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1
INTRODUCTION

In brief, stochastic analysis is to investigate stochastic processes with the tools from math-
ematical analysis. One major interest in analysis is how research objects (i.e. functions)
change. In the context of stochastic analysis, it becomes how to describe the changes of
stochastic processes. Intuitively, one would try to formulate the mathematical description
for local properties of stochastic processes as the counterpart of (deterministic) differential
equations. It naively describes the motivation of developing stochastic differential equations
(SDEs).

The following problems are typical examples1 worth of being investigated in stochastic anal-
ysis.

• Rough differential equation (RDE) driven by a d-dimensional Gaussian process X (t ):

∂t u(t ) = F (u(t ))∂t X (t ), (1.1)

where F :Rd →L (Rd ,Rn) is a smooth vector field.

• Nonlinear heat equation with rough path dependence

∂t u(x, t ) =∆u(x, t )+ f (u(x, t ))w(x),

where x ∈ T2, w is a space white noise independent on time and f : R → R is a regular
function.

In [14], the novel approach to stochastic partial differential equations (SPDEs) is proposed.
By combining the controlled paths introduced in [16] with the concept of paraproducts intro-
duced in [4], a paradifferential calculus is developed. With such a system of calculus, non-
linear operations can be defined for certain classes of distributions, and further it can be ap-
plied to construction of stochastic differential/integral equations. Since it is a general theory

1To maintain a logical order of reading, we define the symbols used in this section, most of which are standard
notations for readers familiar with the context, in later section 1.2.
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2 1. INTRODUCTION

of distributions with no limitation on dimensions, it can been seen as a flexible generalization
of Lyon’s rough path theory, which removes the intrinsic one-dimensional nature of time in
rough path theory. In particular, it provides new tools to tackle the problems, e.g. singular
SPDEs, which cannot be analyzed by existing methods.

This thesis is a literature study concentrating on the development of fundamental theory rep-
resented in [14]. Although we do not treat any applications in detail, a list of the references
towards particular SPDEs is given in the end of the thesis.

1.1. STATE OF ART

The theory of distributions (generalized functions) emerging in 1930-40s formulates the foun-
dation of modern PDEs. It provides a much more flexible framework to deal with functions
that have no classical derivatives. In another way of interpretation, the distribution theory
also constructs a robust system for linear operations on irregular generalized functions. How-
ever, unfortunately, linearity is critical for the theory working. Generally the distribution the-
ory cannot handle nonlinear operations properly. For instance, take a common term appear-
ing in SDEs (as the right hand side in (1.1)),

F (u)∂t X (t ).

In the context of stochastic analysis, X (t ) is usually a Brownian motion. It is a well known
result [30] that a Brownian motion is γ-Hölder continuous for any γ ∈ (0,1/2). In addition, also
well known in analysis, ∂t X (t ) is (γ−1)-Hölder continuous. Hence, Provided F (·) is smooth,u
and F (u) have the same regularity of X (t ). As the main result of chapter 2 (c.f. section 2.7), the
product F (u)∂t X (t ) is well defined only if γ+γ−1 = 2γ−1 > 0, which violates the Brownian
setting.

Itō’s integral is a widely known alternative to settle the above dilemma. However, Itō’s ap-
proach is also fairly restrictive on conditions for the existence of integrals:

(i) a filtration and adapted integrands,

(ii) A probability measure, i.e. the integral is defined as a L2-limit,

(iii) L2-orthogonal increments of the integrator, i.e. the inegrator must possess semimartin-
gale properties.

To remove the constraints in Itō’s approach, rough path theory has been developed in the last
twenty years, first introduced by T. Lyons in [27]. It gives a valid construction of stochastic in-
tegrals as pathwise integrals regarding more general processes, e.g. fractional Brownian mo-
tions that are not necessarily semimartingales. Standard rough path theory has been treated
in detail in the monographs [12, 26, 28].

Recently several efforts are made to settle the irregularities in time by modifying the original
rough path theory.
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1. A stochastic differential equation

Lu(x, t ) =σ(u(x, t ))w(x, t ),

where x ∈ T, L = ∂t −∆, w is a space-time Gaussian distribution and σ is some nonlinear
coefficient. It was investigated in [8, 17]. It was treated as an evolution equation in time
and rough path technique were extended to deal with convolution integrals due to the
noise term in heat flow.

2. Fully nonlinear stochastic PDEs with a special structure were studied in [6, 9, 11]. One of
the examples is

∂t u(x, t ) = F (u,∂xu,∂2
xu)+σ(x, t )∂xu(x, t )w(t ),

where x ∈Rd with d ≥ 1 while w only depends on time variable. Such a SPDE is translated
into a regular PDE with random coefficients a change of variables involving the flow of
stochastic characteristics associated toσ. The flow is handled with rough path techniques.

3. In [33] , the following family of semilinear SPDEs is studied.

(∂t − A)u(x, t ) =σ(u)(x, t )w(x, t ),

where A is a suitable linear operator, not necessarily bounded, andσ is a general nonlinear
operation on solution u with some restrictive conditions. The SPDE is transformed into
SDE with bounded coefficients by using the group generated by A on a proper space.

Aside from the irregularities in time, there are also works dedicating to the irregularities in
space.

1. In [3, 5], a vortex filament equation describing the approximate motion of a closed vortex
line x(t , ·) ∈C (T,R3) in a incompressible three-dimensional fluid

d

dt
x(σ, t ) = ux(·,t )(x(σ, t ))

with

ux(·,t )(y) =
∫
T

K (y −x(σ, t ))∂σx(σ, t )dσ,

where K : R3 → L (R3,R3) is a smooth antisymmetric field of linear transformations in R3.
Since the initial condition x(·,0) is sampled with the law of three-dimensional Brownian
bridge, the low regularity of x(σ, t ) regarding σ leads to the fact that the integral ux(·,t )(y)
cannot be defined. With rough path theory a new definition can be assigned to the integral
and thus the analysis of above SPDE can be proceeded.

2. In the series work of M. Hairer’s, the problems due to spatial irregularities are tackled. In
[18] he shows that SPDEs that are ill-defined in standard function spaces can be redefined
using the language of rough path theory. [21] extends the SPDEs in the Burgers type to
the case of multiplicative noise. Besides, [20], using the approach appearing in [19], the
Kardar-Parisi-Zhang (KPZ) equation has been defined and solved for the first time. The
KPZ equation was introduced in [23] and only could be solved by linearization methods.
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However, all works mentioned above rely on certain special structure of the problems in order
to implement the rough path integration theory. In addition, the intrinsic one-dimensional
nature of rough path theory is implied in all previously listed applications. This two facts
indicate that there are no easy adaptations towards different problems nor generalizations
to multidimensional cases. We believe the approach of controlled distributions, proposed
in this thesis, is less dependent on the properties of the problems and thus more adaptable.
Furthermore, this method connects Fourier analysis with rough path theory.

1.2. NOTATION

In this section we briefly summarize the notations used in the rest text.

• As standard,N,Q,R and C denote the sets of natural numbers, rational numbers, real num-
bers and complex numbers respectively. For convenience, 0 ∈ N. We use N+ for the set of
positive natural numbers. Z is the set of integers. Z+ and Z− are the sets of positive inte-
gers and negative ones. If 0 needs to be included, we use subscript to denote, i.e. Z+

0 and
Z−

0 . With a general set of numbers K, Kd denotes the set of d-tuples of K, e.g. Rd is the
d-dimensional Euclidean space.

Besides, we also introduce the concept of torus which is standard in Fourier analysis, Td :=
Rd /Zd . Since it only appears in introductory text, the details about Td are referred to [13].

• Given x = (x1, · · · , xd ) ∈ Rd , |x| := (
∑d

i=1 x2
i )1/2 denotes the canonical Euclidean norm. k-th

partial derivative of function f on Rd with respect to variable xi is denoted as2 ∂k
i f := ∂k

∂xk
i

f .

A multi-index α = (α1, · · · ,αd ) is an element in Nd
0 . The size of α is measured by |α| :=∑d

i=1αi . Given a multi-index α and a vector x, we also use the monomial xα := xα1
1 · · ·xαd

d .
And the same rule applies to partial derivative operators ∂α := ∂α1

1 · · ·∂αd
d .

Since we will work with general Euclidean space Rd , d is assumed to be the dimension un-
less with explicit statement.

• ‖ ·‖p is reserved for Lp norm on Rd . The `p norm of sequence spaces is denoted as ‖ ·‖`p .

• Occasionally, we may use ., & and ∼ in the sense of

A .B : A ≤ MB , A &B : A ≥ MB , A ∼ B :
B

M
≤ A ≤ MB.

where M is a constant irrelevant to A and B .

• An open ball in Rd is denoted as

B(x0,R) := {x ∈Rd : |x −x0| < R}

2k may be omitted when k = 1.
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and an annulus is
C (x0,R0,R1) := {x ∈Rd : R0 < |x −x0| < R1}.

When they are centered at the origin, the first augment may be omitted. When talking about
general balls and annuli centered at the origin, we omit all the augments.

• When applying Hölder inequality and Young’s inequality, it is assumed that (p, q,r ) are the
corresponding conjugates, i.e.

1

p
+ 1

p
= 1

r
and

1

p
+ 1

q
= 1

r
+1,

respectively.

• The space of test functions is denoted by D(Rd ) := C∞
0 (Rd ), i.e. the space of infinitely dif-

ferentiable functions with compact support. The space of infinitely differentiable functions
is denoted by C∞ with the natural norm3 ‖ f ‖∞ := supx∈Rd | f (x)|. And the space of k dif-
ferentiable functions with bounded derivatives is denoted by C k

b with the natural norm
‖ f ‖C k

b
:=∑

|α|≤k ‖∂α f ‖∞. All these functions can be complex-valued.

• The following notations are reserved for the corresponding operations in the text:

(i) translation: τy ( f )(x) = f (x − y),

(ii) dilation: δa( f )(x) = f (ax),

(iii) reflection: ω( f )(x) = f (−x).

• b·c and d·e are the flooring and ceiling functions respectively, i.e.

bxc = max{m ∈Z | m ≤ x} and dxe = min{n ∈Z | n ≥ x}.

Besides we introduce

bxc− = max{m ∈Z | m < x} and {s}+ = s −bxc−

• Classical commutator of a ring is denoted as following:

[A,B ] := AB −B A.

3We abuse the symbol ‖ · ‖∞ here, i.e. indicating supremum for continuous functions and essential supremum
for L∞ functions. However, it will be clear when appears in context.



2
MATHEMATICAL ELEMENTS

In this chapter, we introduce all mathematical tools that will be used in establishing con-
trolled paradifferential calculus (chapter 3). Some results are quite standard so the proofs are
omitted but references are given. We first introduce Schwartz theory of distributions. Then
we summarize the facts for Fourier transformation. Later, multiplier is treated separately be-
cause of its importance. After that we present Littlewood-Paley decomposition. Based on
the decomposition technique, we can introduce Besov spaces, the important family of func-
tion spaces for our study. Subsequently, Zygmund spaces, as a subclass of Besov spaces, are
treated. In the end, we are able to investigate the properties of paraproducts.

2.1. SCHWARTZ FUNCTION AND TEMPERED DISTRIBUTION

In this section, Schwartz theory of distributions is collectively presented. To keep with a con-
cise size, only the material needed for further study is treated. Regarding distribution theory,
it is extensively discussed in many monographs, e.g. [29].

As for the notations used in this section, we recommend readers to review chapter 1.

Definition 2.1. Schwartz space is defined as

S (Rd ) := { f ∈C∞(Rd ) | ρα,β( f ) := sup
x∈Rd

|xα∂β f | =Cα,β <∞, ∀α,β},

where α,β are multi-indices. ρα,β is called the Schwartz seminorms of f .

Remark 2.2. Other Schwartz seminorms are also commonly used such as

ρ̂k,β( f ) = sup
x∈Rd

|x|k |∂β f |,

ρ̃k,β( f ) = sup
x∈Rd

(1+|x|)k |∂β f |,

6



2.1. SCHWARTZ FUNCTION AND TEMPERED DISTRIBUTION 7

where k ∈ N0 and β is a multi-index. Under certain circumstance, they may simplify the es-
timation. This equivalent relation will be frequently used in latter text. Besides ones given
above, other variations are also available, c.f. [29]. 4

Proposition 2.3. The families of seminorms ρα,β( f ), ρ̂k,β( f ) and ˜ρk,β( f ) are equivalent.

Proof: Since all seminorms contain the term ∂β f , hence we only need to show the equivalence
of the different terms.

(i) ρk,β( f ) ⇐⇒ ρ̂k,β( f )

|xα| = |∏
i

xαi
i | =∏

i
|xi |αi ≤∏

i
|x|αi = |x||α|.

By taking k = |α|, we show ρ̂k,β( f ) =⇒ ρk,β( f ). On the other hand,

|x|k =
[(∑

x2
i

)1/2
]k ≤

[(∑ |xi |
)2

]k/2

= ∑
|γ|=k

(
k

γ

)∏
i
|xi |γi = ∑

|γ|=k

(
k

γ

)
|xγ|,

where the last two equalities are due to multinomial expansion, included in appendix
A.

We have shown ρ̂k,β( f ) is a finite combination of ρk,β( f ), i.e. ρk,β( f ) =⇒ ρ̂k,β( f ).

(ii) ρ̂k,β( f ) ⇐⇒ ρ̃k,β( f )
ρ̃k,β( f ) =⇒ ρ̂k,β( f ) is trivial, because ρ̂k,β( f ) ≤ ρ̃k,β( f ).

On the other hand,

ρ̃k,β( f ) = sup
x∈Rd

(1+|x|)k |∂β f | = sup
x∈Rd

k∑
i=0

(
k

i

)
|x|i |∂β f |

=
k∑

i=0

(
k

i

)
sup
x∈Rd

|x|i |∂β f | =
k∑

i=0

(
k

i

)
ρ̂i ,β( f ).

Hence, ρ̂k,β( f ) =⇒ ρ̃k,β( f ).

Definition 2.4. Let { fn}n∈N and f in S (Rd ). We say fn → f in S , if for all α, β,

ρα,β( fn − f ) → 0, as n →∞.
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Remark 2.5. The convergence defined above is compatible with a topology on S (Rd ) under
which the operations ( f , g ) → f + g , (c, f ) → c f and f → ∂α f are continuous for all complex
scalars c, multi-indicesα and f , g ∈S (Rd ). A basis for open sets containing 0 in this topology
is

{ f ∈S : ρα,β( f ) < r },

for all multi-indices α,β and r ∈Q+. With observation that if ρα,β( f ) = 0 then f = 0, we con-
clude that S (Rd ) is a locally convex topological vector space equipped with the family of semi-
norms ρα,β that separate points. With some extra efforts, one can also show that S (Rd ) actu-
ally is a Fréchet space (complete metrizable locally convex space) [36]. 4

It is worth pointing out that the convergence in S is stronger than in any Lp .

Proposition 2.6. Let { fn}n∈N and f in S (Rd ) and fn → f in S , then we have for all p ∈ [1,∞],

‖ fn − f ‖p → 0 as n →∞.

Moreover, there exits a C(p,d) such that

‖∂α f ‖p ≤C (p,d)
∑

|α|≤b d+1
p c+1

ρα,β( f ).

Proof: See [13].

We summarize the properties of Schwartz functions.

Proposition 2.7. Let f , g ∈S .

(i) ∀ multi-index α, N ∈N+, ∃C (α, N ) : |∂α f | ≤C (1+|x|)−N .

(ii) ∀p ∈ [1,∞], S ⊂ Lp . When p <∞, S is also dense in Lp .

(iii) S is closed under convolution operation, i.e. f ∗ g ∈S .

(iv) ∂α( f ∗ g ) = (∂α f )∗ g = f ∗ (∂αg ).

Proof: We will only prove the last property here and for the rest it is referred to [13].

Recall ∂i := ∂
∂xi

and use ei to denote the i th unit vector in Rd . It suffices to show the case
∂α = ∂i , the rest is by induction. Besides, we only need to show ∂α( f ∗ g ) = (∂α f )∗ g and the
other equality can be obtained by symmetry.

Define

fh(y) := f (y +hei )− f (y)

h
.
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For arbitrary fixed y , we have

fh(y)−∂i f (y) → 0 as h → 0.

Besides, because of the mean value theorem,

∃c ∈B(y,h) : | fh(y)| = |∂i f (c)| ≤ η(y) := sup
t∈B(y,h)

|∂i f (t )|.

From the definition of Schwartz functions and the first statement in the proposition,

sup
|t |≤R

|∂i f (t )| = M <∞ and sup
|t |>R

|∂i f (t )| <C (1+|t |)−N , (2.1)

Hence we can show that η ∈ L1. Moreover, from the properties of Schwartz functions, we have
∂i f ∈ L1 and g ∈ L∞. Now we can accomplish the proof by applying dominated convergence
theorem.

Now we are ready to show that convolution is a smoothing process in a more general sense.

Proposition 2.8. Let f ∈S and g ∈ Lp , p ∈ [1,∞]. We have

∂α( f ∗ g ) = (∂α f )∗ g .

Proof: Similar with the previous one, it suffices to show the case ∂α = ∂i , the rest is by induc-
tion.

We want to show ∣∣∣∣lim
h→0

f ∗ g (x +hei )− f ∗ g (x)

h
− (∂i f ∗ g )(x)

∣∣∣∣= 0,

and thus the derivative ∂i ( f ∗ g ) can be pointwisely defined in the classical way.

Notice ∣∣∣∣lim
h→0

f ∗ g (x +hei )− f ∗ g (x)

h
− (∂i f ∗ g )(x)

∣∣∣∣
≤ lim

h→0

∣∣∣∣∫
Rd

(
f (y +hei )− f (y)

h
−∂i f (y)

)
g (x − y)dy

∣∣∣∣
≤ lim

h→0

∫
Rd

∣∣ fh(y)−∂i f (y)
∣∣ ∣∣g (x − y)

∣∣ dy,

where fh(y) is defined in the proof of proposition 2.7.

We prove the limit cases p = 1 and p =∞ by dominated convergence theorem (DCT). We only
check the integrability here, the rest is just a direct application of DCT.

(i) p =∞.

The proof is same as proposition 2.7.
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(ii) p = 1. Apply Hölder inequality∥∥(
fh(·)−∂i f (·))g (x −·)∥∥1 ≤

∥∥ fh −∂i f
∥∥∞

∥∥g (x −·)∥∥1 ≤ 2‖∂i f ‖∞‖g (x −·)‖1.

Again, in the last estimation we invoke (2.1).

Now we prove the case p ∈ (1,∞). Because of the second property in proposition 2.7, we can
take a sequence gn ∈S such that gn → g in Lp . Since

| lim
h→0

f ∗ g (x +hei )− f ∗ g (x)

h
−∂i ( f ∗ gn)(x)|

≤ lim
h→0

∣∣∣∣∫
Rd

fh(x − y)(g (y)− gn(y))dy

∣∣∣∣
≤ lim

h→0
‖ fh(x −·)‖q‖g − gn‖p

=‖∂i f ‖q‖g − gn‖p → 0 as n → 0. (2.2)

Besides, from proposition 2.7,

∂i ( f ∗ gn) = (∂i f )∗ gn , ∀n ∈N.

Hence,

| lim
h→0

f ∗ g (x +hei )− f ∗ g (x)

h
− (∂i f )∗ g (x)|

=| lim
h→0

f ∗ g (x +hei )− f ∗ g (x)

h
− (∂i f )∗ g (x)−∂i ( f ∗ gn)(x)+ (∂i f )∗ gn(x)|

≤| lim
h→0

f ∗ g (x +hei )− f ∗ g (x)

h
−∂i ( f ∗ gn)(x)|+ |(∂i f )∗ gn(x)− (∂i f )∗ g (x)|

recall (2.2) & Young’s inequality,

≤‖∂i f ‖q‖g − gn‖p +‖∂i f ‖q‖gn − g‖p

≤2‖∂i f ‖q‖gn − g‖p → 0 as n →∞.

Hence the proof for the case p ∈ (1,∞) is completed.

In conclusion, we have shown that ∂i ( f ∗ g ) exists and ∂i ( f ∗ g ) = ∂i f ∗ g pointwisely.

Remark 2.9. Since D ⊂S ⊂ Lp , ∀p ∈ [1,∞], the foregoing results (proposition 2.7 and 2.8) can
be immediately applied to test functions as well. 4
Definition 2.10 (Tempered Distributions). The dual space of the locally convex space S (Rd )
is denoted as S ′(Rd ). Elements from S ′ are called tempered distributions.

Remark 2.11. One may recall the elements in dual space of D, denoted as D′, are called dis-
tributions. Since D ⊂S , S ′ ⊂D′. 4
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Example 2.12. A function u in Lp , p ∈ [1,∞] is a tempered distribution by identifying the func-
tional with

u → Lu

Lu( f ) :=
∫
Rd

u(x) f (x)dx.

Theorem 2.13. D is dense in S ′.

Proof: See [13].

2.2. FOURIER TRANSFORMATION

Fourier transformation is the root of Fourier analysis, a broad branch of mathematics. In this
section, we briefly summarize the properties of Fourier transformation, especially how it acts
on distributions.

Definition 2.14 (Fourier Transformation). Let f ∈S (Rd ). Fourier transform is defined by

F { f }(ξ) := (2π)−d/2
∫
Rd

f (x)e−i x·ξdx,

which may be written as f̂ (ξ) :=F { f }(ξ) in short.

Proposition 2.15. Let f , g ∈S , y ∈Rd , c ∈C, α multi-index and a > 0, we have

(i) ‖ f̂ ‖∞ ≤ ‖ f ‖1,

(ii) F { f + g } =F { f }+F {g },

(iii) F {c f } = cF { f },

(iv) F {ω( f )} =ω{F ( f )},

(v) F {τy ( f )}(ξ) = e−i y ·ξ f̂ (ξ),

(vi) F {e i x·y f }(ξ) = τy f̂ (ξ),

(vii) F {δa( f )}(ξ) = a−dδ1/a f̂ ,

(viii) F {∂α f }(ξ) = (iξ)α f̂ (ξ),

(ix) F {(−i x)α f }(ξ) = ∂α f̂ (ξ),

(x) F { f } ∈S ,

(xi) F { f ∗ g } = f̂ ĝ .
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Theorem 2.16 (Inverse Fourier Transform). Let f ∈ S , the inverse Fourier transform is given
by

F−1 f (x) := (2π)−d/2
∫
Rd

f (ξ)e iξ·x dξ,

denoted as f̌ . Furthermore,

F 2 =ω, F 3 =F−1 and F 4 = Id.

Proposition 2.17. The Fourier transform of a radial function is radial. Products and convolu-
tions of radial functions are radial.

Proof: c.f. [13].

Theorem 2.18. Fourier transform on S is an automorphism.

Proof: c.f. [1].

Definition 2.19. For u ∈ S ′, we extend several operations such as Fourier transform to tem-
pered distributions, i.e. for all f ∈S ,

(i) 〈∂αu, f 〉 := (−1)|α|〈u,∂α f 〉,
(ii) 〈û, f 〉 := 〈u, f̂ 〉,
(iii) 〈ǔ, f 〉 := 〈u, f̌ 〉,
(iv) 〈τt (u), f 〉 := 〈u,τ−t f 〉,
(v) 〈δa(u), f 〉 := 〈u, a−dδ1/a( f )〉,
(vi) 〈ω(u), f 〉 := 〈u,ω( f )〉,
(vii) if h ∈S , 〈h ∗u, f 〉 := 〈u,ω(h)∗ f 〉,
(viii) if h ∈C∞ with at most polynomial growth at infinity 1, 〈hu, f 〉 = 〈u,h f 〉.

As proposition 2.15 for Schwartz functions, we have the similar results for tempered distribu-
tions.

Proposition 2.20. Let u, v ∈S ′, f ∈S , y ∈Rd , c ∈C, α multi-index and a > 0, we have

(i) F {u + v} =F {u}+F {v},

(ii) F {cu} = cF {u},

1|∂αh(x)| ≤C (1+|x|)kα for all α and some kα > 0.
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(iii) if u j → u in S ′, then û j → û in S ′,

(iv) F {ω(u)} =ω{F (u)},

(v) F {τy (u)}(ξ) = e−i y ·ξû(ξ),

(vi) F {e i x·y u}(ξ) = τy û(ξ),

(vii) F {δa(u)}(ξ) = a−dδ1/aû,

(viii) F {∂αu}(ξ) = (iξ)αû(ξ),

(ix) F {(−i x)αu}(ξ) = ∂αû(ξ),

(x) F−1F {u} = u,

(xi) F {u ∗ v} = ûv̂ ,

(xii) F {uv} = û ∗ v̂ .

2.3. MULTIPLIER AND PSEUDO-DIFFERENTIAL OPERATOR

In this section, we give a brief introduction on multipliers and pseudo-differential operators.
Because these two advanced topics are quite prolific on their own, we only include some
well-known results that will be used later. As for multipliers, we basically follow the mate-
rials present in [2]. And the materials of pseudo-differential operators are collected from [32].
For interested readers, we refer to [13], [31] regarding multiplier theory, and to [24] for brief
introduction and [22] for thorough treatment on the topic of pseudo-differential operators.

Definition 2.21. m ∈S ′ is called a Fourier multiplier on Lp if for all f ∈S

m̌ ∗ f =F−1{m f̂ } ∈ Lp and ‖m‖Mp := sup
‖ f ‖p≤1

‖m̌ ∗ f ‖p <∞.

The space of multipliers is denoted by Mp with the norm defined above.

Theorem 2.22. If 1/p +1/q = 1 with 1 ≤ p, q ≤∞, then we have

Mp = Mq (equal norms).

Furthermore,

M1 =
{
m ∈S ′ | m̌ is a bounded measure

}
with ‖m‖M1 = total mass of m̌,

and

M2 = L∞.
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In addition, for 1 ≤ p0, p1 ≤∞, given m ∈ Mp0 ∩Mp1 ,

|m|p ≤ ‖m‖1−θ
Mp0

‖m‖θMp1
,

where 1/p = (1−θ)/p0 +θ/p1. In particular, ‖ ·‖Mp decreases with p when p ∈ [1,2], i.e.

M1 ⊂ Mp ⊂ Mq ⊂ M2,

where 1 ≤ p < q ≤ 2.

Lemma 2.23. Let A :Rd →Rn be a surjective affine transformation. Then the mapping defined
by

(A∗m)(ξ) = m(Aξ), ξ ∈Rd

is isometric from Mp (Rd ) to Mp (Rn). When d = n, it is bijective.

In particular, we have

‖m(·)‖Mp = ‖m(t ·)‖Mp ,

‖m(·)‖Mp = ‖m(〈v, ·〉)‖Mp ,

given 0 6= t ∈R, 0 6= v ∈Rd .

Proof: C.f. theorem 6.1.3 in [2].

Fourier multipliers can be generalized to certain vector-valued Lp spaces. Since we are work-
ing with d-dimensional Euclidean spaces, the results of multipliers on Hilbert spaces would
be of great interest for us. First we introduce the generalization.

Definition 2.24. Given two Hilbert spaces (X ,‖ · ‖X ) and (Y ,‖ · ‖Y ) and a mapping m ∈
S ′(X ,Y ). We state m ∈ Mp (X ,Y ) if for all f ∈S (X ),

m̌ ∗ f ∈ Lp (Y ) and ‖m‖Mp (X ,Y ) := sup
‖ f ‖Lp (X )=1

‖m̌ ∗ f ‖Lp (Y ) <∞,

where we have also defined a norm for Mp (X ,Y ).

Lemma 2.25. Let N ∈N and N > d/2. Assume m ∈ L2(L (X ,Y )) and ∂αm ∈ L2(L (X ,Y )), |α| =
N . Then m ∈ Mp (X ,Y ), p ∈ [1,∞] and

‖m‖Mp ≤C‖m‖1−θ
2 ( sup

|α|=N
‖∂αm‖2)θ,

where θ = d/2N .

We finish the introduction on multiplier with the following well-known theorem.
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Theorem 2.26 (Mihlin Multiplier Theorem). Given Hilbert spaces X ,Y and m is a mapping
from Rd to L (X ,Y ) such that

|ξ||α|‖∂αm(ξ)‖L (X ,Y ) ≤ A

for |α| ≤ L where L > d/2. Then m ∈ Mp (X ,Y ), p ∈ (1,∞) and

‖m‖Mp ≤Cp A.

We observe that

∂α f =F−1{(iξ)α f̂ },

when the Fourier transform with its inverse are well defined. Given a polynomial

p(x,ξ) = ∑
|α|≤k

cα(x)(iξ)α,

we may define the following differential operator

p(x,D) := ∑
|α|≤k

cα(x)∂α

p(x,D) f :=F−1{p(x,ξ) f̂ }.

Inspired by the previous observation, we introduce the following generalization of differential
operators.

Definition 2.27. Let m ∈R and σ(ξ) ∈C∞(Rd ) such that

|∂ασ(ξ)| ≤ Nα(1+|ξ|2)(m−|α|)/2,

holds for all multi-index α and Nα independent of ξ. Then we call σ a symbol of order m.

With a symbol class, we can define the following generalization.

Definition 2.28. Let σ be a symbol of order m. The operator

σ(D) : S ′ →S ′

σ(D) f =F−1{σ f̂ }.

is called the pseudo-differential operator of order m with symbol σ.

Remark 2.29. It is obvious that S is in symbol classes, hence every Schwartz function natu-
rally formulate a pseudo-differential operator. Only this result will be used in the future. 4
As an example, we show the connection between Laplacian and the corresponding pseudo-
differential operator.
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Example 2.30. Let f ∈S or S ′, and ∆ :=∑
i ∂

2
i .

F {(Id−∆)d f } =F {
∑

i

(
d

i

)
(−∆)i f }

=∑
i

(
d

i

)
(|ξ|2)i f̂

= (
1+ (|ξ|)2)d

f̂ ,

since

F {−∆ f } = 4π2|ξ|2 f̂

by induction =⇒F {(−∆)d f } = (4π2|ξ|2)d f̂ .

Let
σ(ξ) := (

1+|ξ|2)d
,

then
(Id−∆)d f =σ(D) f .

2.4. LITTLEWOOD-PALEY DECOMPOSITION

We discuss the important decomposition method named by Littlewood and Paley in this sec-
tion. This decomposition is the foundation to formulate Besov spaces in a Fourier-analytical
approach [35].

We start with introducing a Bernstein-type lemma, which shows the fact the derivatives of a
function can be estimated by the function, under certain circumstance.

Lemma 2.31 (Bernstein’s Lemma). Given B(R0) and C (R1,R2) with R0,R1,R2 > 0 and R1 < R2

in Rd , there exists a constant C such that for all 1 ≤ p ≤ q ≤∞ and u ∈ Lp , we have

Supp û ∈λB =⇒ sup
|α|=k

‖∂αu‖q ≤C k+1λ
k+d( 1

p − 1
q )‖u‖p (2.3)

Supp û ∈λC =⇒ C−(k+1)λk‖u‖p ≤ sup
|α|=k

‖∂αu‖p ≤C k+1λk‖u‖p (2.4)

Proof:

• Supp û ∈λB.
Now fix a functionφ ∈C∞

0 such thatφ= 1 in a neighborhood of B and vanishes fast, e.g. we
may assume Suppφ⊂ 2B. Hence û =φû. The general case can be obtained by dilation, i.e.
û =φ(·/λ)û. Let g =F−1φ, we have

u =λd g (λ·)∗u.
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Due to proposition 2.8, for derivatives with |α| = k

∂αu =λd+k∂αg (λ·)∗u.

Apply Young’s inequality and then rescale the variable,

‖∂αu‖q ≤λkλd(1−1/r )‖∂αg‖r ‖u‖q

≤λk+d(1/p−1/q)‖∂αg‖r ‖u‖q with
1

q
+1 = 1

r
+ 1

p
.

One can easily verify r ∈ [1,∞]. Hence we have a well-defined norm. Applying theorem
2.18, g ∈S and so is ∂αg . Hence we have finished the proof.

• Supp û ∈λC .
The right inequality is just a particular case of (2.3). So we only need to prove the left in-
equality.

Take a function ψ from C∞
0 with value 1 in a neighborhood of C . Hence, û =ψ(·/λ)û.

Apply multinomial expansion formula,

|ξ|2k = ∑
|γ|=k

(
k

γ

)
ξ2γ = ∑

|γ|=k

(
k

γ

)
(iξ)γ(−iξ)γ.

When |ξ| 6= 0,

û(ξ) = ∑
|γ|=k

(
k

γ

)
(−iξ)γ

|ξ|2k
ψ

(
ξ

λ

)
· (iξ)γû(ξ)

=⇒ u = ∑
|γ|=k

gγ∗∂γu with gγ =
(

k

γ

)
F−1

{
(−iξ)γ

|ξ|2k
ψ

(
ξ

λ

)}
, (2.5)

where ∂γu is taken in the sense of distributions.

Apply Young’s inequality,

‖u‖p ≤ ∑
|γ|=k

‖gγ‖1‖∂γu‖p .

Similar with the case of ball supported, ‖gγ‖1 <∞ leads to the left inequality of (2.4).

Now we show how to construct the family of functions used in Littlewood-Paley decomposi-
tion.

Proposition 2.32. There exist radial C∞
0 functions χ and ϕ such that

∀ξ ∈Rd , 0 ≤χ(ξ),ϕ(ξ) ≤ 1

Suppχ= {|ξ| ≤λ} and Suppϕ= {
1

λ
≤ |ξ| ≤ 2λ},
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where λ ∈ (1,
p

2).

Furthermore, with the following shorthand notation2,

ϕ−1(ξ) =χ(ξ),

ϕi (ξ) =ϕ(2−iξ), i ≥ 0,

then

Suppϕi ∩Suppϕ j =;, if |i − j | > 1,∑
i≥−1

ϕi (ξ) = 1, ∀ξ ∈Rd .

Proof: Let χ be a bump function3 with value 1 on {|ξ| ≤ 1/λ} and vanishes outside {|ξ| ≤λ}, for
example,

χ(ξ) =


1 |ξ| ≤ 1

λ

exp 1
1−(|ξ|−1/λ)2/c2

1
λ ≤ |ξ| ≤λ

0 |ξ| >λ
,

where c =λ−1/λ.

Now let

ϕ0(ξ) =χ(
1

2
ξ)−χ(ξ),

and similarly,

ϕi (ξ) :=ϕ(2−iξ) =χ(2−i−1ξ)−χ(2−iξ).

One can easily verify that

Suppϕ= {
1

λ
≤ |ξ| ≤ 2λ}, and in general, Suppϕi = {

2i

λ
≤ |ξ| ≤ 2i+1λ}, i ≥ 0.

It is easy to verify with λ ∈ (1,
p

2)

Suppϕ(2−iξ)∩Suppϕ(2− jξ) =;, if |i − j | > 1. (2.6)

Finally, let ϕ−1(ξ) :=χ(ξ), and we will show for all ξ ∈Rd ,∑
i≥−1

ϕi (ξ) = 1.

Since only Suppχ∩Suppϕ0 6= ;, (2.6) is still valid. So we only need to validate that the sum of
two nonzero functions is 1. It is shown in the following three cases.

2It will be frequently used in future.
3A function is both smooth and compactly supported, i.e. in D.
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(i) |ξ| ≤ 1
λ . ∑

i≥−1
ϕi (ξ) =χ(ξ) = 1.

(ii) 1
λ < |ξ| ≤ 2

λ .

∑
i≥−1

ϕi (ξ) =χ(ξ)+ϕ(ξ) =χ(ξ)+χ(
1

2
ξ)−χ(ξ) =χ(

1

2
ξ) = 1

(iii) 2
λ < |ξ| ≤ 2.

∑
i≥−1

ϕi (ξ) =ϕ0(ξ)+ϕ1(ξ) =χ(
1

2
ξ)−χ(ξ)+χ(

1

4
ξ)−χ(

1

2
ξ)

=−χ(ξ)+χ(
1

4
ξ) = 1,

since λ< 2
λ

and 1
2λ < 1

4 |ξ| ≤ 1
2 < 1p

2
< 1

λ
.

(iv) 2 j < |ξ| ≤ 2 j+1, j = 1,2,3, · · ·
Notice

{2 j < |ξ| ≤ 2 j+1}∩Suppϕi =;, i ∉ { j −1, j , j +1}

=⇒ ∑
i≥−1

ϕi (ξ)

=ϕ j−1(ξ)+ϕ j (ξ)+ϕ j+1(ξ)

=χ(2−( j−1)−1ξ)−χ(2−( j−1)ξ)+χ(2− j−1ξ)−χ(2− jξ)+χ(2−( j+1)−1ξ)−χ(2−( j+1)ξ)

=−χ(2− j+1ξ)+χ(2− j−2ξ)

=χ(2− j−2ξ) = 1.

From now, χ,ϕ, and {ϕi }i≥−1 are reserved to denote the functions of dyadic partition of unity
in proposition 2.32.

Definition 2.33. Take a fixed family {ϕi } with inverse Fourier transform {ϕ̌i }. For u ∈ S ′, the
nonhomogeneous dyadic blocks are defined as

∆i u = 0, i <−1,

∆i u =ϕi (D)u = ϕ̌i ∗u, i ≥−1

And the partial sum of dyadic blocks is defined as nonhomogeneous low frequency cut-off
operator

S j u := ∑
i< j

∆i u =
j−1∑

i=−1
∆i u.



20 2. MATHEMATICAL ELEMENTS

Finally, the Littlewood-Paley decomposition is given by

Id =∑
i
∆i , i.e. u =∑

i
∆i u.

Remark 2.34. Immediately from definition, we have the following identities

F {∆i u} =ϕi û

and

F {Si u} =
i−1∑

j=−1
ϕ j û.

By observing that ∑
i≥−1

ϕi (ξ) = 1,

=⇒χ(ξ) =ϕ−1(ξ) = 1− ∑
i≥0

ϕi (ξ)

=⇒χ(2−nξ) = 1− ∑
i≥n

ϕi (ξ) =
n−1∑

i=−1
ϕi (ξ),

we conclude

F {Snu} =
n−1∑

i=−1
ϕi û =χ(2−n ·)û, i.e. Snu =χ(2−nD)u. (2.7)

Furthermore, due to proposition 2.17,

ϕ̌i (−x) = ϕ̌i (x).

Finally, it is worthing noticing that dilation in the frequency domain does not affect the L1

norm in the physical domain, i.e.

‖ϕ̌‖1 = ‖ϕ̌i‖1, i ≥ 0,

‖χ̌‖1 = ‖F−1{χ(2 j ·)}‖1, j = 0,1,2, · · ·

It is a simple result from the change of variables∫
Rd
λd |ψ(λξ)|dξ=

∫
Rd

|ψ(η)|dη. (2.8)

4

The advantage of dyadic blocks is that it localizes a tempered distribution, as shown in the
following proposition.
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Proposition 2.35. Let u, v ∈S ′ and λ ∈ (1,2
p

10/5), We have

∆i∆ j u = 0, |i − j | > 1,

∆̃i∆i u =∆i u,

where ∆̃i :=∆i−1 +∆i +∆i+1. And the support of S j−1u∆ j v lies in an annulus with

∆i (S j−1u∆ j v) = 0, |i − j | > 2

Proof: Since (1,2
p

10/5) ⊂ (1,
p

2), recall (2.6)

∆i∆ j u =F−1{ϕiϕ j û} = 0, |i − j | > 1.

The second equality is due to

F {∆̃i∆i u} = (ϕi−1 +ϕi +ϕi+1)ϕi u,

which has the same support as ϕi . Recall the partition of unity of {ϕi }, i.e.
∑

i≥−1ϕi (ξ) =∑ j+1
i= j−1ϕi (ξ) , when ξ ∈ Suppϕ j .

As for the third statement,

∆i (S j−1u∆ j v) = ϕ̌i ∗
[

(F−1{χ(2−( j−1)·)}∗u)(ϕ̌ j ∗ v)
]

=F−1
{
ϕi

[
(χ(2−( j−1)·)û)∗ (ϕ j v̂)

]}
.

By proposition A.15,

SuppF {S j−1u∆ j v} = Supp{χ(2−( j−1)·)û)∗ (ϕ j v̂)}

⊂ Suppχ(2−( j−1)·)+Suppϕ j

=
{
|ξ| ≤ 2 j−1λ

}
+

{
2 j

λ
≤ |ξ| ≤ 2 j+1λ

}
=

{
2 j

λ
−2 j−1λ≤ |ξ| ≤ 2 j−1λ+2 j+1λ

}
=

{
2 j

(
2−λ2

2λ

)
≤ |ξ| ≤ 2 j

(
5

2
λ

)}
, (2.9)

which is an annulus because 2 j
(

2−λ2

2λ

)
> 0.

Recall

Suppϕi =
{

2i

λ
≤ |ξ| ≤ 2iλ

}
,

it can be easily shown that{
2 j

(
2−λ2

2λ

)
≤ |ξ| ≤ 2 j

(
5

2
λ

)}
∩Suppϕi =;, |i − j | > 2,

provided λ ∈ (1,2
p

10/5).
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Remark 2.36. One may aware of the impact of λ. The upper bound λ < p
2 is required for

satisfying the relation (2.6) and keeping the largest support in (2.9) in the form of annulus.
For λ ∈ (2

p
10/5,

p
2), there exists a number N0 ∈N+\{1} such that

∆i (S j−1u∆ j v) = 0, |i − j | > N0.

4
In addition, dyadic block is commutative with differential operator.

Lemma 2.37. Let u ∈S ′. We have

∂α∆ j u =∆ j∂
αu.

Proof: It suffices to show the case ∂α = Di , the rest is followed by induction. We will temporar-
ily use D = Di where i can be arbitrarily chosen, for simplicity.

Take arbitrary f ∈S ,

〈D∆i u, f 〉 =−〈∆ j u,D f 〉 =−〈u,ω(ϕ̌ j )∗D f 〉.
Since ω(ϕ̌ j ),D f ∈S and because of proposition 2.7, we have

−〈u,ω(ϕ̌ j )∗D f 〉 =−〈u,D(ω(ϕ̌ j )∗ f )〉 = 〈Du,ω(ϕ̌ j )∗ f 〉 = 〈ϕ̌ j ∗Du, f 〉 = 〈∆ j Du, f 〉.

The following proposition shows that the decomposition is actually valid in S ′(Rd ), i.e. in-
deed Idu =∑

∆i u for all u ∈S ′.

Proposition 2.38. Let u ∈S ′(Rd ). Then

Snu → u in S ′, as n →∞.

Proof: Take an arbitrary f ∈S and u ∈S ′.
since ϕ̌i are radial functions, i.e. ϕ̌i (ξ) = ϕ̌i (−ξ), we have 〈ϕ̌i ∗u, f 〉 = 〈u,ϕ̌i ∗ f 〉. Hence,

〈u −Snu, f 〉 = 〈u, f 〉−〈Snu, f 〉 = 〈u, f −Sn f 〉.
Since Fourier transform on S is continuous, it suffices to show

F { f −Sn f } = (1−
n−1∑

i=−1
ϕi ) f̂ = (

1−χ(2−n ·)) f̂ → 0 in S , as n →∞,

where the last equality is given by (2.7).

recall proposition 2.32, we have(
1−χ(2−nξ)

)
f̂ (ξ) = 0, when |ξ| ≤ 2nλ

=⇒ ∂β
[(

1−χ(2−nξ)
)

f̂ (ξ)
]= 0, when |ξ| ≤ 2nλ



2.4. LITTLEWOOD-PALEY DECOMPOSITION 23

for arbitrary multi-index β.

Now take any k ∈N and multi-index β. With Leibniz differentiation rule4, we have the follow-
ing identity

ρ̂k,β
{(

1−χ(2−n ·)) f̂
}= sup

|x|>2nλ

(1+|x|)k
∣∣∣∂β [(

1−χ(2−n ·)) f̂
]∣∣∣

= sup
|x|>2nλ

(1+|x|)k
∑
γ

(
β

γ

)∣∣∂γ (
1−χ(2−n ·))∣∣ ∣∣∣∂β−γ f̂

∣∣∣
= sup

|x|>2nλ

(1+|x|)k
∣∣(1−χ(2−n ·))∣∣ ∣∣∣∂β f̂

∣∣∣+ sup
|x|>2nλ

(1+|x|)k
∑
|γ|>0

(
β

γ

)∣∣∂γχ(2−n ·)∣∣ ∣∣∣∂β−γ f̂
∣∣∣ .

Recall
∣∣(1−χ(2−nξ)

)∣∣ ≤ 1,∀ξ ∈ Rd and the first property in proposition 2.7, for which we take
N =−2k,

ρ̂k,β
{(

1−χ(2−n ·)) f̂
}≤C1 sup

|x|>2nλ

(1+|x|)−k +C2 sup
|x|>2nλ

∑
|γ|>0

(
β

γ

)
(1+|x|)−3k

≤C3

(
(1+2nλ)−k + (1+2nλ)−3k

)
→ 0 as n →∞.

We also state another convergence result useful for the estimations in the upcoming section.

Proposition 2.39. Let {u j } j∈N be a sequence of bounded functions such that

Supp û j ∈ 2 j C ,

where C is an annulus. If {2− j M‖u j‖∞} j∈N ∈ `∞ for some M ≥ 0, i.e.

2− j M‖u j‖∞ ≤C , ∀ j ∈N,

then the series
∑

j u j converges in S ′.

Proof: Recall (2.5),

u = ∑
|γ|=k

gγ∗∂γu with gγ =
(

k

γ

)
F−1

{
(−iξ)γ

|ξ|2k
ψ(ξ)

}

=⇒ u j =
∑

|γ|=k
g j
γ ∗∂γu j with g j

γ =
(

k

γ

)
F−1

{
(−iξ)γ

|ξ|2k
ψ(2− jξ)

}
rescalling =⇒ u j = 2− j k

∑
|γ|=k

2 j d gγ(2 j ·)∗∂γu j ,

4See Appendix A.
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where 2− j k comes from the change of variables of (−iξ)γ/|ξ|2k .

Now take an arbitrary f ∈S ,

〈u j , f 〉 = (−1)k 2− j k
∑

|γ|=k
〈u j ,2 j N gγ(−2 j ·)∗∂γ f 〉

=⇒ |〈u j , f 〉| ≤ 2− j k
∑

|γ|=k
‖u j‖∞‖2 j d gγ(2 j ·)‖1‖∂γ f ‖1

≤ 2− j k
∑

|γ|=k
‖u j‖∞‖2 j d gγ(2 j ·)‖1‖∂γ f ‖1

≤C 2− j k
∑

|γ|=k
2 j M‖gγ‖1‖∂γ f ‖1

gγ∈S=⇒ ≤ C̃ 2− j k
∑

|γ|=k
2 j M‖∂γ f ‖1.

By choosing k > M , we have

| ∑
j∈N

〈u j , f 〉| ≤ ∑
j∈N

|〈u j , f 〉| ≤ C̃

( ∑
|γ|=k

‖∂γ f ‖1

) ∑
j∈N

2− j (k−M) = Ć
∑
j∈N

2− j (k−M) <∞,

because f ∈S =⇒ ∑
|γ|=k ‖∂γ f ‖1 <∞. Hence, we have shown

〈u, f 〉 := lim
j→∞

j∑
i=1

〈ui , f 〉

defines a tempered distribution.

2.5. BESOV SPACE

Besov space, with tuning its three parameters, it covers most of the known function spaces,
which offers a global perspective on function spaces. Furthermore, its corresponding norm
also provides an effective way to measure the smoothness of functions. In this section, we try
to include the most important results of Besov spaces that will be used in the latter chapter.

Definition 2.40 (Besov Space). Let s ∈R and p, q ∈ [1,∞]. The nonhomogeneous Besov space
B s

p,q consists of all tempered distributions u such that

‖u‖B s
p,q

:=
∥∥∥∥(

2 j s‖∆ j u‖p

)
j∈Z

∥∥∥∥
`q (Z)

<∞.

Although the definition of Besov spaces is quite intimidating, we can easily conclude some
embeddings.

Proposition 2.41. We have the following embeddings:



2.5. BESOV SPACE 25

(i) If s1 > s2, then B s1
p,q ,→ B s2

p,q .

(ii) (Sobolev Embedding). If s1 −d/p1 ≥ s2 −d/p2, then B s1
p1,q ,→ B s2

p2,q .

Proof:

(i) When q <∞, ∑
j≥−1

2q j s2‖∆ j u‖q
p = ∑

j≥−1
2q j (s2−s1)2q j s1‖∆ j u‖q

p

≤
(

sup
j≥−1

2q j (s2−s1)

) ∑
j≥−1

2q j s1‖∆ j u‖q
p = 2q(s1−s2)

∑
j≥−1

2q j s1‖∆ j u‖q
p

=⇒‖u‖B
s2
p,q

≤ 2s1−s2‖u‖B
s1
p,q

.

because s2 − s1 < 0.

When q =∞, the estimation is modified for ‖ ·‖`∞
‖u‖B

s2
p,q

= sup
j≥−1

2 j s2‖∆ j u‖p ≤ 2s1−s2 sup
j≥−1

2 j s1‖∆ j u‖p = 2s1−s2‖u‖B
s1
p,q

.

(ii) We start with estimating the following by Young’s inequality,

‖∆ j u‖p2 = ‖∆̃ j∆ j u‖p2 ≤ ‖ϕ̌ j−1 + ϕ̌ j + ϕ̌ j+1‖r ‖∆ j u‖p1 , (2.10)

where 1/p2 +1 = 1/r +1/p1.

Observe, for j ≥ 0, by changing variable y = 2 j x,

‖ϕ̌ j‖r
r =

∫
Rd

|2 j d ϕ̌(2 j x)|r dx =
∫
Rd

|2 j d ϕ̌(y)|r 2− j d dy = 2 j d(r−1)
∫
Rd

|ϕ̌(y)|r dy

=⇒‖ϕ̌ j‖r = 2 j d(1−1/r )‖ϕ̌‖r =C 2 j d(1−1/r ),

because ϕ ∈S , which implies ϕ̌ ∈S ⊂ Lp ,∀p ∈ [1,∞], i.e. ‖ϕ̌‖r <∞.

On the other hand,

1− 1

r
= 1

p1
− 1

p2
, s1 − s2 ≥ d(

1

p1
− 1

p2
)

=⇒‖ϕ̌ j‖r
r ≤C 2 j (s1−s2).

In the case j =−1, we can find a constant C such that ‖ϕ̌−1‖r = ‖χ‖r <C 2−d(s1−s2).

Hence (2.10) becomes

‖∆ j u‖p2 = ‖∆̃ j∆ j u‖p2 ≤
(‖ϕ̌ j−1‖r +‖ϕ̌ j‖r +‖ϕ̌ j+1‖r

)‖∆ j u‖p1

≤ C̃ 2 j (s1−s2)‖∆ j u‖p1 .

=⇒ 2 j s2‖∆ j u‖p2 ≤ C̃ 2 j s1‖∆ j u‖p1 .

Thus, we have proved B s1
p1,q ,→ B s2

p2,q .
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To show that the characterization of Besov spaces is independent of the choice of {ϕi } family,
we need the following lemma.

Lemma 2.42. Let B be a ball, C be an annulus of Rd , s ∈ R and p, q ∈ [1,∞]. Let {ui : i ≥ −1}
be a sequence of functions such that

Supp û−1 ∈B, Supp ûi ∈ 2i C

and∥∥∥{
2i s‖ui‖p

}
i

∥∥∥
`q

<∞.

Then we have

u := ∑
i≥−1

ui ∈S ′ and ‖u‖B s
p,q

≤Cs

∥∥∥{
2i s‖ui‖p

}
i

∥∥∥
`q

<∞.

Proof: From the assumption, ‖ui‖p <C02−i s . Recall Bernstein’s lemma 2.31, (2.3), with λ= 2i ,
we have

‖ui‖∞ ≤C 2i N /p‖ui‖p ≤C02i (N /p−s).

Hence by proposition 2.39, u converges in S ′. Similar with proposition 2.35, it is easy to show
that an integer N0 > 0 exists such that

|i − j | > N0 =⇒ ∆i u j = 0.

With extending ui = 0 for i ≤−2, we have

‖∆i u‖p = ‖ ∑
|i− j |≤N0

∆i u j‖p

≤ ∑
|i− j |≤N0

‖∆i u j‖p

Young’s inequality ≤ ∑
|i− j |≤N0

‖ϕ̌i‖1‖u j‖p

≤C
∑

|i− j |≤N0

‖u j‖p ,

where C = sup j {‖ϕ̌ j‖1} <∞. One can easily check ‖ϕ̌i‖1 = ‖ϕ̌ j‖1 when i , j ≥ 0. Besides, since
χ,ϕ ∈S , we have ‖χ̌‖1,‖ϕ̌‖1 <∞.

Then, we can obtain the following inequality

2i s‖∆i u‖p ≤C 2N0|s| ∑
|i− j |≤N0

2 j s‖u j‖p .

Let

f (m) :=C 2N0|s|1[−N0,N0](m) and g (m) := 2ms‖um‖p .
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We have

2i s‖∆i u‖p ≤C 2N0|s| ∑
|i− j |≤N0

2 j s‖u j‖p = ( f ∗ g )(i )

=⇒‖u‖B s
p,q

≤ ∥∥C 2N0|s|1[−N0,N0]
∥∥
`1

∥∥∥{
2i s‖ui‖p

}
i

∥∥∥
`q

=Cs

∥∥∥{
2i s‖ui‖p

}
i

∥∥∥
`q

<∞,

where Cs =C (2N0 +1)2N0|s|.

Consequently, we have the following corollary.

Corollary 2.43. B s
p,q is independent of the choice of {ϕi } family.

Proof: The proof is straightforward. Consider two families {ϕi }i and {φi }i , which define Besov
norms, i.e. ‖u‖B s

p,q ,ϕ and ‖u‖B s
p,q ,φ with dyadic decomposition ϕ̌i and φ̌i . Take u ∈ (B s

p,q ,φ).

Let ui = φ̌i ∗ u. {ui }i satisfies the requirements in the previous lemma. Hence we have
‖u‖B s

p,q ,ϕ ≤Cs‖{2i s‖ui‖p }i‖`q =Cs‖u‖B s
p,q ,φ, i.e. (B s

p,q ,φ) ⊂ (B s
p,q ,ϕ).

We can show the other direction of inclusion by using symmetry.

Now combine the results, we have (B s
p,q ,ϕ) = (B s

p,q ,φ). Hence, we finish the proof.

We may have a weaker version of the foregoing lemma, which only requires the supports to
be inside balls rather than annuli, but it comes with the cost of regularity.

Lemma 2.44. Let B be a ball, s > 0 and p, q ∈ [1,∞]. Let {ui : i ≥−1} be a sequence of functions
such that

Supp ûi ∈ 2i B and
∥∥∥{

2i s‖ui‖p

}
i

∥∥∥
`q

<∞.

Then we have

u := ∑
i≥−1

ui ∈S ′ and ‖u‖B s
p,q

≤Cs

∥∥∥{
2i s‖ui‖p

}
i

∥∥∥
`q

<∞.

Proof: From the assumption, we have

‖ui‖p <C02−i s .

Since s is positive,
∑

i ui converges in Lp . Similar with lemma 2.42, a constant N0 ∈N+ exists
such that

i > j +N0 =⇒ ∆i u j = 0.
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With the trivial extension ui = 0, i ≤−2, we have

‖∆i u‖p = ‖ ∑
j≥i−N0

∆i u j‖p

≤ ∑
j≥i−N0

‖∆i u j‖p

≤ ∑
j≥i−N0

‖ϕ̌i‖1‖u j‖p

≤C
∑

j≥i−N0

‖u j‖p ,

where C is the same one in lemma 2.42.

Hence,

2i s‖∆i u‖p ≤C
∑

j≥i−N0

2(i− j )s2 j s‖u j‖p .

Let

f (m) :=C 2−ms1[−N0,∞)(m) and g (m) := 2ms‖um‖p

we have

2i s‖∆i u‖p ≤C 2
∑

j≥i−N0

2(i− j )s2 j s‖u j‖p = ( f ∗ g )(i )

=⇒‖u‖B s
p,q

≤ ‖ f ‖`1‖g‖`q

=Cs

∥∥∥{
2i s‖ui‖p

}
i

∥∥∥
`q

<∞,

where

Cs =C
2s(N0+1)

2s −1
.

When the regularity is negative, i.e. s < 0, lemma 2.44 is invalid. Since at the very beginning
of the proof, the ‖ui‖p < C02i |s| is not uniformly bounded and hence

∑
i ui does not have

the convergence in Lp . But Besov spaces can be characterized by the low frequency cut-off
operator S j , i.e. again we have an estimate on the Besov norm.

Proposition 2.45. Let s < 0, p, q ∈ [1,∞] and u ∈S ′. Then u ∈ B s
p,q if and only if{

2 j s‖S j u‖p

}
j∈N ∈ `q .

Moreover,
1

2|s|+1
‖u‖B s

p,q
≤

∥∥∥∥{
2 j s‖S j u‖p

}
j

∥∥∥∥
`q

≤ 1

2|s|−1
‖u‖B s

p,q
.
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Proof:

2 j s‖∆ j u‖p ≤ 2 j s (‖S j+1u‖p +‖S j u‖p
)= 2−s2( j+1)s‖S j+1u‖p +2 j s‖S j u‖p

Because ∆i and S j are defined for all integer subscripts, we can define the following two se-
quences in `q (Z).

a j =
{

0, j <−1

2 j s‖∆ j u‖p , j ≥−1
and b j =

{
0, j < 0

2 j s‖S j u‖p , j ≥ 0
.

Hence, recall s < 0 from assumptions,

a j ≤ 2−sb j+1 +b j

=⇒‖a‖`q (Z) ≤
(
2−s +1

)‖b‖`q (Z) =
(
2|s|+1

)‖b‖`q (N)

=⇒ 1

2|s|+1
‖a‖`q (Z) ≤ ‖b‖`q (Z).

The left inequality has been proved.

On the other hand,

2 j s‖S j u‖p = 2 j s‖
j−1∑

i=−1
∆i u‖p

≤ 2 j s
j−1∑

i=−1
‖∆i u‖p

=
j−1∑

i=−1
2( j−i )s2i s‖∆i u‖p .

Let

ci =
{

0, i < 1

2i s , i ≥ 1
and di =

{
0, i <−1

2i s‖∆i u‖p , i ≥−1
.

We have

(c ∗d) j =
∞∑
−∞

c( j − i )d(i ) =
j−1∑

i=−1
2( j−i )s2i s‖∆i u‖p = 2 j s‖S j u‖p .

By applying Young’s inequality (theorem A.16),∥∥∥∥{
2 j s‖S j u‖p

}
j

∥∥∥∥
`q

≤ ‖{ci }‖`1‖u‖B s
p,q

,
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where

‖{ci }‖`1 =
∞∑

i=1

(
2s)i = 1

2|s|−1
.

Hence we have shown the right inequality.

By the techniques from section 2.3, the example 2.30 can be generalized to exponents in R, as
following.

Definition 2.46 (Bessel Potential). The operator

J S : S ′ →S ′

∀ f ∈S ′, J s f :=F−1{(1+|ξ|2)s/2 f̂ }

is called Bessel potential with order s.

The advantage of introducing Bessel potentials is that it has a so called lifting property, which
show the relation between tempered distributions and their derivative, in terms of Besov
spaces.

Theorem 2.47 (Lifting Property). J r is a one-to-one mapping from S ′ to itself. For p, q ∈ [1,∞],
s ∈R, J r is an isomorphism between B s

p,q and B s−r
p,q .

Proof: c.f. [2], [34] and [35].

Up to now we have defined and investigated Besov spaces in Fourier approach. However, we
also can formulate Besov spaces in the manner of differences, i.e. moduli of continuity, which
provides more direct connection to differential equations.

We start with introducing a way to describe continuity in a more general way, i.e. modulus of
continuity.

Definition 2.48. The modulus of continuity is defined by

ωk
p (t , f ) := sup

|h|≤t
‖∆k

h f ‖p ,

where ∆k
h is the k-th order difference operator

∆k
h f (x) :=

k∑
i=0

(
k

i

)
(−1)i f (x +kh).

With the definition of moduli of continuity, it is able to show that Besov norm also reflects the
regularity of functions.

Proposition 2.49. Given s > 0 and let m, N be integers such that m+N > s and 0 ≤ N < s. Then
for all 1 ≤ p, q ≤∞,

‖ f ‖B s
p,q

∼ ‖ f ‖p +
d∑

i=1

(∫ ∞

0

(
t N−sωm

p (t ,∂N
i f )

)q dt

t

)1/q

,

where ∂N
i f := ∂N f

∂xN
i

.
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Proof: C.f. [2].

2.6. ZYGMUND SPACE

Zygmund space, as shown in this section, it is a special case of Besov spaces. The importance
to treat it separately is because it serves as a link from Besov spaces to Hölder spaces, the
natural spaces in which functions involving random behaviors are embedded. Hence we can
apply the techniques from Besov spaces to Hölder spaces.

First we introduce Hölder spaces.

Definition 2.50 (Hölder Space). Let k ∈N0 and γ ∈ (0,1]. The Hölder space C k,γ(Rd ) consists
of functions u ∈C k (Rd ) such that

‖u‖C k,γ := sup
|α|≤k

(
‖∂αu‖∞+ sup

x 6=y

|∂αu(x)−∂αu(y)|
|x − y |γ

)
<∞.

Remark 2.51. The space C 0,1 is also known as Lipschitz space and the functions in the space
are called Lipschitz-continuous.

We introduce Hölder spaces because it is a good candidate to formulate stochastic differential
equations. Since randomness is under consideration, the solution cannot be differentiable,
while it should still be continuous, as we want to formulate it as a path integral. 4

Our anticipation is that Hölder space is included in a certain type of Besov spaces, and hence
it is allowed to use Besov norm as well as Littlewood-Paley decomposition to investigate
Hölder continuous functions. The foregoing statement is true and the connection between
the spaces mentioned above is Zygmund space.

Definition 2.52 (Zygmund Space). For s ∈R, Zygmund space C s∗ is defined as

C s
∗ := Bγ

∞,∞ with5 ‖ ·‖s := ‖·‖B s∞,∞ .

Remark 2.53. The original version of Zygmund space is given in the second difference form,
c.f. [35]. And it is only defined when s > 0. However, with Fourier-analytical formulation, we
can generally extend to s ∈R. And it is convenient for us when referring to such a space. 4

The following corollary is deduced from lemma 2.42 and 2.44, it provides a easy way to de-
termine whether a tempered distribution is in C s∗ by only estimating the dyadic components
when s > 0.

5The notation ‖ · ‖s may cause confusions. We distinguish with Lp norms by letters. Zygmund space will be
associated with letter s and greak alphabets, while Lp space will be denoted in p, q,r and ∞.
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Corollary 2.54. let {u j } j satisfies the assumptions in proposition 2.42 (2.44), i.e.

Supp û−1 ∈B, Supp ûi ∈ 2i C

(Supp ûi ∈ 2i B)

and

∃K <∞, ∀ j , ‖u j‖∞ < 2− j sK .

Then for s > 0, we have

u := ∑
i≥−1

ui ∈S ′ and ‖u‖s ≤CsK <∞.

Proof: The proof is the straightforward application of proposition 2.42 (2.44) to the case p =
q =∞. The `q norm becomes ∥∥∥{

2i s‖ui‖p

}
i

∥∥∥
`q

<∞
=⇒∃K <∞ : sup

j
2 j s‖u j‖∞ = K

=⇒‖u j‖∞ ≤ 2− j sK .

We now introduce an equivalent criterion of Zygmund space.

Lemma 2.55. u ∈C s∗ if and only if there exists a constant K such that

‖∆ j u‖∞ ≤ 2− j sK .

In addition, if u ∈C s∗, then ∂αu ∈C s−|α|
∗ with

‖∂αu‖s−|α| . 2− j (s−|α|)‖u‖s .

Proof: The first part of the lemma is simply a reformulation of the definition of space C s∗. If
u ∈C s∗,

‖u‖s <∞ =⇒ sup
j

2 j s‖∆ j u‖∞ = ‖u‖s

=⇒ 2 j s‖∆ j u‖∞ ≤ ‖u‖s

=⇒‖∆ j u‖∞ ≤ 2− j s‖u‖s .

Take K ≥ ‖u‖s , we are done.

On the other hand, if such a constant K exists,

‖∆ j u‖∞ ≤ 2− j sK =⇒ 2 j s‖∆ j u‖∞ ≤ K

=⇒ sup
j

2 j s‖∆ j u‖∞ ≤ K

=⇒‖u‖s ≤ K .
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To show ∂αu ∈ C s−|α|
∗ , it suffices to show Du := Di u ∈ C s−1∗ and the rest is followed by induc-

tion. We use the fact that dyadic blocks ∆ j are commutative with differential operator D from
lemma 2.37 and the 2nd statement in Bernstein’s lemma 2.31. For all j ,

‖∆ j (Du)‖∞ = ‖D
(
∆ j u

)‖∞ ≤C 2 j‖∆ j u‖∞ ≤ 2− j (s−1)C‖u‖s .

As we have already proved in the first part of the lemma, it implies Du ∈C s−1∗ .

Furthermore,

2 j (s−1)‖∆ j (Du)‖∞ . ‖u‖s .

By taking supremum on both sides, we have accomplished the proof.

Remark 2.56. The result about derivatives can also be directly derived from theorem 2.47. 4

In the above lemma, we have shown how ∆ j u can be estimated by u. Naturally we would ask
how we can deal with S j u. The answer is as follows.

Lemma 2.57. If u ∈C s∗, s ∈R, then

‖∆ j u‖∞ . 2− j s‖u‖s .

When s < 0, in addition we have

‖S j u‖∞ . 2 j s‖u‖s .

Proof: The first statement has already been proved in lemma 2.55. So we focus on the second
one. Actually it is straightforward

‖S j u‖∞ ≤ ‖
j−1∑

i=−1
∆i u‖∞ ≤

j−1∑
i=−1

‖∆i u‖∞ .
j−1∑

i=−1
2−i s‖u‖s

= 2 j s‖u‖s

j−1∑
i=−1

2( j−i )s ≤ 2 j s‖u‖s

∞∑
k=1

2ks . 2 j s‖u‖s ,

because
∑∞

k=1 2ks = 2s/(1−2s), provided s < 0.

Inspired by the application of Bernstein’s lemma in the proof of lemma 2.55, we introduce the
following estimation of derivatives of ∆ j u and S j u.

Lemma 2.58. Let u ∈C s∗, then

‖∂α (
∆ j u

)‖∞ .2− j (s−|α|)‖u‖s ,

‖∂α(S j u)‖∞ .2− j (s−|α|)‖u‖s .
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Proof: The first inequality has been proved in the previous lemma. As for the second one,
instead of using the second statement of Bernstein’s lemma, the first one directly leads to the
result.

Similar with the previous lemma, we can conclude the following.

Proposition 2.59. The relation between C s∗ and L∞ is given as following:

(i) when s > 0,
C s
∗ ,→ L∞,

(ii) when s ≤ 0,
L∞ ,→C s

∗.

Proof: When s > 0, let u ∈C s∗.

‖u‖s = sup
j

2 j s‖∆ j u‖∞ <∞

=⇒‖∆ j u‖∞ ≤ 2− j s‖u‖s ,

=⇒‖u‖∞ = ‖∑
j
∆ j u‖∞ ≤∑

j
‖∆ j u‖∞ ≤

( ∑
j≥−1

2− j s

)
‖u‖s .

Since s > 0, the series converges and we are done here.

Now assume s ≤ 0 and let u ∈C s∗. Apply Young’s inequality,

‖u‖s =sup
j

2 j s‖∆ j u‖∞ ≤ sup
j

2 j s‖ϕ̌ j‖1‖u‖∞

≤2max
{‖χ̌‖1,‖ϕ̌‖1

}‖u‖∞.

Now we utilize the results from general Besov spaces to show the connection between Zyg-
mund spaces and Hölder spaces.

Lemma 2.60. When s > 0,

‖ f ‖h
s := ‖ f ‖C bsc

b
+ sup

|α|=bsc
sup

0 6=h∈Rd

‖∆2
h f ‖∞

|h|{s}+

is equivalent to ‖ f ‖s .

Proof: It is an immediate consequence of proposition 2.49, by taking p = q =∞.

Theorem 2.61. We have the following relations between Zygmund space C s∗ and Hölder space
C s .



2.7. PARAPRODUCT 35

(i) When s ∈R+ \N,

C bsc,s−bsc =C s
∗.

(ii) When s ∈N+,
C s

b (C s−1,1 (C s
∗.

Proof: In [13], the formulation of Hölder spaces by Littlewood-Paley characterization in sec-
tion 6.3.c naturally leads to this result. As an alternative, the proof can be found in [35], section
2.5.7.

2.7. PARAPRODUCT

If u, v ∈S ′, we may decompose the tempered distributions as

uv =
(∑

i
∆i u

)(∑
j
∆ j v

)
=∑

i , j
∆i u∆ j v.

The essential idea of paraproduct is to isolate the ’bad’ behavior of the product of two distri-
butions by decomposing it into separate parts, one of which retains the ’bad’ property, and
the rest only possess good continuity behavior. We first give the following definition. With
the upcoming theorems regarding continuity, one could clearly see the advantage of such a
decomposition.

Definition 2.62. Bony’s decomposition is defined as

uv : =Π−(u, v)+Π+(u, v)+Π0(u, v)

=Π±(u, v)+Π0(u, v),

where

Π−(u, v) :=∑
i

Si−1u∆i v,

Π+(u, v) :=Π−(v,u)

and

Π±(u, v) :=Π−(u, v)+Π+(u, v).

are the (nonhomogeneous) paraproducts of v by u and vice versa, and the (nonhomogeneous)
remainder

Π0(u, v) := ∑
i≥−1

∑
|i− j |≤1

∆i u∆ j v = ∑
i≥−1

∆i u∆̃i v,

where ∆̃i :=∆i−1 +∆i +∆i+1.
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Remark 2.63. The remainder is symmetric, namely Π0(u, v) =Π0(v,u). 4
With Bony’s decomposition, we are able to establish some continuity properties with regard
to Π−(u, v) and Π0(u, v), as stated in the following three theorems.

Theorem 2.64. Let p, q ∈ [1,∞] and s ∈R. The paraproduct Π− is a continuous bilinear opera-
tor from L∞×B s

p,q to B s
p,q and there exists a constant C such that

‖Π−(u, v)‖B s
p,q

≤C‖u‖∞‖v‖B s
p,q

.

Proof: Because of proposition 2.35, one can show SuppF {S0u∆1v} is contained in a ball and
when j ≥ 2 the support of F {S j−1u∆ j v} is in an annulus. With lemma 2.42, it suffices to show∥∥∥{

2 j s‖S j−1u∆ j v‖p

}∥∥∥
`q

≤C‖u‖∞‖v‖B s
p,q

.

Recall remark 2.34, we have

‖S j−1u∆ j v‖p ≤ ‖S j−1u‖∞‖∆ j v‖p ≤ ‖χ̌‖1‖u‖∞‖∆ j v‖p .

Taking C = ‖χ̌‖1, the rest of the proof is straightforward.

Theorem 2.65. Let p, q1, q2 ∈ [1,∞], s ∈R and t ∈R+ such that

1

q
= min{1,

1

q1
+ 1

q2
}.

The paraproductΠ− is a continuous bilinear operator from B−t∞,q1
×B s

p,q2
to B s−t

p,q and there exists
a constant C such that

‖Π−(u, v)‖B s−t
p,q

≤C‖u‖B−t∞,q1
‖v‖B s

p,q2
.

Proof: Same as the foregoing proof, it suffices to show∥∥∥{
2 j (s−t )‖S j−1u∆ j v‖p

}∥∥∥
`q

≤C‖u‖B−t∞,q1
‖v‖B s

p,q2
.

Notice

2 j (s−t )‖S j−1u∆ j v‖p ≤ 2 j (s−t )‖S j−1u‖∞‖∆ j v‖p

= 2−t 2( j−1)(−t )‖S j−1u‖∞2 j s‖∆ j v‖p .

Apply Hölder’s inequality to sequence spaces, we obtain∥∥∥∥{
2 j (s−t )‖S j−1u∆ j v‖p

}
j

∥∥∥∥
q̃
≤

∥∥∥∥{
2−t 2( j−1)(−t )‖S j−1u‖∞2 j s‖∆ j v‖p

}
j

∥∥∥∥
q̃

= 2−t
∥∥∥∥{

2( j−1)(−t )‖S j−1u‖∞
}

j

∥∥∥∥
q1

∥∥∥∥{
2 j s‖∆ j v‖p

}
j

∥∥∥∥
q2

by proposition 2.45 ≤ 1

2t

1

2t −1
‖u‖B−t∞,q1

‖v‖B s
p,q2

,

where 1/q̃ = 1/q1 +1/q2. If q̃ ≥ 1, LHS of the last inequality is a well-defined Besov norm. On
the other hand, if q̃ < 1, by noticing `q̃ is embedded in `1,we can use `1 norm instead. So we
have finished the proof.
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Theorem 2.66. Let s1, s2 ∈R, p1, p2, q1, q2 ∈ [1,∞] and assume

1

p
:= 1

p1
+ 1

p2
≤ 1,

1

q
:= 1

q1
+ 1

q2
≤ 1 and s1 + s2 > 0.

Then the remainder is a continuous bilinear operator from B s1
p1,q1

×B s2
p2,q2

to B s1+s2
p,q and there

exists a constant such that

‖Π0(u, v)‖B
s1+s2
p,q

≤C‖u‖B
s1
p1,q1

‖v‖B
s2
p2,q2

.

Proof: Recall
Π0(u, v) = ∑

i≥−1
∆i u∆̃i v.

First, applying Hölder inequality for functions, we obtain

2i (s1+s2)‖∆i u∆̃i v‖p ≤ (2i s1‖∆i u‖p1 )(2i s2‖∆̃i v‖p2 )

≤ (2i s1‖∆i u‖p1 )(2 ·2(i−1)s2‖∆i−1v‖p2 +2i s2‖∆i v‖p2 +
1

2
2(i+1)s2‖∆i+1v‖p2 )

and now apply Hölder inequality for series,∥∥2q(s1+s2)‖∆i u∆̃i v‖p
∥∥
`q ≤C‖u‖B

s1
p1,q1

‖v‖B
s2
p2,q2

,

where C = 2+1+1/2 = 7/2.

Now we observe that the support of ∆i u∆̃i v lies in dyadic balls, i.e.(
F {∆i u∆̃i v}

)= (ϕi û)∗ [(ϕi−1 +ϕi +ϕi+1)v̂]

=⇒ Supp
(
F {∆i u∆̃i v}

)⊂B(0,3 ·2i+1λ),

where λ was introduced in proposition 2.32.

Hence we can apply lemma 2.44 to finish the proof.

The previous three theorems clearly show that with Bony’s decomposition, we are able to iso-
late the source of nasty behavior of a product of two tempered distributions in the remainder,
while a large portion of the product with nice behavior is described by paraproduct.

Our future work will be carried out in Zygmund spaces. As a preparation for the upcoming
chapter, we summarizing the continuity properties of products in Zygmund spaces, as a spe-
cial case of Besov spaces.

Corollary 2.67. Let u ∈Cγ
∗ and v ∈Cδ∗,we have

(i) for δ ∈R,
‖Π−(u, v)‖δ. ‖u‖∞‖v‖δ;
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(ii) for γ< 0 and δ ∈R,
‖Π−(u, v)‖γ+δ. ‖u‖γ‖v‖δ;

(iii) and for γ+δ> 0,
‖Π0(u, v)‖γ+δ. ‖u‖γ‖v‖δ.

Proof: They are straight results from theorem 2.64, 2.65 and 2.66 by taking p = q =∞.

By applying the above corollary, we can show that Zygmund spaces with positive regularity is
actually an algebra, i.e. closed under multiplication.

Proposition 2.68. If f , g ∈C s∗ with s > 0, then f g ∈C s∗ with

‖ f g‖s . ‖ f ‖s‖g‖s

Proof: Apply Bony’s decomposition, proposition 2.59 and proposition 2.41,

‖ f g‖s ≤ ‖Π−( f , g )‖s +‖Π−(g , f )‖s +‖Π0( f , g )‖s

. ‖ f ‖∞‖g‖s +‖g‖∞‖ f ‖s +‖Π0( f , g )‖2s

. ‖ f ‖s‖g‖s .



3
CONTROLLED PARADIFFERENTIAL CALCULUS

3.1. INTRODUCTION

The main results from the previous chapter are the continuity properties of paraproducts and
the corresponding remainder. Since now our main interest shifts to Zygmund spaces. By
taking p = q =∞, we restate theorem 2.64, 2.65 and 2.66:
Let u ∈Cγ

∗ and v ∈Cδ∗,we have

(i) for δ ∈R,

‖Π−(u, v)‖δ. ‖u‖∞‖v‖δ;

(ii) for γ< 0 and δ ∈R,

‖Π−(u, v)‖γ+δ. ‖u‖γ‖v‖δ;

(iii) and for γ+δ> 0,

‖Π0(u, v)‖γ+δ. ‖u‖γ‖v‖δ.

Now, for simplicity, we only consider f and y in the same function space Cγ
∗, we can decom-

pose the product f D y as following

f D y =Π−( f ,D y)+Π0( f ,D y)+Π+( f ,D y).

Furthermore, we know that D y ∈Cγ−1
∗ (lemma 2.55). One can verify that the paraproducts are

always well-defined, because of the first estimation stated above. By the third statement, the
remainder also behaves well if we assume 2γ−1 > 0.

39
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3.2. COMMUTATOR ESTIMATES

In this section we introduce a commutator of products. It is an element naturally appearing
in paradifferential calculus. Hence we decide to treat this term in advance, and later we can
directly use the results from this section.

To prove the main theorems in this section, we will need the following lemma.

Lemma 3.1. Let θ be a C 1 function on Rd with (1+|ξ|)θ̂(ξ) ∈ L1 and p, q,r ∈ [1,∞] with 1/r =
1/p +1/q. We have the following estimation for any f ∈C 0,1 with ∇ f ∈ Lp and g ∈ Lq

∥∥[
θ(λ−1D), f

]
g
∥∥

r ≤
Cθ

λ
‖∇ f ‖p‖g‖q .

Proof: Recall [a,b] := ab −ba. Let η=F−1θ, we have[
θ(λ−1D), f

]
g (x) = θ(λ−1D) f g − f θ(λ−1D)g

=λd
∫
Rd
η

(
λ(x − y)

)
f (y)g (y)dy − f (x)λd

∫
Rd
η

(
λ(x − y)

)
g (y)dy

=λd
∫
Rd
η

(
λ(x − y)

)
( f (y)− f (x))g (y)dy

let z = x − y ,

=λd
∫
Rd
η(λz)( f (x − z)− f (x))g (x − z)(−1)d dz

and apply the fundamental theorem of calculus,

=λd
∫
Rd
η(λz)

∫ x−z

x
∇ f (u)du g (x − z)(−1)d dz

=λd
∫
Rd
η(λz)

∫ 1

0
∇ f (x − t z)(−z)dt g (x − z)(−1)d dz.

Hence, with defining η1(z) = |z||η(z)|,
∣∣[θ(λ−1D), f

]
g (x)

∣∣= ∣∣∣∣λd
∫
Rd
η(λz)

∫ 1

0
∇ f (x − t z)(−z)dt g (x − z)(−1)d dz

∣∣∣∣
≤λd

∫
Rd

|η(λz)|
∫ 1

0
|∇ f (x − t z)(−z)|dt |g (x − z)|dz

and by Cauchy-Schwarz inequality the latter satisfies

≤λd /λ
∫
Rd

|λz||η(λz)|
∫ 1

0
|∇ f (x − t z)|dt |g (x − z)|dz.
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Apply Minkowski’s integral inequality,

∥∥[
θ(λ−1D), f

]
g (·)∥∥r ≤

1

λ

∫
[0,1]×Rd

∥∥∇ f (·− t z)g (·− z)
∥∥

r dµ,

where dµ = ∣∣λdη1(λz)
∣∣dtdz. It is allowed because θ̂(ξ) = η(−ξ) (theorem 2.16) and λd drops

out by changing of variables,∫
[0,1]×Rd

dµ=
∫
Rd

|zη(z)|dz ≤ ‖(1+| · |)θ̂(·)‖1 <∞.

Apply Hölder inequality and because of the invariance of Lebesgue measure,

∥∥[
θ(λ−1D), f

]
g (·)∥∥r ≤

1

λ

∫
[0,1]×Rd

‖∇ f (·− t z)‖p‖g (·− z)‖q dµ

≤ 1

λ
‖(1+| · |)η(·)‖1‖∇ f ‖p‖g‖q

= Cθ

λ
‖∇ f ‖p‖g‖q ,

where Cθ := ‖(1+| · |)η(·)‖1.

Hence we have accomplished the proof.

Remark 3.2. In the previous proof, ∇ f (x) = (∂1 f (x),∂2 f (x), · · · ,∂d f (x)) and |∇ f (x)| =
(
∑d

i=1 |∂i f (x)|2)1/2. So the Lp norm of ∇ f is given as

‖∇ f ‖p =
(∫
Rd

|∇ f |p dx

)1/p

,

with the common modification for p =∞.

Since all norms on finite-dimensional vector spaces are equivalent, we may choose another
norm to simplify the estimation. The following example will be used in the near future. Con-
sider the case p =∞,

‖∇ f ‖∞ = sup
x∈Rd

|∇ f |.

When we have the information about all ∂i f , it may be convenient to use |∇ f | =
sup1≤i≤d |∂i f |. It will be more evident with later applications. 4
Definition 3.3 (Commutator of Products).

R( f , x, y) :=Π0(Π−( f , x), y)− f Π0(x, y)

Theorem 3.4. Let α+β+γ> 0 but β+γ< 0. Then the commutator

R( f , x, y) :=Π0(Π−( f , x), y)− f Π0(x, y)
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is well-defined for all f ∈Cα∗ , x ∈Cβ
∗ and y ∈Cγ

∗.

Furthermore,
R( f , x, y) ∈Cα+β+γ

∗ , i.e.

‖R( f , x, y)‖α+β+γ. ‖ f ‖α‖x‖β‖y‖γ.

Proof:

Recall f =∑
i≥−1∆i f , we split R( f , x, y) into three terms to estimate separately.

We have

R( f , x, y)

=Π0(Π−( f , x), y)− f Π0(x, y)

= ∑
i , j ,k,l

1{|i− j |≤1}1{k<l−1}∆i (∆k f ∆l x)∆ j y − ∑
j ,k,l

1| j−l |≤1∆k f ∆l x∆ j y.

Let

A = ∑
i , j ,k,l

1{|i− j |≤1}1{k<l−1}(∆i (∆k f ∆l x)∆ j y −∆k f ∆i (∆l x)∆ j y).

The commutator becomes

R( f , x, y) = A+ ∑
i , j ,k,l

1{|i− j |≤1}1{k<l−1}∆k f ∆i (∆l x)∆ j y − ∑
j ,k,l

1| j−l |≤1∆k f ∆l x∆ j y.

Now let
B = ∑

i , j ,k,l
(1{|i− j |≤1} −1{| j−l |≤1})1{k<l−1}∆k f ∆i (∆l x)∆ j y,

the commutator is

R( f , x, y) = A+B + ∑
i , j ,k,l

1{| j−l |≤1}1{k<l−1}∆k f ∆i (∆l x)∆ j y − ∑
j ,k,l

1| j−l |≤1∆k f ∆l x∆ j y.

Noticing ∑
i , j ,k,l

1{| j−l |≤1}1{k<l−1}∆k f ∆i (∆l x)∆ j y

= ∑
j ,k,l

∑
i

1{| j−l |≤1}1{k<l−1}∆k f ∆i (∆l x)∆ j y

= ∑
j ,k,l

1{| j−l |≤1}1{k<l−1}∆k f ∆l x∆ j y,

we have

C := ∑
i , j ,k,l

1{| j−l |≤1}1{k<l−1}∆k f ∆i (∆l x)∆ j y − ∑
j ,k,l

1| j−l |≤1∆k f ∆l x∆ j y

= ∑
j ,k,l

1{| j−l |≤1}1{k<l−1}∆k f ∆l x∆ j y − ∑
j ,k,l

1| j−l |≤1∆k f ∆l x∆ j y

=− ∑
j ,k,l

1| j−l |≤11{k≥l−1}∆k f ∆l x∆ j y
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and

R( f , x, y) = A+B +C .

Given {u j } j satisfies the requirements from corollary 2.54, we can estimate the Zygmund
norm by estimating each indexed term u j with ‖ · ‖∞. It means if we have for all j , ‖u j‖∞ ≤
2− j sC , where C is a constant, then u ∈C s∗.

• Estimation of A.
Rewrite A into

A =∑
j

( ∑
i ,k,l

1{|i− j |≤1}1{k<l−1}(∆i (∆k f ∆l x)−∆k f ∆i (∆l x))

)
∆ j y =∑

j
a j .

Notice the support of a j is in 2 j B andα+β+γ> 0. To show this, we modify the summation
in bracket ∑

i ,k,l
1{|i− j |≤1}1{k<l−1}(∆i (∆k f ∆l x)−∆k f ∆i (∆l x))

=∑
i ,l

1{|i− j |≤1}(∆i (Sl−1 f ∆l x)−Sl−1 f ∆i (∆l x)).

From proposition 2.35, the summation is not equal to 0 only when |i−l | ≤ 2 and the support
of each term is contained in a ball. Furthermore we know i depends on j , hence l is also
dependent on j . Hence we have shown the previous claim.

The following estimation is straightforward with lemma 2.55,

‖a j‖∞ ≤
( ∑

i ,k,l
1{|i− j |≤1}1{k<l−1}1{i∼l }

∥∥∆i (∆k f ∆l x)−∆k f ∆i (∆l x)
∥∥∞

)∥∥∆ j y
∥∥∞

≤
( ∑

i ,k,l
1{|i− j |≤1}1{k<l−1}1{i∼l }

∥∥∆i (∆k f ∆l x)−∆k f ∆i (∆l x)
∥∥∞

)
2− jγ

∥∥y
∥∥
γ

=
( ∑

i ,k,l
1{|i− j |≤1}1{k<l−1}1{i∼l }

∥∥[
∆i ,∆k f

]
∆l x

∥∥∞

)
2− jγ

∥∥y
∥∥
γ .

Apply lemma 3.1 and 2.55,

∥∥[
∆i ,∆k f

]
∆l x

∥∥∞ ≤C∆i

2i
‖∇(∆k f )‖∞‖∆l x‖∞

≤C∆i

2i
sup
|δ|=1

‖∂δ(∆k f )‖∞‖∆l x‖∞

.2−i 2−k(α−1)‖ f ‖α2−lβ‖x‖β
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where ∆i only causes a constant C∆i = ‖(1+ | · |)ϕi (·)‖1, c.f. remark 2.34. As already men-
tioned in remark 3.2, we can use the supremum norm for ∇(∆k f ). Since suprema are inter-
changeable, the operation is valid1.

Now we reduce the indices in the summation by introducing independent constant,

‖a j‖∞ ≤
( ∑

i ,k,l
1{|i− j |≤1}1{k<l−1}1{i∼l }2

−i 2−k(α−1)‖ f ‖α2−lβ‖x‖β
)

2− jγ
∥∥y

∥∥
γ

.

( ∑
k. j

2− j 2−k(α−1)2− jβ2− jγ

)
‖ f ‖α‖x‖β

∥∥y
∥∥
γ

. 2− j (α+β+γ)‖ f ‖α‖x‖β
∥∥y

∥∥
γ .

Hence we finish estimating A.

• Estimation of B .
Notice swapping i and j will not affect the result. With this observation, we can manipulate
B as following

B = ∑
i , j ,k,l

(1{|i− j |≤1} −1{| j−l |≤1})1{k<l−1}∆k f ∆i (∆l x)∆ j y

= ∑
i , j ,k,l

(1{k<l−1}1{|i− j |≤1} −1{k<l−1}1{| j−l |≤1})∆k f ∆i (∆l x)∆ j y

= ∑
i , j ,k,l

(1{k<i−1} −1{k<l−1})1{| j−l |≤1}∆k f ∆i (∆l x)∆ j y

= ∑
i , j ,k,l

(1{l−1≤k<i−1} −1{i−1≤k<l−1})1{| j−l |≤1}∆k f ∆i (∆l x)∆ j y.

Since ∆i (∆l x) = 0 when |i − l | > 1, we again conclude that (i , j ,k, l ) is nested, i.e. i ∼
j ∼ k ∼ l . For arbitrary p, recall the characteristics of the supports of dyadic functions,
∆p (∆k f ∆i (∆l x)∆ j y) has nonzero value only if p . (i ∼ j ∼ k ∼ l ). Hence we obtain

‖∆p B‖∞ .
∑

i , j ,k,l
1p.(i∼ j∼k∼l )2

−(kα+iβ+ jγ)‖ f ‖α‖x‖β‖y‖γ. 2−p(α+β+γ)‖ f ‖α‖x‖β‖y‖γ.

• Estimation of C .
For C , we observe k is not nested with j , l , i.e. k is only lower bounded by l . However,
there exists a constant N , dependent on the family {ϕi }, such that∆p (∆k f ∆l x∆ j y) = 0 when

1This fact will be used in all arguments involving the application of theorem 3.4, hence without further mention.
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k > p +N , so we can use an upper bound k ≤ p +N . Now we are able to split C

‖∆pC‖∞ ≤ ∑
j ,k,l

1| j−l |≤11{k≥l−1}‖∆p (∆k f ∆l x∆ j y)‖∞

≤ ∑
j ,k,l

1| j−l |≤11{k≥l−1}‖hp‖1‖∆k f ‖∞‖∆l x‖∞‖∆ j y‖∞

.
∑
j ,k,l

1p.( j∼k∼l )2
−kα‖ f ‖α2−lβ‖x‖β2− jγ‖y‖γ

+ ∑
j ,k,l

1( j∼l ).((k−N )∼p)2
−kα‖ f ‖α2−lβ‖x‖β2− jγ‖y‖γ

.2−p(α+β+γ)‖ f ‖α‖x‖β‖y‖γ.

The last inequality we used the facts α+β+γ > 0 and β+γ < 0 to estimate the split sums
respectively.

Finally, recalling the purpose of invoking corollary 2.54 before starting estimations of A,B ,C ,
we conclude

‖R( f , x, y)‖α+β+γ ≤ ‖A‖α+β+γ+‖B‖α+β+γ+‖C‖α+β+γ. ‖ f ‖α‖x‖β‖y‖γ.

Corollary 3.5. Let α+β+γ> 0 but β+γ< 0. If f , g ∈Cα∗ , x ∈Cβ
∗ and y ∈Cγ

∗, then the extended
commutator

R( f , g , x, y) :=Π0(Π−( f , x),Π−(g , y))− f gΠ0(x, y)

is well-defined in Cα+β+γ and

‖R( f , g , x, y)‖α+β+γ. ‖ f ‖α‖g‖α‖x‖β‖y‖γ.

Proof: First we decompose the extended commutator as following

Π0(Π−( f , x),Π−(g , y))− f gΠ0(x, y)

=Π0(Π−( f , x),Π−(g , y))− f Π0(x,Π−(g , y))︸ ︷︷ ︸
A

+ f
(
Π0(x,Π−(g , y))− gΠ0(x, y)

)︸ ︷︷ ︸
B

.

Since
‖R( f , g , x, y)‖α+β+γ ≤ ‖A‖α+β+γ+‖B‖α+β+γ,

It is sufficient to show the expected inequality for A and B .

Notice A is a commutator, apply theorem 3.4, 2.64 and proposition 2.59,

A = R( f , x,Π−(g , y))

=⇒‖R( f , x,Π−(g , y))‖α+β+γ. ‖ f ‖α‖x‖β‖Π−(g , y)‖γ
. ‖ f ‖α‖x‖β‖g‖∞‖y‖γ. ‖ f ‖α‖x‖β‖g‖α‖y‖γ.
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For B , since α>α+β+γ, recall proposition 2.41,

B = f R(g , y, x)

=⇒‖ f R(g , y, x)‖α+β+γ. ‖ f ‖α‖R(g , y, x)‖α+β+γ. ‖ f ‖α‖g‖α‖y‖β‖x‖γ.

The following lemma provides a commutator estimate which will be used in the subsequent
sections.

Lemma 3.6. Let α> 0, β ∈R, f ∈ L∞, x ∈Cα∗ and y ∈Cβ
∗ . Then

‖Π−( f ,Π−(x, y))−Π−( f x, y)‖α+β. ‖ f ‖∞‖x‖α‖y‖β.

Proof: By the definition of paraproduct, we have

Π−( f ,Π−(x, y))−Π−( f x, y) =∑
j

(
S j−1 f ∆ jΠ−(x, y)−S j−1( f x)∆ j y

)
.

Recall (2.9), each term in the summation is with support in an annulus 2 j C . Because of corol-
lary 2.54, we only need to show the boundedness of each indexed term’s ‖·‖∞ estimation with
dyadic weight(2 j s like term). Again, we decompose the terms in summation in three compo-
nents in the following manner.

A j +B j +C j =S j−1 f ∆ jΠ−(x, y)−S j−1( f x)∆ j y,

where

A j :=S j−1 f ∆ jΠ−(x, y)−S j−1 f Π−(x,∆ j y),

B j :=S j−1 f Π−(x,∆ j y)−S j−1 f S j−1x∆ j y,

C j :=S j−1 f S j−1x∆ j y −S j−1( f x)∆ j y.

• Estimation of A j .

A j =S j−1 f ∆ jΠ−(x, y)−S j−1 f Π−(x,∆ j y)

=∑
k

S j−1 f
(
∆ j (Sk−1x∆k y)−Sk−1x∆k∆ j y)

)
=∑

k
S j−1 f [∆ j ,Sk−1x]∆k y

≤ ∑
k:| j−k|≤N

S j−1 f [∆ j ,Sk−1x]∆k y

where we use the fact that convolution is commutative, i.e. ∆k∆ j y = ϕ̌k ∗ϕ̌ j ∗y = ϕ̌ j ∗ϕ̌k ∗y
and proposition 2.35. Apply lemma 3.1 to the terms in the previous sum,

‖S j−1 f [∆ j ,Sk−1x]∆k y‖∞ .‖S j−1 f ‖∞2− j‖∇(Sk−1x)‖∞‖∆k y‖∞.
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By Young’s inequality ‖S j−1 f ‖∞ = ‖χ(2−( j−1)·) ∗ f ‖∞ ≤ ‖χ(2−( j−1)·)‖1‖ f ‖∞, where
‖χ(2−( j−1)·)‖1 is a constant independent of j , c.f. remark 2.34. With lemma 2.58, we can
push further the previous estimation to

‖S j−1 f [∆ j ,Sk−1x]∆k y‖∞ .‖ f ‖∞2− j 2− j (α−1)‖x‖α2− jβ‖y‖β
=2− j (α+β)‖ f ‖∞‖x‖α‖y‖β.

• Estimation of B j .

B j =S j−1 f Π−(x,∆ j y)−S j−1 f S j−1x∆ j y

=S j−1 f
∑
k

(
Sk−1x∆k∆ j y

)−S j−1 f S j−1x
∑
k
∆k∆ j y

=∑
k

S j−1 f
(
Sk−1x −S j−1x

)
∆k∆ j y

= ∑
k:| j−k|≤1

S j−1 f
(
Sk−1x −S j−1x

)
∆k∆ j y,

where the last equality is due to proposition 2.35.

Hence,

‖ ∑
k:| j−k|≤1

S j−1 f
(
Sk−1x −S j−1x

)
∆k∆ j y‖∞

≤‖S j−1 f ∆ j−2x∆k∆ j y‖∞+‖S j−1 f ∆ j−1x∆k∆ j y‖∞
.‖ f ‖∞2− jα‖x‖α2− jβ‖y‖β,

where the last inequality is estimated in the same manner as in A j .

• Estimation of C j .

C j =S j−1 f S j−1x∆ j y −S j−1( f x)∆ j y

=∑
k,l

(
S j−1∆k f S j−1∆l x −S j−1(∆k f ∆l x)

)
∆ j y

We make the following observation. When k, l < j −2, recall remark 2.34,

F
(
S j−1∆k f S j−1∆l x −S j−1(∆k f ∆l x)

)
=χ(2−( j−1)·)ϕk f̂ ∗χ(2−( j−1)·)ϕl x̂ −χ(2−( j−1)·)ϕk f̂ ∗ϕl x̂

=ϕk f̂ ∗ϕl x̂ −ϕk f̂ ∗ϕl x̂ = 0,

since χ(2−( j−1)·) = 1 on the supports of ϕk , ϕl .

Now we treat the other situation. When k ≥ j or l ≥ j , the first term from the bracket in the
sum vanishes since

Suppχ(2−( j−1)·)∩Suppϕk = 0

=⇒F {S j−1∆k f } =χ(2−( j−1)·)ϕk f̂ = 0,
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and so is it for the case l .

Considering the second term, it vanishes under the situation |k−l | ≤ N , in addition to k ≥ j

or l ≥ j . It is because the support of (ϕk f̂ )∗ (ϕl x̂) has lies in Rd \{|ξ| ≤ |2l

λ −2k+1λ|}, c.f. the
proof of proposition 2.35. While k, l differ large enough, the support of the convolution will
have no intersection with χ(2−( j−1)·). And by noticing that one of k, l depends on j , the
constant N is chosen in dependent of j . Same as the operations done for A j and B j , we
have the estimate for C j

‖∑
k,l

(
S j−1∆k f S j−1∆l x −S j−1(∆k f ∆l x)

)
∆ j y‖∞

.
j−1∑

k,l= j−2

(‖S j−1∆k f S j−1∆l x‖∞+‖S j−1(∆k f ∆l x)‖∞
)‖∆ j y‖∞

+
∞∑

l= j

∑
|k−l |≤N

‖S j−1(∆k f ∆l x)∆ j y‖∞

.‖ f ‖∞2− jα‖x‖α2− jβ‖y‖β+
∞∑

l= j
‖ f ‖∞2−lα‖x‖α2− jβ‖y‖β

.2− j (α+β)‖ f ‖∞‖x‖α‖y‖β,

since α> 0.

The final step is identical to the one in theorem 3.4.

3.3. PRODUCT OF CONTROLLED DISTRIBUTIONS

In this section, we will define the product of two controlled distributions and investigate its
continuity properties. For simplicity, we restrict ourselves to one dimensional controlled dis-
tributions f , g ∈ S ′(Rd ,R), although the controlling distributions can be multidimensional,
x, y ∈ S ′(Rm ,Rn). The case of multidimensional controlled distributions can be established
by applying the 1D case to each component.

We begin with introducing the key concept of controlled distributions.

Definition 3.7 (Control of Distributions). Let δ > 0 and γ ∈ R. We say f ∈ Cγ
∗ is controlled by

x ∈Cγ
∗ if there exists a f x ∈Cδ∗ such that

f ] = f −Π−( f x , x) ∈Cγ+δ
∗ .

In this case, we write f ∈D
γ,δ
x and define the following

‖ f ‖x,γ,δ := ‖ f ‖γ+‖ f x‖δ+‖ f ]‖γ+δ.

Furthermore,we call f x the derivative in the sense of controls and f ] the remainder in the sense
of controls.
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Remark 3.8. When no ambiguity occurs, we may simply call f x and f ] derivative and remain-
der. 4
First we show that the decomposition f y = f ◦x y exists and how the regularity of the prod-
uct of f y can be measured, with knowing f controlled by x and the regularities of x, y and
Π0(x, y).

Lemma 3.9. Assume γy < 0 < γx , γx +γy +δ> 0 and γx +γy < 0. Let x ∈Cγx∗ , y ∈C
γy
∗ such that

Π0(x, y) ∈C
γx+γy
∗ . For f ∈D

γx ,δ
x , we define

f ◦x y =Π−( f , y)+Π+( f , y)+Π0( f ], y)+R( f x , x, y)+ f xΠ0(x, y).

Then, we have f ◦x y ∈D
γy ,γx
y with derivative f in the sense of controls, and can be estimated by

‖ f ◦x y‖y,γy ,γx . ‖ f ‖x,γx ,δ

(
1+‖y‖γy +‖x‖γx‖y‖γy +‖Π0(x, y)‖γx+γy

)
. (3.1)

Furthermore, if x̃ ∈Cγx∗ , ỹ ∈C
γy
∗ such that Π0(x̃, ỹ) ∈C

γx+γy
∗ and f̃ ∈D

γx ,δ
x̃ , we have

‖ f ◦x y − f̃ ◦x̃ ỹ‖γy

.
(
‖ f − f̃ ‖γx +‖ f x − f̃ x̃‖δ+‖ f ]− f̃ ]‖γx+δ

)(
1+‖y‖γy +‖x‖γx‖y‖γy +‖Π0(x, y)‖γx+γy

)
+

(
‖x − x̃‖γx +‖y − ỹ‖γy +‖Π0(x, y)−Π0(x̃, ỹ)‖γx+γy

)
‖ f̃ ‖x̃,γx ,δ

(
1+‖x‖γx +‖y‖γy

)
. (3.2)

Proof: First we notice that given all terms in f ◦x y are well-defined, then f g = f ◦x y , which
can be easily verified by substituting the definition of f ] and R( f x , x, y) into the formula.

Now observe γy < γx +γy < γx +γy +δ. We start with estimating f ◦x y term by term.

Sinceγy < 0 < γx , apply the continuity properties of paraproduct, proposition 2.41 and propo-
sition 2.59,

‖Π−( f , y)‖γy . ‖ f ‖∞‖y‖γy . ‖ f ‖γx‖y‖γy ,

‖Π+( f , y)‖γy ≤ ‖Π−(y, f )‖γy . ‖Π−(y, f )‖γx+γy . ‖ f ‖γx‖y‖γy ,

and

‖Π0( f ], y)‖γy . ‖Π0( f ], y)‖γx+γy+δ. ‖ f ]‖γx+δ‖y‖γy .

Apply theorem 3.4,

‖R( f x , x, y)‖γy . ‖R( f x , x, y)‖γx+γy+δ. ‖ f x‖δ‖x‖γx‖y‖γy .

Let g =Π0(x, y). Apply paraproduct properties,

‖ f x g‖γy . ‖ f x g‖γx+γy+δ = ‖Π±( f x , g )+Π0( f x , g )‖γx+γy+δ. ‖ f x‖δ‖Π0(x, y)‖γx+γy .
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Let h = f ◦x y . The above estimations show that indeed h ∈ D
γy ,γx
y , with hy = f ∈ Cγx∗ and

h] = h −Π−(hy , y) ∈C
γx+γy
∗ , according proposition 2.41.

Furthermore, combine all the foregoing estimates, we have finished the first part of the proof.

‖ f ◦x y‖y,γy ,γx = ‖ f ◦x y‖γy +‖( f ◦x y)y‖γx +‖( f ◦x y)]‖γx+γy

=‖ f ◦x y‖γy +‖ f ‖γx +‖( f ◦x y)]‖γx+γy

.‖ f ‖x,γx ,δ

(
1+‖y‖γy +‖x‖γx‖y‖γy +‖Π0(x, y)‖γx+γy

)
.

It shows that indeed f y = f ◦x y exists.

Now introduce x̃ ∈Cγx∗ , ỹ ∈C
γy
∗ such thatΠ0(x̃, ỹ) ∈C

γx+γy
∗ and f̃ ∈D

γx ,δ
x̃ . Because all involved

operators are bilinear, we have

f ◦x y − f̃ ◦x̃ ỹ

=Π±( f , y)−Π±( f̃ , y)+Π±( f̃ , y)−Π±( f , ỹ)

+Π0( f ], y)−Π0( f̃ ], y)+Π0( f̃ ], y)−Π0( f̃ ], ỹ)

+R( f x , x, y)−R( f̃ x , x, y)+R( f̃ x , x, y)−R( f̃ x̃ , x̃, y)+R( f̃ x̃ , x̃, y)−R( f̃ x̃ , x̃, ỹ)

+ f xΠ0(x, y)− f̃ x̃Π0(x, y)+ f̃ x̃Π0(x, y)− f̃ x̃Π0(x̃, ỹ)

=Π±( f − f̃ , y)+Π±( f̃ , y − ỹ)+Π0( f ]− f̃ ], y)+Π0( f̃ ], y − ỹ)

+R( f x − f̃ x̃ , x, y)+R( f̃ x̃ , x − x̃, y)+R( f̃ x̃ , x̃, y − ỹ)

+ ( f x − f̃ x̃)Π0(x, y)+ f̃ x̃(Π0(x, y)−Π0(x̃, ỹ))

=Π±( f − f̃ , y)+Π0( f ]− f̃ ], y)+R( f x − f̃ x̃ , x, y)

+ ( f x − f̃ x̃)Π0(x, y)+Π±( f̃ , y − ỹ)+Π0( f̃ ], y − ỹ)

+R( f̃ x̃ , x − x̃, y)+R( f̃ x̃ , x̃, y − ỹ)+ f̃ x̃(Π0(x, y)−Π0(x̃, ỹ)).

Now it is clear the last statement can be verified by following the final step of the first part of
the proof.

Now we are ready for extending the result to f , g controlled by x, y , respectively. In many

applications, it is sufficient to establish the theory with the special case f ∈Dδ,δ
x and g ∈D

γ,δ
y .

And so will we confine ourselves to this case. Nevertheless, it is worth of pointing out that the

general case f ∈D
γx ,δ
x and g ∈D

γy ,δ
y can be treated by discussing γx ≤ δ and γx > δ separately.

Theorem 3.10. Assume γ< 0 < δ, γ+δ≤ 0 and γ+δ> 0. Let x ∈Cδ, y ∈Cγ andΠ0(x, y) ∈Cγ+δ.

Given f ∈Dδ,δ
x and g ∈D

γ,δ
y , define

f ◦x,y g :=Π−( f , g )+Π+( f , g )+Π0( f ], g )+Π0(Π−( f x , x), g ])+R( f x , g y , x, y)+ f x g yΠ0(x, y).

Then we have f ◦x,y g ∈D
γ,δ
y with derivative f g y in the sense of controls and can be estimated

by

‖ f ◦x,y g‖y,γ,δ. ‖ f ‖x,δ,δ‖g‖y,γ,δ
(
1+‖x‖δ+‖y‖γ+‖x‖δ‖y‖γ+‖Π0(x, y)‖δ+γ

)
. (3.3)
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Furthermore, if x̃ ∈Cδ∗, ỹ ∈Cγ
∗, Π0(x̃, ỹ) ∈Cδ+γ

∗ , with f̃ ∈Dδ,δ
x̃ , g̃ ∈D

γ,δ
ỹ , then

‖ f ◦x,y g − f̃ ◦x̃,ỹ g̃‖γ
.(‖ f − f̃ ‖δ+‖ f x − f̃ x̃‖δ+‖ f ]− f̃ ]‖2δ)‖g‖y,γ,δ(1+‖x‖δ+‖x‖δ‖y‖γ+‖Π0(x, y)‖δ+γ)

+ (‖g − g̃‖γ+‖g y − g̃ ỹ‖δ+‖g ]− g̃ ]‖γ+δ)‖ f̃ ‖x̃,δ,δ(1+‖x‖δ+‖x‖δ‖y‖γ+‖Π0(x, y)‖δ+γ)

+ (‖y − ỹ‖γ+‖x − x̃‖δ+‖Π0(x, y)−Π0(x̃, ỹ)‖δ+γ)‖ f̃ ‖x̃,δ,δ‖g̃‖ỹ ,γ,δ(1+‖x‖δ+‖y‖γ). (3.4)

Proof: Again, f ◦x,y g = f g by simple substitutions, given all terms are well-defined.

‖Π−( f , g )‖γ. ‖ f ‖∞‖g‖γ. ‖ f ‖δ‖g‖γ,

‖Π+( f , g )‖γ = ‖Π−(g , f )‖γ. ‖Π−(g , f )‖δ+γ. ‖ f ‖δ‖g‖γ,

‖Π0( f ], g )‖γ. ‖Π0( f ], g )‖2δ+γ. ‖ f ]‖2δ‖g‖γ,

‖Π0(Π−( f x , x), g ])‖γ. ‖Π0(Π−( f x , x), g ])‖2δ+γ. ‖Π−( f x , x)‖δ‖g ]‖δ+γ. ‖ f x‖δ‖x‖δ‖g ]‖δ+γ,

‖R( f x , g y , x, y)‖γ. ‖R( f x , g y , x, y)‖2δ+γ. ‖ f x‖δ‖g y‖δ‖x‖δ‖y‖γ.

And let h =Π0(x, y), according proposition 2.68, we have

‖ f x g y h‖γ. ‖Π±( f x g y ,h)+Π0( f x g y ,h)‖2δ+γ. ‖ f x g y‖δ‖h‖δ+γ. ‖ f x‖δ‖g y‖δ‖x‖δ‖y‖γ.

Same as the previous proof, we can show f ◦x,y g is controlled by g with ( f ◦x,y g )g = f and

‖ f ◦x,y g‖g ,γ,δ = ‖ f ◦x,y g‖γ+‖ f ‖δ+‖ f ◦x,y g −Π−( f , g )‖γ+δ
.‖ f ‖x,δ,δ‖g‖y,γ,δ

(
1+‖x‖δ+‖x‖δ‖y‖γ+‖Π0(x, y)‖δ+γ

)
.‖ f ‖x,δ,δ‖g‖y,γ,δ

(
1+‖x‖δ+‖y‖γ+‖x‖δ‖y‖γ+‖Π0(x, y)‖δ+γ

)
. (3.5)

Now we will show ( f ◦x,y g )] = f ◦x,y g −Π−( f g y , y) ∈Cγ+δ
∗ .

‖ f ◦x,y g −Π−( f g y , y)‖γ+δ
≤‖ f ◦x,y g −Π−( f , g )‖γ+δ+‖Π−( f , g )−Π−( f ,Π−(g y , y))‖γ+δ
+‖Π−( f ,Π−(g y , y))−Π−( f g y , y)‖γ+δ

=‖ f ◦x,y g −Π−( f , g )‖γ+δ+‖Π−( f , g ])‖γ+δ+‖Π−( f ,Π−(g y , y))−Π−( f g y , y)‖γ+δ
.‖ f ‖x,δ,δ‖g‖y,γ,δ

(
1+‖x‖δ+‖y‖γ+‖x‖δ‖y‖γ+‖Π0(x, y)‖δ+γ

)+‖ f ‖∞‖g ]‖γ+δ
+‖ f ‖∞‖g y‖δ‖y‖γ,

where we have used the fact from (3.5) and lemma 3.6.

Combining the above results with proposition 2.68, we have proved (3.3).

The proof of (3.4) is exactly same as the proof of (3.2) in theorem 3.9.
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Up to now, we have treated products of controlled distributions in the paraproduct form. Be-
cause C∞

0 dense in S ′, the question naturally rises whether such a product f ◦x,y g coincides
with the limit from approximation, i.e. limn→∞ fn gn , with fn → f and gn → g in S , where
fn , gn ∈C∞

0 .

Lemma 3.11. Let f ∈C s∗ and η be a bump function. We define2

ηε(ξ) := η(εξ) with η̌ε(x) := ε−d η̌(x/ε)

fε := η(εD) f =F−1{ηε f̂ }

then we have for all s′ < s

‖ f − fε‖s′ → 0 as ε→ 0.

Proof: Since η ∈ C∞
0 has at most polynomial growth at infinity, ηε f̂ is defined and as well as

fε.

Observe

‖∆ j fε‖∞ =‖ϕ̌ j ∗ η̌ε∗ f ‖∞
≤‖η̌ε‖1‖ϕ̌ j ∗ f ‖∞,

where ‖η̌ε‖1 is a constant because of (2.8).

Hence

2 j s′‖∆ j ( f − fε)‖∞ . 2 j s′‖∆ j f ‖∞ = 2 j (s′−s)2 j s‖∆ j f ‖∞ = 2 j (s′−s)‖ f ‖s .

Since s′− s < 0, there exists a constant N such that when j > N , 2 j (s′−s)‖ f ‖s ≤ δ.

For j ≤ N ,

∆ j ( f − fε) = ϕ̌ j ∗ f − ϕ̌ j ∗ η̌ε∗ f = ϕ̌ j ∗ f − η̌ε∗ ϕ̌ j ∗ f .

Take Fourier transform,

F {∆ j ( f − fε)} =ϕ j f̂ −ηεϕ j f̂ = (1−ηε)ϕ j f̂ .

When ε is chosen sufficiently small, depending on N , Supp{ϕ j } ⊂ Supp{ηε}, which implies
∆ j ( f − fε) = 0, for j ≤ N .

To sum up, we have proved that for every δ > 0, there exist N ∈ R+ and ε(N ) such that ‖ f −
fε‖s′ ≤ δ. The fact of convergence is clear now.

2The notation is reserved for the entire section.
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Lemma 3.12. Let x ∈Cγ
∗, f ∈D

γ,δ
x and η be a bump function. Then fε ∈D

γ,δ
xε with derivative f x

in the sense of controls. And we have

lim
ε→0

(
‖ f − fε‖γ′ +‖ f ]− f ]ε‖γ′+δ

)
= 0,

for all γ′ ≤ γ.

Proof: We make the following observation.

With arbitrarily chosen γ, fε and Π−( f x , xε) are in Cγ
∗. This is because for given ε, there ex-

ists a constant N (ε) such that ηϕ j f̂ = 0 and ηϕ j x̂ = 0, when j > N . So, we have‖ f ‖γ =
max j≤N 2 jγ‖∆ jη(εD) f ‖∞ and the similar one for xε. In addition, it also implies that fε ∈D

γ,δ
xε .

Besides, we have

f ] = f −Π−( f x , x),

=⇒ η̌ε∗ f ] = η̌ε∗ f − η̌ε∗Π−( f x , x),

=⇒ η̌ε∗ f = η̌ε∗ f ]+ η̌ε∗Π−( f x , x).

Substitute into f ]ε

f ]ε = fε−Π−( f x , xε) = η̌ε∗ f ]+ η̌ε∗Π−( f x , x)−Π−( f x , xε),

so

‖ f ]− f ]ε‖γ′+δ ≤ ‖ f ]− η̌ε∗ f ]‖γ′+δ+‖η̌ε∗Π−( f x , x)−Π−( f x , xε)‖γ′+δ.

Because of lemma 3.11, it is obvious ‖ f − fε‖γ′ ,‖ f ]− η̌ε∗ f ]‖γ′+δ→ 0 as ε→ 0.

From now we will focus on the term ‖η̌ε∗Π−( f x , x)−Π−( f x , xε)‖γ′+δ. Recall proposition 2.35,
S j−1 f x∆ j x has a support in an annulus 2 j C . Hence, when 2−n < ε ≤ 2−n+1, there exists a
constant N independent of ε, such that

η̌ε∗Π−( f x , x)−Π−( f x , xε) =
n+N∑
j=−1

(
η̌ε∗S j−1 f x∆ j x −S j−1 f x∆ j xε

)
.

Moreover, when j is small enough, we have η̌ε∗S j−1 f x∆ j x = S j−1 f x∆ j x and ∆ j xε =∆ j x. So
we can further reduce the sum to

n+N∑
j=n−N

(
η̌ε∗S j−1 f x∆ j x −S j−1 f x∆ j xε

)
=

n+N∑
j=n−N

(
η(εD)S j−1 f x∆ j x −S j−1 f xη(εD)∆ j x

)
=

n+N∑
j=n−N

[η(εD),S j−1 f x]∆ j x



54 3. CONTROLLED PARADIFFERENTIAL CALCULUS

where N may take a new value, but still independent of ε.

Because of lemma 2.42, it suffices to show 2 j (γ′+δ)‖[η(εD),S j−1 f x]∆ j x‖∞ → 0 as ε→ 0. We
apply lemma 3.1

‖[η(εD),S j−1 f x]∆ j x‖∞ .ε‖S j−1 f x‖∞‖∆ j x‖∞
.ε2− j (δ−1)‖ f x‖δ2− jγ‖x‖γ
.ε2− j (γ+δ−1)‖ f x‖δ‖x‖γ

Since 2−n < ε≤ 2−n+1 =⇒ 2−N < ε2 j ≤ 21+N ,

.2− j (γ+δ)‖ f x‖δ‖x‖γ.

We conclude

2 j (γ′+δ)‖[η(εD),S j−1 f x]∆ j x‖∞ . 2− j (γ−γ′)‖ f x‖δ‖x‖γ. ε(γ−γ′)‖ f x‖δ‖x‖γ,

since n −N ≤ j ≤ n +N and 2−n < ε≤ 2−n+1.

Because

2 j (γ′+δ)‖[η(εD),S j−1 f x]∆ j x‖∞ . ε(γ−γ′)‖ f x‖δ‖x‖γ→ 0 as ε→ 0,

the proof is accomplished.

Corollary 3.13. Given γ< 0 < δ, γ+δ≤ 0 and γ+2δ> 0, let x ∈Cδ∗, y ∈Cγ
∗ and Π0(x, y) ∈Cδ+γ

∗
with assumption ‖Π0(x, y)−Π0(xε, yε)‖γ′+δ→ 0 as ε→ 0 for all γ′ < γ. If f ∈Dδ,δ

x and g ∈D
γ,δ
y ,

then

‖ f ◦x,y g − fεgε‖γ′+δ→ 0

as ε→ 0, for all γ′ < γ.

Proof:

Because the operator η(εD) truncates the high frequencies, c.f. the observation made at the
beginning of lemma 3.11. We have fεgε = fε ◦xε,yε gε, because all terms in fε ◦xε,yε gε are well
defined on their own.

With the help of lemma 3.11, (3.4) directly leads to the desired result.

Remark 3.14. As shown in the previous corollary, the product of f g can actually be defined
without involving x, y . However, the definition of f g does depend on the choice of Π0(x, y).
As established in rough path theory, in one dimensional case, there is no canonical definition
of Π0(x, y) beyond Young setting [28]. In fact, there are infinitely many possible options. And
other choices will lead to renormalized products 4
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3.4. STABILITY UNDER NONLINEAR MAPPINGS

In this section, we establish several stability results of nonlinear mappings. In applications,
they are the critical tools to demonstrate the existence and uniqueness of SDEs in the context
of controlled distributions. Therefore, the material presented in this section is the central
result of this thesis.

For the same reason mentioned at the beginning of the last section, we still restrict ourselves
to 1D controlled distributions.

Lemma 3.15. Let γ> 0. If {u j } j is a sequence of smooth functions such that∥∥∥∥∥
{

sup
|α|∈{0,bγc+1}

2 j (γ−|α|)‖∂αu j‖∞
}

j

∥∥∥∥∥
`∞

= K <∞,

then we have

u =∑
j

u j ∈Cγ,

with

‖u‖γ.K .

Proof: Let n = bγc+1. From assumption, we also have

‖∂αu j‖∞ ≤ 2− j (γ−|α|)K ,

for all |α| ∈ {0,n}.

Because of Bernstein’s lemma for annulus supporting case, i.e. the first inequality of (2.4), we
have for all i ≥ 0

2γi‖∆i u j‖∞ . sup
|α|=n

2(γ−n)i‖∂α∆i u j‖∞ = sup
|α|=n

2(γ−n)i‖∆i∂
αu j‖∞ . 2(i− j )(γ−n)K ,

where the commutativity of ∆i and ∂α is proved in lemma 2.37.

For all i ≥−1, take |α| = 0,

‖u j‖∞ ≤ 2−γ j K

=⇒ 2γi‖∆i u j‖∞ . 2γi‖u j‖∞ . 2γ(i− j )K .

Since

‖u‖γ = sup
i

2iγ‖∆i u‖∞ ≤ sup
i

2iγ
∑

j
‖∆i u j‖∞,
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it is sufficient to show 2iγ∑
j ‖∆i u j‖∞ is bounded by a constant independent of i .

For fixed i , α is chosen in the following manner, |α| = 0 when i ≤ j and |α| = n when i > j .
Then we have

2iγ
∑

j≥−1
‖∆i u j‖∞ .

( ∑
−1≤ j<i

2(i− j )(γ−n) + ∑
j≥i

2(i− j )γ

)
K

≤
(∑

k≥0
2k(γ−n) + ∑

k≥0
2−γk

)
K

≤CγK ,

since γ−n = γ−bγc−1 < 0.

Theorem 3.16. Given γ ∈ (0,1), if u ∈Cγ
∗ and f ∈C 1

b , then

‖ f (u)‖γ. ‖ f ′‖∞‖u‖γ+| f (0)|.

Proof: First we write f in the form of telescopic sum

f (u)− f (0) = f (
∑

j≥−1
∆ j u)− f (S−1u) = ∑

j≥0

(
f (S j u)− f (S j−1u)

)= ∑
j≥0

a j .

For each term we have

a j = f (S j u)− f (S j−1u) =
∫ S j u

S j−1u
f ′(t )dt =

∫ 1

0
f ′(S j−1u +τ∆ j−1u)∆ j−1u dτ

=⇒‖a j‖∞ ≤ ‖ f ′‖∞‖∆ j−1u‖∞ ≤ 2− jγ‖ f ′‖∞‖u‖γ.

Furthermore, due to lemma 2.58

‖Da j‖∞ = ‖ f ′(S j u)D(S j u)− f ′(S j−1u)D(S j−1u)‖∞
≤‖( f ′(S j u)− f ′(S j−1u))D(S j u)‖∞+‖ f ′(S j−1u)D(∆ j−1u)‖∞
.‖ f ′‖∞‖D(S j u)‖∞+‖ f ′‖∞‖D(∆ j−1u)‖∞
.‖ f ′‖∞2−( j−1)(γ−1)‖u‖γ+‖ f ′‖∞2−( j−1)(γ−1)‖u‖γ
.2 j (1−γ)2(γ−1)‖ f ′‖∞‖u‖γ.

Since 1−γ> 0, we can apply the previous lemma 3.15∣∣‖ f (u)‖γ−‖ f (0)‖γ
∣∣≤ ‖ f (u)− f (0)‖γ. ‖ f ′‖∞‖u‖γ

=⇒‖ f (u)‖γ. ‖ f ′‖∞‖u‖γ+‖ f (0)‖γ.

Due to theorem 2.61, for the constant function f (0) we have

‖ f (0)‖γ = ‖ f (0)‖∞ = | f (0)|.
Hence we have finished the proof.
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Theorem 3.17. Given γ ∈ (1,1/2), if u ∈Cγ
∗, v ∈C 2γ

∗ and f ∈C 2
b with f (0) = 0, then

‖ f (u + v)−Π−( f ′(u + v),u)‖2γ. (‖ f ′‖∞+‖ f ′′‖∞)(‖u‖γ+‖v‖2γ)(1+‖u‖γ).

Moreover, for general f ∈C 2
b (not necessarily f (0) = 0), we have

‖ f (u + v)−Π−( f ′(u + v),u)‖2γ. ‖ f ‖C 2
b
(1+‖v‖2γ)(1+‖u‖γ)2.

Proof: Fist we will prove the case f (0) = 0. By applying telescopic sum to f (u + v) we have

f (u + v) = f (u + v)− f (0) = ∑
j≥−1

f (S j+1(u + v))− f (S j (u + v)).

Hence

f (u + v)−Π−( f ′(u + v),u) = ∑
j≥−1

f j ,

where

f j := f (S j+1(u + v))− f (S j (u + v))−S j−1 f ′(u + v)∆ j u. (3.6)

Our goal is to apply lemma 3.15 to the series
∑

j f j . First we will show that

2 j (2γ)‖ f j‖∞ . (‖ f ′‖∞+‖ f ′′‖∞)(‖u‖γ+‖v‖2γ)(1+‖u‖γ).

We use Taylor expansion on the term f (S j+1(u + v))− f (S j (u + v))

f (S j+1(u + v))− f (S j (u + v)) =
∫ S j+1(u+v)

S j (u+v)
f ′(s)ds

=
∫ 1

0
f ′(S j (u + v)+τ∆ j (u + v))∆ j (u + v)dτ

=∆ j u
∫ 1

0
f ′(S j (u + v)+τ∆ j (u + v))dτ

+∆ j v
∫ 1

0
f ′(S j (u + v)+τ∆ j (u + v))dτ. (3.7)

Apply integration by parts to the first term,∫ 1

0
f ′(S j (u + v)+τ∆ j (u + v))dτ

= f ′(S j (u + v)+τ∆ j (u + v))τ
∣∣τ=1
τ=0 −

∫ 1

0
τ f ′′(S j (u + v)+τ∆ j (u + v))∆ j (u + v)dτ

= f ′(S j+1(u + v))−
∫ 1

0
τ f ′′(S j (u + v)+τ∆ j (u + v))∆ j (u + v)dτ
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On the other hand,∫ 1

0
f ′′(S j (u + v)+τ∆ j (u + v))∆ j (u + v)dτ= f ′(S j+1(u + v))− f ′(S j (u + v)).

Substitute the above two formulae back to (3.7)

f (S j+1(u + v))− f (S j (u + v))

=∆ j u

(
f ′(S j+1(u + v))−

∫ 1

0
τ f ′′(S j (u + v)+τ∆ j (u + v))∆ j (u + v)dτ

)
+∆ j v

∫ 1

0
f ′(S j (u + v)+τ∆ j (u + v))dτ

= f ′(S j (u + v))∆ j u +∆ j u
∫ 1

0
(1−τ) f ′′(S j (u + v)+τ∆ j (u + v))∆ j (u + v)dτ

+∆ j v
∫ 1

0
f ′(S j (u + v)+τ∆ j (u + v))dτ. (3.8)

Furthermore,

f ′(S j (u + v)) = f ′(u + v)+ ∑
i≥ j

{
f ′(Si (u + v))− f ′(Si+1(u + v))

}
=S j−1 f ′(u + v)+ ∑

i≥ j−1
∆i f ′(u + v)− ∑

i≥ j

{
f ′(Si+1(u + v))− f ′(Si (u + v))

}
=S j−1 f ′(u + v)+ ∑

i≥ j−1
∆i f ′(u + v)− ∑

i≥ j

∫ 1

0
f ′′(Si (u + v)+τ∆i (u + v))∆i (u + v)dτ. (3.9)

Now we first substitute (3.9) into (3.8) and then substitute the result into (3.6). The above
operation drops out the term S j−1 f ′(u + v)∆ j u and we can write f j as following

f j = a j ,1 +a j ,2 +a j ,3 +a j ,4,

where

a j ,1 =∆ j u
∑

i≥ j−1
∆i f ′(u + v),

a j ,2 =−∆ j u
∑
i≥ j

∫ 1

0
f ′′(Si (u + v)+τ∆i (u + v))∆i (u + v)dτ,

a j ,3 =∆ j u
∫ 1

0
(1−τ) f ′′(S j (u + v)+τ∆ j (u + v))∆ j (u + v)dτ,

a j ,4 =∆ j v
∫ 1

0
f ′(S j (u + v)+τ∆ j (u + v))dτ.
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With the following estimations

‖a j ,1‖∞ . 2− jγ‖u‖γ
∑

i≥ j−1
2−iγ‖ f ′(u + v)‖γ

. 2− jγ‖u‖γ
∑

i≥ j−1
2−iγ(‖ f ′′‖∞(‖u‖γ+‖v‖γ)+‖ f ′‖∞)

‖a j ,2‖∞ . 2− jγ‖u‖γ
∑
i≥ j

‖ f ′′‖∞2−iγ(‖u‖γ+‖v‖γ),

‖a j ,3‖∞ . 2− jγ‖u‖γ‖ f ′′‖∞2− jγ(‖u‖γ+‖v‖γ),

‖a j ,4‖∞ . 2−2 jγ‖v‖2γ‖ f ′‖∞,

where the estimation of a j ,1 we have used theorem 3.16.

‖ f j‖∞ ≤‖a j ,1‖∞+‖a j ,2‖∞+‖a j ,3‖∞+‖a j ,4‖∞
.2−2 jγ

{
‖u‖γ(‖ f ′′‖∞(‖u‖γ+‖v‖γ)+‖ f ′‖∞)

∑
i≥ j−1

2( j−i )γ,

+‖u‖γ(‖u‖γ+‖v‖γ)‖ f ′′‖∞
∑
i≥ j

2( j−i )γ

+‖u‖γ(‖u‖γ+‖v‖γ)‖ f ′′‖∞+‖v‖2γ‖ f ′‖∞
}

.2−2 jγ
{
‖ f ′′‖∞(‖u‖γ+‖v‖γ)‖u‖γ+‖ f ′‖∞‖u‖γ

+2‖ f ′′‖∞(‖u‖γ+‖v‖γ)‖u‖γ+‖ f ′‖∞‖v‖2γ

}
.2−2 jγ(‖ f ′‖∞+‖ f ′′‖∞)(‖u‖γ+‖v‖2γ)(1+‖u‖γ),

where we have used proposition 2.41 (‖ ·‖γ. ‖ ·‖2γ).

Now we start to verify

2 j (2γ−1)‖D f j‖∞ . (‖ f ′‖∞+‖ f ′′‖∞)(‖u‖γ+‖v‖2γ)(1+‖u‖γ).
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We split D f j as following

D f j =D
{

f (S j+1(u + v))− f (S j (u + v))−S j−1 f ′(u + v)∆ j u
}

= f ′(S j+1(u + v))DS j+1(u + v)− f ′(S j (u + v))DS j (u + v)

−D(S j−1 f ′(u + v)∆ j u)

= f ′(S j+1(u + v))DS j+1(u + v)− f ′(S j (u + v))DS j+1u

+ f ′(S j (u + v))DS j+1u − f ′(S j (u + v))DS j (u + v)

−D(S j−1 f ′(u + v)∆ j u)

=[
f ′(S j+1(u + v))− f ′(S j (u + v))

]
DS j+1u + f ′(S j (u + v))D∆ j u

+ f ′(S j+1(u + v))DS j+1v − f ′(S j (u + v))DS j v

−D(S j−1 f ′(u + v))∆ j u −S j−1 f ′(u + v)D∆ j u

=b j ,1 +b j ,2 +b j ,3 +b j ,4,

where

b j ,1 := [
f ′(S j+1(u + v))− f ′(S j (u + v))

]
DS j+1u,

b j ,2 := f ′(S j+1(u + v))DS j+1v − f ′(S j (u + v))DS j v,

b j ,3 := [
f ′(S j (u + v))−S j−1 f ′(u + v)

]
D∆ j u,

b j ,4 :=−D(S j−1 f ′(u + v))∆ j u.

Recall lemma 2.58. It will be frequently used in the sequential estimations.

First, we apply Taylor expansion to b j ,1.

b j ,1 :=
∫ 1

0

[
f ′′(S j (u + v)+τ∆ j (u + v)

]
∆ j (u + v)dτDS j+1u

Then we can estimate b j ,1

‖b j ,1‖∞ ≤‖ f ′′‖∞‖∆ j (u + v)‖∞‖DS j+1u‖∞
.‖ f ′′‖∞2− jγ(‖u‖γ+‖v‖γ)2−( j+1)(γ−1)‖u‖γ
.2 j (1−2γ)‖ f ′′‖∞(‖u‖γ+‖v‖γ)‖u‖γ.

As to b j ,2,

‖b j ,2‖∞ . ‖ f ′‖∞‖DS j+1v‖∞+‖ f ′‖∞‖DS j v‖∞
. ‖ f ′‖∞2−( j+1)(2γ−1)‖v‖2γ+‖ f ′‖∞2− j (2γ−1)‖v‖2γ

. 2 j (1−2γ)‖ f ′‖∞‖v‖2γ.
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Because of (3.9) and theorem 3.16, we can estimate b j ,3 as following

‖b j ,3‖∞

=
∥∥∥∥∥
( ∑

i≥ j−1
∆i f ′(u + v)− ∑

i≥ j

∫ 1

0
f ′′(Si (u + v)+τ∆i (u + v))∆i (u + v)dτ

)
D∆ j u

∥∥∥∥∥
∞

.

( ∑
i≥ j−1

2−iγ‖ f ′(u + v)‖γ+
∑
i≥ j

‖ f ′′‖∞2−iγ(‖u‖γ+‖v‖γ)

)
2− j (γ−1)‖u‖γ

=
(
‖ f ′(u + v)‖γ

∑
i≥ j−1

2( j−i )γ+‖ f ′′‖∞(‖u‖γ+‖v‖γ)
∑
i≥ j

2( j−i )γ

)
2− j (2γ−1)‖u‖γ

.
(‖ f ′(u + v)‖γ+‖ f ′′‖∞(‖u‖γ+‖v‖γ)

)
2− j (2γ−1)‖u‖γ

.
(‖ f ′′‖∞(‖u‖γ+‖v‖γ)+‖ f ′‖∞+‖ f ′′‖∞(‖u‖γ+‖v‖γ)

)
2− j (2γ−1)‖u‖γ

.2 j (1−2γ)(‖ f ′‖∞+‖ f ′′‖∞)(‖u‖γ+‖v‖γ)(1+‖u‖γ),

Again, because of theorem 3.16,

‖b j ,4‖∞ .2− j (γ−1)‖ f ′(u + v)‖γ2− jγ‖u‖γ
≤2 j (1−2γ)(‖ f ′′‖∞(‖u‖γ+‖v‖γ)+‖ f ′‖∞)‖u‖γ
.2 j (1−2γ)(‖ f ′‖∞+‖ f ′′‖∞)(‖u‖γ+‖v‖γ)(1+‖u‖γ).

Hence, we can conclude

‖D f j‖∞ .2 j (1−2γ)(‖ f ′‖∞+‖ f ′′‖∞)(‖u‖γ+‖v‖γ)(1+‖u‖γ)

.2 j (1−2γ)(‖ f ′‖∞+‖ f ′′‖∞)(‖u‖γ+‖v‖2γ)(1+‖u‖γ).

Now we have shown that lemma 3.15 can be applied to { f j } j . Hence the proof for the case
f (0) = 0 is finished.

For a general f ∈C 2
b , we have

f (u + v)−Π−( f ′(u + v),u) = f (0)+ ∑
j≥−1

f j

=⇒‖ f (u + v)−Π−( f ′(u + v),u)‖2γ

≤‖ f (0)‖2γ+‖ ∑
j≥−1

f j‖2γ

≤‖ f ‖∞+ (‖ f ′‖∞+‖ f ′′‖∞)(1+‖v‖2γ)(1+‖u‖γ)2

≤‖ f ‖C 2
b
(1+‖v‖2γ)(1+‖u‖γ)2,

where we use the fact for all m,n ≥ 0,

(1+n)(1+m)2 − (m +n)(1+m) = m2n +mn +m +1 ≥ 1

=⇒ (1+n)(1+m)2 > (m +n)(1+m).
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Remark 3.18. If f (0) 6= 0, we can easily find that the first estimation in the theorem 3.17 will
be false when u = v = 0, while the second estimation becomes a trivial one ‖ f (0)‖2γ. ‖ f ‖∞ ≤
‖ f ‖C 2

b
when u = v = 0. 4

Theorem 3.19. Given γ ∈ (0,1/2) and u ∈ D
γ,γ
x with derivative ux , if v ∈ C 2γ

∗ and f ∈ C 2
b , then

f (u + v) ∈D
γ,γ
x with derivative f ′(u + v)ux .

Furthermore, we have

‖ f (u + v)‖x,γ,γ. ‖ f ‖C 2
b
(1+‖x‖γ)(1+‖v‖γ)(1+‖u‖x,γ,γ)2.

Proof: We estimate ‖ f (u + v)‖x,γ,γ term by term.

Because of theorem 3.16

‖ f (u + v)‖γ.‖ f ′‖∞(‖u‖γ+‖v‖γ)+‖ f ‖∞
≤‖ f ‖C 2

b
(1+‖u‖γ)(1+‖v‖γ).

And

‖ f ′(u + v)ux‖γ ≤‖ f ′(u + v)‖γ‖ux‖∞ . ‖ f ′(u + v)‖γ‖ux‖γ
.(‖ f ′′‖∞(‖u‖γ+‖v‖γ)+‖ f ′‖∞)‖ux‖γ
≤‖ f ‖C 2

b
(1+‖u‖γ)(1+‖v‖γ)‖ux‖γ

.‖ f ‖C 2
b
(1+‖v‖γ)(1+‖u‖x,γ,γ)2

The remainder needs to be more carefully analyzed. We in the first place write it into the
following form

( f (u + v))] = f (u + v)−Π−( f ′(u + v)ux , x)

= f (u + v)−Π−( f ′(u + v),u)︸ ︷︷ ︸
A

+Π−( f ′(u + v),u −Π−(ux , x))︸ ︷︷ ︸
B

+Π−( f ′(u + v),Π−(ux , x))−Π−( f ′(u + v)ux , x)︸ ︷︷ ︸
C

.

Due to theorem 3.17,

‖A‖2γ =‖ f (u + v)−Π−( f ′(u + v),u)‖2γ

.‖ f ‖C 2
b
(1+‖v‖2γ)(1+‖u‖γ)2

.‖ f ‖C 2
b
(1+‖v‖2γ)(1+‖u‖x,γ,γ)2.

Corollary 2.67 leads to

‖B‖2γ =‖Π−( f ′(u + v),u]))‖2γ

.‖ f ′‖∞‖u]‖2γ

.‖ f ′‖∞‖u‖x,γ,γ.
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And finally with the help of lemma 3.6, we have

‖Π−( f ′(u + v),Π−(ux , x))−Π−( f ′(u + v)ux , x)‖2γ. ‖ f ′‖∞‖ux‖γ‖x‖γ.

Combining the above results, one can show

‖ f (u + v))]‖2γ. ‖ f ‖C 2
b
(1+‖x‖γ)(1+‖v‖γ)(1+‖u‖x,γ,γ)2 (3.10)

When γ> 0, the space of controlled distributions is an algebra, i.e. closed under the operation
of multiplication.

Theorem 3.20. Given γ > 0, if u, v ∈ D
γ,γ
x with derivatives ux and v x respectively, then uv ∈

D
γ,γ
x with derivative ux v +uv x .

Furthermore, we have

‖uv‖x,γ,γ. ‖u‖x,γ,γ‖v‖x,γ,γ(1+‖x‖γ).

Proof: Because of proposition 2.68, we have

‖uv‖γ.‖u‖γ‖v‖γ. ‖u‖x,γ,γ‖v‖x,γ,γ,

‖ux v +uv x‖γ.‖ux v‖γ+‖uv x‖γ
.‖u‖x,γ,γ‖v‖x,γ,γ.

Recall u = u]+Π−(u, x) and v = v ]+Π−(v, x), so

uv =Π±(u, v)+Π0(u, v)

=Π−(u, v ]+Π−(v x , x))+Π+(u]+Π−(ux , x), v)+Π0(u, v)

=Π−(u,Π−(v x , x))+Π+(Π−(ux , x), v)+Π−(u, v ])+Π+(u], v)+Π0(u, v)︸ ︷︷ ︸
R

=⇒ (uv)] =Π−(u,Π−(v x , x))−Π−(uv x , x)︸ ︷︷ ︸
A

+Π+(Π−(ux , x), v)−Π−(ux v, x)︸ ︷︷ ︸
B

+R

Because of lemma 3.6,

‖R‖2γ =‖Π−(u,Π−(v x , x))−Π−(uv x , x)‖2γ

.‖u‖γ‖v x‖γ‖x‖γ

.‖u‖x,γ,γ‖v‖x,γ,γ(1+‖x‖γ).

For B , we use the fact that u and v are one-dimensional,

‖Π+(Π−(ux , x), v)−Π−(ux v, x)‖2γ

=‖Π+(v,Π−(ux , x))−Π−(vux , x)‖2γ

.‖v‖γ‖ux‖γ‖x‖γ

.‖u‖x,γ,γ‖v‖x,γ,γ(1+‖x‖γ).
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Since proposition 2.59, we have

‖R‖2γ =‖Π−(u, v ])+Π+(u], v)+Π0(u, v)‖2γ

.‖Π−(u, v ])‖2γ+‖Π+(u], v)‖2γ+‖Π0(u, v)‖2γ

.‖u‖γ‖v ]‖2γ+‖u]‖2γ‖v‖γ+‖u‖γ‖v‖γ

.‖u‖x,γ,γ‖v‖x,γ,γ.

3.5. APPLICATIONS

The previous sections with chapter 2 provide all tools needed to carry on analysis with con-
trolled distributions to specific problems. Though the approach of controlled distributions
is relatively new, there are several papers/preprints available to demonstrate that this novel
approach is indeed feasible to be applied towards practical problems. In below, one can find
several problem statements which have already been studied with controlled distributions.

Rough differential equation (RDE) mentioned at the beginning of chapter 1 with the follow-
ing two examples are treated in [15] with the technique of controlled distributions. It mainly
uses the results from section 3.4 to prove the existence and uniqueness up to a time scale by
showing the stability under the nonlinear mappings defined by the problems.

• The family of SPDEs in the form of Burger’s equation

Lu =G(u)∂xu +w,

where u : R+×T→ Rd , L = ∂t + (−∆)s , where (−∆)s is a fractional Laplacian with periodic
boundary conditions, w a space-time white noise with values in Rd and G :Rd →L (Rd ,Rd )
a smooth field of linear transformations.

• A nonlinear generalization of the parabolic Anderson model

Lu = F (u)¦w,

where u : R+×T2 → R, L = ∂t −∆ and w a random potential sampled by the law of white
noise on T2, i.e. independent on time. Besides, F : R→ R is a general smooth function,
with the linear case F (u) = u which reduces to the standard Anderson model. In the end, ¦
denotes a renormalized product necessary for formulating a well defined problem.

In addition, the following problem from quantum physics is investigated in [7] with the
method of controlled distributions.

• The 3-dimensional periodic stochastic quantization equation for the (φ)4
3 euclidean quan-

tum field

Lφ= "
λ

4!
(φ)3"+w,
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whereφ :R+×T3 →R, L = ∂t −∆, w a space-time white noise and "(φ)3" a proper renormal-
ization of a cubic polynomial of φ and λ the coupling constant of the scalar theory.



A
SUPPLEMENTARY MATERIALS

A.1. EUCLIDEAN SPACE AND MULTIVARIABLE CALCULUS

We briefly summarize some results from multivariable calculus. Since it is beyond the scope
of this paper, we generally refer to [10, 25] for detailed treatments.

Proposition A.1. Let a ∈ (0,1) and {xi }i∈N be a nonnegative sequence. We have(∑
xi

)a ≤∑
xa

i .

Proof: It is sufficient to prove this for finite sequences because then we may take limits. To
prove the statement for finite sequences it is sufficient to prove

(x + y)a ≤ xa + y a , for x, y > 0,

because all the finite case can be obtained by iterations.

To prove the above inequality, it suffices to prove

(1+ t )a ≤ 1+ t a , where 0 < t < 1.

Now, the derivative of the function f (t ) = 1+ t a −(1+ t )a is given by f ′(t ) = a(t a−1−(1+ t )a−1)
and which is positive since a > 0 and t 7→ t b is decreasing for negative b. Hence,

f (t ) ≥ f (0) = 0 for0 < t < 1,

which proves the latter inequality above.

Proposition A.2. Let f (|x|) be a radial function in Rn . Then we have the following identity∫
Rd

f (|x|)dx = Sn−1

∫ ∞

0
f (r )r n−1dr,

where Sn−1 denotes (n −1)-sphere.

66
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Proposition A.3. Let Vn be the volume of the unit ball in Rn and Sn−1 be the surface of unit
sphere Sn−1. Then we have

Vn = 2πn/2

nΓ(n/2)
= πn/2

Γ(n/2+1)
,

Sn−1 = n ·Vn = 2πn/2

Γ(n/2)
,

where Γ-function is

Γ(z) :=
∫ ∞

0
t z−1e−t dt .

Proposition A.4 (Multinomial Expansion). Let x ∈Rd and γ be multi-indices.(
d∑

i=1
xi

)k

= ∑
|γ|=k

(
k

γ

)
d∏

i=1
xγi

i = ∑
|γ|=k

(
k

γ

)
xγ,

where (
k

γ

)
:= k !

γ1! · · ·γd !
.

Proposition A.5 (Leibniz Differentiation Rule). Let f , g ∈C k (R), for all 0 ≤ m ≤ k we have

dm

dxm

(
f g

)= m∑
i=0

di f

dxi

dm−i g

dxm−i
.

Furthermore, if f , g ∈C k (Rd ), for all 0 ≤ |α| ≤ k we have

∂β
(

f g
)=∑

α

(
α

γ

)(
∂γ f

)(
∂α−γg

)
with

(
α

γ

)
:=

d∏
i=1

(
αi

γi

)

where the sum is taken over 0 ≤ γi ≤αi for all j = 1 · · ·d.

A.2. CLASSICAL ANALYSIS

In this section we summarize some well known theorems from analysis, which are used
throughout in the thesis.

Proposition A.6. Let 0 < p ≤ q ≤∞. We have

`p ⊂ `q i.e. ‖ ·‖q . ‖ ·‖p .

Proposition A.7. All norms on finite-dimensional vector spaces are equivalent.
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Theorem A.8 (Hölder’s Inequality). Let p1, · · · , pk ∈ (0,∞], 1/r = ∑k
i=1 1/pi and assume fi ∈

Lpi . Then

‖
k∏

i=1
fi‖r ≤

k∏
i=1

‖ fi‖pi .

Furthermore, by replacing ‖ ·‖p with ‖ ·‖`p , the inequality also holds for fi ∈ `pi .

Remark A.9. In the previous theorem, when r ∈ (0,1), ‖·‖r and ‖·‖`r are only quasinorms. 4
Theorem A.10 (Minkowski inequality). For p ∈ [0,∞] and f , g ∈ Lp ,

‖ f + g‖p ≤ ‖ f ‖p +‖g‖p .

Theorem A.11 (Minkowski’s Integral Inequality). Suppose that (Ω1,µ1) and (Ω2,µ2) are two
measure spaces and f :Ω1 ×Ω2 →R is measurable. Then[∫

Ω2

∣∣∣∣∫
Ω1

f (x, y)dµ1(x)

∣∣∣∣p

dµ2(y)

]1/p

≤
∫
Ω1

(∫
Ω2

∣∣ f (x, y)
∣∣ dµ2(y)

)1/p

dµ1(x).

Now we will introduce one important concept, convolution, in a rather general situation. We
start with introducing the underlying structure.

Theorem A.12 (Dominated Convergence Theorem). A measure space (X ,Ω,µ). Suppose that
µ-integrable functions fn converge pointwisely almost everywhere (a.e.) to a function f . If there
exists a µ-integrable function Φ such that

| fn(x)| ≤Φ(x) a.e. ∀n,

then the function f is integrable and∫
X

f (x)dµ= lim
n→∞

∫
X

fn dµ.

In addition,

lim
n→∞

∫
X

∣∣ fn − f
∣∣ dµ= 0.

Definition A.13. A topological group G is a Hausdorff space that is also a group with law

(x, y) 7→ x y,

such that the foregoing mapping and x 7→ x−1 are continuous. If the topological space is lo-
cally compact, then G is called a locally compact group.

Definition A.14. Let f , g ∈ L1(G). The convolution of f , g is defined by

f ∗ g (x) :=
∫

G
f (y)g (y−1x)dy.
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Proposition A.15. For all f , g ,h ∈ L1(G), the following properties hold.

(i) f ∗ (g ∗h) = ( f ∗ g )∗h.

(ii) f ∗ g = g ∗h, provided G is abelian.

(iii) f ∗ (g +h) = f ∗ g + f ∗h and ( f + g )∗h = f ∗h + g ∗h.

(iv) (Titchmarsh). Supp( f ∗ g ) = Supp f +Supp g , where ‘+’ indicates Minkowski sum1.

Now we will state the general version of Young’s inequality.

Theorem A.16 (Young’s Inequality). Let G be a locally compact group and Lp (G) equip with a
left invariant Haar measure λ on G. If p, q,r ∈ [1,∞] satisfying

1

p
+ 1

q
= 1

r
+1,

then for all f ∈ Lp (G) and g ∈ Lq (G) satisfying2 ‖g‖q = ‖ω(g )‖q , we have

‖ f ∗ g‖r ≤ ‖ f ‖p‖g‖q .

Definition A.17 (Bump Functions and Mollifiers). A function η ∈ C∞
0 (Rd ) is called a bump

function if η= 1 in a neighborhood of 0.

1 A+B = {a +b : a ∈ A, b ∈ B}.
2ω(g )(x) := g (x−1), where x−1 represents the inverse in the group. We slightly abused (or generalized) the nota-

tion here. In the rest of the text, all topological groups have standard addition operation, i.e.x−1 =−x.
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