

Experimental research on the effects of surface screens on a mobile bed

S.T. Troost June 2010

APPENDICES

Experimental research to the effects of surface screens on a mobile bed

MSc. Thesis

Delft University of Technology, Deltares
Delft University of Technology
Delft University of Technology, Deltares
Delft University of Technology, Deltares
Delft University of Technology, Rijkswaterstaat

Table of Contents

A	GENERAL OVERVIEW	5
В	PREDICTED FLUME PARAMETERS	8
С	EQUIPMENT	10
D	INITIAL RUN	14
E	RESULTS A-SERIES	15
E.1	15 degrees, H=20%	15
E.2	15 degrees, H=40%	17
E.3	15 degrees, H=60%	18
E.4	20 degrees, H=20%	20
E.5	20 degrees, H=40%	22
E.6	20 degrees, H=60%	24
E.7	25 degrees, H=20%	26
E.8	25 degrees, H=40%	28
E.9	25 degrees, H=60%	30
F	RESULTS B-SERIES	32
F.1	15 degrees, H=40%	32
F.2	15 degrees, H=60%	34
F.3	20 degrees, H=40%	36
F.4	20 degrees, H=60%	38
F.5	25 degrees, H=40%	40
F.6	25 degrees, H=60%	42
F.7	25 degrees, H=60%, long run	44
G	ACTUAL FLUME PARAMETERS, WITHOUT WALL	45
Н	ACTUAL FLUME PARAMETERS, WITH WALL	47
Ι	TURBULENCE ANALYSES	49
J	OVERVIEW MATLAB SCRIPTS	50

LIST OF FIGURES

Figure 1 General overview flume, seen from the upstream boundary, no division wall	5
Figure 2 Overview flume, seen from downstream boundary, with division wall	5
Figure 3 Overview test section, looking in downstream direction	6
Figure 4 Upstream boundary condition in front of perforated plate	6
Figure 5 Overview dune structure, looking from downstream in upstream direction	7
Figure 6 Sediment weir on bed level at the downstream boundary	7
Figure 7 Vectrino mounted on measuring chart	10
Figure 8 The EMS velocity measurement device	10
Figure 9 Display of discharge measurement device	11
Figure 10 Acoustic sensors of the Proline Prosonic	11
Figure 11 Sediment tap in return pipe	12
Figure 12 Sediment trap at the downstream boundary	12
Figure 13 Vacuum filter for separating the water-sediment mixture	13
Figure 14 Lasers for water level and bed level measurement	13

Figure 15 General stream pattern, 0 degrees, H=60%	.14
Figure 16 Top view velocity vectors behind the screen, 3 layers	.14
Figure 17 General stream pattern 15 degrees, H=20%	.15
Figure 18 Top view velocity vectors behind the screen	.15
Figure 19 Morphological development, 15 degrees, H=20%	.16
Figure 20 General stream pattern, 15 degrees, H=40%	.17
Figure 21 Top view velocity vectors behind the screen	.17
Figure 22 General stream pattern, 15 degrees, H=60%	.18
Figure 23 Top view velocity vectors behind the screen	.18
Figure 24 Morphological development, 15 degrees, H=60%	.19
Figure 25 General stream pattern, 20 degrees, H=20%	.20
Figure 26 Top view velocity vectors behind the screen	.20
Figure 27 Morphological development, 20 degrees, H=20%	.21
Figure 28 General stream pattern, 20 degrees, H=40%	.22
Figure 29 Top view velocity vectors behind the screen	.22
Figure 30 Morphological development, 20 degrees, H=40%	.23
Figure 31 General stream pattern, 20 degrees, H=60%	.24
Figure 32 Top view velocity vectors behind the screen	.24
Figure 33 Morphological development, 20 degrees, H=60%	.25
Figure 34 General stream pattern, 25 degrees, H=20%	.26
Figure 35 Top view velocity vectors behind the screen	.26
Figure 36 Morphological development, 25 degrees, H=20%	.27
Figure 37 General stream pattern, 25 degrees, H=40%	.28
Figure 38 Top view velocity vectors behind the screen	.28
Figure 39 Morphological development, 25 degrees, H=40%	.29
Figure 40 General stream pattern, 25 degrees, H=60%	.30
Figure 41 Top view velocity vectors behind the screen	.30
Figure 42 Morphological development, 25 degrees, H=60%	.31
Figure 43 General stream pattern, 15 degrees, H=40%	.32
Figure 44 Top view velocity vectors behind the screen	.32
Figure 45 Morphological development, 15 degrees, H=40%	.33
Figure 46 General stream pattern, 15 degrees, H=60%	.34
Figure 47 Top view velocity vectors behind the screen	.34
Figure 48 Morphological development, 15 degrees, H=60%	.35
Figure 49 General stream pattern, 20 degrees, H=40%	.36
Figure 50 Top view velocity vectors behind the screen	.36
Figure 51 Morphological development, 20 degrees, H=40%	.37
Figure 52 General stream pattern, 20 degrees, H=60%	.38
Figure 53 Top view velocity vectors behind the screen	.38
Figure 54 Morphological development, 20 degrees, H=60%	.39
Figure 55 General stream pattern, 25 degrees, H=40%	.40
Figure 56 Top view velocity vectors behind the screen	.40
Figure 57 Morphological development, 25 degrees, H=40%	.41
Figure 58 General stream pattern, 25 degrees, H=60%	.42
Figure 59 Top view velocity vectors behind the screen	.42
Figure 60 Morphological development, 25 degrees, H=60%	.43
Figure 61 Morphological development, 25 degrees, H=60%, long run	.44
Figure 62 Turbulence different angles, z=2	.49
Figure 63 Turbulence different angles, z=6	.49
Figure 64 Turbulence different angles, y=10, z=6	.49

A GENERAL OVERVIEW

Figure 1 General overview flume, seen from the upstream boundary, no division wall

Figure 2 Overview flume, seen from downstream boundary, with division wall

Figure 3 Overview test section, looking in downstream direction

Figure 4 Upstream boundary condition in front of perforated plate

Figure 5 Overview dune structure, looking from downstream in upstream direction

Figure 6 Sediment weir on bed level at the downstream boundary

B PREDICTED FLUME PARAMETERS

Input

Chezy	С	25 m^0.5/s	
Discharge	Q	0.0295 m^3/s	29.5 l/s
Width flume	b	0.6 m	
	q	0.049166667 m^2/s	
Gravity	g	9.81 m/s^2	
Bottom slope	i	1.40E-03 m/m	
Grain diameter	D10	0.164 mm	0.000164 m
	D50	0.238 mm	0.000238 m
	D90	0.337 mm	0.000337 m
Drag coeff	Cd	4.82-	
Density water		1000 kg/m^3	
Density sediment		2650 kg/m^3	
Rel.density		1.65 -	
Length flume	L	21 m	

Calculations

Equilibrium depth	he	0.1403 m	
Velocity	u	0.3504 m/s	
Froude number	Fr	0.2987	
Settling velocity	WS	0.0326 m/s	
	u*	0.0439	
Shields parameter	theta	0.5002	
	C90	66.576 m^0,5/s	
	mu	0.2301	

Checks

mu*theta	0.1151	
ws/u*	0.7436 -	
D50	0.238 mm	

Transport

Engelund Hansen	S	8.33E-06 m^3/s	excl pores
		0.72 m^3/day	
		262.65 m^3/year	
	qs	3.47E-05 m^2/s	incl pores
	Qs	2.08E-05 m^3/s	-
		22.07 g/s	
		0.74 g/l	
		1906.90 kg/day	
		696019 kg/year	

Meyer-Peter-Muller	S	2.10E-06 m^3/s	excl pores
		0.18 m^3/day	
		66.25 m^3/year	
	qs	8.75E-06 m^2/s	incl pores
	Qs	5.25E-06 m^3/s	
		5.57 g/s	
		0.19 g/l	
		480.96 kg/day	
		175549 kg/year	

C EQUIPMENT

Flow velocity

ADV Vectrino

The Vectrino is used to measure the flow velocity just behind the screen with great accuracy. The device was mounted on the measure chart to be able to move it along the flume.

Figure 7 Vectrino mounted on measuring chart

EMS

The EMS is used to measure the upstream boundary condition after the perforated plate was added to smoothen the flow. The EMS measures flow velocities in two direction, the x-direction and the y-direction in the chosen coordinate system. The zero-value of the EMS is calibrated using a bucket with non-moving water.

Figure 8 The EMS velocity measurement device

Discharge

The Proline Prosonic is calibrated for the diameter of the pipe which it is mounted on. This value can be programmed to the device, calibration factors are automatically included. The acoustic sensors are mounted on the return pipe, measuring trough the steel part of the pipe.

Figure 9 Display of discharge measurement device

Figure 10 Acoustic sensors of the Proline Prosonic

Sediment and transport

Return flow

The sediment tap in return flow was initially used to determine the transport. A measure duration of 60 hours was taken. Every 10 minutes a bucket of 10 liters of mixture was taken from the return pipe. The 6 buckets including the water have been weighted. Thereafter the water is filtered out of the mixture.

Figure 11 Sediment tap in return pipe

Sediment trap

Figure 12 Sediment trap at the downstream boundary

Vacuum filter

The vacuum filter for sediment is used to separate water and particles from the taken sample. After the water had been filtered from the mixture, the remaining sediment is dried in an oven at constant temperature. After drying for 12 hours, the relative small samples completely dried. After acclimatizing in a glass bell with special vapor attracting material, the sediment was weighted.

Figure 13 Vacuum filter for separating the water-sediment mixture

Water level, bottom profile

Lasers where used to measure the bottom profile and the water level. As can be seen in Figure 14, the measurements are taken simultaneously. One laser is located under water and it is packed in plastic to prevent it getting wet. The other laser is located above a sheet of paper in order to get a reflection surface. If the sheet of paper was not mounted, the laser would just penetrate the water surface in about 90% of the measurements.

Figure 14 Lasers for water level and bed level measurement

D INITIAL RUN

Figure 15 General stream pattern, 0 degrees, H=60%

Figure 16 Top view velocity vectors behind the screen, 3 layers

E RESULTS A-SERIES

E.1 15 degrees, H=20%

Figure 17 General stream pattern 15 degrees, H=20%

Figure 18 Top view velocity vectors behind the screen

Figure 19 Morphological development, 15 degrees, H=20%

E.2 15 degrees, H=40%

Figure 20 General stream pattern, 15 degrees, H=40%

Figure 21 Top view velocity vectors behind the screen

E.3 15 degrees, H=60%

Figure 22 General stream pattern, 15 degrees, H=60%

Figure 23 Top view velocity vectors behind the screen

Figure 24 Morphological development, 15 degrees, H=60%

E.4 20 degrees, H=20%

Figure 25 General stream pattern, 20 degrees, H=20%

Figure 26 Top view velocity vectors behind the screen

Figure 27 Morphological development, 20 degrees, H=20%

E.5 20 degrees, H=40%

Figure 28 General stream pattern, 20 degrees, H=40%

Figure 29 Top view velocity vectors behind the screen

Figure 30 Morphological development, 20 degrees, H=40%

E.6 20 degrees, H=60%

Figure 31 General stream pattern, 20 degrees, H=60%

Figure 32 Top view velocity vectors behind the screen

Figure 33 Morphological development, 20 degrees, H=60%

E.7 25 degrees, H=20%

Figure 34 General stream pattern, 25 degrees, H=20%

Figure 35 Top view velocity vectors behind the screen

Figure 36 Morphological development, 25 degrees, H=20%

E.8 25 degrees, H=40%

Figure 37 General stream pattern, 25 degrees, H=40%

Figure 38 Top view velocity vectors behind the screen

Figure 39 Morphological development, 25 degrees, H=40%

E.9 25 degrees, H=60%

Figure 40 General stream pattern, 25 degrees, H=60%

Figure 41 Top view velocity vectors behind the screen

Figure 42 Morphological development, 25 degrees, H=60%

F RESULTS B-SERIES

F.1 15 degrees, H=40%

Figure 43 General stream pattern, 15 degrees, H=40%

Figure 44 Top view velocity vectors behind the screen

Figure 45 Morphological development, 15 degrees, H=40%

F.2 15 degrees, H=60%

Figure 46 General stream pattern, 15 degrees, H=60%

Figure 47 Top view velocity vectors behind the screen

Figure 48 Morphological development, 15 degrees, H=60%

F.3 20 degrees, H=40%

Figure 49 General stream pattern, 20 degrees, H=40%

Figure 50 Top view velocity vectors behind the screen

Figure 51 Morphological development, 20 degrees, H=40%

F.4 20 degrees, H=60%

Figure 52 General stream pattern, 20 degrees, H=60%

Figure 53 Top view velocity vectors behind the screen

Figure 54 Morphological development, 20 degrees, H=60%

F.5 25 degrees, H=40%

Figure 55 General stream pattern, 25 degrees, H=40%

Figure 56 Top view velocity vectors behind the screen

Figure 57 Morphological development, 25 degrees, H=40%

F.6 25 degrees, H=60%

Figure 58 General stream pattern, 25 degrees, H=60%

Figure 59 Top view velocity vectors behind the screen

Figure 60 Morphological development, 25 degrees, H=60%

Figure 61 Morphological development, 25 degrees, H=60%, long run

G ACTUAL FLUME PARAMETERS, WITHOUT WALL

Input

Chezy	С	21 m^0.5/s	
Discharge	Q	0.0295 m^3/s	29.5 l/s
Width	b	0.6 m	
	q	0.0492 m^2/s	
Gravity	g	9.81 m/s^2	
Bottom slope	i	1.40E-03 m/m	
Grain diameter	D10	0.164 mm	0.000164 m
	D50	0.238 mm	0.000238 m
	D90	0.337 mm	0.000337 m
Drag coeff	Cd	4.82-	
Density water		1000 kg/m^3	
Density sediment		2650 kg/m^3	
Rel.density		1.65 -	
Length flume	L	21 m	

Calculations

Equilibrium depth	he	0.1576 m
Velocity	u	0.3119m/s
Froude number	Fr	0.2509
Settling velocity	WS	0.0326 m/s
	u*	0.0465
Shields parameter	theta	0.5619
	C90	67.485 m^0,5/s
	mu	0.1736

Checks

mu*theta	0.0975	
ws/u*	0.7016 -	
D50	0.238 mm	

Transport

Engelund Hansen	S	7.86E-06 m^3/s	excl pores
		0.68 m^3/day	
		247.82 m^3/year	
	qs	3.27E-05 m^2/s	incl pores
	Qs	1.96E-05 m^3/s	
		20.82 g/s	
		0.69 g/l	
		1799.24 kg/day	
		656721 kg/year	

Meyer-Peter-Muller	S	1.34E-06 m^3/s	excl pores
		0.12 m^3/day	
		42.34 m^3/year	
	qs	5.59E-06 m^2/s	incl pores
	Qs	3.36E-06 m^3/s	
		3.56 g/s	
		0.12 g/l	
		307.42 kg/day	
		112210 kg/year	

H ACTUAL FLUME PARAMETERS, WITH WALL

Input

Chezy	С	20 m^0.5/s	
Discharge	Q	0.0288 m^3/s	28.8 l/s
Width	b	0.6 m	
	q	0.0480 m^2/s	
Gravity	g	9.81 m/s^2	
Bottom slope	i	1.40E-03 m/m	
Grain diameter	D10	0.164 mm	0.000164 m
	D50	0.238 mm	0.000238 m
	D90	0.337 mm	0.000337 m
Drag coeff	Cd	4.82-	
Density water		1000 kg/m^3	
Density sediment		2650 kg/m^3	
Rel.density		1.65-	
Length flume	L	21 m	

Calculations

Equilibrium depth	he	0.1602 m
Velocity	u	0.2996 m/s
Froude number	Fr	0.2389
Settling velocity	WS	0.0326 m/s
	u*	0.0469
Shields parameter	theta	0.5713
	C90	67.614 m^0,5/s
	mu	0.1609

Checks

mu*theta	0.0919	
ws/u*	0.6959 -	
D50	0.238 mm	

Transport

Engelund Hansen	S	7.43E-06 m^3/s	excl pores
		0.64 m^3/day	
		234.26 m^3/year	
	qs	3.10E-05 m^2/s	incl pores
	Qs	1.86E-05 m^3/s	
		19.68 g/s	
		0.66 g/l	
		1700.76 kg/day	
		620776 kg/year	

Meyer-Peter-Muller	S	1.12E-06 m^3/s	excl pores
		0.10 m^3/day	
		35.46 m^3/year	
	qs	4.69E-06 m^2/s	incl pores
	Qs	2.81E-06 m^3/s	
		2.98 g/s	
		0.10 g/l	
		257.45 kg/day	
		93969 kg/year	

I TURBULENCE ANALYSES

Figure 62 Turbulence different angles, z=2

Figure 63 Turbulence different angles, z=6

Figure 64 Turbulence different angles, y=10, z=6

J OVERVIEW MATLAB SCRIPTS

Name	Purpose	Input	Output	Remarks
Add_All_in_set2.m	Adding mean velocities	Velocity	Set with all	Developed
	of different location in 1	measurements	mean velocities	-
	file		and standard	
			deviations	
Bepaling meetinterval.m	Determination of	Measurements	Relative error as	Developed
	measure duration		function of	_
			duration	
deltazb.m	Visualize bed level	Files bed level	Bed level on a	Developed
	change on a constant	measurements	constant	
	location		location	
func_despike_phasespace3d.m	Despiking routine	Velocity	Despiked	Taken and
		measurements	velocity	optimized
			measurements	
plot_cones_v2	Visualize general	Files velocity	3D visualization	Developed
	stream pattern	measurements	of velocity field	
plot_cones_v2_met_wand	As plot_cones_v2,	Files velocity	3D visualization	Developed
	including wall	measurements	of velocity field,	
			incl wall	
plotbodemdef.m	Visualize bed level	Files bed level	Bed level	Developed
	change on different	measurements	change different	
	locations behind screen		locations	
plotbodemdef_wall.m	As plotbodemdef,	Files bed level	Bed level	Developed
	including wall	measurement	change different	
			locations	
			including wall	
Plotspectra.m	Plotting spectral	Velocity	Energy density	Taken
	analyses	measurements	spectrum	
samenvoegen.m	Combining bed level	Bed level	Bed level over	Developed
	measurements of both	measurements	width flume	
	branches			
smooth_v6.m	Despiking routine	Velocity	Despiked	Taken and
		measurements	velocity	optimized
			measurements	
Spectra.m	Spectral analysis	Velocity	Dataset as input	Taken
		measurements	for plots	
Splitted_averaged_spectrum.m	Averaged spectral	Velocity	Averaged	Taken and
	analysis of 1/10 of the	measurements	energy density	optimized
	measurement duration		spectrum	
Velocity_layers.m	Draw velocity vectors,	Files velocity	Vector plot	Developed
	top view	measurements	velocity	