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Abstract
There are many applications that use maps, and more detailed the maps are, more applications can
benefit from the map. Many maps are still manually created and also the underlying attributes are
informed in a manual process. This thesis presents a method to automatically derive and update
attribute road data by mining and analyzing movement trajectories.

The method used for this thesis implemented OpenStreetMap as the underlying map which will
be updated. GPS tracks are the movement trajectories that will be used to derive the information for
the road attributes. There are attributes that are already conceptually present in OpenStreetMap
but are in practice rarely filled. The attributes that will be investigated to derive are: whether the
road is a one or two way road, the speed limit of the road, the number of lanes of the road and
which vehicles have access to the road. Also, new attributes are introduced in this thesis. These
are the average speed of the road, the hours in which the road is congested, the importance of the
road and whether the road has a certain geometrical error.

Preprocessing is performed before the attributes can be derived. Important are the classification
of the transportation mode of the GPS tracks and the map matching of the GPS points to the roads
they are on. When the IDs of the roads, where the GPS points are on, are known the attribute
extraction algorithms can be applied. These algorithms all have different methods for deriving their
attributes. There are attributes that use the speed of the GPS point, the distance from the point
to the road or the heading of the point. For some attributes, a hierarchical code list is created to
provide different perspectives on the error of the attributes. The code list consists of the values of
the attributes and the hierarchy between these lists describes the level of detail and the granularity
of the values.

While some attributes were classified correctly in almost 100% of the cases, the extraction of
the attributes were not all successful. The number of lanes proved to be too difficult to derive out
of the available data and the importance of a road relies on a complete coverage of data which was
not the case. Although, the latter is applied in this research. The other attributes had different
results, the accuracy of the classification of the speed limit was 69,2%. However, when taking into
account speed limits that are only one step away (e.g. 60 km/h instead of the classified 50 km/h)
the classification increases to 95%. The classification of the roads that allow bicycles was 74% and
the attribute to determine whether a road is a one or two way road has a classification accuracy of
99%.

In the future, the attribute extraction algorithms could be improved or expanded. More detailed
levels in the hierarchical code list could be added and constraints could be added to improve the
attributes. Also, some techniques might be enhanced for better results. Finally, the ideal application
of this method would be deriving and updating the attributes in real-time. This could lead to live
maps which would change real-time with the changes on the road.
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CHAPTER1
Introduction

1.1 Motivation
Nowadays, there are many applications which make use of maps. Therefore there are different
demands about the detail of the map and the information that is stored in the map. Still, much
work is done manually or semi-automatically by map makers. This results in research of automated
methods for map making. This kind of research mostly focus on the visualization aspect, rather
than the information behind the maps. Much of the data is still acquired manually and little
research is performed on the automatic extraction of attributes for maps.

With new technologies like smart phones, more and more movement data becomes available.
Still, more can be done with this data. This research investigates if movement trajectories can be
used for automatically deriving and updating attribute road data. Automatically deriving this kind
of information saves a vast amount of time and money compared to manual extraction. The results
could be used for various applications as navigation systems, traffic analyses, urban development
and civil engineering and more. This research uses OpenStreetMap as a base map due to its free
usage of data and Global Positioning System (GPS) tracks as movement trajectories because of its
availability and usability.

The concept of Volunteered Geographic Information (VGI) has recently changed the mapping pro-
cess. OpenStreetMap (OSM) is the most significant example of a system based on VGI (Girres and
Touya, 2010). The aim of OSM is "to create a free digital map of the world and is implemented
through the engagement of participants in a mode similar to software development in Open Source
projects" (Haklay, 2010). OSM follows the same model as Wikipedia, i.e. the map should be free
to use, editable and licensed under new copyright schemes (Haklay, 2010). When the community,
or crowd, contributes in one way or another to solving a problem or performing a task specified by
a requester, this can be called crowdsourcing (Nakatsu and Iacovou, 2014). OSM is an example of
crowdsourcing, but the acquisition of movement trajectories could also benefit from crowdsourcing.

Research on the quality of OSM data in the United Kingdom shows that the data has a rea-
sonable accuracy of about 6 m and a coverage of 100% for Ordnance Survey digitised motorways,
A-roads and B-roads (Haklay and Weber, 2008). However, the attribute accuracy of OSM data
often lacks. Attributes in OSM are described using tags, each tag describes an attribute of the
feature. OSM has a freeform tagging system with key-value pairs, which allows the contributors to
add an unlimited number of attributes to a feature (Haklay and Weber, 2008). There are, however,
certain tags which act as informal standards agreed upon by the OSM community. The attributes
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Figure 1.1: Missing OpenStreetMap attribute data for a road (orange line) showing its map, at-
tributes and corresponding XML. Courtesy of OpenStreetMap (2013a)

are divided in main tags and secondary tags. The main tag describes the most important attribute
and the secondary tags provide additional attributes. Quantitative results for the French OSM
dataset shows that the main tag for roads which describes the type of the road is informed at 85%
of all the roads (for other types this is mostly more), but the secondary attributes (e.g. number of
lanes and speed limit in the case of roads) are rarely informed (Girres and Touya, 2010). This can
be seen in Figure 1.1, the Figure shows the information of a road in OSM consisting of the main
tag, which describes the type of the road, and the most used secondary tags. The secondary at-
tributes can add valuable information to a number of applications, e.g. when the OSM data is used
for spatial analyses or if OSM is used for navigation applications. These attributes are probably
missing due to the unwillingness of the person adding the data or simply because the attributes are
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not known. However, some attributes such as maximum speed and one or two way direction may
be derived automatically from the GPS tracks added by the user. This research will investigate the
possibility of deriving missing OSM attribute road data from GPS tracks and updating OSM with
these attributes. The research tries to implement this on real GPS tracks.

VGI relies on the input of people and the willingness of people to provide information to other
people. This is also the case for the attributes, however not many people are willing to manually
provide this information for the roads. Therefore, only a small amount of roads have the attributes
informed. This could be much easier using the movement trajectories of people and an automated
method to derive the attributes from these trajectories. This is the strength of this research. When
people get more involved in the map making process by only providing their movement trajectories,
the accuracy and detail of the map could improve significantly.

In the past, no research addressing this problem have come to the attention. There is, however,
some similar research performed on the enrichment of data using GPS traces or OSM data. These
research projects can be placed in the spatial data mining discipline in which different spatial data
mining techniques can be distinguished. The definition of data mining according to Giannotti et al.
(2008) is "the methods for extracting models and patterns from (large) volumes of data". Spatial
data mining can then be described as extracting certain models and patterns from mass data that
contain spatiotemporal aspects, such as GPS trajectories. The real development of data mining for
spatiotemporal data started just recently, around 2007 (Giannotti et al., 2008). This field has much
to offer, but the fact that there is a lack of related work for this project exposes that there still is
a lot to be done.

1.2 Relevance and Contribution
The research focuses on automatically deriving attribute road data from movement trajectories.
This Section discusses the relevance and the value of the research. What is new about this re-
search? What does it contribute? And for what can we use it? All these questions are answered
below.

As stated in Section 1.1, there are not many similar research projects that have been performed in
the past. This is the case for extracting attribute information from movement trajectories, but also
for improving maps in an automated way. For OSM, this is partially due to the unwillingness of the
OSM community for automated methods. Most OSM contributors see updating OSM as a hobby
and spend a great deal of time to improve the map in their way. Introducing automated methods
will perhaps change their maps, in which they put much time. However, the method presented in
this thesis updates only missing attributes and does not change the geometry in the map. Basically,
it complements the data by adding/updating missing attributes. Thus it can be stated that the
attribute extraction as well as the updating of OSM is novel and introduces a new method to enrich
the OSM data from GPS tracks in an automated manner.

Now that the novelty of this research is stated, the contribution of the results can be discussed.
Important to know is the rise of open data in the past few years. Open data is defined as free to use
data or data that does not exceed the costs of reproduction. Not only the data is free or at the cost
of reproduction, but everyone can also use, re-use the data and it is free from rights (Van Loenen,
2003). OSM is also open data, licensed under Open Data Commons Open Database License (ODbL)
(OpenStreetMap, 2014). Nowadays, open data is especially popular for governmental data. This is
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due to the financial benefits open data has, although it may sound unlikely. When selling data at a
price exceeding the costs of reproduction and with a strict copyright license, only primary users will
use the data. Primary users are the users that frequently use the data for the goal that it was meant
by the producer (van Loenen and Crompvoets). When providing the data for free or at the cost
of reproduction and without strict copyright licenses, the data will be used by primary, secondary
and tertiary users. Secondary users only use the data incidentally, but the tertiary users add value
to the product and provides the data to the end-user. In this way more people will benefit from
the data, making it possible to add value to the data and create new products. In fact "lowering
the price of public sector geographic data by 60% would lead to a 40% annual turnover growth"
(Pluijmers and Weiss, 2002). These facts also explain the importance of OpenStreetMap in the map
market. Alternatives for OSM are either available at prices exceeding the costs of reproduction, e.g.
HERE Maps, and/or the raw data is not available to the public, e.g. Google Maps. Alternatives
like HERE Maps are, of course, much more detailed in certain ways, having more resources to
produce the map. HERE Maps has one of the most detailed maps of the world and provides this
data to clients who demand this quality. However due to the costs, this map is not attractive to
tertiary users. Therefore OSM is an important source for tertiary users. Tertiary users can use OSM
freely to add value to the map, like cycling navigation applications for smartphones. This research
contributes to the level of detail of OSM and enriches the data to become more complete. Therefore
OSM can be used for more and different purposes. Possible attributes that can be extracted are
for example average speed and maximum speed which can contribute to navigation applications.
Thus a more complete map/dataset can lead to more applications, which means more users. This
research focuses on OSM and GPS tracks, but the final methods could also be used on different
maps and with different data types. The companies behind other maps could also benefit from the
result, since automated extraction is cheaper than manual updating attribute road data which is
nowadays done by driving through the entire country and taking pictures every 5 meters.

1.3 Objectives
The objective of this research is to develop a method that automatically derives and enriches
attribute road data from movement trajectories. Therefore the research question of this project is:

• Is it possible to derive and update attribute road data by using movement trajectories and to
what extent?

To answer this research questions, additional research has to be performed. The research sub
questions below facilitate answering the main question:

• Which road attributes in OpenStreetMap data can be enriched by GPS tracks (movement
trajectories)?

• Can GPS tracks provide information for new attributes to OpenStreetMap data?

• What is needed to extract the information for the missing attributes?

• How can the method automatically update OpenStreetMap?

• How can the results be validated?
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1.4 Scope and Outline
This research could be conducted on different maps and with different inputs and outputs. However,
for this research a choice has been made for OpenStreetMap as the updated map, GPS tracks as
the input and speed, direction, access and number of lanes as the output together with some new
attributes. This Section will elaborate more on why these decisions have been made and also defines
the scope of the research. Finally, it will conclude with the goal off this thesis.

There are many different maps available on the internet, of which Google Maps (Google) is
most known. Unfortunately, the data behind Google Maps is not available to the public. OSM
data is available to the public, but this is not the only reason OSM is chosen for this thesis.
OSM has 1,5 million users worldwide, who are contributing to the map or using it. These users
uploaded almost 4 billion GPS points, resulting in more than 2 billion nodes and over 200 million
ways (OpenStreetMap, 2013b). These nodes and ways construct the map of the world, showing
different features like different amenities, buildings and highways. It should be noted that OSM
does not make use of Open Geospatial Consortium (OGC) standards (OpenStreetMap, 2013b).
Object descriptions differ therefore significantly from other GIS applications. There are a great
deal of features, which are all making OSM one of the most detailed maps. Therefore more and
more people are using OSM and the more detailed it becomes, the higher the increase of users and
contributors will become. With its increasing popularity, this research can contribute to OSM to
make it more detailed and accurate.

There are many different types of movement trajectories. There are satellite based movement
trajectories such as United States’ GPS, Russia’s Global Navigation Satellite System (GLONASS),
Europe’s Galileo and China’s Beidou. These systems all fall under the Global Navigation Satellite
Systems (GNSS). A different, non-satellite based movement trajectory can be for example trilater-
ation of mobile devices. This thesis will investigate the possibility of using GPS tracks to derive
attributes for roads. GPS tracks are chosen because GPS is the most commonly used movement
trajectory and it is the original and most used way for updating OSM. Roads have been chosen,
because the movement trajectories usually follow roads. People tend to move over roads and there-
fore most information can be derived for the roads people are on. Therefore, the final algorithm of
this thesis will be most used by contributors of OSM. For the scope of this thesis (8 months), it is
not feasible to address all features and tags in OSM. Next to that, it is also not possible to derive
all information only from the GPS tracks. Therefore this research needs to be narrowed down to
only certain features and tags.

It makes sense that GPS tracks of people travelling have a direct link to the road network in
OSM. Therefore it will be most feasible to direct this research to the "highway" feature of OSM. "The
highway tag is the main tag used for identifying any kind of road, street or path." (OpenStreetMap,
2013b). Not only does the "highway" feature match the GPS tracks, it is also the most updated
and most used feature in OSM (Girres and Touya, 2010).

There are multiple attributes for the "highway" feature, but not all of these attributes can be
updated by using GPS tracks. Therefore this research will investigate the possibility of deriving
the information of four attributes, of which three of them are listed in the useful combinations by
OSM for "highway" (OpenStreetMap, 2013b). These three attributes are "maxspeed", "oneway" and
"access". The "maxspeed" tag provides information about the maximum speed that is allowed on
the road. Currently 26,3% of all the OSM highways in the Netherlands have a filled in "maxspeed"
tag. It should be noted that not all of these tags are correct and that the way of tagging varies,
e.g. only the number 30 or 30mph or 30 mph. By updating this data automatically these errors
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cannot be made anymore. The "oneway" tag is used to indicate the access restriction on the road,
describing either a one way road or a two way road. This tag occurs 13,9% of the time in the OSM
road network. The "access" tag provides information on the vehicles that are allowed on the road,
e.g. car, bus, bicycle and pedestrian. The fourth attribute is "lanes", describing the number of lanes
of the "highway".

Finally, the goal of this research is to research the possibilities of automatically deriving and
updating the four existing attributes in OSM using GPS tracks in combination with the OSM data
and creating a software prototype/algorithm to do so. Also the possibility of adding new attributes
to the methods will be investigated. The attributes for roads that will be investigated in this thesis
are:

• one or two way road

• speed limit

• number of lanes

• access of type of vehicles

• average speed

• hours of congestion

• importance

• geometrical error

This thesis will first address some related work in Chapter 2. In Chapter 3 the methodology of
this research will be provided. Chapter 4 discusses and explains the preprocessing of the data. In
Chapter 5 the extraction of the different attributes is investigated and developed after which the
results are validated in Chapter 6. Finally, Chapter 7 presents the conclusions and provides ideas
for future work.

6



CHAPTER2
Related Work

In order to automatically derive and update OSM attributes, closely related domains in the in-
formation science should be investigated. First is the domain of data mining as mentioned in the
Introduction. To extract these models and patterns from large volumes of data, two domains are
important: statistics and pattern recognition. Finally, the last Section will provide related work to
the topic of this research.

2.1 Data Mining, Pattern Recognition and Statistics
This Section will define the three domains of data mining, pattern recognition and statistics and
discusses some of the techniques that are commonly used.

2.1.1 Data Mining
The past years there is a vast increase in the amount of data. Datasets became bigger and bigger
and cannot be analysed by humans anymore, because of the time and costs that would take. This
causes the domain of data mining to grow rapidly in the past years. Data mining can be applied to
various fields, like: scientific data, medical data, demographic data, financial data and marketing
data (Han et al., 2006). For this research, the focus is on the field of spatial or geographic data.
The difference between the terms spatial and geographic is that:

"Spatial" concerns any phenomena where the data objects can be embedded within some
formal space that generates implicit relationships among the objects of which geographic
is the specific case where the data is georeferenced and relates to a location or position
on or near the Earth’s surface. "Geographic" refers to the specific case where the data
objects are georeferenced and the embedding space relates (at least conceptually) to
locations on or near the Earth’s surface. (Miller, 2008)

Spatial data mining focuses on extracting models and patterns from mass data that contain spa-
tiotemporal aspects. GPS tracks contain both the spatial aspect (x, y, z) and the temporal aspect
(time). The book "Mobility, Data Mining and Privacy" (Giannotti et al., 2008) provides an overview
on movement data, spatial data mining and concerning privacy issues. In this thesis, privacy issues
will be discussed in Chapter 3.4 and movement data or GPS data will be discussed in Subsection
3.1.1.

Spatial data mining can be used for deriving knowledge from data using models and patterns.

7



This is not the only way to derive knowledge from spatial data, one can also extract spatial features
from the data. Spatial features describe a characteristic of a geographic object. This object has a
spatial component in the form of a position, but also non-spatial attributes like maximum speed,
lanes and oneway direction for example. Non-spatial attributes can be treated like normal informa-
tion data, where the spatial features should be extracted differently. Spatial feature extraction can
be divided into two different groups: relational features and aggregation-based features (Giannotti
et al., 2008).

Relational features describe, as its name implies, the relation between the spatial components
between two or more different geographic objects. The main example of a relational feature is
distance. More relational features can be derived using topological relations and directional rela-
tions. Topological relations can be extracted using the 9-intersection model. This model is a 3x3
matrix representing the relations between the interior, boundary and the exterior of a geographic
object. The matrix can define 8 topological relations: disjoint, contains, inside, equal, meet, covers,
coveredBy and overlap (Clementini et al., 1994). Directional relations define the relation between a
point and its direction to another point. Directional relations can be expressed using the cardinal
directions north (N), east (E), south (S), west (W) and its combinations, e.g. north-east (NE)
or south-south-west (SSW), according to the cone-shaped areas. When using the projection-based
method, two orthogonal projections from the first object divide the space in nine partitions making
it possible to derive the direction to the second object.

Aggregation-based features describe the aggregation of data inside a certain area of which it is
not possible to assign a single location, e.g. birth rate data. Determining the spatial resolution is
important for this feature, since a too large resolution results in a single result where a too small
resolution separates all the data in a way no pattern can be discovered anymore.

To improve spatial feature extraction, one can use background knowledge. In the case of this
thesis it is possible to check whether a road is located on land or on water. If it is located on water
it can be stated that it is probably a bridge or a tunnel depending on the height of the road.

The spatial data mining domain consists of different techniques to derive patterns from mass data.
The techniques that will be discussed here are clustering, classification and regression, association
rules and subgroup discovery.

"Clustering divides a given set of objects into non-overlapping groups, such that similar objects
are within the same group and objects of different groups are most heterogeneous." (Giannotti et al.,
2008). For geographic objects, this means that objects that are in the neighbourhood of each other
can be clustered. Objects are thus divided into groups.

A different technique is classification and regression. This technique predicts unknown target
values of objects using a set of training data. It is, like clustering, an important part of the pattern
recognition domain. Therefore details of these two techniques will be discussed in Subsection 2.1.2.

The third technique is association rules. Association rules over relations are of the form X→Y .
X and Y represent the sets of items that co-occur in the dataset. If the rule is exact, it can be
stated that all tuples in a dataset that satisfy X also satisfy Y . The confidence factor is then 1.
But if it is lower it means that all tuples that satisfy X, not always satisfy Y (Miller and Yang).
For spatial association rules the X can be a spatial predicate closeToRoad that is calculated by the
spatial relationship distance. The rule should meet a certain threshold regarding the confidence
region to be reliable.

Finally, the fourth technique is subgroup discovery. It tries to detect subgroups in the whole
dataset that deviate significantly regarding a target value. Basically, this technique discovers the
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subgroups that are statistically the most interesting. This can be done by finding the groups that
have a significantly high or low share with respect to the target value, thus deviates the most from
it. (Herrera et al., 2011)

2.1.2 Pattern Recognition
Pattern recognition and data mining are closely related. "Pattern recognition is the scientific disci-
pline whose goal is the classification of objects into a number of categories or classes." (Theodoridis
and Koutroumbas, 2008). These objects, or patterns, can vary from images to any other type of
measurements. Data mining and knowledge discovery is one of the key application areas of pattern
recognition. Pattern recognition is commonly used for classification and clustering. This Subsection
will elaborate more on these two methods, which are commonly used in the data mining domain as
mentioned in Subsection 2.1.1. It should be noted that pattern recognition divides user cases into
two categories: supervised and unsupervised cases. In the first case there is a set of training data
available with known class labels, which can be used to learn classifiers in a supervised way. In
the second case, this kind of training data is not available and the goal is to reveal the underlying
similarities of the data and cluster the data that is similar to each other. This is known as unsu-
pervised pattern recognition. Figure 2.1 depicts the basic stages that are involved in the design
of a classification system. The sensor provides the measurements for the classification, this can be
satellite imagery, handwritten digits, etc. From these measurements, features can be generated and
selected. Features are basically the measurements that are used for the classification. The entire
set of features form the feature vector. There are different features that can be used from a set of
measurements. E.g. features of an image can be only the pixels, but it can also be the mean and
standard deviation of the intensity of the pixels. After the best features are generated and selected,
one can design the corresponding classifier.

Figure 2.1: The basic stages involved in the design of a classification system. Courtesy of Theodor-
idis and Koutroumbas (2008)

The goal of classification for supervised cases is to identify the input as a member of a predefined
class. For unsupervised cases it is to assign the input data to, till then, unknown classes (Jain et al.,
2000). To do this, there are several methods for both the supervised as the unsupervised cases.

Supervised classifiers can be divided into three main groups: classifiers based on Bayes decision
theory, linear classifiers and nonlinear classifiers.

The first group of classifiers is based on the Bayes rule. The Bayes rule uses the a priori
probabilities, the class-conditional probability density functions and the probability density function
of the pattern to calculate the posterior probability. The Bayes classification rule can then be defined
as the class with the highest posterior probability can be assigned to the object. "The Bayesian
classifier is optimal with respect to minimizing the classification error probability" (Theodoridis and
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Koutroumbas, 2008). This means that when everything is known, the Bayes classifier would always
have the lowest possible error. Classifiers that can be grouped under the probabilistic classifiers
based on Bayes rule are Naïve Bayes Classifier, Bayesian Networks, Linear Discriminant Analysis
and Quadratic Discriminant Analysis.

Linear classifiers classify the data without taking into account the underlying distributions
describing the training data. Linear classifiers divide the l-dimensional feature space in a linear
way that all (or most) points are classified correctly. It is the most simple and computationally
effective classifier. Classifiers that can be grouped under the linear classifiers are the Perceptron
Algorithm, Least Squares Methods and Linear Support Vector Machines.

Nonlinear classifiers divide the space in a nonlinear way that all (or most) points are classified
correctly. Nonlinear classifiers are closely related to linear classifiers, which means that linear clas-
sifiers can also be used as a nonlinear classifier with some adjustments. Nonlinear classifiers are the
Two- and Three-Layer Perceptron, Nonlinear Support Vector Machines and Decision Trees. There
is also the possibility to combine different classifiers to improve the classification.

In unsupervised cases, one cannot speak of a real classification since the class labels are not known.
Therefore unsupervised pattern recognition is defined as clustering, which can be defined as reveal-
ing the organization of patterns into clusters. Clustering algorithms can be divided into sequential
algorithms, hierarchical clustering algorithms, clustering algorithms based on cost function opti-
mization and other.

Sequential algorithms produce a single clustering. The number of clusters is not known in
advance, therefore a threshold needs to be set. Every new vector is considered by the algorithm, after
which is assigned to an existing cluster or a new cluster is created. It all depends on the distance
to the other clusters. The number of clusters can not exceed the defined threshold. Different
sequential algorithms are the Basic Sequential Algorithmic Scheme (BSAS), the Modified BSAS
and the Two-Threshold Sequential Scheme.

Hierarchical clustering algorithms do not produce a single clustering, but produce a hierarchy
of clusterings. The entire dataset is considered at the beginning of the algorithm. The two closest
objects in the feature space are clustered depending on the distance that is chosen, e.g. Euclidean
distance or city-block distance, and the method of linkage, e.g. single linkage or complete linkage.
After the clustering, all distances are calculated again with the cluster included. Again, the closest
objects are clustered and this continues until there is only one cluster. The way of clustering can
be depicted in a dendrogram, of which an example is given in Figure 2.2. Cutting the dendrogram
at the biggest leap offers often the best clustering.

Clustering algorithms based on cost function optimization relies, as the name already implies, on
the optimization of a cost function using differential calculus techniques. Four major categories can
be defined for this clustering algorithm: the mixture decomposition algorithm, the fuzzy algorithm,
the possibilistic algorithm and the hard clustering algorithm. The most well-known clustering
algorithm, k-means clustering, falls under the latter category. The goal of the k-means clustering
algorithm is to determine a set of k points in the feature space to minimize the mean squared
distance from each data point to the nearest k (Kanungo et al., 2002).

2.1.3 Statistics
Data mining and pattern recognition benefit of the field of statistics. According to Friedman (1998)
statistics can "be defined as the set of problems that can be successfully addressed with these and
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Figure 2.2: An example of a dendrogram. Courtesy of Theodoridis and Koutroumbas (2008)

related tools [...]:

• Probability theory

• Real analysis

• Measure theory

• Asymptotics

• Decision theory

• Markov chains

• Martingales

• Ergotic theory

• etc..."

Subsection 2.1.2 about pattern recognition already explained methods in that field that uses the
probability and decision theory from the statistics field. It can be stated that both the data mining
and the pattern recognition domain benefit from the statistics domain. The mathematical core of
statistics is used as a ground layer in both domains.

2.2 Attribute Extraction from Movement Trajectories
Two related works are similar to this research, the work by Zhang et al. and the work by Chen and
Krumm. This Section will go more into detail in the methods that are used for their research.

Zhang et al. "describe a process which incrementally improves existing road data with incom-
ing new information in terms of GPS traces". The GPS traces that are used by Zhang et al. are
downloaded from OSM. These GPS traces have a accuracy of 6 to 10 meters and the coverage of
the traces vary from road to road. It is stated in the paper that highways tend to have a density
of 30 to 80 GPS traces, where a busy city road has less than 20 and a local road has a few or less
and sometimes none. TeleAtlas-data is used for an independent quality analysis.

In the preprocessing stage GPS points are linked using the timestamps and different trips are
split into separate trips. The threshold for splitting trips is when the distance between two points
is larger than 300 meters or if the heading changes more than 45 degrees. Also the speed is derived
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from the GPS traces. Thresholds of 250 km/h in highway areas and 100 km/h in urban areas are
set.

For extracting the centerlines of the roads the OSM road map is used as initial prior information.
First the GPS traces need to be matched to these roads. Three conditions are used to find the
corresponding road to a GPS trace: distance to the road, direction and the angle between the trace
and road. The first step in the process is to draw perpendicular lines of 30 meters along the roads
to select possible traces, these lines can be seen in Figure 2.3. Traces that intersect with the lines
are selected and then checked if the heading is also within 20 degrees of the direction of the road.
This method is not able to separate traces from roads that are parallel and close to each other,
e.g. the two roads in Figure 2.3. Therefore the authors created a clustering method, which also
makes use of the difference in speed between traces. The clustering method used in the paper is
a fuzzy c-means algorithm. This algorithms sets two initial cluster centers at the beginning and
the end of a perpendicular line to achieve the maximum separation of the two clusters. Traces
with a membership degree higher than, at least, 0.5 are then assigned to the cluster. When the
map matching is done, the new centerline can be determined. The authors select the points within
95% confidence interval and calculate the center of these points. This center is then added to the
centerline vertices.

Figure 2.3: Perpendicular lines along the roads to select possible traces. Courtesy of Zhang et al.

The paper addresses not only the centerline estimation, but also extracts some attributes. An
estimation of number of lanes has been made by using the standard deviation of the distribution of
the GPS traces with respect to the road. The method assumes that two or more lane roads have a
width of 3.5 meters and one way roads have a width of 5 meters. Therefore, when two times the
standard deviation is smaller than 5.5, 2σ<5.5m, the road is considered a one way road. When two
times the standard deviation is larger than 5.5, 2σ>5.5m, the road is considered a 2σ/3.5m lane
road. Besides number of lanes, the paper also addresses turning restrictions as possible attributes.
It considers 6 types of turn restrictions: straight on, left turn, right turn, no straight on, no left
turn and no right turn.

Finally, the paper validates the results of the method. The TeleAtlas dataset is used for val-
idating the positional accuracy of the roads, having an accuracy of 2 to 10 meters. The data is
validated by checking the number of roads that are within 2, 5 and 7 meters from the TeleAtlas
data. OSM roads have a 14.8% rate for a 2 meter buffer against 27.4% for the proposed method.
For 5 meters it is 46.8% (OSM) and 61.7%, for 7 meters it is 65.8% against 73.9%. The method
proves to be successful in improving the road data. Also the number of lanes where validated and
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it turned out that out of 42 roads, 25 roads are given the correct number of lanes. This means an
error of 40.48%. (Zhang et al.)

Where Zhang et al. focus more on the improvement of the geometry of roads than the extrac-
tion of attributes, Chen and Krumm focus on the latter aspect. In their paper they "introduce the
idea of using a Gaussian mixture model (GMM) to model the distribution of GPS traces across
multiple traffic lanes" and in that way "automatically compute the number and locations of driving
lanes on a road". This automated method could, in the future, maybe replace the time consuming
and costly alternatives, e.g. using aerial imagery. The GPS data that is used by Chen and Krumm
is collected from 55 shuttle vehicles driving around their institution collecting a total of about 20
million GPS points. The authors concentrated on intersections for the testing of the method.

Again, perpendicular lines are drawn along the road to find intersections between the lines and
the GPS tracks. This will result in a one dimensional dataset representing the spread of the GPS
traces. The paper makes use of the assumption that GPS tracks cluster near the center of the lanes,
however certain errors will cause the points to be spread. Therefore they assume that the spread
within a lane can be modelled as a Gaussian distribution. First, the expectation-maximization
(EM) algorithm is used to learn the parameters of a GMM. Some constraints are added to the EM
algorithm. The first constraint is that the width of the roads are equal, resulting in similar distances
between the mean of different lanes. The second constraint is that the variance of the Gaussian
components remains the same between different lanes. The result of the constraint GMM on a
road with two lanes can be seen in Figure 2.4. Akaike information criterion (AIC) and Bayesian
information criterion (BIC) were used for model selection, which means automatically selecting the
number of lanes to fit the parameters of the GMM. However, these two methods did not work well
for the problem. Therefore a different regularizer is used, called Lane Spread.

Figure 2.4: Result of a constraint GMM on a road with two lanes. Courtesy of Chen and Krumm

Cross-validation was used for testing, using 80% to train and 20% to test the data. For the three
intersections, that this paper concentrated on, the best result was with the restricted (constraint)
GMM using the Lane Spread regularizer. This combination led to an error of 28.06%. The new
methods proposed in the paper give better results than previous methods, but it also naturally still
models the inherent noise in GPS data.
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Both related works show there is still work to be done regarding attribute extraction and, in
particular, lane detection. Probably there are more attributes that can be derived from GPS data
that are not treated in these two papers.
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CHAPTER3
Methodology

The outcome of this research is the updated OSM data, containing the missing attributes for roads.
To come to this output, a few steps need to be taken. The input of the system is the data that is
already available: the raw GPS data and the OSM data. First a segmentation and classification
need to be performed on the GPS data in order to filter out tracks made with transportation modes
that are not useful in this thesis and to derive multiple elements like speed and heading. These
will later be used to derive the attributes. Then a map matching algorithm will be performed on
the GPS dataset with the OSM data to match each GPS point to the correct road. After the
map matching the attributes for every road can be extracted by using different attribute extraction
algorithms. The resulting dataset can then finally be validated and updated into OSM. All the
steps are depicted in Figure 3.1. This Chapter gives insight in the different steps towards the final
result. First the available data will be described. Secondly, an overview is given on the different
available map matching algorithms. After that the various attribute extraction algorithms and their
implementation for updating OSM will be treated. Finally, the possible privacy issues concerned
with this research are discussed in the final Section.

3.1 Data
The raw GPS data is acquired in February 2013 for an urban analysis project by Paul van de
Coevering of the Urban and Regional Development Section of Delft University of Technology, one
of his works is the research on public transport from the perspective of urbanization and mobility
(Hilbers et al., 2009). The data contains GPS points containing coordinates (x, y, z) and time (t)
recorded every 5 seconds by more than 800 people in Amersfoort, Veenendaal and Zeewolde during
a certain timespan. The data consists of 40 million GPS points in total of which 3,7 million are
made by car and 1,5 million by bicycle. These GPS points result in tracks with a total length of
385.000 kilometers of which 272.000 kilometers are made by car. This raw data is imported in a
database and preprocessed for calculating various statistical values, after which a classification and
segmentation algorithm is performed as explained by Biljecki et al. (2013). This data contains,
besides the raw data elements, for instance: speed, heading and transportation mode.

The OSM data is freely downloadable for everyone and thus can be viewed online, but also
offline in a Geographical Information System (GIS) and it also can be stored in a database. For
the OSM "highway" data in a database the table contains, for example: the id, type, one way street
(yes/no), maximum speed and access. The last three columns contain the attributes that this thesis
tries to derive in an automated way from the GPS tracks, adding also the number of lanes. Both
the OSM data as the GPS data are available in a PostGIS database.
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Figure 3.1: Diagram explaining the methodology of the research

When visualizing these two datasets, it becomes visible that there has to be dealt with inac-
curacies (Figure 3.2). Both datasets have their errors. The GPS tracks have an error due to the
accuracy of the GPS device. These GPS tracks are also used to map OSM, thus these errors will
also occur in OSM. OSM has an average error of approximately 6 meters compared to the positions
recorded by the Ordnance Survey in the United Kingdom (Haklay and Weber, 2008).

The two datasets together can already be used for extracting some information that can be
useful for the road attributes. A cross-section of a certain road can be made with all nearby GPS
points. The distances from the GPS points to the centerline of the road can then be calculated.
After this the distances can be plotted in a graph to see if there is a relation between high densities
of points at a certain distance and the number of lanes of that road.
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Figure 3.2: An example of GPS tracks visualised on OSM

3.1.1 GPS Data
"GPS provides accurate, continuous, worldwide, three-dimensional position and velocity informa-
tion to users with the appropriate receiving equipment."(Kaplan and Hegarty, 2005). The GPS
constellation contains at least 24 satellites, which are arranged in groups of 4 in 6 different orbital
planes. To determine an accurate location, at least 4 measurements from different satellites are
needed. The time of arrival (TOA) method is used to determine the latitude, longitude and height
of the user. GPS falls under the more general name Global Navigation Satellite Systems (GNSS)
together with other systems. Where GPS is a product of the United States, Galileo is the satellite
system of the EU, GLONASS of Russia and Beidou is the satellite system of China. These systems,
apart from GPS, are not fully operational yet or have less satellites in the air which means less
coverage around the world. Therefore GPS is the most popular and most used satellite system,
thus also used for this research.

From the results derived from the GPS devices, data can be enriched using calculations on
the information of consecutive points (e.g. speed or heading). The following list contains all the
available data that is used from GPS:

• Point ID (pid)

• User ID (userid)

• Time (time)

• Acceleration (acc)

• Speed (speed)

• Calculated speed (calcspeed)

• Heading (heading)

• Geometry (geom), Latitude (lat) and Longi-
tude (lon)

The GPS device is not 100% accurate, there are different error sources. Lots of these errors can be
decreased by taking precautions. Differential GNSS (DGNSS) is one of these precautions, using a
second receiver on a fixed position to increase the accuracy by correcting the errors of the measure-
ments of the receiver. However, there are also errors which are more difficult to take care of, e.g.
multipath and availability problems in urban canyons.

"Multipath is caused by multiple reflections of the microwave signal emitted by the GNSS
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satellite."(Lemmens, 2011). When these signals are reflected, the receiver can receive the same
satellite signal multiple times. This can distort the measurements of the GPS receiver. Multipath
tend to happen more often in urban areas than in rural areas, since there are more reflecting surfaces
in an urban area. This causes the precision of GPS to decrease in these areas.

Next to multipath problems in urban areas, there are also GPS constellation problems for the
built environment. Surrounding high buildings in an urban area can affect the availability of GPS
satellites. An urban canyon model from Kleijer et al. proves the lack of satellites in the North,
as can be seen in Figure 3.3. This causes streets that have a North-South orientation to have a
limited availability of GPS satellites, where streets with an East-West orientation suffer less from
this problem.

Figure 3.3: GPS skyplot for the urban canyon model. Dots represent visible satellites, crosses
represent non-visible satellites. Courtesy of Kleijer et al.

It can be stated that GPS is not 100% accurate. Especially in urban areas there are more errors
which can lead to a decrease of accuracy. This is something that should be taken into account.

3.1.2 OpenStreetMap Data
As already discussed in Section 1.1, OSM has a concept that follows the model of Wikipedia. This
means that the user is important and responsible for the input and maintaining the data. Users
cannot only add GPS tracks and tags, but they can also edit the existing map. They can add
or edit roads, but also other elements of OSM. In Section 1.4 is already discussed what kind of
errors result out of the freeform tagging system. Different contributors tend to insert the tags in a
different way. This also counts for the way OSM is drawn. As already stated above, contributors
can add and edit the geometry of the OSM roads. Different contributors lead, again, to different
results. The detail of drawing roads differ between different contributors. Where one could draw
a slightly bended road as a straight line, another could draw it as a multilinestring with multiple
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nodes following the curve of the road. These ways of drawing can have an influence on the results
of this thesis and should be taken into account. It is not only the way of drawing, but also the
level of detail per country that is different. The Netherlands is represented relatively well in OSM,
in detail and in coverage. Other countries may already be satisfied with a decent percentage of
coverage, not to speak of the detail.

The UML (Unified Modeling Language) diagram of OSM data can be seen in Figure 3.4 (Hahn,
2014), this diagram shows the relations and contents of the database in a schema. The relations
between all the different components are depicted in this diagram. The top right side of the diagram
is the most important part for this thesis, the ways and their tags. A tag consists of a key (e.g.
"maxspeed") and a value (e.g. "30").

Figure 3.4: UML diagram of OpenStreetMap data. Courtesy of Hahn (2014)

3.1.3 Analysis of Input Data
As already stated in the previous subsections, there are always standard errors with data. GPS
data suffers from inaccuracy, availability of GPS satellites and urban canyons, where OSM data
relies on users/contributors who are responsible for the data. These are not the only causes for
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errors, there are more. This Subsection discusses the analysis of the input data.
During the analysis of the GPS data, one problem arose: stationary points. The GPS dataset

contains many stationary points, i.e. points with a speed around 0. Analysis of the GPS data show
that 709.127 points out of a total of 3.660.561 points made by car have a speed lower than 5 km/h.
One of the causes of these stationary points can be seen in Figure 3.5. Apparently, the carrier of the
GPS device forgot to turn of the GPS device before going into his/her house, resulting in a large
scatter of GPS points near the house. This does not only happen when going into buildings, but
also when the carrier of the device forgot the GPS device when leaving the car. Multiple stationary
points have been found on parking lots.

Figure 3.5: Stationary points of a random GPS track near a house

As mentioned in Subsection 3.1.2, the way of drawing can differ in OSM. There are some cases
where this way of drawing can lead to errors. Roundabouts, for example, are considered roads in
OSM. Thus when working with road data it is possible that you encounter a roundabout. If the
roundabout is treated as a normal road it could cause errors in specific cases, because a roundabout
is drawn as a closed linestring in some cases in OSM. Also, analysis of some OSM linesegments
show the possibility that they contain two consecutive points that are the same. This could cause
problems when splitting the linesegments of a road into smaller segments, resulting in a segment
which contains exactly the same points.

3.2 Map Matching
Matching the GPS points to the OSM data is an important step in the research. If a GPS point
is matched to the wrong road, the attributes will also be wrongly updated. Therefore, the error of
the map matching determines also a part of the error of the assignment of the attributes. It should
be noted that this research is based on post processing, not on real-time data mining.

Different map matching algorithms can be defined. These map matching algorithms can be
categorised into 4 groups: geometric algorithms, topological algorithms, probabilistic algorithms
and advanced algorithms (Quddus et al., 2007). In this Section, all four categories will be explained
shortly and some related work will provided.
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3.2.1 Geometric Algorithms
Geometric map matching algorithms use, as the name already implies, the geometric information
of the road network. Geometric map matching can be implemented in a few different ways as
researched by Bernstein and Kornhauser (1998). The first method is point-to-point matching, this
method makes use of the closest node search algorithm. For every GPS point its closest road
network node is mapped. This method is highly error sensitive, as both the inaccuracy of the GPS
points and the number of nodes per line or arc causes severe differences in performance. The second
method that is proposed by the authors is the point-to-curve matching. Distances are calculated
between the GPS points and the edges in the network, after which the edge with the shortest
distance is assigned to the GPS point. This method performs already better than point-to-point
matching, however there are still problems like with a high density of roads or at junctions. At
junctions the GPS point can easily be assigned to the road perpendicular to the road that the
vehicle is actually on. With a high density of roads, the GPS point can easily be assigned to a road
parallel to the road that the person was on. The visualization in Figure 3.6 shows a GPS track on
a railroad, however there are some points that are closer to the highway next to it. These points
would be assigned incorrectly and could cause the enrichment to enrich the highway with railroad
attributes.

Figure 3.6: GPS track on a railroad with a highway parallel to it

The third method is curve-to-curve matching. In this method linear curves from the vehicle’s
trajectory are matched with the edges of the road network. The edge of the road that is closest to
the edge of GPS tracks will be assigned to the corresponding GPS points. This method still has
some errors due to outliers and because it is still based on point-to-point matching.

The geometric map matching algorithms probably are the most simple map matching algorithms,
however these algorithms are also quite sensitive to errors and therefore is the performance of these
algorithms most likely less than other algorithms.

3.2.2 Topological Algorithms
Topological algorithms are about the topology of the road network. "In GIS, topology refers to
the relationship between entities (points, lines, and polygons)." (Quddus et al., 2007). These rela-
tionships are adjacency, connectivity and containment. Therefore topological algorithms make use
of the connectivity and contiguity of links in a network. Recent work on topological algorithms
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are the enhanced weight-based topological algorithm by Velaga et al. (2009) and an efficient map
matching algorithm of large GPS data sets by Marchal et al. (2005).

The first algorithm uses link data (including ID, start node and end node), node data (including
ID, easting and northing coordinates), positioning and navigation data from a navigation sensor,
vehicle heading and speed and turn restriction data for junctions. Next, the map matching process
is divided into three stages: the initial map matching, map matching on a link and map matching
at a junction. The first stage is to identify the first correct link for the first positioning point. The
next fix is then determined by checking three criteria. First it checks whether the vehicle is in a
stationary condition, in this case it will be matched on a link. Second, the algorithm checks whether
the vehicle is travelling on the previously matched link which would also cause the algorithm to
match it on a link. Third, it checks whether the vehicle is near to a junction, in this case it will
be matched at a junction. The algorithm makes also use of weights when selecting candidate links.
For the initial map matching the heading and proximity are used. For map matching at a junction,
two additional weights are used: turn restrictions at junctions and link connectivity (Velaga et al.,
2009).

The second algorithm by Marchal et al. (2005) relies only on GPS coordinates and the network
topology. First the distance between a point and a road segment is calculated. During the initiali-
sation the closest set of links to the first data point are found. Due to signal losses and other types
of noise the GPS tracks will be split into paths. Next, the network topology is used to determine
the subsequent points. Scores are calculated for each path, which are then ranked. These paths are
all stored and finally the best ranked path can be chosen (Marchal et al., 2005).

3.2.3 Probabilistic Algorithms
"The probabilistic algorithm requires the definition of an elliptical or rectangular confidence region
around a position fix obtained from a navigation sensor." (Quddus et al., 2007)

Basically, the error variances are used to derive an error region which tries to identify a road
segment on which the vehicle is travelling. Ochieng et al. (2009) developed an improved probabilistic
map matching algorithm. This algorithm takes into account the error sources associated with
the positioning sensors and the historical trajectory of the vehicle. They have also made use of
topological information on the road network and the heading and speed of the vehicle, like the
enhanced weight-based topological algorithm of Velaga et al. (2009). The algorithm starts, like
most map matching algorithms, with the initial map matching process followed by the subsequent
matching process. A confidence region is created to select candidate road segments. The earlier
mentioned input help selecting the road segment of which the probability that the vehicle is on that
road is the highest.

3.2.4 Advanced Algorithms
Advanced map matching algorithms are usually the more complex algorithms, like Kalman Filters
and fuzzy logic models. They are based on different methods and a large variety of advanced
algorithms are therefore available.

Quddus et al. (2006) describes a high accuracy fuzzy logic based map matching algorithm for
road transport. This algorithm is based on fuzzy logic theory, which let the algorithm deal with
qualitative terms like likeliness to identify a correct link. The inputs of the system are GPS data
and deduced reckoning (DR) data. These two data sets combined result in a data set containing
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Easting, Northing, vehicle speed, heading, and the associating error variances. Fuzzy logic is not
only used to identify the correct link among candidate links in the initial map matching process,
but it is also used in the subsequent map matching process. Again, the subsequent map matching
process consists out of matching on a link or matching at a junction.

Winter and Taylor developed a modular neural network (MNN) approach to improve map
matched GPS positioning. "The research deals with designing and developing a MNN technique
that autonomously chooses the appropriate expert from a number of locally trained ANN (artificial
neural network), based on road shape." (Winter and Taylor). An advantage of this system is that,
once the neural network is trained, the algorithm can achieve a high performance for real-time map
matching. The algorithm uses CDOP as a road shape indicator to categorize the input in four
different categories that are based on CDOP value ranges. Each category has its own ANN. A
disadvantage of this method is that for the training and testing of the individual ANNs and the
resulting MNN, a large amount of GPS data is needed.

Newson and Krumm propose a Hidden Markov map matching algorithm. The Hidden Markov
Model (HMM) is used in this algorithm to integrate noisy data and path constraints smoothly. The
algorithm uses measurement probabilities and transition probabilities to derive the optimal path,
which is the most probable path.

Jawad and Kersting (2010) describe a kernelised map matching algorithm, which make use of
kernels. First the consistency between the similarity measures are captured by the kernel matrices
of the trajectory and the relevant part of the road network. Then the resulting relaxed assignment
is rounded into a hard assignment fulfilling the map constraints.

There are different map matching algorithms, which all have their advantages and their disad-
vantages. The easiest method is to take the shortest distance to road, but this method also gives a
high error rate. A wrong classification of a GPS point would, in the case of this thesis, also mean
wrong attribute information for the assigned road. It should also be noted that not the entire track
has to be completely matched. Outliers in GPS data can easily be left out, since not all points are
needed for the attribute extraction.

3.3 Attribute Extraction and Updating
This Section discusses the methodology for extracting and updating the attributes. Every attribute
has its own method and therefore for every attribute a short description of the methodology is
given. All attribute extraction methods will use PostgreSQL (PostGIS) and Python to derive the
attribute information. Both, the OSM data and the GPS data, was already available in PostgreSQL
in advance of this thesis. Therefore it would be logical to continue in this database. An advantage of
this database is the PostGIS extension which makes it possible to use geometries in the database.
As a programming language, Python is used. Python is an open-source programming language
which can be extended with multiple libraries. Therefore it is possible to connect to the PostgreSQL
database and derive information from it. It is also possible to implement mathematical and scientific
libraries, and machine learning libraries. This makes Python a complete language which is beneficial
for this research. All attributes will be trained on the 10 most used roads in the dataset to get the
best test results.

Different attributes are used in OSM for the "highway" tag. The main tag is the type of the
road. There are multiple secondary tags (OpenStreetMap, 2013b):
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• name

• one way

• speed limit

• structure

• access

• lanes

• surface

• reference

• abutters

• maximum height

• maximum width

For the type of road, the name of the road and its reference (e.g. A1) it is not possible to derive
from only GPS tracks. The same is for the "abutters" tag, which describes the predominant usage
of land along the road. It is also impossible to derive information on the surface of the road and
without the knowledge of the vehicle in which the GPS tracks are acquired it is also not possible
to extract the maximum height and width of the road. Extracting the structure, e.g. bridges and
tunnels, might be possible using signal shortages and the underlying landuse. However, for other
structures it might be more difficult and this attribute is not as common as the remaining 4 sec-
ondary tags. Therefore the existing attributes in OSM that will be derived are mentioned below.
Between quotation marks are the tag names as they are used in OSM.

"oneway"
For determining whether a road is a one or two way road it is important to have the heading of the
GPS point and the direction of the road. Both can be derived from the data. Next, a threshold
needs to be carefully chosen to indicate which points are going in the same direction of the road.
This threshold will determine whether a GPS point moves in one direction of the other. Finally
there is always the possibility to have outliers, therefore a ratio has to be chosen to determine
whether a road is one way or two way.

"maxspeed"
The most important thing to derive the maximum speed is to anticipate the behavior of the drivers.
Chosing the correct thresholds for assigning the speeds on a road to a specific speed limit is the
key to success for this attribute.

"lanes"
Deriving the number of lanes from GPS tracks has been proven to be a difficult task. Two differ-
ent methods are already introduced in Section 2.2. An attempt will be made to implement these
methods in this thesis. To be able to implement these methods a few steps need to be taken first.
The distance from the GPS point to the road should be calculated and also on which side of the
road the point lies. This will give a relative position of the point to the road and after that the
methods can be implemented.

"access"
The access attribute relies on map matching. The available GPS data contains different trans-
portation modes. If these transportation modes are matched correctly to the roads, the according
vehicles can be added to the access list. However, the OSM road network should have a full coverage
and contain all different roadtypes (e.g. buslines, cycleways, footpaths) to make this method 100%
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accurate.

This research not only extracts existing attributes of OSM, but also introduces new attributes.
These attributes might contribute to a more complete and detailed map. Commercial map makers
like Google Map Maker (Google, 2014) and HERE Map Creator (HERE, 2014) have more attributes
implemented compared to OSM. HERE has the average speed attribute, whether the road is well
lit and whether it is a crowded road incorporated in their maps and Google adds the priority of
the road, quality of the road and the house numbers along the road. From these attributes, the
average speed could also be implemented in this research and an attribute to measure how crowded
the roads are could be developed. However, the other attributes are difficult to derive from GPS
tracks.

Below, the new attributes that are investigated but that are not available in OSM are listed.
Some of these attributes are already implemented in commercial maps. However, not all of them are
extracted automatically at these companies and it might be of interest to introduce such attributes
in OSM.

"averagespeed"
Deriving the average speed is not that hard, all speeds of a road should be summed and divided by
the number of GPS points. This will result in the average speed of the specific road.

"congestion"
Congestion is an attribute that is based on the "averagespeed" attribute. The average speed can be
calculated for every hour of the day. The results per hour can then by compared and hours in which
the average speed is significantly lower than the other averages can be added to the congestion tag.
This makes it easy to see in which hours of a day you need to avoid certain roads.

"importance"
Importance can be described as the usage of a road compared to other roads. A percentage of
the usage of the road can be calculated. Chosen thresholds for the different categories can then
categorize the roads in importance.

"geometryerror"
This attribute will define an error given to the geometry of the road. By comparing the mean
distance to the centerline of the road with the actual centerline of the road given by OSM, one can
define a certain error. If this error is higher than a certain threshold a warning can be given for
that road that a change of geometry might improve the accuracy of the geometry.

These attributes, or tags, are all connected to one specific road. These roads are called ways
in OSM. Every way has its own tags as could be seen from the UML diagram in Figure 3.4. As
already stated, these tags have their own keys and values. In the UML diagram of Figure 3.7
these keys and their values are depicted with their link to the ways. The values for the existing
attributes are from OSM and the new attributes contain the values as they are expected in the final
application.

Finally, the updating of these attributes in OSM directly might be a difficult case. It should be
investigated if directly updating OSM is possible, otherwise other alternatives could be used. OSM
data is freely available for everyone, this means it can be downloaded and stored in a database.
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Figure 3.7: UML diagram of the different tags and their values

The database can be updated with the new or improved attribute information.

3.4 Privacy
Privacy is an everyday returning issue, also in the field of Geomatics. Privacy is often described
as "the right to be left alone" (Brandeis and Dossick, 1890). Like in many other applications, this
research also concerns privacy. In this case, it is information privacy. Information privacy describes
the privacy of personal data. GPS tracks of moving people is personal data. This means that with
the data people can be identified, directly or indirectly.

However, there are no privacy issues concerning the GPS data used in this thesis. First the data
that is used is anonymized, this means that no direct link between the person that carried the device
and the data is saved. This has been done by changing the ID of the GPS device to a random ID
of which the original ID cannot be retrieved. Therefore, the data converted from personal data to
impersonal data.

Secondly, the final result of this thesis will be derived from mass data from which individual
tracks cannot be reconstructed. Only the result of the attributes are stored leaving no trace to the
original GPS data. This last point is an important point for future implementations. Basically this
makes sure that no link to the GPS tracks or devices can be found. However, usually people need to
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give permission to acquire their location. For future implementations people can be asked if their
location can be used for "enrichment of the dataset" or for "the improvement of the traffic flow".
There can be multiple purposes to use the location of the user. In OSM, the contributors already
agree that their GPS tracks are used by OSM when uploading them. Therefore the uploaded GPS
tracks of OSM can already be used for attribute extraction. It should be noted that these GPS
tracks are different from the GPS tracks used in this research. The GPS tracks in this research are
from real-life situations, where OSM contributors deliberately drive a certain route which causes
the driving behavior to change.
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CHAPTER4
Preprocessing the Data

This Chapter describes the preprocessing steps that have been made in the research process. These
are multiple steps from applying the map matching and classification algorithms to filtering the
datasets. The first Section describes the TrackMatching algorithm which provides the map matching
for this research. The second Section elaborates on filtering the GPS and OSM data and in the last
Section the creation of the training dataset will be explained.

4.1 TrackMatching
The final map matching algorithm that is be used for this project is based on the topological
algorithm by Marchal et al. (2005). A cloud based web service called TrackMatching is developed in
2013 by Fabrice Marchal. This web service matches GPS data on the OpenStreetMap road network.
It is accessible through a REST API which uses four HTTP methods (GET, POST, PUT and
DELETE) to execute different operations and can be integrated within the final software prototype.
The service is also free to use for developers that use the API to build early stage applications.
TrackMatching uses GPX-files or custom CSV/Text format containing only the positions and the
timestamps as an input. The output is the routes that are matched from GPS points. These can
be used for further processing to acquire the id of the road per GPS point. This Section will give
insight in the map matching process performed for this research. First the preprocessing steps
before the actual map matching will be described, after which the map matching and the results
are presented.

4.1.1 Preprocessing
The input of the TrackMatching algorithm are the consecutive points of a GPS track consisting
out of the position of the GPS point (x, y, z) and the timestamp (t). This input can be inserted
in the form of a GPX-file or a custom CSV/Text format. The latter will be used for this research,
because this format can handle large bunches of data better than the GPX-files. Before the map
matching can be performed, the CSV files should be created.

The first step is therefore to extract the data from the database into a CSV file. Python is used
to automatically extract all the data from the PostgreSQL database and write it into a CSV file. It
is important that the GPS points are ordered by time and by user ID to retain the correct sequence
of the points. A large CSV file containing all the GPS points is the result of this first step. This
file should be separated into smaller files of which each having their own user ID. Therefore first
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the all the distinct user IDs are extracted to acquire all different users. These user IDs are then
used to split the large CSV file into smaller CSV files per user ID.

4.1.2 Map Matching using TrackMatching
Now that all different tracks have their own CSV file, they can be map matched one by one.
TrackMatching can be accessed via a REST API from Python, a for loop will make sure that all
the different files will be matched one at a time. The Python code that is used consists out of
an URL that calls the REST API and gives a payload containing a personal id and key and some
options regarding the map matching. Additional headers contain the content types of the input
and of the output. Finally, all the output will be written into different XML files that still separate
the tracks.

The returned XML file contains a route class that describes the matched route of the GPS track,
as can be seen in the code below:

<?xml v e r s i o n ="1.0" encoding="UTF−8" standalone =" tr ue "?>
− <r e s u l t>

− <d i a r y>
− <e n t r i e s>

− <entry>
− <route>

− < l i n k dst=" 343639788 " id=" 185815954 " s r c=" 307697863 ">
<wpt id=" 55363679 " />
<wpt id=" 55363680 " />
<wpt id=" 55363681 " />
<wpt id=" 55363682 " />
<wpt id=" 55363683 " />
<wpt id=" 55363684 " />
<wpt id=" 55363685 " />
<wpt id=" 55363686 " />

</ l i n k>
− < l i n k dst=" 307697873 " id=" 185815945 " s r c=" 343639788 ">

<wpt id=" 55363687 " />
<wpt id=" 55363688 " />

This route lists the driven roads, called ’links’. These links contain an OSM ID and the correspond-
ing start and end node of that road. Also, the matched GPS points are listed underneath the links
by using the IDs of the GPS points. The next step is to derive the IDs of the GPS points and the
corresponding road ID. A Python script parses the XML file and writes all the GPS point IDs and
corresponding roads to a new CSV file. After parsing all the XML files and writing them to a single
CSV file, the latter can be imported into the PostgreSQL database. All data from the GPS points
can then be joined with the GPS point ID and all data from the OSM roads can then ben joined
with the road ID. This will result in a table containing all information regarding the map matched
GPS points.

4.1.3 Analysis
Analysis of the final map matched data show that there are still some errors in the data. One of
the most common errors is caused by stationary points, these are points where the GPS device is
not moving over a long period of time. This can be for example caused by leaving the GPS device
inside a parked car. These points are not filtered before the map matching and also not by the
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TrackMatching algorithm. This results in stationary points that are matched to one road, causing
the road to contain GPS points which are not actually on that road.

One disadvantage of the service is that only motorised road networks are taken into consideration
for the map matching. This will cause the service to match bicycle tracks that are on a cycleway
to the motorised road as can be seen in Figure 4.1a. The flags represent the GPS points that are
on the cycleway which is the blue dotted line. The points are matched to the blue thick line, which
is the motorised road that is closest to the points and in the similar direction of the heading of the
points. In the future it might be possible to match the GPS points of bicycles to the cycleways,
but this depends on the server capacity of TrackMatching. Presently, cycleways are not included in
the topological network to which the GPS points are matched and therefore it is not yet possible
to map match bicycle points to them.

The analysis also showed that there were a few GPS points that were matched to road up to 10
kilometers away. Investigation of the tracks that contain these points turned out that the problem
was not directly from TrackMatching, but indirectly from OSM. The problem can be seen in Figure
4.1b. The exit of the highway that is located at the top of the Figure has the attribute "access=no",
which means that that part of the road is not accessible. The TrackMatching algorithm takes this
into account and expects that the car is not able to take that route. Therefore all the following
GPS points are matched as if the vehicle is still on the highway, instead of the road which is going
south. This will cause the algorithm to match all the following points wrongly and increasing the
distance between the GPS points and the assigned road.

4.2 GPS and OpenStreetMap Data
In previous Sections it is already mentioned that GPS data contain different errors and that also
the behavior of people will influence the resulting GPS track. All these influences also affect
the map matching, therefore some preprocessing should be done to the map matched GPS and
OpenStreetMap data to work with more reliable data. Sometimes people forget to take out the
GPS device out of their car, resulting in many points on one location. These points are all matched
to the same road, thus it appears that the road is used a lot while in fact it was only one car
standing still. Not only these points, but also other wrongly matched points should be filtered out
to acquire a dataset which is useful for the research.

The points that should be filtered out are stationary points and points that are most-likely not
on the assigned road. Speed, heading, distance to the road and the geometry of the road can be
used to filter out these points.

Stationary points can be easily filtered out by setting a threshold for the speed. The threshold
chosen for this research is 5 km/h to filter out the stationary points and still keep the significant
points that could be useful for the research. This resulted in a decrease of GPS points made by car
from 3.658.750 to 2.949.623 points, this means a decrease of 19,4% stationary points.

Points that are most-likely not on the assigned road are points that have a large distance to
the assigned road and have a different heading than the direction of the road. For example, a GPS
points which is 100 meters away from the assigned road or a point which heading is perpendicular
to the direction of the road are most-likely wrongly matched. The plots in Figure 4.2 were made
to find a threshold in meters for the distance and in degrees for the heading. The plots describe
the number of GPS points that fall inside the buffer on the y-axis and the according buffer on the
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Figure 4.1: Problems with bicycle points(a) and access(b) with TrackMatching

x-axis. The Python script behind the plots counted all the selected points from the database at a
certain buffer and increased the buffer in an iterative way.

The point where the gradient of the plot decreases and approaches near 0 can be considered as
the turning point. From this turning point only small increases in the number of points occur per
added unit of a buffer. These small increases consists mostly of outliers and therefore the turning
point is most-likely the ideal buffer. This means for the distance the buffer should be around 15-20
meters and for the heading it should be around 20 degrees. However, in the case of the distance
to road it is important to take into account the width of a road. There are large highways which
consist out of 5 or 6 lanes, given the average width of a road is 3,5 meters (WegenWiki, 2014)
these roads could have a width of 20 meters. A buffer of 15 meters would then be relatively small
comparing to a road that consist out of one lane. To also cover these large highways, the chosen
buffer is 30 meters. These two buffers, 30 meters and 20 degrees, are also considered the most
suitable buffers by Zhang et al. in their paper discussed in Section 2.2.

The buffer for the distance is implemented using the ST_Distance_Sphere function in Post-
greSQL, which calculates the distance between two geometries in meters. A column with the
distance is added to the table, so a query containing distance<30 select all the points which have
a distance of less than 30 meters to the road.
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Figure 4.2: Plot of the number of points versus the distance to the assigned road(a) and difference
in heading between the point and road(b)

The buffer for the heading is more complicated. First the direction of the road should be
known. Roads are not drawn as straight lines in OSM, thus the smaller segments of the linestrings
are used to calculate the direction of the road. Then, a column called "relativedirection" is added
to determine whether a point heads in the similar direction of the drawing direction of the road or
in the opposite direction. The tags ’similar’ and ’opposite’ are only given when the heading of the
points is within 20 degrees of the direction of the road. All other points are given a NULL value
and will not be used for further processing.

Finally, the distance buffer filtered 132.022 GPS points made by car and the heading buffer
filtered 248.673 points, resulting in a dataset containing a total of 2.568.928 GPS points made by
car.

4.3 Training Dataset
This Section describes how the training dataset is created. The training set is typically used for
training the classifiers or rules. In the development phase, the training set can also be used to test
and adjust the algorithms. The remaining data can be just for validation of the algorithm.

With the final dataset it is possible to derive a training set which can be used for training and
testing the attribute extraction algorithms before applying the algorithm on the rest of the data.
To derive this training set, the most used roads are selected. The most used roads are the roads
that have the most GPS points assigned to them. The top 10 of this selection can be used for
training, however the training data should be a representation of the total dataset. The training
set would consist out of many roads of the same type if the top 10 most used roads would be used.
Therefore, the most used roads of different highway types are picked. The resulting top 10 roads
used for training can be seen in Table 4.1. The roads with the same names or references represent
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different segments and/or directions of that road.

Road ID # of GPS Points Highway Type Road Name Road Reference
"w.120708542" 18728 Secondary Knardijk N707
"w.6973056" 16551 Trunk Gooiseweg N305
"w.6967520" 13323 Secondary Zeewolderdijk N707
"w.89633056" 11166 Motorway A1
"w.6971654" 10545 Trunk Gooiseweg N305
"w.189277435" 9670 Motorway A1
"w.6971506" 9353 Secondary Spiekweg N705
"w.6977206" 8755 Motorway A28
"w.6971882" 7037 Primary Berencamperweg N301
"w.177925552" 5946 Motorway A12

Table 4.1: Top 10 roads based on the available GPS data and the diversity of roads
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CHAPTER5
Deriving Attributes

The first part of this Chapter discusses the derivation of attributes that are already standard in
OSM, however still many of these attributes are not informed. The attributes that are already stan-
dard in OSM are whether the road is a one or two way road ("oneway"), speed limit ("maxspeed"),
number of lanes ("lanes") and the access of different vehicles on the road ("access"). The methods
to derive the attributes are explained per attribute.

The second part of this Chapter will focus on new attributes that are not yet implemented
in OSM. These attributes are: the average speed ("averagespeed"), the hours in which a road is
congested ("congestion"), the importance of a road ("importance") and the geometry error of a road
("geometryerror"). The extraction of these attributes are explained in the following Sections in this
Chapter.

The attributes are classified using code lists which contain the values of the attributes. Differ-
ent levels of the code lists can be implemented per attribute in a hierarchical structure, called a
hierarchical code list. The hierarchy describes the level of detail and the granularity of the value of
the attribute. Due to the complexity of some of the attributes, the hierarchies can provide different
perspectives on the error of the attributes. The classification of the speed limits might be too
complex and could lead to inaccurate results, however it might be possible to accurately classify
groups of these speed limits which would be more acceptable. Depending on the attribute two or
more levels will be added to some attributes.

5.1 One or Two Way Road
The "oneway" tag in OSM typically describes whether a road is accessible in only one direction or
in both directions. This attribute is essential for navigational purposes, knowing if you are allowed
in the street or not. If the road is a one way road, the tag will return "yes". When the road is a
two way road, the tag will return "no" in its basic form. However, OSM also provides more detailed
information. Therefore, different levels in the hierarchy will be introduced for this tag. At the first
level (L0), the tag will return "yes" or "no". At the second level (L1), the tag can return "yes", "no",
"-1" or "reversible". The hierarchical code list is depicted in Figure 5.1. A road gets the value "-1"
when the road is a one way road, but in the opposite direction of the drawing direction. This is
important for the rendering of the map to determine in which way the arrow should point. A road
gets the value "reversible" when the road is a one way road of which the direction can be changed,
e.g. during rush hours.
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Figure 5.1: Different levels in the hierarchical code list for attribute "oneway"

The "relativedirection" column in the database will be used for deriving the "oneway" tag. This
column returns "similar" or "opposite" referring to the heading of the GPS point compared to the
drawing direction of the road. The algorithm selects and counts all the relative directions of a
certain road and then calculates whether the road is a one or two way road. The calculation is as
follows, the total number of "similar" (or "opposite") is divided by the sum of "similar" and "oppo-
site" and if the result is bigger or smaller than a certain threshold the road is considered a one way
road. Else, the road is a two way road. The alogrithm is trained using different thresholds and the
threshold with the smallest error on the test data was bigger than 0.9 or smaller than 0.1. This
means that if a specific relative direction is represented less than 10% the road is considered one way
taking possible outliers into consideration. This threshold is reasonable since all GPS points during
the day are taken into account and most people drive the same way from and to their destination
resulting in a 50%-50% balance.

This method can be used to derive L0 for this attribute, however L1 would require some ad-
justments. Both "-1" and "reversible" are variations of a one way street and therefore fall in L0
under "yes". If the total number of "opposite" divided by the sum is bigger than 0.9, it means that
the street is a one way street in the opposite direction thus a "-1" can be given to the tag. The
algorithm for this level in the hierarchical code list can be seen in Algorithm 1.

For the reversible case this is more complicated. This could be detected by checking the time of
the GPS points for both directions, the points of a reversible road are in two directions but cannot
occur at the same moment in time. Roads which contain points in two directions that never occur
at the same time, but that alternate during some intervals in time, are most likely to be reversible
roads. The GPS data of this research makes it more difficult to detect reversible roads. The data
is acquired by more than 800 people living in 3 different cities in the Netherlands. These people
were tracked for a week while going to work, doing groceries, etc. The fact that these people are
from only 3 different cities makes it possible that most of them take the same road to and from
work at similar times during the day, which would influence the GPS data in a negative manner
to detect the reversibility of a road. Therefore, and because of the lack of time in this research,
deriving "reversible" is not taken into consideration for this research.

Deriving the one way attribute can also be used for bicycles, the same algorithm can be applied
for the bicycle points. There is already a tag "oneway:bicycle" available in OSM for this attribute.
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Algorithm 1 Attribute Extraction of "oneway"
1: function oneway(roadid)
2: select relative direction for roadid
3: if r ≥ 10 then . r is the number of results
4: similar = count "similar"
5: opposite = count "opposite"
6: sum = similar + opposite
7: if similar/sum > 0.9 then
8: oneway = "yes"
9: else if opposite/sum > 0.9 then

10: oneway = "-1"
11: else
12: oneway = "no"
13: update "oneway"

However, first the roads which allow bicycles have to be known to implement this algorithm to
these roads.

5.2 Speed Limit
The "maxspeed" attribute provides the speed limit for every road. This attribute makes it possible
to have the speed limits publicly accessible and in combination with the average speed, roads with a
lot of speed violations can be detected. Deriving the speed limit depends on different factors. First
of all there is the behavior of the drivers, all people act differently on the road which cause GPS
traces to be different either. Then there is the temporal aspect, where speed limits can differ over
time and congestions may cause the GPS traces to be different too. All these aspects, and many
more, influence the data and makes it difficult to automatically derive speed limits. This Section
will describe the steps that are taken to create an algorithm that extracts the speed limit out of
GPS points.

The "maxspeed" attribute can be divided into several levels in the hierarchy as can be seen in
Figure 5.2. First of all it should be stated that the speed limits that are used for this research are
the most common speed limits in the Netherlands, these speed limits are:

• 30 km/h

• 50 km/h

• 60 km/h

• 70 km/h

• 80 km/h

• 100 km/h

• 120 km/h

• 130 km/h

L0 groups these speed limits into an ordinal scale, in this case low, medium and high. Low
covers the speed limits of 30 and 50, medium covers 60, 70 and 80 and high covers 100, 120 and
130. The speed limits are divided in this way to make a distinction between the location of the
roads. If the attribute returns low, it means that the roads are probably in an urban area where
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the maximum speed limit is 50. If the speed limit is higher than that, e.g. it returns medium, than
the roads are in a rural area. If the attribute returns high, it means that the roads are motorways.

L1 represents the value of the speed limit of a certain road. L2 contains the same code list,
however this level in the hierarchy makes a distinction between day (06:00 hours - 19:00 hours) and
night (19:00 hours - 06:00 hours) (Rijkswaterstaat, 2014).

Figure 5.2: Different levels in the hierarchical code list for attribute "maxspeed"

When visualizing the speeds of GPS points of a certain road in histograms, it gives more insight
into the driving behavior of people on different types of roads. Two histograms of different types
of roads can be seen in Figure 5.3. The first histogram is from road "w.6971506" which is a
secondary road. The second histogram is from road "w.6977206" which is a motorway. There is a
clear difference in driving behavior between the two histograms. The first histogram representing
the secondary road has a clear peak around 80 km/h, where the second histogram has two peaks
around 100 km/h and 120 km/h. Also, the width of the histogram is bigger at the second histogram
meaning that different people drive different speeds at that road. This is due to the differences in
driving behavior between people. There are people that drive 100 km/h on a 120 km/h road, but
there are also people that drive 130 km/h or 140 km/h on that same road.

There are also a lot of low speeds at both histograms which could influence the results of the
extraction of the speed limit. These low speeds are probably caused by traffic lights, congestions or
other forms of traffic disruption. Therefore it is important to take out the lower speeds which do not
represent the maximum driving speed of the road. There are two methods to do this: acceleration
or velocity change rate (VCR).

"Acceleration is the rate at which the velocity of an object changes over time" (Crew, 2008).
Thus acceleration divides the change in velocity by the time taken: a = ∆υ

∆t . Usually, acceleration
is expressed in m/s2. If a speed decreases, it is called deceleration. A disadvantage of acceleration
could be that it does not take into account the magnitude of the velocity.

VCR is a method that does take into account the magnitude of the velocity, i.e. a change of 20
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Figure 5.3: Histograms containing the speeds of the GPS points of road "w.6971506" (a) and road
"w.6977206" (b).

km/h for a speed of 100 km/h is different than the same change for a speed of 30 km/h. However
small changes at low maximum speeds are more significant than small changes at higher speeds.
VCR is calculated by dividing the change in velocity by the velocity of the first point (Zheng et al.,
2010):

υ∆ = υi+1 − υi
υi

(5.1)

The disadvantage of this method is that it does not take into account the time between two consec-
utive points. Therefore it is important that all the points have the same amount of time in between.
Analysis of the data shows that 3.560.246 GPS points have a difference of 5 seconds, where only
91.808 GPS points have a different amount of time in between. Therefore it can be stated that it is
better to use the VCR to detect outliers. An extra column in the database is created to calculate
the vcr and store it in the database. If there would be more variety in time between points, a
normalized version of the VCR could be developed. The difference between the two speeds could
then be divided by the time between points to create a VCR per second.

Next, a threshold need to be set for considering whether a point is an outlier or not. Research
showed that 0.15 was the largest threshold which gave the best results. Therefore GPS points with
a VCR higher than 0.15 or smaller than -0.15 are taken into account for deriving the speed limit.
The result of these thresholds can be seen in Figure 5.4 where two histograms of road "w.6971506"
show the difference before and after the taking into account the VCR. It is clear that a significant
amount of lower speeds are removed from the dataset, which will cause the extraction of the speed
limit to be more precise.

By looking at the previous histograms, it seems possible to derive the speed limit using the mean
of the speeds. The mean of the speeds can be derived in Python by using the NumPy library. To
assign a speed limit to the roads, a certain classification of speed limits need to be created based on
the mean of the speeds. Research based on the training data shows that the classification according
to Figure 5.5 works best. This research is performed using trial and error on the training data, the
classification with the lowest classification error on the training data is considered best.
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(a) (b)

Figure 5.4: Histograms containing the speeds of the GPS points of road "w.6971506" before (a) and
after (b) taking into account VCR.

Mean Speed Limit
[km/h] [km/h]
< 40 30

> 40 and < 55 50
> 55 and < 65 60
> 65 and < 75 70
> 75 and < 85 80
> 85 and < 110 100
> 110 and < 125 120

> 125 130

Figure 5.5: Classification of speeds according to the mean showing the graph (a) and table (b)

However, for the higher speeds it proved more difficult to classify the correct speed limits. The
training data tended to assign lower speed limits when the mean speed was higher than 100 km/h,
e.g. 100 km/h speed limit for a road that actually has a 120 km/h speed limit. To solve this
problem, only a percentage of the highest speeds is taken into account when the mean speed is
higher than 85 km/h. A Python script calculated the errors in km/h for every percentage from 1
to 40 and plotted the results in a graph (see Figure 5.6). This result shows that 18%, 19% and
20% are the three best percentages to choose, further investigation showed that 20% was the best
percentage to use for deriving the speed limits above 85 km/h.

Further investigation shows that only using the mean speed for speed limits lower than 85 km/h
and only using the mean of the percentage highest speeds for speed limits higher than 85 km/h is
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Figure 5.6: Graph showing the percentage used for the highest speeds versus the error accompanied
with it

not sufficient. The algorithm tended to assign lower speed limits to the roads. Therefore a mix of
the two means is created. For speed limits till 80 km/h, the average of the mean speed (v) and the
mean of the percentage of highest speeds (vhigh) is used: v+vhigh

2 . For speed limits higher than 80
km/h, the mean of the percentage of highest speeds is weighted twice as much as the mean speed:
v+2vhigh

3 . This is because the higher speeds are more representative than the lower speeds for high
speed limits. These values are trained and tested on the training data to determine the best weight
for this classification.

Since the extraction of the speed limit is a typical classification problem, it is a possibility that the
speed limit can be derived using pattern recognition methods. Therefore different classifiers are
used to classify the speed limits. Multiple classifiers have been trained on different feature sets.
First, the classifiers need to be trained. Thus training data is needed for every speed limit. For
every speed limit the five most used roads are selected. The classification will be performed on the
Cumulative Distribution Function (CDF) of the speeds of the road. CDFs are more stable than
Probability Density Functions (PDF). The values in a PDF vary much from each other from lower
noise values to higher noise values. Comparing this to other PDFs can give very different results.
CDFs typically are more stable and compensate noise and small changes along the way, which is
better for comparison and classification. An example of the CDF of a road can be seen in Figure
5.7.

The training of the different classifiers will be performed on different feature sets. Classifiers
react differently on the size of the feature set, therefore they are trained on four different feature sets.
The first set consists of the CDF with a bin size of 10 for the speeds between 0 and 140, resulting
in 14 dimensional feature set. The second set uses a bin size of 5, resulting in a 28 dimensional
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Figure 5.7: Example of a CDF of road "w.120708542"

feature set. The third set uses a bin size of 2 and the final set a bin size of 1. Resulting in a 70
and 140 dimensional feature set respectively. Different classifiers, both linear and non-linear, are
trained and tested on these feature sets. The machine learning Python (mlpy) libary is used to be
able to use the classifiers in Python.

Investigation of suitable classifiers on a small test set showed that the Support Vector Machine
(SVM) and Classification Tree were the classifiers with the lowest error. SVMs typically looks for
the separating hyperplane with the largest margin in the case of a linear separable classification
problem (Burges, 1998). The goal of a Classification Tree is to find the best way in which the test
data can be classified into the according classes. All possible solutions will be computed and the
solution with the highest probability is chosen (Theodoridis and Koutroumbas, 2008). The feature
set that suited these classifiers the best was the 28 dimensional feature set with the according bin
size of 5 km/h. Different Support Vector Classifiers (SVC) were tested of which the nu-SVC was the
classifier with the lowest error in combination with a linear kernel. This classifier also outperformed
the Classification Tree and therefore was used to test on a bigger set. However, the SVC could not
outperform the rule created earlier in this Section and is therefore not implemented in the final
system. The final algorithm can be seen in Algorithm 2.

The different speed limits between day and night of L2 are not taken into account for this re-
search. The classification of L1 was already time consuming, therefore not enough time for L2 was
left. Most of the algorithm would remain the same, using the speeds between 06:00 hours and 19:00
hours for the speed limit during the day and 19:00 hours till 06:00 hours for the speed limits during
nights. However, this level in the hierarchy would also require extra investigation on the driving
behavior of people during the night. People tend to drive differently during the night which would
require a different method for classification.
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Algorithm 2 Attribute Extraction of "maxspeed"
1: function maxspeed(roadid)
2: select speeds for roadid
3: if r ≥ 50 then . r is the number of results
4: derive mean from speeds
5: speed limit(mean,speeds)
6: update "maxspeed"

7: function speed limit(mean, speeds)
8: if ((v + h)/2) ≤ 40 then . v = normal mean, h = high speeds mean
9: maxspeed = 30

10: else if ((v + h)/2) > 40 and ((v + h)/2) ≤ 55 then
11: maxspeed = 50
12: etc...
13: else if ((v + h)/2) > 85 then
14: if ((v + 2h)/3) > 85 and ((v + 2h)/3) ≤ 110 then
15: maxspeed = 100
16: etc...return maxspeed

5.3 Number of Usable Lanes on the Road
This Section will discuss the possibility of lane detection in the case of this research. This attribute
can be useful for traffic analysts and civil engineers to acquire the capacity of the road or simply
for more detailed map making. The problem with GPS data for lane extraction is the inaccuracy,
noise and placement of the GPS device with respect to the lanes. As can be seen in Figure 5.8, no
clear distinction can be made between different lanes just by looking at the tracks projected on the
map. By using a histogram with the assumption that the lanes are normally distributed, a script
could extract the number of lanes out of the Figure, e.g. in a similar way as Chen and Krumm
did in their paper. Before the actual lane detection can be performed, some preprocessing on the
data have to be performed. These preprocessing steps will be discussed first, after which the lane
detection is explained.

Figure 5.8: Multiple GPS tracks with and without map background
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5.3.1 Preprocessing
The distribution of the GPS points is essential for lane detection. To reveal this distribution, a
histogram can be created to visualize it. For this, distances from the GPS points to the centerline
of the road are needed, but also on which side of the road that point lies.

The distance can easily be calculated using the ST_Distance_Sphere function in PostGIS for
the geometry of both the road and the GPS point. This function returns the distance in meters,
where ST_Distance returns the distance in degrees instead of meters. An extra column in the table
can be added to store the distances between points and roads.

Next, now that the distance is known, it is important to determine on which side of the road a
points lies. This can be determined using the cross product. If a line goes from A to B and point
is P, then the cross product of this can be written as:

v = (Ay −By) ∗ Px+ (Bx−Ax) ∗ Py + (Ax ∗By −Bx ∗Ay) (5.2)

where for v>0 the point is left of the line, v<0 the point is right of the line and for v=0 the point
is on the line or in front/behind the line.

The cross product formula (Equation 5.2) was integrated in a SQL query, adding a column
’sideofroad’ containing either ’R’ for Right, ’L’ for Left or ’NULL’ for points exactly on the line.
After running the query on the dataset, the results were not satisfying. Many of the roads contained
points that were mostly right of the road or mostly left of the road. Analysis turned out that the
geometry of OSM roads are linestrings and not straight lines. The cross product formula only uses
the starting and the end point of a line, therefore working under the assumption that the line is a
straight line. The result of this can be seen in Figure 5.9, most GPS points in this Figure will be
classified as right side of the road.

Figure 5.9: Cross product line (red) classifies GPS points (dots) mostly to the right side of OSM
road (green)

To solve this problem, linestrings are cut into smaller straight line segments. Every point is then
matched to the closest segment, after which the cross product query can be performed. This query
results in a classification of the side of road for all 3.660.561 GPS points. Using the side of road,
a ’relative’ distance column can be created. The relative distance is the distance used to create a
histogram of GPS points on a road. The difference between the normal distance is that it uses the
side of road to add a negative value to the distance of points that are left of a road. In this way, one
can determine immediately if a point is left or right of a road by looking at the relative distance.

5.3.2 Lane Detection
After the preprocessing phase, the data can be visualized for analysis. Like in the paper of Chen
and Krumm, histograms are used to visualize the GPS points with respect to the centerline of the
OSM road. Figure 5.10 shows the histogram of road "w.89633056".
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Figure 5.10: Histogram showing the distances from GPS points to the centerline of the road

This histogram shows the distances from the GPS points to the centerline of the road on the
x-axis and the frequency of GPS points that have the according distance on the y-axis. Most
points seem to be centered around x = 3. This can mean that the GPS points have a slight error
and/or the OSM road has an error. Even by eye, it is difficult to detect the number of lanes out of
these histograms. The standard lane width in the Netherlands varies between 2.5 meters and 4.5
meters depending on the road type (WegenWiki, 2014). By using the lane widths and the standard
deviation of the histogram, one could think that the number of lanes can be derived by using the
entire road width. To do this, a Gaussian distribution is drawn in the histogram (Figure 5.11 and
the mean and standard deviation are calculated.

As can be seen in Figure 5.11, the mean distance from the GPS points to the centerline of the
road is 0,813 meters and the standard deviation is 4.587 meters. The actual number of lanes for
this road is 2, which is plausible considering a lane width of 4.5 meters and the standard deviation
of 4.587 meters. However, Table 5.1 shows a table containing all roads from the top 10, their actual
number of lanes and the calculated standard deviations. If a road has two standard deviations,
it means that it is a two way road with a lane(s) in one direction and a lane(s) in the opposite
direction. The number of lanes column then counts for one direction, so one standard deviation.

There is no clear correlation between the number of lanes and the standard deviations of the
data. The standard deviation of roads with only one lane vary from 2.406 to 5.702 with an average
of 3.571, where the standard deviation for roads with two lanes vary from 3.176 to 4.587 with an
average of 4.027. Roads with two lanes have a slightly higher standard deviation, but unfortunately
there is not enough distinction between the standard deviation of one and two lane roads to make a
good classification. The method of Zhang et al., as explained in Section 2.2, can also not be aplied
here. By applying their threshold of 5.5, almost all roads will be assigned at least 2 lanes except
for road "w.6971882". Also for other thresholds it is impossible to correctly detect the number of
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Figure 5.11: Histogram including the Gaussian distribution

Road ID Number of Lanes Standard Deviation
"w.120708542" 1 3.453 and 3.799
"w.6973056" 1 3.233 and 2.901
"w.6967520" 1 2.802 and 3.090
"w.89633056" 2 4.587
"w.6971654" 1 3.850 and 3.476
"w.189277435" 2 3.929
"w.6971506" 1 5.655 and 5.702
"w.6977206" 2 3.176
"w.6971882" 1 2.406 and 2.488
"w.177925552" 2 4.415

Table 5.1: Top 10 roads with the number of lanes and the standard deviation of the histogram of
distances

lanes for all roads.

According to Chen and Krumm, Gaussian Mixture Models (GMM) can detect lanes from GPS
data. "A GMM is a parametric probability density function represented as a weighted sum of
Gaussian component densities" (Reynolds, 2009). Implementing GMM on the data of this thesis,
did not result in lane detection. For example, the Gaussian components for road "w.120708542"
when applying a GMM with two components have a mean of 2.6944 and 2.1026. This means that
the mean of the two components are basically the same, resulting in no clear detection between
lanes. Figure 5.12.

If the GMM would work correctly, the different lanes would be detected and the Gaussian com-
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(a) (b)

Figure 5.12: Histogram(a) and according GMM(b) with two components for road "w.120708542"

ponents would follow the Gaussians as depicted in Figure 5.13. However, the GMM in this research
was not able to reproduce the method by Chen and Krumm.

When comparing the GMM and histogram of Chen and Krumm of Figure 2.4 in Section 2.2 to
the GMM and histogram derived for this research, there are many differences. At first, the his-
tograms are different from each other. The histogram derived for this research is more dense and
follows the distribution of a Gaussian, where the histogram of Chen and Krumm contains gaps and
a distinction between the two lanes can already be made by eye. Therefore their GMM is able to
detect the different lanes. The exact reasons for this difference in data cannot be given, however
there are some causes that might influence the data in a way that it is not possible to detect the
number of lanes using GMMs.

There are multiple problems that influence the data, these problems are related to GPS, OSM
and the behavior of people. The GPS related problems are inaccuracy and placement of the GPS
devices. Different errors resulting in GPS inaccuracy have already been explained in Subsection
3.1.1. The placement of the GPS devices is also important for an accurate result. The placement
of the GPS device is dependent to the behavior of people. There is no standard position of the
small GPS device in a vehicle, thus the relative position to the road within the same lane may
considerably deviate. Some people might place the device on the right seat of the car, where other
people might place it on the left seat of the car. This will influence the result already by 1 or 1.5
meters approximately.

The behavior of people when driving also influences the data. People that often change lanes
will create a completely different GPS track than people who will stay on one lane the entire road.
If the latter is the case for all drivers on a road, than the frequency of usage of lanes also influences
the data. The data will then be more centered towards the crowded lane of the road and the other
lane would have a smaller peak in the histogram.

Finally, OSM also influences the data. The way of drawing, as already introduced in Section
2.2, can influence the data in different ways. First, it is possible that the representation of the road
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Figure 5.13: Histogram of both lanes of road "w.120708542" including the Gaussians for both lanes

in OSM is not that accurate and represents a road that is not completely parallel to the actual
road. For example, if the start of the road differs -2 meters with the OSM data and the end of the
road differs +3 meters then the result will be a shifted line on top of the actual road which would
influence the relative distances from the GPS points to the centerline of the OSM road. Also, the
roads in OSM should be drawn in such a manner that the number of lanes for one road cannot vary.

All these causes can influence the data in a way that it is almost impossible to detect the number
of lanes by using GPS tracks. For this research, it was not feasible to reproduce the methods of
Zhang et al. and Chen and Krumm in a way that a reliable result is achieved.

5.4 Access of Different Types of Vehicles
Not all types of vehicles are allowed on every road, therefore it can be useful to know which type
of vehicles are allowed on a road and which are not. Navigational systems can then determine
different routes for different types of vehicles for example. OSM is often used for bicycle navigation
applications, however for most roads it is not known whether the bicycle is allowed on a normal
road or not.

Most different types of vehicles, besides car, have their own roads or tracks in OSM, e.g. trains,
trams and subways fall under the "railway" tag. Even buses do not always drive on the road. Also
the relatively small amount of data on bus tracks will not cause a reliable result. However, for
bicycles it might be able to derive whether they have access to a road or not.

Unfortunately, the TrackMatching service does not provide matching to cycleways, which makes it
harder to derive information about the access of bicycles to a certain road. All bicycle points will
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now be matched to motorized road networks. If the points could be map matched to cycleways too,
it would solve the entire problem and bicycle points would be matched to motorized roads if they
would actually drive on that road. Now, only an assumption can be made whether a bicycle point
is on a road or not. The idea is to map match the bicycle points to the motorized road network,
calculate the distance between the point and the road and find the closest cycleway. With these
indicators it should be possible to detect whether a bicycle is allowed on a road or not.

The map matching is done in a similar way as the method explained in Section 4.1, only now
for points that are made by bicycle. The result is again stored in a database and similar prepro-
cessing steps are performed.

Next, for every point the nearest cycleway is assigned within a certain threshold. This query
looks for all cycleways within a certain area around the GPS point and assigns the cycleway with
the smallest distance to the GPS point as the nearest cycleway. After the assigning of the nearest
cycleway, the same preprocessing steps to calculate for example distance and relative direction as
for motorized roads are calculated and added to the database.

Figure 5.14: Graph showing the number of points that are selected for the different distances
between road and cycleway

Now that for all the points a motorized road and a nearest cycleway, provided that that there
is a cycleway in the vicinity, is assigned, the algorithm to detect whether a road allows bicycles can
be run. This algorithm takes into account a couple of factors. At first the bicycle GPS point have
to comply with the same thresholds as the GPS points made by car, i.e. a speed higher than 5
km/h, the distance to the road should be less than 30 meters and the heading of the point should
be similar or opposite to the drawing direction of the road. Secondly, the distance to the road
should be smaller than the distance to the cycleway. At last, the difference between the distance to
the road and the distance to the cycleway should be bigger than 10 meters. The latter should be
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incorporated into the system due to points that are slightly closer to the road than the cycleway,
but actually are on the cycleway. The threshold of 10 meters is chosen with the help of Figure 5.14
which shows a graph of the number of points that are selected for every different distance between
the road and the cycleway. The graph shows a nod at 10 meters and after it the graph gradually
decreases, 10 meters can be considered a significant distance together with the other thresholds
to state that the point is on the road and not on the cycleway. Therefore, roads containing these
points can be stated as roads that allow bicycles.

The first algorithm that is used is a SQL command updating all roads that apply to the rule
that has been created. The SQL command is written below:

UPDATE karlmsc . o s m _ h i g h w a y s _ u p d
SET access = ' b i c y c l e '
FROM (

SELECT a s s i g n e d _ r o a d i d
FROM (

SELECT assigned_roadid , COUNT( ∗ ) AS cnt
FROM karlmsc . p o i n t s r o a d s _ b i c y c l e
WHERE r o a d _ d i s t a n c e < c y c l e w a y _ d i s t a n c e
AND ( c y c l e w a y _ d i s t a n c e − r o a d _ d i s t a n c e ) >= 10
AND calcspeed > 5 AND r o a d _ d i s t a n c e < 30
AND ( r e l a t i v e d i r e c t i o n _ r o a d = ' s i m i l a r ' OR r e l a t i v e d i r e c t i o n _ r o a d = ' o p p o s i t e ' )
GROUP BY a s s i g n e d _ r o a d i d
) AS d

WHERE d . cnt >= 10
) AS c

WHERE karlmsc . o s m _ h i g h w a y s _ u p d . id = c . a s s i g n e d _ r o a d i d ;

The second algorithm is a SQL command updating all roads that have no cycleway in the
vicinity. It should be noted that both commands are integrated in Python. The second algorithm
is written below:

UPDATE karlmsc . o s m _ h i g h w a y s _ u p d
SET access = ' b i c y c l e '
FROM (

SELECT assigned_roadid , COUNT( ∗ ) AS cnt
FROM karlmsc . p o i n t s r o a d s _ b i c y c l e
WHERE a s s i g n e d _ c y c l e w a y i d IS NULL
AND calcspeed > 5 AND r o a d _ d i s t a n c e < 30
AND ( r e l a t i v e d i r e c t i o n _ r o a d = ' s i m i l a r ' OR r e l a t i v e d i r e c t i o n _ r o a d = ' o p p o s i t e ' )
GROUP BY a s s i g n e d _ r o a d i d ) AS c

WHERE karlmsc . o s m _ h i g h w a y s _ u p d . id = c . a s s i g n e d _ r o a d i d
AND cnt >= 1 0 ;

These two SQL statements are implemented into Algorithm 3. Two functions are used to send
the statements to the database and update the "access" column. The Python library that is used
for connecting and executing to the database is the Psycopg2 library. First the SQL statement is
stored as a variable. Then a connection is made to the database using the host, database name,
user and password. Next, the statement is executed and finally the connection with the database
is closed.
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Algorithm 3 Attribute Extraction of "access"
1: function update_access_1
2: statement = "UPDATE..."
3: connect to database
4: execute statement
5: function update_access_2
6: statement = "UPDATE..."
7: connect to database
8: execute statement

5.5 Average Speed
The average speed is relatively easy to calculate, but is used much in navigation systems. It can be
used for finding the fastest route to a certain destination. Also, Dutch news station Nieuws (2014)
writes that Dutch police use average speed data from Dutch navigation system provider TomTom
to locate the best roads for speed traps. The average speed can be calculated per road, but it can
also be more detailed. L0 of "averagespeed" is the averagespeed of a road in both directions. L1 is
the average speed in the similar direction as the drawing direction and in opposite direction, in case
of a two way road. This will increase the knowledge of how fast a route is in a specific direction.
Finally, L2 will provide the average speed per hour to take into account deviations of speed during
the day for more detailed information. All the levels in the hierarchy are depicted in Figure 5.15.

Figure 5.15: Different levels in the hierarchical code list for attribute "averagespeed"

The averagespeed can be calculated by selecting all the speeds of GPS points of a certain road
and dividing them by the total number of GPS points. For L0, all the points of a road can be
selected. For L1, only points with the relative direction ’similar’ or ’opposite’ can be selected and
for L2 all the points with the relative direction and a specific hour can be selected. The algorithm
used for L1 can be seen in Algorithm 4.

For this research, only L0 and L1 will be stored in the database. This research has no direct
benefits from also storing the average speed per hour. However, the average speed per hour will be
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Algorithm 4 Attribute Extraction of "averagespeed"
1: function averagespeed(roadid)
2: select speed for roadid in "similar" direction
3: select speed for roadid in "opposite" direction
4: select "oneway" for roadid
5: if oneway = "yes" then
6: if s ≥ 10 then . s is the number of "similar" results
7: update "averagespeed_similar" from similar speed
8: else if oneway = "-1" then
9: if o ≥ 10 then . o is the number of "opposite" results

10: update "averagespeed_opposite" from opposite speed
11: else if oneway = "no" then
12: if s ≥ 10 then
13: update "averagespeed_similar" from similar speed
14: if o ≥ 10 then
15: update "averagespeed_opposite" from opposite speed

used for the congestion attribute in the next Section.

5.6 Hours in which Congestion Occurs
Taylor et al. (2000) provides multiple definitions for congestion, but the definition that is subse-
quently proposed for use in traffic studies is:

Traffic congestion is the phenomenon of increased disruption of traffic movement on
an element of the transport system, observed in terms of delays and queuing, that is
generated by the interactions amongst the flow units in traffic stream or in intersecting
traffic streams. The phenomenon is most visible when the level of demand for movement
approaches or exceeds the present capacity of the element and the best indicator of the
occurrence of congestion is the presence of queues [...] it recognizes that the capacity of
an element in a traffic systems may vary over time, e.g. when traffic incidents occur or
for minor stream traffic movements where capacity may depend on the traffic volume
in the major stream. (Taylor et al., 2000)

This means that a disruption in normal traffic situations, e.g. traffics jams, can be classified as
congestion. In the case of this research, normal traffic situations can be described as the average
speed and disruptions are basically the deviations from this average speed. This Sections describes
the approach to derive the hours in which congestion occurs to acquire knowledge about which
roads to avoid at certain hours. Also, this data can be interesting for traffic analysts and civil
engineers.

The different levels in the hierarchical code list for this attribute are at L0 the difference between
congestion during the week and congestion during the weekend. Congestion tend to happen more
often during weekdays, because of the working hours of inhabitants. L1 separates the congestion
per day of the week. The levels in the hierarchical code list are depicted in Figure 5.16.
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Figure 5.16: Different levels in the hierarchical code list for attribute "congestion"

There are two ways to derive the hours in which congestion occurs. One method is to compare
the average speed of a specific hour to the average speed of the road and the other method is to use
the VCR to detect a significantly higher amount of stopping or slowing down of the car compared
to the normal behavior.

For this research the average speed will be used as an indicator of congestion, because this
method achieves the goals of congestion more directly. As already explained, congestion is the
disruption of the traffic. The congestion attribute is created to detect disruptions of traffic so they
can be avoided, the main reason to avoid congestions is to take a faster route. Therefore using the
average speed will directly apply to the main reason, where using VCR would indirectly relate to
the speed issue. VCR detects the slowing down of the car, but this could have multiple reasons.
Traffic lights, differences in speed limits and more could cause the VCR to fluctuate making it not
as reliable for detecting congestions as the average speed.

First of all, it should be noted that the congestions are calculated per driving direction. This
is important because it is possible that in one direction there is no congestion, but in the opposite
direction there is a lot of congestion during a certain moment in time. This means that the for
the opposite direction a different route might be more beneficial, but not for the other direction.
Thus for every road in both directions the average speed will be derived and the average speed per
hour will be calculated. Next, a percentage of the average speed will be derived as a congestion
indicator. In this case, 10% seemed a reasonable percentage to detect a significant difference be-
tween the average speed of the road and the average speed per hour. The average speed per hour
will then be subtracted from the average speed and compared with the 10% of the average speed
of the road. If the difference between the average speed and the average speed per hour is higher
than the percentage, that hour of the road will be considered congested. The Python script will
calculate this for every hour of the day in an iterative way and will add the congested hours to a
string which can be updated to the database once the script finishes all hours of the day. The final
algorithm can be seen in Algorithm 5.
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Algorithm 5 Attribute Extraction of "congestion"
1: function congestion(roadid)
2: select averagespeed_similar from roadid . is called s
3: select averagespeed_opposite from roadid . is called o
4: for every hour of the day do
5: select speed for roadid during hour in week in similar direction . is called hs
6: select speed for roadid during hour in week in opposite direction . is called ho
7: if hs ≥ 10 and s != None then
8: ahs = average hs
9: if s− ahs ≥ 0.1s then

10: add hour to hour_similar
11: if ho ≥ 10 and o != None then
12: aho = average ho
13: if o− aho ≥ 0.1o then
14: add hour to hour_opposite
15: update congestion_hour_similar
16: update congestion_hour_opposite

5.7 Importance of a Road
Rankings of roads can be based on the type of roads, but this does not take into account the actual
usage of the roads. However, the distribution of GPS points can give an indication of the usage of
roads. Therefore, importance in this research can be described as the usage of roads compared to
the total usage of a country, state or province. This can be used by urban developers and traffic
analysts to easily detect important roads and to use it to their advantage or, e.g. increasing the
number of lanes at important roads which are also congested to improve the flow on that road.

There are multiple ways to derive the "importance" attribute, the basic idea is to derive a
percentage per road compared to the total usage of the GPS points. The following units can be
used to derive the importance:

• Number of GPS points on a road

• Time spend on a road by GPS points

• Number of passes on a road

The first unit is perhaps the most simple one, the more people drive on a road the more GPS
points that road contains. However, this unit also has a disadvantage: the speed. The speed
influences the number of GPS points that are left on a certain road. For example, if someone drives
a 2 kilometer road with a speed of 100 km/h and the GPS device acquires points every 5 seconds, it
takes 72 seconds to drive the road which means approximately 14 GPS points on that road. If the
speed on the same road was 50 km/h, it would take twice as long to drive the road which means
that the GPS device would acquire around 28 points in 144 seconds. This would mean that in the
case of using the number of GPS points on a road, the road with lower speeds would be classified
relatively higher compared to the actual usage of the road.
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By taking the time spend on the road, the result will also be biased. Take, for example,
motorways which are congested often. These roads will then have more time spend on them, while
they are not actually used more often. So also the time unit does not represent the usage of roads
well.

The number of passes could give a better, unbiased result compared to the previous two units.
A pass is counted when a vehicle is on a certain road. If it leaves the road and returns after a while,
a new pass is counted. With this method it is possible to actually calculate the usage of a road and
compare it to other roads in the country, state or province.

Figure 5.17: Heat map from sample of GPS points from the dataset showing the Netherlands is not
fully covered

Finally, if the number of passes of all roads are calculated a classification can be performed.
This classification depends on the data and the amount of passes that are made. A classification in
this case is subjective and can be performed in different kind of ways. The classification depends
on the total number of passes available and is therefore variable, a constant classification cannot be
created. This means that the classification is variable and should be obtained based on the total
number passes or better, based on the road with the maximum number of passes. In total, five
different categories will be derived with 1 as the highest importance and 5 as the lowest importance.
Then if, for example, the road with the maximum number of passes has 5000 passes every class
will add 1000 passes. Thus, class 5 will contain all the roads with 0 to 1000 passes and class 4
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will contain all the roads with 1000 to 2000 passes and so on. In this way a hierarchy between the
different roads will be created. The complete algorithm can be seen in Algorithm 6

Algorithm 6 Attribute Extraction of "importance"
1: function categories
2: select MAX(roadpasses)
3: c = rounded max roadpasses / 5 . c is category steps
4: c5 = c, c4 = 2c, c3 = 3c, c2 = 4c, c1 = 5c
5: function importance(roadid)
6: select roadpasses for roadid . is called r
7: if r ≤ c5 then
8: update category 5 for roadid
9: else if r ≤ c4 then

10: update category 4 for roadid etc...

This method for deriving the importance of a road has one major disadvantage, the coverage
of the GPS data. The GPS should be evenly distributed in a way that they represent the actual
situation. The GPS data used for this research contains tracks derived from people living in
Amersfoort, Veenendaal and Zeewolde. This causes the data to be centered to these cities and is
therefore not evenly distributed in the Netherlands. Figure 5.17 shows a heat map of a sample of
the GPS data used for this research. It clearly shows that the data is centered in the middle of
the Netherlands and therefore shows that the data is not suitable for deriving this attribute for the
Netherlands. However, it is possible to create a bounding box around one of the cities and apply
the algorithm on that part of the Netherlands to test it.

When zooming on the three cities as can be seen in Figure 5.18, one can clearly see that the
red parts in the heat map are centered around Zeewolde, Amersfoort and Veenendaal. Also, the
structure of the motorways can be seen from the data.

Figure 5.18: Heat map from sample of GPS points from the dataset showing most GPS points
center around the three cities and their motorways
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5.8 Error of the Road Geometry
The error of the geometry of road networks are usually assessed compared to official datasets.
However, it can also be done with a different method using only GPS points and the OSM road
network. This attribute can therefore be seen as a quality check and can be used to improve the
quality of the map.

In the past, multiple comparative studies have been performed to assess the quality of OSM
geometry. Already referred to in previous Sections, Haklay (2010) compared the OSM road network
to United Kingdom’s Ordnance Survey to assess the quality of the road network. Bhattacharya did
her MSc Thesis in Geomatics on "Quality assessment and object matching of OSM in combination
with the Dutch topographic map TOP10NL" (Bhattacharya, 2012). Ciepłuch et al. used Google
Maps and Bing Maps to compare to OSM data and Fan et al. (2014) used the German Authority
Topographic-Cartographic Information System (ATKIS) to detect errors. Zielstra and Zipf assessed
the quality of OSM using the commercial TeleAtlas dataset. All these research projects use official
datasets to detect errors in the OSM road network, this thesis will present an alternative to these
methods.

The idea is to use the GPS points as a geometrical indicator of the road. There are multiple
research projects available where road networks are extracted or improved from GPS points, how-
ever not to use the GPS points as a quality indicator. For example, the research mentioned in
Section 2.2 by Zhang et al. improves existing road data from GPS traces. Also Bruntrup et al. uses
GPS traces to generate maps and infer the road geometry. The advantage of GPS traces is that if
the dataset is big enough, eventually a line derived from the GPS points will follow the exact curve
of the road.

This research tries to detect quality errors and makes it possible for the OSM contributors to be
alarmed for this errors and correct them. The attribute can have two levels in the hierarchical code
list, L0 describes whether the road exceeds a certain geometry error and L1 provides the value of
the error (see Figure 5.19). L0 will return "yes" when the geometrical error is bigger than 5 meters.
L1 will provide the distance in meters of the offset of the road compared to the GPS data.

Figure 5.19: Different levels in the hierarchical code list for attribute "geometryerror"

Again, the relative distance can be used to calculate these errors. The mean of all the relative
distances of a road is the average offset of the GPS data compared to the centerline of that road.
Figure 5.20 shows an example of this for road "w.6973056". The dashed red line can be considered
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Figure 5.20: Histogram of road "w.6973056" showing the difference between the OSM centerline at
0 meters and the data’s centerline at -3.379 meters (dashed red line)

as the data’s centerline where the 0 meters value is the OSM centerline.
This mean, however, cannot be directly used as a quality indicator due to the fact that in the

case of multiple lanes the distribution of the GPS points over these lanes influences the result. For
example, if for a two lane road 90% of all the people on that road drive on the right side and only
10% of the people drive on the left side, the mean of the relative distances will not represent the
centerline of that road. Unfortunately, it was not possible to derive the number of lanes out of this
research that could be used for shifting the data to take into account the distribution of the GPS
points on the lanes. Therefore, this research will only implement L0 with a relatively high threshold
of 5 meters to detect large errors without taking into account the distribution of the GPS points.
The final algorithm can be seen in Algorithm 7.

Algorithm 7 Attribute Extraction of "geometryerror"
1: function geometryerror(roadid)
2: select relative distance for roadid
3: if r ≤ c5 then . r is the number of results
4: derive mean from relative distance
5: if mean<0 then
6: geometryerror = −1mean
7: else
8: geometryerror = mean

9: if geometryerror ≥ 5 then
10: update geometryerror = "yes"
11: else
12: update geometryerror = "no"
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5.9 Updating Attributes
Now that all algorithms are developed, the OSM data should be updated. It is not possible to
update these attributes directly on the OSM server, however it is possible to update the database
table. Therefore a copy of the "osm_highways" table is made and the columns for the new attributes
are added. Each algorithm can then update the results into the table. An updating function is
created and implemented in the Python attribute extraction script using the Psycopg2 library. One
single SQL command is send to the database using the column name of the attribute, the value of
it to and the road ID to update the attribute for that particular road.

This is done for every attribute and for every road. The result can be seen in Table 5.21 which
shows a sample of the updated OSM table.

Figure 5.21: Sample from the updated OpenStreetMap database table

The current situation for updating the attributes is depicted on the left in Figure 5.22. First
the data is extracted from the OSM database and together with the GPS data stored on the local
database. While the data is on the local database the preprocessing, the attribute extraction and
the updating is performed on the local database. After that, the OSM database can be updated.
Now, this has to be done manually. This means that for every road the attribute has to be edited
manually in OSM. Currently, there is no awareness of a possibility to transfer the local database to
the OSM database automatically.

The ideal situation would be storing only the GPS data in a local database and preprocess this
data with the OSM data directly from the OSM database. No extraction of OSM data is then
needed. Also, the attribute extraction and updating can then be performed on the data in the local
database and the OSM database can be directly updated. The schema for this situation is depicted
on the right of Figure 5.22.

Figure 5.22: Current schema for extracting and updating attributes (l) and the desired schema (r)

58



CHAPTER6
Validation

As already mentioned in previous Chapters and Sections, there are many factors that influence
the results of the attribute extraction algorithms. This Chapter will discuss these influences, the
minimum acceptable number of points and the validation and analysis of the attributes. A validation
is needed to check the results of the final algorithms with ground truth. It is not possible for every
attribute to automatically check whether the result is correct. Therefore the method of validation
differs per attribute. This Chapter will explain the method of validation for every attribute and
the results will be provided.

Validation sounds simple. However, there are many errors that should be thought of. Firstly, it
is difficult to know what is ground truth. The available data for validation is also error sensitive,
e.g. out of date satellite imagery or Google Street View. This is also related to the second error,
the temporal aspect of the data. GPS data is collected at a certain point in time and extracts
information about that moment in time. Therefore it is possible that data is derived during temporal
changes in the road networks or other temporary conditions (e.g. roadwork). This can cause that
the direction of a road is in a certain way till one point in time and from that point on it is changed
in the opposite direction. These influences are already explained in Section 6.1. The third error
consists of noise and inaccuracies, both from the GPS data and OSM data. All these influences
can lead to Type I and Type II errors. A Type I error is also called a false positive, meaning that
a classification has been made while in fact that classification is not correct or does not exist. A
Type II error is called a false negative and means that a classification has been made and validated
as correct while in fact the ground truth is wrong, as is the classification.

6.1 Influences on Attribute Extraction
This Section will discuss some external factors that will influence the attribute extraction algorithm
and its results. There is for example the inaccuracy of the GPS data and the behavior of the people
that can influence the results. But there are more factors which have not been discussed yet.

One of the major factors is time. There are many temporal aspects that influence the algorithms.
One can think of permanent temporal aspects, but also temporary aspects.

Permanent temporal aspects are changes over time. The world keeps changing and so does the
infrastructure. The GPS data used for this research is acquired over a few weeks time which is not
long. However, when the algorithms will be used for multiple datasets the timespan in which the
datasets are gathered is most likely larger. It can then occur that there are permanent changes
made in the infrastructure, e.g. a change of speed limit or a change of driving direction for a one
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way road. This research does not investigate the possibility of detecting these changes over time,
but this could be implemented in further research.

Besides permanent changes, there are also temporary changes like redirections during roadworks
and speed limit changes during roadworks. It is difficult to detect these changes since the timespan
of roadworks, for example, differs. Also the choice has to be made whether the temporary change
should be updated or whether the original values should be kept.

Not only the time has influence on the result of the algorithms, but also the differences in lo-
cation. This counts for example for differences between countries or differences between urban
and rural. Not all the countries have the same infrastructure and laws for traffic. This research
takes the speed limits of the Netherlands into account, but these speed limits could differ in other
countries. Besides speed limits, there is also the width of the road. The width of the roads are not
in all countries the same, there are even differences inside a single country. This makes it harder
to detect the number of lanes for example.

While evaluating some attributes the former mentioned drawing problems in Subsection 3.1.2 came
to notice. For example, a case with the "oneway" attribute that is depicted in Figure 6.1. In this
case the algorithm classified the road as a two way road, while OSM considered it as a one way
road. In real life, the road is indeed a one way road. However, the contributor that drew the
road decided to draw the two roads that come together as one linestring instead of two separate
lines. This causes the algorithm to detect GPS points in two directions for the road, assigning the
"oneway" tag a "no". It is difficult to automatically account for these kind of drawing problems.

Figure 6.1: OpenStreetMap drawing problem for the "oneway" attribute
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6.2 Minimum Acceptable Number of Points
The increase of the size of the data increases the accuracy of the results. This Section tries to
determine this increase of quality and determines the minimal size of the data. To improve the
reliability of the attribute extraction algorithms it is important to state a minimum acceptable
number of GPS points on a road. This can be done in general for all attributes, but since the
attributes have different conditions it is better to specify these minimum acceptable number of
points for every attribute separately. However, a road should at least have 10 GPS points assigned
to it to start the attribute extraction to remove roads containing outliers. The minimum acceptable
number of points is acquired by calculating the error for a defined number of samples which are
randomly selected out of the data. The smallest sample with an acceptable error is the minimum
acceptable number of points. The errors are calculated using the training data and the samples
that are used are:

• 10

• 20

• 50

• 100

• 200

• 500

• 1000

It should be noted that the errors can only be calculated if the actual situation of the training
data is known.

This method was first applied to the "oneway" attribute. The result is depicted in Figure 6.2a.
It can be seen that for the training set of 10 roads, no errors were made during the classification
for all the samples. Thus it can be stated that it is reliable to retain the minimum number of 10
GPS points per road.

The "maxspeed" attribute is a more complicated attribute and this can also be seen from the
results plotted in Figure 6.2b. For this attribute, the script ran 10 times to make sure the results
are reliable. For 10 and 20 samples the error is still high, but at 50 samples the error seems to
remain relatively stable. The average error at 50 samples is 26 km/h. This differs not much from
the average speeds of higher samples that have average errors of respectively 23 km/h, 24 km/h, 27
km/h and 20 km/h. Therefore, for this attribute a minimum of 50 GPS points per road is chosen.

The minimum number of points for the other attributes cannot be calculated in a similar way
as the previous attributes, mostly due to the lack of ground truth. Therefore a considered decision
has to be made for these attributes. For the "access" attribute it is decided to have a minimum
of 10 GPS points made by bicycle on a certain road. It can be stated that the minimum of 10
assigned bicycle points in the same direction and close to the road is reliable. The "averagespeed"
attribute does not make a classification, but relies on the facts of the GPS points (i.e. the speed).
Therefore it will have the smallest minimum of 10 GPS points to acquire a reliable average speed.
The "congestion" attribute is based on the average speed and therefore also requires 10 GPS points
per hour to determine a reliable average speed for every hour. Finally, the "geometryerror" attribute
also uses the minimum amount of 10 GPS points per road.

The minimum acceptable number of GPS points for all attributes can be found in Table 6.1.
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(a) (b)

Figure 6.2: Graphs showing the error per sample for "oneway" (a) and "maxspeed" (b)

It should be noted that that the "importance" attribute is not taken into account, because the
number of GPS points are not used in this case. The number of passes are used as an indicator
of the attribute. Therefore the exact number of passes is important. Thus this attribute does not
need a minimum number of points or passes.

Attribute Minimum number of GPS points
"oneway" 10
"maxspeed" 50
"access" 10
"averagespeed" 10
"congestion" 10 (per hour)
"importance" 10
"geometryerror" 10

Table 6.1: Minimum acceptable number of GPS points per road

In total, the database contains 22.619 roads with 10 or more GPS points assigned to them
against 38.639 roads that have less than 10 GPS points. There are 7.241 roads that have 50 points
or more assigned to them. Only the points are taken into account that have a speed higher than 5,
a distance to the road smaller than 30 and a similar or opposite heading as the road. The VCR is
not taken into account.

6.3 One or Two Way Road
The "oneway" attribute consists of two levels in the hierarchical code list. L0 only returns "yes"
and "no" to determine whether the road is one or two way. L1 also takes into account the direction
of the one way road, whether the driving direction is in the same or in opposite direction of the
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drawing direction.

The first level in the hierarchy, L0, updated the attribute for 22.619 roads of which 11.577 roads
where not informed yet. Thus the resulting 11.042 roads can be compared to the original OSM
data. It can be stated that using the OSM data as ground truth for 11.042 roads is representable
for the entire attribute.

The comparison showed that 72 out of 11.042 roads are differently classified, this is an error
of 0,6%. For this level, "-1" falls under "yes". Out of the 72 errors, 23 errors are caused by not
being able to classify the "reversible" roads. Also, some errors are caused by drawing errors that
are similar to the one in Figure 6.1.

Figure 6.3: Visualization of the "oneway" attribute
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L1 is only slightly different by also classifying the "-1" roads. The algorithm updated the same
amount of roads with exactly the same error as L0. This means that all "-1" roads are correctly
classified by the algorithm resulting in a correct classification of 99,4%.

The resulting classification is shown in Figure 6.3. This Figure shows the OSM map of the
Netherlands with the classified roads.

For the one way attribute for bicycles, there is no ground truth available. However, since the
same method is used for the cars it can be stated that the attribute for bicycles more or less have
the same result and same classification error. It is also important that the classification of roads
that allow bicycles is performed well.

6.4 Speed Limit
The "maxspeed" attribute consists of multiple levels in the hierarchical code list. L0 groups the
speed limits into low, medium and high. L1 classifies the speed limits and L2 makes a distinction
between speed limits during the day and during the night.

L0 updated a total of 5.137 roads of which 1.151 roads where not informed yet. This means
that 3.986 roads are already informed in OSM and can therefore be used as ground truth for the
validation of this attribute. The results show that 414 rows are differently classified for this level
which results in an error of 10,4%, i.e. a correct classification for 89,6%.

L1 updated the same amount of roads as L0, but with a classification error of 34,0%. Further
investigation showed that a part of the error is caused by the "links" of some types of highway,
e.g. an exit of a motorway is called a "motorway_link". Drivers usually have to slow down for
these links, causing the algorithm to differently classify these type of roads. Without taking into
account these links the classification error decreases to 30,8%. This is still high, however many
classifications are only one speed limit away from the actual speed limit, e.g. a classification of
30 km/h instead of 50 km/h or a classification of 100 km/h instead of 120 km/h. When taking
into account that classification that are one speed limit away are allowed, the classification error
decreases to 5%. Most of the errors are caused by higher speed limits, from 1.946 roads that are
differently classified 1.192 roads are from roads with speed limits higher than 100 km/h. This
is a percentage of 61,3% out of all errors. It is highly likely that these errors are caused by the
driving behavior of people on motorways. GPS points on motorways have a different behavior than
other types of roads. Where most people on 60 km/h roads drive around 60 km/h, people on a
120 km/h road tend to drive different from each other. Some people might drive 100 km/h, some
people drive 140 km/h. People in trucks or people with caravans or trailers are mostly allowed 80
km/h. All these different behaviors cause classification of higher speed limits to be more inaccurate.

The results of L1 are depicted in Figure 6.4. A clear distinction between the high speed mo-
torways and the lower speed city centers can be made in the Figure.

L2 is not yet implemented and therefore no validation over this can be made.
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Figure 6.4: Visualization of the "maxspeed" attribute

6.5 Access of Different Types of Vehicles
The "access" attribute is only implemented for bicycles in this research. A total of 3.481 roads
were given the "bicycle" tag by the algorithm. There is no ground truth available from the OSM
data, therefore a manual validation was performed. In total, a random sample of 100 roads were
validated using Google Maps and Google Street View.

The validation resulted in 26 wrongfully classified roads which is equal to an error of 26%. These
errors had different causes. The "bicycle" tag was given 84 times to a motorway or a trunk. Inves-
tigation of these points showed that the GPS points classified as bicycle are on the motorway and
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therefore it is highly likely that the classification and segmentation algorithm in the preprocessing
phase returned the wrong transportation mode. An example of this is shown in Figure 6.5a.

(a) (b)

Figure 6.5: Problems with the access attribute: wrongfully classified bicycle points (a) and the
problem with roundabouts (b)

A different problem involves roundabouts. Most roundabouts have a cycleway around the round-
about, this can be seen in Figure 6.5b where the blue dotted line is the cycleway. However, the
algorithm takes into account the heading of the GPS point and the direction of the road. Appar-
ently, these do not match for the cycleway but do match for the road causing the algorithm to
assign the bicycles to the road instead of the cycleway. During the validation of 100 roads, there
were 3 of these cases.

The most common problem is the error caused by map matching. There are multiple roads
which are classified that they allow bicycles, where the GPS points actually belong to the road
next to the assigned road. Therefore the algorithm thinks that the bicycles are on the road, while
actually they are next to the road on a different road. These map matching errors cause a wrong
classification of the access attribute.

Finally, there are also still some normal classification errors of which the cause is not directly
clear. During the validation it came to notice that roads are regularly modified, thus it might be
that this is also one of the problems. It is then possible that the cycleways next to the roads are
not yet drawn in the data that is used for this research, but they are drawn before the validation
is performed.

The algorithm also showed that is capable of detecting new paths for bicycles. There were an
amount of roads that were not classified as a cycleway, but turned out to be cycleways. In combina-
tion with car points new cycleways could be detected with this method, however this is something
for future work. Also roads which are now correctly given the tag "bicycle" can be used for bicycle
navigation software.
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6.6 Average Speed
The average speed is updated for two levels in the hierarchical code list. First there is the normal
average speed, L0, which counts for the entire road, i.e. in both directions. Second there is the
average speed per direction which is L1. L2, the average speed per hour is not implemented in this
research but is used for the congestion attribute.

The results of the average speed cannot really be validated, since the average speed is directly
derived out of the data. However, an indication of the results will be given in this Section.

Figure 6.6: Visualization of the "averagespeed" attribute
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The L0 algorithm updated the average speed for a total of 25.325 roads. The average of all these
roads is 54,65 km/h with a minimum of 5,15 km/h and a maximum of 145,32 km/h. L1 affected
a total of 19.132 roads, the difference between L0 and L1 results out of the fact that a minimum
of 10 GPS points is needed per direction. Some two way roads have only 10 GPS points making it
not possible to derive the average speed in both directions. The average of all the roads in similar
direction is 60,26 km/h and in opposite direction is 43,71 km/h. The average in similar direction is
higher due to the fact that all motorways are one way roads in the similar direction as the drawing
direction. The minimum in similar direction is 6,36 km/h and in opposite direction 6,45 km/h. The
maximum in similar direction is 139,31 km/h and in the opposite direction 108,80 km/h. There
are 1.042 roads where there is a difference of 5 km/h between one of the directions and the average
speed of both directions. And there are 184 roads where this difference is higher than 10 km/h.
This difference between directions can be caused by congestions that happen more often or more
heavily in one direction than the other.

The map that is made for the L0 average speed in the Netherlands can be seen in Figure 6.6,
a zoomed map on the three cities can be seen in Figure6.7. Seeing the high average speeds of the
motorway network next to the lower average speeds in city centers may be a good indicator of the
accuracy of this attribute.

Figure 6.7: Visualization of the "averagespeed" attribute zoomed on the three cities
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Hour Roads Hour Roads
0 1 12 308
1 0 13 359
2 0 14 511
3 4 15 649
4 58 16 493
5 278 17 311
6 621 18 225
7 571 19 121
8 346 20 54
9 214 21 69
10 230 22 28
11 253 23 4

Figure 6.8: Number of congested roads per hour

6.7 Hours in which Congestion Occurs
The "congestion" attribute is only implemented for L0 and only for the weekdays. This is done
as a result of time issues and because this level is most important and interesting due to work
traffic. The validation of this attribute is difficult since there is no ground truth available. Again,
an indication of the results will be given in this Section.

The algorithm updated 3.729 roads of which 390 roads where at least one hour congested in both
ways. When these roads are grouped by type of highway, a remarkable discovery is done. The
most congested roads are motorways with a total of 1.245 roads, then primary roads (618 roads),
secondary roads (580 roads) and finally tertiary roads with a total of 417 roads. This shows that
the amount of congestion follows the structure of the type of roads.

When looking at the distribution of the congestion per hour, the expected hours are the most
congested. Figure 6.8 shows the resulting graph and its table. The most congested hours are 6
(i.e. from 06:00 hours to 07:00 hours) and 15 (i.e. from 15:00 hours to 16:00 hours). This can be
related to the community, where most people have working hours from early in the morning till the
afternoon. This can also be seen in the Figure where the peaks of the graph center around these
parts of the day.

6.8 Importance of a Road
The "importance" attribute is also difficult to validate, therefore an indication of the results will be
given again. A total of 67.968 roads were updated with a category of importance between 1 and 5,
with 1 the most used roads and 5 the least used roads. Logically, category 5 is the category with
the most roads for it contains also the roads that are not used. The number of roads in category
5 is 67.456. Category 4 has 415 roads, category 3 66 roads, category 2 15 roads and category 1 16
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roads.
The roads colored by importance can be seen in Figure 6.9. The most used roads are situated

near Zeewolde and are probably the most important roads to and from Zeewolde. These are mostly
secondary roads, 10 roads out of 16 to be precise. Even the roads in category 2 are mostly secondary,
13 out of 15 roads are secondary roads. Category 3 and 4 are mostly motorways.

The results shows what is already expected in Section 5.7. The GPS data is biased because
it is derived from people out of only three cities. Therefore Zeewolde now has important roads,
where normally this is probably not the case. However, when data covering and representing the
Netherlands could be derived this algorithm could be a solution to classify the roads by importance.

Figure 6.9: Visualization of the "importance" attribute

Therefore the algorithm is also applied on the three cities separately, only using road passes that
are made by people from one city. For example, the road passes made by users from Amersfoort
are used to define the importance in Amersfoort. This is done for all three cities separately and
the results can be seen in Figure 6.10. The legend of the results is similar to Figure 6.9.

What should be noticed is that in most cases the most important roads are the roads that are
used for entering and exiting the city. The people enter and exit the city at a few roads around the
city and then split up in different directions. A table is created to compare the results of the total
importance with the results per city, this can be seen in Table 6.2. Zeewolde has the most updated
roads and the most amount of important roads, where Veenendaal has the least updated roads and
no classification of the second category.

Especially the results in the Figures show that this attribute has its limitations. The more
realistic the coverage of the data is compared to the real world, the better the results represent the
world.
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Figure 6.10: Visualization of the "importance" attribute for the three cities: Amersfoort, Veenendaal
and Zeewolde

Results Roads Max # of Cat. Cat. Cat. Cat. Cat.
of Updated Road Passes 5 4 3 2 1
Amersfoort 32.271 291 31.929 256 57 28 1
Veenendaal 25.842 419 25.842 120 17 0 6
Zeewolde 37.305 520 37.150 99 29 7 20
Total 67.968 537 67.571 322 49 13 13

Table 6.2: Results of the total importance of the Netherlands compared with the results per city

6.9 Error of the Road Geometry
The "geometryerror" attribute returns "yes" if the algorithm suspects an error in the geometry of
that road. An error in this case is if the GPS data differs more than 5 meters with the centerline
of the OSM road. This Section compares the geometry error attribute with Google Satellite data.

The roads with a geometry error are plotted on Google Satellite data to investigate the errors
of these roads. In total, there are 2.597 roads classified with a geometrical error. All these roads
are depicted in red in Figure 6.11. There are many roads which are just slightly shifted from the
actual centerline of the road. However, there is also an amount of roads that have different kind of
errors.

At first there are the roads which have a too long extension. These are usually roads that connect
to other roads, e.g. motorway links or in other words the entrances and exits of the motorways.
These roads tend to attach to the motorway to soon, leaving a part of the entrance of the motorway
not covered where the GPS points continue. Therefore the distance to the centerline increases and
the geometrical error is noticed. Secondly, there are also roads that are completely wrong. These
roads have a complete offset with the actual road. It is difficult to say how these errors originate.
It is possible that permanent or temporary changes are causing these errors. Thirdly, there is the
problem with curves in the roads. This is a common problem which causes slight errors. These
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Figure 6.11: Visualization of the "geometryerror" attribute

errors originate from the way of drawing of the contributor. Curves are drawn using points, the more
points that are in a curve the better the shape is. However, less points means a more generalized
road and therefore can cause errors. An example of this case can be seen in Figure 6.12a. Finally,
there are also other problems with the way of drawing of the OSM contributors. Some roads have
strange shapes and do not follow the actual shape of the road. This can be seen in Figure 6.12b.
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(a) (b)

Figure 6.12: Geometry errors from the data visualized on Google Satellite: curved roads (a) and
strange drawing (b)

6.10 Overview and Analysis
This Section provides an overview on the classification of the different attributes, an analysis of the
errors and the possible sources of errors. The validation that is performed focuses on the total error
of the classification. However, it is not clear whether all of the errors are caused by the algorithms
that are developed for this thesis. There are numerous external factors which can also cause errors,
e.g. wrong classification of transportation modes or errors caused by the TrackMatching algorithm.

An overview on the current classification accuracies is given in Table 6.3. This Table only takes
into account the attributes of which a classification error is available. The error for determining
whether a street is a one or two way street is 0,6% for both levels in the hierarchical code list. The
error for the speed limit is 10,4% for L0 and 34,0% for L1. The access attribute has a classification
error of 26,0%.

Attribute Level Classification
Accuracy [%]

"oneway" 0 99,4
1 99,4

"maxspeed" 0 89,6
1 66,0

"access" 0 74,0

Table 6.3: Overview of the classification accuracy of the attributes

The different attributes have a different minimum number of required points, but they also have
different input values. These values are not always informed for every point, causing the attributes
to update a different amount of roads. Table 6.4 is created to put these numbers into perspective.
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The Table shows the percentage of the attributes that are informed compared to the total number
of motorised roads before and after the attribute extraction algorithm is applied. The percentage
of informed attributes before the algorithm only applies to the first three attributes, since these are
provided in the data of OSM. Column two and three shows the percentage compared to the total
number of roads in the Netherlands, where column four and five only take the roads into account
that contain GPS points. The "oneway" tag achieved a total increase of 1,3% and a relative increase
of 17,0%, for the speed limit these percentages are respectively 0,1% and 1,7%. These percentages
are lower due to the higher minimum number of required points. The access attribute is provided by
OSM, however none of the updated roads have this attribute informed. The importance attribute
has the highest amount of updated roads, because the roads which have 1 GPS point on them are
also classified. In other words, almost all roads are updated in the case of this attribute. L1 of the
average speed attribute is updated less than L0, because not all roads with a total minimum number
of 10 points have the same minimum number in one single direction (i.e. similar or opposite). The
congestion and access attribute are only updated when the road is either congested or allows the
access of bicycles, explaining there low percentages.

Attribute Tot. Informed Tot. Informed Rel. Informed Rel. Informed
Roads Before Roads After Roads Before Roads After
Extraction [%] Extraction [%] Extraction [%] Extraction [%]

"oneway" 13,8 15,1 43,1 60,1
"maxspeed" 26,3 26,4 50,8 52,5
"access" n/a 0,3 n/a 4,0
"averagespeed" L0 n/a 2,8 n/a 37,3
"averagespeed" L1 n/a 2,1 n/a 28,1
"congestion" n/a 0,4 n/a 5,5
"importance" n/a 7,4 n/a 100
"geometryerror" n/a 2,5 n/a 34,1

Table 6.4: Overview on the total (all roads) and relative (only roads with GPS points) percentages
of informed attributes in OSM before and after extraction

The resulting errors can have different causes, which may be internal or external. Internal
errors are the errors which are caused by the attribute extraction algorithm developed in this
thesis. External errors are errors which cannot be avoided, i.e. caused by external factors. There
are numerous external factors which can cause these errors:

• classification of the wrong transportation mode

• GPS points that are map matched wrongfully

• wrong classification due to one of the influences on attribute extraction (temporal aspect,
location or way of drawing)

• data used as ground truth is not correct or outdated
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The methods used in the preprocessing phase are also not 100% accurate. The classification and
segmentation algorithm by Biljecki et al. (2013) has a classification accuracy of 91,6%. This means
that 8,4% of the tracks is given the wrong transportation mode. This could influence the attribute
extraction, since most attributes assume that the tracks are made by car or in the case of the
access attribute by bicycle. The wrong classification of transportation mode causes the attribute
extraction algorithm to extract wrong information. In the case of the one way attribute it is possible
that other vehicles are allowed in two ways of a certain road, but cars are not allowed in two ways.
For the maximum speed attribute it might be the case that the speeds that are derived are actually
from different vehicles than a car. For some vehicles this might not be a problem, however if the
algorithm assumes that it is a car while in fact it is a bicycle strange results can be updated. Also
for the access attribute it is a problem when the assumption of bicycle points is made, while in fact
it are car points.

Wrongfully map matched GPS point causes the GPS point to have the wrong road assigned. The
TrackMatching method that has been used for map matching has a classification error of around
4,5%, which would mean that 4,5% of the points has a wrongfully assigned road. In this case wrong
information is derived for that road. This is a problem for the extraction of all attributes. There is
also the possibility of wrong classification due to the influences discussed in Section 6.1, these are
temporal influences, location based influences and the influences caused by the way of drawing in
OSM. It is also difficult to state what is ground truth. For the validation of the attributes OSM
and Google Maps/Satellite are used. However, there is also the possibility that this "ground truth"
is wrong. It can be the case that the ground truth is outdated or that the situation has changed
since the acquisition of the GPS data and therefore the ground truth is more recent than the data.

The classification accuracies that are calculated in the previous Sections contain errors that are
caused by these external factors. Therefore these classification errors not really represent the error
of the algorithm. The errors caused by external factors will be filtered out to find the correct
representation of the error of the attributes.

The "oneway" attribute has a classification error of 0,6% using automatic validation using OSM
as ground truth. Manual validation has been performed on the errors using Google Maps and
Quantum GIS to find the cause of the errors. All 72 wrongfully classified roads were manually
validated and the results showed that three of the 72 roads were wrongfully classified by OSM and
not by the extraction algorithm. Further it should be noted that 10 of the errors are caused by the
fact that "reversible" is not taken into account in the algorithm. Also five errors were caused by
drawing errors in OSM similar as the one in Figure 6.1. Finally, two errors were detected due to
bad data. This data occurred in city centers where the GPS points were scattered, most likely due
to the urban canyon problem. All these external factors caused the classification error to be higher
than the actual error of the algorithm, without these external errors the classification error of the
algorithm is 0,5%. To be precise, a decrease of 0,15% is achieved.

For the "access" attribute a similar research has been performed. However, the access attribute
was already manually validated. From the 100 validated roads, 26 were classified incorrectly. From
these 26 errors, 11 roads were wrongfully classified due to wrong map matching. An example of
this map matching problem is depicted in Figure 6.13. The GPS points that are on the parallel
road are matched to the road next to it (orange road), causing the algorithm to state that this road
allows bicycles while in fact no bicycles are allowed. One of the reasons for this error could be that
the map matching algorithm does not notice that the first GPS points are on the cycleway, simply
because these are not taken into account. Therefore, most likely, the algorithm expects the points
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to be on the roundabout for example and therefore classifies the points to the wrong road.

Figure 6.13: Map matching error: points are matched to orange road instead of the white road next
to it

Also, six classification errors were made due to classification of the wrong transportation mode.
Most likely these classification errors originated from low speed GPS points in traffic jams, resulting
the classification algorithm to assign the wrong transportation mode. Finally, one error was also
caused by drawing errors in OSM. Without these external factors the classification error of the
algorithm decreased 16,24%, from 26% to 9,8%.

It is difficult to perform the same manual validation for the "maxspeed" attribute, since there
is no ground truth data freely available. The only external problem that can be mentioned for
this algorithm is the "motorway_link" problem. In total, 125 roads of a total of 1.354 wrongfully
classified roads are caused by this problem. Without these links the classification error of the
algorithm decreased 3,2%, from 34,0% to 30,8%.

These external factors cause errors which cannot be directly solved and which are not caused by
the algorithm itself. Therefore a revised overview on the classification accuracy of the attributes is
given in Table 6.5. Here are the percentages taken into account which are not caused by external
factors, thus these percentages of error represent the classification error of the actual attribute
extraction algorithm.

Attribute Level Classification
Accuracy [%]

"oneway" 0 99,5
1 99,5

"maxspeed" 0 89,6
1 69,2

"access" 0 90,2

Table 6.5: Revised overview of the classification accuracy of the attributes, without the influence
of external factors
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CHAPTER7
Conclusions and Future Work

This Chapter will elaborate on the conclusion made based on the research and will provide some
ideas for future work.

7.1 Conclusions
Before starting with the conclusions it is important to remember the research questions of this
thesis.
The main research questions was:

• To what extent is it possible to derive and update attribute road data by using movement
trajectories?

The research sub questions were:

• Which road attributes in OpenStreetMap data can be enriched by GPS tracks?

• Can GPS tracks provide information for new attributes to OpenStreetMap data?

• What is needed to extract the information for the missing attributes?

• How can the method automatically update OpenStreetMap?

• How can the results be validated?

The main research question will be treated last in this Section, first the sub questions will be treated.

This research has proven that not all attributes can be updated. First a selection was made based
on the hypothesis that movement trajectories could be used to enrich these attributes. These at-
tributes are "oneway", "maxspeed", "lanes" and "access". These attributes were mostly not informed
and sometimes wrongly informed. The percentages of informed roads are for "oneway" 13,9% and
for "maxspeed" 26,3%. For the other two attributes these numbers are not known, since they were
not available in the OSM dataset. Movement trajectories, or in the case of this research GPS tracks,
have also proven to be able to extract information for new attributes. The new attributes that are
introduced in this thesis are "averagespeed", "congestion", "importance" and "geometryerror".

Before the attribute extraction can be performed, a lot of preprocessing has to be done. The
most important steps in this phase are the classification of the transportation mode (Biljecki et al.,
2013) and the map matching of the GPS points (Marchal, 2013). The latter assigns the road ID on
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which the GPS points are located. This part is essential for deriving the attributes for the roads.
Further preprocessing that needed to be done was calculating the distances between GPS points
and the roads, determining the direction and difference in direction of the roads and GPS points
etc. After this preprocessing phase, the algorithms for extracting the attributes could be developed.

The different attribute extraction algorithms make use of different input and different methods.
The "oneway" attribute makes use of the heading of the GPS point, where "maxspeed", "aver-
agespeed" and "congestion" uses the speed of the GPS points. The "lanes" and "geometryerror"
attributes used the distribution of the GPS points. All these different inputs led to different meth-
ods and different results. This research has proven that it is very difficult or near to impossible to
detect the number of lanes out of GPS tracks. Also, the "importance" error needs a decent coverage
to acquire representable results.

The results that are acquired could not be directly updated into OSM. The existing and new
attributes are added and/or updated in the local database. This database contains a copy of the
actual OSM data. It can be stated that at the moment, there is a gap in updating OSM in an
automated way. A possible reason for this can be the influence of the contributors in the OSM
community which are against automated methods for updating OSM. However, the possibility of
automatically updating OSM could be very beneficial for the completeness and the level of detail
for OSM in the future. If people are then willing to provide movement trajectories for attribute
extraction on a regular basis, e.g. from OSM-based mobile applications, a constant flow of data
will then be available for attribute extraction.

Finally the results were validated. It was not possible to acquire a ground truth for all attributes.
The "oneway" attribute resulted to be the most accurate with a correct classification of 99,4% and
"access" classified 74% correctly. The "maxspeed" attribute resulted in a correct classification of
89,6% for L0 and 69,2% for L1. However, when taking into account speed limits that are one step
away from the classified speed limit the classification increases to 95%.

This research not only updates the standard attributes in OSM, but also extends the OSM data
with four new attributes (i.e. "averagespeed", "congestion", "importance" and "geometryerror").
When updated, the results can contribute to many different applications. First of all navigation
systems can operate better for cars and for bicycles due to the "oneway", "averagespeed" and "ac-
cess" attributes. Traffic analysts will have access to more information about the roads with the
"maxspeed", "importance" and "congestion" attributes. Finally, OSM contributors can also benefit
from the "geometryerror" attribute to increase the accuracy of the geometry in OSM.

It should also be noted that the strength of this research is that it is completely automatically.
All steps that are performed in this thesis are implemented in Python and thus one single program
can be created that automatically derives the attributes starting from the map matching till the
updating. By deriving and updating the attributes automatically, the error of the attributes may
also be reduced since the contributors are allowed to freely fill in the tags which is highly error
sensitive. Also, this research is useful not only for OSM and GPS data but also for other maps (e.g.
Google Maps, HERE Maps) and other movement trajectories (e.g. other GNSS, cellular trajecto-
ries). The latter could be acquired using crowdsourcing which could cover a great part of the earth
and opens opportunities for attribute extraction all over the world and ideas for new applications
and attributes.
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7.2 Future Work
This research is one of the first in its kind which means that there is still much to do and improve.
This Section will provide some recommendations for future work related to this thesis.

First improving the attribute extraction algorithms could be a possibility. The algorithms of these
8 attributes are developed in a strict timespan and could be improved for more reliable and better
results. One of the things that could be improved is adding a confidence factor that represents the
reliability of the results. Then, a better estimation can be made whether the attribute should be
updated or not. Adding constraints might also improve the classification accuracy of the algorithms.
For example, the "access" attribute could have the constraint: no bicycles allowed on motorways.
It is certain motorways do not allow bicycles and therefore that possibility can be left out. This
would already improve the current algorithm and could be applied for more attributes.

The "oneway" attribute could be improved by adding the "reversible" possibility to be more
complete. The algorithm might improve further when also using a minimum of distinct user IDs
and not only the number of GPS points. In the current case it is possible that on long roads, all
the points on that road are made by only one user ID in one trip. This could cause the algorithm
to classify this road as a one way road, however more user IDs would increase the reliability and
certainty of the classification.

For the "maxspeed" attribute it could be beneficial to do a more in-depth research on classifying
using pattern recognition techniques. Now, only the basic techniques are used due to the timespan.
A more complex method could improve the attribute extraction algorithm in the future.

Attributes could also be expanded, like the "access" attribute. More types of vehicles than only
bicycle could be integrated in this attribute. Cycleways could also be detected by using the roads
which allow bicycles, but do not contain GPS points from other types of vehicles. The same can
be done with pedestrians. For this it is important that map matching to cycleways and footpaths
is possible, making the results more reliable and accurate.

The geometry error could be expanded in a way that not only a warning is given, but the actual
geometry is corrected using this attribute. Zhang et al. already implemented this in their paper
and this could also be implemented in the case of this thesis.

Also, a complete study could be performed on the derivation of the number of lanes of a road.
Both Zhang et al. and Chen and Krumm have already performed research on this topic, however
the results could be improved. Improvement of this attribute, and possible other attributes, could
be derived from different sources of data. For this research only movement trajectories were taken
into account. If more data was available and allowed the extraction of certain attributes might
be improved. Examples of possible extra data are cameras on cars that take pictures every few
seconds, satellite imagery and other datasets. Satellite imagery and the photos from the cameras
might improve the extraction of lanes and perhaps open new opportunities for new attributes.

Ideas for new attributes can also be reason for future work. There are still many attributes of
which one can think of, e.g. if it is allowed to pass a vehicle on a two way road or the average
waiting time on a road with a lot of traffic lights. And there are more attributes that can be
derived and implemented using movement trajectories. When a new attribute has to be extracted,
one can follow a few steps to develop the algorithm. These steps are depicted in Figure 7.1. The
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first step is logically the idea for a new attribute, the second step is then to define which value
is needed for deriving the attribute. This can be the speed of the GPS, the direction, etc. After
that, one should think of the outliers that should be removed, e.g. for the "maxspeed" attribute it
is important to remove the points that exceed the threshold of the VCR. However, for the "aver-
agespeed" attribute it is very important that these points are still present for a good estimation of
the average speed. The fourth step is to choose a technique to extract the attribute, this can be a
developed rule or a pattern recognition technique for example. Finally, all these steps and choices
should come together in developing the algorithm and optimizing it in a way that the result is best.

Figure 7.1: Action plan for new attributes

One of the major ideas for future work is the possibility to derive the attributes real-time with
data that is added every moment of the day. Crowdsourcing might be helpful in this case to acquire
a vast amount of movement data from people. This could lead to live maps which would change
almost real-time with the things that happen on the road. This research would be a few steps
further than the research of this thesis, but could lead to new possibilities in maps.
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Reflection
This research was conducted from November 2013 till June 2014, a total of 8 months. The research
started with literature reviews, searching and reading all the related works in the field of the topic:
"Automatically deriving and updating attribute road data from movement trajectories". At this
point the research question was more focused on OSM and GPS tracks in particular, however in a
later stage it came to mind that this research is valuable to a bigger picture and can be applied for
all kinds of maps and all kinds of movement trajectories.

After the literature review the preparation of the data was important. The GPS data and the
OSM data was already available, however the data still lacked the matched roads to the points.
Fortunately, the TrackMatching application was found and this was the solution of which would
have been a time consuming problem. With the data prepared the development of the attribute
extraction algorithms could begin.

The first thing was visualizing and understanding the data, knowing what kind of outliers are
present and which elements of the data could be beneficial for attribute extraction. This became
more clear throughout the research process and new problems and solutions occurred along the
way. Most algorithms were developed on a trial and error basis, different techniques and thresholds
were trained and tested to acquire the best results. Slowly, but steady the algorithms were finalized
after which the validation could start.

Validation was a difficult part of the research, since there was not many related work available
and also ground truth was difficult to find, biased or not available. Nonetheless, some attributes
had a high classification accuracy. There were also some classification accuracies of attributes, like
the "maxspeed" attribute, which were slightly lower than expected. However, for a first research in
this field these results are hopeful for future works.

During the entire research it was managed to stick to the planning. Although some problems
occurred during the research, there was no significant delay in the research. This was partially due
to good planning, but also due to the facilities and data that were made available by the supervi-
sors. Since all that was needed was provided at the beginning of the thesis, the research could start
immediately.

The final products are multiple scripts containing the codes for all steps that are taken in this
research, from the map matching and preprocessing to the actual extraction and updating of the
attributes. These scripts could be implemented into one script that automatically preprocess the
data, extracts and update the attributes.

This research has a strong relation with the field of geomatics. Movement trajectories are used
as input and the attributes for the roads are the output. Both the input data and the output data
are geometrical data or attributes of geometrical data.
The methodological line of approach in this research can be compared to the approach of the Master



Geomatics. The work flow in the Master can be categorized in five steps:

• Data Capture

• Data Storage

• Analysis

• Communication/Visualization

• Quality Control

The data capture step was already performed in advance of the research by the people carry-
ing the GPS device and the OSM contributors. The data storage step was partially performed in
advance, but is expanded by the preprocessing and updating in this research. The analysis and vi-
sualization steps in this research were the most important steps. These steps helped to understand
the data and extract useful information out of it that results into the updated attributes.

This research contributes to all different kinds of parts in society. It investigates if movement
trajectories can be used for automatically deriving and updating attribute road data. Automati-
cally deriving this kind of information saves a vast amount of time and money compared to manual
extraction. The results could be used for various applications as navigation systems, traffic analyses,
urban development and civil engineering and more.
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