
J Supercomput (2013) 63:710–721
DOI 10.1007/s11227-011-0626-0

Performance modeling and optimization of sparse
matrix-vector multiplication on NVIDIA CUDA
platform

Shiming Xu · Wei Xue · Hai Xiang Lin

Published online: 7 June 2011
© The Author(s) 2011. This article is published with open access at Springerlink.com

Abstract In this article, we discuss the performance modeling and optimization
of Sparse Matrix-Vector Multiplication (SpMV) on NVIDIA GPUs using CUDA.
SpMV has a very low computation-data ratio and its performance is mainly bound
by the memory bandwidth. We propose optimization of SpMV based on ELLPACK
from two aspects: (1) enhanced performance for the dense vector by reducing
cache misses, and (2) reduce accessed matrix data by index reduction. With ma-
trix bandwidth reduction techniques, both cache usage enhancement and index com-
pression can be enabled. For GPU with better cache support, we propose dif-
ferentiated memory access scheme to avoid contamination of caches by matrix
data. Performance evaluation shows that the combined speedups of proposed op-
timizations for GT-200 are 16% (single-precision) and 12.6% (double-precision)
for GT-200 GPU, and 19% (single-precision) and 15% (double-precision) for GF-
100 GPU.

Keywords Sparse matrices-vector multiplication · GPU · CUDA · Matrix
permutation · Cache optimization

S. Xu (�)
Mekelweg 4, 2628 CD Delft, The Netherlands
e-mail: auhgnist@gmail.com

W. Xue
Tsinghua University, RM. 8-210, East Main Bldg., 100084 Beijing, China
e-mail: xuewei@tsinghua.edu.cn

H.X. Lin
Mekelweg 4, 2628 CD Delft, The Netherlands
e-mail: h.x.lin@tudelft.nl

mailto:auhgnist@gmail.com
mailto:xuewei@tsinghua.edu.cn
mailto:h.x.lin@tudelft.nl


Performance modeling and optimization of SpMV with CUDA 711

1 Introduction

Sparse Matrix-Vector Multiplication (SpMV) is an important computational kernel
for many numerical applications such as Krylov subspace solvers [14]. With the wide
adoption of Graphics Processing Units (GPUs) in high performance computing sys-
tems [3, 6], it is crucially important to optimize SpMV kernel on GPU based systems.
In this article, we discuss the performance modeling and optimization of SpMV us-
ing NVIDIA CUDA [1]. With CUDA, the GPU is abstracted as a chip with multi-
ple Stream Multiprocessors (SMs), with each SM containing several Stream Proces-
sors (SPs). The execution model of CUDA form a massively parallel scenario, with
threads being executed in an SIMD manner. The hierarchy of threads includes grid,
thread blocks, and threads. Threads are scheduled to SP’s at the granularity of Thread
Blocks. The actual scheduling of execution of threads onto SPs are in the granularity
of warps, i.e., 32 threads. The NVIDIA GPUs used in this article are compared in
Table 1, including cache hierarchy differences.

We propose the optimization of SpMV operations based on ELLPACK format
mainly from two aspects: (1) access to the matrix, and (2) access to the dense vector.
We decouple these two aspects and construct a performance model for the accesses
to matrix. By permutations the matrix can be transformed into a bandwidth-reduced
form, which enhances locality in accessing the dense vector, and reduces the memory
amount for the matrix. On GF-100 with better cache support, we propose the tech-
nique to differentiate the memory accesses so that the dense vector data can fully
utilize the cache hierarchy on new NVIDIA GPUs.

The following part of the article is organized as follows. Section 2 gives a brief in-
troduction to the state-of-the-art SpMV optimizations on GPUs, and the performance
modeling based on ELLPACK format. Section 3 includes cache-oriented optimiza-
tion on GT-200 and GF-100. In Sect. 4, we propose SpMV optimization based on
matrix bandwidth reduction. Section 5 evaluates the performance enhancements. Sec-
tion 6 concludes the article.

Table 1 Quantitative comparison between GPU architectures

GPU Series GT-200 GF-100

name C1060 GTX-480

Memory bandwidth ∼80 GB/s ∼115 GB/s

Concurrent thread count 30720 23040

Concurrent warp count 960 720

Size Latency Size Latency

L1 DCache N/A N/A 16/48 KB 80

L2 DCache N/A N/A 768 KB 212

L1 TCache ∼5 KB 258 12 KB 22

L2 TCache 256 KB 366 None 427

Global memory 4 GB 506 1.5 GB 319

“DCache” denotes Data Cache. “TCache” denotes Texture Cache. L1 caches are per-SM resource. All
timing are in cycles



712 S. Xu et al.

2 Performance analysis and modeling of SpMV with ELLPACK

SpMV involves operation as follows:

y = y + A × x (1)

where y and x are both dense vectors, and A is a sparse matrix. The values of the
elements in A, x and y are either Single-Precision (FLOAT) or Double-Precision
(DOUBLE) numbers. Suppose that A has size of n×n, and the total nonzero element
count in A is nnz. Then for each SpMV operation, the elements in the sparse matrix
A are accessed only once. In total, SpMV involves 2nnz floating point operations.
SpMV has a very low computation/data ratio (close to 1). The performance of SpMV

is bound by the memory bandwidth.

2.1 SpMV on GPU—state of the art

Performance analysis and optimizations of SpMV on CPU have been discussed in
many works. Most of the works focus on the reduction of the amount of data in-
volved in accessing the matrix. These techniques include: (1) Register Blocking and
similar ones [5, 11, 13], (2) sparsity pattern-based compression [4, 12], and (3) data-
based compression [9]. With Register Blocking, small dense blocks of the matrix are
recorded and accessed, rather than single elements. This reduces the access to the
row/column index information of the nonzero elements. Another important optimiza-
tion with Register Blocking is SIMDization, enabled by unrolling of the inner-block
iterations. For CPUs, due to the readily available cache support, the reuse in the dense
vector x is taken care of implicitly by the hardware.

Due to the growing adoption and popularity of GPUs, there have been recent works
on porting SpMV to these platforms [7, 10, 13]. In [5] and various other works, SpMV

is used to construct CG solvers using GPU platforms. In [7], the authors applied
Register Blocking to SpMV on GPU. In [7, 10], the authors show that effective SpMV

on GPUs rely on memory-bandwidth formats, and among them ELLPACK shows
best overall performance.

In this article, we focus on ELLPACK format based SpMV operations on GPU.
When stored in ELLPACK format, the ith nonzero element of adjacent rows are
stored in adjacent locations in memory. In SpMV, each CUDA thread is assigned
to one matrix row, hence that the access to the ith nonzero element of each row can
be coalesced to avoid waste of memory bandwidth. Hence, a total n × m size of data
array should be allocated for both column index information and value information,
where m is the maximal nonzero element count of each row. In ELLPACK, padding
is necessary when the nonzero element count per row varies. When the amount of
padding is large, it may negatively affect the performance. To alleviate this, in [10]
the authors introduces HYB (Hybrid) format to contain the major parts of the matrix
in ELLPACK format. The extra elements are contained in a separate part recorded in
Coordinate format (COO).



Performance modeling and optimization of SpMV with CUDA 713

2.2 Performance analysis for SpMV

To quantitatively study the performance profile of SpMV, we breakdown the compu-
tation of SpMV into two parts: (1) reading of data in A, reading and writing of y,
computations (i.e., Multiplication-and-Add operations), and (2) reading of elements
in x. Part (1) includes all deterministic memory accesses: reading to indices and val-
ues of nonzero elements are coalesced; reading and writing of y vector can be easily
made into coalesced accesses. Part (2) includes nondeterministic memory accesses:
offset into x is decided by the column index of the nonzero elements, which is sub-
jected to the matrix sparsity pattern.

To measure the timing of both parts, we use a pseudo x vector with each element
as a pre-defined constant value. This value is hard-wired into codes hence avoiding
access to the actual memory for x. Then the time dedicated to the access of dense
vectors (denote as tx ) can be calculated as: tx = tall − tpseudo_x , where tall denotes
the time required to perform SpMV with a normal, nonpseudo x vector, and tpseudo_x

for that with a pseudo one. For tpseudo_x , we build a performance model for it by
dividing the execution of SpMV kernel into conceptual passes. Each pass corresponds
to nth rows/threads, where nth is the maximal number of concurrent threads on GPU.
In the ith pass, the computation of the rows with indices between (i − 1) ·nth + 1 and
i ·nth are carried out. We also consider the kernel launching and scheduling overhead.
We model the execution time of pass i as follows (denoted Ti ):

Ti =

⎧
⎪⎨

⎪⎩

�0 + m × �2 if i = 1

�1 + m × �2 if 1 < i < p

�1 + α × m × �2 if i = p

(2)

�0 and �1 models the startup overhead for the first pass and the rest passes, respec-
tively. �2 models the access to matrix data. Note that the multiplier m is the number
of nonzero elements per row. The linear relationship between Ti and �i reflects that
the execution time of SpMV is dominated by global memory accesses to matrix data.
Value α is a proportion of the actual warp count of the last pass in the maximal al-
lowed concurrent warp in a pass. It is used to describe the situation in which the last
pass is not complete due to n values. With tpseudo_x = ∑p

i=1 Ti , we measure tpseudo_x

for artificial matrices which satisfy: (1) the size of the matrix is an integer multiple
of nth, and (2) the matrix has exact same number of nonzero elements per row. We
compute the values of �0, �1, and �2 by varying n and m and measurements over
tpseudo_x . They are shown in Table 2 for C1060 and GTX-480.

Table 2 �0, �1 and �2 values for SpMV on C1060 and GTX-480

GPU FLOAT DOUBLE

�0 �1 �2 �0 �1 �2

C1060 7.753e-3 3.530e-3 2.807e-3 1.077e-2 6.292e-3 4.312e-3

GTX-480 3.713e-3 1.180e-3 1.250e-3 4.430e-3 2.444e-3 1.775e-3



714 S. Xu et al.

Table 3 Performance results of SpMV when a pseudo vector of x is used for GT-200

Matrix n nnz tpseudo_x (ms) tall (ms) tx in tall

FEM/Cantiliver 62451 4007383 0.493 0.530 7.1%

FEM/Sphere 83334 6010480 0.604 0.658 8.2%

FEM/Accelerator 121192 2624331 0.470 0.624 25.7%

Economics 206500 1273389 0.421 0.508 17.1%

Epidemiology 525825 2100225 0.275 0.324 15.1%

Protein 36417 4344765 0.652 0.703 7.2%

WindTunnel 217918 11634424 1.203 1.246 3.4%

QCD 49152 1916928 0.190 0.207 8.4%

FEM/Harbor 46835 2374001 0.428 0.448 4.5%

Circuit 170998 958936 0.231 0.310 25.4%

Web 1000005 3105536 0.719 0.956 24.8%

Geo-Mean 13.1%

Table 3 shows the measurement of tx for matrix test suite used in [10, 13] on
C1060 using FLOAT operations. Dimension and nonzero element count of these ma-
trices are also shown. This test suite is also used for the evaluation of SpMV optimiza-
tions in this article. On average about 13% of the time of SpMV is spent in accessing
x, which contributes a significant portion to the total SpMV kernel execution time.

3 Caching of x—analysis and optimization

3.1 Caching of x on GT-200

There are 3 hardware mechanisms that can be used for caching dense vector x on GT-
200 architecture: (1) use texture cache and treat x as a 1-D texture; (2) use constant
cache, by decorating x as a constant; and (3) use Shared Memory as a software-
managed cache. The first approach is used in [10]. The second one is virtually limited
by the small size of the constant memory space, which across all CUDA devices is
64 KB. Due to the large size of n, constant cache is not sufficiently large to contain
x, hence cannot be used for caching. The third one requires software management of
Shared Memory. According to both our experiments and [7], it results in too much
overhead for the management of the cache. Hence, we do not consider Approach 2
and Approach 3 in this article. Due to the large access time of TCache (shown in
Table 7), it is beneficial to improve the cache hit ratio and avoid both long access
latency and the overhead of extra memory accesses in the case of TCache misses.

3.2 Caching optimization on GF-100

As noted in Table 1, with the new GPU architecture (i.e., GF-100), dramatic improve-
ments are introduced in the memory subsystem. This reflects the trend of proving
more friendly programmability of GPUs, especially in cache subsystem: (1) larger



Performance modeling and optimization of SpMV with CUDA 715

cache size, (2) lower access latencies, and (3) support for cache coherency. For SpMV,
there is only data reuse of accesses to x which is read-only. Hence, the larger size and
lower latency in caches will generally reduce the time spent in accessing x.

Like on modern CPUs, on GF-100 all data accesses are filtered through cache by
default. This in effect results in conflicts between data in A and data in x when using a
popular LRU (least-Recently-Used) mechanism for cache management. Potentially,
it is possible that data in x which would be used again be evicted from the cache
by the data in A which is never used again. While on the API level, current CUDA
implementations (for up to date version of 3.1) does not expose different cache be-
havior for different data, we use inline PTX assembly to achieve differentiated cache
behavior for accesses to A and those to x:

1. Let accesses to A be marked as un-cached, or data in A to have lowest priority in
cache, so that they are never cached or evicted first when capacity conflict happens.

2. Let accesses to x be fully cached, so that data in x always have higher priority for
staying in cache than data in A.

The two lines of codes below are the example of inlined content to a CUDA ker-
nel code. Differentiated access patterns are used for accesses to data at addr1 and
addr2. The syntax is in PTX assembly [2].

__asm("ld.ca.f32 %0, [%1];" : "=f" (a) : "l" (addr1));
__asm("ld.cv.f32 %0, [%1];" : "=f" (b) : "l" (addr2));

By the first line of the code, we load a FLOAT number to value a in C language
space from addr1, and by the second line, we load a FLOAT number to value b from
addr2. The loading of a is cached, by the PTX instruction ld.ca where ca means
“cache all.” The loading of b is marked as volatile by ld.cv, which means “load-
with-cached-as-volatile” and implies that the value at address addr2 is volatile and
access to it will skip caches and be direct from main memory.

In SpMV, we use ld.ca for the accesses to data in x and ld.cv for accesses to
data in A. This allows maximal dedication of cache resource to data in x. It is well
recognized that future GPUs will evolve to include full cache support, bearing more
similarity to conventional CPUs. Differentiation in data access pattern in terms of
cache behavior provides potential for better performance of applications, given the
knowledge of the specific data access pattern for the specific application.

4 SpMV optimization with matrix bandwidth reduction

In this section, we carry out SpMV optimization based on Matrix Bandwidth/Profile
Reduction. There are two benefits of matrix bandwidth reduction: (1) improved lo-
cality in accessing x vector, and (2) index compression which is enabled by a reduced
matrix bandwidth. We use Reverse Cuthill–McKee (RCM) [8] for the bandwidth re-
duction in the following part of the chapter, mainly due to its simplicity and popular-
ity. Other algorithms are possible and contained in future research.



716 S. Xu et al.

Fig. 1 SpMV of Matrices in a
Reduced Bandwidth form

4.1 Enhanced locality in accessing x

Shown in Fig. 1, there are two aspects of locality in accessing x: (1) for the ith row,
the accessed part of the ith CUDA thread lies within a range of w elements, with
w < BWA; (2) for the j th element of x, the threads accessing this element will be
adjacent, within a range of h and h < BWA. The first implies that with a smaller
value of w, there will be denser distribution of nonzero elements in a row, and better
temporal locality. The second implies that for the CUDA threads within the same
thread block will access a smaller set of values in x, improving the hit ratio of the
cache. If the bandwidth of a matrix can be reduced significantly by algorithms such
as RCM, potentially the cache access to x can be improved.

4.2 Column index compression

For any nonzero element in a matrix with row index r and column index, we have:
BWL < (c − r) < BWR , where BWL and BWR are the left and right bandwidth of
the matrix, respectively. The smaller values of BWL and BWR imply a smaller range
of the values of (c − r), and hence the potential of compressing the column index
information based on the row index. Since each row is mapped to a CUDA thread,
a thread knows the row index, i.e., value of c, explicitly. Practically r have to be
recorded at least in 32-bit integer format due to large size of the matrix. Value range
of c usually require the same integer format for storage in ELLPACK. By recording
(c − r) instead of c, we can regenerate values of c by the value of r and (c − r). If
it is applicable that we record (c − r) in a shorter format, e.g., short (2-byte) or
byte (1-byte), the accessed memory amount would be reduced, at the overhead of



Performance modeling and optimization of SpMV with CUDA 717

Table 4 �0, �1 and �2 values for SpMV w/index reduction on C1060 and GTX-480

GPU FLOAT DOUBLE

�0 �1 �2 �0 �1 �2

C1060 8.135e–3 3.156e–3 2.189e–3 1.137e–2 5.972e–3 4.036e–3

GTX-480 3.290e–3 1.614e–3 1.114e–3 4.812e–3 2.412e–3 1.526e–3

generating values of c on the fly. In this article, we only consider using short for
column index compression.

Column index compression is only applicable to some matrix, when the values of
(c − r) fall within the boundary of [−32768,32767]. Out of the 11 test matrices, 4
matrices does not accept column index compression. But with RCM permutations,
only “Web” does not allow compression. The ideal speedup of SpMV by means of
index compression is the reduction ratio of the accessed data amount with shorter
storage formats. The reduction ratio is 25% for matrix recorded in FLOAT, and 16.7%
for that in DOUBLE. This proportion serves as the upper bound for the speedup by
column index compression. Due to factors such as runtime overhead, use of HYB
format, the actual speedups would be lower. Table 4 shows the measured �0, �1,

and �2 for SpMV with index compression. Compared with those in Table 2, �2 is
reduced with index reduction but to a lesser amount of the upperbound mentioned
above, while �0 and �1 are generally unchanged.

5 Performance evaluation

In this section, we evaluate the performance enhancement of the SpMV optimiza-
tions proposed in previous sections. With GT-200 GPU (i.e., C1060), we evaluate the
effect of reduced matrix bandwidth including both the effect on accessing x vector
and index compression. Afterward, the cache-oriented optimization based on GF-100
architecture is evaluated, with index compression and reduced matrix bandwidth in-
cluded.

5.1 Effect of bandwidth reduction with C1060

We first evaluate the effect of RCM permutation on tall and tx . We record the values
of tx for matrices before and after RCM permutation. Out of the 11 matrices, 8 have
shown reduction in bandwidth by RCM, and 5 show speedup in terms of tx over
5%. For these 5 matrices, the geometric mean of the speedup in tx is 25% and 34%,
for FLOAT and DOUBLE, respectively. For the 3 matrices with reduced bandwidth
but no significant speedups in tx , it is mainly due to several reasons: (1) there is
substructures in some matrices which are small, dense blocks, such as “Protein”,
or (2) the access pattern into x is already very regular, such as “QCD.” For these
matrices, accesses to x is already not a performance issue and there is little effect in
reducing tx .

Table 5 summarizes the speedups on the tpseudo_x and on tall. Note that 10 out of 11
matrices now accepts index compression with RCM. The speedups for FLOAT and



718 S. Xu et al.

Table 5 Performance evaluation of matrix bandwidth reduction on tpseudo_x and tall

Matrix Use Use index Speedup in tpseudo_x Speedup in tall

RCM? compression? FLOAT DOUBLE FLOAT DOUBLE

FEM/Cantiliver No Yes 18.7% 4.6% 11.1% 5.0%

FEM/Sphere Yes Yes 20.8% 15.1% 23.0% 10.9%

FEM/Accelerator Yes Yes 12.2% 10.3% 17.1% 32.5%

Economics No Yes 20.6% 17.3% 13.0% 10.6%

Epidemiology No Yes 23.1% 11.2% 23.1% 9.7%

Protein No Yes 12.0% 9.3% 9.3% 9.3%

WindTunnel Yes Yes 23.5% 14.7% 22.0% 14.4%

QCD No Yes 27.3% 6.6% 19.0% 10.1%

FEM/Harbor Yes Yes 9.9% 10.1% 7.7% 9.7%

Circuit Yes Yes 6.5% 6.7% 14.3% 17.8%

Web Yes No N/A N/A 18.0% 3.0%

GeoMean 16.2% 10.5% 16.0% 12.6%

DOUBLE are close to the theoretical speedup of 25% and 16.7%. There are several
matrices that have lower speedups, such as “Circuit,” “FEM/Harbor” and “Protein.”
The performance are actually compromised by several factors such as the use of HYB
format, rather than ELLPACK format. In effect, extra COO part in HYB format does
not produce performance enhancements but also introduces overhead. These factors
adds up to the negative part of speedups. Although lower than the ideal speedups, the
reduced amount of accessed memory yields solid speedup in tpseudo_x on average:
16.2% for FLOAT and 10.5% for DOUBLE. For tall, speedup is achieved for all the
matrices in the test suite. The geometric mean for FLOAT and DOUBLE is 16% and
12.6%, respectively.

5.2 GF-100 based optimization

Here, we outline the three strategies for caching x on GF-100 architecture. Strategy-1:
use texture fetching mechanism for x, as used in [10]. Strategy-2: use texture fetching
mechanism for x, but mark accesses to A and y as volatile to avoid contamination
to cache. Strategy-3: access in x through data cache, and mark access to A and y as
volatile and avoid contamination to cache.

Strategy-1 is the caching strategy for x in [10], which is used as a baseline for
comparison. With Strategy-1, both matrix data and vector data will occupy L2 cache,
while L1 Texture Cache is still dedicated to x. Strategy-2 avoids contamination of L2
cache caused by data in A, hence vector data will consume both L1 Texture Cache
and L2 cache. But due to the texture fetching mechanism is used, the latency is high.
Strategy-3 is the caching strategy proposed in Sect. 3, which fully uses fast L1 data
cache (configured to be 48 KB) and L2 cache for x.

We define Speedup-I as the speedup of Strategy-3 over Strategy-2, Speedup-II
as that of Strategy-3 over Strategy-1, and Speedup-III as that of Strategy-3 over
Strategy-1 with the combined effect of using RCM. Table 6 lists the results. Note



Performance modeling and optimization of SpMV with CUDA 719

Table 6 Performance Enhancement for GF-100 (GTX-480) GPU

Matrix Use FLOAT DOUBLE

RCM? Speedup-I Speedup-II Speedup-III Speedup-I Speedup-II Speedup-III

FEM/Sphere No 8.4% 14.1% 10.6% 14.7%

FEM/Accelerator Yes 21.2% 23.6% 29.8% 9.8% 9.6% 15.0%

Economics No 22.3% 23.4% 9.1% 10.2%

Epidemiology No 10.2% 8.4% 4.7% 5.3%

Protein No 7.8% 13.7% 9.8% 14.0%

WindTunnel No 12.1% 18.7% 9.9% 21.3%

QCD No 16.1% 21.9% 15.7% 21.9%

FEM/Harbor No 7.7% 13.9% 7.3% 11.4%

Circuit Yes 28.8% 30.6% 31.8% 20.4% 21.0% 22.9%

Web Yes 10.6% 10.7% 16.0% 5.9% 8.8% 14.9%

Geo-Mean 14.3% 17.7% 19.0% 10.2% 13.7% 15.0%

that Strategy-2 usually performs better than Strategy-1 (20 out of 22 cases). The
caching strategy proposed in previous section outperforms that in [10] by 17% and
14% for FLOAT and DOUBLE, respectively. Speedup-I shows the comparison be-
tween the effect of caching through texture fetching mechanism and through ordinary
data loads. The results show 13.6% and 10.3% speedups, which are due to 2 reasons.
First, L1 data cache is configured to 48 KB (4 times size that of L1 Texture Cache);
this reduces capacity misses and enhances hit ratio at the SM level. Second, a hit/miss
in data cache incurs much lower latency than a hit/miss caused by Texture fetches on
both L1 and L2, and this reduces the chance that the data fetch latency is not well
hidden by accesses to the matrix data.

In Table 7, we compare the SpMV performance on GTX-480 and C1060. Overall,
GTX-480 is faster than C1060 in SpMV performance by 50% and 75% for FLOAT
and DOUBLE, respectively. Note that these two cards differ in the peak memory
bandwidth: C1060 is lower than GTX-480 in memory bandwidth by about 30%,
lower in frequency, and higher in global memory latency, as shown in Table 1. These
hardware differences, together with the firmware differences, contribute to the per-
formance gain shown in the table. Also, the cache subsystem difference contributes
to the difference in that accesses to vector x are now faster and incurs fewer cache
misses.

6 Conclusions and future work

In this article, we discuss the performance modeling and optimization of SpMV oper-
ation using ELLPACK format and NVIDIA CUDA. By separating the execution time
of accesses to matrix data and dense vector data, we build performance model for the
SpMV and propose various optimizations. The first categories of optimizations rely
on matrix bandwidth reduction for: (1) enhanced locality in cache access for dense
vector, and (2) column index compression for matrix data. The performance model



720 S. Xu et al.

Table 7 Performance Comparison—GT-200 and GF-100 GPUs

Matrix FLOAT DOUBLE

C1060 GTX-480 Speedup C1060 GTX-480 Speedup

FEM/Sphere 0.6661 0.4203 58.5% 1.0835 0.5579 94.2%

FEM/Accelerator 0.5665 0.3982 42.3% 0.8141 0.5270 54.5%

Economics 0.5133 0.2972 72.7% 0.6658 0.4035 65.0%

Epidemiology 0.2959 0.1733 70.8% 0.4724 0.2561 84.5%

Protein 0.7753 0.4545 70.6% 1.1226 0.5844 92.1%

WindTunnel 1.2649 0.8217 54.0% 2.0217 1.0825 86.8%

QCD 0.2105 0.1429 47.3% 0.3182 0.1863 70.9%

FEM/Harbor 0.5466 0.3802 43.8% 0.8896 0.4663 90.8%

Circuit 0.2918 0.2381 22.6% 0.4183 0.2912 43.7%

Web 0.9564 0.6203 54.2% 1.3850 0.7630 81.5%

Geo-Mean 52.9% 75.6%

reflects the enhancement in matrix-data accesses. The combined speedups achieved
by these optimizations are 16% and 12.6% for single-precision and double-precision
on GT-200 GPU, respectively. For GF-100 architecture with better cache support, we
propose differentiated cache accesses to further enhance cache utilization with inline
PTX codes. The speedups on GF-100 GPU are 19% and 16%, respectively.

In the future, we plan to combine index compression can be combined with Regis-
ter Blocking in [11] for further reduction of accessed data amount in SpMV. Evaluat-
ing the performance and energy-efficiency of SpMV operations in a large scale itera-
tive solvers, is also a future research direction. Due to the high efficiency of GPUs for
SpMV, quantitative study of the optimizations on performance and total running cost
could serve as valuable information for system builders for large scale computation
based on these iterative solvers.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

References

1. Zone CUDA. http://www.nvidia.com/cuda
2. decuda. http://wiki.github.com/laanwj/decuda
3. GPGPU.org. http://www.gpgpu.org
4. Belgin M, Back G, Ribbens C (2011) A library for pattern-based sparse matrix vector multiply. Intl J

Parallel Program 39(1):62–67
5. Buatois L, Caumon G, Levy B (2009) Concurrent number cruncher—a GPU implementation of a

general sparse linear solver. Intl J of Parallel, Emergent and Distributed Systems 24(3):205–223
6. Chen D, Li D, Xiong M, Bao H, Li X (2010) GPGPU-aided ensemble empirical mode decomposition

for EEG analysis during anaesthesia. IEEE Trans Inf Technol BioMed 14(6):1417–1427
7. Choi JW, Singh A, Vuduc RW (2010) Model-driven autotuning of sparse matrix-vector multiply on

CPUs. ACM SIGPLAN Not 45(5):115–126

http://www.nvidia.com/cuda
http://wiki.github.com/laanwj/decuda
http://www.gpgpu.org


Performance modeling and optimization of SpMV with CUDA 721

8. Cuthill E, McKee J (1969) Reducing the bandwidth of sparse symmetric matrices. In: Proc 24th nat
conf ACM, pp 157–172

9. Kourtis K, Goumas G, Koziris N (2008) Optimizing sparse matrix-vector multiplication using index
and value compression, pp 87–96

10. Bell N, Garland M (2009) Implementing sparse matrix-vector multiplication on throughput-oriented
processors. In: Proc SC’09

11. Vuduc RW (2002) Automatic performance tuning of sparse matrix kernels. PhD thesis, University of
California, Berkeley, 2002

12. Willcock J, Lumsdaine A (2006) Accelerating sparse matrix computations via data compression. In:
Proc of the 20th annual intl conf on supercomputing, ICS ’06. ACM, New York, pp 307–316

13. Williams S, Oliker L, Vuduc R, Shalf J, Yelick K, Demmel JW (2007) Optimization of sparse matrix-
vector multiplication on emerging multicore platforms. In: Proc 2007 ACM/IEEE conference on su-
percomputing, SC ’07. ACM, New York, pp 38:1–38:12

14. Saad Y (2003) Iterative methods for sparse linear systems, 2nd edn. SIAM, Philadelphia


	Performance modeling and optimization of sparse matrix-vector multiplication on NVIDIA CUDA platform
	Abstract
	Introduction
	Performance analysis and modeling of SpMV with ELLPACK
	SpMV on GPU-state of the art
	Performance analysis for SpMV

	Caching of x-analysis and optimization
	Caching of x on GT-200
	Caching optimization on GF-100

	SpMV optimization with matrix bandwidth reduction
	Enhanced locality in accessing x
	Column index compression

	Performance evaluation
	Effect of bandwidth reduction with C1060
	GF-100 based optimization

	Conclusions and future work
	References


