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Since computers were introduced in architectural design as a valuable tool, there was a growing need 

to develop tools that would support the designer from the initial phase of the design till the detailing. 

In a computer aided architectural design environment it is feasible to stimulate the spatial design ideas 

and create alternatives in an efficient way. Pattern Grammar approach is one of the design alternatives 

where patterns, based on complex spatial geometry, are used as an underlayer for a design. In this 

research, the wavelets techniques are used as pattern grammar and applied to spatial information 

processing for the generation and analysis of the architectural patterns as well as for supporting 

decision-makings in structural realisations. 

Key words: pattern grammar, architecture, wavelets, muitiresolution, space-frame 

1 Introduction 

Parallel to the advancements in the computer technology, there is a need for enhanced information 

processing virtually in all disciplines to cope with the incoming information. This is basically due to 

growing data and information processing, as a demand of modern technologies. In engineering 

disciplines, the growing need for information processing can be imagined due to the advancements 

in data acquisition and strong demands on real-time operations in dynamiC engineering systems. 

In the same way, the large-scale systems and the associated complexity of modern age, put heavy 

demands on optimal decisions and / or solutions that are expected to be efficient and especially cost­

effective. In this respect, in the last decade, information processing methods, methodologies, 

paradigms resulted in their associated emerging technology known as information processing 

technology. Multiresolutional decomposition is one of the emerging components of information 

processing technology that introduced new paradigm for enhanced information processing, at 

large. The decomposition is accomplished by means of some base function$ known as wavelets so 

that the process is known as wavelet decomposition. 

In this work we focus on the development of a new design tool for pattern generation especially for 

architectural design using multiresolution information processing. In general, design tools are 

essential in the initial phase of the architectural design. Although there are several alternatives of 
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pattern generation for implementation in architectural design, the multiresolution spatial decompo­

sition provides accurate mathematical description of the design and decomposes the design infor­

mation into multilevel information form. This is called multiresolution information. As it will be 

explained later in the work, here the implication of this approach is that, each level of multiresolu­

tional information, that is function approximation, might be considered as a separate pattern as well 

as the difference information, so-called details, between the levels. With this interpretation, the 

decomposition provides immense variety in pattern generation simply by using the design informa­

tion in parts and in a controlled way. At the same time, the mathematical details of the design are 

accurately maintained. Today wavelet decomposition is used virtually in all engineering fields as it 

provides a unique tool for simultaneous time and frequency analyses of signals. Therefore it gives 

insight into the signal analysis beyond the traditional Fourier analysis paradigm. Basically, the 

multiresolution form can be considered as a function approximation in Hilbert space [1]. One can 

think of Hilbert space, where functions are represented as vectors in a certain base, through the 

analogy with an Euclidean n-space denoted by ~n. In the present context, the functions in Hilbert 

space subjected to systematic approximation yield the patterns with the associated grammar known 

as pattern grammar. Pattern grammar approach is one of the design alternatives where patterns, 

based on complex spatial geometry, are used as an underlayer for a design [2]. However, the 

application of wavelets for spatial information processing is rather limited and its utilisation in 

architectural design apparently provides a new tool for this very purpose. Hence, it is the goal of 

this research to describe the important role of wavelets in spatial information processing, taking the 

architectural pattern generation as a specific example area with application to structural design. 

The organisation of the paper is as follows. Section 2, introduces briefly wavelets and its role in 

multiresolution decomposition of spatial information. Section 3, describes geometric pattern 

generation by wavelets and utilisation of wavelets as a decision-making support for structural 

realisations that are followed by conclusions in Section 4. 

2 Wavelets 
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Although computer aided design (CAD) facilities are quite comprehensive, automatic generation of 

patterns is always an important concern for both architectural and industrial design because of the 

variety of patterns needed together with their systematic description for easy reproduction. 

Although the formalism of the wavelet transform is slightly older than a decade, in the last decade 

as a new emerging technology, it has proved to be a powerful information processing tool in 

diverse disciplines like pure mathematics, physics, electrical engineering, image processing, 

computer graphics etc. In a CAD environment, the mathematical description of patterns using wave­

lets is an interesting co-ordination of these two modern technologies, yielding a productive out­

come. The wavelet transform is a fairly simple yet very powerful mathematical tool that divides 

data or functions into localised components. Afterwards, it studies each with a resolution matched 

to its scale within this multiresolution scheme. There are many excellent text books on wavelets, 

e.g., [3-6]. However, a brief description of wavelets is in order here for the sake of completeness and 

the description of the work. 



The multiresolution theory can conveniently be described by the theory of function spaces. 

A function space is made of embedded subspaces V m where the limit of their union is ~ 2(~) as 

schematically shown in Fig. 1. In general, 

and 

(1) 

where ~ is the set of all real numbers and ~2(~) indicates the integration with respect to Lebesgue 

measure for squared integrable functions; 71. is the set of integers. 

If we denote by Pm the orthogonal projection operator onto V m' then from (1) we can conclude that 

lim Pm f = f for all f E ~2(~). However, central to the multiresolution aspect is that 
m----"-"'" 

f(X) E Von ¢=; f(2x) E V m-l· (2) 

which means, all the spaces are scaled versions of the fundamental space Vo· Alternatively, V m 

spaces have the property that for each function f(x) E Von, a contracted version of it is contained in 

the subspace Vm_1• The function spaces Vm are schematically shown in Fig. 1a. A functionf and its 

projections onto V m-l and V m spaces is shown in Fig. 2. 

Fig. 1. 

(a) ( b) 

Multiresolution representation Of~2(~). (a) Vm spaces where the shaded ellipse represents the 

function space V",. (b) W", spaces where the shaded ring represents the difference space between 

V,,, and V",. 1 so that V",_l = Vm EEl Wm. The symbol EEl indicates the summation of the orthogonal 

spaces. 
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Fig, 2, (a) Afunctionj(x), (b) Projection ofj(x) onto V",_l' (c) Projection ofj(x) onto V m, (V", c V",_l) , 

In ~ '(IR), the functions 

form an orthonormal basis for V m' These are called scaling functions and for m = 0, we basically 

write 

!/Jo,n(x) = !/J(x-n) 

The function f(x) in each subspace can be expressed by these orthogonal base functions as 

approximation in such a way that fm(x) E V m and 

f(x) = limfm(x) 

(3) 

(4) 

(5) 

All functions in V m can be represented using linear combinations of the scaling functions, In other 

words, fm(x) is an orthogonal projection of f(x) onto V m' 

fm(x) = L < !/Jm,n(x),f(x) > !/Jm,n(x) = ~>m,n!/Jm,n(x) (6) 



where < ifJm,n(x),f(x) > is the inner product defined by 

< ifJm,n(x),f(x» = f ifJm,n(x)f(x)dx (7) 

Note that, the number of points representing the function increase twice in the V m-J space relative to 

Vm space. 

Here some illustrations are in order. Below, wavelet decomposition of a zero-mean function j(x) made 

available with 512 points is presented. In the multiresolution decomposition sense, this is f-'(x), In figure 3a, 

lix) (lowermost with 256-points), is the first approximation to the function fjx) given with 512 points. 

Total four consecutive approximations are indicated upon each other, The vertical axis is with arbitrary units 

and used for the indication of relative approximation function amplitudes. Figure 3b indicates the data points 

of figure 3a, The numbers of the data points are halved at each consecutive coarse approximation towards to 

the top. These are the function approximations in Vm spaces. 

In Fig. 1, the difference spaces can be represented by W m which are defined as the orthogonal 

complement of the spaces V m with respect to V m-l' so that, 

(8) 

Where EEl is the summation operator for orthogonal spaces. The difference spaces Wm are schemati­

cally shown in Fig. lb. 

Now, let 1Jf(x) = lJIo,o(x) be a basis function of Woo Note that lJIo,o(x) E Wo c V_1 and therefore can be 

expressed in terms of basis functions ifJ-l,n(x) and consequently, we can also define functions lJIm,n(x) 

that are shifted and dilated versions of one prototype function 1Jf(x) of the form 

(9) 

The functions lJIm,n(x) are similar to the wavelets described in (3). Explicitly, ifJ(x) is defined for the 

vector space Vm and 1Jf(x) is defined for the vector space Wm • Therefore, there are strong relations 

between ifJ(x) and 1Jf(x). The introduction of the wavelet functions enables us to write any function 

f(x) in L2(1R) as a sum of projections on V\j, j E IR, of the form 

f(x) = L wj(x) (10) 
j ~-~ 

where 

(11) 

Considering a certain scale m, the function f(x) can be written as the sum of a low resolution part 

fm(x) E V m and the detail part which is constituted by the wavelets w/x) E V\j so that 
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Fig. 3. 
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(a) Four consecutive function approximations in V -s - V_s spaces to a function f-9' given with 512-

points are indicated upon each other. The numbers next to the approximations are the number of 

points representing the function. The linear vertical axis is with arbitrary units and used for the 

indication of relative approximation function amplitudes. (b) Explicitly indicated data points of 

figure 3a. The number of data points of each representation is halved at each consecutive coarse 

approximation. These are the function approximations in Vm spaces from V_8 to V_So The coarse 

approximation at the top has 32 points. (c) Further function approximations in 

V -4 - V_1 from 16 points down to 2 points to be added to those in figure 3a. (d) Reconstruction of 

the signal fjx) starting from 4-point representation (top, in V_2). The given function (indicated 

by G) subjected to decomposition is the lowermost and its perfectly reconstructed counterpart 

(indicated by PRJ is next to it above (second from the bottom). Note that in all figures (3a-d) all 

the variations are zero-mean functions and here their variation and relative amplitudes are meant 

for representation. Therefore, the units of the linear vertical axes are arbitrary. The data points 

representing functions in space/time, span the horizontal axis. 



f(x) = f m(X) + L wj(x) (12) 
j ~-~ 

L <¢m,n(X),f(x) > ¢m,n(X) + L L < lfIj,k(X),f(X) > lfIj,k(X) (13) 

J ~-~ k 

which can be expressed as 

f(X) = LCm,n¢m,n(X) + L ,Ldj,k lfIp(x) (14) 
j ~-~ k 

The coefficients dj,k in the equation above, are known as the waveJet coefficients, From (11), the 

multiresolution decomposition is represented by an approximation Le" the first term with ¢m,n(x) 

functions, and the detail part Le" the second term with the If';,k(X) functions, The variable m indicates 

the scale and is called scale factor or scale leveL If the scale level m is high, it indicates that the function 

in V m is a coarse approximation of f(x), so the details are neglected, On the contrary, if the scale level 

is low, a detailed approximation off(x) is achieved. 

With respect to above-described multiresolution scheme, the orthogonal and compact supported 

Daubechies wavelets [7,8] with 12 points are used in this study. The important multiresolution 

properties expressed by (14) are the virtually exact reconstruction of the decomposed functions as 

well as the multiresolution decomposition of functions. To see this, consider the detail parts of the 

decomposition in the W m spaces and the approximations in the V m spaces in Fig, 1, Approxima­

tions fm and fm-I' are related by the relationship 

(15) 

that represents the one-step reconstruction. 

Here again some illustrative examples are in order, The implication of(15) is illustrated in Figure 4, Figure 4a 

is the progressive enhancement of the spatial representation of the approximation with 2-points shown in 

figure 3a, for better visualisation, Note that, this is not the increase of the resolution for junction represen­

tation, From 4-point (uppermost) to 512-point (lowermost) representation is obtained by taking the wavelet 

coefficients zero i,e" W", spaces are zero so that V", (m ~ -1) space remains the same, Figure 4b is the similar 

progressive enhancement of the spatial representation of the difference of two approximations, i,e, W_J, from 

V_2 ~ V_I EB W_I , Note that, this is not the increase of the resolution spatial enhancement of the difference 

representation, From 4-point (W_I uppermost) to 512-point (lowermost) representation is obtained by taking 

the wavelet coefficients zero i.e" W", spaces (m < -1) are zero so that W", (m ~ -1) space remains the same, In 

accordance with the relationship V_2 ~ V_I EB W_I, the summation of two functions in V_I and W_1 yields the 

function approximation (f -2) in V_2 space with enhanced representation by 512 points and this is illustrated in 

Figure 4c. The low-resolution function approximation f -2 without spatial enhancement is already given before 

(second from the top in figure 3c, with 4 points), 
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Fig. 4. 

256 

512 

0.00 200.00 600.00 0.00 200.00 400.00 600.00 

(a) (b) 

(a) The enhancement of the spatial representation of the approximation for better visualisation. 

Note that, this is not the increase of the resolution for function representation. This is spatial 

enhancement of the function given in figure 3a with 2 points. Hence, from 4-point (uppermost) to 

512-point (lowermost) representation is obtained by taking the wavelet coefficients zero i.e., W", 

spaces are zero in (15). (b) Illustration of the same enhancement as in 4a but for W_1. Here W", 

spaces for m < -1 are zero so that the difference space W_1 remains the same. Consequently, the 

variation shown is the difference between two function-approximations 1-2 and f-l in W_1 space. 

Note that all the variations are zero-mean functions and here their variation and relative 

amplitudes are meant for representation. Therefore, the units of the linear vertical axes are 

arbitrary. The data points representing functions in space/time, span the horizontal axis. 

(c) 

S12-point 
approximation in 
V-z space 
(V'2" v, Ell W,) 

512-point 
difference in W-1 

space 

512-point 
approximation in 
V-I space 

Fig. 4 (cant' d): (c) The summation of two zero-mean approximations in V_I (lower) and W_1 (middle) spaces 

where the functions are given by enhanced spatial representation with 512 points. Their 

summation yields the function approximation in V_2 space with 512 points (top) and this is the 

same approximation given in figure 3c with only 4 points (second from the top) without spatial 

enhancement; the enhancement of the spatial representation of the 4-point approximation for 

better visualisation would yield the same approximation in V_2, shown above. Note that all the 

variations are zero-mean functions and here their variation and relative amplitudes are meant for 

representation. Therefore, the units of the linear vertical axes are arbitrary. The data points 

representing approximation and detail functions in space/time, span the horizontal axis. 



3. Wavelets in Architecture 

3.1 Pattern generation 

Multiresolution decomposition as expressed in (14) and (15), has several implications in architec­

tural and structural design, as described below. 

The first implication, from the architectural viewpoint, is the pattern generation by wavelets, or in 

other words, wavelets can play the role of pattern grammar. Patterns subject to creation can be in 

multidimensional space. The examples presented here will be in 2D space for simplicity. To create a 

pattern, at the beginning a 2D function is expressed in parametric form as illustrated in Fig. Sa. 

Since the 2D function is expressed with the ID functions in parametric form, the function is 

decomposed to some detail and approximation levels, generally, treating the ID functions 

separately and combining the results for 2D representation again. As result, the detailed parts are 

shown in Fig. Sb-d, for a given function with 32 points shown in figure Sa. The approximations 

starting from the given function onwards are shown in Fig. 6b-d. Any function belonging to the 

detailed or approximation parts or to the function itself can be subjected to low level sampling, 

simply by regular skipping some points in the function. This means, the function is low-pass fil­

tered. However, because of the higher frequency components in the function that are more than the 

twice of the sampling frequency, the form information is altered due to the effect known as aliasing. 

The spatial enhancement of the new shape can be increased for a better visualisation that means 

without adding any detail (shape) information. The Hilbert-space representation of this concept is 

illustrated in figure 2 and (14), (15) give its mathematical form. The implication of (14) and (15) is 

that the increase of the number of points i.e. enhancement of the spatial representation of a closed 

shape is known as node insertion. Such implementations are important for tilings in computer 

graphics, for instance, that is reconstructing a surface from a set of planar contours [9]. 

The result of the process described above is given in Fig. 7. In that process, initially, Fig. Sd, i.e., 

spatially enhanced approximation function, from 4 points to 32 points, in the V_1 function-space is 

selected as a pattern subject to the development of a new pattern according to the wavelet-based 

grammar. The initial pattern that is a function with 32 points is reduced to 8 points by low sampling 

rate, that is, by taking one of each consecutive four nodes. The spatial resolution of this new func­

tion is increased by node insertion up to 32 points, using wavelets. In the terminology of wavelets, 

this corresponds to function representation remaining in the same space V m where the function is 

represented with more number of wavelets, as this is explained before. This process is repeated 

while the shape of the pattern is modified in each case due to the aliasing effect mentioned above. 

However, since in each such consecutive process, the aliasing effect reduces and eventually it 

diminishes, such a process converges to a certain pattern as Fig. 8a illustrates. The final shape is 

further increased from 32 to 128 points for a better visualisation using the spatial enhancement 

technique by wavelets, described above. 
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Fig. 5. 
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(a) (b) 

(e) 
(d) 

Detail components in the wavelet spaces of a decomposed function given in parametric form in 20 

as x = sine wt) cos'( rot), y = cos( wt) sin'( wt). Note that all details are expressed in enhanced 

spatial representation with 32 points for better visualisation. (a) the function (f-s) given with 32 

points; (b) the first difference in the wavelet space W -4' after wavelet decomposition. The fraction 

of the divisions is represented with two digits. However, since the difference between V_5 and V -4 

is small they are all indicated as null; (c) the second difference in the wavelet space W_y (d) third 

difference in the wavelet space W_2. 



... \ 

Ca) Cb) 

Ce) Cd) 

Fig. 6. Approximation components in the function spaces of a decomposed function given in parametric 

form in 2D as x = sine rot) cos'( rot), y = cos( rot) sin2( rot). (a) The function (1-5) given with 32 

points; (b) The first approximation in the V -4function space; (c) The second approximation in the 

V_3 space; (d) The third approximation in the V_2 space. In each case, the number of nodes reduces 

by a factor of two. In contrast with the detail parts shown in the preceding figure, no spatial 

enhancement is made here to illustrate the sharp (edged) geometric shapes formed. The close 

relationships between figures 5 and 6 can easily be identified. For instance, in accordance with the 

relationship V",_l = V", EEl W", given in (8), the summation of two functions in W -4 (figure 5b) and 

in V -4 (figure 6b) yield the given function (f-s) in V_s space with 32 points being illustrated in 

Figure 6a. Proceeding in the same way, summation of the figures 5c and 6c results in figure 6b. 

To carry out the summation procedures, figure 6b-d is subjected to spatial enhancement as is 

done in figure 5b-d. 
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Fig. 7. 

0.04 

-002 

(a) (b) 

(a) A new pattern by wavelet grammar using figure 5c; (b) Representation of figure 7a with 

spatial enhancement from 32 points to 128 points. 

Various patterns can be obtained in the way as described above. Here wavelets play the role of 

pattern grammar. Additionally, by the translation, rotation and scaling still further patterns in 

variety can be formed. 

3.2 Structural design application 
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The second implication of (14) and (15) concerns the space-frame and tensile structured architec­

tural building designs. Namely, since the low-resolution function representations are the best repre­

sentations in the mean-squared error sense [3], the nodes representing the functions also indicate 

the optimal locations for the joints in a space-frame structure subject to the design conditions. 

A trivial example of this as a simple design is explained below. 

For this purpose we consider a full sphere as a basic geometrical shape. The wavelet decomposition 

down to 8-points from 32-point circles obtained from equally spaced cross sections perpendicular to 

z axes (i.e. by planes parallel to x-y plane) is shown in Fig. 8a. In other words, figure 8a is obtained 

by multiresolution wavelet transform from 32-point discretized representation of concentric circles. 

Such a trivial decomposition can show the important implications of wavelet transform in engineer­

ing designs as a counterpart of architectural designs. The wavelet decomposition from 32 points to 

8 points of the semi-circle in x-z plane is shown in Fig. 8b. 



Fig. 8. 

(a) (b) 

Representation of the circles with eight nodes in eight planes parallel to x-y plane, in the z 

direction where (a) Representation of the sphere with eight points on the eight planes parallel to 

x-y plane (b) Representation of the cross-section of sphere with x-z plane. Here the half of the 

cross-section (i.e. semicircle) is represented with eight points. Each point belongs to a different 

plane parallel to the x-y plane, in figure 8a . 

Here, each of the multiresolution representations is the best approximation to the actual closed 

function (that it is the shape of the cross section and it is a circle in the present case) in the least 

mean square sense. For engineering considerations such representations might be especially of 

interest. Consider determining the location of the structural forces in space-frame structures of a 

cupola. The wavelet spatial resolution enhancement from 8 points to 32 points for concentric circles 

is shown in Fig. 9 for 32 evenly separated different z values determined by analytical computations. 

Fig. 9. 

(a) (b) 

(a) Spatial enhancement of the circles in figure 8 by wavelets from 8 up to 32 points in the planes 

parallel to x-y plane for 32 evenly divided different z values determined by analytical 

computations (b) Representation of the cross-section of sphere with x-z plane. Here the half of the 

cross-section (i.e. semicircle) is represented with 32 evenly separated points. Each point belongs to 

a different plane parallel to the x-y plane, in figure 9a. 
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The wavelet multiresolution decomposition of concentric circles in Fig. 9 is shown in Fig. 10 where 

decomposition yields four-point representation of these circles so that the closed polygons become 

squares. Fig. lOb is obtained by wavelets in contrast with Fig. 9b that is from analytical computa­

tions. 

(a) (b) 

Fig. 10. (a) For 32 different z values, wavelet decomposition of the circles in figure 9a, from eight down to 

four points in the planes parallel to x-y plane (b) Spatial enhancement of the semicircle in 

figure 9b, from 8 up to 32 by addition of more wavelets. 

Since the geometric shape that we consider is a sphere, the results shown in Fig. 9 and Fig. 10 are 

trivial and quite obvious. However, the results are quite general since no assumption during the 

spatial enhancement in Fig. 9 or multiresolution decomposition in Fig. 10 is made. Also, it is worthy 

mentioning that, although the above analyses dealing with wavelet decomposition and spatial reso­

lution enhancement can readily be carried out by analytical computations, the latter can only be 

done for analytically known shapes. In other words, such analytical computations cannot be done 

for analytically unknown shapes. However, wavelet approach decomposes the spatial information 

into lower resolution levels or reconstructs the information in higher resolution levels with or 

without adding new spatial information but simply by processing the information represented by 

given points defining the shape. This practically means any shape and the spatial resolution 

enhancement can be seen as a visualisation process for given representation. This process should 

not be confused with the conventional smoothing approaches like spline methods or others. Such 

approaches may be good enough for applications where mere smoothing or continuity is needed. 

However, grammar based pattern generations cannot tolerate arbitrary information addition or 

deletion for persistent architectural tilings or designs and may also be important in certain 

computer graphics applications. This is because, arbitrary information involvement in such 

analyses can impair the symmetry of the pattern subject to exploitation, for instance. In this context, 

the reconstruction of the shape information in higher spatial resolution levels by wavelets can be 

obtained for visualisation without adding new information. This practically implies enhanced 

spatial resolution without disturbing the symmetry inherently present in the shape at hand, i.e. 

spherical shape in the present example, subjected to the analyses. Such designs can easily be 



represented as well as processed from different architectural design viewpoints by means of 

advanced graphical software. 

The tensile and space-frame structures realisations according to above described wavelet multi­

resolution decomposition results are presented in Figs. 11-15, respectively. 

Fig. 11. Computer generated model of tensile cupola for "Provincichuis Limburg" in Hasselt, Belgium [11]. 

Fig. 12. Top and perspective views of the same cupola shown in figure 8. 

Fig. 13. Realisation of "Provinciehuis Limburg" in Hasselt, Belgium. 
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(a) (b) 

Fig. 14. (a) Computer generated model (b) realisation of a space-frame pyramidal structure by Mero Space 

Structures Company, Wurzburg. Photos by dr. Jaime Sanchez. 

Fig. 15. Two examples of tensile structures using the same pattern generation yielding different profiles 

(cross sections) [10]. 

4 Conclusions 
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We have considered wavelets for geometric pattern generation in architectural tiling and possible 

application for space-frame and tensile structure generation. However, such applications have to be 

considered and verified from the engineering point of view. The pattern may be obtained from 

multiresolution decomposition of a geometric shape or it may be the given geometric shape itself 

subject to wavelet decomposition. After repeated process of spatial enhancement by wavelets fol­

lowed by low sampling can yield very diverse patterns with complex configurations or composi­

tions where wavelets play the role of pattern-grammar. Note that, this systematic generation is 

carried out by wavelet analysiS without recourse to any analytical formulation of the initial 

patterns. The examples here presented are obtained from a circular and spherical geometry as these 

can offer a number of varieties. Symmetry plays an important role in grammar-based pattern 

generation. However, in principle, the method can be extended to other types of geometric closed 

shapes without symmetry. 



With respect to structural realisation, an essential point in orthogonal wavelet decomposition is 

that, in low resolution the number of points approximating the higher resolutions is optimal in 

representing a given pattern. In other words, they are the unique representations with minimum 

error in least-mean square sense in their approximations. In this respect, the approximations and 

node positions relative to each other are important and the implication of this can be essentially 

used in structural realisations as support for decision-makings. 
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