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Where are the people? Counting people in millions of street-level images to 
explore associations between people’s urban density and 
urban characteristics 
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A B S T R A C T   

A thorough understanding of how urban space characteristics, such as urban equipment or network topology, 
affect people’s density in urban spaces is essential to well-informed urban policy making. Hitherto, studies have 
primarily examined how the characteristics of the urban space impacts the number of people visiting different 
parts of the urban area (e.g., the city center). However, these studies almost without exception have used rela-
tively small data sets, targeting specific neighborhoods or places. As a result, their findings are confined to 
specific areas and it is unclear to what extent their findings generalize to other urban areas. This study addresses 
this gap. We propose a new computer vision-based method to study how the urban space is associated with 
people’s urban density in outdoor urban spaces. Specifically, our method uses a pre-trained object detection 
model to identify and count people as well as urban-related objects, such as presence of cars, and benches in 
millions street-level images collected throughout the Netherlands. Importantly, each street-level image is geo- 
located. Therefore, for each detected person and object its location is known. In turn, we regress urban space 
characteristics and urban-related objects on the number of people identified as a proxy for density in urban 
spaces. Our results show that higher numbers of people tend to be observed in places with smaller blocks, 
suggesting that compact urban development may be an effective way to increase people’s density. Moreover, we 
find that the presence of food places and bicycles is associated with more people, indicating that urban planners 
could study the location of these amenities to attract more visitors to urban spaces and exploring the causality 
effects in this relationship. Our methodology offers a complementary way to monitor how the urban space is used 
over the time and to assess the effectiveness of urban interventions and policies.   

1. Introduction 

A thorough understanding of the relations between the people’s 
density in urban spaces and urban space characteristics is essential for 
urban and mobility planning and, consequently, for policy making 
(Cunha & Moura, 2015). Urban space characteristics concern all city 
spaces between buildings in the open air (Krier & Rowe, 1979). 
Attaining a better understanding of these relations enables the assess-
ment of the impact of urban developments, identifying patterns of where 
people tend to be in cities, deciding where to allocate new services, as 
well as measure the effects of different urban attributes on people’s 
behaviors. Overall, urban planners and policymakers can use these 

relations to design better cities to attract more people and create livable 
and inviting urban spaces. 

The number of people in urban spaces is (co) determined by many 
factors, such as time of day, characteristics of places, and weather 
conditions. Attributes such as urban layout, appearance, number of 
benches, or traffic were found to influence the number of people visiting 
a given space (Lebel, Krittasudthacheewa, Salamanca, & Sriyasak, 
2012). It also has been discovered that people tend to visit places with 
better walking accessibility (Sheng, Wan, & Yu, 2021; Abass & Tucker, 
2021), greenery neighborhoods (Abass & Tucker, 2016; Krellenberg, 
Welz, & Reyes-Päcke, 2014), places with slow-moving traffic or limited 
parking (Uslu et al., 2010), and neighborhoods with a shorter distance to 

* Corresponding author at: TUDelft, Faculty of Technology, Policy and Management (TPM), Building 31, Room: A3.080. Jaffalaan 5, 2628 BX Delft, The 
Netherlands. 

E-mail address: f.o.garridovalenzuela@tudelft.nl (F. Garrido-Valenzuela).  

Contents lists available at ScienceDirect 

Computers, Environment and Urban Systems 

journal homepage: www.elsevier.com/locate/ceus 

https://doi.org/10.1016/j.compenvurbsys.2023.101971 
Received 6 December 2022; Received in revised form 3 March 2023; Accepted 6 April 2023   

mailto:f.o.garridovalenzuela@tudelft.nl
www.sciencedirect.com/science/journal/01989715
https://www.elsevier.com/locate/ceus
https://doi.org/10.1016/j.compenvurbsys.2023.101971
https://doi.org/10.1016/j.compenvurbsys.2023.101971
https://doi.org/10.1016/j.compenvurbsys.2023.101971
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compenvurbsys.2023.101971&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Computers, Environment and Urban Systems 102 (2023) 101971

2

the city center, mixed land-uses, and higher densities (Mouratidis, 
2018). 

However, these studies have been applied mainly with data from 
small neighborhoods or specific places, which makes it difficult to 
generalize methods and results. Most of the data in these studies come 
from questionnaires (Sugiyama & Thompson, 2006), surveys (Abass & 
Tucker, 2021), field observations (Lipovská et al., 2013), and paper 
diary methods (Mossong et al., 2008). These practices do not allow 
capturing high-resolution data over large areas because they are often 
time-consuming, error-prone, labor-intensive, or intrusive. Therefore, 
larger-scale research and new methods of data collection are needed to 
better understand the relations between urban space and the number of 
people. 

Fortunately, a large number of studies have developed new tech-
niques for counting people in urban places using different technologies. 
For example, the location of social media posts has been used to infer the 
number of people in diverse areas (Hamstead et al., 2018; McKenzie, 
Janowicz, Gao, & Gong, 2015; Steiger, Westerholt, Resch, & Zipf, 2015; 
Bocconi, Bozzon, Psyllidis, Titos Bolivar, & Houben, 2015). In addition, 
data from cell phones and Wi-Fi sensors have also been used to measure 
the movements and number of people in entire cities or regions 
(Traunmueller, Johnson, Malik, & Kontokosta, 2018; Kontokosta & 
Johnson, 2017; Danielis, Kouyoumdjieva, & Karlsson, 2017). Recent 
advances in computer vision also offer promising ways to analyze and 
collect urban features, human activity data, and people counts from 
images. Several studies have developed different techniques for esti-
mating the number of people at events and entire cities using images 
from social media or video recordings (Shami, Maqbool, Sajid, Ayaz, & 
Cheung, 2018; Jendryke, Balz, McClure, & Liao, 2017; Bansal & Ven-
katesh, 2015). These methods can capture a massive amount of high- 
resolution data over large areas for fine-grained studies. 

In this study, we combine the idea of using such new approaches to 
capture more detailed and spatial-extensive data in order to better un-
derstand the relations between the people’s density in urban spaces and 
urban space characteristics. It can be described using a variety of vari-
ables, including the road network, traffic volumes, street furniture, land 
uses, etc. Specifically, we use the widespread availability of geo-tagged 
images (e.g., from Google street-view or Mapillary, 2022) to create high- 
resolution datasets of different urban characteristics and human be-
haviors, and thereby facilitate the analysis of their co-relations. Along 
these lines, several studies have used street-level imagery for urban 
analysis, see the review of Biljecki and Ito (2021). The increasing use of 
this data source opens the opportunity to also use it to understand how 
urban crowds relate to urban characteristics. Therefore, the objective of 
this study is twofold. First, the substantive aim is to deepen the under-
standing of the relations between the people’s density in any urban 
space and the characteristics of these places. Second, the methodological 
objective is to develop a computer-vision-based approach for using im-
ages as a potential data source to conduct urban studies. The results will 
provide insights on how different characteristics of the urban space in-
fluence the number of people visiting a particular space, which can be 
used as a basis for urban and mobility planning for the urban areas 
analyzed. Also, it provides a general method that could be replicated in 
many cities. 

The remaining part of this document is organized as follows. First, 
the data and their collection are described and explained. Second, the 
methodology is presented. Third, we present the case study in the 
Netherlands. Finally, the results and conclusions are reported. 

2. Data 

Two types of data are used in this study. First, Geographic Infor-
mation System (GIS) data from Open Street Map (OSM, 2022), which 
includes the location of services and amenities, land-use information, 
and street networks. Second, street-level imagery from Google Street 
View (GSV) which corresponds to 360-degree images taken and 

superimposed on the street network. These two data types are retrieved 
for each analysis area included in our study. 

2.1. GIS data collection 

This study makes use of five different GIS layers: (1) city boundaries, 
which correspond to the geographic boundaries of the city or munici-
pality within which the rest of the data is collected; (2) street network 
edges, corresponding to the streets of the traffic network within the set 
boundary; (3) street network nodes, corresponding to the structural nodes 
of the street network and intersections; (4) amenity locations, which 
correspond to the services, places, and facilities within the boundaries, 
such as restaurants, parking lots, or schools; and (5) land-uses, indicating 
the primary land-use for the different sub-regions within the 
geographical boundaries, such as residential, commercial, or industrial. 

All geographic data are collected from OSM using the Python pack-
age OSMnx (Boeing, 2017). This package allows obtaining different GIS 
layers related to the city, such as street networks, location of various 
stores or services, water areas, and land uses. Municipal boundaries and 
street networks can be easily obtained using the internal functions of 
OSMnx. Amenities and land uses can be obtained with OSM tags using a 
specific key-value. Table 1 summarizes the different layers used and the 
tag considered when relevant. 

Amenities and land uses both contain different categories. Firstly, an 
amenity is defined as a useful and important facility for residents and 
visitors. Facilities range, for example, from public toilets and public 
telephones to banks, pharmacies, prisons, and schools (OSM Wiki, 
2022). In total, over 100 different amenities can be obtained. To simplify 
the structure of this data, all amenities are aggregated into nine cate-
gories: food place, education, transportation, financial, entertainment, 
public service, facility, waste management and other. Secondly, a land use 
describes the main function a land is used for (OSM Wiki, 2022). In total, 
37 different land uses can be obtained, where the most important and 
common ones are: commercial, construction, education, industrial, resi-
dential, retail and institutional. OSMnx provides access to a wide range of 
GIS data that can be selected based on the nature of the problem or 
analysis being conducted. In this research, the most widely used and 
city-agnostic GIS layer were selected to perform cross-sectional analysis 
across multiple cities. 

2.2. Street-level images collection 

The images we use in this study come from Google Street View 
(GSV). Images are queried using specific coordinates. Specifically, 
within each boundaries of a study area, a grid of points is composed, 
where each point is separated from the others by dgrid meters (e.g., 50 
meters). Then, for each point, its longitude and latitude information is 
specified in Google API to extract the surrounding GSV image id. Each 
GSV image id corresponds to a unique 360-degree panorama view at the 
street level. Fig. 1 shows an example of a 360-degree image divided into 
four individual images based on the rules explained in the next para-
graph. In addition, for each image, the date when the picture was taken 
and its exact coordinates are stored. 

Each 360-degree image is divided into four individual images to have 
more regularity in the angles of view of the images subject to analysis. As 
shown in Fig. 1, a front, back, and two side views of the street are 

Table 1 
Summary of GIS layers used collected from Open Street Map (OSM).  

Layer GIS type OSM tag 

Boundary Polygon OSMnx function 
Edges Line OSMnx function 
Nodes Point OSMnx function 
Amenities Point {“amenity”: True} 
Land uses Polygon {“landuse”: True}  
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retrieved. To do so, each panorama is associated with the closest street 
(street network edge) to infer the angle of the street with respect to the 
horizontal (see angle α in Fig. 2). Fig. 2 shows an example of image 
coordinates (red dot) associated with the closest edge to identify the 
angle α. With this angle, four individual URLs are built, corresponding to 
the four images (Fig. 1). 

Following this data collection process, all GIS data and URLs of the 
images are stored in databases per study area. Next, the methodology 
described in the following section is applied to the data collected. 

3. Methodology 

The methodology used in this work is divided into two main steps. 
First, data processing is performed, which includes processing each 
collected image with an object detection model (ODM) and then 
aggregating the detected objects and GIS data into spatial units. Second, 
data analysis is then carried out, which includes the estimation of linear 
and spatial models to establish the relation between the number of 
people counted in the images collected within a given spatial unit (i.e., 
people’s density) with the respective urban characteristics in the same 
unit. Fig. 3 shows a diagram of the methodology which depicts the 
analysis flow while referring to the data types retrieved in the data 
collection process. 

In the following subsections, steps one and two of the methodology 
are detailed. 

3.1. Step 1: Data processing 

This step has two main objectives. First, it aims to process all 
collected images to extract information contained in them, which is 

stored in a GIS data format. Second, it aims to aggregate the GIS data 
retrieved and the image information in spatial units for subsequent 
analysis. 

3.1.1. Image processing 
GSV images are analyzed to identify people and urban-related ob-

jects. For this purpose, images are processed with an Object Detection 
Model (ODM) - a machine learning method used to recognize objects in 
images - to identify people and other urban-related things. Specifically, 
because this work aims at processing a large number of ideas, the pre- 
trained SSDMobileNetV3 model (Howard et al., 2019) is selected. This 
model is faster compared to other models available at the time of this 
study for person identification because it was designed to run on 
smartphones, which requires less computational power. SSDMobile-
NetV3 is capable of recognizing a large number of objects, but only 13 
urban-related objects are selected for this study, namely person, bicycle, 
car, motorcycle, bus, train, truck, boat, traffic light, fire hydrant, stop sign, 
parking meter, and bench. 

Since each image is geolocated, the number of objects identified in 
each one can be mapped. This means all detections can be stored as GIS 
data, similar to the data retrieved from OSM. To complement Table 1, 
the detections are stored based on the image’s coordinates, registering 
information on the number of detections per category (e.g., person, bi-
cycle, etc.) in each of the images. 

3.1.2. Data aggregation 
In order to analyze the relations between people counts and urban 

characteristics, a spatial unit of analysis needs to be defined. For this 
purpose, regular hexagonal cells with dside-meter side (e.g., dside = 50 
meters) are constructed that tessellate the entire study area. The infor-
mation collected (see Table 1) and processed (from step 1a) within each 
hexagon is aggregated using different functions. Fig. 4 shows an example 
of a hexagon cell and all possible geographic data contained therein. 

Edges are aggregated by the sum of the total length of edges within 
the cell; nodes are aggregated by counting the number of nodes per cell; 
amenities are aggregated by counting the total number of places per 
category per cell (e.g., the total number of educational places, financial 
places, etc.); land-uses are aggregated by the sum of the total area per 
category per cell (e.g., the total squared-meters of residential area, in-
dustrial area, etc.); and detections are aggregated by the average number 
of detections made for the images within the cell per class (e.g., person, 
cars, etc.). For instance, the aggregated value for the class person is ob-
tained by dividing the total number of people detected in all images of a 
hexagon by the number of processed images within the hexagon. 

3.2. Step 2: Data analysis 

Two types of models have been selected to study the correlation 
between the people’s density (i.e., people’s counts) in urban places and 
their characteristics. Both models are applied at the level of hexagonal 

Fig. 1. A 360º panorama view retrieved from Google Street View (GSV). Four individual 90º images are shown: front, back, and two side views (left and right view).  

Fig. 2. Angle of the street with the horizontal (α). The street network is inferred 
for each GSV image to identify the front view. 
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cells (defined in step 1b). First, a linear regression model is used to infer 
the impact of each urban characteristic on the number of people present 
in each cell. Second, a linear model with spatial autocorrelation pa-
rameters accounts for the spatial effect of neighboring hexagons on the 
number of people. In this case, the spatial Durbin model is chosen 
(Durbin, 1960). In both models, the number of people in the different 
spatial units (i.e., hexagons) is the dependent variable (Y), and all urban- 
related variables (e.g., network topology, presence of cars, bicycles, land 
uses, etc.) are the independent explanatory ones (X). In the subsequent 
subsections, each model is explained. 

3.2.1. Linear regression model 
A classic linear model is used to study the correlation between the 

number of people identified and the urban-related variables measured 
within each cell. In Eq. (1)Y corresponds to the vector of number of 
people, where each element is the observed number of people within a 
particular cell, X is the matrix that contains all explanatory variables 
(with a constant), β represents the vector of parameters for each 
explanatory variable, and ∊ is the vector of errors associated. 

Y = Xβ+∊ (1) 

The k explanatory variables (xk ∈ X) can be divided into four groups: 
network variables which include the number of nodes and total meters of 

streets, amenities and land-uses which correspond to the variables pre-
viously described, and detections which correspond to all variables 
gathered from image processing. This model aims to identify the asso-
ciations between all urban variables with the number of people in the 
urban space, only considering the quantities of each variable. But when 
spatial variables are studied, near things are more related than distant 
things (Tobler, 1979). Therefore, another model is used to complement 
the results. 

3.2.2. Spatial Durbin model 
This model is similar to the linear regression model but takes into 

account the effect of the neighboring cells’ values (spatial correlation) to 
explain the output (i.e., number of people). Two variables are spatially 
correlated if they are close to each other and are similar in their attribute 
values. Specifically, a Durbin model estimation considers the effect of 
neighbor Y values (number of people in neighboring cells) and the effect 
of all neighbor X values (e.g., the number of cars in neighboring cells) on 
the dependent variable (Y). In other words, a Durbin model measure 
spatial auto-correlation (i.e., effect of Y on Y) and the spatial correlations 
(spatial effects of Xs). In Eq. (2), the model specification is shown for a 
spatial Durbin model in matrix notation. 

Y = ρWY +Xβ+WXγ + ∊ (2) 

Fig. 3. Summary of the methodology. Purple (large) boxes are sub-steps, and blue (small) boxes are input/output of each sub-step. In data collection, GIS and images 
are retrieved. Then (STEP 1), images are processed with an object detection model, converted to GIS data, and aggregated in spatial units. Finally (STEP 2), all GIS 
data is used to estimate various statistical models. 

Fig. 4. An illustration of an individual hexagonal cell. For visual purposes, the length of this hexagon’s side is set to 340 meters (dside = 340 meters).  
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Y represents the vector of the number of people per cell, X corre-
sponds to the matrix of all explanatory variables per cell, β, and γ are the 
vectors of parameters for each xk ∈ X (with k explanatory variables), 
linear effect and spatial effect respectively, ρ is the vector of the spatial 
auto-regressive parameters for Y, ∊ the vector of errors associated, and 
W is a weighting matrix that measures the effect of neighboring cells. Eq. 
(3) defines each element of the matrix W where the value wij corresponds 
to the effect of cell i on cell j. In this case, wij is measured as the inverse of 
the euclidean distance. 

wij = d− 1
ij wij ∈ W (3) 

In particular, to explain the number of people in a specific cell, this 
model includes (additional from linear regression) the auto-correlation 
effect of Y with WY (in ρ) and the spatial correlation effect of X with 
WX (in γ). It means, β parameters take into account the spatial corre-
lations between variables. Therefore, only the β parameters are used in 
the result section (although the spatial parameters (ρ and γ)) provide 
information on the spatial correlation, unlike a linear model, β is already 
accounting for spatial effects of the Xs on Y. 

4. Case study 

The Netherlands is chosen as a case study. Specifically, we use the 
proposed method to understand the relation between people’s density in 
Dutch urban spaces and the urban characteristics of those places. Also to 
demonstrate the potential of using street-level images as a data source 
for urban analytic and behaviors comprehension. The data used in this 
case study concerns GIS data and street-level images for all municipal-
ities of the Netherlands. As of March 2022, the Netherlands comprises 
344 municipalities and has over 17 million inhabitants (CBS, 2022). 

Municipalities in the Netherlands vary in terms of surface area and 
population size. The average surface area is around 97km2 and ranges 
between [7; 523]km2, and the average population per municipality is 
around 50 thousand inhabitants with a range of [943; 905k] inhabitants. 

4.1. Definition and data collection 

Within each municipality, 2022 GIS data and images from different 
years are collected. The grid used to retrieve GSV images is overlaid 
using dgrid = 50 meters. The smaller dgrid is, the more images can be 
collected, but more computation time is needed for analyzing the images 
in the posterior steps. With dgrid equals to 50 meters we found a good 
trade-off to have a sufficient amount of data and to allow us to collect all 
the Netherlands. Next, the data are aggregated in dside = 50 meters 
hexagon cells. In this case, dside = dgrid = 50 meters was used to have 
spatial units with the same level of resolution at which the images were 
collected. Additionally, a spatial unit with a resolution of 50 meters 
allows us to capture the local variations in the urban data collected (e.g. 
land uses) within walkable distances, making it a suitable scale for our 
research aims. However, the methodology is able to manage different 
values of dside and dgrid which allows future exploration in multi-scale 
analysis. 

MAUP effects (Openshaw & Taylor, 1984) can be generated when the 
data is aggregated into the 50 meters hexagon cells. MAUP can be 
separated into two main effects: the zoning effect and the scale effect. 
Zoning effect refers to the changes in results that occur when the 
boundaries, shape or position of the areal units are changed. We think 
this effect has no major implications in our results because we have used 
a random zonification and it is composed by a large number of zones 
(approximately 19 thousand hexagons per municipality in average). On 
the other hand, scale effect refers to the changes in results that occur 
when the size of areal unit of analysis is changed. In this case, scale 
effects can bias the estimation of spatial relationships and patterns. But 
we think our scale is small enough. Studies such as Arbia and Petrarca 
(2011) have shown that greater aggregation zones lead to a decrease in 

accuracy and precision of the parameters. This means that the lower the 
level of aggregation (i.e., bigger zones), the greater the loss in efficiency 
of the parameters. Also, as we mentioned 50 meters can capture local 
and spatial variations for people which are mostly walking in the urban 
spaces. 

Over 46 million images are collected from 343 municipalities 
(Baarle-Nassau could not be collected due to issues with border lines 
between the Netherlands and Belgium). Images are collected from the 
years between 2008 to 2022. Fig. 5 shows a histogram of the number of 
images collected per municipality on the left and a map displaying its 
spatial distribution across the Netherlands on the right. It shows that for 
most municipalities approximately 100 thousands images are collected. 
The highest number of images are obtained for Amsterdam and Rot-
terdam (over 1 million images). Based on the rules to collect images (by 
the traffic network), the number of images per municipality, depends 
mainly on the surface and the population. 

4.2. Data analysis at different levels of spatial aggregation 

Next, we perform three kinds of analysis to explore the associations 
between people’s density in urban places and the attributes of that 
places at different spatial levels. To do so, the two models presented in 
the methodology section are used (linear regression and spatial Durbin 
model) in three different ways. The analyses are (i) a national aggre-
gated model with all data jointly, (ii) a national analysis using inde-
pendent municipal models, and (iii) individual analyses in Rotterdam 
and Amsterdam. These three analysis considers the 50 meters-side 
hexagon as minimal spatial unit, but are performed at different scales. 
The Table 2 summarizes all analyses and below a detailed description for 
each is provided. 

4.2.1. National aggregated model with all data jointly 
Each 50 meters hexagon of each municipality of the Netherlands is 

used to estimate a unique Linear Regression Model (see step 2a in the 
methodology section). To this end, an ordinary least square estimation is 
used to obtain the parameters (βs) of all explanatory variables related to 
network, amenities, land uses and detections. 

Since a model is being run at the national level with information 
collected at the municipal level, it is necessary first to identify which 
variables can be used to estimate the model. In order to have a robust, 
cross-sectional result and common variables available across the coun-
try, the model is estimated only with the variables present in all mu-
nicipalities. For example, if there are municipalities that do not have 
information on military land uses, then this land use will not be included 
in the national model estimation. Consequently, the following variables 
have been retained and are included for model estimation: in the network 
variables, the number of nodes and the meters of streets are used; in 
amenities, the number of food places, education places, transportation- 
related places, financial places, entertainment places, public services, 
facilities, waste management places, and others are used; in land uses 
only residential, grass area, forest area, and cemetery are used; and for 
detections, bicycle, car, bus, motorcycle, truck, parking meter, and 
benches are used. 

4.2.2. National analysis using independent municipal models 
Individual models per municipality are estimated. In this case, to 

take into account the spatial relationships that are inherent to the data, 
the Spatial Durbin Model is adopted (see step 2b in the methodology 
section). By estimating a model per municipality, we can construct a 
distribution of the different βs across the country. We, therefore, 
maintain the same subset of variables as those employed at the national 
level jointly data version. This allows for the direct comparison of 
municipal-level models. 

4.2.3. Individual analysis in Rotterdam and Amsterdam 
Finally, the municipalities of Rotterdam and Amsterdam are chosen 
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for a more detailed analysis. The two cities are the most populated cities 
in the Netherlands and they are geographically close (forty minutes’ 
distance by train). Amsterdam is the capital and it has an urban land-
scape similar to most Dutch municipalities (the presence of old city 
centers). Rotterdam, on the other hand, has a different urban and 
architectural style, following its destruction in World War II. These two 
cases are used to demonstrate the results of the data processing section 
and then to compare the estimated model results. This allows for 
showing the particularities present in the data. 

Fig. 5. On the left, a histogram of collected images per municipality in the Netherlands. On the right, a map with the spatial distribution of the number of images per 
municipality. 

Table 2 
Summary of the three different analyses conducted in this study.  

Analysis Model Process 

(i) National aggregated 
model with all data jointly 

Linear 
regression 

- Estimation with all hexagons 
from all municipalities (one 
model) 

(ii) National analysis using 
independent municipal 
models 

Spatial 
Durbin model 

- One estimation per municipality 
(343 models) 

(iii) Individual analyses in 
Rotterdam and Amsterdam 

Spatial 
Durbin model 

- One estimation per municipality 
(two models)  

Fig. 6. People detection for the municipality of Rotterdam (left) and Amsterdam (right). Values shown correspond to the average number of people observed in 
images per hexagon and are presented at the 50-meter-hexagon level using a city-specific natural breaks color-scale scheme. The numbers in legend show the interval 
bounds for each color. 
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5. Results 

We divide our presentation of the results into two parts. First, the 
results of the data processing (step 1 of the methodology) section are 
exposed. Second, the results of data analysis with the three different 
approaches (national aggregated model with all data jointly, national 
analysis using independent municipal models, and individual analysis in 
Rotterdam and Amsterdam) are presented and discussed (step 2 of the 
methodology). 

5.1. Results of image processing step 

Street-level images are analyzed to identify people and urban-related 
objects. Then, all the identified information is aggregated into hexagon- 
shaped cells. To illustrate how the outcome of data processing looks like, 
results from Rotterdam and Amsterdam are shown for illustration. Fig. 6 
shows the spatial variation of the number of people identified within the 
municipal boundaries of Rotterdam and Amsterdam. As expected, both 
cities show the highest concentration of people in the respective city 
center areas. This showcases the possibility of using the information 
present in images to distinguish between crowded and uncrowded areas. 

Fig. 7 shows the spatial distribution of the number of private vehicles 
(one of the independent variables) detected in the municipalities of 
Rotterdam and Amsterdam. It can be observed that the spatial distri-
bution of private vehicles is more homogeneous than in the case of 
people (compare Fig. 7 to Fig. 6). Another pattern that can be observed 
by visual inspection is that there tend to be fewer cars in places with 
more people, and vice versa. This applies for both Rotterdam and 
Amsterdam. 

More generally, our results demonstrate that the outputs from the 
data processing phase enable the analysis of various urban attributes and 
their spatial distribution in a study area. The data processing results in 
this study depend on which models are used to identify objects or situ-
ations in the images. In this particular case, we used object detection 
models to identify a limited number of objects of interest in urban en-
vironments. However, this method opens up a wide range of possibilities 
for gaining new insights by exploring other urban features using perhaps 
other image-processing tools. 

5.2. Relation between people’s density and urban-related characteristics 

One of the objectives of this study is to examine the relations be-
tween people’s density in urban spaces and the characteristics of those 
places. This section reports model estimation results for the series of 
models discussed in the methodology section (Section 3). The results are 
divided into three parts (as discussed in the case study section): (i) na-
tional aggregated model with all data jointly, (ii) national analysis using 
independent municipal models, and (iii) individual analyses in Rotter-
dam and Amsterdam. 

The analysis of the relation between the number of people (as peo-
ple’s density) and urban-related objects is in each case performed using 
the 50-meter-sided hexagon as the minimum spatial unit in which the 
data were aggregated. Municipalities have around 19 thousand hexa-
gons on average, ranging from one thousand to 140 thousand. After 
removing all hexagons without images, municipalities have about 4 
thousand data points (hexagons) on average, ranging between 252 and 
18 thousand. An inspection of the deleted hexagons indicates that they 
mostly correspond to water bodies, agricultural, and natural environ-
ment areas. 

5.2.1. National aggregated model with all data jointly 
We estimate a linear regression model using all hexagons with im-

ages from the 343 municipalities included. Almost 2 million data points 
are used to estimate the linear regression model. The model is estimated 
based on Ordinary Least Squares (OLS). Fig. 8 shows a bar chart with the 
values of standardized betas (regression parameters) for each variable. 
The standardized betas are normalized in standard deviation units, 
which facilitates the comparison of variables’ explanatory power. The 
goodness of fit index R2 of this model is 25%, which shows that the 
model is able to explain a substantial portions of the variance. 

The national linear regression model results indicate that the number 
of bicycles detected, the number of food places, motorcycles detected, 
and the number of nodes (street intersections) have the strongest cor-
relation with the people’s density. The strong correlation between 
people and bicycles/motorcycles can be explained by the mode of 
transportation used to reach the most crowded areas. As previously 
mentioned (6 and 7), where people tend to be, fewer cars are detected. 
This finding aligns with the results of Uslu et al. (2010), who finds that 

Fig. 7. Private vehicles detection for the municipality of Rotterdam (left) and Amsterdam (right). Values shown correspond to the average number of vehicles 
observed in images per hexagon and are presented at the 50-meter-hexagon level using a city-specific natural breaks color-scale scheme. The numbers in legend show 
the interval bounds for each color. 
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less traffic dense areas attract more people. The number of nodes is 
related to the street network design, indicating that areas of the city with 
a higher number of intersections positively correlate with the number of 
people. The number of intersections per hexagon cell could also be 
related to the block size, indicating that smaller blocks could be asso-
ciated with more people. This finding is aligned with the work of Jacobs 

(1961). She suggests that smaller blocks are more walkable, therefore, 
more attractive to people. Gómez-Varo, Delclòs-Alió, and Miralles- 
Guasch (2022) provides empirical evidence that local businesses in 
dense networks may increase urban vitality. This is in line with our 
finding that food places and small block areas positively correlate with 
each other. Lastly, the only two negative relations pertain the two land- 

Fig. 8. Standardized betas from OLS estimation using all hexagon data jointly. Standardized betas use standard deviation units to facilitate the comparison of the 
explanatory power of variables. 

Fig. 9. Standardized betas from SDM estimations per municipality, grouped by explanatory variable. The white dot inside each boxplot shows average values.  
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use variables, squared meters of forests and grass. These two variables 
are mostly associated with areas where people do not live, so they are 
expected to have negative values. Nevertheless, their standardized 
values have among the lowest predictive power. 

5.2.2. National analysis using independent municipal models 
The model reported in the previous sub-section provides a general 

indication of the relation between people’s density and different urban 
characteristics. We expect to find different patterns in different cities, 
potentially allowing us to unravel local relations from the spatial model 
(SDM). Therefore, it is important to explore how much difference can be 
found in the explanatory power of each variable across the country. 
Thus, 343 individual Spatial Durbin models per municipality are esti-
mated, and thereafter, we construct the distribution of the different 
standardized βs across all municipalities. These β parameters (from 
SDM) include the spatial effects of the explanatory variables to disen-
tangle the local impact. In addition, we maintain the same subset of 
variables as those employed at the national level model and the same 
number of data points per municipality (only hexagons with images in 
them). This allows for the direct comparison of all municipal-level 
models between them and the national linear model. Fig. 9 shows a 
box plot chart with the values of standardized betas (in standard devi-
ation units) of each municipality for each explanatory variable. The 
white dot in the middle of each box plot represents the average value of 
each β across the country. The R2 values in these models have an average 
of 24.5% and range widely between [6.7%; 63.8%]. 

The results of these municipal models point to the same first four 
variables, which exhibit the most explanatory power as in the national 
linear model when the box plots are sorted by the median. Fig. 9 shows 
that the only explanatory variable which is always positive (for all 
municipalities) is the number of bicycles detected. Bikes and people tend 
to be highly spatially correlated across the Netherlands. The number of 
nodes has again the four highest explanatory power (in terms of median 
and average) and has a positive relation in most municipalities (only 
fourteen municipalities show a negative correlation). The results 
generally indicate a significant degree of diversity in the relations 
studied across municipalities. This support the idea of study the urban 
phenomena with a local and small perspective (Jacobs, 1961), which 
underscores the importance of studying local effects in order to identify 
more informative relationships. Additionally, with this results we can 
determine which relationships are significant when the spatial distri-
butions of the variables is taken into account. 

The results presented in Figs. 8 and 9 reveal an at first sight counter- 
intuitive finding. Specifically, we find “natural places” such as grass and 
forest are weakly (negatively) correlated with people’s density. An 
explanation for this small effect can be found in the rural areas. Rural 
areas contain comparative many “natural places”, but tend to be less 
populated. As a result, few people are counted in these images. This 
“counter-intuitive” finding highlights an important notion. The space-
–time accessibility is not accounted for in this study (e.g., Hägerstrand, 
1970). Therefore, the magnitudes of the betas cannot be taken as the 
isolated effects of the variables (e.g. land-use) on people’s density. 
Rather, the betas represent the strength of the association between the 
variable and people’s density given the spatial and temporal distribution 
of the variables and images. 

The comparison of the national model and the municipal models 
reveals significant differences in the explanatory power for certain 
variables, such as cars, square meters of residential land use, and 
transportation amenities. The national model uses a traditional linear 
regression and considers data from only one hexagon at a time (one data 
point), while the municipal models use the Spatial Durbin Model (SDM), 
which considers spatial effects and data from neighboring hexagons. In 
addition, by applying one spatial model per municipality, the box plots 
in Fig. 9 can show for each variable the distribution of the explanatory 
power across the country. For instance, the low explanatory power of 

cars in the national model is because cars are distributed evenly 
throughout the country, whereas people tend to be concentrated in 
specific areas, mainly in city centers. The national model, being a single 
model for the entire country, may not accurately capture city-specific 
effects, leading to a small correlation between cars and people. On the 
other hand, the individual municipal models indicate that some mu-
nicipalities have a negative correlation between people and cars, while 
others have a positive correlation, and the median explanatory power 
for the municipal models is higher compared to the national model. This 
is because the SDM model can identify relationships between groups of 
neighboring cells that have similar values, providing a more compre-
hensive analysis. This highlights the need for local analysis when mak-
ing policy decisions, as it allows capturing local effects. The following 
sub-section delves deeper into the analysis for two specific cities. 

5.2.3. Individual analyses in Rotterdam and Amsterdam 
Finally, the municipalities of Rotterdam and Amsterdam are selected 

for further analysis. In this case, SDMs are estimated to find how the 
spatial effect of the explanatory variables is related to the number of 
people in urban places. Fig. 10 shows the results for Rotterdam and 
Amsterdam. These results follow the same format as the one used in 
Fig. 8, where bars show the standardized beta values. The models for 
Rotterdam and Amsterdam are estimated with 18,098 and 17,648 
hexagons (data points), and the R2 values are 33% and 28%, 
respectively. 

In terms of differences in explanatory power (standardized betas) of 
the variables, various differences can be observed between both cities. 
Rotterdam follows the same pattern observed in the national analyses 
(previous subsections a and b). Here, the same four variables (food 
places, bicycles, motorcycles, and number of nodes) appear in the first 
positions. Compared with Amsterdam, it is a clear difference in the 
importance of food places. The correlation between the number of 
people and food places is smaller for Amsterdam. Following this result, 
Fig. 10 also shows a higher explanatory power (compared to Rotterdam) 
for entertainment places and other amenities. Due to the high tourist 
activity in Amsterdam, the lower explanatory power of food places could 
be explained because it is shared with these other services (entertain-
ment places and other amenities) in Amsterdam. Related to private ve-
hicles, in both models, the number of cars exercises a negative 
relationship, corroborating the visual inspection made in the heat maps 
in Figs. 6 and 7. The negative correlation with cars is higher in 
Amsterdam than in Rotterdam, which makes sense with the restriction 
on entering vehicles in the city center of Amsterdam (where most people 
are). For the residential land-use variable, a negative relationship is 
found in Amsterdam, whereas a positive relationship with the number of 
people is found in Rotterdam. 

6. Conclusions 

We have investigated the relations between the people’s density in 
urban spaces and urban characteristics. In addition, we also provide a 
method for using street-level imagery and GIS data to analyze urban 
environments. 

By processing 46.5 million collected street-level images with an 
object detection model, we have been able to identify locations where 
one expects more people’s density for selected cases, as well as other 
objects such as vehicles, bikes, and buses. It seeks to identify in which 
areas they are frequently observed, giving some indication of urban 
mobility patterns. Finally, by analyzing the information jointly, e.g. 
location of people and vehicles, it is also possible to perform spatial 
correlation analysis to identify spatial trends across urban spaces. 

Our analysis reveals several interesting substantive results. Firstly, 
the number of intersections is positively correlated with the people’s 
density. This means that people tend to be in places with a higher 
number of intersections, which means smaller blocks, suggesting that 
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topological parameters of the network, such as block size, are relevant to 
this relationship. Secondly, people’s density is positively correlated with 
the number of food places, the number of bicycles, and the number of 
motorcycles. The same results are found in different of our analyses: a 
linear national model with the data jointly and national analysis with 
spatial models by the municipality. Finally, the comparative analysis 
between Rotterdam and Amsterdam shows an example to discover city- 
specific patterns such as correlation differences between the presence of 
cars or food places and the number of people. These kind of substantive 
results can be used to support policies that prioritize the design of 
smaller blocks, as they may increase foot traffic and contribute to a more 
vibrant and active community in outside spaces. Also, the promotion of 
the creation of food places in areas with smaller blocks may attract more 
people. Another policy implication relates to fostering the use of bicycles 
and motorcycles as a means of transportation, as their presence seems to 
be positively related to the number of people observed. This resonates 
with the findings of Uslu et al. (2010) who concludes that people tend to 
walk in places where there is less presence of traffic. 

This work proposed a new methodology to use images for studying 
urban phenomena. Through the use of images, we find it is possible to 
gather information that are difficult to obtain using more conventional 
sources of information, such as surveys. In addition, using images is 
inexpensive and easy to keep up to date. Finally, this methodology offers 
a systematic way of obtaining information in the same format for a 
country or set of cities, allowing systematic comparisons to be made 
between different places. The urban environment is constantly chang-
ing, many of these changes are made by municipalities on a voluntary 
basis. Our method offers new avenues for measuring how urban projects 
change the environment and affect people’s behavior. Thereby, it can 
help municipalities, urban planners, and urban researchers to identify 
which urban characteristics we should pay attention to when planning 
urban projects. 

The main findings of this study align well with those reported by 
previous research, which use different methodologies. The associations 
of people’s density with food places (an indicator of local/Business 
places), the number of intersections (as proxy of network density) and 
facilities (an indicator of urban equipment) are also reported by Gómez- 
Varo et al. (2022), Zhang et al. (2021), and Askarizad and Safari (2020). 

The findings of this study were validated by comparing them with 
existing research that explored the same relation using different meth-
odologies. The study found that people’s density were associated with 
food places (as local/business places), the number of intersections (as 
proxy of network density) and facilities (as urban equipment) in urban 
areas, which is consistent with the findings of other studies conducted by 

Gómez-Varo et al. (2022), Zhang et al. (2021), and Askarizad and Safari 
(2020). The spatial model also reveals the variations of the effects across 
municipalities, supporting the Jacobs’ idea to examine and create pol-
icies on a local and small scale for specific regions or cities. 

We are aware that this study and the proposed methodology in 
particular also has several and important limitations. 

Firstly, the methodology does not consider the variation of the urban 
characteristics and the concentration of people caused by temporal, 
seasonal or occasional events. Such variation could bias the relation-
ships uncovered using our approach. Also, the process behind capturing 
the images by the Google car such as weather conditions during the 
captures, route chosen by the car or its speed can bias the results 
generated by this methodology. To overcome a bit this limitation, we 
average the detected people in images across years (2008 to 2022) (Note 
that Google Street View service has a frequency of up to 3 pictures per 
place per year). As a result, our findings reflect a general trend of peo-
ple’s density in urban spaces and urban elements distribution in cities. 
We believe that there is potential for future work exploring the effects of 
seasonality on people’s density and using other computer vision tech-
niques, such as assessing weather conditions, to include its effects in the 
analysis. 

Secondly, the analysis considers objects, such as cars or benches that 
are detected by our employed computer vision model. But, objects not 
recognized by this model, such as vegetation or water resources, are not 
considered in our regression analysis. Moreover, our object detection 
model does not capture comparatively more abstract urban concepts, 
such as the condition of the urban infrastructure, parks equipment and 
vegetation type, to name few. Thirdly, the image database that we use 
lack samples from certain areas. Google Street-view (GSV) has primarily 
images of locations accessible by car. As a result, parks, forests, or large 
open public spaces, have been under sampled. Fourthly, the analysis 
does not include the socio-demographic characteristics of the people in 
urban spaces, which may be important for understanding the patterns of 
people’s density. Lastly, it is worth noting that our analysis is not able to 
make claims about causality, only correlation can be established. 

These limitations provide opportunities for future research. First, if 
temporal and spatial dynamics of people in urban spaces aims to be 
included, this methodology could be modified by using other services 
such as Mapillary (2022), Apple’s Look Around, or local dedicated 
companies such as CycloMedia (2022) in the Netherlands or Tencent 
(2022) in China. Some of these platforms offer street-level images with a 
better time resolution to include temporal dynamism. Also some of these 
platforms cover areas without accessibility by car which are parks, forest 
or open public spaces. Second, other computer vision techniques can be 

Fig. 10. Standardized betas from SDM estimation in Rotterdam (left darker color) and Amsterdam (right lighter color).  
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applied to the images to uncover more urban characteristics. Other 
detection models such as YOLO (Redmon, Divvala, Girshick, & Farhadi, 
2016), PSPnet (Zhao, Shi, Qi, Wang, & Jia, 2017) or Transformers-based 
detectors (Carion et al., 2020) or segmentation models (Zhao et al., 
2017) can be applied. Even, more sophisticated models to infer per-
ceptions of images (such as beauty or safety) can also be implemented 
(Rossetti, Lobel, Rocco, & Hurtubia, 2019; Dubey, Naik, Parikh, Raskar, 
& Hidalgo, 2016). Third, the temporal component of the images can be 
included in this kind of study in order to establish causal effects between 
variables. 

Our current work utilizes a data-driven approach. For future work, 
researchers can replicate our methodology and apply it in conjunction 
with other urban theories like central place theory (Getis & Getis, 1966) 
and urban size distributions based on Zipf’s law (Zipf, 2016). These 
theories suggest that urban areas are structured hierarchically around 
central locations. In addition, further research can be done to investigate 
the effects of aggregating the data at different spatial scales such as 
neighborhood, district, or city levels - providing a deeper understanding 
of how urban environments are organized for different transport modes 
(e.g., walkable, automotive, or transit-friendly areas) and scales. More-
over, the effects of other characteristics of the urban environment on 
different human behaviors or activities can also be studied. For instance, 
the proposed methodology can complement works about urban envi-
ronment and physical activity (Lopez & Hynes, 2006; Sallis et al., 2016), 
urban mobility (Birenboim, Helbich, & Kwan, 2021), covid-related ef-
fects (Lee et al., 2021), characterization of urban spaces based on its 
functions (Singleton & Longley, 2019) or other behaviors such as 
walking dogs (Christian et al., 2018). To do so, different behaviors and 
situations can be identified in the images and perform similar analyses 
as presented in this research. In addition, this methodology could be 
used to verify policy measures and quantify its effects in the urban 
environment, such as car-restrictions zones and new bike-friendly 
spaces. 
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Krellenberg, K., Welz, J., & Reyes-Päcke, S. (2014). Urban green areas and their potential 
for social interaction–a case study of a socio-economically mixed neighbourhood in 
santiago de chile. Habitat International, 44, 11–21. 

Krier, R., & Rowe, C. (1979). Urban space. London: Academy editions.  
Lebel, L., Krittasudthacheewa, C., Salamanca, A., & Sriyasak, P. (2012). Lifestyles and 

consumption in cities and the links with health and well-being: The case of obesity. 
Current Opinion in Environmental Sustainability, 4, 405–413. 

Lee, W., Kim, H., Choi, H. M., Heo, S., Fong, K. C., Yang, J., et al. (2021). Urban 
environments and covid-19 in three eastern states of the united states. Science of The 
Total Environment, 779, Article 146334. 
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