 – Statistics of the inertial elevation in degrees for the case of the force model
number 1. The inertial elevation is the angle between the LoS vector and the Earth’s
equatorial plane.

orbit min(Azim) mean(Azim) max(Azim) std(abs(Azim))
k200 −4.6×10−3 −2.5×10−6 4.6×10−3 7.2×10−4

k400 −1.8 3.4×10−7 1.7 7.1×10−3

k1000 −1.5 4.1×10−6 1.6 6.0×10−3

p200 −90.0 −1.9×10−2 90.0 1.2
p400 −90.0 −1.9×10−2 90.0 1.2
p1000 −90.0 −1.9×10−2 90.0 1.2
t200 −6.8×10−3 −5.7×10−8 1.3×10−2 1.2×10−4

t400 −1.8×10−2 −9.8×10−8 1.4×10−2 1.3×10−4

t1000 −1.0×10−2 −5.6×10−8 1.2×10−2 1.3×10−4

Table 8.5 – Statistics of the inertial azimuth in degrees for the case of the force model
number 1. The inertial azimuth is the angle between the LoS vector and the (mean) orbital
plane.

computed with the simplifying assumption that the motion of the satellites is under
the influence of a spherical gravitational field. The orbits simulated in this was are
favoured because they do not contain the gaps associated with the arc-boundary
discontinuities of the Modelled orbits. In case of δ(R), the noise at the level of the
range combinations is derived directly from ranging sensor noise δ(ρ), as indicated in
Eq. (4.53), so that ρ plays no role. The parameters θ i ,±1 do not change significantly
between Keplerian and Modelled orbits, so it is not important from which orbit
they are derived. The accelerometer noise δ(acc) is also computed explicitly, since
it is generated using Eq. (4.51). Although the correction noise δ(C) is inherently
associated with errors in the orbital velocity, it is simulated explicitly with Eq. (4.55).
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noise type symbol x(obs) x(for)

accelerometer noise δ(acc) 0 0
correction noise δ(C) 0 0
orientation noise δ(L) 3 3
positioning noise δ(P) 3 2
ranging noise δ(R) 0 0
mis-modelled time-variable signal δ(tv)a 1 3

aThe resulting gravity field model error should be scaled by the factor 0.1, as discussed in
Section 4.3.1.

Table 8.6 – For each noise type, the force model (listed in Table 8.1) used for the integration
of the observed orbit position x(obs) and forecasted orbit position x(for) is identified.

Recall that the δ(ẋ (12)⊥) term, associated with the noise in the orbit velocity of satellite
1 relatively to satellite 2 projected onto the plane perpendicular to the LoS direction,
is determined in Section 6.1 and its Amplitude Spectral Density (ASD) is shown in
Figure 6.4, right-hand side. For the same reasons as for δ(R) and δ(acc), the simulation
of the correction noise is done considering Keplerian orbits.

Assumptions in the simulation of noise of different types

The assumed noise amplitudes, as functions of frequency, are taken from literature
or another section of the thesis. The following list describes the assumptions of the
noise amplitudes needed to simulate the various noise type presented in Table 8.7.

accelerometer noise: representative of the current SuperSTAR accelerometer noise
amplitude, on-board the GRACE satellites, with ASD shown in Figure 6.20;

relative orbit velocity noise: (relevant to the correction noise): relative velocity
errors given by the ASD in Figure 6.5, right;

relative orbit position noise: (relevant to the orientation noise): relative posi-
tioning errors given by the ASD in Figure 6.5, left;

ranging sensor noise: noise amplitude adapted from Cesare et al. (2008, Fig. 2B),
Silvestrin et al. (2012, Fig. 27.3) and Pierce et al. (2008, Fig. 3), with ASD
shown in Figure 8.1;

positioning noise: considering the discussion in Section 6.1.7 related to the accuracy
of future Global Navigation Satellite Systems (GNSSs), the positioning noise
shown in in Figure 7.3 (excluding the positioning noise resulting from the
relative orbit position noise along the LoS direction, green lines) is down-scaled
by a factor of 3.
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Figure 8.1 – ASD of the assumed ranging sensor noise δ(ρ), adapted from Cesare et al.
(2008); Silvestrin et al. (2012); Pierce et al. (2008).

Except for the assumptions listed above, the simulation procedure is identical to
the validation conducted in Section 6.3.

The accuracy of the accelerometer measurements is in-line with the current
characteristics of the accelerometers of GRACE. It can be argued that the noise
amplitude of the accelerometer considered in the thesis is too conservative, particularly
in comparison to the accuracy of the GOCE accelerometers, reportedly at the level of
10−12 m/s2 (Christophe et al., 2010). However, those instruments are exceptional and
produced specifically to meet the strict accuracy requirements of the GOCE mission.
It is not assured that future gravimetric missions will benefit from comparable
accuracy in the accelerometers, considering that these instruments are not the most
dominant source of errors in the data.

The relative orbit velocity noise and relative orbit position noise are determined
experimentally from the comparison of K-Band Ranging (KBR) data with the range
derived from the Purely Dynamic Orbits (PDOs) used in the production of the DMT
model, as presented in Section 6.1, particularly in Figure 6.5.

The ranging noise is assumed to reflect the predicted accuracy of the laser
ranging sensor proposed by Cesare et al. (2008); Silvestrin et al. (2012); Pierce et al.
(2008), cf. Figure 8.1. Alternatively, the ranging sensor proposed for the GRACE
Follow On (GFO) (Sheard et al. 2012; Larkin 2012; Zaragoza 2013) mission, shown
in Sheard et al. (2012, Fig. 2), could have been considered. However, this was not
done since that system is a technology demonstrator and its expected accuracy is
low relatively to other proposed future inter-satellite metrology system.

The positioning noise is considered to decrease by a factor of 3 in the near
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future, as discussed in Section 6.1.7. In Section 6.3.5 it is demonstrated that the
simulated positioning noise needs to be up-scaled by a factor of 6.22 in order to
represent the actual positioning noise, as a consequence of imperfectly-estimated
initial state vectors in actual data processing. Consequently, the simulation of future
positioning noise assumes that the imperfectly-estimated initial state vectors corrupt
the positioning noise by a factor of 2.07, relative to the case of perfectly estimating
them.

Unlike the other noise types, the mis-modelled time-variable signal does not
depend on the sensor accuracy. It is simulated by computing the difference between
i) the range combinations generated on the basis of the sum of the EIGEN-5C and
the AOD1B models (scaled down by a factor of 10); and ii) the range combinations
generated on the basis of the EIGEN-5C model alone.

name symbol assumptions

accelerometer noise δ(acc) ASD
�

δ(acc)(pw)
�

in Figure 6.20, grey line

correction noise δ(C)
ASD

�

δ(ρ)
�

in Figure 6.21;
ASD

�

δ(ẋ
(12)⊥)

�

in Figure 6.5, right

orientation noise δ(L) ASD
�

δ(∆x)
y

�

= ASD
�

δ(∆x)
z

�

in Figure 6.5, left

positioning noise δ(P)
Eq. (4.59) considering EIGEN-5C and

EIGEN-CG03C

ranging noise δ(R)
ASD

�

δ(ρ)
�

in Figure 8.1, adapted from Silvestrin
et al. (2012, Fig. 27.3, bottom) and Pierce et al.

(2008, Fig. 3)

mis-modelled
time-variable signal δ(tv) 10% of AOD1B

Table 8.7 – Summary of the assumptions used to simulate the relevant noise types.
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8.1.5 Data inversion
The Stokes coefficients C of the estimated gravitational field are the result of a
linear Least-Squares (LS) adjustment. The input observations are the residual range
combinations. The design matrix is built considering Eq. (4.33) evaluated at the
forecasted orbital positions of the satellites.

The noise at the level of range combinations is coloured, as shown in Figure 6.29a.
As a consequence, the statistically optimal solution can only be computed with
Frequency-Dependent Data Weighting (FDDW), based on the appropriate stochastic
model of noise. At the level of implementation, the FDDW is performed with the
use of an Auto-Regressive Moving-Average (ARMA) model, according to Klees et al.
(2003) (see also Section 2.5.6).

The stochastic model considered in the FDDW is derived from the sum of all
measurement noise types, within each formation. In view of the fact that the
propagation of noise time series into gravity field model error is a linear operation, it
is possible in this way to determine individual contributions to the total noise at the
level of estimated gravity field parameters.

An iterative Pre-Conditioned Conjugate Gradient (PCCG) method (Hestenes and
Stiefel 1952) is used for the inversion of the noise types of the trailing formations
because efficient pre-conditioners have been developed for those cases (Liu et al.,
2010). For the remaining formations, explicit inversion of the normal matrix is
needed. Typically, the inversion procedure takes around 20min when the iterative
PCCG method is used (on 4 Central Processing Units (CPUs)) and, in contrast,
19 hrs otherwise (on 32 CPUs). The solutions are obtained without any form of
regularisation.

The inversion is done up to degree 120. The value of the maximum degree
intends to be a balance between minimizing the use of computational resources and
conducting the analysis over the widest degree range. It is important to consider a
sufficiently high degree so that the estimated errors at the level of the gravity field
model represent features small enough to be comparable with the signals that can
be retrieved with such formations.

8.2 Results
The major findings of the numerical study are presented in this section. In Sec-
tion 8.2.1, the various noise types are compared between the considered formations
with maximum range equal to 200 km. These comparisons aim at determining
which formation configuration is least sensitive to each noise type. In Section 8.2.2,
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the error budget of each formation is quantified, making it possible to determine
which noise type is most significant. In Section 8.2.3, the effect of the maximum
range is considered. Finally, selected spatial patterns are presented and discussed in
Section 8.2.4.

8.2.1 Noise types
The analysis of the noise types shows their impact in the gravity field parameters
estimated with the data collected with the pendulum, cartwheel and trailing forma-
tions, making it possible to compare the noise sensitivity of these formations. The
comparison is done considering the ASDs of the residual range combinations and the
propagated gravity field model error is the spectral domain (represented by Degree
Amplitude Spectra (DASs)):

i. the accelerometer noise (p. 222),
ii. the correction noise (p. 223),
iii. the orientation noise (p. 225),
iv. the positioning noise (p. 227),
v. the ranging noise (p. 229) and
vi. the mis-modelled time-variable signal (p. 232).

Accelerometer noise

The ASD of the accelerometer noise is the same for all formations, as shown in
Figure 8.2a, because it is generated explicitly as a random time series at the level
of residual range combinations. The accelerometer noise is dominated by the low
frequencies, since it is assumed to be a logarithmic function between the points
(0.1mHz,10−9 m/s2/

p

(Hz)) and (10mHz,10−10 m/s2/
p

(Hz)).
The accelerometer noise propagates more intensively to the gravity field paramet-

ers in the case of the trailing formation and the least for the pendulum formation
below degree 55. The degree error amplitude increases with degree with the smallest
rate for the cartwheel formation. The data gathered by the cartwheel formations
are, as a result, least sensitive to accelerometer noise at high degrees, particularly
above degree 80. The reason for the different way in which the accelerometer noise
propagates to the gravity field is solely associated with the formation geometry, since
all other simulations parameters (noise amplitude, altitude, data length, etc.) are
the same.

Table 8.8 reports some key numeric values shown in Figure 8.2 and additionally
the geoid cumulative errors at the degree 120.
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Figure 8.2 – a) ASD of the simulated accelerometer noise δ(acc) and b) the corresponding
gravity field model error, for the cartwheel, pendulum and trailing formations with maximum
range equal to 200 km.

formation range combination geoid height error [mm]
error STD [m/s2] degree 60 degree 100 cum @ deg 120

cartwheel 4.7×10−11 8.7×10−3 0.056 0.43
pendulum 4.6×10−11 9.6×10−3 0.068 0.89
trailing 4.7×10−11 0.028 0.33 2.2

Table 8.8 – Summary of the accelerometer noise, showing the STD of the time series of
range combinations error and the resulting gravity field model error quantified in terms of
the geoid height error at degrees 60 and 100 and cumulative geoid height error at degree
120.

Correction noise

The correction noise is the result of an inaccurate reconstruction of the centrifugal
accelerations projected onto the LoS vector and is a direct function of the accuracy
with which the orbital velocity is measured. As a consequence, it is expected that
those formations that rotate the associated LoS vector the least in inertial space
will be less sensitive to this noise type.

A correction noise time series is generated on the basis of Eq. (4.55). The results
are shown in Figure 8.3, and Table 8.9 reports some important values.

The magnitude of the correction noise in the simulation of the pendulum formation

223



Chapter 8. Satellite Formations

[mHz]
 0.1  1  10  100

[m
/s

2
 H

z
-1

/2
]

10
-10

10
-9

10
-8

10
-7

k200
t200

(a)
spheric harmonic degree

0 20 40 60 80 100 120

g
e
o
id

 h
e
ig

h
t 
[m

]

10
-5

10
-4

10
-3

10
-2

k200
t200

(b)

Figure 8.3 – a) ASD of the simulated correction noise δ(C) and b) the corresponding gravity
field model error, for the cartwheel and trailing formations with maximum range equal to
200 km. The curve for the pendulum formation is not shown because it is 10 orders of
magnitude below the other two curves, cf. Table 8.9.

is very low, resulting from the nearly frozen inertial attitude of this formation.
Referring to Table 8.4, the LoS vector of the pendulum formation generally remains
at zero inertial elevation angle, as indicated by the small value of the STD and mean.
The inertial azimuth angle alternates between ±90◦, except for rapid variations near
the poles, as described by the low value of STD of the absolute value of this angle.
The curves related to the pendulum formation are not shown in Figure 8.3 because
they are 9 to 10 orders of magnitude below the presented results.

Referring to Figure 8.3a, the cartwheel formation is less sensitive to the correction
noise below 0.6mHz in comparison to the trailing formation. This is the result of its
inertial elevation angle being limited to the range from −19◦ to 27◦. The LoS vector
in the cartwheel formation oscillates between these extremes at a rate of 2 CPRs,
consequently eliminating the peak at 0.2mHz (1 CPR), which is pronounced in the
residual range combinations ASD of the trailing formation. The LoS vector of the
trailing formation, on the other hand, makes a complete revolution in the inertial
frame each orbital period. The inertial azimuth angle is always small in these two
formations, so that the rotation of the LoS vector is mainly driven by the variations
in the inertial elevation angle.

The amplitude of the variations of the inertial attitude per orbit revolution
is an important parameter controlling this noise type. Larger variations of this
parameter lead to a larger value of the orbit velocity of satellite 1 relatively to
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satellite 2 projected onto the plane perpendicular to the LoS direction, ẋ(12)⊥ and
consequentially a larger scaling of the associated error δ(ẋ (12)⊥), as described by in
Eq. (4.55). It is, therefore, not surprising to see that the propagated correction noise
is largest in the trailing formation and negligible in the pendulum formation, refer to
Figure 8.3b.

formation range combination geoid height error [mm]
error STD [m/s2] degree 60 degree 100 cum @ deg 120

cartwheel 6.5×10−10 0.083 0.42 4.6
pendulum 7.9×10−19 3.5×10−11 3.5×10−10 4.9×10−9

trailing 1.4×10−9 0.64 4.8 31

Table 8.9 – Summary of the correction noise, showing the STD of the time series of range
combinations error and the resulting gravity field model error quantified in terms of the
geoid height error at degrees 60 and 100 and cumulative geoid height error at degree 120.

Orientation noise

The orientation noise represents the inaccurate knowledge of the attitude of the
LoS vector. Similarly to the correction noise, this noise type is directly related to
the accuracy with which the attitude of the LoS vector is known, as derived from
the orbits of the two satellites. Unlike the correction noise, where the errors in the
orbital velocities play a role, the orientation noise is the result of the errors in the
orbital positions. The data noise is simulated on the basis of Eq. (4.58), considering
EIGEN-5C as the background force model.

The results are shown in Figure 8.4. Table 8.10 provides further numeric details.
In addition to the orbital position noise, the orientation noise is proportional to

the difference between the gravitational acceleration at the orbit position of the
two satellites, refer to Eq. (4.58). The cartwheel formation is most sensitive to this
noise, in view of the fact that the two satellites are generally at different altitudes,
up to 100 km altitude difference. The amplitude of the difference in gravitational
acceleration is much larger than when they are at equal altitudes. The satellites in
the pendulum and trailing formations have an altitude that never differs by more
than 3 km. Considering only the C 00 coefficient, the difference between the terms
∇V

�

x(j), C (ref)
�

, for j = 1, 2 ,in Eq. (4.58) is, at most

1/ (r Earth+horb+100 km)2−1/ (r Earth+horb)
2

1/ (r Earth+horb+3 km)2−1/ (r Earth+horb)
2 ≈ 32
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Figure 8.4 – a) ASD of the simulated orientation noise δ(L) and b) the corresponding gravity
field model error, for the cartwheel, pendulum and trailing formations with maximum range
equal to 200 km.

times larger for the cartwheel formation than for the other two formations,
considering an orbital altitude horb of 500 km.

The pendulum formation is least sensitive to the orientation noise because the
gravitational differences between the satellites along the East-West direction (at
equal altitude) is smaller than the gravitational differences between the two satellites
in the trailing formation along the North-South direction, recalling that the C 20

coefficient is the second largest coefficient.

formation range combination geoid height error [mm]
error STD [m/s2] degree 60 degree 100 cum @ deg 120

cartwheel 3.9×10−10 0.055 0.27 2.0
pendulum 7.1×10−14 5.7×10−6 3.0×10−5 5.0×10−4

trailing 1.4×10−12 8.4×10−4 6.7×10−3 0.037

Table 8.10 – Summary of the orientation noise, showing the STD of the time series of
range combinations error and the resulting gravity field model error quantified in terms of
the geoid height error at degrees 60 and 100 and cumulative geoid height error at degree
120.
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Positioning noise

As the result of the incomplete knowledge of the Earth’s gravitational field, the
forecasted orbit positions are not exactly equal to the actual orbit positions, giving
raise to the discrepancy between the forecasted gravitational accelerations and those
that are actually acting on the satellite. This discrepancy is called positioning noise.
The simulation of the positioning noise conducted in the numerical study considers
two sets of orbits, computed on the basis of the EIGEN-5C and EIGEN-CG03C
models, from which the observed and forecasted range combinations are computed,
respectively. The procedure is described by Eq. (4.59) and Eq. (4.29). In view of:

• the calibration factor of 6.22 described in Section 6.3.5 and Section 7.3.1,
which is needed to reproduce the effect of the imperfectly-estimated initial
state vectors in the simulation environment, and

• the considerations in Section 6.1.7 regarding the accuracy of future GNSSs,
which is assumed to be 3 more accurate than currently,

the simulation of positioning noise in the context of future gravimetric missions
considers the scaling factor of 2.07.

Chapter 7 is important for understanding of the results described below, in
particular i) Section 7.4.3, where the amplitude of the positioning noise is predicted
analytically and ii) Section 7.5, where the analytical results are confirmed with a
numerical study of the positioning noise. Those findings support the results shown
in Figure 8.5a. The trailing and pendulum formations are affected mainly by the
absolute orbit position noise, which is of comparable magnitude. For these formations,
the relative orbit position noise, after adjusting the orbits with range data, is not
dominant. The cartwheel formation, on the other hand, is highly sensitive to the
relative orbit position noise and the absolute orbit position noise does not play a
role.

In terms of the propagated gravity field model error, shown in Figure 8.5b, the
cartwheel formation has unsurprisingly the largest degree amplitude. Unexpectedly,
the pendulum formation has much lower amplitude than the trailing formation,
particularly above degree 10. One explanation for this result is in the different ways
the high-amplitude low-frequency positioning noise propagates to the gravity field
parameters in case of the trailing and pendulum formations. In both cases, the
positioning noise is largest at the low frequencies, below 1mHz. In the case of the
trailing formation, the contamination of near-sectorial coefficients by the positioning
noise is present up to high degrees. The pendulum formation, being able to sample
high-order coefficients, is much better equipped to limit the effects of the positioning
noise to low degrees. This advantageous characteristic of the pendulum formation is
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Figure 8.5 – a) ASD of the simulated positioning noise δ(P) and b) the corresponding
gravity field model error, for the cartwheel, pendulum and trailing formations with maximum
range equal to 200 km.

Figure 8.6 – Geoid height amplitude of the coefficients of the positioning noise for the a)
cartwheel, b) pendulum and c) trailing formations with maximum range equal to 200 km.
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visible in Figure 8.6, showing the amplitude of the gravity field parameters of the
positioning noise. Consequentially for this formation, the mitigation of this noise
type by high-pass filtering of the data, as mentioned in Section 2.5.6, should be
particularly effective.

Table 8.11 includes a selection of values to support the interpretation of Figure 8.5.

formation range combination geoid height error [mm]
error STD [m/s2] degree 60 degree 100 cum @ deg 120

cartwheel 8.3×10−9 0.57 1.3 9.3
pendulum 3.2×10−10 0.012 0.078 0.91
trailing 4.7×10−10 0.081 0.66 5.8

Table 8.11 – Summary of the positioning noise, showing the STD of the time series of
range combinations error and the resulting gravity field model error quantified in terms of
the geoid height error at degrees 60 and 100 and cumulative geoid height error at degree
120.

Ranging noise

The ranging noise represents the errors in measuring the distance between the
satellites by means of a dedicated ranging sensor. The noise is simulated by double
differentiating the coloured ranging sensor noise with the ASD shown in Figure 8.1,
following Eq. (4.53). The approximation assumed in the simplistic noise model (cf.
Eq. (4.45)) is not considered in the conducted simulations. This modification intends
to simulate accurately the pendulum formation as it moves over the poles, when
the attitude of the LoS direction changes rapidly and cosθi ,±1 is no longer ≈ 1. The
results of the simulations are shown in Figure 8.7. Table 8.12 show some relevant
values.

Since the gravimetric observations are the result of the double differentiation of
the range, the noise in the ranges propagates to the range combinations as noise
dominant at the higher frequencies. This property, as well as additional details
specific to the shape of the ASD of the ranging noise, is analysed in detail in Section
6.3.2.

In case of the the pendulum formation, however, the ranging noise below 10mHz
has an amplitude that is at least two times larger than for the other formations
and with peaks at multiples of 2 CPR, or 0.35 mHz. Unlike for the trailing and
cartwheel formations, the range of the pendulum formation varies sinusoidally with
time between maximum range and (nearly) zero. The period of these oscillations
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Figure 8.7 – a) ASD of the simulated ranging noise δ(R) and b) the corresponding gravity
field model error, for the cartwheel, pendulum and trailing formations with maximum range
equal to 200 km.

Figure 8.8 – Geoid height amplitude of the coefficients of the positioning noise for the a)
cartwheel, b) pendulum and c) trailing formations with maximum range equal to 200 km.
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is half of the orbital period, since the maximum range is reached at the ascending
and descending equator crossings and the minimum range is reached at both poles.
The distance between the satellites, which varies over five orders of magnitude, cf.
the minimum and maximum range in Table 8.3, propagates the ranging sensor noise
more heavily into those frequencies that are multiples of 0.35mHz. In the estimated
gravity field model error, the high amplitude of the 0.35mHz harmonics propagates
to the degrees below 20, as seen in their large amplitude relative the remaining
degrees, also visible in Figure 8.8 as a bright region at the low degrees.

If the procedure used for the simulation of the simplistic ranging noise was
considered, i.e. Eq. (4.45) instead of Eq. (4.53), the noise ASD for the pendulum
formation would be exactly the same as for the other two formations. In case of
the cartwheel and trailing formations, there are no sudden changes in the direction
of the LoS vector and the approximation incurred in the simplistic ranging noise,
cf. Eq. (4.45), would be sufficiently accurate (although it is not considered in the
current study).

In spite of the lower noise in the range combinations, the cartwheel formation
shows a larger propagated ranging noise than the trailing formation. The same is true
when compared to the pendulum formation in most of the degree range (between
degrees 3 and 100); i.e. the cartwheel formation is more sensitive to the ranging
noise. In spite of this, the rate in which the amplitude of the ranging noise increases
with degree for the cartwheel formation is lower than for the other two formations
(there is consistency in the minimum orbital altitude for all formations). The high
amplitude of the sectorial and near-sectorial coefficients are the reason for the large
degree amplitude of the ranging noise for the cartwheel formation, cf. Figure 8.8.
This is enough to make the cartwheel formation is less sensitive to the ranging noise
at high degrees (above degree 100) than the pendulum formation. The trailing
formation is least sensitive to this noise type, as a result of the comparatively higher
Signal-to-Noise Ratio (SNR) associated with the larger range. The low sensitive of
the pendulum formation to the gravitational field at the poles increases the amplitude
of the zonal and near-zonal coefficients, as shown in Figure 8.8.
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formation range combination geoid height error [mm]
error STD [m/s2] degree 60 degree 100 cum @ deg 120

cartwheel 2.2×10−10 0.029 0.10 0.85
pendulum 2.2×10−10 0.013 0.16 1.5
trailing 2.2×10−10 5.5×10−3 0.053 0.36

Table 8.12 – Summary of the ranging noise, showing the STD of the time series of range
combinations error and the resulting gravity field model error quantified in terms of the
geoid height error at degrees 60 and 100 and cumulative geoid height error at degree 120.

Mis-modelled time-variable signal

The presence of temporal aliasing in gravity data processing is unavoidable as a result
of errors in de-aliasing models. The mis-modelled time-variable signal propagates to
the gravity field parameters with a non-zero value, even if it is generated on the basis
of a gravitational field error model with zero mean over the estimation period. This
is the result of an insufficient temporal sampling to capture the complete evolution
of the changes in the original gravitational field over time.

The ASDs shown in Figure 8.9a illustrate the characteristic drop in amplitude
above 3 mHz of the mis-modelled time-variable signal. This is the result of the
upward continuation effect, which suppresses short wave-length signals. On top
of this, the physical processes occurring in sub-daily time scales in the Earth’s
atmosphere (and associated oceanic response), as modelled by the AOD1B product,
in which the motion of masses of small size, and consequentially small mass, does
not generate a significant gravitational signal.

The ASD of the mis-modelled time-variable signal is similar in all formations,
with the exception of the pendulum formation, which has a lower amplitude between
2 and 10mHz. Additionally, the pendulum formation also produces less pronounced
“spikes” below 2mHz, which are clearly seen in the mis-modelled time-variable signal
of the other two formations.

In what concerns the propagated noise, refer to Figure 8.9b, the degree amplitude
spectra are similar below degree 10 for all formations, as a result of the fact that below
1 mHz the ASDs have comparable amplitudes. Above degree 10, the pendulum
formation shows an error degree amplitude that is lower by over one order of
magnitude in comparison to the cartwheel and trailing formations. This result
suggests that the larger width of the ground-track strip sensed by the pendulum
formation combined with the higher sensitivity to mass variations outside this strip
(as a result of the cross-track orientation of the LoS vector), favours the averaging of
the high-frequency mass transport processes. The cartwheel and trailing formation,
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Figure 8.9 – a) ASD of the simulated mis-modelled time-variable signal δ(tv) and b) the
corresponding gravity field model error, for the cartwheel, pendulum and trailing formations
with maximum range equal to 200 km.

on the other hand, have nearly zero cross-track separation, so the strip of surface to
which they are sensitive to is narrower.

The error in the gravity field parameters is more significant at higher degrees
in spite of the sudden amplitude decrease above 4mHz (roughly degree 23) of the
mis-modelled time-variable signal. This is indication that the strong low-frequency
signal, which cannot be unambiguously reconstructed from the data collected by the
formations, is captured by the gravity field parameters of higher degrees.

Some values are presented in Table 8.13 to support the interpretation of Fig-
ure 8.9.

formation range combination geoid height error [mm]
error STD [m/s2] degree 60 degree 100 cum @ deg 120

cartwheel 1.7×10−10 0.051 0.19 1.4
pendulum 10−10 5.5×10−3 0.019 0.92
trailing 1.6×10−10 0.096 0.95 5.3

Table 8.13 – Summary of the mis-modelled time-variable signal, showing the STD of the
time series of range combinations error and the resulting gravity field model error quantified
in terms of the geoid height error at degrees 60 and 100 and cumulative geoid height error
at degree 120.
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8.2.2 Noise budgets
The spectra of all noise types, in the frequency and degree domain, are analysed for
each formation. The results show which noise types dominate in different frequency
bands and at different spherical harmonic degrees. If a noise of a certain type is
negligible, it is not shown to make a plot more readable.

Cartwheel formation

Referring to Figure 8.10a, the error budget in terms of residual range combinations
associated with the cartwheel formation is dominated by the positioning noise. The
exception is the ranging noise, which is dominant only above 70mHz but never by
more than 30%. For the frequencies below 20mHz, the magnitude of the ranging
noise is at least three orders of magnitude lower than the positioning noise. The
correction noise, orientation noise and accelerometer noise are between a factor of 5
and two orders of magnitude below the positioning noise. The model error associated
with the mis-modelled time-variable signal is also negligible, as shown in Figure 8.10a,
since its amplitude is at least one order of magnitude smaller. Consequentially, the
orbit position errors, the driving factor behind the positioning noise, are the dominant
source of errors in the data collected by the cartwheel formation. The high-pass
filtering of the data to mitigate the resonance effect (see Section 2.5.6) would be,
in this case, probably not very successful, since the effects of positioning noise are
present at almost all frequencies.

The errors propagated to the gravity field parameters produce the DASs shown in
Figure 8.10b. The DASs are in line with the Amplitude Spectral Densitys of errors in
residual range combinations: the positioning noise is the largest error source, while
the accelerometer noise is the least significant at all degrees. Between these two
extremes are the orientation noise, ranging noise and mis-modelled time-variable
signal, clustered together with comparable amplitudes, while the correction noise is
a factor of two larger. This observation bring into evidence that the improvement
of the accuracy of the ranging sensor will likely not lead to a higher data quality.
Even if the effects of the positioning noise, correction noise and orientation noise are
effectively removed with the high-pass filtering discussed in Section 2.5.6 (which is
not likely, since the positioning noise is dominant over all frequencies below 70mHz),
the data is still significantly corrupted by the mis-modelled time-variable signal.

234



Results 8.2

[mHz]
 0.1  1  10  100

[m
/s

2
 H

z
-1

/2
]

10
-11

10
-10

10
-9

10
-8

10
-7

10
-6

acceler.
positio.
orient.
correct.
ranging
alias
total

(a)
spheric harmonic degree

0 20 40 60 80 100 120

g
e

o
id

 h
e

ig
h

t 
[m

]

10
-6

10
-5

10
-4

10
-3

10
-2

acceler.
positio.
orient.
correct.
ranging
alias
total

(b)

Figure 8.10 – Simulation of the cartwheel formation with maximum range equal to 200 km,
showing a) the ASDs of the simulated noise types and b) the corresponding errors at the
level of the estimated gravity field model. The curve labelled alias refers to the mis-modelled
time-variable signal (from the term temporal aliasing).

noise type range combination geoid height error [mm]
error STD [m/s2] degree 60 degree 100 cum @ deg 120

accelerometer
noise 4.7×10−11 8.7×10−3 0.056 0.43

correction
noise 6.5×10−10 0.083 0.42 4.6

orientation
noise 3.9×10−10 0.055 0.27 2.0

positioning
noise 8.3×10−9 0.57 1.3 9.3

ranging noise 2.2×10−10 0.029 0.10 0.85
mis-modelled
time-variable

signal
1.7×10−10 0.051 0.19 1.4

total 8.4×10−9 0.59 1.4 11

Table 8.14 – Noise budget of the cartwheel formation, showing the STD of the time series
of range combinations error and the resulting gravity field model error quantified in terms
of the geoid height error at degrees 60 and 100 and cumulative geoid height error at degree
120.
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Pendulum formation

The noise in the data of the simulated pendulum formation is dominated by the
positioning noise below 20 mHz and by the ranging noise above, as shown in
Figure 8.11a. Compared to the positioning noise, the mis-modelled time-variable
signal is one order of magnitude smaller at 0.2 mHz, of comparable magnitude
between 0.4 and 2 mHz and a factor of 2 or more smaller above 10 mHz. The
accelerometer noise is of comparable magnitude to the mis-modelled time-variable
signal, being of less amplitude by at most a factor of 3 between the frequencies of
0.1 mHz and 8 mHz. The orientation noise and correction noise are negligible in
comparison to the above-mentioned noise types and have a noise amplitude that is
between 1 and 7 orders lower than the other noise type, respectively (not shown).

Roughly the same error amplitudes are present in terms of the gravity field model
error (Figure 8.11b). The positioning noise is the dominant noise type below degree
40, followed by the ranging noise, which is roughly a factor of two less intense.
The positioning noise, ranging noise and accelerometer noise are of comparable
amplitude above degree 60, with the ranging noise slightly higher than the other
two above degree 80. Below degree 55, the accelerometer noise is less intense than
the positioning noise and ranging noise, up to an order of magnitude relative to the
positioning noise at degree 20. The mis-modelled time-variable signal shows a lower
amplitude than the other noise types above degree 30, but never by a factor larger
than 5. The amplitude of the propagated orientation noise is at least 2 orders of
magnitude lower than the accelerometer noise and the orientation noise is 8 orders
of magnitude lower (not shown).

The methods that handle the resonance effects (refer to Section 2.5.6) should
reduce the effects of positioning noise (albeit not completely since these errors are
dominant up to 20 mHz), making the ranging sensor and, to a lesser extent, the
accelerometer accuracy more important to the quality of the models estimated from
gravimetric data collected by the pendulum formation (Figure 8.11b). Below degree
30, the effects of mis-modelled time-variable signal are of similar amplitude as the
ranging noise, which means that the measures that reduce the effects of temporal
aliasing described in Section 2.1.2 are important.

Under the assumption that the positioning noise and the effects of the mis-
modelled time-variable signal can be effectively mitigated, e.g. with the help of
low-pass filtering, advanced Precise Orbit Determination (POD) techniques, future
GNSS data and numerous non-dedicated missions (Chapter 5), the quality of the
data collected by the pendulum formation would benefit from a more accurate
ranging sensor. Any improvement in the ranging sensor would have to be met with
a comparatively equal improvement in the accelerometer accuracy, as a result of
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Figure 8.11 – Simulation of the pendulum formation with maximum range equal to 200 km,
showing a) the ASDs of the simulated noise types and b) the corresponding errors at the
level of the estimated gravity field model. The orientation noise and correction noise are
not shown in (a) because they are 1 and 7 orders below and in (b) because they are 2 and
8 orders of magnitude below the other noise types. The curve labelled alias refers to the
mis-modelled time-variable signal (from the term temporal aliasing).

the fact that the two noise types have nearly equal amplitudes across the whole
degree range. This situation would be the most beneficial, since the data quality,
particularly at high degrees, would be a direct function of the accuracy of its geodetic
instruments. Although this is an optimistic assumption, there is no room to make a
comparable prediction in the context of the trailing and cartwheel formations.
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noise type range combination geoid height error [mm]
error STD [m/s2] degree 60 degree 100 cum @ deg 120

accelerometer
noise 4.6×10−11 9.6×10−3 0.068 0.89

correction
noise 7.9×10−19 3.5×10−11 3.5×10−10 4.9×10−9

orientation
noise 7.1×10−14 5.7×10−6 3.0×10−5 5.0×10−4

positioning
noise 3.2×10−10 0.012 0.078 0.91

ranging noise 2.2×10−10 0.013 0.16 1.5
mis-modelled
time-variable

signal
10−10 5.5×10−3 0.019 0.92

total 4.1×10−10 0.021 0.19 2.2

Table 8.15 – Noise budget of the pendulum formation, showing the STD of the time series
of range combinations error and the resulting gravity field model error quantified in terms
of the geoid height error at degrees 60 and 100 and cumulative geoid height error at degree
120.

Trailing formation

The correction noise is dominant for the trailing formation, except for the frequencies
above 50mHz, where the ranging noise is the largest, (Figure 8.12a). Relative to
the total noise, the accelerometer noise is always (nearly) one order of magnitude
lower and the amplitude of the mis-modelled time-variable signal is between a factor
of 2 and one order of magnitude below. The orientation noise is at least two orders
of magnitude smaller. As a consequence, the errors in the relative velocity of the
spacecraft are the dominant source of errors in the trailing formation under analysis.

In terms of the gravity field parameters, it is confirmed that the gravity field
model error resulting from the correction noise is dominant at all degrees, with
the exception of the degrees lower than 4 where the positioning noise is of larger
amplitude. Above degree 35, the positioning noise is almost an order of magnitude
lower than the correction noise. The degree amplitude of the mis-modelled time-
variable signal is comparable to the positioning noise above degree 60; below this
degree, the mis-modelled time-variable signal has a lower amplitude by roughly a
factor of two until degree 15 and up to an order of magnitude below this degree.
The accelerometer noise and ranging noise are at least a factor of 3 and 10 below
the mis-modelled time-variable signal, respectively. In other words, the high accuracy
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Figure 8.12 – Simulation of the trailing formation with maximum range equal to 200 km,
showing a) the ASDs of the simulated noise types and b) the corresponding errors at the
level of the estimated gravity field model. The curve labelled alias refers to the mis-modelled
time-variable signal (from the term temporal aliasing).

of the accelerometers and ranging sensor is wasted in the trailing formation. This is
true unless i) an effective high-pass filtering of the data (recall Section 2.5.6) is able
to mitigate the effect of the positioning noise and correction noise across the whole
frequency range (which is unlikely; the procedure currently done on GRACE data
addresses a narrow low-frequency band) ii) the errors in the de-aliasing models are
much lower than the 10% of the original signal that is currently assumed.
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noise type range combination geoid height error [mm]
error STD [m/s2] degree 60 degree 100 cum @ deg 120

accelerometer
noise 4.7×10−11 0.028 0.33 2.2

correction
noise 1.4×10−9 0.64 4.8 31

orientation
noise 1.4×10−12 8.4×10−4 6.7×10−3 0.037

positioning
noise 4.7×10−10 0.081 0.66 5.8

ranging noise 2.2×10−10 5.5×10−3 0.053 0.36
mis-modelled
time-variable

signal
1.6×10−10 0.096 0.95 5.3

total 1.5×10−9 0.65 4.9 32

Table 8.16 – Noise budget of the trailing formation, showing the STD of the time series of
range combinations error and the resulting gravity field model error quantified in terms of
the geoid height error at degrees 60 and 100 and cumulative geoid height error at degree
120.

Summary

Table 8.17 provides an overview of the impact of the various noise types in terms of
residual range combinations. For the dominant noise types, the bandwidths in which
that is the case are reported. In case a noise type is not dominant at any frequency,
the largest ratio of its amplitude to the total errors is shown.

The ranging noise is always dominant at the high-end of the frequency domain
in all formations. Consequently, the ranging sensor is the limiting factor for the
accurate estimation of small spatial features of Earth’s gravitational field, starting
at degree 170 for the pendulum formation, degree 283 for the trailing formation and
degree 567 for the cartwheel formation, as deduced from the frequencies at which
the ranging noise becomes dominant (30, 50 and 100mHz, respectively).

At the low degrees, the most significant error source is the positioning noise for
the cartwheel and pendulum formations (originating from the relative and absolute
orbit position noise, respectively, cf. Section 7.5 and Figure 7.3) and the correction
noise for the trailing formation. The orientation noise is never the dominant source
of error, since it is always at least one order of magnitude lower than the total
noise. Likewise, the accelerometer noise is not significant in any formation scenario
considered in the numerical study. The mis-modelled time-variable signal does not
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play a role in the cartwheel formation due to the high level of positioning noise;
in case of the other formations, in spite of not being dominant at any frequency
range, it cannot be ignored because its amplitude reaches 90 % and 60 % of the total
noise in case of the pendulum and trailing formations, respectively. In conclusion,
the orbit errors play a significant role in the error budget of all formations: for the
cartwheel and pendulum formations, the discrepancy between modelled and actual
orbital positions dominates, while the accuracy of the orbit velocity of satellite 1
relatively to satellite 2 projected onto the plane perpendicular to the LoS direction
ẋ(12)⊥ plays the most important role in case of the trailing formation.

noise type cartwheel pendulum trailing

accelerometer noise 0.03 0.33 0.15

correction noise 0.2 10−8 below 50mHz

orientation noise 0.1 10−3 10−3

positioning noise below 70mHz below 20mHz 0.5

ranging noise above 70mHz above 20mHz above 50mHz

mis-modelled
time-variable signal 0.1 0.9 0.6

Table 8.17 – Frequency ranges where the noise types in terms of residual range combinations
are dominant; if noise is not dominant, the largest ratio to the total noise is reported.

While Table 8.17 summarises the dominant noise types in terms of range combin-
ations, Table 8.18 gives an overview of the contribution of each noise type in terms
of cumulative geoid height error. The contribution f (i ) of the noise type i , with
i = acc, P,L,C, R, tv (referring to δ(acc), δ(P), δ(L), δ(C), δ(R) and δ(tv), respectively), is
computed as the ratio between the square of the corresponding cumulative geoid
height error at degree 120, δ(i )120, and the square of the total noise, δ(tot)

120 :

f (i ) =

�

δ(i )120

�2

�

δtot
120

�2 , i = acc, P,L,C, R, tv.

In this way, the sum of all contributions is approximately equal to one, resulting
from the fact that the total noise variance is approximately equal to the variances of
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the squares of all noise types if none of them are correlated with each other:
∑

i=acc,P,L,C,R,tv

f (i ) = 1.

In the cartwheel formation, the positioning noise accounts for 76 % of the errors
in estimated gravity field model. The remaining noise types that originate from
orbital errors (i.e. the correction noise and orientation noise) are the second and
third most significant. Together, they are responsible for 98% of the errors in the
estimated gravity field model. The high-pass filtering mentioned in Section 2.5.6 is
probably not a practical solution to deal with the high orbit noises in the cartwheel
formation, since these errors are present over a wide frequency range.

In the trailing formation, the correction noise accounts for nearly 93 % and the
positioning noise with 3.4 %. The remaining 3.3 % are distributed over the mis-
modelled time-variable signal (with 2.8 %) and accelerometer noise (with 0.50 %).

The correction noise and orientation noise play no role in the simulated pendulum
formation while the ranging noise contributes with 48 %. The remaining of the
noise budget of the pendulum formation is evenly split between the mis-modelled
time-variable signal, positioning noise and accelerometer noise, with 18 %, 17 % and
17 %, respectively.

noise type cartwheel pendulum trailing

accelerometer noise 0.16 % 17 % 0.50 %

correction noise 19 % 5.0×10−16 % 93 %

positioning noise 76 % 17 % 3.4 %

ranging noise 0.62 % 48 % 0.013 %

orientation noise 3.4 % 5.3×10−6 % 1.4×10−4 %

mis-modelled
time-variable signal 1.7 % 18 % 2.8 %

total [m] 11 2.2 32

Table 8.18 – Contribution of different noise types, in terms of % of cumulative geoid
height error variance at degree 120.
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8.2.3 Effect of the maximum range
The numerical study has focused so far exclusively on the formations with a maximum
range equal to 200 km. The current section looks into how the propagated noise
types changes when the maximum range is increased to 400 and 1000 km. The
analysis is done for all formations and noise types but without discussing in detail
each combination of the two. For that reason, it is useful to have a broad view
of the error per degree of all formations and noise types, refer to Figure 8.13 and
Figure 8.14.

In general, a larger maximum range results in a lower propagated noise, particularly
for the lower degrees, with a number of exceptions, to be discussed below. This is
an expected result: larger maximum ranges lead to larger inter-satellite gravitational
accelerations. At the same time, the magnitude of the coefficients in the design
and normal matrix is also larger and, therefore, the estimation of the associated
unknown parameters is more accurate; in other words, the SNR is larger.

It is possible to identify two types of exceptions to the general rule explained
above. The first type of exception is those formations and noise types that are
associated with gravity field parameters distorted by degree-localised spikes. The
second type are those that are insensitive to the maximum range.

Resonance artefacts in the gravity field model error

There are patterns in the degree amplitude spectra of some noise types that are
repeated for different maximum ranges. These patterns are identified as a local
increase of the error amplitude at consistently the same degree, resulting from
disturbances with a certain wavelength influencing the satellites in the same way.
They are referred to as resonance artefacts (not to be confused with the resonance
effect resulting from errors in satellite orbits, discussed in Section 2.5.6). Sneeuw
et al. (2005) has studied this issue with the semi-analytical approach (Sneeuw, 2000),
and refers to these artefacts as attenuation bands. They result from the lack of
sensitivity of the formation to particular wavelengths, identified below. In other
words, features that change in space with a particular wavelength do not produce a
significant differential signal, since they affect the two satellites in the formation in
a very similar way. As a consequence, it is not possible to recover those features
accurately.

Table 8.19 summarises the formations and noise types which result in a error
in the gravity field models distorted by resonance artefacts. That tables reports
the factor between the amplitude of the degrees immediately below and above the
localized jump. For example, for the pendulum formation with 1000 km maximum
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Figure 8.13 – Comparison of the effects of the maximum range on the geoid error per degree
of the accelerometer noise, correction noise and orientation noise (per row, respectively)
for the cartwheel, pendulum and trailing formations (per column, respectively).
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Figure 8.14 – Comparison of the effects of the maximum range on the geoid error per
degree of the positioning noise, ranging noise and mis-modelled time-variable signal (per row,
respectively) for the cartwheel, pendulum and trailing formations (per column, respectively).
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range, there are sudden jumps in the geoid height amplitude at degree 41 for all
noise types. Degree 41 is related a wavelength of 976 km, which is approximately
the maximum range. These jumps increase the degree error amplitude by a factor
of 5 to 10. Empty cells mean that there is no visible artefact.

formation k1000 p400 p1000 t400 t1000
degree 60 108 41 86 107 42 85

spatial wavelength [km] 333 185 487 232 187 476 236
accelerometer noise 4 100 6 2 2.5
correction noise 60 5 2.5 2
orientation noise 1.5 75 6 3 1.5
positioning noise 100 8 2.5
ranging noise 300 8 6 25 5 1.5

mis-modelled time-variable
signal 2 70 10 5 2

Table 8.19 – Factor of the degree-localized amplitude increase in the error of the estimated
error in the gravity field models, associated with the resonance artefacts.

The resonance artefacts in the gravity field model error for the pendulum and
trailing formations are located at the degrees approximately associated with the
multiples of the half maximum range, i.e. degrees 41-42 and 85-86 for the maximum
range equal to 1000 km and degrees 107-108 when the maximum range is 400 km.
The shape of the resonance artefacts for these formations tends to be very sharp. In
case of the pendulum formation with maximum range equal to 400 and 1000 km,
resonance artefacts are visible in the degree amplitude spectra of all noise types.
They introduce large errors in the solutions for the p400 formation, decreasing the
accuracy of the estimated models by a factor of 30 to 300. The resonance artefacts
present in the solutions of the p1000 formation are less severe. For the trailing
formation with maximum range equal to 400 km, the resonance artefacts are of
limited magnitude, with the exception of the gravity field model error associated with
the ranging noise. The trailing formation with maximum range equal to 1000 km
shows no significant resonance artefacts.

The propagated noise resulting from the simulations of the cartwheel formation
indicates that the resonance artefacts are located at the degrees that correspond to
the spatial wavelengths approximately equal to the average range. The resonance
artefacts are characteristically spread over a range of degrees; they are not of a
sharp and localized nature and increase the error amplitude by only a modest factor,
from 1.5 to 4. Only the propagated accelerometer noise and orientation noise show
resonance artefacts, in addition to the mis-modelled time-variable signal.

On the basis of Table 8.19, assuming that the degrees at which the resonance
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artefact are visible can be extracted from the maximum range ρ(max), and recalling
that a is the semi-major axis, the following applies:

L (resonance) ≈ round
�

n
2πa

ρ′

�

, (8.1)

n = 1, 2, ...

ρ′ =

�

ρ(max), trailing and pendulum

ρ(avg), cartwheel
.

Eq. (8.1) is only valid for near-circular orbits, since the orbit circumference
2πa is computed without considering the orbit eccentricity. For the orbits under
consideration, this is a reasonable approximation. It should be noted that these
equations are accurate to within a few degrees; given the available information,
Eq. (8.1) computes degree 58 instead of degree 60 for the cartwheel formation.
For the trailing formation it yields one degree above those reported in Table 8.19.
Nonetheless, Eq. (8.1) makes it possible to predict L (resonance) from the orbit geometry
(given by a ) and the formation geometry (given by ρ(max) or ρ(avg)).

The analysis of the resonance artefacts is important because it allows one
to predict at which degrees the resonance artefacts will decrease the accuracy
of the estimated gravity field models. It makes it possible to suggest that the
GRACE solutions would be locally inaccurate at around degree 216 (considering
ρ(max) = 200 km and a = 6871 km), if it were possible to exploit the data up to that
degree.

This knowledge is crucial when designing future gravimetric missions. Figures
8.13 and 8.14 indicate that the increase in propagated error amplitude associated
with the resonance artefacts outweighs the gains in accuracy associated with larger
maximum range, particularly for the cartwheel and pendulum formations. Only at
degrees below the resonance artefacts, there is an improvement in the accuracy of
the estimated gravity field parameters. As a result, the maximum range can be
chosen so as to circumvent the decrease in accuracy associated with the resonance
artefacts. For example, for a future pendulum formation flying at 325 km (this was
the altitude proposed by Cesare et al. (2010b)) that is sensitive to the gravitational
field up to degree 180, the maximum range should not exceed 234 km.

Insensitivity to the maximum range

The positioning noise (top row of Figure 8.14) and mis-modelled time-variable signal
(bottom row of Figure 8.14) of the trailing formation do not show a significant
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variation of the geoid height error per degree for different maximum ranges. The
propagated positioning noise and mis-modelled time-variable signal for the cartwheel
and pendulum would be equally insensitive to the maximum range if the corresponding
amplitude spectra were not distorted by the resonance artefacts. This result suggests
that the errors associated with the positioning noise and mis-modelled time-variable
signal are not sensitive to the maximum range. The exception is the cartwheel
formation, where some differences are observed for different maximum range.

In the case of the mis-modelled time-variable signal, larger maximum range
results in larger sensitivity to the underlying time-varying signal, recall that spatial
variations with long wavelength (below degree 20 or around 4mHz) have much large
power than otherwise (cf. Figure 5.2 and Figure 8.9a). Any values of maximum
range up to 1000 km (associated with degree 20), make the gathered data sensitive
to the majority of the signal power. Since the error is defined as a fraction of the
total signal, any increase in signal sensitivity leads to a proportional increase in error
sensitivity. As a result, the SNR remains constant and the DASs do not change
significantly with different maximum range.

In case of the positioning noise, the reason for the insensitivity to maximum range
is equivalent. In Section 7.4 it is shown that the relative point-wise positioning noise
resulting from the relative orbit position noise perpendicular to the LoS direction
δ(P)(pw)(rel)⊥ does not depend on the range ρ, cf. Eq. (7.5), the absolute point-wise
positioning noise δ(P)(pw)(abs) is dependent on ρ, cf. Eq. (7.7). In case of the trailing
and pendulum formation, δ(P)(pw)(abs) is largest, cf. Figure 7.3b and c (the green
lines related to the relative point-wise positioning noise resulting from the relative
orbit position noise parallel to the LoS direction δ(P)(pw)(rel)‖ are not relevant to the
current discussion). Therefore, the higher signal sensitivity of a trailing or pendulum
formation with larger maximum range compensates the higher positioning noise (in
other words, the elements of the normal matrix are proportional to the so-called
right-hand side vector). For the cartwheel formation, the δ(P)(pw)(rel)⊥ is largest, cf.
Eq. (7.7)a, producing different DASs for different maximum ranges.

8.2.4 Spatial error patterns
Results of the numerical simulations have been presented so far only as degree
amplitude spectra. That type of visualization describes how each degree contributes
to the estimated error in the gravity field models and is, therefore, suitable to quantify
the influence of different error sources in general. What the degree amplitude spectra
fail to depict is the spatial pattern of the error, which is the object of analysis in
this section.
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Not all estimated errors in the gravity field models are analysed; there are 6
noise types for each of the three formations under consideration, resulting in 18
spatial plots, many of which are not significantly different from the others. The
analysis focuses on particularities that are relevant. Firstly, the issue of anisotropy is
discussed. The spatial patterns of the error in the gravity field models associated
with the mis-modelled time-variable signal are subsequently analysed.

Anisotropy

Anisotropy is identified in the spatial plots of the estimated error in the gravity field
models as the alignment of spatial error features along a certain direction, also known
as striping pattern. If the data have anisotropic sensitivity, some Stokes coefficients
are estimated with relatively large errors, decreasing the quality of the resulting
gravity field models. Fortunately, there are a number of techniques that weight down
the erroneous coefficients and minimize the striping patterns (e.g. Swenson and
Wahr, 2006; Klees et al., 2008). Notwithstanding, these procedures may suppress
elongated geophysical features, such as the signature of an earthquake, because
those features are not distinguishable from the striping error pattern when the two
have similar spatial orientation. For this reason, a future gravimetric mission should
have isotropic sensitivity of the measurements so that the resulting gravity field
models are free of striping artefacts.

Figure 8.15, showing the spatial plots of the total measurement noise, presents the
typical striping patterns associated with the pendulum and trailing formations: East-
West stripping and North-South stripping, respectively. The considered pendulum
and trailing formations sample the gravitational field differences exclusively along one
direction which is (mainly) oriented along the East-West and North-South directions,
respectively, and the collected data are insensitive to variations along the orthogonal
direction, resulting in the respective stripping pattern. The spatial pattern of the
cartwheel formation shows long and narrow stripes that are often interrupted at the
equatorial regions. At low latitudes, the considered cartwheel formation measures the
inter-satellite accelerations along (mainly) the radial direction and the gravitational
field can be accurately reconstructed. Outside the equatorial belt, the striping pattern
emerges, as a result of the lower ratio between the radial and horizontal directions
of these inter-satellite baseline vector and by the high-amplitude positioning noise.
Recall that the errors in the data of the cartwheel formation are dominated by the
positioning noise, so the patterns that are most evident in the spatial domain are
those associated with this noise type.

It is also opportune to address the amplitude of the stripping patterns. The
amplitude of the geoid height error in case of the trailing formation, 32mm, is larger
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than the one of the cartwheel formation, 11mm. The pendulum formation produces
the errors with the lowest amplitude, 2.2 mm. Notice that the colour bars in the
plots are different.

The cartwheel and trailing formations produce error in the gravity field models that
contain similar stripping length. In contrast, the stripes in the case of the pendulum
formation are (on average) shorter in length and superimposed over a larger-scale
(of relatively) isotropic error pattern. This is an advantageous characteristic since
the anisotropic sensitivity is limited to shorter distances and the required a posteriori
filtering is less intrusive.

The region with largest errors in case of the trailing formation is restricted to
the low latitudes, while is extends up to higher latitudes in case of the cartwheel
formation and all over the globe for the pendulum formation. The study of mass
transport processes, in particular those related to the hydrological cycle, are, in
comparison to the pendulum and cartwheel formations, hampered by the large errors
that are consistently located at equatorial regions.

It should be noted that the spatial plots of the cartwheel and trailing formations
do not exhibit any anisotropy at the poles, resulting from successive polar crossings
at different orientations. The pendulum formation also samples the poles at different
orientations but, in spite of this, the spatial plot of the pendulum formation depicts
East-West stripes at all latitudes. The reason is that the distance between the
satellites of the pendulum formation at near-polar locations is consistently very small,
resulting in a (comparatively) poor estimation of the gravity field parameters.

In conclusion, the striping pattern in the data gathered by the pendulum formation
is of less amplitude and with shorter stripes than in case of the other formations,
indicating a more isotropic data sensitivity. Therefore, it is expected that post-
processing filtering techniques are less critical to the production of gravity field
models from the data collected by the pendulum formation.

Mis-modelled time-variable signal

Future dedicated gravimetric missions have as a main objective the accurate meas-
urement of the time-variable gravitational field, down to the weekly and sub-weekly
periods. One important error source, even at such short estimation periods, is
associated with the mis-modelled time-variable signal. The number of measuring
satellite systems to be launched in the near future will not be sufficient to completely
mitigate the effects of temporal aliasing. Therefore, future gravimetric missions are
to be insensitive to those effects as much as possible. In this section, the spatial
pattern of the mis-modelled time-variable signal is analysed, with the purpose of
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(a) cartwheel

(b) pendulum

(c) trailing

Figure 8.15 – Spatial maps of the geoid height error due to the total noise for the a)
cartwheel, b) pendulum and c) trailing formations with maximum range equal to 200 km.
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making a qualitative assessment of the distribution of the errors resulting from
temporal aliasing.

Referring to Figure 8.16, the immediate observation is that the spatial patterns
of the propagated mis-modelled time-variable signal are vastly different between the
considered formations. The latitude range over which the error amplitude is largest
is:

• for the cartwheel formation, at the 40◦ to 80◦ and −40◦ to −80◦ bands,
• for the pendulum formation, fairly homogeneous across all latitudes and
• for the trailing formation, between ±50◦.

Moreover, the striping pattern is visible in the North-South direction for the
cartwheel and trailing formations and along the East-West direction for the pendulum
formation, in the latter case with less amplitude.

The radial attitude of the LoS vector of the cartwheel formation effectively
suppresses the detrimental effect of the mis-modelled time-variable signal at latitudes
close to the equator. It suggests that a gravimetric satellite mission that measures
the inter-satellite acceleration along the radial direction continuously, e.g. a cartwheel
formation with three or more satellites, is effective at mitigating temporal aliasing.

The spatial error pattern due to the propagated mis-modelled time-variable
signal in the pendulum formation is surprisingly homogeneous with latitude, with the
exception of small-scale East-West stripping and restricted regions in the immediate
vicinity of the poles where the large errors are concentrated. This result indicates
that the pendulum formation is very effective when it comes to minimizing the
effects of temporal aliasing. A number of possible reasons for this effectiveness
are proposed in Section 8.2.1. The low quality of data at the polar regions can be
compensated with other data sources, such as a trailing formation.

The trailing formation is, among the considered formations, the most sensitive
to temporal aliasing. The associated gravity field model error is corrupted over the
widest latitude band. On the positive side, it shows very little error in the polar
regions, from which glaciological studies may benefit.
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(a) cartwheel

(b) pendulum

(c) trailing

Figure 8.16 – Spatial maps of the geoid height error due the mis-modelled time-variable
signal for the a) cartwheel, b) pendulum and c) trailing formations with maximum range
equal to 200 km.
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8.3 Technical aspects of future gravimetric missions
One aspect of the formations that has been hitherto ignored is the technical com-
plexity and difficulty in reaching a practical and functional design of each of the
proposed formations. Addressing this issue was never the purpose of the numerical
study but when discussing a concept for a future mission, there is no way to avoid it.

Without any doubt, the trailing formation is the most accessible concept in
technical terms, as the GRACE mission proves it. Between the pendulum and
cartwheel formation, the former is the easiest to implement. The pendulum formation
has been the object of research, e.g. Cesare et al. (2010a); Panet et al. (2012), while
there are no such complete studies and design proposals involving the cartwheel
formation. Furthermore, the two satellites in the pendulum formation fly at the same
altitude, unlike in the cartwheel formation. The problem with having the satellites in
the same formation flying at different altitudes comes from the different magnitude
of the aerodynamic force acting on them. Consequently, the Attitude and Orbital
Control System (AOCS) needs to actively and frequently make corrections in order
to keep the range within the nominal values. It should be said that if the satellites
are equipped with a Drag-Free Attitude Control Systems (DFACS), this problem
becomes an argument in favour of the cartwheel formation, since the higher orbital
eccentricity means that the average drag is lower and the required propellant mass
is less (or the mission life time is longer).

The largest problem of the cartwheel formation, however, is the wide range of
the angular difference between the velocity vector and the LoS vector. This angular
difference is of importance because the velocity vector defines the attitude of the
body of the satellites, so that it is aligned with the aerodynamic flow to minimize
the drag force or, if applicable, to efficiently deliver the thrust commanded by the
DFACS. In case of the cartwheel formation, this angular difference is described (to
a large extent) by the relative elevation angle (recall that the elevation angle is the
angular distance between the local horizontal plane and LoS vector). This angle
varies from 0◦ at one pole, through 90◦ at the first equator crossing, 180◦ at the
other pole, 270◦ at the second equator crossing and 360◦ at the first pole. The
resulting difficulties in keeping the beam of the ranging sensor illuminating the other
satellite are significant. One possibility would be to assign two quadrants to the
ranging sensor in each satellite, so that one satellite is responsible for emitting the
tracking signal to be reflected from the other satellite in one hemisphere and the
roles are switched every time the satellites cross over the poles. Still, the ranging
sensor needs to swivel 180◦ – the least, to avoid measurement gaps – while the
satellite body remains aligned with the incoming aerodynamic flow. One can think
of one additional iteration on this idea, by equipping each satellite with two ranging
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sensors, each assigned to one quadrant, thus restricting the swivelling system to
operate over a 90◦ range. In any case, the complexity of each satellite is considerable,
particularly in comparison to the GRACE satellites.

In case of the pendulum formation, the largest angular difference between the
velocity vector and the LoS vector takes place in the horizontal plane, so the relative
azimuth angle is relevant (recall that the azimuth angle is the angular distance
between the local Northerly direction and horizontal projection of the LoS vector).
In case of the pendulum formation considered in the numerical study, the relative
azimuth angle is very close to ±90◦. As a result of the minimum range of only a few
meters, cf. Table 8.3, the relative azimuth angle remains nearly constant during the
ascending and descending arcs, switching almost instantly at the poles. A pendulum
formation under these conditions is not particularly difficult to implement: each
satellite would be equipped with two ranging sensor, each one facing opposite cross-
track directions. Each ranging sensor would be responsible for taking measurements
at either the ascending or descending arcs. At the poles, one ranging sensor would
be turned off, while the other would be turned on, as the satellites paths intersect.
As a drawback, it is unavoidable to have measurement gaps consistently at the poles,
because the relative azimuth angle is too low to permit the operation of the inter-
satellite metrology system at those locations. Furthermore, the simulated formation
is not practical because of the high risk of collision. The minimum range has to be
at least a few hundred meters but this distance should preferably be kept as small as
possible to limit the measurement gap occurring near the cross-over point. Another
consideration to be addressed regards the redundancy of the crucial inter-satellite
metrology system. Unlike the trailing formation, the pendulum formation would
require multiple systems in each satellite.

In conclusion, the least technically feasible formation concept is the cartwheel.
The pendulum formation does not present significant technical hurdles. The trailing
formation, although the least complex in technical terms, should not be favoured
since it is characterized by large measurement errors, significant sensitivity to model
errors and considerable data anisotropy.

8.4 Summary and conclusions
In the current chapter, a numerical study on future gravimetric satellite formations
is conducted. The simulations considered three formation types, the cartwheel,
pendulum and trailing formations. This choice of formations is motivated by the
respective orientation of the LoS vector. The cartwheel formation permits the inter-
satellite acceleration to be (occasionally) measured along the vertical direction, the
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pendulum formation samples the gravitational field along the cross-track direction
and the trailing formation collects gravimetric data in the along-track direction.

For each formation, six noise types are considered: i) the accelerometer noise,
ii) the correction noise which is proportional to the error in the relative orbital
velocity perpendicular to the LoS vector, iii) the orientation noise which quantifies
the uncertainty in the orientation of the LoS direction, iv) the positioning noise
describing the contribution of the orbital positioning errors, v) the ranging noise that
describes the uncertainty in measuring the distance between the satellites and vi)
the mis-modelled time-variable signal that depicts the effects of temporal aliasing.
Summarized in Table 8.20 are the sensitivity of the formations to different noise
types.

The trailing formation is, of the three formations considered in the numerical study,
the most sensitive to the accelerometer noise, correction noise and mis-modelled
time-variable signal. The cartwheel formation is most sensitive to the orientation
noise and positioning noise, while the pendulum formation is most sensitive to the
ranging noise.

The trailing formation shows a measurement error in terms of cumulative geoid
height at degree 120 equal to 32 mm, the cartwheel formation 11 mm and the
pendulum formation, 2.2mm. The errors of the cartwheel formation are dominated
by the positioning noise, which amounts to 76 %. In case of the pendulum formation,
the ranging noise dominates, with 48 %. The correction noise dominates the trailing
formation with 93 %. The pendulum formation is the least sensitive to temporal
aliasing and the trailing formation is the most sensitive.

Recall that the numerical study did not consider the removal of the resonance
effect (see Section 2.5.6), which increases significantly the accuracy of the estimated
gravity field parameters by mitigating low-frequency errors, i.e. particularly those
associated with positioning noise, correction noise and orientation noise. Assuming
that these effects effectively mitigated, the results predict a much higher level
of accuracy, i.e. the cartwheel and pendulum formations would determine Earth’s
gravitational field with a cumulative geoid height error at degree 120 of 1.7mm and
2.0 mm, respectively, the former mainly driven by the mis-modelled time-variable
signal and the latter by the ranging noise. The trailing formation error would be at
the level of 5.7mm, mainly as the result of the mis-modelled time-variable signal
and accelerometer noise.

The analysis considered a maximum range equal to 200 km. With the purpose
of gaining insight into the way this parameter affects the accuracy of the estimated
gravity field parameters, two additional values of maximum range are considered:
400 km and 1000 km. As expected, larger maximum ranges lead to a more accurate
estimation of the gravity field parameters, particularly in the trailing and cartwheel
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noise type cartwheel pendulum trailing

accelerometer noise 0.43 0.89 2.2

correction noise 4.6 4.9×10−9 31

orientation noise 2.0 5.0×10−4 0.037

positioning noise 9.3 0.91 5.8

ranging noise 0.85 1.5 0.36

mis-modelled
time-variable signal 1.4 0.92 5.3

total measurement
noise 11 2.2 32

contribution of
dominant noise type

positioning noise:
76 %

ranging noise: 48 %
correction noise:

93 %

advantages

Potentially very
accurate, if

correction noise,
orientation noise
positioning noise
are mitigated.

Insensitive to
correction noise and
orientation noise;
low sensitivity to
positioning noise
and mis-modelled
time-variable signal.

Low sensitivity to
orientation noise.

disadvantages

Extremely sensitive
to positioning noise;
North-South stripes
away from equator

and poles.

East-West stripes
at all latitudes; high

mis-modelled
time-variable signal

at the poles.

High sensitivity to
correction noise and

mis-modelled
time-variable signal;
North-South stripes
away from poles; low
level of isotropy.

Table 8.20 – Overview of the simulation results in terms of cumulative geoid height errors
at degree 120 (in millimetres) and summary of the advantages and disadvantages of each
formation. The underlined values indicate the formation with the highest error magnitude
for each noise type.
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formation, although the benefit is limited to the low degrees in the latter. The degree
amplitude spectra showed patterns of localized error increase, to which the term
resonance artefacts is attributed. They limit the benefits of the larger maximum
range and predictably occur at the degrees equal to the multiples of the ratio between
the orbit perimeter (i.e. 2πa , with a being the semi-major axis) and the maximum
range for the trailing and pendulum formations or the average range for the cartwheel
formation.

Concerning the spatial error patterns, the pendulum formation produces data
with the highest level of isotropic sensitivity, while the trailing formation the lowest.
The stripping pattern in the trailing and cartwheel formation is aligned with the
North-South direction and in case of the pendulum formation with the East-West
direction. The pendulum formation shows stripes at all latitudes but of less amplitude
and length than the other formations. The error pattern of the cartwheel formation
does not show stripes close to the equator and at the vicinity of the poles. The
trailing formation shows stripes at all latitudes except at the polar areas.

In summary, the pendulum formation produces the most accurate data; is the
least corrupted by the mis-modelled time-variable signal and positioning noise. It is
remarkable that the inertially-frozen attitude of the LoS direction of the pendulum
formation effectively mitigates the correction noise. The spatial pattern of the
estimated error in the gravity field models indicates some data anisotropy, although
not as severe as for the trailing formation. All these characteristics make the
pendulum formation the prime candidate for a future gravimetric mission.
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The research described in the thesis has the objective of gaining a better understand-
ing of how to measure Earth’s temporal gravitational field variations with gravimetric
satellite formations, optionally augmented by non-dedicated satellites.

As discussed in Section 1.2.2, the need for this research line is justified by a
number of limitations in similar studies, cf. Table 1.2:

i. the lack of frequency description of the noise time series (with the exception
of the ranging noise), in particular those resulting from orbit position noise;

ii. often ignored noise types, such as as positioning noise, and the assumption that
if a noise type is not significant in Gravity Recovery And Climate Experiment
(GRACE) data, is will remain so in other formations;

iii. the focus on dedicated gravimetric satellites, which due to their high production
and operation costs, are necessarily limited in number and, therefore, limited
in the temporal sampling of the gravitational field.

The following areas are studied in detail, in order to tackle the aforementioned
limitations:

i. improving the accuracy of the predictions of future gravimetric data quality,
which is addressed by considering a validated realistic noise model as well as
estimating the influence of errors in the gravity field parameters;

ii. determining the anisotropic sensitivity of the data and the influence of different
noise types, which is investigated in the simulation of the cartwheel, pendulum
and trailing formations, considering full-scale inversions of error time series
produced on the basis of a realistic noise model;
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iii. minimizing the effect of temporal aliasing, by exploiting non-dedicated satellite
missions to improve the temporal sampling of the gravitational field and by
finding formation geometries which are least sensitive to temporal aliasing.

A number of points can be highlighted in the research presented in the thesis.
The use of non-dedicated missions to augment the dedicated missions constitutes a
distinctive approach to reduce the effect of temporal aliasing on the accuracy of the
estimated gravity field models. The simulation of all foreseeable errors is compared
with the errors estimated from GRACE data and shown to accurately represent them.
On the basis of the error simulations, it is demonstrated that the cartwheel formation
is highly sensitive to orbit errors. Finally, the numerical simulations have shown that
the cross-track pendulum formation is virtually insensitive to some noise types and
significantly less sensitive to temporal aliasing, when compared to other formation
geometries.

Section 9.1 lists the major findings of the thesis. Section 9.2 provides further
discussion based on new knowledge gained in the thesis research. The recommend-
ations for future research are tackled in Section 9.3. The chapter concludes with
some final remarks in Section 9.4.

9.1 Summary
The presentation of the results is divided into four major parts:

i. the added value of non-dedicated satellites to decrease the effects of temporal
aliasing is studied in Chapter 5, particularly at long wavelengths where
temporal aliasing is most influential;

ii. the analysis and validation of the noise model is presented in Chapter 6,
demonstrating that it represents accurately the errors in gravimetric satellite
measurements;

iii. the components of the positioning noise are investigated analytically and
numerically in Chapter 7; and

iv. the numerical analysis of three different gravimetric formations – trailing,
pendulum, and cartwheel – is the subject of Chapter 8, with the purpose of
identifying the advantages and disadvantages of each concept.

In Chapter 5, the effects of temporal aliasing associated with mis-modelled
time-variable signal are shown to be effectively minimized at low spatial frequencies
by augmenting future gravimetric missions with a constellation of non-dedicated satel-
lites carrying on-board geodetic-quality Global Navigation Satellite System (GNSS)
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receivers. The lower accuracy of the data gathered by the non-dedicated satellites
can be counter-acted by large spatial and temporal density of the measurements. It is
shown that those data contribute to resolve large-scale and short-term gravitational
signals, such as those with wavelengths larger than 1000 km and periods shorter
than 1month (even down to a few days).

In order to predict the future error levels, there must be an understanding of
how they contaminate data from existing satellite missions. Chapter 6 is a collection
of studies that analyse and quantify the errors in the data acquired by the GRACE
mission. These studies are based on the noise model proposed by Ditmar et al.
(2012), or, in case of Section 6.1, intend to quantify its important ingredients. The
noise types that compose it are, cf. Section 4.3.3:

• accelerometer noise, describing the errors in measuring non-gravitational
accelerations;

• correction noise, resulting from the inaccurately known relative velocity perpen-
dicular to the Line of Sight (LoS) vector and associated errors in reconstructing
the frame accelerations of the rotating LoS direction;

• orientation noise, which is the inaccurate representation of the orientation of
the LoS vector;

• positioning noise, associated with in the errors in the orbit positions;
• ranging noise, related to the errors in measuring the range; and
• mis-modelled time-variable signal, representing the effects of the errors in the

models describing the rapid mass changes in the atmosphere and oceans.
The first step, described in Section 6.1, is to take advantage of the K-Band

Ranging (KBR) data collected by GRACE and determine the spectra of the relative
position and velocity errors, projected onto the LoS direction. They dominate at the
frequencies below 0.2mHz and quickly decrease at higher frequencies, see Figure 6.5.

The second step of analysing actual GRACE data, discussed in Section 6.2,
focuses on comparing the a posteriori residuals with synthetic noise representing
different noise types at different frequency bands, so that it is possible to identify the
dominant source in each band. As a result, the understanding of the data gathered
by the GRACE mission is improved with the associated benefits for the prediction of
the accuracy of future missions. A mis-modelled static signal was uncovered in the
data, illustrating that: i) the GRACE data are sensitive to the gravitational signal
up to degrees in excess of degree 180 and ii) the background force model needs to
be extended to a such degree to eliminate the errors introduced by the omission
signal. Furthermore, it was confirmed that the ranging noise is only significant at
frequencies above 9mHz, which leads to an amplitude of the errors in the estimated
gravity field model coefficients one order of magnitude lower than the actual data
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noise. The effect of the errors associated with the mis-modelled time-variable signal
is not substantial enough to explain the magnitude of the errors in the data. One
reason is that the amplitude of the mis-modelled time-variable signal is restricted to
low frequencies.

In Section 6.3, GRACE a posteriori residuals are exploited to validate the noise
model adopted in this study. The simulated errors are compared to the GRACE
a posteriori residuals in terms of the range combination error and in terms of the
gravity field model error. The range combinations represent time-averaged inter-
satellite accelerations projected onto the LoS direction. The simulated positioning
noise is calibrated with help of actual data (up-scaled by a factor of 6.22), in
order to incorporate in the simulation environment the effects of the imperfectly-
estimated initial state vectors, which originate from errors in GNSS observations.
The amplitude of the error in the gravity field models is under-estimated by a factor
of two, considering the cumulative amplitude at degree 120, because it is yet to
describe the error source in the 1−9mHz bandwidth (see Section 6.2). However,
this discrepancy is sufficiently small to allow the utilization of the noise model in the
study of future gravimetric missions, after considering a 3-fold improvement in the
orbit accuracy resulting from a new generation of GNSSs and a laser ranging sensor
(refer to Table 8.7 for more details).

In Chapter 7, the absolute and relative components of the positioning noise
are quantified for the cartwheel, pendulum and trailing formations. Although the
positioning noise is a scalar quantity at the level of range combinations, it originates
from the absolute and relative components of the orbit position noise. It is shown
that the cartwheel formation suffers from a very high sensitivity to the positioning
noise resulting from the relative orbit position noise perpendicular to the LoS
direction. This is a fundamental characteristic of this formation that results from
the amplification of the relative orbit position noise by diagonal components of the
gravity gradient tensor (defined in the Local Horizontally-aligned Reference Frame
(LHRF, Section A.3)), while the pendulum and trailing formations are only affected
by off-diagonal components, which are small in their case. The simulations also
show that the elimination of the orbit errors along the LoS direction, by exploiting
data collected by the ranging sensor, is futile in case of the cartwheel formation.
The orbit adjustment is most effective in case of the pendulum formation, with an
improvement of around one order of magnitude.

The objective of Chapter 8 is to conduct a numerical study of all noise types for
the same three satellite formations as in Chapter 7. The analysis is done in terms of
range combinations, degree amplitude spectra and per-coefficient plots up to degree
120, so that the mission configuration that produces the most accurate results can
be identified. The considered noise types are those defined in the noise model,
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described in Section 4.3.3. In terms of cumulative geoid height degree amplitude
at degree 120, the trailing formation shows an error (32mm) 3 times higher than
the cartwheel formation (11 mm), which in turn is 5 times less accurate than the
pendulum formation (2.2mm).

The errors of the cartwheel formation are dominated by the positioning noise,
which amounts to 76 %. The correction noise dominates in the data from the trailing
formation with 93 %. The ranging noise is the largest in the pendulum formation,
accounting for 48 %. The correction noise is the second most intense noise type in
the cartwheel formation (19 %), while it is the positioning noise and mis-modelled
time-variable signal in the trailing formation, respectively 3.4 % and 2.8 %. In case
of the pendulum formation, the mis-modelled time-variable signal, positioning noise
and accelerometer noise are comparable in terms of contribution to the total noise
with 18 %, 17 % and 17 %, respectively.

In what concerns the mis-modelled time-variable signal, the pendulum formation
stands out as being most insensitive to it. The simulations show that the degree
RMS of the gravity field model error at degree 120 is 0.92mm. In comparison, these
errors are 1.4mm for the cartwheel formation and 5.3mm for the trailing formation.

Note that the numerical study does not remove the resonance effect (see Sec-
tion 2.5.6), which increases significantly the inaccuracy of the estimated gravity
field parameters by propagating the low-frequency errors, particularly orbital errors
(i.e. those associated with positioning noise, correction noise and orientation noise).
In case the effects of the orbital errors are ignored, the cartwheel and pendulum
formations would determine Earth’s gravitational field with a cumulative geoid height
error at degree 120 of 1.7mm and 2.0mm, respectively, the former mainly driven
by the mis-modelled time-variable signal and the latter by the ranging noise. The
trailing formation error would be at the level of 5.7mm, mainly as the result of the
mis-modelled time-variable signal and accelerometer noise.

In Section 8.2.3, in addition to the maximum range equal to 200 km considered
so far, two additional values are of maximum range considered: 400 km and 1000 km,
permitting the identification of patterns of localized increase in error-per-degree,
called resonance artefacts, at the degrees inversely proportional to maximum range
in case of the trailing and pendulum formations and average range in case of the
cartwheel formation.

In what concerns the errors in the spatial domain, described in Section 8.2.4,
the considered pendulum and trailing formations produce errors in the gravity field
models with striping patterns (mainly) oriented along the East-West and North-
South directions, respectively. This is a result of the (nearly) constant orientation
of the LoS vector, parallel to the respective directions. The spatial pattern of the
cartwheel formation shows long and narrow stripes aligned with the North-South
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direction, since the errors in the data collected by this formation are dominated by the
positioning noise. At low latitudes the strips are interrupted since the inter-satellite
accelerations are measured along (mainly) the radial direction and the positioning
noise is of less amplitude. The amplitude of the stripping patterns is lowest in
the pendulum formation and highest in the trailing formation. Furthermore, the
stripes in the case of the pendulum formation are (on average) shorter in length and
superimposed over a larger-scale (of relatively) isotropic error pattern. From these
findings, it is possible to say that the data sensitivity of the pendulum formation is
most isotropic, while that of the trailing formation is the least isotropic. The region
with largest errors in case of the trailing formation is restricted to the low latitudes,
while those errors are visible up to higher latitudes in case of the cartwheel formation
and at any latitude for the pendulum formation. The successive polar crossings at
different orientations ensures that the errors are of low amplitude at the poles for
the cartwheel and trailing formations. The errors in the data collected by pendulum
formation are not of less amplitude at the poles because the distance between the
satellites is very small at those regions.

9.2 Conclusions
In Chapter 5, is was shown that non-dedicated satellites help resolving the high-
frequency temporal gravitational field variations, in spite of the fact that this can
only be achieved with a few dozens of satellites. Non-dedicated satellites with
a GNSS receiver are a resource that will likely be available in the near future.
Foust (2015) reports that OneWeb (www.oneweb.world) plans to build 900 micro-
satellites for global communications, BlackSky Global (www.blacksky.com) plans
to launch 60 satellites for Earth imagery, UrtheCast (www.urthecast.com) plans
to launch 16 optical and Synthetic Aperture Radar (SAR) imagery satellites. In
addition, Iridium NEXT (www.iridium.com, Gupta, 2008) is soon to launch 66
global communication satellites, the FORMOSAT-3/COSMIC (F3C) (Kuo et al.
1999, 2005) and FORMOSAT-7/COSMIC-2 (F7C2) (Ector et al. 2010; Cook et al.
2013) constellations will add 12 radio occulation satellites and the Community
Initiative for Continuing Earth Radio Occultation (CICERO, geooptics.com) pro-
ject proposes to launch 24 or more satellites for severe weather monitoring. Hsu
(2015) also reports that SpaceX (www.spacex.com), with support form Google
(www.google.com/about), plans to provide Internet access to developing regions of
the world through a constellation of 4000 satellites. All these satellites can easily be
equipped with miniaturized GNSS receivers (Virgili and Roberts, 2013) and antennas
(Pesyna et al., 2014), as well as accelerometers (Dubovskoi et al., 2012) (although
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the latter are not strictly needed). In what regards attitude determination systems,
those are already routinely flow in CubeSat satellites with accuracies ≈ 0.1◦ (which
results in sub-millimetre accuracy for satellite sizes in the order of 0.1 m). These
data come at virtually no additional cost, especially when compared with flagship
missions, and has the potential of having extremely high temporal resolution. In case
the commercial satellite operators are not willing to cooperate, the cost of launching
small CubeSats or mass-produced cannonball-style satellites is not particularly high.

The analysis presented in Chapter 6 did not succeed in identifying the dominant
source of noise in the range of intermediate frequencies, at 1−9mHz. Nevertheless,
it was uncovered that the errors on this frequency band are stationary, indicating that
they possibly originate in the instrumentation of the GRACE satellites. A possible
source for these errors is the attitude determination system (Bandikova and Flury,
2014; Inácio et al., 2014) and/or the accelerometers (Peterseim et al., 2014). The
former errors are effectively mitigated by a laser interferometry system with the
Corner-Cube Retroreflector (CCR) positioned at the Centre of Mass (CoM) (such
as the one proposed by Cesare et al., 2010b) The latter errors can be reduced by
incorporating in future gravimetric missions the accelerometers, rigid spacecraft
structure and thermal control capabilities similar to those developed for the Gravity
field and steady-state Ocean Circulation Explorer (GOCE) mission.

As discussed in Section 6.2 and in the context of GRACE follow-on missions,
the errors in the static field used in the background force model may propagate to
the time-varying gravitational field solutions in a different way for each new solution
(i.e. as a fictitious time-varying signal) as a result of the changing ground-track
pattern and the non-uniqueness of the gravity field recovery. Although the GOCE
mission has made it possible to compute accurate static gravity field models up to a
high spherical harmonic degree, the highly accurate sensors of future missions may
produce data that are sensitive to even higher degrees than those covered by GOCE.
The solution to this problem is to produce a static model (i.e. considering a long
period of data, such as one year) up to a high degree (above the maximum degree
of the time-varying solutions). This tailored static model does not represent the
actual static gravity field but depicts the systematic errors with which it is observed
by the future gravimetric satellite mission, possibly as a result of the non-uniqueness
of the gravity field recovery. Nevertheless, it would be able to capture all static
signal, preventing it from appearing in the time-varying solutions.

The findings made in Section 6.3.5 tell that the high amplitude of the positioning
noise simulated as the difference between EIGEN-5C and EIGEN-CG03C is mainly the
result of the imperfectly-estimated initial state vectors. This is because a calibration
factor of 6.22 is needed in order to reproduce the positioning noise estimated from
actual GRACE data. Had the analysis been done with a more recent pair of models,
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e.g. GOCO03S and EIGEN-6C4, the calibration factor would have been larger as a
result of the smaller difference between these models than the models considered
in the production of the positioning noise (EIGEN-5C and EIGEN-CG03C). It is,
therefore, more advantageous for the mitigation of the positioning noise to improve
the accuracy of the estimation of the initial state vectors than to increase the accuracy
of the background force model. This can only be achieved by more accurate GNSS
measurements and methodological advances in producing Kinematic Orbits (KOs).

In Chapter 7, the amplitude of the positioning noise is quantified for the
considered formations. The results presented in this section are derived with the
acceleration approach used in the production of the Delft Mass Transport (DMT)
model. Nevertheless, the positioning noise is also present in other approaches
because these errors results from imperfections in background force models used
to integrate the orbits. In some approaches, such as those based on variational
equations or short arcs, the orbits are inherently kept in agreement with the estimated
gravity field parameters. Nevertheless, that characteristic does not ensure that the
computed orbits are error free since the produced gravity field models are not error-
free themselves. An additional consideration is that the estimation of the initial
state vectors in other approaches may be more robust than in the case of the orbits
used in the production of the DMT model. In spite of this, it is unlikely that the
calibration factor is much lower in value (certainly not close to one). In general, the
results of Chapter 7 should be understood in relative terms between the formations
and the quantitative results can be somewhat different in case of other approaches
used for the inversion of gravity data into gravity field parameters.

One of the most important results of Chapter 7 is that the cartwheel formation
is extremely sensitive to positioning noise. Since the positioning noise is mainly the
result of errors in GNSS observations (through the imperfectly-estimated initial state
vectors), the expected improvement in accuracy of these observations is modest
(cf. Section 6.1.7), in particular when compared to technological improvements
in inter-satellite metrology systems. In practice, this means that the cartwheel
formation is probably, of the considered formations, the one to benefit the least from
technological advances.

An important finding presented in Chapter 8 is that the correction noise is
practically non-existing in the pendulum formation.This is the result of the nearly
constant attitude of the LoS vector in inertial space. In comparison, the cartwheel
formation, which also shows a fairly stable attitude of the LoS vector (inertial
elevation between −19◦ and 27◦, cf. Table 8.4), is under the influence of correction
noise which is nine orders of magnitude more intense. It should be noted that the
orbits of the cartwheel formation maybe be fine-tuned to reduce the amplitude of the
variations of the inertial elevation of the LoS vector, thus decreasing the amplitude
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of the correction noise. In contrast, there is no such option in case of the trailing
formation. One possibility to reduce the correction noise is to measure the attitude
of the LoS vector, which has been accomplished so far by exploiting the orbits of
the satellites. In a similar idea to a star-tracker, both satellites could be equipped
with high-definition cameras that record the position of the other satellite relative to
the background stars, with very angular resolution if suitable optics are employed.
These measurements would directly provide the inertial attitude of the satellites.
Unfortunately, the Sun glare and the Earth surface (the latter relevant in case of the
cartwheel formation) might reduce the periods when these data can be collected,
limiting their usefulness.

The analysis of the positioning noise in Section 8.2.1 demonstrated that the
models based on the trailing formation are affected by this noise type up to a
high degree. In this case, the slowly-changing amplitude of the long-wavelength
errors accumulate as numerous ascending and descending tracks because there is
little East-West sensitivity in the data, resulting in large errors in to sectorial and
near-sectorial coefficients. In contrast, the pendulum formation effectively limits
the impact of the positioning noise to low degrees because it is able to sample
near-sectorial coefficients, given the East-West orientation of the LoS direction most
of the time. As a consequence, the mitigation of this noise type by high-pass filtering
(refer to Section 2.5.6) in case of the pendulum formation should be particularly
effective.

In Section 8.2.4, it is shown that the region with largest errors in case of the
trailing formation is restricted to the low latitudes, while it is located at higher
latitudes in case of the cartwheel formation and at all latitudes for the pendulum
formation. This observation is of interest to hydrological studies, since some areas of
the globe are retrieved less accurately than others, except in case of the pendulum
formation. The stripes in the case of the pendulum formation are (on average)
shorter in length and superimposed over a larger-scale (of relatively) isotropic error
pattern. This is an advantageous characteristic since the anisotropic sensitivity is
limited to shorter distances and the required a posteriori filtering is expected to be
less intrusive.

In addition to the spatial error patterns of the total noise, those associated with
temporal aliasing were also analysed in Section 8.2.4. The trailing formation is, among
the considered formations, the most sensitive to temporal aliasing; furthermore the
associated gravity field model error affects the widest latitude band. On the positive
side, it shows very little error in the polar regions, from which glaciological studies may
benefit. The radial attitude of the LoS vector of the cartwheel formation effectively
suppresses the detrimental effect of the mis-modelled time-variable signal at latitudes
close to the equator. This suggests that a gravimetric satellite mission that measures
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the inter-satellite acceleration along the radial direction continuously, e.g. a cartwheel
formation with three or more satellites, Wiese et al. (2009), might be effective in
mitigating temporal aliasing. The spatial error pattern of the propagated mis-
modelled time-variable signal in the pendulum formation is surprisingly homogeneous
with latitude, with the exception of small-scale East-West stripping and restricted
regions in the immediate vicinity of the poles where the large errors are concentrated.
This result indicates that the pendulum formation is very effective when it comes to
minimizing the effects of temporal aliasing. A possible reason for this effectiveness
is that the larger width of the ground-track strip sensed by the pendulum formation
combined with the higher sensitivity to mass variations outside this strip (as a
result of the cross-track orientation of the LoS vector), favours the averaging of the
high-frequency mass transport processes. The cartwheel and trailing formation, on
the other hand, have nearly zero cross-track separation, so the strip of surface to
which they are sensitive to is narrower.

The findings reported in the thesis support the pendulum formation as the best
option for a future gravimetric satellite missions. This formation is accurate and
technically feasible. The reasons for that are as follows:

• compared with the trailing and cartwheel formations, the pendulum formation
is the least sensitive to the mis-modelled time-variable signal;

• the pendulum formation is highly insensitive to correction noise, orientation
noise and, of the simulated formations, is the least sensitive to positioning noise,
i.e. least affected by orbit errors – this is noteworthy since the accuracy of
GNSS is not predicted to improve significantly in the foreseeable future;

• the pendulum formation collects data with more isotropic sensitivity because
the striping pattern is of less amplitude and with shorter stripes than the other
formations;

• in combination with a polar trailing formation, such as the planned GRACE
Follow On (GFO) (Sheard et al. 2012; Larkin 2012; Zaragoza 2013), there
would be multiple synergistic advantages:

i. the resulting data would have a high isotropic sensitivity in view of the
combined orthogonal sampling directions;

ii. the accurate data gathered by the trailing/pendulum formation at the po-
lar/equatorial locations would compensate the lower data quality gathered
by the counterpart formation at those locations;

iii. the failure of either formation in the constellation does not result in the
loss of global coverage, as is the case of other proposals, such as the
Bender formation.
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9.3 Recommendations
As a result of the lack of understanding of noise in the intermediate frequency range,
1−9 mHz, it is very difficult to derive an appropriate noise model to describe it.
Possibly, this error is particular to the GRACE mission, since it may be caused by
deficiencies in the processing of attitude data (e.g. Bandikova and Flury, 2014). It
is important to complete the noise model with the missing noise types, in order to
predict their role in future gravimetric missions.

The simulation of the low-low Satellite-to-Satellite Tracking (ll-SST) observa-
tions done in the context of the added value of a constellation of non-dedicated
satellites was conducted under the simplistic noise model. At the time this study was
conducted, the advanced noise model (considered in the remainder of the thesis) was
not yet developed. Although the qualitative results would not change significantly,
it would be useful to upgrade the noise model in that study. In addition, knowledge
gained from the simulation of future gravimetric satellite formations has identified
the pendulum formation as particular insensitive to the effects of temporal aliasing
resulting from errors in the Atmosphere and Ocean De-aliasing Level 1B (AOD1B)
product. The question that follows is to what extent the data from a non-dedicated
satellite constellation provide an added value to the pendulum formation. On the
other hand, it might be the case that the lower sensitivity of the pendulum formation
to temporal aliasing in combinations with the densely sampled data from the non-
dedicated constellation improves the estimation of the high-frequency time-variable
gravitational field much more than described in Chapter 5.

One assumption in the thesis is that the temporal aliasing results from errors
in the AOD1B product, which are set equal to 10 % of signal. This is may be an
overly simplistic assumption. A more accurate simulation of the effects of temporal
aliasing would not only improve the prediction of the accuracy of future missions
but also provide clues to understand the effects of temporal aliasing better. One
of the possible approaches is to consider the difference between two alternative
meteorological models describing atmospheric pressure variations, which are the major
contributor to non-tidal mass transport in the atmosphere and ocean (Velicogna
et al., 2001; Thompson et al., 2004; Han, 2004a). Another possible approach is
to make use of the error estimations provided by a meteorological model itself
(Zenner et al., 2010). Yet another possibility is to consider a long time series of
de-aliasing models and apply a Principal Component Analisys (PCA), discarding the
most significant principal components and reconstructing the model errors as the
sum of the least significant components. In this way, the temporal correlations are
maintained and the spatial distribution is that of the orthogonal components that
captures the lowest amount of variance in the original signal.
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Other sources of temporal aliasing, in particular ocean tide model errors, should
be considered. This type of temporal aliasing was not considered because the focus
of the analyses was on the effects of atmospheric mass transport model errors (and
corresponding ocean response). Although it is reasonable to consider the simplistic
assumption that the errors in the AOD1B model are 10% of the signal, that would
not be the case in ocean tide models; the errors in these models are much more
geographically restricted. They are located mainly at polar regions and areas covered
with shallow seas (Schrama and Visser, 2006; Ray et al., 2009; Müller et al., 2014).
Another important difference is related to the propagation of the respective aliasing
signals to the gravity field parameters; Murböck et al. (2013, Figure 12) shows that
the tidal signal aliases strongly into particular degrees, while the temporal aliasing
caused by non-tidal signals in the atmosphere is smoother and spreading over wider
degree ranges. Furthermore, the repeat periods of the orbits considered in the
analysis of tidal model errors must be selected in such a way that the aliasing periods
of all tidal constituents are avoided or, if that is not possible, affect all formation
geometries in a similar way. Failing to do so would introduce a disproportionate
effect of temporal aliasing associated with tide model errors among the formation
geometries. These particularities are sufficient motivation to investigate the effects
of ocean tide model errors in the proposed pendulum formation, in spite of other
studies demonstrating that the effects of aliasing caused by tidal and non-tidal
signals are of similar amplitude (Visser, 2010; Reubelt et al., 2014, which consider
pendulum formations with non-zero along-track offset).

It is of importance to extend the simulation of the pendulum formations by
considering different latitudes of the cross-over point, which should be close to 90◦
to limit relative drift of the right ascension of the ascending node. Additionally, it is
important to investigate the effect of non-zero along-track offset in the pendulum
formation to the correction noise and orientation noise. It might be the case that
small increments of along-track offset increase significantly the effects of these noise
types, severely limiting the advantages of the cross-track pendulum formation.

Since the pendulum formation stands out as a promising configuration for a future
gravimetric mission, the positioning noise, one of the most significant noise types,
should be better understood. In Section 7.5, the positioning noise in the pendulum
formation was determined to arise mainly from the absolute orbit position noise.
Decomposing the influence of the radial, along-track and cross-track components of
the absolute orbit position noise would give further insight into how to best mitigate
the positioning noise. The Precise Orbit Determination (POD) strategies could be
fine-tuned to increase the accuracy of the orbits in the direction where positioning
noise is affected the most.

The analysis is focused on single satellite pairs. In reality, usage of multiple pair
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would improve the temporal sampling, particularly by combining different orbit repeat
cycles (Wiese et al., 2011b; Elsaka, 2013; Murböck and Pail, 2014). In addition to the
benefits in terms of temporal sampling, the combination of the proposed pendulum
formation with a trailing formation should provide models with very high quality. This
is a promising aspect that should be further investigated, since the weaknesses of
one formation are optimally compensated by the other formation. The research into
multiple formations is currently of particular importance, given the fact that the GFO
mission (consortium between NASA/JPL, CSR, DLR and GFZ) is to be launched
in the near future (Sheard et al., 2012; Larkin, 2012; Zaragoza, 2013) and other
institutions, such as the European Space Agency (ESA) (e.g. Anselmi et al., 2010)
and the Chinese Academy of Sciences (CAS) (Ye et al., 2009) are planning their own
gravimetric satellite missions. The identification and quantification of the potential
synergies between multiple dedicated missions is a significant consideration in the
design of those missions. This consideration is particularly relevant to parameters
that can be changed without many consequences, such as the orbit repeat period.

The intrinsic sensitivity of a formation to temporal aliasing is an important factor
in selecting the optimal measurement system. However, those considerations do not
reflect the latest developments in processing strategies that mitigate the effects of
temporal aliasing (e.g. Kurtenbach et al., 2009; Wiese et al., 2011c). Future studies
should consider these strategies so that they are incorporated into the error budget
and a more accurate prediction of the effect of temporal aliasing can be derived.
This is particularly relevant when the technical difficulty of implementing a particular
formation is addressed.

The spatial pattern of the error in the gravity field models based on the pendulum
formation indicates some data anisotropy (although not as severe as for the trailing
formation). One possible solution to this problem is to complement the suggested
pendulum formation with a polar trailing formation, such as the GRACE Follow On
(GFO) (Sheard et al. 2012; Larkin 2012; Zaragoza 2013). The proposed polar pen-
dulum/trailing constellation can be seen as a modification to the Bender formation,
where the inclined trailing formation is replaced by the polar pendulum formation.
The combined data would have a highly isotropic sensitivity in view of the orthogonal
sampling directions. Furthermore, the low-quality measurements gathered by the
pendulum formation close to the poles (because of persistently small range) are
effectively redeemed by the isotropic and high-quality data of the trailing formation
(as a result of the converging orbits and high ground-track density). The proposed
modification, in addition to the discussed advantages of the pendulum formation and
the aforementioned synergistic effect of the pendulum/trailing formations, ensures
that the failure of either formation in the constellation does not result in the loss of
global coverage.
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One of the difficulties identified in the prediction of the quality of the data in
future missions is the combination of model and measurement errors. Unlike the
measurement errors, the model errors are not constrained by technical characteristics,
such as instrument noise amplitude and spectra. Model errors rely exclusively on
assumptions, e.g. how to simulate the errors caused by mis-modelled static signal.
The simulated errors produced as the difference between two existing gravity field
models should be carefully scaled down to reflect the accuracy of future models.
Without such scaling, adding these simulation results to the noise budget of a
formation would distort the analysis of the results. A more suitable approach would
be to analyse a large number of increasingly accurate models (starting from models
from the pre-CHallenging Mini-Satellite Payload (CHAMP) era, up to models from
the GOCE era) and derive a trend describing the accuracy of those models over
“time”, or rather, over the semi-continuous increase in data quality and processing
advances. This would make it possible to extrapolate the accuracy of the static
errors in the context of future missions, under the assumption that the trend is
maintained.

9.4 Final remarks
With the purpose of measuring Earth’s temporal gravitational field variations, the
thesis tackles the objectives of i) minimizing the detrimental effect of temporal
aliasing, ii) improving the accuracy of the predictions of future gravimetric data
quality and iii) finding the best formation geometry for a future gravimetric mission.
The proposed means to reach these objectives are to i) exploit constellations of
non-dedicated satellites, equipped with miniaturized GNSS instruments and attitude
control systems, ii) consider the advanced noise model, which is as descriptive as
possible of all foreseeable errors in gravimetric data and iii) sample the gravitational
field with a purely cross-track pendulum formation. As demonstrated in the thesis,
the aforementioned measures constitute a significant and noteworthy advance towards
collecting high quality gravimetric satellite data.
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Reference frames A
The reference frames relevant to the thesis are briefly described in this chapter.
The purpose is mainly the disambiguation, since the same reference frame is often
referred to with different names in various publications.

A.1 Celestial Reference Frame
The Celestial Reference Frame (CRF), also known as Earth-Centred Inertial reference
frame (ECI), Conventional Inertial Frame (CIF) and Inertial Reference Frame (IRF),
is the quasi-inertial reference frame defined with the x -axis pointing towards the
direction of the mean equinox at J2000.0 epoch (12:00 on 1st of January, 2000,
Terrestrial Time (TT)), the z -axis points to the North pole at that epoch (formally,
orthogonal to the plane defined by the mean equator at J2000.0) and the y -axis
closes the right-handed set of orthogonal axes. The origin of the CRF is located at
the Centre of Mass (CoM) of the Earth. The quasi-inertial property of this reference
frame makes it suitable to represent the motion of a spacecraft.

A.2 Terrestrial Reference Frame
The Terrestrial Reference Frame (TRF), also known as Earth-Centred, Earth-Fixed
reference frame (ECEF), Earth Centred Fixed reference frame (ECF), Conventional
Terrestrial Frame (CTF) and Earth-Fixed Reference Frame (EFRF), is centred at
the CoM of the Earth. The x -axis points towards longitude 0◦ and is parallel to the
equatorial plane. The y -axis, also parallel to the equatorial plane, points towards

273



Chapter A. Reference frames

90◦ longitude. The z -axis points towards the North pole. The TRF is suitable to
represent geophysical processes in the Earth system.

A.3 Local Horizontally-aligned Reference Frame
The Local Horizontally-aligned Reference Frame (LHRF), also known as Local North-
Oriented Frame (LNOF) and Geographical Reference Frame is centred at the CoM
of the orbiting satellite. The z -axis is parallel to the radial direction and points away
from the CoM of the Earth. The x -axis is perpendicular to the z -axis and points to
the geographic North. The y -axis, also perpendicular to the z -axis, points towards
West. This reference frame is preferential to represent physical forces acting on the
satellite, in particular the gravitational force.

A.4 Local Orbital Reference Frame
The Local Orbital Reference Frame (LORF) is centred at the CoM of the satellite.
The x -axis is parallel to and pointing towards the same direction as the velocity
vector. The y -axis is parallel to the orbital angular velocity vector and pointing
towards the same direction, which also means that the y -axis is perpendicular to
the radial direction. The z -axis is the complementary right-handed orthogonal axis.
In a circular orbit, the z -axis is parallel to the radial direction.

A.5 Line-of-sight Reference Frame
The Line-of-sight Reference Frame (LoSRF), centred at the trailing satellite, is
defined at every epoch as the reference frame with the x -axis parallel to the Line of
Sight (LoS) vector, the y -axis perpendicular to the radial direction and the z -axis
orthogonal to the other two in a right-handed axes arrangement. This reference
frame needs a second satellite so that the LoS vector can be defined as the vector
difference between the orbital position vectors of the two satellites. In the context
of gravimetric satellite formations, this is the reference frame in which the low-low
Satellite-to-Satellite Tracking (ll-SST) observations are defined.
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A.6 Satellite Reference Frame
The Satellite Reference Frame (SRF) is used to define the geometry of the spacecraft.
The axes are connected to the body of the spacecraft in a predefined (but otherwise
arbitrary) way. The attitude determination system provides measurements that
connect the CRF to this reference frame. The pressure forces due to Solar and Earth
radiation as well as of aerodynamic nature are most suitably defined in this reference
frame since the orientation of the satellite exterior panels is constant. This reference
frame also serves as basis to define the reference frame of the various sensors and
actuators on-board the satellites, such as the accelerometer(s), the star-tracker(s),
magneto torquers, propulsion, etc.

A.7 Gradiometer Reference Frame
The Gradiometer Reference Frame (GRF) is an example of a sensor reference frame.
The axes of this reference frame are parallel to the gradiometer arms and define the
directions of the accelerations measured by the accelerometers. The need to define
different reference frames for critical sensors on-board gravimetric satellites results
from the minute mis-alignments introduced during assembly of the satellite, which
need to be estimated during flight.

A.8 Hill Reference Frame
The Hill Reference Frame (HRF) is relevant when two satellites in a formation are
considered. It is centred at one of the satellites and defines the x -axis parallel to
the radial direction, the z -axis parallel to the orbital angular momentum vector (i.e.
perpendicular to the orbital plane and consequentially perpendicular to the radial
direction) and the y -axis closing the right-handed set of axes. The satellite located
at the origin of the axes can be called leader, sheriff or Tom, while the other satellite
can be called follower, deputy or Jerry, usually in only one of the respective forms.
It should be noted that this reference frame implies an idealisation. The satellites in
the trailing formation, for example, have null x and z coordinates. In reality, the
curvature of the orbit will dictate that the deputy satellite has negative x coordinate.
The longer the inter-satellite range, the more the actual satellite positions deviate
from the idealised ones.

The HRF and the LORF are very similar in a circular orbit but the names of the
axes are different. For the HRF, the z -axis is where the y -axis can be found in the
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LORF (usually referred to as the cross-track direction), the x -axis in the former is
in place of the z -axis (the radial direction) and the y -axis corresponds to the x -axis
in the LORF (the along-track direction).
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Inverse linear mapping of
formation parameter to
orbital elements B
In Chapter 3, in particular Section 3.8.4, the link between the relative orbit positions
and the relative orbital elements of satellite 1 relatively to satellite 2 are referred
to as inverse linear mapping. In this section, the elements of the inverse mapping
matrix A

�

o (2)
�−1 are listed. Section B.1 presents a numerical expriment that exposes

the conditions under which the inverse linear mapping method is valid.
Given the formation parameters X0 =

�

yoff, A0, B0,α,β
�

, the initial conditions of
the relative motion x0 =

�

x0, y0, z0, ẋ0, ẏ0, ż0

�

in the Hill Reference Frame (HRF) are
computed using Eq. (B.1).

x0 = A0 cos (α)
y0 = −2 A0 sin (α) + yoff

z0 = B0 cos
�

β
�

ẋ0 = −n A0 sin (α)
ẏ0 = −2n A0 cos (α)
ż0 = −n B0 sin

�

β
�

.

(B.1)

Given the orbital elements of satellite 2 o (2)

o (2) =
�

a (2), e (2), i (2),Ω(2),ω(2), M (2)
�T

,

the relative orbital elements of satellite 1 relatively to satellite 2 o (12)

o (12) =
�

a (12), e (12), i (12),Ω(12),ω(12), M (12)
�T

,

are computed from initial conditions of the relative motion x0 using inverse linear
mapping procedure represented by Eq. (B.2).
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o (12) = A
�

o (2)
�−1

x0. (B.2)

The non-zero elements of the inverse mapping matrix A
�

o (2)
�−1 are given by

Schaub and Junkins (2003, pp. 697–698) and corrected according to Schaub and
Junkins (2009):

α= a
R

ν= Vr
Vt

ρ = R
p

κ1 =α
�

1
ρ −1

�

κ2 = ν2 1
ρα

q1 = e cosω

q2 = e sinω

A−1
11 = 2α (2+3κ1+2κ2)

A−1
12 =−2α (1+2κ1+κ2)ν

A−1
14 =

2α2νp
Vt

A−1
15 =

2a
Vt
(1+2κ1+κ2)

A−1
22 =

1
R

A−1
23 =

cot i
R (cosθ +νsinθ )

A−1
26 =−

sinθ cot i
Vt

A−1
33 =

sinθ−νcosθ
R

A−1
36 =

cosθ
Vt

A−1
41 =

1
ρR (3 cosθ +2νsinθ )

A−1
42 =−

1
R

�

ν2 sinθ
ρ +q1 sin 2θ −q2 cos 2θ

�

A−1
43 =−

q2 cot i
R (cosθ +νsinθ )

A−1
44 =

sinθ
ρVt

A−1
45 =

1
ρVt
(2 cosθ +νsinθ )

A−1
46 =

q2 cot i sinθ
Vt

A−1
51 =

1
ρR (3 sinθ −2νcosθ )

A−1
52 =

1
R

�

ν2 cosθ
ρ +q2 sin 2θ +q1 cos 2θ

�

A−1
53 =

q1 cot i
R (cosθ +νsinθ )

A−1
54 =−

cosθ
ρVt

A−1
55 =

1
ρVt
(2 sinθ −νcosθ )

A−1
56 =−q1

cot i sinθ
Vt

A−1
63 =−

cosθ+νsinθ
R sin i

A−1
66 =

1
Vt

sinθ
sin i .

The symbols used in the formulas above are only applicable to this section and
are defined as:

R radial coordinate, instantaneous distance to the center of the Earth
Vt transverse velocity (Vt = Ṙ )
Vr radial velocity (Vr =R θ̇ )
p semilatus rectum (p = a (1− e 2))
θ true latitude (θ =ω+ν)
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B.1 Validation
This section presents the conditions under which the analytical linear mapping given
by Eq. (B.2) is accurate. To that end, the orbits of several formations are integrated
on a spherically-symmetric gravity field, considering the combination of several
values of the formation parameters: along-track offset yoff, radial amplitude A0, and
cross-track amplitude B0. The remaining formation parameters, i.e. radial phase α
and horizontal phase β , are set to zero. These formation parameters are compared
with the respective estimated formation parameters ŷoff, Â0 and B̂0, derived from
the computed orbits.

The estimated formation parameters are geometrically derived from the relative
motion between the orbits o (2) and o (2) +o (12), suitably represented in the Hill
Reference Frame (HRF) by x(12)(HRF). The superscript (HRF) is omitted henceforth
for the sake of simplicity. The complete time series of orbital positions x(12) is divided
into N segments with length equal to the orbital period. At the i th-segment, the
amplitudes of x(12) in each coordinate direction k are computed from the (local)
minima mini () and maxima maxi ():

∆x (12)
k ,i =maxi

�

x (12)
k

�

−mini

�

x (12)
k

�

. (B.3)

Equally important is to compute the location of the center of motion, along each
coordinate direction k :

Σx (12)
k ,i =

maxi

�

x (12)
k

�

+mini

�

x (12)
k

�

2
. (B.4)

Having defined these quantities, the estimated formation parameters are the
results of averaging the collection of N amplitudes and centers:

Â0 = 1
N

N
∑

i=1
∆x (12)

x ,i

B̂0 = 1
N

N
∑

i=1
∆x (12)

z ,i

ŷoff = 1
N

È

�

Σx (12)
x ,i

�2
+
�

Σx (12)
y ,i

�2
+
�

Σx (12)
z ,i

�2
.

(B.5)

The estimated formation parameter’s normalized errors ∆
�

yoff

�

, ∆ (A0) and ∆ (B0)
are defined as :
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∆
�

Â0

�

=
�

Â0−A0

�

/A0

∆
�

Â0

�

=
�

B̂0−B0

�

/B0

∆
�

ŷoff

�

=
�

ŷoff− yoff

�

/yoff.
(B.6)

When the formation parameter is zero, the division by zero is avoided by replacing
the respective denominator in Eq. (B.6) by

p

yoff
2+A0

2+B0
2.

Table B.1, summarizes the results of the numerical experiment for when o (2)

represents a circular orbit.
The vertical and cross-track amplitude are always within a few percent to the

original formation, which is considered acceptable. Most errors are in the yoff

formation parameter, which are particularly severe when in combination with non-
zero and large vertical and cross-track amplitudes. The Hill theory, as described
in Section 3.8.1, is a linearization of the orbital equations of motion and is only
accurate for small inter-satellite distances, i.e. a few hundered meters in Low-Earth
Orbit (LEO). Over large distances, the Hill Reference Frame can no longer be
considered a cartesian system of coordinates and the Hill equations Eq. (3.4) are no
longer accurate.

The same numerical experiment was repeated for the case of an orbit o (2) with
eccentricity equal to 0.01 (not shown). The difference between the original and
estimated formation parameters were much larger, particularly at the largest values
of original formation parameters or when two or more non-zero formation parameters
were considered. This results is expected since the method described in this section
is based on analytical formulas that are valid only for circular orbits.
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yoff A0 B0 ŷoff Â0 B̂0 ∆
�

yoff
�

% ∆
�

A0
�

% ∆
�

B0
�

%
0 0 200 1.47 1.47 199.93 0.74 0.73 -0.03
0 0 400 5.88 5.88 399.7 1.47 1.47 -0.08
0 0 1000 36.7 36.67 996.22 3.67 3.67 -0.38
0 200 0 0.00 199.96 0.00 0.00 -0.02 0.00
0 200 200 6.58 199.88 199.93 2.33 -0.06 -0.03
0 200 400 16.63 199.62 399.7 3.72 -0.19 -0.08
0 200 1000 79.01 197.8 996.22 7.75 -1.1 -0.38
0 400 0 0.01 399.93 0.00 0.00 -0.02 0.00
0 400 200 12.13 399.75 199.93 2.71 -0.06 -0.03
0 400 400 26.3 399.24 399.7 4.65 -0.19 -0.08
0 400 1000 93.93 395.61 996.21 8.72 -1.1 -0.38
0 1000 0 0.06 999.83 0.00 0.01 -0.02 0.00
0 1000 200 29.57 999.4 199.93 2.9 -0.06 -0.03
0 1000 400 59.99 998.1 399.69 5.57 -0.19 -0.08
0 1000 1000 163.95 989.03 996.21 11.59 -1.1 -0.38
200 0 0 199.99 0.00 0.00 0.00 0.00 0.00
200 0 200 199.98 1.47 199.94 -0.01 0.52 -0.03
200 0 400 199.99 5.88 399.71 0.00 1.31 -0.07
200 0 1000 202.8 36.67 996.26 1.4 3.6 -0.37
200 200 0 224.53 200.3 0.00 12.26 0.15 0.00
200 200 200 224.62 200.21 199.94 12.31 0.11 -0.03
200 200 400 225.14 199.95 399.7 12.57 -0.03 -0.07
200 200 1000 237.95 198.3 996.24 18.97 -0.85 -0.38
200 400 0 251.14 400.8 0.00 25.57 0.2 0.00
200 400 200 251.44 400.62 199.94 25.72 0.15 -0.03
200 400 400 252.52 400.09 399.7 26.26 0.02 -0.07
200 400 1000 268.12 396.46 996.23 34.06 -0.89 -0.38
200 1000 0 344.5 1005.19 0.00 72.25 0.52 0.00
200 1000 200 345.79 1004.72 199.94 72.9 0.47 -0.03
200 1000 400 349.77 1003.33 399.7 74.88 0.33 -0.08
200 1000 1000 381.87 993.75 996.22 90.93 -0.63 -0.38
400 0 0 399.94 0.00 0.00 -0.01 0.00 0.00
400 0 200 399.9 1.47 199.94 -0.02 0.33 -0.03
400 0 400 399.81 5.88 399.7 -0.05 1.04 -0.07
400 0 1000 400.55 36.68 996.24 0.14 3.41 -0.38
400 200 0 448.97 201.28 0.00 12.24 0.64 0.00
400 200 200 449.02 201.19 199.94 12.25 0.6 -0.03
400 200 400 449.27 200.93 399.7 12.32 0.46 -0.07
400 200 1000 455.69 199.73 996.23 13.92 -0.13 -0.38
400 400 0 502.16 403.34 0.00 25.54 0.84 0.00
400 400 200 502.31 403.16 199.94 25.58 0.79 -0.03
400 400 400 502.85 402.6 399.7 25.71 0.65 -0.07
400 400 1000 510.81 398.96 996.23 27.7 -0.26 -0.38
400 1000 0 688.99 1020.37 0.00 72.25 2.04 0.00
400 1000 200 689.66 1019.83 199.94 72.42 1.98 -0.03
400 1000 400 691.73 1018.22 399.7 72.93 1.82 -0.08
400 1000 1000 708.79 1007.41 996.22 77.2 0.74 -0.38
1000 0 0 999.1 0.00 0.00 -0.09 0.00 0.00
1000 0 200 998.99 1.47 199.94 -0.1 0.14 -0.03
1000 0 400 998.68 5.88 399.7 -0.13 0.55 -0.07
1000 0 1000 997.08 36.67 996.24 -0.29 2.59 -0.38
1000 200 0 1120.98 207.99 0.00 12.1 3.99 0.00
1000 200 200 1120.99 207.87 199.94 12.1 3.94 -0.03
1000 200 400 1121.04 207.58 399.7 12.1 3.79 -0.07
1000 200 1000 1122.99 208.46 996.24 12.3 4.23 -0.38
1000 400 0 1253.18 420.42 0.00 25.32 5.1 0.00
1000 400 200 1253.22 420.17 199.94 25.32 5.04 -0.03
1000 400 400 1253.39 419.45 399.7 25.34 4.86 -0.07
1000 400 1000 1256.1 415.81 996.23 25.61 3.95 -0.38
1000 1000 0 1719.62 1108.65 0.00 71.96 10.86 0.00
1000 1000 200 1719.87 1107.89 199.94 71.99 10.79 -0.03
1000 1000 400 1720.63 1105.64 399.7 72.06 10.56 -0.08
1000 1000 1000 1726.95 1090.89 996.22 72.7 9.09 -0.38

Table B.1 – Formation parameters along-track offset yoff, radial amplitude A0 and cross-
track amplitude B0 compared to corresponding estimated formation parameters, in a circular
orbit (units are km). The last three columns show the difference between the original and
estimated formation parameters, normalized by the corresponding formation parameter or,
in case it is zero, by

p

yoff
2+A0

2+B0
2.
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B.2 Conclusion
The method based on the linearised Hill theory is accurate only when the reference
orbit is circular and only two of the along-track offset yoff, radial amplitude A0 and
cross-track amplitude B0 formation parameters are non-zero. If these three formation
parameters are all non-zero, there is no assurance that the resulting formation with
a circular mean orbit will have the required along-track offset, although the other
two formation parameters only differ by a few percent.

In the thesis, the formations considered in Chapter 5, Section 6.3, and Chapters
7 and 8 are all derived from a circular reference orbit. Additionally, the considered
cartwheel, pendulum and trailing formations have only one non-zero formation
parameter, i.e. A0, B0 and yoff, respectively. The geometric formation parameters,
i.e. those determined from the resulting orbits are, therefore, very close to the
predefined values, as indicated in Table 7.3.

282



Validation of the simplistic
noise model C
The objective of the current chapter is to simulate the low-low Satellite-to-Satellite
Tracking (ll-SST) errors at the level of the range combinations and gravity field
parameters, following the simplistic noise model described in Section 4.3.3, and
compare them with actual GRACE a posteriori residuals. This is done in a similar
way to the validation of the advanced noise model, in Section 6.3. The motivation
for this study is to complete the analysis of noise models considered in the thesis.
The simulations described in this chapter assume a GRACE-like formation and error
amplitudes comparable to those reported in literature, e.g. the references listed in
Tables 2.5 and 2.6. Recall from Section 4.3.3 that the simplistic noise model only
considers uncorrelated noise time series, which are solely described by their STandard
Deviation (STD). In contrast, the advanced noise model assumes correlated errors,
in addition to incorporating more noise types, such as the correction noise and the
accelerometer noise.

Although the advanced noise model receives more attention in most of the thesis,
the analysis of Chapter 5 was done considering the simplistic noise model. At the
time this research was conducted, the advanced noise model was not yet developed
and the results described in that chapter are seen as sufficiently relevant to be
presented in spite of the outdated noise model.

Section C.1, C.2 and C.3 analyse the ranging noise, relative position noise and
absolute position noise individually. These three noise types are then combined and
compared with the GRACE a posteriori residuals in Section C.4. A summary of the
results is presented in Section C.5 and Section C.6 concludes the analysis.
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Figure C.1 – a) ASD of simulated ranging noise δ(R), with δ(ρ)=10−6 m.; b) DAS of the
gravity field model error resulting from the propagation of the simulated ranging noise.
The black curves in both plots represent the actual data and the grey curves represent the
simulation results. The data period is 1 month for the simulation results. For the actual
data, the data period of the ASD is the year of 2006. For the DAS, it is the month of
February 2006.

C.1 Ranging noise
Figure C.1a presents the Amplitude Spectral Density (ASD) of the simulated ranging
noise δ(R), considering the measurement white noise of the ranging sensor with
standard deviation equal to std

�

δ(ρ)
�

=10−6 m (Biancale et al., 2005; Frommknecht
et al., 2006). The resulting curve is well understood and results from the double
differentiation of white noise. The analytical representation of this curve is given by
Eq. (4.43), with the parameter σ equal to std

�

δ(ρ)
�

. The parameter τ is equal 19 s,
as determined empirically by fitting Eq. (4.43) to the grey curve in Figure C.1a.

The reasons for the shape of the ranging noise δ(R) are already discussed in
Section 6.3.2.

The noise time series with ASDs shown in Figure C.1a, when propagated to the
gravity field parameters, result in the error models with DAS shown in Figure C.1b.

The resulting gravity field model error amplitude spectrum is lower than the
GRACE a posteriori residuals by a factor of 6.9. This happens because the low-
frequency noise in GRACE a posteriori residuals, in addition to the low-degree coeffi-
cients, also propagates to the sectorial and near-sectorial high-degree coefficients; in
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contrast, the simulated ranging noise are free from this problem. Furthermore, the
stochastic model considered in the Frequency-Dependent Data Weighting (FDDW),
built on the basis of the GRACE a posteriori residuals, is very similar to the ranging
noise above 10mHz. As a result, this bandwidth is effectively suppressed, resulting
in an overall low geoid height error amplitude.

C.2 Relative position noise
It is assumed that modern Global Navigation Satellite Systems (GNSSs) and an
appropriate Precise Orbit Determination (POD) technique exploiting a state-of-the-
art dynamic model, are capable of providing orbits with a relative orbit position
noise δ(∆x) between the satellites in the formation equal to 10−3 m in all orthogonal
components, or 1.7×10−3 m three-dimensional (3D) Root Mean Squared (RMS).
Referring to Table 2.6 in Section 6.1, this assumption is reasonable. Figure C.2
presents the simulated relative position noise.

The shape of the ASD of the relative position noise in Figure C.2 is associated
with the centred differentiation scheme. This is the differentiation scheme used
in the numerical derivative of the noise in angle between the Line of Sight (LoS)
vectors at successive epochs θ , cf. Eq. (4.23). In Eq. (C.1) to Eq. (C.3), the forward,
centred and backwards differentiation schemes are described. In comparison to the
centred differentiation scheme, the forward and backward schemes result in a ASD
without the sudden drop close to the Nyquist frequency (not shown).

∂ y

∂ x

�

�

�

�

backward

=
yi − yi−1

∆ (x )
, (C.1)

∂ y

∂ x

�

�

�

�

centred

=
yi+1− yi−1

2∆ (x )
, (C.2)

∂ y

∂ x

�

�

�

�

forward

=
yi+1− yi

∆ (x )
. (C.3)

Figure C.2 further shows that the amplitude of the relative position noise is
between 5 to 30 times larger than the GRACE a posteriori residuals in the bandwidth
3 to 40mHz. Additionally, between the frequencies of 0.2 and 6mHz, the amplitude
of the relative position noise increases with frequency while the amplitude of the
GRACE a posteriori residuals decreases.

Propagating the relative position noise time series to the gravity field parameters
results in the error per degree depicted in Figure C.2b. The amplitude of the relative
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(b)

Figure C.2 – a) ASD of relative position noise δ(rP) simulated with relative orbit position
noise δ(∆x) with magnitude std

�

δx
(∆x)

�

=std
�

δy
(∆x)

�

=std
�

δz
(∆x)

�

=1mm; b) DAS of the gravity
field model error resulting from the propagation of the simulated relative position noise.
The black curves in both plots represent the actual data and the grey curves represent the
simulation results. The data period is 1 month for the simulation results. For the actual
data, the data period of the ASD is the year of 2006. For the DAS, it is the month of
February 2006.
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orbit position noise δ(∆x) needs to be scaled by 0.18 in order to result in a gravity
field model error similar to the propagated GRACE a posteriori residuals.

In an attempt to improve the agreement between the simulated relative position
noise and the actual data noise, an alternative relative position noise δ(rP,alt) is
simulated. In that case, δ(∆x) in Eq. (4.46) is not white noise with STD equal to
10−3 m but has the ASD shown in Figure 6.5, left-hand side plot (before scaling by the
factor of 3 resulting from advances in positioning measurement and methodology),
and STD equal to 2.2×10−3 m. The relative orbit position noise δ(∆x) used in the
computation of the alternative relative position noise δ(rP,alt) is generated synthetically.
The Fourier coefficients F (δ) of a white-noise sequence with unit variance and of
the appropriate length are multiplied by the Fourier coefficients associated with the
ASD in Figure 6.5 left-hand side plot, F (ASD). The inverse Fourier transform F−1

is applied to the result:

δ(∆x) =F−1 (F (δ)F (ASD)) . (C.4)
In spite of these efforts, the resulting relative position noise is considerably

different from the actual data noise, see Figure C.3.
The gravity field model error associated with the alternative relative position

noise δ(rP,alt), shown in Figure C.3b, is not particularly different from the original
relative position noise in the gravity field parameters, compare with Figure C.2b.
Nearly the same scale factor, 0.18, would have to be applied to the ASD shown in
Figure 6.5 in order to match the propagated noise with the propagated GRACE a
posteriori residuals.

In view of the added complexity of the alternative relative position noise δ(rP,alt)

and the associated negligible improvement in reproducing the GRACE a posteriori re-
siduals, the simplistic noise model considers the relative position noise δ(rP) computed
on the basis of relative orbit position noise δ(∆x) given by white noise, with STD =
0.18mm. Implied in this assumption is that, in the context of the simplistic noise
model, the relative position noise is assumed to dominate the GRACE a posteriori
residuals.
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(b)

Figure C.3 – a) ASD of alternative relative position noise δ(rP,alt) simulated with relative
orbit position noise δ(∆x) with ASD given by Figure 6.5, left-hand side plot; b) DAS of
the gravity field model error resulting from the propagation of the simulated alternative
relative position noise. The black curves in both plots represent the actual data and the
grey curves represent the simulation results. The data period is 1 month for the simulation
results. For the actual data, the data period of the ASD is the year of 2006. For the DAS,
it is the month of February 2006.
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C.3 Absolute position noise
It is assumed that the standard deviation of the absolute orbit position noise δ(x),
for the purpose of simulating absolute position noise, is 0.010 m at all components,
i.e. 0.017 m RMS in terms of magnitude. Table 2.5 confirms that the assumed noise
level is consistent with literature.

Figure C.4 presents the simulated absolute position noise. The absolute position
noise δ(aP) is nearly constant at all frequencies. The slightly decreasing amplitude at
the frequencies above 20mHz is due to the averaging filter w, see Eq. (4.50).

The propagated absolute position noise has a DAS shown in Figure C.4b and
is a factor of 11 lower than the propagated GRACE a posteriori residuals. This is
consistent with the fact that the amplitude of the absolute position noise is lower than
the GRACE a posteriori residuals by at least the same factor. This noise type is not
dominant in the simplistic noise model, considering that the gravitational acceleration
changes in the order of ∼ 10−8 ms−2 over the distances of a few centimetres. In the
conducted simulation, the large number of data stochastically average this to the
level of 8.57×10−10 ms−2. For that reason, there is no strong motivation to adjust
the magnitude assumed for the absolute orbit position noise δ(x), as was the case for
the relative position noise.
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Figure C.4 – a) ASD of absolute position noise δ(aP) simulated with absolute positioning
noise with magnitude std

�

δx
(x)
�

=std
�

δy
(x)
�

=std
�

δz
(x)
�

=0.010 m and EIGEN-5C as back-
ground force model, C (ref) in Eq. (4.50); b) DAS of the gravity field model error resulting
from the propagation of the simulated absolute position noise. The black curves in both
plots represent the actual data and the grey curves represent the simulation results. The
data period is 1 month for the simulation results. For the actual data, the data period of
the ASD is the year of 2006. For the DAS, it is the month of February 2006.
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C.4 Comparison with actual data
The errors associated with the simplistic noise model are plotted in Figure C.5. In
Figure C.5a, the simplistic model noise types are shown in terms of range combinations
and the respective error in the gravity field models is presented in Figure C.5b. The
dark curves represent the actual GRACE data noise for the year of 2006.

Although the ASDs of the simplistic noise model time series do not match
the actual data noise, propagating these quantities to the gravity field parameters
produces a gravity field model error that is roughly representative and adequate as a
conservative approximation.

Evidently, the resulting scaled-down relative orbit position noise can no longer be
associated with the relative accuracy of the orbits; it only has meaning within the
simplistic noise model as an empirically-determined quantity that sets the amplitude
of the gravity field model error associated with the relative orbit position.
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Figure C.5 – a) ASD of simulated simplistic noise types; b) DAS of the gravity field model
error resulting from the propagation of the corresponding noise types. The dark-blue curves
in both plots represent the actual GRACE data noise for the year of 2006. The data period
is 1 month for the simulation results. For the actual data, the data period of the ASD is
the year of 2006. For the DAS, it is the month of February 2006.

C.5 Summary
Table C.1 provides an overview of the assumptions made for the simulation of noise
for the simplistic ll-SST noise model. Noteworthy is that the underlying time series
of the simplistic noise types, i.e. ranging sensor noise δ(ρ), relative orbit position
noise δ(∆x) and absolute orbit position noise δ(x), are realisations of white noise
scaled to the specified STD.

name symbol assumptions description page nr.

ranging noise δ(R) std
�

δ(ρ)
�

= 10−6 m error in the range
measurements 100

relative
position noise δ(rP) std

�

δ(∆x)
�

=
0.18mm

error in the relative
orbital positions 101

absolute
position noise δ(aP) std

�

δ(x)
�

= 0.010m
error in the

(absolute) orbital
positions

102

Table C.1 – Summary of the assumptions considered for the simulation of the ll-SST noise
type of the simplistic noise model.
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To summarise, the STD of the range combination noise time series and the
corresponding geoid heights error per degree at degrees 60 and 100 are presented in
Table C.2. The relative position noise δ(rP) has been scaled with the factor 0.18, as
discussed in Section C.2.

noise type symbol STD [m/s2]
geoid error [mm]

per degree cumulative
degree 60 degree 100 degree 120

simplistic noise model

ranging noise δ(R,spl) 9.8×10−8 0.26 3.8 41

relative position
noisea δ(rP) 5.7×10−8 1.9 29 280

absolute position
noise δ(aP) 8.6×10−10 0.25 3.3 25

total 1.1×10−7 1.9 30 290

actual data

5.6×10−8 3.1 29 280

aAssuming white relative orbit position noise with std
�

δ(∆x)
�

=4.0×10−4 m.

Table C.2 – Summary of the simplistic model, showing the STD of the time series of range
combination error and the geoid height error per degree at degrees 60 and 100, as well as
the cumulative geoid height error at degree 120. The statistics of the actual data noise
refer to the year of 2006 in case of the STD and to the February 2006 in case of the geoid
height errors.

C.6 Conclusion
The cumulative geoid error at degree 120 when using the simplistic noise model
matches closely the value for the actual data. This agreement has been introduced
artificially with the scaling of the relative position noise. If the scale factor is not
applied, the resulting cumulative geoid error is 1.6×103 mm.

Within the simplistic noise model, the dominant relative position noise requires
a scale factor 0.18, resulting in the amplitude in terms of orbit position error of
4.0×10−4 m. In view of the fact that this value is overly-optimistic regarding relative
positioning noise (cf. Table 6.2), the scaled relative position noise should not be
regarded as a physically relevant quantity but as an empirically-determined parameter
of the simplistic noise model. The simulations done in the thesis considering the
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simplistic ll-SST noise model, namely in Chapter 5, are not scaled; the result should
therefore be interpreted as a conservative estimate.
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Derivation of the ll-SST
advanced noise model D
This section describes the derivation of the formulas describing the noise types that
compose the advanced noise model presented in Section 4.3.3. The derivations
shown below are adapted from Ditmar (2009a).

D.1 Unified formulation for the range combinations
In the simulation environment, the range combinations can be computed from range
data or from a force model (in contrast, the observed range combinations can only be
computed from range data when processing actual data). This section introduces a
common terminology that represents the aforementioned two procedures to compute
the range combinations. This distinction is already described in Section 4.1.2, more
specifically:

• in Eq. (4.18) that illustrates the estimation of range combinations from range
data:

a i =
cosθ i ,−1 ·ρi −1−2ρi + cosθ i ,+1 ·ρi +1

(∆t )2

≡ a
�

ρ, e(LoS)
�

,

• and Eq. (4.30) that represents the computation of range combinations on the
basis of a force model (refer to Eq. (4.29) for the meaning of ∗w ·e(LoS)):
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a = a(12)∗w ·e(LoS)

≡ a
�

C , x, e(LoS)
�

.

Ditmar and Sluijs (2004) show that these two approaches are equivalent, as long
as the force model used to integrate x, from which θ and e(LoS) are computed, is
described by the set of Stokes coefficients C .

D.1.1 Range combinations estimated from range data
As introduced in Eq. (4.18), the range combinations a are function of the range ρ
according to:

a i =
cosθ i ,−1 ·ρi −1−2ρi + cosθ i ,+1 ·ρi +1

(∆t )2
,

where, considering the k -th epoch before (k is negative) or after (k is positive)
epoch i , the angle between the Line of Sight (LoS) vectors θ is, Eq. (4.22):

θi ,k = cos−1 x(for)(1)
i+k −x(for)(2)

i+k

ρ(for)
i+k

·
x(for)(2)

i −x(for)(2)
i

ρ(for)
i

. (D.1)

The previous equations can be formulated in terms of the unit vectors defining
the LoS direction e(LoS) as:

θ i ,k = cos−1
�

e(LoS)
i+k ·e

(LoS)
i

�

,

so that a can be defined as function of ρ and e(LoS):

a = f
�

ρ, e(LoS)
�

≡ a
�

ρ, e(LoS)
�

.

Although neither the orbit positions nor the force model appear explicitly, they
are needed to determine the unit vectors defining the LoS direction e(LoS).

D.1.2 Range combinations computed from a force model
The range combinations a can also be computed from the point-wise inter-satellite
accelerations a(12) (see Eq. (4.10), Eq. (4.29) and Eq. (4.30)):
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a i = a(12)
i ·e(LoS)

i

= a(12)
i ∗w ·e(LoS)

i

≡
�

R (TRF)←(CRF)
i

��

R (CRF)←(LHRF)
i a(12)

i

�

∗w
��

·e(LoS)
i .

The range combination can be interpreted as a weighted mean of point-wise
accelerations. With that in mind, the averaging filter w is composed of a set of
predefined coefficients.

The point-wise inter-satellite accelerations a(12) are determined from the difference
between the acceleration at the orbit positions of satellite 1 x(1) and at the orbit
positions of satellite 2 x(2), considering the set of Stokes coefficients C :

a(12)
i =∇V

�

x(1)i , C
�

−∇V
�

x(2)i , C
�

.

The orbit positions x(1) and x(2) are integrated on the basis of C .
To make it simpler to represent the range combinations computed from a force

model, the following notation, already introduced in Section 4.3.1, Eq. (4.39), is
used:

a i =∇′V
�

x, C , e(LoS)
�

.

As it can be seen from the previous equation, the ranges ρ are not considered
explicitly, although they implicitly associated with x.

D.2 Residual range combinations
If the knowledge of the gravitational field of the Earth (represented by the force model
C ) was perfect (and assuming there are no other forces acting on the spacecrafts),
the orbit positions x would describe accurately the actual motion of the satellites
and e(LoS) would describe without error the LoS direction. Under these conditions
and assuming that the ranges ρ were measured perfectly, the range combinations
estimated from the range data would be equal to those computed from the force
model:

a
�

ρ, e(LoS)
�

=∇′
�

C , x, e(LoS)
�

.

In reality, the force model C is given by a prediction of the gravitational field
of the Earth, represented by C (ref), resulting in a discrepancy between the observed
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range combinations (derived from the observed ranges ρ(obs) and the observed unit
vectors defining the LoS direction e(LoS)(obs)) and the forecasted range combinations
(computed from C (ref)), originating the residual range combinations a (res):

a (res) = a
�

ρ(obs), e(LoS)(obs)
�

−∇′
�

C (ref), x, e(LoS)(obs)
�

.

With this modification, the orbit positions x do not describe perfectly the motion
of the satellites, since they are integrated on the basis of C (ref). For this reason, they
differ from the observed ones and are called forecasted orbit positions x(for). The
resulting difference in terms of range combinations is called the positioning noise
δ(P):

a (res) = a
�

ρ(obs), e(LoS)(obs)
�

−∇′
�

C (ref), x , e(LoS)(obs)
�

(D.2)
= a

�

ρ(obs), e(LoS)(obs)
�

−∇′
�

C (ref), x(for) , e(LoS)(obs)
�

− δ(P) .

Likewise, the unit vectors describing the LoS direction e(LoS)(obs) are not perfect,
in view of that fact that they are computed from x(for); for this reason they are
represented as e(LoS)(for). This modification introduces the orientation noise δ(L):

a (res) = a
�

ρ(obs), e(LoS)(obs)
�

−∇′
�

C (ref), x(for), e(LoS)(obs)
�

−δ(P) (D.3)

= a
�

ρ(obs), e(LoS)(obs)
�

−∇′
�

C (ref), x(for), e(LoS)(for)
�

−δ(P)− δ(L) .

The same argument applies to the observed unit vectors defining the LoS direction
used to compute the range combinations with range data, giving rise to the correction
noise δ(C):

a (res) = a
�

ρ(obs), e(LoS)(obs)
�

−∇′
�

C (ref), x(for), e(LoS)(for)
�

−δ(P)−δ(L)

= a
�

ρ(obs), e(LoS)(for)
�

+δ(C) −∇′
�

C (ref), x(for), e(LoS)(for)
�

−δ(P)−δ(L).

The ranges themselves are measured with a certain level of error, in the form of
the estimated ranges ρ̂, which translates into the ranging noise δ(R) according to
Eq. (4.45). Additionally, the measurements taken by the accelerometer remove the
non-gravitational accelerations from the residual range combinations but leave the
corresponding measurement errors, represented by the accelerometer noise δ(acc). The
inclusion of these observation errors dictates that the residual range combinations
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are estimates of the actual values and are, therefore, represented by the symbol
â
(res):

a (res) = a
�

ρ(obs) , e(LoS)(for)
�

+δ(C)

−∇′
�

C (ref), x(for), e(LoS)(for)
�

−δ(P)−δ(L)

â
(res)
+ δ(acc) = a

�

ρ̂ , e(LoS)(for)
�

+δ(R) +δ(C)

−∇′
�

C (ref), x(for), e(LoS)(for)
�

−δ(P)−δ(L).

D.3 Forecasted noise types
In the following sections, the derivations of the positioning noise δ(P), orientation
noise δ(L) and correction noise δ(C), represented by Eq. (4.59), Eq. (4.58) and
Eq. (4.55), respectively, are presented.

D.3.1 Positioning noise
This section shows how to derive Eq. (4.59):

δ(P)(pw) =∇V
�

x(obs), C (ref)
�

−∇V
�

x(for), C (ref)
�

.

From Eq. (D.2), one sees that:

∇′
�

C (ref), x(obs) , e(LoS)(obs)
�

=∇′
�

C (ref), x(for) , e(LoS)(obs)
�

+ δ(P) .

In other words:

δ(P) = a(12)(obs)∗w ·e(LoS)(obs)−a(12)(for)∗w ·e(LoS)(obs).

The associative property of the inner product and the linearity of the convolution
operation allow us to re-write the last equation as:

δ(P) =
�

a(12)(obs)−a(12)(for)
�

∗w ·e(LoS)(obs).

The observed unit vectors defining the LoS direction e(LoS)(obs) are replaced by
the forecasted equivalents e(LoS)(for), since this noise type deals with errors in the
orbit positions x and the corresponding second-order discrepancy (i.e. the influence
of the errors of e(LoS) in δ(P)) are negligible:
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δ(P) =
�

a(12)(obs)−a(12)(for)
�

∗w ·e(LoS)(for).

The point-wise positioning noise δ(P)(pw) described by Eq. (4.59) can be seen in
the equation above, before the projection along e(LoS)(for) is done and the averaging
filter w is applied:

δ(P) =
�

∇V
�

x(obs), C (ref)
�

−∇V
�

x(for), C (ref)
��

∗w ·e(LoS)(for)

≡δ(P)(pw)∗w ·e(LoS)(for).

D.3.2 Orientation noise
In this section, Eq. (4.58) is derived:

δ(L)(pw) =δ(L)(1)(pw)−δ(L)(2)(pw)

with δ(L)(j)(pw) =∇V
�

x(j), C (ref)
�

·δ(LoS) and j = 1, 2.

Eq. (D.3) hints that:

∇′
�

C (ref), x(for), e(LoS)(obs)
�

=∇′
�

C (ref), x(for), e(LoS)(for)
�

+ δ(L) .

Rearranging and expanding the equation above:

δ(L) = a(12)(for)∗w ·e(LoS)(obs)−a(12)(for)∗w ·e(LoS)(for).

Resorting to the associative property of the internal product:

δ(L) = a(12)(for)∗w ·
�

e(LoS)(obs)−e(LoS)(for)
�

(D.4)
≡ a(12)(for)∗w ·δ(LoS)⇒

e(LoS)(obs) = e(LoS)(for)+δ(LoS). (D.5)

Recalling that δ(∆x) is the relative orbit position noise, the term δ(LoS) is represen-
ted by the contributions with magnitude δ(∆x)/ρ along the directions perpendicular
to e(LoS)(obs): the y -component and z -component in the Line-of-sight Reference
Frame (LoSRF). Any small amplitude rotation of e(LoS)(obs) does not change its
magnitude significantly (i.e. cosα' 1 if α<< 1), so the x -component of δ(LoS)(LoSRF)
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is approximately equal to zero. This means that, in the LoSRF, e(LoS)(obs) is corrupted
by:

δ(LoS)(LoSRF) =
1

ρ(for)





0
δ(∆x)

y
(LoSRF)

δ(∆x)
z

(LoSRF)



 . (D.6)

In any other reference frame the x -component is not necessarily zero and δ(LoS)

is given by the more general expression:

δ(LoS) =
1

ρ(for)





δ(∆x)
x
δ(∆x)

y

δ(∆x)
z



=
δ(∆x)⊥

ρ(for) . (D.7)

considering that the relative orbit position noise δ(∆x) is defined in the same
reference frame.

The sequence of operations in Eq. (D.4) can be inter-changed, owing to their
linearity:

δ(L) =
�

a(12)(for) ·δ(LoS)
�

∗w.

The point-wise orientation noise δ(L)(pw) defined in Eq. (4.58) is given by:

δ(L)(pw) = a(12)(for) ·δ(LoS)

=
�

∇V
�

x(1), C (ref)
�

−∇V
�

x(2), C (ref)
��

·δ(LoS)

=∇V
�

x(1), C (ref)
�

·δ(LoS)−∇V
�

x(2), C (ref)
�

·δ(LoS)

=δ(L)(1)(pw)−δ(L)(2)(pw).

D.3.3 Correction noise
This section describes how Eq. (4.55) is derived:

δ(C) =−2
ẋ(12)⊥

ρ
δ(ẋ

(12)⊥) +

�

ẋ(12)⊥

ρ

�2

δ(ρ).

It is possible to use Eq. (4.55) to model the errors in the estimated centrifugal
accelerations of the range combination approach without a significant loss of accuracy,
in spite of that being a continuous function. In Ditmar et al. (2012, Section 2.2.4),
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the range combinations are shown to approximate the finite difference of the along-
track component of the point-wise inter-satellite acceleration considered in the
classical acceleration approach. For this reason, the derivation of Eq. (4.55) starts
from the classical point-wise inter-satellite acceleration (Rummel, 1979):

a (12)(LoS) = ρ̈−

�

ẋ(12)⊥
�2

ρ

= ρ̈+a (12)(cent).

The term ρ̈ describes the measured range accelerations and the term a (12)(cent) is
associated with the point-wise inter-satellite centrifugal acceleration resulting from
the rotation of the LoS vector, which is given by:

a (12)(cent) =−

�

ẋ(12)⊥
�2

ρ
.

Recall that ẋ(12)⊥ represents the orbit velocity of satellite 1 relatively to satellite 2
projected onto the plane perpendicular to the LoS direction and ρ is the inter-satellite
range. The error in the a (12)(cent) terms is:

δ(C) =
∂ a (12)(cent)

∂ ẋ(12)⊥ δ(ẋ
(12)⊥) +

∂ a (12)(cent)

∂ ρ
δ(ρ)

=−2
ẋ(12)⊥

ρ
δ(ẋ

(12)⊥) +

�

ẋ(12)⊥

ρ

�2

δ(ρ),

with δ(ρ) representing the ranging sensor noise and δ(ẋ (12)⊥) describing the noise
in the orbit velocity of satellite 1 relatively to satellite 2 projected onto the plane
perpendicular to the LoS direction.
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Omission signal and the
mis-modelled static signal in
the context of future satellite
formations E
In Section 4.3.1, the model errors are introduced as the mis-modelled time-variable
signal, omission signal and mis-modelled static signal. Unlike the measurement
errors, the model errors do not decrease as a function of the sensor accuracy, nor
are they particular to the simplistic or advance noise models, refer to Section 4.3.3.
Model errors reflect the accuracy of the knowledge of the Earth’s gravitational field.
The analysis conducted in Chapter 8 only considers the mis-modelled time-variable
signal when quantifying the accuracy of future gravimetric missions. The reason
for neglecting the omission signal and mis-modelled static signal is associated with
the assumptions needed to simulate them. There is an arbitrary influence on the
corresponding simulation results, depending on the underlying assumptions.

In the current section, the study of the omission signal and mis-modelled static
signal is conducted, under a set of assumptions which is not realistic enough to be
included in the noise budget of the formations analysed in Chapter 8. Furthermore,
the effects of the omission signal and mis-modelled static signal are not expected
to be significant in the data of future gravimetric missions. In the case of errors
resulting from the omission signal, the reference gravitational field can be forecasted
up to a sufficiently large degree, effectively eliminating this error. In what concerns
the signals described by the coefficients above that degree, it is reasonable to assume
that satellite formations for monitoring the temporal gravitational field variations are
not sensitive to them. In case of the errors caused by the mis-modelled static signal,
the Gravity field and steady-state Ocean Circulation Explorer (GOCE) mission has
improved considerably the knowledge of the static field. For this reason, most research
into future gravimetric formations ignores the effects of the mis-modelled static
signal and omission signal, cf. Table 1.2. In spite of these issues, it is nonetheless
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interesting to investigate the sensitivity of different formations to the omission signal
and mis-modelled static signal.

In what concerns the mis-modelled static signal, it may even be the case that
it is of significant magnitude for a future gravimetric mission, in particular if the
formation is sensitive to signal at degrees higher than those covered by GOCE. In
that case, as discussed in Section 6.2.2, long periods of data can be exploited to
produce a tailored static gravity field model up to a high degree that, if included in
the estimation of temporal gravitational field variations, absorbs all static gravity field
signals. In this way, the contribution of the mis-modelled static signal is effectively
mitigated. This procedure is not part of the conducted simulation study because its
purpose is to determine the effect of mis-modelled static signal as function of the
formation configuration, not to mitigate its effects.

The results of the analysis conducted in this chapter should be understood purely
on relative terms, i.e. between the considered formations, not in absolute terms.
The omission signal and mis-modelled static signal are studied only with the purpose
of determining which formation is less sensitive to it.

E.1 Simulation particularities
In this section, the difficulties in predicting the amplitude of model errors are
discussed for the omission signal and mis-modelled static signal. The simulation of
model errors is characterised by a set of assumptions which may be arbitrary. The
resulting error amplitudes from such assumptions are not necessarily compatible
with the predicted measurement errors, which are derived from the characteristics
of the instruments. These characteristics are studied in laboratory or with the help
of numeric simulations and provide a much more reliable measure of accuracy, in
particular when compared with predicted model errors.

E.1.1 Mis-modelled static signal
The mis-modelled static signal is usually represented as the difference between two
gravity field models, the newer one estimated on the basis of incrementally larger
amount and/or higher quality data than the older one (in here new and old are
merely a way to distinguish between them). The choice of pair of models is largely
arbitrary and its difference only depicts the deficiencies in the less accurate model,
relative to the newer one. These deficiencies are already addressed in the newer
model and, therefore, are a conservative description of the errors in the actual static
gravitational field of the Earth. This is the case independently of the pair of models
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that are considered. The difference between a recent pair of models is certainly lower
than the difference between an older pair of models but even the former describes
a conservative estimate of the mis-modelled static signal. As a consequence, the
mis-modelled static signal simulated from any pair of gravity field model is too
conservative, particularly when predicting future model errors.

Particular to the experiments described in this section is that the observed and
forecasted orbits of the satellites differ as a result of the two different static gravity
field models. Therefore, the positions of the two satellites are not the same and,
consequently, there is the effect of the positioning noise affecting (mostly) the low
frequencies. The set up of the simulations was chosen in this way because the effort
of updating the static gravity field is necessarily connected with the necessity to deal
with the positioning noise. The simulation of the mis-modelled static signal without
the effect of the positioning noise would be associated with an extremely idealistic
situation, which cannot ever become practical.

E.1.2 Omission signal
The usual procedure of simulating omission signal is to define a degree range above
the maximum degree considered in the inversion of the observations. For example,
this range could be defined between degrees 121 and 360, as is done in this section
(considering GFZ/GRGS EIGEN, version 5 (EIGEN-5C), although the choice of
model is not important). In actual data processing, the forecasted quantities are
the result of the synthesis of the gravity field model of the Earth up to a degree
much larger than 120, namely 180 in case of the computation of the Delft Mass
Transport (DMT) model. The maximum degree considered when producing the
forecasted quantities is determined empirically and can be raised to an arbitrarily
high value, if needed (and computationally practical). In essence, the effects of
mis-modelled high-frequency temporal gravitational field variations is mitigated if a
sufficiently high number of Spherical Harmonic coefficients is used when computing
the forecasted observation. It is practical to do so because i) the GOCE data provided
unprecedented global high-degree static gravity field models and ii) the continued
gathering of terrestrial data has reduced the number of location without gravimetric
measurements considerably.

Evidently, there are still large areas of the globe which are only covered by GOCE
data, which has limited spatial resolution compared to surface data. Therefore, the
models omit the short wavelength gravitational variations in those areas. In the
context of global gravity field recovery, these omission errors are sufficiently low
to be considered marginal, particularly for satellites at altitudes similar to Gravity
Recovery And Climate Experiment (GRACE). The effects of omission signal, in

305



Chapter E. Omission signal and the mis-modelled static signal

those cases, are of much lower amplitude than those of other noise type, such as
mis-modelled time-variable signal and/or those resulting from errors in the orbital
positions.

E.2 Simulation set-up
The influence of the omission signal and mis-modelled static signal on the cartwheel,
pendulum and trailing formation with maximum range equal to 200 km (the same
as under analysis in Chapter 8) is studied. The simulations span a period of one
month, with a sampling rate of 5 seconds. The simulation of the omission signal
and mis-modelled static signal assumes different “true” and reference gravity field
models, as described in Section 4.3.1. Table E.1 lists the assumptions considered in
the simulation of these model errors.

name symbol assumptions

omission signal δ(sp) degrees 121 to 360 of EIGEN-5C

mis-modelled static signal δ(st)
difference between EIGEN-5C

and EIGEN-CG03C
(degrees 2 - 120)

Table E.1 – Summary of the assumptions needed to simulate the model errors.

As indicated, the mis-modelled static signal is assumed to be the result of the
difference between the EIGEN-5C and GFZ/GRGS EIGEN, version 3 (EIGEN-CG03C)
models. In case of the simulation of the omission signal, the observed observations
are restricted to degrees 121 to 360 since degrees 2 to 120 are accurately described
by the forecasted observations. The analysis of the errors associated with the mis-
modelled static signal at the level of the estimated gravity field parameters requires
that the original residual static gravity field model is subtracted from the gravity
field model estimated on the basis of the mis-modelled static signal.

E.3 Results
In a similar way to Section 8.2.1, this section compares the modelling errors in
terms of range combinations and gravity field parameters for all formations with
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Figure E.1 – a) ASD of the simulated omission signal δ(sp) and b) the corresponding gravity
field model error, for the cartwheel, pendulum and trailing formations with maximum range
equal to 200 km.

200 km maximum range. The model errors under analysis are the omission signal in
Section E.3.1 and the mis-modelled static signal in Section E.3.2.

E.3.1 Omission signal
When estimating the gravitational field of the Earth, the resulting model is distorted
by the omission signal, i.e. the high-frequency signal which is not represented
by the set of Stokes coefficients considered for the inversion. The purpose of the
currently analysis is to quantify the sensitivity of the pendulum, cartwheel and trailing
formations to the omission signal. The simulation results are shown in Figure E.1
and summarized in Table E.3.

In the cartwheel and trailing formations, the omission signal is dominated by the
peak at 21 mHz, or 121 CPR, given that the orbital revolution period is 5679.3 s.
This peak in the spectrum is a typical case of aliasing; it is the result of mapping
the high frequency signal to the degrees below 120 and more intensively to those
degrees closer to that value.

Exceptionally, the ASD of the data relative to the pendulum formation does
not depict the peak at 21 mHz. It suggests that the wide variability of ranges in
combination with the sampling of the gravitational field in the direction perpendicular
to the direction of flight allow the higher frequencies of the omission signal to be
more suppressed in the gravimetric data. In this way, the magnitude of the peak is
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limited. On the other hand, the noise amplitude below 10 mHz is high, around 1
order of magnitude larger than the trailing formation. The power contained in the
omission signal is still present in the observation and needs to go somewhere. Since
the data is less sensitive to the high frequencies, the power of the signal is distributed
over the low frequencies. In other words, the particular orientation and variability
of the Line of Sight (LoS) direction of the pendulum formation, propagates the
omission signal to a wider range of frequencies.

The noise amplitude propagated to the gravity field parameters, as shown in
Figure E.1b, is proportional to the peak at 21mHz of each formation. This suggests
that the power of the omission signal concentrated at frequencies close to 21mHz
is distributed evenly to the coefficients at all degrees. Consequently, the trailing
formation is most sensitive to the omission signal, the cartwheel formation is roughly
a factor of 3 less sensitive (above degree 10) and the pendulum formation is less
sensitive by one order of magnitude (between degrees 10 and 110). The larger
variations in the range associated with the pendulum formation and, to a less extent,
to the cartwheel formation, in combination with the respective orientation of the
LoS direction, improve the sampling of the high-frequency features in the simulated
gravitational signal.

The larger amplitude of the omission signal at low frequencies, below 8 mHz,
only propagates to the gravity field parameters below degrees 10 and 20 for the
cartwheel and pendulum formations, respectively, as seen by the local increase in
the amplitude of those coefficients.

Recalling the results of Section 6.2.2, increasing the maximum degree of the
static background model is an effective way of mitigating the omission signal. In
other words, if the simulation of the omission signal is repeated considering the signal
generated on the basis of a static gravity field model from, for example, degree 360
up to degree 600, the resulting omission signal would have a much lower amplitude.

formation range combination geoid height error [mm]
error STD [m/s2] degree 60 degree 100 cum @ deg 120

cartwheel 2.6×10−9 3.9 24 220
pendulum 3.5×10−9 0.47 9.0 92
trailing 4.7×10−9 12 94 720

Table E.2 – Summary of the omission signal, showing the STD of the time series of range
combinations error and the resulting gravity field model error quantified in terms of the
geoid height error at degrees 60 and 100 and cumulative geoid height error at degree 120.
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Figure E.2 – a) ASD of the simulated mis-modelled static signal δ(st) and b) the corres-
ponding gravity field model error, for the cartwheel, pendulum and trailing formations with
maximum range equal to 200 km.

E.3.2 Mis-modelled static signal
The mis-modelled static signal results from the inaccurate knowledge of the static
gravitational field. The observed range combinations and forecasted range combin-
ations are simulated from different gravity field models so that the residual range
combinations represent the mis-modelled static signal. Although not the focus of
the thesis, the error in the mis-modelled static signal is a good way of determining
the effectiveness of a formation in updating the static reference gravity field model
(should it provide data that is sensitive to higher spherical harmonic degrees than
GOCE). This error is computed as the difference between the original residual static
gravity field model, i.e. the difference between the EIGEN-5C and EIGEN-CG03C
models, and the propagated mis-modelled static signal. Included in this residual is
the effect of the positioning noise, which cannot be separated from the fact that the
observed and forecasted ((for)) orbits follow different paths. Figure E.2 and Table E.3
summarise the results of the numerical study of the mis-modelled static signal.

Figure E.2a depicts similarities in comparison to the ASDs of the omission signal
(Figure E.1), both in absolute terms and relatively between the formations:

• In absolute terms, the peak at 21 mHz is visible in the ASDs of both noise
types – relevant to the cartwheel and trailing formations – although it has a
lower amplitude in the mis-modelled static signal. The peak results from the
increasing error amplitude with increasing degree of the difference between
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the EIGEN-5C and EIGEN-CG03C models, labelled as “∆(E-5C,E-CG03S)” in
Figure E.2b. Since the residual range combinations are simulated from the
model difference up to degree 120, the signal amplitude drops after 21mHz,
or roughly 120 CPR. In reality, it is not possible to truncate the Earth’s
gravitational field. However, the effect of the small spatial features that
map onto the degrees larger to 120 is attributed to omission signal and not
mis-modelled static signal, justifying the truncation of the residual gravity field
model.

• In relative terms, the peak at 21mHz is largest in the trailing formation, smaller
in the cartwheel formation and non-existing in the pendulum formation.

These similarities suggest that the mechanism that drives the amplitude of the
omission signal is the same as that of the mis-modelled static signal.

The effect of the positioning noise is clearly visible at the low frequencies when
comparing the ASD with most amplitude for each formation in Figure 7.3 with
Figure E.2a. Note that, unlike Chapter 7, the results if this section considers the
predicted accuracy of future Global Navigation Satellite Systems (GNSSs) and,
therefore, have the positioning noise downscaled by a factor of 3.

The errors resulting from mis-modelled static signal in the gravity field parameters,
shown in Figure E.2b, differ by up to a factor of five between the considered formations.
The data of the trailing formation contain the largest errors above degree 20. The
pendulum formation shows the lowest error magnitude above degree 10. More
importantly, the difference between the estimated mis-modelled static signal and
the original residual static signal, i.e. the error associated with mis-modelled static
signal, has a larger amplitude than the signal itself between degrees 10 and 50 for the
cartwheel formation and between degrees 10 and 60 for trailing formation. This does
not mean that these formations are unable to uniquely recover the simulated residual
signal within these degree ranges. Recall that the simulation of the mis-modelled
static signal considers the effect of the positioning noise. If much longer periods of
data are considered and the effects of the positioning noise are removed by iteratively
updating the reference gravity field model, the mis-modelled static signal magnitude
decreases accordingly.

Thus, it is noted that the results of the mis-modelled static signal, particularly
concerning the degree amplitudes, should be regarded as very conservative and
mainly relevant for comparing in relative terms the sensitivity of the formations to
mis-modelled static signal. Since the mis-modelled static signal is fully dominated by
the deficient knowledge of the Earth’s static gravitational field, it is safe to assume
that as more data is gathered and the processing techniques are improved, the more
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accurate the static gravity field models become and the less significant this error
source is.

formation range combination geoid height error [mm]
error STD [m/s2] degree 60 degree 100 cum @ deg 120

cartwheel 5.0×10−9 0.46 1.5 11
pendulum 9.1×10−9 0.15 0.75 11
trailing 2.7×10−9 0.72 5.5 38

Table E.3 – Summary of the mis-modelled static signal, showing the STD of the time
series of range combinations error and the resulting gravity field model error quantified in
terms of the geoid height error at degrees 60 and 100 and cumulative geoid height error at
degree 120.

E.4 Error patterns of the mis-modelled static signal
The static gravitational field is not the focus of the dissertation. It’s influence on time-
varying gravity field models can be effectively mitigated, as discussed in Section 6.2.2,
by averaging a large number of solutions and removing the corresponding signal
from the measurements. On the other hand, one possible application for future
gravimetric missions, in view of the desirable long period monitoring mass transport
processes, is to model the static gravitational field. Even though the simulation
of these errors in the conducted study are conservative, the spatial patterns of the
corresponding error in the gravity field models provides insight into the geographical
locations where the collected data are less accurate.

Figure E.3a, b and c shows spatial representation of the error in the gravity field
models associated with the mis-modelled static signal, i.e. the difference between
the propagated mis-modelled static signal and the assumed residual static gravity
field model. For comparison, Figure E.3d shows the assumed residual static gravity
field model, i.e. the difference between EIGEN-5C and EIGEN-CG03C.

The error spatial patterns of the propagated mis-modelled static signal are very
different for the three formations, although all show that the largest errors are
localized at the low latitudes:

• The cartwheel formation produces a spatial pattern characterised by long
North-South stripes of similar amplitude at all the latitudes, with exception
to the regions close the poles. These stripes appear homogeneously at all
longitudes. The spatial pattern of the cartwheel formation does not become
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more homogeneous at the equator, as one would expect from the radial attitude
of the LoS vector, because the effects of the positioning noise dominate the
solution.

• The trailing formation yields a spatial pattern showing strong North-South
stripes at selected longitudes. Around the equator, the trailing formation
measures the gravitational field strictly along the North-South direction and
with the largest gaps between consecutive ground tracks. The resulting
data contain insufficient information to allow the static residual gravitational
signal to be reconstructed uniquely. As a consequence, strong and localized
errors appear, becoming stretched in the North-South direction as a result of
anisotropic sensitivity of the data.

• The spatial pattern resulting from the pendulum formation contains some
North-South stripes of low amplitude at the equatorial band which are non-
homogeneously distributed along longitude. The typical low-amplitude East-
West stripes can be seen at higher latitudes.
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(a) cartwheel (b) pendulum

(c) trailing (d) mis-modelled static signal

Figure E.3 – Spatial maps of the geoid height error of the mis-modelled static signal for the
a) cartwheel, b) pendulum and c) trailing formations with maximum range equal to 200 km.
Figure d) shows the spatial map of the difference between EIGEN-5C and EIGEN-CG03C,
the residual gravity field model on the basis of which the mis-modelled static signal is
computed.
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E.5 Conclusions
The numerical study described in this section considered the following model errors:

• the error introduced by the omission signal, represented by degrees 121 to 360
of the EIGEN-5C model; and

• the wrongly quantified mis-modelled static signal, assumed to be equal to the
difference between the EIGEN-5C and EIGEN-CG03C models.

Importantly, the effects of the positioning noise are included in the analysis of
the mis-modelled static signal because the two types or noise are in practice mixed
together.

It is shown that the trailing formation is most sensitive to the considered model
errors. The omission signal in this formation is three times larger than in case of the
cartwheel formation and eight times larger than in case of the pendulum formation.
The trailing formations is four times more sensitive to mis-modelled static signal
than the other formations.

The pendulum formation is the least sensitive to the omission signal and of
comparable sensitivity to the mis-modelled static signal as the cartwheel formation.
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Acronyms F
cf. confer , compare

e.g. exempli gratia, for example

etc. et cetera, and so forth

i.a. inter alia, amongst others

i.e. id est, that is

p. page

pp. pages

vs. versus, against

1D uni-dimensional

3D three-dimensional

ACS Attitude Control System

AIUB Astronomical Institute of the University of Bern, Switzerland,
www.aiub.unibe.ch

AIUB-GRACE03S AIUB GRACE-only model, version 3, Jäggi et al. (2012)

AOCS Attitude and Orbital Control System
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AOD1B Atmosphere and Ocean De-aliasing Level 1B product,
Flechtner et al. (2006); Flechtner (2007, 2011)

ARMA Auto-Regressive Moving-Average

ASD Amplitude Spectral Density, equal to the square-root of the
PSD

BDNSS BeiDou/Compass Navigation Satellite System, Chengzhi
(2013)

CAS Chinese Academy of Sciences, China, english.cas.cn

CCR Corner-Cube Retroreflector

CHAMP CHallenging Mini-Satellite Payload, Reigber et al. (1996,
2002)

CIF Conventional Inertial Frame

CNES Centre National d’Études Spatiales, France, cnes.fr

CoM Centre of Mass

CNES/GRGS-10d CNES/GRGS 10-days gravity field models, Lemoine et al.
(2007b); Bruinsma et al. (2010); Lemoine et al. (2013b)

COSMIC Constellation Observing System for Meteorology, Ionosphere
and Climate satellite mission (see also F3C)

COSMIC-2 2nd Constellation Observing System for Meteorology,
Ionosphere and Climate satellite mission (see also F7C2)

CPR Cycle Per Revolution

CPU Central Processing Unit

CSR Center for Space Research, The University of Texas at
Austin, USA, www.csr.utexas.edu

CRF Celestial Reference Frame,
Section A.1

CTF Conventional Terrestrial Frame
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DAS Degree Amplitude Spectrum

DD Double-differenced

DFACS Drag-Free Attitude Control Systems

DLR Deutsches Zentrum für Luft- und Raumfahrt, Germany,
www.dlr.de

DGM-1S Delft Gravity Model, Farahani et al. (2013b)

DMT Delft Mass Transport model, Liu et al. (2010); Ditmar et al.
(2013)

DoF Direction of Flight

DORIS Doppler Orbit Determination and Radio-positioning
Integrated on Satellite, Dorrer et al. (1991); Barlier (2005);
Willis et al. (2006)

DOWR Dual One-Way Ranging

DoY Day of Year

DTU Danish Technical University, Denmark, www.dtu.dk

DTU10 DTU Ocean wide Mean Sea Surface height model, 2010,
Andersen (2010)

E2E End-to-End

ECEF Earth-Centred, Earth-Fixed reference frame, see TRF

ECF Earth Centred Fixed reference frame, see TRF

ECI Earth-Centred Inertial reference frame, see CRF

EFRF Earth-Fixed Reference Frame reference frame, see TRF

ECMWF European Centre for Medium-Range Weather Forecasts, UK,
www.ecmwf.int

EGM2008 NGA’s Earth Gravitational Model 2008, Pavlis et al. (2008)

EGM96 Joint NASA GSFC and NIMA Earth Gravitational Model
1996, Lemoine et al. (1998)
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EIGEN European Improved Gravity model of the Earth by New
techniques

EIGEN-CG03C GFZ/GRGS EIGEN, version 3, Förste et al. (2005)

EIGEN-GL04C GFZ/GRGS EIGEN, version 4, Förste et al. (2008b)

EIGEN-5C GFZ/GRGS EIGEN, version 5, Förste et al. (2008a)

EIGEN-6C GFZ/GRGS EIGEN, version 6, Shako et al. (2014)

EIGEN-6C2 GFZ/GRGS EIGEN, version 6.2, Förste et al. (2012)

EIGEN-6C4 GFZ/GRGS EIGEN, version 6.4, Förste et al. (2014)

EOT08a 2008 Empirical Ocean Tide model derived from Altimeter
data, Savcenko and Bosch (2008a,b)

EWH Equivalent Water Height

EO Earth Observation

ESA European Space Agency, www.esa.int

ESTEC European Space Research and Technology Centre,
www.esa.int/About_Us/ESTEC

F3C FORMOSAT-3/COSMIC, Kuo et al. (1999, 2005)

F7C2 FORMOSAT-7/COSMIC-2, Ector et al. (2010); Cook et al.
(2013)

FDDW Frequency-Dependent Data Weighting

FES Finite Element Solution global tide model

FES2004 release 2004 of the Finite Element Solution global tide model,
Lyard et al. (2006)

FORMOSAT-3 Taiwan’s Formosa Satellite Mission-3 (see also F3C)

FORMOSAT-7 Taiwan’s Formosa Satellite Mission-7 (see also F7C2)

GFO GRACE Follow On, Sheard et al. (2012); Larkin (2012);
Zaragoza (2013)
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GFZ Helmholtz-Zentrum Potsdam Deutsches
GeoForschungsZentrum, Germany, www.gfz-potsdam.de

GGM02 GRACE Gravity Model 02, Tapley et al. (2005)

GGM03 GRACE Gravity Model 03, Tapley et al. (2007)

GIA Glacial Isostatic Adjustment

GLDAS Global Land Data Assimilation System, Rodell et al. (2004)

GloNaSS Globalnaya Navigatsionnaya Sputnikovaya Sistema, Polischuk
and Revnivykh (2004)

GNSS Global Navigation Satellite System

GOCE Gravity field and steady-state Ocean Circulation Explorer,
Balmino et al. (1999); Floberghagen et al. (2011)

GOCO02S Gravity Observation COmbination release 02 satellite-only
gravity field model, Goiginger et al. (2011)

GOCO03S Gravity Observation COmbination release 03 satellite-only
gravity field model, Mayer-Gürr (2012)

GOT Goddard Ocean Tide model, Ray (1999)

GPS Global Positioning System

GRACE Gravity Recovery And Climate Experiment, Tapley et al.
(1996); Tapley (2004b)

GRAIL Gravity Recovery and Interior Laboratory mission, Lehman
et al. (2013)

GRF Gradiometer Reference Frame,
Section A.7

GRS Geoscience and Remote Sensing, Faculty of Civil Engineering
and Geosciences, Delft University of Technology (TU Delft)

GRGS Groupe de Recherche de Géodésie Spatiale, France,
grgs.obs-mip.fr
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GSFC Goddard Space Flight Center, United States of
America (USA), www.nasa.gov/centers/goddard

HRF Hill Reference Frame,
Section A.8

hl-SST high-low Satellite-to-Satellite Tracking

HPF High-Level Processing Facility

IRF Inertial Reference Frame

IST Instituto Superior Técnico, tecnico.ulisboa.pt

ITG Institut für Geodäsie und Geoinformation, Germany,
www.igg.uni-bonn.de

ITG-GRACE2010 ITG GRACE-only model, 2010, Mayer-Gürr et al. (2010);
Kurtenbach et al. (2009)

ITG-GRACE2010s ITG GRACE-only static model, 2010, Mayer-Gürr et al.
(2010)

JPL Jet Propulsion Laboratory, USA, www.jpl.nasa.gov

KBR K-Band Ranging

KO Kinematic Orbit

L0 Level 0 data

L1A Level 1A data

L1B Level 1B data

L2 1227.60mHz GPS carrier frequency

LaD Land Dynamics hydrological model, Milly and Shmakin
(2002)

LAGEOS LAser GEOdynamics Satellite, Cohen and Smith (1985)

LASER Light Amplification by the Stimulated Emission of Radiation
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LEO Low-Earth Orbit

LGM Last Glacial Maximum

Lic. Eng. Licenciatura em Engenharia (Licenciate in Engineering,
pre-Bologna Accords),
en.wikipedia.org/wiki/Licentiate#Portugal

LISA Laser Interferometer Space Antenna, Merkowitz (2003)

LHRF Local Horizontally-aligned Reference Frame,
Section A.3

ll-SST low-low Satellite-to-Satellite Tracking

LNOF Local North-Oriented Frame

LORF Local Orbital Reference Frame,
Section A.4

LoS Line of Sight

LoSRF Line-of-sight Reference Frame,
Section A.5

LS Least-Squares

MasCon Mass Concentration approach, Rowlands et al. (2005);
Lemoine et al. (2007a)

MetOp Meteorological Operational satellite programme, Edwards
and Pawlak (2000)

MetOp-A first satellite of the Meteorological Operational satellite
programme

MOG2D-G 2D Gravity Waves model, Carrère (2003)

N/A Not Applicable

NASA National Aeronautics and Space Administration, USA

NCEP National Centers for Environmental Prediction, USA,
www.ncep.noaa.gov
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NGA National Geospatial-Intelligence Agency, USA (previously
called NIMA), www.nga.mil

NIMA National Imagery and Mapping Agency

OMCT Ocean Model for Circulation and Tides, Thomas (2001)

PANDA Position And Navigation Data Analyst software, Zhao (2004)

PCA Principal Component Analisys

PCCG Pre-Conditioned Conjugate Gradient method, Hestenes and
Stiefel (1952)

PDO Purely Dynamic Orbit

POD Precise Orbit Determination

PPHA Pacanowski, Ponte, Hirose and Ali barotropic ocean model,
Hirose et al. (2001); Ali (2003)

PSD Power Spectral Density, equal to the square of the ASD

PSO Precise or Post-processed Science Orbit

RDO Reduced Dynamic Orbit

RMS Root Mean Squared

SAR Synthetic Aperture Radar

SD Single-Differenced

SD-E Single-Differenced phase measurements between Epochs

SD-S Single-Differenced phase measurements between GPS
Satellites

SDR Software Defined Radio

SGG Satellite Gravity Gradient

SLR Satellite Laser Ranging, Smith and Turcotte (1993);
Combrinck (2010)
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SNR Signal-to-Noise Ratio

SRF Satellite Reference Frame,
Section A.6

SSO Sun-Synchronous Orbit

SST-AUX-2 GOCE HPF non-tidal dealiasing product, Gruber et al.
(2014)

STD STandard Deviation

TPXO ToPeX Ocean tidal model, Egbert et al. (1994); Egbert and
Erofeeva (2002)

TRF Terrestrial Reference Frame,
Section A.2

TT Terrestrial Time

TU Delft Delft University of Technology, www.tudelft.nl

TUG Technische Universität Graz, Austria, www.tugraz.at

TUM Technische Universität München, Germany, www.tum.de

TWS Terrestrial Water Storage

UK United Kingdom

URL Uniform Resource Locator

USA United States of America

ZD Zero-differenced
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Symbols G
The following convention distinguishes between scalar, vector and tensor quantities:

• Scalar quantities are represented by lower-case or capital unformatted symbols,
e.g.:

– range: ρ;
– co-latitude: ϑ;
– gravitational potential: V .

• Vector quantities are represented by lower-case bold-face symbols, e.g.:
– orbital elements: o ;
– gravitational acceleration: g;
– unit vector: e.

• Matrix quantities are represented by capital bold-face symbols, e.g.:
– design matrix: A;
– a set of Stokes coefficients: C
– gravity gradient: G.

The superscripts described in Section G.2 add an additional meaning to the
original symbol, associated with the context in which it is defined, such as:

• the forecasted orbit position of satellite 1, x(for)(1);
• the reference gravitational potential, V (ref);
• the point-wise orientation noise of satellite 2, δ(L)(2)(pw).

Subscripts, like superscripts, also add a contextual meaning but are restricted to
either a component of a vector, such as:
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• the x -component of the gravitational acceleration, g x ;
• the value of the (time-varying) range combination at epoch i , a i ;
• the Stokes coefficient of degree ` and order m , C `m .

Notice that it is possible to refer to the y -component of the orbit velocity at
epoch i with ẋy ,i (which has the same meaning as ẋi , y ) but if the number of
superscripts is low, it is preferable to move the component of the vector/tensor to
superscript, e.g. ẋ

(y)
i . The subscripts used in the thesis are presented in Section G.3.

As a general rule, all the quantities with index i are given with a constant
sampling interval ∆t . A quantity with the subscript i corresponds to the observation
time t i := t 0+ (i −1)∆t , where t 0 is an initial epoch (i = 1, . . . N with N being the
total number of data).

Regarding terminology, the term synthetic is used as a means to express that a
certain measurement is generated numerically on the basis of an assumed model,
rather than being the output of a real sensor.

A0 radial amplitude

B0 cross-track amplitude

α radial phase

β horizontal phase

xoff radial offset

yoff along-track offset

o orbital elements

a semi-major axis

e eccentricity

i inclination

Ω right ascension of the ascending node

ω argument of perigee

M mean anomaly

ν true anomaly
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T (rev) orbital revolution period

T (revisit) revisit period

m j model parameter j

m model parameters

m̂(res) model correction

m(ref) reference model parameters

Φ functional model

Φi functional model element i

A design matrix

Ai j design matrix element i j

N normal matrix

C(res) data noise covariance matrix

C(ref) reference model noise covariance matrix

y(obs) observed data

y(for) forecasted data

y(res) residual data

ϑ co-latitude

λ longitude

r radius

R semi-major axis of a reference ellipsoid

G0 universal gravitational constant

M⊕ mass of the Earth

G0M⊕ geocentric gravitational constant

t time
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∆t sampling rate

f frequency

w averaging filter

` degree

L (max) maximum degree

m order

|m | absolute value of order

Y 4π-normalised surface spherical harmonic function

Y `m spherical harmonic function of degree ` and order m

C Stokes coefficient

C `m Stokes coefficient of degree ` and order m

V gravitational potential

g gravitational acceleration magnitude or component

g gravitational acceleration

g average gravitational acceleration

G gravity gradient

a acceleration

a averaged acceleration

a(ng) non-gravitational acceleration

a(12) inter-satellite acceleration

a (12)(LoS) point-wise inter-satellite acceleration projected onto the Line of
Sight (LoS) direction

a (12)(cent) point-wise inter-satellite centrifugal acceleration

a(12) averaged inter-satellite acceleration
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e unit vector

e(LoS) unit vector defining the LoS direction

d LoS vector

θ angle between the LoS vectors at successive epochs

ρ range

ρ̇ range-rate

ρ̈ range acceleration

a range combination

x orbit position

x(for)(adj)(LoS) forecasted orbit positions adjusteds with range data along the LoS
direction

x(for)(adj)(abs) forecasted orbit positions adjusted to simulate absolute positioning
noise

x(kpl) Keplerian reference orbit

x(mod) Modelled orbit

ẋ orbit velocity

δ noise (scalar)

δ(obs) observation noise

δ(for) forecast noise

δ(∆x) relative orbit position noise

δ(∆ẋ) relative orbit velocity noise

δ(x) absolute orbit position noise

δ(R) ranging noise

δ(R,spl) simplistic ranging noise
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δ(rP) relative position noise

δ(aP) absolute position noise

δ(C) correction noise

δ(acc) accelerometer noise

δ(P) positioning noise

δ(P)(pw)(rel)‖ relative point-wise positioning noise resulting from the relative orbit
position noise parallel to the LoS direction

δ(P)(pw)(rel)⊥ relative point-wise positioning noise resulting from the relative orbit
position noise perpendicular to the LoS direction

δ(P)(pw)(abs) absolute point-wise positioning noise

δ(P)(LoS) positioning noise resulting from the relative orbit position noise along
the LoS direction

δ(P)(rel)‖ positioning noise resulting from the relative orbit position noise along
the LoS direction

δ(P)(rel)⊥ positioning noise resulting from the relative orbit position noise
perpendicular to the LoS direction

δ(L) orientation noise

δ(ẋ
(12)⊥) noise in the orbit velocity of satellite 1 relatively to satellite 2

projected onto the plane perpendicular to the LoS direction

δ(LoS) noise in the orientation of the LoS vector

δ(st) mis-modelled static signal

δ(tv) mis-modelled time-variable signal

δ(sp) omission signal
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Mathematical operations G.1

G.1 Mathematical operations

∇ gradient

∇∇ double gradient

∇2 Laplace

∗ convolution
T transpose

F Fourier transform

R rotation matrix

∇=
�

d

d x1
, ...,

d

d xn

�T

∇∇=∇ ·∇T =







d 2

d x 2
1

· · · d 2

d x1d xn

... ...
d 2

d xn d x1

d 2

d x 2
n







∇2 =∇T ·∇=
d 2

d x 2
1

+ ...+
d 2

d x 2
n

G.2 Superscripts

Superscripts add an additional meaning to the original symbol, associated with
the context in which it is defined, such as the forecasted orbit position of satellite
1 x(for)(1), the reference gravitational potential V (ref), or the orbit position defined
in the Line-of-sight Reference Frame (LoSRF, Section A.5) orbit position x(LoSRF).

(cent) centrifugal
(Cor) Coriolis
(ref) reference
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(true) “true”
(for) forecasted
(obs) observed
(res) residual
(adj) adjusted
(pw) point-wise
(k) noise type
(1) satellite 1
(2) satellite 2
(12) satellite 1 relatively to satellite 2
(j) satellite j

(CRF) relative to the Celestial Reference Frame (CRF, Section A.1)
(TRF) relative to the Terrestrial Reference Frame (TRF, Section A.2)
(LHRF) relative to the Local Horizontally-aligned Reference Frame (LHRF,

Section A.3)
(LoSRF) relative to the Line-of-sight Reference Frame (LoSRF, Section A.5)

(HRF) relative to the Hill Reference Frame (HRF, Section A.8)
(12) inter-satellite
(x) absolute orbit position
(∆x) relative orbit position
(∆ẋ) relative orbit velocity
(LoS) LoS direction
(rel) relative
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Subscript G.3

(abs) absolute
(max) maximum
(min) minimum
(avg) average
(kpl) Keplerian
(mod) Modelled
(rev) revolution
(revisit) revisit
(hl-SST) hl-SST
⊥ perpendicular

G.3 Subscript

Subscripts, like superscripts, also add a contextual meaning but are restricted to
either a component of a vector, such as the x -component of the gravitational
acceleration g x , or the value of the (time-varying) range combination at epoch i ,
a i . Notice that it is possible to refer to the y -component of the orbit velocity at
epoch i with ẋy ,i (which has the same meaning as ẋi , y ) but if the number of
superscripts is low, it is preferable to move the component of the vector/tensor
to superscript, e.g. ẋ

(y)
i .

i epoch i

x x -component

y y -component

z z -component

x x x x -component

`|m | degree and absolute value of order
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