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Prof. dr. A. Schürmann, University of Rostock
Dr. D.C. Gijswijt, Delft University of Technology

The research described in this dissertation was financed by Vidi grant 639.032.917
of the Netherlands Organisation for Scientific Research (NWO).

ISBN 978-94-6186-582-3

Cover design by Sinds1961 Grafisch Ontwerp
Printed and bound by Printservice Ede



Contents

Chapter 1. Introduction 5

Chapter 2. A ten page introduction to conic programming 11
2.1. Optimization and computational hardness 11
2.2. Lifts and relaxations 12
2.3. Conic programming and duality 13
2.4. Semidefinite programming and interior point methods 16
2.5. Symmetry in semidefinite programming 18
2.6. Moment hierarchies in polynomial optimization 19

Chapter 3. Invariant positive definite kernels 21
3.1. Introduction: From matrices to kernels 21
3.2. A characterization of the extreme rays 22
3.3. Symmetry adapted systems 25
3.4. Block diagonalized kernels 30

Chapter 4. Upper bounds for packings of spheres of several radii 37
4.1. Introduction 37
4.2. Multiple-size spherical cap packings 48
4.3. Translational packings and multiple-size sphere packings 51
4.4. Computations for binary spherical cap packings 57
4.5. Computations for binary sphere packings 59
4.6. Improving sphere packing bounds 67

Chapter 5. Optimal polydisperse packing densities using objects with large
size ratio 71

5.1. Introduction 71
5.2. Packings and density 72
5.3. Packings of wide polydispersity 73

Chapter 6. A semidefinite programming hierarchy for packing problems in
discrete geometry 77

6.1. Packing problems in discrete geometry 77
6.2. Lasserre’s hierarchy for finite graphs 79
6.3. Topological packing graphs 79
6.4. Generalization of Lasserre’s hierarchy 80
6.5. Explicit computations in the literature 83
6.6. Topology on sets of independent sets 83



4 CONTENTS

6.7. Duality theory of the generalized hierarchy 85
6.8. Convergence to the independence number 89
6.9. Two and three-point bounds 92

Chapter 7. Moment methods in energy minimization: New bounds for Riesz
minimal energy problems 97

7.1. Introduction 97
7.2. A hierarchy of relaxations for energy minimization 101
7.3. Connection to the Lasserre hierarchy 103
7.4. Convergence to the ground state energy 106
7.5. Optimization with infinitely many binary variables 107
7.6. Inner approximating cones via harmonic analysis 110
7.7. Reduction to semidefinite programs with polynomial constraints 122
7.8. Invariant polynomials in the quadratic module 125
7.9. Computations 128

Bibliography 133

Summary 139

Samenvatting 141

Acknowledgments 143

Curriculum Vitae 145

Publication list 147



CHAPTER 1

Introduction

What is the ground state energy of a system of interacting particles? How do we
pack objects together as densely as possible? These are questions of extremal geom-
etry. Applications range from the study of error correcting codes, approximation
theory, and computational complexity to the modeling of materials in chemistry
and physics. In these problems the search space consists of infinitely many con-
figurations among which there can be many suboptimal local optima. This makes
it notoriously difficult to certify the optimality of a construction, and for all but
the simplest of these problems we do not expect there will ever be purely human
generated proofs. We work on methods which allow us to use computers to search
for small proofs in the form of optimality certificates. These certificates are given by
dual objects which we call obstructions. For the two examples above an obstruction
gives an energy lower bound or a density upper bound, and when such a bound is
sharp the obstruction provides an optimality certificate. On the one hand we show
our methods can find arbitrarily good obstructions in principle. On the other hand
we compute new obstructions for concrete geometric problems, where the symmetry
of the problems is often of decisive importance.

We give an infinite dimensional generalization of moment methods from poly-
nomial optimization. By using infinite dimensional optimization we deal with the
infinite set of possible locations of each particle or object, and by using moments
we deal with the suboptimal local optima. The theory of moments has a rich his-
tory, but here we only describe its use in optimization via the Lasserre hierarchy
[63]: An example of a moment is a value yα =

∫
xα dµ(x), where µ is a probability

measure on a compact set K ⊆ Rn. Here, for α ∈ Nn0 = {0, 1, 2, . . .}n, we use
the notation xα = xα1

1 · · ·xαnn and |α| =
∑n
i=1 αi. The transformation mapping

µ to its sequence of moments preserves positivity: {yα} is of positive type; that
is, the finite principal submatrices of the infinite matrix (yα+β)α,β∈Nn0 are positive
semidefinite. Consider the problem of finding the minimal value of a polynomial
p =

∑
α pαx

α ∈ R[x1, . . . , xn] over the set K, which is equivalent to minimizing∫
p dµ over all probability measures supported on K. Upper bounds on the mini-

mum can be obtained by evaluating p at points x ∈ K. For lower bounds we assume
K is basic closed semialgebraic: K = {x ∈ Rn : g(x) ≥ 0 for g ∈ G}, where G is
a finite subset of R[x1, . . . , xn]. We select an integer t ≥ ddeg(p)/2e and minimize∑
α pαyα over all sequences {yα}|α|≤2t with y0 = 1, where the matrix (yα+β)|α|,|β|≤t

is positive semidefinite, and where some additional moment conditions involving the
set G are satisfied (see Section 2.6). For each t we obtain a relaxed problem whose
optimal value is computable through semidefinite programming (see below) and
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6 1. INTRODUCTION

which lower bounds the minimum. These bounds improve as t gets bigger, and for
many interesting classes of problems the bound is sharp for some finite value of t.

Before we discuss our adaptation of the above approach to problems in extremal
geometry, we first show how packing problems can be modeled as independent set
problems in infinite graphs. Consider the problem of finding a sphere packing
of maximal density, where a sphere packing is a set of translates of unit balls in
Euclidean space such that the pairwise interiors do not intersect. In 3 dimensions
this is the Kepler conjecture which was solved by Hales in 1998 through a computer
assisted proof [44]. This proof does not use dual certificates as discussed above, and
since its large size made it difficult to verify its correctness, a formal, fully computer
verified version was finished in 2015 [45]. The spherical cap packing (or spherical
code) problems are compact analogues of the sphere packing problem. Here we
ask for the optimal density of a packing of equally sized spherical caps on a unit
sphere. If we take Euclidean space as vertex set and connect two vertices whenever
their distance is strictly less than two, or take the unit sphere as vertex set and
connect two vertices whenever their inner product is strictly larger than some value
corresponding to the cap size, then the independent sets in these graphs (the subsets
that do not contain adjacent vertices) correspond precisely to valid packings. For
the spherical cap packing problem the independence number (the size of a largest
independent set) is finite and proportional to the optimal density.

The independent set problem for finite graphs is one of the main NP-hard prob-
lems in combinatorial optimization [55]. To find upper bounds we can use the graph
parameter known as the Lovász ϑ-number, which was introduced in the celebrated
paper [71]. This number upper bounds the independence number of a finite graph
and is efficiently computable through semidefinite programming. In semidefinite
programming we optimize a linear functional over an affine section of the cone
of positive semidefinite matrices. Semidefinite programs form a powerful general-
ization of linear programs but can still be solved efficiently; they form the main
computational tool in this thesis. Some important bounds in extremal geometry
can be interpreted as analogues of the ϑ-number for infinite graphs. For the spher-
ical code problem there is the Delsarte–Goethals–Seidel linear programming upper
bound [27], which we can view this as a symmetry reduced (see below) version of
a generalization of the ϑ-number to the infinite spherical code graph [8]. Similarly,
we can view the Cohn–Elkies [21] linear programming bound for the sphere packing
problem as a symmetry reduced analogue of the ϑ-number for the infinite sphere
packing graph; see Section 4.1.1.

We extend the above approach to compute new bounds for packings of spherical
caps and spheres of multiple sizes; see Chapter 4. Although we use a semidefinite
programming solver – and hence floating point arithmetic – to find these bounds,
we obtain proofs through a rounding procedure, where we round the solutions to
matrices containing rational or algebraic numbers which satisfy all the constraints
of the semidefinite programs. For instance, the binary sphere packing with the
structure of sodium chloride has density approximately 79.3%, and we prove an
upper bound of approximately 81.3%. We give an example of a binary spherical
cap packing where our bound is sharp, which leads to a simple optimality proof. We
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also give the best known bounds for the classical sphere packing problem (where all
spheres are congruent) in dimensions 4 to 7 and 9 by giving a slight improvement on
the Cohn–Elkies bound. This leads to the following question which we will discuss
now: can we obtain arbitrarily good bounds?

A relaxation of an optimization problem infx∈X f(x) is another, typically easier,
problem infy∈Y g(y) together with a map R : X ↪→ Y such that g ◦ R ≤ f . The
moment bounds defined above are examples of relaxations and so is the Lovász
ϑ-number. We call the above bounds for packing problems 2-point bounds because
these are relaxations where we replace optimization over all geometric configurations
by optimization over computationally tractable information on the pair distribution
of configurations. To obtain better bounds we can consider relaxations which use
information on triples, and Schrijver [89] found an approach to compute 3-point
bounds for binary codes. This approach was put in a representation theoretic
framework and extended to the spherical code problem and by Bachoc and Vallentin
[9]. An extension to energy minimization was given by Cohn and Woo [23]. These
techniques led to many new optimality proofs and for many problems these bounds
still give the best available results. An extension to k-point bounds is considered in
[76], but when applied to the sphere Sn−1 ⊆ Rn it cannot go beyond n-point bounds.
For a new, but related, approach to obtaining relaxations for these problems we
continue our discussion of moment methods.

The independent set problem for a finite graph G = ([n], E) can be stated
as a polynomial optimization problem where we maximize the objective function∑n
i=1 xi over all x ∈ Rn which satisfy the constraints xi(1 − xi) = 0 for i ∈ [n]

to enforce 0/1 valued variables, and 1 − xi − xj ≥ 0 for {i, j} ∈ E to enforce the
edge conditions. By applying the moment techniques discussed above we obtain
a hierarchy of optimization problems whose optimal values give increasingly good
upper bounds on the independence number α(G). In [65] Laurent showed this
hierarchy converges to the independence number in t = α(G). In Chapter 6 we
generalize this approach to infinite graphs. For this we define topological packing
graphs as an abstraction for the infinite graphs coming from packing problems.
We use functional analytic tools to give a definition of the moments of measures
defined on sets of geometric configurations. Now, instead of a moment sequence,
the moments form a measure defined on the set of independent sets. We obtain
relaxations by optimizing over measures defined on the independent sets up to
cardinality 2t. This gives a sequence of infinite dimensional maximization problems
whose optimal values give increasingly good upper bounds on the optimal density.
We prove this sequence converges to the optimal packing density. We also show
the first step of this hierarchy is equivalent to a generalization of the ϑ-number to
topological packing graphs, which shows the first step equals well-known bounds
for packing problems.

To go from relaxations to obstructions we use what is arguably the most beauti-
ful topic in optimization: duality. Given a maximization problem, which we call the
primal, there exist dual minimization problems whose optimal values upper bound
the primal’s optimal value. The obstructions mentioned in the first paragraph of
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this introduction are given by feasible solutions to the duals of the relaxations dis-
cussed above. In our primal optimization problems we optimize over measures,
which naturally means the dual variables are continuous functions. In general, the
primal and dual optimal values are not equal but there can be a strictly positive
duality gap. Using a closed cone condition and convex geometric arguments we
prove that for each step in our hierarchy there is no duality gap. Together with the
convergence result mentioned in the previous paragraph, this shows we can obtain
arbitrarily good bounds on the optimal density by finding good feasible solutions
to these dual programs.

When an optimization problem admits symmetry, then the relaxations and their
duals typically inherit this symmetry. The symmetry is expressed by a group action
on the space of variables for which the constraints and objective are invariant. If
such an optimization problem is convex (and if the group is compact), then we can
restrict to invariant variables, which can simplify the problem significantly. The 2
and 3-point bounds for the spherical code problem are good examples where this
symmetry can be used. Here the variables are continuous, positive definite kernels
K : S2 × S2 → R, which for 2-point bounds can be assumed to be invariant under
the orthogonal group O(3), and for 3-point bounds under the stabilizer subgroup
with respect to a point e ∈ S2. In the dual problems of our hierarchy, the variables
are continuous, positive definite kernels K : It × It → R, where It is the set of
independent sets in the packing graph that have size at most t. These kernels can
be assumed to be invariant under the symmetry group of the graph.

To exploit the symmetry we use harmonic analysis. The main idea is to reduce
to a finite dimensional variable space by optimizing over truncated Fourier series of
the kernel K. Since the Fourier coefficients of a positive definite kernel are positive
semidefinite, this results in approximating optimization problems where we optimize
over positive semidefinite matrices. We can view this as a block diagonalization, and
the bigger the group action the smaller the blocks. In the case of 2-point bounds for
the spherical code problem, these blocks are of size 1× 1, and the problem reduces
to an infinite dimensional linear program. We consider theoretical issues, such a the
existence of a Fourier basis for the kernels and convergence of these approximations,
as well as more practical issues such as how to explicitly construct the Fourier basis
for the spaces It by using tensor representations. We show that for the case where
the vertex set is a sphere, the programs in our dual hierarchy can be approximated
in this way by a sequence of semidefinite programs with polynomial constraints.

We expect that the class of semidefinite programs with polynomial constraints
will become increasingly important. Here, by a polynomial constraint we mean the
requirement that a polynomial, whose coefficients depend linearly on the entries
of the positive semidefinite matrix variable(s), is positive on a basic closed semi-
algebraic set. This includes the problem of finding the minimum of a polynomial
as discussed above, but instead of considering the moments we now take the dual
sum of squares viewpoint. A sum of squares polynomial is nonnegative, and in real
algebraic geometry we study when and how a polynomial that is nonnegative (or
strictly positive) on a set can be represented using sum of squares. This is useful
from a computational perspective because the cone of sum of squares polynomials
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of fixed degree is isomorphic to a cone of positive semidefinite matrices. Using these
techniques a semidefinite program with polynomial constraints can be approximated
by a sequence of semidefinite programs. In applying this there are three important
points to consider: numerical conditioning, symmetry, and sparsity. In Chapter 4
we consider the first point, where we show the correct choice of bases is essential to
be able to solve the resulting semidefinite programs. In Section 7.8 we show how
symmetry in the polynomial constraints can be exploited to get block diagonalized
sum of squares characterizations, and we show how much we gain from this when
applied to our hierarchy. It is an open question whether sparse sum of squares char-
acterization as for instance discussed in [58] yield significant computational savings
for the type of problems considered in this thesis.

We use our generalized moment techniques to construct a converging hierarchy
for approximating the ground state energy of a system of N interacting particles.
An important example is the Thomson problem, where we minimize the pairwise
sum of ‖xi − xj‖−1

2 over all sets {x1, . . . , xN} of N distinct elements in the unit
sphere S2 ⊆ R3. We show the N -th step EN in this hierarchy is guaranteed to give
the optimal energy E. It could be, however, that for many problems the bound
Et is sharp for much smaller t. After symmetry reduction, the dual of the first
step E1 essentially reduces to Yudin’s bound [100], which is an adaptation of the
Delsarte–Goethals–Seidel bound mentioned above for energy minimization. This
means E1 is sharp for the Thomson problem with N = 2, 3, 4, 6, 12. It would be
very interesting if this pattern continues; that is, if the second step E2 is sharp for
several new values of N . As a first step into investigating this – and to show that it
is possible to compute the second step of the hierarchy – we compute E2 numerically
for N = 5, where the computational results suggest this bound is sharp. This is the
first time a 4-point bound has been computed for a continuous problem.

The 5 particle case is especially interesting as this is one of the simplest math-
ematical models of a phase transition. By this we mean there is a discontinuous
jump from one globally optimal solution to another as the pair potential changes
only slightly. We compute the bound for the Riesz s-energy potentials for s = 2, 4,
where the numerical results again suggest the bound is sharp. It would be very
interesting if E2 is universally sharp for 5 particles, by which we mean it is sharp
for a large class of pair potentials and hence also throughout the phase transition.

***
This thesis consists of seven chapters including this introductory chapter. Chap-

ters 2 and 3 mainly contain background material (the former on optimization and
the latter on harmonic analysis) and chapters 4 to 7 are based on papers and contain
their own introductions.





CHAPTER 2

A ten page introduction to conic programming

This background chapter gives an introduction to conic programming. We do
not give proofs, but focus on important (for this thesis) tools and concepts.

2.1. Optimization and computational hardness

Optimization is about maximizing or minimizing a function over a set. The set
is typically described more implicitly than just an enumeration of its elements, and
the structure in this description is essential in developing good optimization tech-
niques. The set is known as the feasible set and its elements the feasible solutions.
The function is called the objective function and its range the objective values. We
write a minimization problem as p = infx∈S f(x), and we often use p to refer to the
optimization problem as a whole instead of just its optimal value. We are not only
interested in finding the optimal value, but also in finding optimal solutions, and if
this is too difficult (or if they do not exist) we seek close to optimal feasible solu-
tions. An important topic is finding certificates asserting the solution’s optimality
or quality of approximation. In fact, by solving an optimization problem we often
mean finding an optimal solution together with a certificate.

Linear programming is foundational in conic optimization. Consider the prob-
lem of finding a vector x satisfying a linear system Ax = b. We can find such an x
by Gaussian elimination, but when we also require the entries of x to be nonneg-
ative, then we need different algorithms. In a linear program we optimize a linear
functional over all nonnegative vectors satisfying a given linear system. It is, how-
ever, the positivity condition, and not the fact that we are optimizing a functional,
that moves a linear problem into the field of optimization: Using complementary
slackness (see Section 2.3) we can add variables and constraints to a linear program
so that all its feasible solutions are optimal. Alternatively, we can constrain a min-
imization problem’s objective value to be at most some number b, and then bisect
on b to solve the optimization problem by solving a number of feasibility problems.

When we discuss the hardness (in some computational model) of solving or ap-
proximating a class of optimization problems, we need to define an explicit encoding
of the feasible sets and objective functions. In this way it is clear what constitutes
the input data for the algorithms. This is important because the efficiency of an
algorithm is determined by the dependence of the running time on the input size.
Geometrically, linear programming is the optimization of a linear functional over a
polyhedron, and although a polyhedron can be described in different ways, when
we discuss computational hardness we assume a facial description. This means the
polyhedron is given by all vectors x satisfying some linear inequality Ax ≥ b. We

11



12 2. A TEN PAGE INTRODUCTION TO CONIC PROGRAMMING

can, however, use any description that is easy to transform into and derive from this
one, such as the description from the previous paragraph. Linear programs can be
solved efficiently in practice by simplex methods, although it is not known whether
there exists a simplex method that runs in polynomial time. The ellipsoid method
can solve a rational linear program in polynomial time (in the bit model) but ap-
pears to be too slow in practice. In Section 2.4 we discuss interior point methods
which are fast in practice and that can be made to run in polynomial time.

If a linear program’s input is rational, then its optimal value is a rational num-
ber whose bit size is bounded by a fixed polynomial in the input bit size [87]. For
semidefinite programming, which is a powerful generalization of linear program-
ming, there exist rational instances whose optimal values are algebraic numbers of
high degree [77], and it is not known whether a polynomial time algorithm for semi-
definite programing exists. However, if the feasible set of a semidefinite program
contains a ball of radius r and is contained in a ball of radius R, then for each ε > 0
we can find an ε-optimal solution in polynomial time (where ε, r, and R are part
of the input of the algorithm); see also Section 2.4.

We distinguish between convex and nonconvex optimization problems, where a
convex optimization problem has a convex feasible set and convex (concave) objec-
tive function in case it is a minimization (maximization) problem. Convex problems
have the advantage that local optima are globally optimal, but this does not mean
they are necessarily easy to solve.

2.2. Lifts and relaxations

When optimization problems are difficult, we can try to use their description
to derive easier optimization problems which give information about the original
problems. Lifts provide one such technique. A lift of an optimization problem is
another optimization problem with a surjective map P from its feasible set onto
the original problem’s feasible set, and whose objective function is given by com-
posing the original objective function with P . This technique originated from the
observation that there exist polytopes which are projections of higher dimensional
polytopes with drastically simpler facial structure. Lifts contain all information of
the original problems; they have the same optimal value and we can project their
optimal solutions to optimal solutions of the original problem.

Typically we do not lift a single problem, but we systematically lift an entire
class of problems. When the worst case instances in this class are inherently difficult
to solve – for instance, the class is NP-hard and P 6= NP – then it appears to be
difficult for lifts to recognize the easy problems; that is, all of them will be hard to
solve. More successful in this respect are relaxations. A relaxation of a problem
infx∈A f(x) is another problem infx∈B g(x) together with an injective map R : A ↪→
B such that g◦R ≤ f . Relaxations are often obtained by relaxing the constraint set,
in which case R is the identity. For example, by removing the integrality constraints
in an integer linear program we obtain the linear programming relaxation. Also
common are Lagrangian relaxations which we discuss in Section 2.3.

A lift of a relaxation is a relaxation, and we will encounter instances which are
naturally interpreted in this way. When R is surjective and g◦R = f , the relaxation
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is a lift by taking P = R−1. Even when R is not surjective, it can happen that it
maps optimal solutions to optimal solutions having the same objective value, and
in this case we say the relaxation is sharp. Any optimization problem infx∈S f(x)
admits a sharp convex relaxation infx∈C g(x) by taking C to be the convex hull of
the basis elements δx of the vector space RS of finitely supported functions and g
to be the linear functional satisfying g(δx) = f(x) for x ∈ S.

2.3. Conic programming and duality

In a conic program we optimize a linear functional over the intersection of a
closed convex cone with an affine space. A convex cone K is a nonempty subset
of a real vector space E such that ax + by ∈ K for all a, b ≥ 0 and x, y ∈ K. We
define the affine space by the set of solutions to the equation Ax = b, where A is
a linear operator from E to another real vector space F , and b is an element from
F . The objective function is a linear functional c : E → R. A conic program is an
optimization problem in the form

p = inf {c(x) : x ∈ K, Ax = b} .
Any convex optimization problem infx∈S f(x) can be written as a conic pro-

gram: First write it as a minimization problem with linear objective (x, b) 7→ b and
convex feasible set C = {(x, b) ∈ S×R : f(x) ≤ b}, then write it as a conic program
over the cone {(x, t) : t ≥ 0, x ∈ tC}. The power of conic programming, however,
lies in the fact that we only need a few classes of convex cones to express a wide
variety of optimization problems. The type of optimization problem is encoded by
the cone, and the problem data is given by the affine space and objective func-
tion. Linear programs are conic programs over a nonnegative orthant cone Rn≥0,
and semidefinite programs use a cone of positive semidefinite matrices.

Positivity — as modeled by the cone constraints in a conic program — is funda-
mental in convex optimization. A second fundamental concept is duality. We first
discuss Lagrangian duality, which is based on removing constraints and penalizing
violations of those constraints in the objective. Consider a problem of the form

q = inf
{
f(x) : x ∈ S, gi(x) = 0 for i ∈ [l], hj(x) ≥ 0 for j ∈ [m]

}
,

where [l] = {1, . . . , l}. We call this the primal problem. For simplicity we assume
all functions to be real-valued and continuously differentiable, and we assume S to
be an open subset of Rn. We define the Lagrangian by

L : S × Rl × Rm≤0 → R, (x, u, v) 7→ f(x) +

l∑
i=1

uigi(x) +

m∑
j=1

vjhj(x).

When m = 0, the constrained stationary points of f correspond precisely to
the stationary points of L. The geometric explanation is that ∇uL = 0 forces x
to be feasible, and ∇xL = 0 forces the direction of steepest descent of f at x to
be a normal vector of the feasible set. The entries of the vector u in a stationary
point (x, u) of L are called Lagrange multipliers. In the general case where m > 0
the situation is more subtle. The constrained stationary points of L are known
as Karush-Kuhn-Tucker points. For each such point (x, u, v), the vector x is a
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constrained stationary point of f . In general not all constrained stationary points
of f can be obtained in this way, but there are sufficient conditions known as global
constraint qualifications under which this is true. The most well-known is Slater’s
condition which requires the problem to be convex and to admit a strictly (all
inequalities are strictly satisfied) feasible point. When the functions f, g1, . . . , gm
are convex, the set S is convex, and the functions h1, . . . , hm are linear, then the
problem is convex. In convex problems the global constrained minima are precisely
the constrained stationary points.

We define the Lagrangian dual function

R : Rl × Rm≤0 → R, R(u, v) = inf
x∈S

L(x, u, v),

so that for each u and each v ≤ 0, the problem R(u, v) is a relaxation of q. The
Lagrangian dual problem is given by maximizing this function over its domain:

q∗ = sup
(u,v)∈Rl×Rm≤0

R(u, v).

The primal problem can be written as

inf
x∈S

sup
(u,v)∈Rl×Rm≤0

L(x, u, v),

so that we simply interchange sup and inf to go from the primal to the dual problem.
A global constraint qualification such as Slater’s condition guarantees the optima
of the primal and dual are the same.

To apply Lagrangian duality to general conic programs we extend the above dis-
cussion to conic constraints. In q∗ the objective function is an optimization problem
itself, and the reduction to a more explicit form requires problem specific informa-
tion. An advantage of conic programming is that all nonlinearities are contained in
the cone constraint, and an explicit description of the dual cone is all we need for
an explicit description of the dual program. The dual program is a conic program
over the dual cone, and the situation is symmetric in the sense that we recover the
original problem by taking the dual again.

Let E∗ and F ∗ be the algebraic duals of E and F ; that is, the vector spaces
of real-valued linear functionals on E and F . Then c ∈ E∗. We have two nonde-
generate bilinear pairings E ×E∗ → R and F ×F ∗ → R, each denoted and defined
by 〈x, y〉 = y(x). The dual cone K∗ is defined by {y ∈ E∗ : 〈x, y〉 ≥ 0 for x ∈ K}.
The adjoint operator A∗ : F ∗ → E∗ is defined by A∗f = f ◦ A for all f ∈ F ∗. The
Lagrangian of the conic program p is naturally given by

L : K∗ × E → R, (y, x) 7→ c(x)− 〈x, y〉,
so that the Lagrangian dual program becomes

p∗ = sup{〈b, y〉 : y ∈ F ∗, c−A∗y ∈ K∗}.
To reconstruct the primal from the dual we write the dual as a conic program in

standard form, take the dual, and write this in standard form. The symmetry here
becomes more apparent when we write both programs in a more geometric form.
For e an element such that Ae = b and P = ker(A), the primal and dual become

inf{〈x, c〉 : x ∈ (e+ P ) ∩K} and sup{〈y, e〉 : y ∈ P⊥ ∩ (K∗ + c)},
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so that both programs optimize a linear functional over the intersection of a (trans-
lated) cone with an (affine) linear subspace.

When the vector spaces E and F are infinite dimensional, their algebraic duals
are so large that the algebraic dual conic programs have too many variables and
constraints to be useful. Instead we endow E and F with topologies and restrict E∗

and F ∗ to contain only continuous linear functionals. We require these topologies
to agree with the data by requiring c and A to be continuous, so that c is in E∗ and
the adjoint A∗ maps E∗ into F ∗. We also require these topologies to be Hausdorff
and locally convex so that there are — by the Hahn–Banach theorem — enough
continuous linear functionals to separate points. This insures nondegeneracy of the
bilinear forms, so that (E,E∗) and (F, F ∗) are dual pairs. We form the dual cone
and the dual conic program in the same way as before, and if we equip E and F with
very strong topologies, such as the topologies of algebraically open sets, then we get
the same duals as in the algebraic case. To keep the situation symmetric we equip
E∗ and F ∗ with weak* topologies; that is, we give them the weakest topologies for
which all linear functionals x 7→ 〈x, y〉 are continuous. Using nondegeneracy of the
pairings we see that (E∗)∗ and (F ∗)∗ are isomorphic to E and F , and by identifying
them we obtain (A∗)∗ = A, (K∗)∗ = K, and (p∗)∗ = p.

Suppose x is feasible for p and y is feasible for p∗. We always have p ≥ p∗, which
we call weak duality and which follows from 〈x, c〉 ≥ 〈x,A∗y〉 = 〈Ax, y〉 = 〈b, y〉.
We also have complementary slackness, which says 〈x, c − A∗y〉 = 0 if and only
if both x and y are optimal and have the same objective value. There can be a
strictly positive duality gap p − p∗, and we say strong duality holds when this gap
is 0. Like for the constraint qualifications in Lagrangian duality, we have sufficient
conditions for strong duality. To Slater’s condition corresponds the following interior
point condition: If the interior of K admits a primal feasible point and the primal
problem is bounded, then p = p∗, and the supremum in the dual is attained.

In infinite dimensional spaces there are many interesting cones whose interiors
are empty, which means we cannot use an interior point condition. We have the
following alternative closed cone condition: If the cone {(Ax, 〈x, c〉) : x ∈ K} is
closed in F×R and there is a primal feasible solution, then p = p∗, and if in addition
the primal is bounded, then the infimum in the primal is attained [10]. Choosing
stronger topologies on E and F makes it easier for strong duality to hold: K will
have more interior points and F × R more closed sets. But the duality gap cannot
always be closed by choosing a stronger topology; even finite dimensional problems
such as semidefinite programs can have a strictly positive duality gap. Notice that
the interior point condition benefits from E having a stronger topology, while the
closed cone condition benefits from F having a stronger topology (and indirectly by
E having a stronger topology to keep A continuous). The crucial ingredient in the
proofs of these conditions is the Hahn–Banach separation theorem. This theorem
says that if we have a point and a closed convex set, then either the point lies in the
set or it can be strictly separated from it by two parallel hyperplanes in between the
set and the point. This resembles the situation that given strong duality, a number
λ either is an upper bound on the optimal objective of a minimization problem, or
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there is a dual feasible solution whose objective is in between λ and the optimal
objective.

2.4. Semidefinite programming and interior point methods

The positive semidefinite cone Sn�0 consists of the positive semidefinite matrices
of size n×n. A positive semidefinite matrix is a real symmetric matrix whose eigen-
values are nonnegative, or equivalently, a matrix that can be written as RRT where
R is a real rectangular matrix. Such an R can be found efficiently by performing
a Cholesky factorization, which moreover gives R in lower triangular form which is
useful for solving a system of the form RRTx = b. The positive semidefinite cones
are convex and for n ≥ 2 they are not polyhedral; the extreme rays are spanned by
the rank one matrices xxT, where x ∈ Rn. The positive semidefinite cones are self
dual, where the dual pairings, denoted by 〈·, ·〉, are defined by taking the trace of
the matrix product. Here we view Sn�0 as a subset of the n(n + 1)/2 dimensional
vector space Sn of n × n real symmetric matrices. The interior of Sn�0 is the cone
Sn�0 of positive definite matrices, which are real symmetric matrices with strictly
positive eigenvalues. The cones Sn�0 and Sn�0 induce partial orders, denoted � and
�, on the vector space Sn. The Schur complement condition says that if A, B,
and C are matrices with A invertible, then

(
A B
BT C

)
� 0 if and only if A � 0 and

C −BTA−1B � 0.
A semidefinite program is a conic program over a cone of positive semidefinite

matrices. We can write such a program as

p = inf
{
〈X,C〉 : X ∈ Sn�0, 〈X,Ai〉 = bi for i ∈ [m]

}
,

where C,A1, . . . , Am ∈ Sn and b1, . . . , bm ∈ R. The dual program is given by

p∗ = sup
{
〈b, y〉 : y ∈ Rm, C −

m∑
i=1

yiAi ∈ Sn�0

}
.

Checking whether a matrix X is positive semidefinite is easy, and when a matrix
is not positive semidefinite, we can easily certify this with a positive semidefinite
matrix C for which 〈X,C〉 < 0. So, under the condition that the feasible set is
contained in a ball and contains a ball, the ellipsoid method can efficiently solve a
semidefinite program. This works as follows: First we only consider the feasibiliy
problem since binary search allows us to solve the optimization problem by solving
a sequence of such problems [43]. We start with the large ball. If its center is
not feasible, we can separate it from the feasible set by a halfspace. Then we
select a smaller ellipsoid containing the intersection of the current ellipsoid with the
halfspace and iterate this process. This yields a polynomial time algorithm.

For an approach that is also fast in practice we use interior point methods, in
which we reduce a problem to a sequence of stationary point finding problems which
we solve using Newton’s method. This is an iterative method to find roots of (mul-
tivariate) vector functions and stationary points of (multivariate) scalar functions.
Given a continuously differentiable function g : Rn → Rn and a point close enough
to a root r, Newton’s method generates a sequence of points rapidly converging
to r by applying successive Newton steps. A Newton step moves a point to the
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root of the linear approximation of g at that point. To find a stationary point of a
twice continuously differentiable function f : Rn → R we apply the above method
to the gradient ∇f . In this case a Newton step maps a point x to the stationary
point of the second order Taylor approximation of f at x; that is, it maps x to
x − (Hf(x))−1∇f(x), where Hf is the Hessian. If the domain of f is an affine
space in Rn, then we use Lagrange multipliers to optimize the Taylor approxima-
tion subject to linear equality constraints. In our applications the linear systems
to be solved to determine the Newton steps will have a positive definite matrix so
that we can use a Cholesky factorization. Although a Cholesky factorization can be
computed efficiently, this is a relatively expensive step in interior point methods, so
we typically only perform a single Newton step when we invoke Newton’s method.

The function β : Sn�0 → R defined by β(X) = − log(det(X)) is strongly convex
and grows to infinity as X nears the boundary of the cone. This is an example of
a barrier functional, which lies at the heart of any interior point method. We use
this to define the primal and dual central paths {Xη}η≥0 and {(yη, Zη)}η≥0, where
Xη and (yη, Zη) are the unique optimal solutions to the barrier problems

pη = min
{
〈X,C〉+ ηβ(X) : X ∈ Sn�0, 〈X,Ai〉 = bi for i ∈ [m]

}
and

p∗η = max
{
〈b, y〉 − ηβ(Z) : y ∈ Rm, Z ∈ Sn�0, Z = C −

m∑
i=1

yiAi

}
.

To guarantee the existence and uniqueness of optimal solutions we assume strict
feasibility of p and p∗ and linear independence of the matrices Ai. The central paths
converge to optimal solutions of p and p∗ as η tends to 0.

In the (short-step) primal barrier method we first solve an auxiliary problem to
find a primal feasible solution X close to the primal central path; that is, close to
Xη for some η. Then we iteratively decrease η and apply a constrained Newton step
to X for the function 〈X,C〉+ ηβ(X) and the constraints 〈X,Ai〉 = bi for i ∈ [m].
If we decrease η slowly enough, this results in a sequence of matrices which lie close
to the central path and for which it is guaranteed that they are positive definite.
As η → 0 they converge towards the optimal solution limη↓0Xη, and by choosing
the right parameters this algorithm finds, for each ε > 0, an ε-optimal solution in
polynomial time.

In primal-dual methods we maintain both primal and dual iterates which are
allowed to violate the affine constraints. To find new iterates we use both primal
and dual information, and this results in excellent performance in practice. The
main observation is that the Lagrangian

Lη : Sn × Rm × Sn�0 → R, (X, y, Z) 7→ 〈b, y〉 − ηβ(Z) + 〈C −
m∑
i=1

yiAi − Z,X〉

of p∗η has (Xη, yη, Zη) as unique stationary point. The stationarity condition

0 = ∇ZLη(Xη, yη, Zη) = −ηZ−1
η +Xη

can be written as XηZη = ηI so that η = 〈Xη, Zη〉/n. Since 〈Xη, Zη〉 is the duality
gap, this tells us how fast the primal and dual central paths converge to optimality
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as η ↓ 0. Moreover, this formula allows us to compute an η value for iterates which
do not lie on the central paths or are not even feasible.

The basic idea in primal-dual methods is to start with arbitrary positive definite
matrices X and Z and corresponding vector y. Then we iteratively set η to the
current η value of X and Z, multiply this by a factor between 0 and 1, and perform
a Newton step for the function Lη to get new iterates X and Z. This Newton step
is not necessarily positive definite, so instead of jumping to the Newton iterate we
move into the direction of this iterate by for instance performing a line search.

In the above method we take an optimizing Newton step for Lη, which is the
same as taking a root finding Newton step for ∇Lη. In practice, we often use
variations that are obtained by first rewriting the equation ∇ZLη(X, y, Z) = 0 as,
for instance, ZX − ηI = 0. In this variation we have to symmetrize the Z matrix
after each Newton step because the product ZX of two symmetric matrices is not
necessarily symmetric, so we have to apply Newton’s root finding method to maps
whose domain and codomain is Sn × Rm × Rn×n instead of Sn × Rm × Sn. This
reformulation of the nonlinear gradient condition is used in the CSDP solver, which
uses a predictor-corrector variant of the above algorithm [16].

These interior point methods can be generalized to methods for symmetric
cones, which have been classified as being products of Lorentz cones, real, complex,
and quaternionic positive semidefinite cones, and one exceptional cone. Semidefinite
programming is the main case in the sense that a conic program over a product of
cones from these families can easily be transformed into a semidefinite program: A
conic program over a product of positive semidefinite cones is a semidefinite program
by taking direct sums of the data matrices with zero blocks at appropriate places.
This also shows linear programming is a special case of semidefinite programming.
A second order cone program transforms into a semidefinite program using a Schur
complement. The complex plane embeds into the algebra of real antisymmetric
2 × 2 matrices by mapping x + iy to the matrix

( x y
−y x

)
. To transform a complex

semidefinite program into a semidefinite program we simply replace each entry in
the data matrices by such a block. For the quaternionic case we do the same
using an embedding of the quaternions in the algebra of real antisymmetric 4 × 4
matrices. Of course, the complexity of solving a resulting semidefinite program
can be higher than the original problem, and for especially linear and second order
cone programming we use specialized solvers. Moreover, semidefinite programming
solvers typically work with products of semidefinite cones; that is, they exploit the
block structure in semidefinite programs.

2.5. Symmetry in semidefinite programming

A problem p = infx∈S f(x) can contain symmetry if the underlying data has
symmetry or if the modeling method introduces symmetry. Exploiting this sym-
metry can reduce the problem size significantly and can remove problematic de-
generacies. Given a group Γ with an action on S, we say p is Γ-invariant if f is
Γ-invariant. If S is a closed convex set in a locally convex topological vector space,
f is a continuous linear functional, and Γ is a compact group with a continuous
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action on S, then we can use the symmetry to derive a simpler optimization prob-
lem. For this we let µ be the normalized Haar measure of Γ and notice that for
each x ∈ S the group average x̄ =

∫
γx dµ(γ), defined through a weak vector valued

integral, also lies in S, is invariant under the action of Γ, and satisfies f(x̄) = f(x).
We obtain a simpler optimization problem pΓ = infx∈SΓ f(x), where SΓ is the set
of Γ-invariant vectors in S. Convexity is essential here: A nonconvex symmetric
optimization problem does not necessarily admit symmetric optimal solutions.

Given a unitary representation ρ of a finite group Γ on Cn; that is, a group
homomorphism ρ : Γ → U(Cn), we get an action of Γ on the space of Hermitian
n×n-matrices by γX = ρ(γ)∗Xρ(γ). This action is eigenvalue preserving, so it pre-
serves positive semidefiniteness, and a complex semidefinite program p is invariant
whenever its objective and affine space are invariant. We obtain pΓ by restricting
to the cone of Γ-invariant, complex, positive semidefinite matrices.

There are several related ways to simplify the program pΓ. The matrix ∗-algebra
(Cn×n)Γ is ∗-isomorphic to a direct sum ⊕di=1Cmi×mi [7], and since ∗-isomorphisms
between unital ∗-algebras preserve eigenvalues, this provides a block diagonalization
of pΓ as a conic program over a product of smaller complex positive semidefinite
cones. Another viewpoint, where we use the representation more explicitly, is that
invariant matrices X commute with ρ: for each γ ∈ Γ we have ρ(γ)∗X = Xρ(γ).
Schur’s lemma [33] provides a coordinate transform T : Cn → Cn such that T ∗XT
has identical block structure for all X ∈ (Cn×n)Γ. This is a block diagonal structure
with d diagonal blocks where the ith block is again block diagonal and consists of
identical blocks of size mi. Applying this transformation and removing redundant
blocks yields the same block diagonalization as above. Here d is the number of
inequivalent irreducible subrepresentations of ρ and mi is the number of equivalent
copies of the ith of these representations. A third approach applies when ρ maps into
the set of permutation matrices. Then we view an invariant matrix as an invariant
kernel [n]× [n]→ C and apply Bochner’s theorem to obtain a diagonalization with
the kernel’s Fourier coefficients as blocks; see Chapter 3.

2.6. Moment hierarchies in polynomial optimization

When constructing relaxations we need to find a balance between their complex-
ity and the quality of the bounds they gives. For an in general NP-hard optimization
problem of the form

p = inf
x∈S

f(x), S = {x ∈ Rn : g(x) ≥ 0 for g ∈ G},

where {f}∪G is a finite set of polynomials, we use moment techniques to define a hi-
erarchy of semidefinite programs which give increasingly good bounds. The program
p admits the sharp relaxation infµ∈P(S) µ(f), where P(S) is the set of probability

measures on S. Let yα =
∫
xα dµ(x), where α ∈ Nn0 and xα = xα1

1 · · ·xαnn . The
moment sequence {yα}α∈Nn0 satisfies y0 = 1 and is of positive type. This means the
infinite moment matrix M(y), defined by M(y)α,β = yα+β , is positive semidefinite
(all its finite principal submatrices are positive semidefinite). Moreover, the local-
izing matrices M(y ∗ g), where y ∗ g is the convolution (y ∗ g)α =

∑
γ yα+γgγ , are

positive semidefinite.
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We obtain a relaxation by optimizing over truncated moment sequences y that
satisfy only finitely many of these constraints. Let Mt(y) be the submatrix of M(y)
whose entries are indexed by (α, β) with |α|, |β| ≤ t. Let Mg

t (y) be the partial
matrix whose entries are indexed by (α, β) with |α|, |β| ≤ t where the (α, β) entry
is given by (y ∗ g)α+β if |α + β| ≤ 2t − deg(g) and remains unspecified otherwise.
By Mg

t (y) � 0 we mean that Mg
t (y) can be completed to a positive semidefinite

matrix.
For t ≥ ddeg(f)/2e, we have the semidefinite programming relaxation

Lt = inf
{∑

α

fαyα : y ∈ R{α:|α|≤2t}, y0 = 1, Mt(y) � 0, Mg
t (y) � 0 for g ∈ G

}
.

This is a (strengthened) variation on the Lasserre hierarchy [63]. This gives a
nondecreasing sequence of lower bounds on p and under mild conditions on G these
bounds converge to p.

In the case where we enforce the variables to be binary by using the constraints
x2
i − xi ≥ 0 and xi − x2

i ≥ 0 for i ∈ [n], we can simplify the hierarchy. For
each feasible y the localizing matrix corresponding to a constraint x2

i − xi ≥ 0
is both positive and negative definite, and hence equal to zero. It follows that
yα = yᾱ for each α ∈ Nn0 , where ᾱ is obtained from α by replacing all nonzero
entries by ones. By restricting the vectors to be of this form and removing the
polynomials x2

i − xi and xi − x2
i from G we simplify the hierarchy. We may assume

all polynomials to be square free and we index their entries by subsets of [n] instead
of 0/1 vectors. The moment matrix of a real vector y indexed by elements from
[n]2t = {S ⊆ [n] : |S| ≤ 2t} is now defined as M(y)J,J ′ = yJ∪J′ for J, J ′ ∈ [n]t,
and we modify the truncated/localizing matrices in the same way. The hierarchy
becomes

Lt = inf
{ ∑
S∈[n]2t

fS yS : y ∈ R[n]2t , y∅ = 1, Mt(y) � 0, Mg
t (y) � 0 for g ∈ G

}
.

In [64] it is shown that the relaxation is sharp for t = n.
The maximum independent set problem, which asks for a largest set of pairwise

nonadjacent vertices in a finite graph G = (V,E), can be written as a polynomial
optimization problem with a binary variable xv for each vertex v ∈ V and a con-
straint xu + xv ≤ 1 for each edge {u, v} ∈ E. In [65] it is shown that for t ≥ 2 the
t-th step of the (maximization version of the) Lasserre hierarchy reduces to

ϑt(G) = max
{∑
x∈V

y{x} : y ∈ R[n]2t , y∅ = 1, Mt(y) � 0, yS = 0 for S dependent
}
.

Our strengtened version reduces to this hierarchy for all t ≥ 1. This hierarchy
converges to the indepence number α(G) in α(G) steps. The map P : RV2t → RV
defined by P (y)v = y{v} identifies ϑt(G) as a lift (see Section 2.2) of the relaxation
max{

∑
x∈V xv : x ∈ P (Ft)} where Ft is the feasible set of ϑt(G). The first step

is equivalent to the Lovász ϑ-number [88, Theorem 67.10] which a well-known
relaxation in combinatorial optimization. When the edge set is invariant under
a group action on the vertices, this is a good example where the symmetrization
procedure from the previous section applies.



CHAPTER 3

Invariant positive definite kernels

In this chapter we consider cones of invariant positive definite kernels. In partic-
ular, we show how to construct simultaneous block diagonalizations of such kernels.
This is mostly a background chapter where the main topics are the Peter–Weyl and
Bochner theorems from harmonic analysis. New contributions are the generaliza-
tion of some results about positive type functions to kernels, and results for kernels
that are invariant under group actions with infinitely many orbits. Apart from some
Hilbert space theory and results about unitary representations we give full proofs.

3.1. Introduction: From matrices to kernels

We can view a matrix in Cn×n as a map [n] × [n] → C, or we can view it as
a linear operator on Cn. In the first interpretation we generalize the set [n] to a
compact Hausdorff space X and generalize from matrices to continuous functions
X × X → C. We call such functions (continuous) kernels on X. In the second
interpretation we generalize the space Cn to the Hilbert space L2

C(X,µ), where µ
is a strictly positive Radon measure on X, and consider Hilbert–Schmidt integral
operators. These are operators of the form

TK : L2
C(X,µ)→ L2

C(X,µ), TKf(x) =

∫
K(x, y)f(y) dµ(y),

where K ∈ L2
C(X ×X,µ ⊗ µ) is called a Hilbert–Schmidt kernel. The subscript C

here indicates the functions are complex-valued.
A continuous kernelK is said to be positive definite if the matrix (K(xi, xj))

n
i,j=1

is positive semidefinite for all n ∈ N and x ∈ Xn. If we view a kernel K : X×X → C
as an infinite matrix whose rows and columns are indexed by X, then the above
condition requires all finite principal submatrices to be positive semidefinite. A
Hilbert–Schmidt kernel K is said to be positive definite if TK is a positive operator;
that is, 〈TKf, f〉 ≥ 0 for all f ∈ L2

C(X,µ), where 〈·, ·〉 denotes the inner product of
the Hilbert space L2

C(X,µ). In other words, a Hilbert–Schmidt kernel K is positive
definite if ∫∫

K(x, y)f(x)f(y) dµ(x)dµ(y) ≥ 0 for all f ∈ L2
C(X,µ).

A continuous kernel is positive definite if and only if it is positive definite as a
Hilbert–Schmidt kernel; see Lemma 3.4.2. Positive definite kernels are Hermitian
(for Hilbert–Schmidt kernels this follows from the polarization identity), and the
sets CC(X×X)�0 and L2

C(X×X,µ⊗µ)�0 of positive definite kernels form cones in
the real vector spaces CC(X ×X)her and L2

C(X ×X,µ⊗µ)her of Hermitian kernels.

21
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Let Γ be a compact topological group acting continuously on X and assume µ
to be Γ-invariant; that is, µ(γE) = µ(E) for all γ ∈ Γ and all measurable subsets
E of X. A continuous kernel K is Γ-invariant if K(γx, γy) = K(x, y) for all
γ ∈ Γ and x, y ∈ X. A Hilbert–Schmidt kernel is Γ-invariant if the operator TK
commutes with L(γ) for all γ ∈ Γ, where L(γ) is the unitary operator on L2

C(X,µ)
defined by L(γ)f(x) = f(γ−1x). By strict positivity of µ this is equivalent to
requiring K(γx, γy) = K(x, y) for all γ ∈ Γ and µ-almost all x, y ∈ X, which shows
that a continuous kernel is Γ-invariant if and only if it is Γ-invariant as a Hilbert–
Schmidt kernel. The spaces of Γ-invariant Hermitian kernels are complete; that is,
CC(X×X)Γ

her is a Banach space with the supremum norm, and L2
C(X×X,µ⊗µ)Γ

her

is a Hilbert space.
The goal of this chapter is to understand the structure of the cone CC(X×X)Γ

�0

of continuous, Γ-invariant, positive definite kernels. In particular, we want to find
a simultaneous block diagonalization of the elements in this cone. In Section 3.2 we
characterize the extreme rays of CC(X ×X)Γ

�0 and show how this suggests a block
form. In Section 3.3 we use the Peter–Weyl theorem to show that X always admits
a symmetry adapted system, and in Section 3.4 we use Bochner’s theorem to give
a sequence of inner approximating cones consisting of block diagonalized kernels.

3.2. A characterization of the extreme rays

In this section we characterize the extreme rays of the cone CC(X × X)Γ
�0 of

continuous, Γ-invariant, positive definite kernels on X. For the results in this section
we only require Γ and X to be locally compact instead of compact.

For the case where X equals the group Γ, we can identify CC(X×X)Γ
�0 with the

cone of positive definite functions on Γ. These are continuous functions f : Γ → C
for which the matrix (f(γ−1

j γi))
n
i,j=1 is positive semidefinite for all n ∈ N and

γ1, . . . , γn ∈ Γ. Positive definite functions are well studied objects in harmonic
analysis, and the results in this section generalize some results about these functions
as described in Folland’s book [33] to the case of kernels.

An extreme ray of a cone K is a set R≥0x, with x ∈ K, such that for all
x1, x2 ∈ K we have x1, x2 ∈ R≥0x whenever x = x1 + x2. A vector x for which
R≥0x is an extreme ray is called an extreme direction. Since CC(X×X)Γ

�0 lies in an
infinite dimensional space, it is not immediately clear that it admits any extreme
rays. For instance, the cone C(X)≥0 of nonnegative, continuous functions on X
does not have extreme rays unless X has isolated points. We will see, however, that
CC(X ×X)Γ

�0 has sufficiently many extreme rays to approximate any kernel in this
cone by convex combinations of extreme directions.

To characterize the extreme rays we use representation theory. A unitary rep-
resentation of Γ is a strongly continuous group homomorphism π from Γ to the
group U(H) of unitary operators on a nonzero Hilbert space H. Strong continuity
here means that we require π to be continuous given that U(H) is endowed with
the strong operator topology. In other words, we require the map γ 7→ π(γ)u to
be continuous for each u ∈ H. On U(H) the weak and strong operator topologies
coincide, so we can equivalently require the map γ 7→ 〈π(γ)u, v〉 to be continuous
for all u, v ∈ H [33].
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Given two topological spaces X and Y with continuous actions of the group Γ,
we denote by HomΓ(X,Y ) the set of continuous Γ-equivariant maps from X to Y .
Here a map ϕ : X → Y is said to be Γ-equivariant if ϕ(γx) = γϕ(x) for all γ ∈ Γ
and x ∈ X. For our applications Y typically is a Hilbert space where the action
comes from a unitary representation on this space.

We take the following theorem from [23].

Theorem 3.2.1. For each kernel K ∈ CC(X × X)Γ
�0, there exists a unitary

representation πK : Γ→ U(HK) and a map ϕK ∈ HomΓ(X,HK) such that

K(x, y) = 〈ϕK(x), ϕK(y)〉 for all x, y ∈ X.

Proof. Let CX be the vector space of formal complex linear combinations of
elements in X, and define the subspace N = span{x ∈ X : K(x, x) = 0}. Define
an inner product on the quotient space CX/N by setting 〈x+N, y+N〉 = K(x, y)
for all x, y ∈ X and extending linearly in the first and antilinearly in the second
component. The completion of CX/N is a Hilbert space which we denote by HK ,
and the action of Γ on X extends to the homomorphism πK : Γ → U(HK), where
πK(γ) is inner product preserving because K is Γ-invariant.

Since 〈πK(γ)x+N, y +N〉 = K(γx, y), it follows from both K and the action
of Γ on X being continuous, that the map γ → 〈πK(γ)x+N, y+N〉 is continuous.
So πK is a unitary representation.

We define the Γ-equivariant map ϕK : X → HK by ϕK(x) = x+N . This map
is continuous because

‖ϕK(y)− ϕK(x)‖2 ≤ K(x, x) +K(y, y)−K(x, y)−K(y, x). �

The image of the map ϕK constructed in the above theorem has dense span
in HK . In the following lemma we show that under this condition πK and ϕK are
essentially unique.

Lemma 3.2.2. Assume that for i = 1, 2, πi : Γ→ Hi is a unitary representation
and ϕi ∈ HomΓ(Γ,Hi) is a function whose image has dense span in Hi. If

〈ϕ1(x), ϕ1(y)〉 = 〈ϕ2(x), ϕ2(y)〉 for all x, y ∈ X,
then there exists a unitary operator T ∈ HomΓ(H1,H2) such that ϕ2 = T ◦ ϕ1.

Proof. Let x, y ∈ X. If ϕ1(x) = ϕ1(y), then

‖ϕ2(x)− ϕ2(y)‖2 = 〈ϕ2(x)− ϕ2(y), ϕ2(x)− ϕ2(y)〉
= 〈ϕ1(x)− ϕ1(y), ϕ1(x)− ϕ1(y)〉 = ‖ϕ1(x)− ϕ1(y)‖2 = 0,

so ϕ2(x) = ϕ2(y). This shows the map T : {ϕ1(x) : x ∈ X} → H2 defined by
T (ϕ1(x)) = ϕ2(x) is well-defined. Since the image of ϕ1 has dense span in H1, we
can extend T to an operator H1 → H2. Since the span of the image of ϕ2 is dense,
the operator T is surjective, and since

‖Tϕ1(x)‖2 = ‖ϕ2(x)‖2 = 〈ϕ2(x), ϕ2(x)〉 = 〈ϕ1(x), ϕ1(x)〉 = ‖ϕ1(x)‖2,
it is an isometry, so T is a unitary operator. It is also Γ-equivariant:

Tπ1(γ)ϕ1(x) = Tϕ1(γ−1x) = ϕ2(γ−1x) = π2(γ)ϕ2(x). �
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In the following theorem we characterize the extreme rays of the cone of con-
tinuous, Γ-invariant, positive definite kernels. When specialized to matrices; that
is, when X = [n] and Γ is the trivial group, it says that the extreme directions of
the positive semidefinite cone Sn�0 are of the form xx∗ for x ∈ Cn. For the more
general case where X is a locally compact topological space and Γ the trivial group
it says that the extreme rays are given by {R≥0f ⊗ f̄ : f ∈ CC(X)}.

For the statement and proof of this result we first need more representation the-
ory. A subspaceM of the Hilbert space H of a unitary representation π : Γ→ U(H)
is said to be Γ-invariant if it is closed and if π(γ)u ∈M for all γ ∈ Γ and u ∈M. A
unitary representation π is irreducible if the trivial representation and the represen-
tation π itself are the only invariant subspaces. Two representations π1 : Γ→ U(H1)
and π2 : Γ → U(H2) are said to be equivalent if HomΓ(H1,H2) contains a unitary
operator. The first result we need is the observation that any reducible unitary
representation is the direct sum of two nontrivial unitary representations. This fol-
lows from the fact that when M is an invariant subspace, then also its orthogonal
complement M⊥ is an invariant subspace. The second result we need is Schur’s
lemma, which says that the space HomΓ(H,H) consists of scalar multiples of the
identity operator if and only if H is irreducible, and the space HomΓ(H1,H2) is one
dimensional if and only if H1 and H2 are both irreducible.

Theorem 3.2.3. A kernel K ∈ CC(X × X)Γ
�0 is an extreme direction if and

only if πK is irreducible.

Proof. If πK is reducible, then HK admits a nontrivial orthogonal decomposi-
tionM1⊕M2 into πK-invariant subspaces. Let ϕi = Pi◦ϕK , where Pi : HK →Mi

is the projection operator onto Mi, and where ϕK is the function defined in The-
orem 3.2.1. Let Ki(x, y) = 〈ϕi(x), ϕi(y)〉, so that K = K1 + K2. The kernels
K1 and K2 do not lie on the same ray: The image of ϕi has dense span in Mi,
so if K1 = |c|2K2 for some c ∈ C, then by Lemma 3.2.2 there exists a unitary,
Γ-equivariant operator T : M1 → M2 such that ϕ2 = cT ◦ ϕ1. But this means
ϕK = ϕ1 + ϕ2 = ϕ1 + cTϕ1, which contradicts with the image of ϕK having dense
span in HK . Hence K is not an extreme direction.

Now assume πK is irreducible and K = K1 + K2 for K1,K2 ∈ CC(X ×X)Γ
�0.

We have K1(x, x) = K(x, x)−K2(x, x) ≤ K(x, x) for all x ∈ X, so

|K1(x, y)| ≤ K1(x, x)1/2K1(y, y)1/2 ≤ K(x, x)1/2K(y, y)1/2 for all x, y ∈ X.

So we can use K1 to define a bounded Hermitian form on HK , which defines a
bounded self-adjoint operator T in HK for which K1(x, y) = 〈TϕK(x), ϕK(y)〉 for
all x, y ∈ X. This operator T is Γ-equivariant: For all x, y ∈ X we have

〈TπK(γ)ϕK(x), ϕK(y)〉 = 〈TϕK(γ−1x), ϕK(y)〉 = K1(γ−1x, y) = K1(x, γy)

= 〈TϕK(x), ϕK(γy)〉 = 〈TϕK(x), πK(γ−1)ϕK(y)〉
= 〈πK(γ)TϕK(x), ϕK(y)〉.

Since πK is irreducible, Schur’s lemma implies T = cI for some c ∈ C. Thus
K1(x, y) = c〈ϕK(x), ϕK(y)〉 = cK(x, y) for all x, y ∈ X, and hence K1 = cK and
K2 = (1− c)K which means K spans an extreme ray. �
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Denote by Γ̂ a complete set of non-equivalent irreducible unitary representa-
tions. The above theorems suggest that in a block diagonalization of a kernel we
should have a block for each π ∈ Γ̂. Let Eπ be the cone of all kernels corresponding
to the irreducible representation π of Γ; that is,

Eπ = cone
{
Kϕ : ϕ ∈ HomΓ(X,Hπ)

}
, where Kϕ(x, y) = 〈ϕ(x), ϕ(y)〉.

If m = dim(HomΓ(X,Hπ)) < ∞, then Eπ is isomorphic to the cone of complex
positive semidefinite m×m matrices: Let ϕ1, . . . , ϕm be a basis of HomΓ(X,Hπ),
then ϕ = a1ϕ1 + · · ·+ amϕm for some a1, . . . , am ∈ R, so

Kϕ =

m∑
i,j=1

aiajKϕi,ϕj where Kϕ,ψ(x, y) = 〈ϕ(x), ψ(y)〉.

We are especially interested in situations where HomΓ(X,Hπ) is infinite dimen-
sional, and where there are infinitely many non-equivalent irreducible representa-
tions. This means we have to consider convergence, which we do in the remainder
of this chapter.

3.3. Symmetry adapted systems

From now on we assume X to be a compact, metrizable topological space with
a continuous action of a compact group Γ. The space CC(X) is separable, so there
exists a linearly independent sequence {ei} whose span is uniformly dense in CC(X).
Given a Radon measure µ on X, by Gram–Schmidt orthogonalization we may as-
sume {ei} to be orthonormal in L2

C(X,µ). We call such a sequence a complete
orthonormal system of X. The goal of this section is to show the existence of a
complete orthonormal system that is in harmony with the group action. We later
use this to construct a Fourier basis for invariant kernels.

We start by fixing a strictly positive, Γ-invariant, Radon probability measure µ
on X, which by the following lemma always exists.

Lemma 3.3.1. The space X admits a Radon probability measure that is strictly
positive and Γ-invariant.

Proof. Let {xi} be a dense sequence in the separable space X and {ai} a
sequence of strictly positive numbers that sums to one. Define a Borel probability
measure µ0 by setting

µ0(U) =
∑
i:xi∈U

ai

for each open subset U of X. This measure is strictly positive by construction. We
define a Γ-invariant Borel probability measure µ by setting µ(U) =

∫
Γ
µ0(γU) dγ

for U ⊆ X open, where integration is over the normalized Haar measure of Γ. The
measure µ is a strictly positive probability measure since the total measure and
strict positivity are preserved by invariant integration. The measure µ is finite, and
since X is a separable metric space and µ a Borel measure, µ is also inner regular
and hence a Radon measure. �
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The action of Γ on X induces the unitary representation

L : Γ→ U(L2
C(X,µ)), L(γ)f(x) = f(γ−1x).

Similarly, we have the representation L : Γ→ L(C(X)), where L(CC(X)) is the space
of bounded operators on CC(X), so that each finite dimensional subrepresentation
of CC(X) is a unitary subrepresentation of L2

C(X,µ).
Denote the dimension of the representation π by dπ. A complete orthonormal

system of X is said to be a symmetry adapted system of X if there exist numbers
mπ ∈ {0, 1, . . . ,∞} for which we can write the set as{

eπ,i,j : π ∈ Γ̂, i ∈ [mπ], j ∈ [dπ]
}
,

where Hπ,i = span{eπ,i,1, . . . , eπ,i,dπ} is equivalent to π, and where there exist
unitary operators Tπ,i,i′ ∈ HomΓ(Hπ,i, Hπ,i′) with eπ,i′,j = Tπ,i,i′eπ,i,j for all π, i,
i′, and j. It can be shown that the numbers mπ are the same for each symmetry
adapted system of X and are given by the dimension of the space HomΓ(X,Hπ).

To prove that a symmetry adapted system always exists we use approximate
identities, and to define these we use the integral operators TK from Section 3.1.
We say a sequence of kernels {In} in CC(X ×X) is an approximate identity of X if
‖TInf − f‖∞ → 0 for each f ∈ CC(X).

Lemma 3.3.2. The space X admits an approximate identity {In} where each In
is real-valued, symmetric, and Γ-invariant.

Proof. Let d be a compatible metric on X. Let {U1
i }, {U2

i }, . . . be a sequence
of finite open covers of X such that for all i and n the diameter of Uni is at most
1/n. For each i and n inductively select a compact set Cni ⊆ Uni such that

µ(Uni \ Cni ) ≤ µ(Cni )/n,

which is possible by inner regularity of µ, and remove Cni from the sets Unj for j 6= i.
We then have Cni ∩ Uni′ = ∅ for all n and all distinct i and i′.

Let {pni }i be a partition of unity subordinate to the cover {Uni }i, so that the
restriction of pni to Cni is identically 1, and define the kernel Kn ∈ C(X×X) by the
finite sum

Kn(x, y) =
∑
i

pni (x)pni (y)

µ(Cni )
.

Let f ∈ C(X) and ε > 0. For large enough n we have

µ(Uni \ Cni ) ≤ µ(Cni )

2‖f‖∞
ε and sup

x,y∈Cni
|f(x)− f(y)| ≤ 1

2
ε for all i.

Then for each x ∈ X,

|TKnf(x)− f(x)| =

∣∣∣∣∣∑
i

∫
Uni

pni (x)pni (y)

µ(Ci)
f(y) dµ(y)− f(x)

∣∣∣∣∣ ≤ A+B
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with

A =

∣∣∣∣∣∑
i

∫
Cni

pni (x)pni (y)

µ(Cni )
f(y) dµ(y)− f(x)

∣∣∣∣∣
=

∣∣∣∣∣∑
i

pni (x)

µ(Cni )

∫
Cni

|f(y)− f(x)| dµ(y)

∣∣∣∣∣ ≤∑
i

pni (x)
ε

2
=
ε

2

and

B =

∣∣∣∣∣∑
i

∫
Uni \Cni

pni (x)pni (y)

µ(Cni )
f(y) dµ(y)

∣∣∣∣∣
=
∑
i

pni (x)

µ(Cni )

∫
Uni \Cni

pni (y)|f(y)| dµ(y) =
∑
i

pni (x)
µ(Uni \ Cni )

µ(Cni )
‖f‖∞ ≤

ε

2
.

So, for each ε > 0 we have ‖TKnf − f‖∞ ≤ ε for sufficiently large n, which means
that the sequence {Kn} is an approximate identity.

Let In(x, y) =
∫

Γ
Kn(γx, γy) dγ, where we integrate against the normalized

Haar measure of Γ. Then In is real-valued, symmetric, and Γ-invariant for each
n, and the sequence {In} is an approximate identity: For f ∈ CC(X) and f̄(x) =∫

Γ
f(γx) dγ we have

‖TInf − f‖∞ = sup
x∈X

∣∣∣∣∫
X

∫
Γ

(Kn(γx, γy)f(y)− f(x)) dγ dµ(y)

∣∣∣∣
= sup
x∈X

∣∣∣∣∫
X

∫
Γ

(Kn(x, y)f(γ−1y)− f(γ−1x)) dγ dµ(y)

∣∣∣∣
= ‖TKn f̄ − f̄‖∞ → 0. �

Now that we have established the existence of invariant, strictly positive mea-
sures and invariant approximate identities, we can prove CC(X) has enough finite-
dimensional invariant subspaces to span a dense subspace. This result is an im-
portant part of the Peter–Weyl theorem, and the proof we give here is a direct
adaptation of the original proof, which can for instance be found in [33] or [101] for
the left regular representation, to the setting of a compact group acting on another
topological space. Below the sum of a set of subspaces is defined as the set of all
finite sums from elements of those spaces.

Lemma 3.3.3. The space CC(X) is equal to the closure of the sum of its finite
dimensional Γ-invariant subspaces.

Proof. Let f ∈ CC(X) and ε > 0. By Lemma 3.3.2 there exists a continuous,
Hermitian, Γ-invariant kernel K ∈ CC(X ×X) such that ‖TKf − f‖∞ ≤ ε. We will
show that TKf is the uniform limit of linear combinations of functions from finite
dimensional, Γ-invariant subspaces.

Using Fubini’s theorem we have 〈TKf, g〉 = 〈g, TKf〉 for all f, g ∈ L2(X,µ),
so TK is self-adjoint. Let d be a metric on X that agrees with the topology of X.
Since X is compact, the kernel K is uniformly continuous, and this implies that for
each κ > 0 there is a δ > 0 such that |K(x1, y) −K(x2, y)| ≤ κ for all y ∈ X and



28 3. INVARIANT POSITIVE DEFINITE KERNELS

x1, x2 ∈ X satisfying d(x1, x2) ≤ δ. This means that for each f in the closed unit
ball B of L2

C(X,µ), we have

|TKf(x1)− TKf(x2)| ≤ κ‖f‖1 ≤ κ‖f‖2 ≤ κ,

which shows equicontinuity of the set TKB. The set TKB is also pointwise
bounded: For each f ∈ B we have

‖TKf‖∞ ≤ ‖K‖∞‖f‖1 ≤ ‖K‖∞‖f‖2 ≤ ‖K‖∞.

So, by the Arzelà–Ascoli theorem TKB is relatively compact in CC(X) in the uniform
topology, and hence compact in L2

C(X,µ). This shows TK is a compact operator.
The spectral theorem for compact self-adjoint operators on separable Hilbert

spaces tells us that L2(X,µ) is the Hilbert space direct sum of the spaces

Eλ = {f ∈ L2
C(X,µ) : TKf = λf}.

Moreover, for each λ > 0 the space Eλ is finite dimensional, and the values of λ
for which Eλ is nonzero can only accumulate at 0. Each of these eigenspaces is
invariant: If TKf = λf , then

(TKL(γ)f)(x) =

∫
K(x, y)L(γ)f(y) dµ(y) =

∫
K(x, y)f(γ−1y) dµ(y)

=

∫
K(γ−1x, y)f(y) dµ(y) = TKf(γ−1x)

= L(γ)TKf(x) = λL(γ)f(x),

for all x ∈ X.
Let ft be the projection of f on ⊕λ≥tEλ. Then ft → f in L2(X,µ), so

‖TKft − TKf‖∞ ≤ ‖K‖∞‖ft − f‖1 ≤ ‖K‖∞‖ft − f‖2 → 0.

Each ft is of the form ft =
∑
λ≥t ft,λ, with ft,λ ∈ Eλ. We have TKft,λ ∈ Eλ, which

means that TKft =
∑
λ≥t TKft,λ is a sum of functions from finite dimensional

Γ-invariant subspaces. �

We will need the following variation on the Schur orthogonality relations. We
take the proof from [98].

Lemma 3.3.4. Let π : Γ→ U(H) be a unitary representation, and let 〈·, ·〉 be a Γ-
invariant sesquilinear from on H. Let M and M′ be finite-dimensional, irreducible
subrepresentations with orthonormal bases {ei} and {e′j}.

(1) If M and M′ are not equivalent, then 〈ei, e′j〉 = 0 for all i and j.
(2) If there exists a Γ-equivariant bijection T : M → M′ such that Tei = e′i

for all i, then there is a c ∈ C such that 〈ei, e′j〉 = cδi,j for all i and j.

Proof. Define the operator A : M→M′ by

Aei =
∑
j

〈ei, e′j〉e′j ,
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and extending by linearity. This operator is Γ-invariant:

Aπ(γ)ei =
∑
j

〈π(γ)ei, ej〉ej =
∑
j

〈ei, π(γ)ej〉ej

=
∑
j

〈ei,
∑
k

π(γ−1)k,jek〉ej =
∑
k

〈ei, ek〉
∑
j

π(γ−1)k,jej

=
∑
k

〈ei, ek〉
∑
j

π(γ)j,kej = π(γ)Aei.

So, if M and M′ are not equivalent, then by Schur’s lemma A must be the zero
operator. Since the e′j are linearly independent this implies 〈ei, e′j〉 = 0 for all i and
j, which proves the first part of the lemma.

For the second part we note that the operator T−1A is Γ-invariant, so by Schur’s
lemma T−1A = cI for some c ∈ C. This means∑

j

〈ei, e′j〉e′j = Aei = cTei = ce′i

for all i, which implies 〈ei, e′j〉 = cδi,j for all i and j. �

In the following proof we use the concept of linearly independent subspaces.
We say that a set S of nonzero subspaces is linearly independent if for any n ∈ N
and distinct A,B1, . . . , Bn ∈ S the intersection of A with the sum B1 + · · ·+Bn is
the zero space. This is equivalent to requiring the union of any set of bases of each
of the subspaces to be linearly independent. We will use the following property: If
S is a linearly independent set of subspaces and A is a nonzero subspace such that
the intersection of A with the sum of any finite set of spaces from S is the zero
space, then S ∪ {A} is a linearly independent set of subspaces.

Theorem 3.3.5. The space X admits a symmetry adapted system.

Proof. Let C be the set containing all linearly independent sets of nonzero,
finite dimensional, Γ-invariant subspaces of C(X). If X is nonempty, then C(X) is
nonempty, so by Lemma 3.3.3 the set C is nonempty.

We define a partial order on C by set inclusion. Given a chain T in C, the
union of the sets in T is also in C: Given n ∈ N and distinct A,B1, . . . , Bn ∈

⋃
T ,

there must be some set in T containing the sets A,B1, . . . , Bn, hence these sets
are nonzero, finite dimensional, Γ-invariant, and A ∩ (B1 + · · ·+Bn) = {0}, which
means that

⋃
T ∈ C. Therefore, any chain in C has an upper bound, and by Zorn’s

lemma C contains a maximal element M .
Let P be the sum of all sets in M and let P̄ be the closure of P in C(X).

If P̄ is not equal to C(X), then by Lemma 3.3.3 there exists a finite dimensional
Γ-invariant subspace V of C(X) containing a vector u that does not lie in P . The
cyclic subspace W = span{L(γ)u : γ ∈ Γ} is finite dimensional, Γ-invariant, and has
trivial intersection with P : For all γ ∈ Γ we have L(γ)u 6∈ L(γ)P = P . So M ∪{W}
is linearly independent, and hence contained in C. This contradicts maximality of
M , thus P̄ must be equal to C(X).

The finite dimensional representations in M are unitary subrepresentations of
L2(X,µ) and decompose into irreducible subrepresentations of C(X). So we may
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assume M to be a linearly independent set of finite dimensional, Γ-irreducible sub-
spaces of C(X).

Denote by mπ ∈ {0, 1, . . . ,∞} the number of representations in M that are

equivalent to π. Let
{
ẽπ,i,j : π ∈ Γ̂, i ∈ [mπ], j ∈ [dπ]

}
be a complete symmetry

adapted system of C(X) by selecting appropriate orthonormal bases ẽπ,i,1, . . . , ẽπ,i,dπ
of the representations in M . Now give this system any ordering where ẽπ,i,j occurs
before ẽπ,i′,j′ whenever i < i′, and apply the Gram–Schmidt process to obtain a new
sequence {eπ,i,j}. This process preserves linear independence and also preservers
the span of the sequence, so the new sequence {eπ,i,j} is a complete orthonormal
system in C(X). By Lemma 3.3.4 we have

eπ,i,j = ẽπ,i,j −
i−1∑
k=1

〈ẽπ,i,j , ẽπ,k,j〉ẽπ,k,j = ẽπ,i,j −
i−1∑
k=1

cπ,i,kẽπ,k,j ,

where cπ,i,k = 〈ẽπ,i,j , ẽπ,k,j〉 does not depend on j. It follows that {eπ,i,j} is sym-
metry adapted, which completes the proof. �

3.4. Block diagonalized kernels

We use the symmetry adapted system from the previous section to construct
simultaneous block diagonalizations of invariant kernels, and we discuss convergence
of these block diagonalizations.

First we consider the case where Γ is the trivial group. Then any complete
orthonormal system {ei} on X is symmetry adapted. The sequence {ei ⊗ ei′}i,i′
forms a complete orthonormal system in CC(X×X) and hence also in L2(X×X,µ⊗
µ). We define the possibly infinite matrix Z(x, y) by

Z(x, y) = E(x)E(y)∗,

where E(x) is the vector with E(x)i = ei(x). For a kernel K ∈ CC(X×X), we then
have the Fourier series

K(x, y) =
∑
i,i′

K̂i,i′Z(x, y)i,i′ ,

with convergence in L2, where the Fourier coefficient matrix is given by

K̂ =

∫∫
K(x, y)Z(x, y)∗ dµ(x)dµ(y),

where the integral of the matrix is entrywise.
When Γ is a nontrivial group with nontrivial action on X, then we can block

diagonalize the above construction, and under certain conditions we can use the
completeness of the symmetry adapted system in C(X) to prove uniform conver-
gence. Then instead of one Fourier matrix we have a Fourier matrix for each
irreducible representation of Γ. We define

K̂(π) =

∫∫
K(x, y)Zπ(x, y)∗ dµ(x)dµ(y),

where

Zπ(x, y) = Eπ(x)Eπ(y)∗ and Eπ(x)i,j = eπ,i,j(x).
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The matrix-valued kernels Zπ(x, y), which we call zonal matrices, are Γ-invariant
and uniquely defined up to unitary basis transformations. They are also positive
definite, by which we mean that (Zπ(xa, xb)ia,ib)

n
a,b=1 is positive semidefinite for

each n ∈ N, i1, . . . , in ∈ [mπ], and x1, . . . , xn ∈ X. With a similar proof as in Theo-
rem 3.2.1, it is shown in [23] that there exist functions ϕ1, . . . , ϕmπ ∈ HomΓ(X,Hπ)
for which

Zπ(x, y)i,i′ = 〈ϕi(x), ϕi′(y)〉.
In the following proposition we show that the matrix entries of the zonal ma-

trices have dense span in the Hilbert space of invariant Hilbert–Schmidt kernels,
which proves Fourier inversion and Parseval’s theorem for kernels. This gives L2

converging block diagonalizations of invariant kernels.

Proposition 3.4.1. The matrix entries of the zonal matrices Zπ, for π ∈ Γ̂,
form a complete orhonormal system in the Hilbert space L2

C(X ×X,µ⊗µ)Γ. Given
K,G ∈ L2

C(X ×X,µ⊗ µ)Γ, we have

K(x, y) =
∑
π∈Γ̂

mπ∑
i,i′=1

K̂(π)i,i′Zπ(x, y)i,i′ ,

with convergence in L2, and

〈K,G〉 =
∑
π∈Γ̂

〈K̂(π), Ĝ(π)〉.

Proof. Let K ∈ L2
C(X × X,µ ⊗ µ). The sequence {eπ,i,j ⊗ eπ′,i′,j′} forms a

complete orthonormal system in L2(X ×X,µ⊗ µ), so

K(x, y) =
∑

π,π′∈Γ̂

mπ∑
i,i′=1

dπ∑
j,j′=1

〈eπ,i,j , eπ′,i′,j′〉K eπ,i,j(x)eπ′,i′,j′(y),

with convergence in L2, where 〈·, ·〉K is the Γ-invariant, sesquilinear form

〈f, g〉K =

∫∫
K(x, y)f(x)g(y) dµ(x)dµ(y).

By Lemma 3.3.4 we have 〈eπ,i,j , eπ′,i′,j′〉K = 0 whenever π 6= π′ or j 6= j′, and
〈eπ,i,j , eπ,i′,j〉K does not depend on j. So we have

K(x, y) =
∑
π∈Γ̂

mπ∑
i,i′=1

K̂(π)i,i′Zπ(x, y)i,i′ ,

with convergence in L2. This means the matrix entries of the zonal matrices form a
complete orthonormal system in the Hilbert space L2(X×X,µ⊗µ)Γ. The relation

〈K,G〉 =
∑
π∈Γ̂〈K̂(π), Ĝ(π)〉 follows from Parseval’s identity for Hilbert spaces. �

We show that a continuous kernel is positive definite if and only if it is positive
definite as a Hilbert–Schmidt kernel; our proof is an adaptation of [33, Proposition
3.35] from functions to kernels. We then use this to show that a kernel is positive
definite if and only if its Fourier coefficient matrices are positive semidefinite.
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Lemma 3.4.2. We have

L2
C(X ×X,µ⊗ µ)Γ

�0 ∩ CC(X ×X) = CC(X ×X)Γ
�0.

Proof. Let K ∈ L2
C(X×X,µ⊗µ)Γ

�0∩CC(X×X) and let m ∈ N, c ∈ Cm, and

x ∈ Xm. By Lemma 3.3.2 there exists an approximate identity {Im} of X where
each Im is real-valued, symmetric, and Γ-invariant. Define

gn(x) =

m∑
i=1

ciIn(xi, x).

Then

0 ≤ lim
n→∞

∫∫
K(x, y)gn(x)gn(y) dµ(x)dµ(y)

=

m∑
i,j=1

cicj lim
n→∞

∫∫
K(x, y)In(xi, x)In(xj , y) dµ(x)dµ(y)

=

m∑
i,j=1

cicjK(xi, xj).

Hence, K ∈ CC(X ×X)Γ
�0.

Now we assume K ∈ CC(X × X)Γ
�0. Since K is continuous and X compact,

there exists, for each ε > 0, a partition X = E1 ∪ . . . ∪EN such that the difference
between the supremum and infimum of K on Ei ×Ej is at most ε. Let g ∈ CC(X),
xi ∈ Ei, and ci =

∫
Ei
g dµ. Then∣∣∣ N∑

i,j=1

cicjK(xi, xj)−
∫∫

K(x, y)g(x)g(y) dµ(x)dµ(y)
∣∣∣ ≤ ε|µ(g)|2,

which shows K ∈ L2
C(X ×X,µ⊗ µ)Γ

�0. �

In the following proof we take the idea of using Parseval’s theorem from [25],
where the same theorem is proved for positive definite functions.

Proposition 3.4.3. Let K ∈ CC(X ×X)Γ. Then K is positive definite if and

only if K̂(π) is positive semidefinite for each π ∈ Γ̂.

Proof. For all n ∈ N, i1, . . . , in ∈ [mπ], and c1, . . . , cn ∈ C we have
n∑

a,b=1

cacbK̂(π)ia,ib =

∫∫
K(x, y)

n∑
a,b=1

cacbZπ(x, y)ia,ib dµ(x)dµ(y)

=

∫∫
K(x, y)

n∑
a,b=1

cacbZπ(x, y)ia,ib dµ(x)dµ(y)

=

dπ∑
j=1

∫∫
K(x, y)

( n∑
a=1

cieπ,ia,j(x)
)( n∑

a=1

cieπ,ia,j(y)
)
dµ(x)dµ(y),

and by Lemma 3.4.2 each of the terms in the right hand side is nonnegative, so
K̂(π) is positive semidefinite.
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For the other direction we let K ∈ CC(X × X)Γ be a kernel whose Fourier
coefficient matrices are all positive semidefinite. For each g ∈ CC(X), the kernel g⊗ḡ
is positive definite which means all its Fourier coefficients are positive semidefinite.
Hence by Parseval’s theorem as proved in Proposition 3.4.1 we have∫∫

K(x, y)g(x)g(y) dµ(x)dµ(y) = 〈K, ḡ ⊗ g〉 =
∑
π∈Γ̂

〈K̂(π), ̂̄g ⊗ g(π)〉 ≥ 0,

so by Lemma 3.4.2 the kernel K is positive definite. �

The Fourier series of a kernel converges in L2, but in general does not converge
uniformly. However, if the action of Γ on X has finitely many orbits and the kernel
is positive definite, then this series does converge uniformly. For a transitive action,
this result together with the first part of Proposition 3.4.1 and Theorem 3.4.3 is
known as Bochner’s theorem [15]. Our proof here is a generalization of the argument
in [25] from positive type functions to kernels.

Theorem 3.4.4. If the action of Γ on X has finitely many orbits, then for each
K ∈ CC(X×X)Γ

�0, the series
∑
π∈Γ̂〈K̂(π), Zπ(x, y)〉 converges absolutely-uniformly.

Proof. For each x ∈ X, the map Γ → X, γ 7→ γx is continuous, and since
Γ is compact and X Hausdorff, this map is closed. This implies the orbits of the
action of Γ on X are closed. Since there are only finitely many orbits, the union of
all but one orbit is also closed, and hence each orbit is also open. This means we
can construct a symmetry adapted system of X by combining symmetry adapted
systems of the orbits, where each function on an orbit is extended to a function
on X by setting it to zero outside the orbit. The numbers mπ corresponding to a
symmetry adapted system of an orbit of X are upper bounded by dπ, and this shows
that the numbers mπ corresponding to the resulting symmetry adapted system of
X are finite.

Since K is positive definite, Theorem 3.4.3 says the Fourier coefficients K̂(π)

are positive semidefinite matrices. This implies the kernel (x, y) 7→ 〈K̂(π), Zπ(x, y)〉
is positive definite, so

|〈K̂(π), Zπ(x, y)〉| ≤
√
〈K̂(π), Zπ(x, x)〉

√
〈K̂(π), Zπ(y, y)〉 for all x, y ∈ X.

Denote the orbit containing the point x ∈ X by Ox. Then,∫
X

Zπ(z, z) dµ(z) = dπI and

∫
Ox

Zπ(z, z) dµ(z) � dπI for each x ∈ X,

where by A � B we mean that B − A is a positive semidefinite matrix. Since
Zπ is Γ-invariant and Zπ(z, z) is positive semidefinite for every z ∈ X, we have

Zπ(x, x) � dπ/µ(Ox)I. Since K̂(π) is also positive semidefinite, we have

〈K̂(π), Zπ(x, x)〉 ≤ dπ/µ(Ox)Tr(K̂(π)) for all x ∈ X.
With c = maxx∈X 1/µ(Ox), we then have

|〈K̂(π), Zπ(x, y)〉| ≤ c dπTr(K̂(π)) for all x, y ∈ X.

In the remainder of the proof we show
∑
π∈Γ̂ Tr(K̂(π)) < ∞, which completes the

proof by the Weierstrass M-test we are done when we show
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Let F be a finite subset of Γ̂. The series∑
π∈Γ̂\F

〈K̂(π), Zπ(x, y)〉

converges to K −G in L2
C(X ×X,µ⊗ µ), where

G(x, y) =
∑
π∈F
〈K̂(π), Zπ(x, y)〉.

This means that each Fourier coefficient of K − G either is the zero matrix or is
given by K̂(π) for some π ∈ Γ̂. So, each Fourier coefficient is positive semidefinite,
thus K −G is a positive definite kernel.

Hence,∑
π∈F

dπTr(K̂(π)) =
∑
π∈F

〈
K̂(π),

∫
Zπ(z, z) dµ(z)

〉
=

∫
G(z, z) dµ(z)

=

∫
K(z, z) dµ(z)−

∫
(K −G)(z, z) dµ(z) ≤

∫
K(z, z) dµ(z),

and since
∫
K(z, z) dµ(z) does not depend on F , this shows∑

π∈Γ̂

dπTr(K̂(π)) <∞. �

In optimization problems where the variables are positive definite kernels that
are invariant under a group action with finitely many orbits, Theorem 3.4.4 can
be useful in showing that the optimal values of the approximations obtained by
optimizing over truncated Fourier series converge to the optimal value of the original
problem. However, if there are infinitely many orbits, then in general the Fourier
series of a positive definite kernel does not converge uniformly. Instead we construct
a hierarchy

C0 ⊆ C1 ⊆ . . . ⊆ CC(X ×X)Γ
�0

of Γ-invariant cones where each Cd is isomorphic to a finite product of complex
positive semidefinite cones. We show that ∪∞d=0Cd is dense in CC(X × X)Γ

�0 in
the uniform topology, and this can be used in showing that optimization problems
obtained by approximating CC(X×X)Γ

�0 by Cd become arbitrarily good as d→∞.

A similar theorem is proved in [6] but there it is required that the group acting on
the space is contained in a bigger group that has a transitive action. By using the
symmetry adapted basis from the previous section we have no such requirement.

For each π ∈ Γ̂, let Rπ,0 ⊆ Rπ,1 ⊆ . . . be finite subsets of [mπ] such that⋃∞
d=0Rπ,d = [mπ] and such that for each d, the set Rπ,d is empty for all but finitely

many π. Let Zπ,d be the finite principal submatrix of Zπ containing only the
rows and columns indexed by elements from Rπ,d. Let Cπ,d be the cone of kernels
of the form (x, y) 7→ 〈A,Zπ,d(x, y)∗〉, where A ranges over the complex positive
semidefinite matrices of size |Rπ,d|. Let Cd be the Minkowski sum

∑
π∈Γ̂ Cπ,d.

Then we have
C0 ⊆ C1 ⊆ . . . ⊆ CC(X ×X)Γ

�0.

Theorem 3.4.5. The cone
⋃∞
d=0 Cd is uniformly dense in CC(X ×X)Γ

�0.
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Proof. By Lemma 3.3.2 there exists a Hermitian, Γ-invariant approximate
identity {In} of X, and by Theorem 3.3.5 there exists a symmetry adapted system
{eπ,i,j} of X. Let

Sd = span
{
eπ,i,j : π ∈ Γ̂, i ∈ Rπ,d, j ∈ [dπ]

}
.

Then S0 ⊆ S1 ⊆ . . . ⊆ CC(X) and ∪∞d=0Sd is uniformly dense in CC(X), so for
each n there exists a sequence {In,d}d of real-valued kernels converging uniformly
to In with In,d ∈ Sd ⊗ Sd. We may assume the kernels In,d to be Γ-invariant: If
‖In,d − In‖∞ → 0 as d → ∞, then also ‖Īn,d − In‖∞ → 0, where Īn,d(x, y) =∫
In,d(γx, γy) dγ is defined by integrating over the normalized Haar measure of Γ.

Moreover, since Sd is Γ-invariant, we have Īn,d ∈ Sd ⊗ Sd.
Let Jn = In,d for some d for which ‖In,d − In‖∞ ≤ 1/n. Then {Jn} is a

Hermititan, Γ-invariant approximate identity of X which satisfies Jn ∈ Sn ⊗ Sn for
all n. For each n we define Kn ∈ CC(Y × Y ), where Y = X ×X, by

Kn((x, y), (x′, y′)) = Jn(x, x′)Jn(y, y′) for (x, x′), (y, y′) ∈ Y.

Let K ∈ CC(X ×X)Γ
�0. We will show that {TKnK} converges uniformly to K

and that TKnK is contained in Cn. For f, g ∈ CC(X) we have

‖TKnf ⊗ g − f ⊗ g‖∞ = ‖TJnf ⊗ TJng − f ⊗ g‖∞
≤ ‖TJnf‖∞‖TJng − g‖∞ + ‖TJnf − f‖∞‖g‖∞ → 0,

and since the span of kernels of the form f ⊗ g is uniformly dense in CC(X × X),
TKnK converges uniformly to K.

There exist k ∈ N and h1, . . . , hk, h
′
1, . . . , h

′
k ∈ Sn for which

Jn(x, x′) =

k∑
i=1

hk(x)h′k(x′),

so by defining

ci,j =

∫∫
K(x′, y′)h′i(x

′)h′j(y
′) dµ(x′)dµ(y′)

we have

TKnK(x, y) =

k∑
i,j=1

ci,jhi ⊗ hj(x, y) ∈ Sn ⊗ Sn.

By Γ-invariance of K, µ, and Jn, the kernels TKnK are Γ-invariant. By Lemma 3.4.2
they are also also positive definite: For n ∈ N, c1, . . . , cn ∈ C, and x1, . . . , xn ∈ X,

n∑
i,j=1

cicj TKnK(xi, xj) =

∫∫
f(x′)f(y′)K(x′, y′) dµ(x′)dµ(y′) ≥ 0,

where f(x) =
∑n
i=1 ciJm(xi, x). �

Until now we have only considered complex-valued kernels because complex
representation theory is more natural and simpler than real representation theory.
In optimization, however, we are usually concerned with real-valued kernels and we
prefer to work with real semidefinite cones instead of complex semidefinite cones.
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Here we modify the sequence {Cd} defined above to a sequence of inner approxi-
mating cones of the cone C(X ×X)Γ

�0 of real-valued, Γ-invariant, positive definite

kernels, where each cone is isomorphic to a finite direct product of real (instead
of complex) positive semidefinite cones. If the zonal matrices Zπ are real-valued,
then the fourier coefficients K̂(π) of a real-valued kernel K are real-valued. If this
is the case, we can simply define Cπ,d as the cone containing kernels of the form
(x, y) 7→ 〈A,Zπ,d(x, y)T〉, where A ranges over the real positive semidefinite matri-
ces, and {Cd} becomes the desired inner approximating sequence of C(X ×X)Γ

�0.
If all irreducible representations π of Γ are of real type, that is, if each π is equiv-
alent to a representation Γ → O(dπ) ⊆ U(dπ), then we can always construct the
symmetry adapted system in such a way that the zonal matrices are real-valued. In
this thesis we only consider groups where all representations are of real type, and
all symmetry adapted systems are constructed so that the zonal matrices are real-
valued. If Γ̂ also contains representations of complex or quaternionic type (these are
the two remaining possibilities), then we should construct a real symmetry adapted
system, where π ranges over the real irreducible representations. See [37] or [91]
where this is discussed for finite groups.



CHAPTER 4

Upper bounds for packings of spheres of several
radii

This chapter is based on the publication “D. de Laat, F.M. de Oliveira Filho,
F. Vallentin, Upper bounds for packings of spheres of several radii, Forum Math.
Sigma 2 (2014), e23 (42 pages).”

Abstract. We give theorems that can be used to upper bound the densities of
packings of different spherical caps in the unit sphere and of translates of different
convex bodies in Euclidean space. These theorems extend the linear programming
bounds for packings of spherical caps and of convex bodies through the use of semi-
definite programming. We perform explicit computations, obtaining new bounds for
packings of spherical caps of two different sizes and for binary sphere packings. We
also slightly improve bounds for the classical problem of packing identical spheres.

4.1. Introduction

How densely can one pack given objects into a given container? Problems of
this sort, generally called packing problems, are fundamental problems in geometric
optimization.

An important example having a rich history is the sphere packing problem.
Here one tries to place equal-sized spheres with pairwise disjoint interiors into n-
dimensional Euclidean space while maximizing the fraction of covered space. In two
dimensions the best packing is given by placing open disks centered at the points
of the hexagonal lattice. In three dimensions, the statement that the best sphere
packing has density π/

√
18 = 0.7404 . . . was known as Kepler’s conjecture; it was

proved by Hales [44] in 1998 by means of a computer-assisted proof.
Currently, one of the best methods for obtaining upper bounds for the density

of sphere packings is due to Cohn and Elkies [21]. In 2003 they used linear program-
ming to obtain the best known upper bounds for the densities of sphere packings in
dimensions 4, . . . , 36. They almost closed the gap between lower and upper bounds
in dimensions 8 and 24. Their method is the noncompact version of the linear pro-
gramming method of Delsarte, Goethals, and Seidel [27] for upper-bounding the
densities of packings of spherical caps on the unit sphere.

From a physical point of view, packings of spheres of different sizes are relevant
as they can be used to model chemical mixtures which consist of multiple atoms
or, more generally, to model the structure of composite material. For more about

37
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technological applications of these kind of systems of polydisperse, totally impen-
etrable spheres we refer to Torquato [96, Chapter 6]. In recent work, Hopkins,
Jiao, Stillinger, and Torquato [52, 53] presented lower bounds for the densities of
packings of spheres of two different sizes, also called binary sphere packings.

In coding theory, packings of spheres of different sizes are important in the de-
sign of error-correcting codes that can be used for unequal error protection. Masnick
and Wolf [73] were the first who considered codes with this property.

In this paper we extend the linear programming method of Cohn and Elkies to
obtain new upper bounds for the densities of multiple-size sphere packings. We also
extend the linear programming method of Delsarte, Goethals, and Seidel to obtain
new upper bounds for the densities of multiple-size spherical cap packings.

We perform explicit calculations for binary packings in both cases using semidef-
inite, instead of linear, programming. In particular we complement the constructive
lower bounds of Hopkins, Jiao, Stillinger, and Torquato by non-constructive upper
bounds. Insights gained from our computational approach are then used to improve
known upper bounds for the densities of monodisperse sphere packings in dimen-
sions 4, . . . 9, except 8. The bounds we present improve on the best-known bounds
due to Cohn and Elkies [21].

4.1.1. Methods and theorems. We model the packing problems using tools
from combinatorial optimization. All possible positions of the objects that we can
use for the packing are vertices of a graph and we draw edges between two vertices
whenever the two corresponding objects cannot be simultaneously present in the
packing because they overlap in their interiors. Now every independent set in this
conflict graph gives a valid packing and vice versa. To determine the density of the
packing we use vertex weights since we want to distinguish between “small” and
“big” objects. For finite graphs it is known that the weighted independence number
can be upper bounded by the weighted theta number. Our theorems for packings
of spherical caps and spheres are infinite-dimensional analogues of this result.

Let G = (V,E) be a finite graph. A set I ⊆ V is independent if no two vertices
in I are adjacent. Given a weight function w : V → R≥0, the weighted independence
number of G is the maximum weight of an independent set, i.e.,

αw(G) = max

{∑
x∈I

w(x) : I ⊆ V is independent

}
.

Finding αw(G) is an NP-hard problem.
Grötschel, Lovász, and Schrijver [43] defined a graph parameter that gives

an upper bound for αw and which can be computed efficiently by semidefinite
optimization. It can be presented in many different, yet equivalent ways, but the
one convenient for us is

ϑ′w(G) = min M
K − (w1/2)(w1/2)T is positive semidefinite,
K(x, x) ≤M for all x ∈ V ,
K(x, y) ≤ 0 for all {x, y} 6∈ E where x 6= y,
M ∈ R, K ∈ RV×V is symmetric.
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Here we give a proof of the fact that ϑ′w(G) upper bounds αw(G). In a sense,
after discarding the analytical arguments in the proofs of Theorems 4.1.2 and 4.1.3,
we are left with this simple proof.

Theorem 4.1.1. For any finite graph G = (V,E) with weight function w : V →
R≥0 we have αw(G) ≤ ϑ′w(G).

Proof. Let I ⊆ V be an independent set of nonzero weight and let K ∈ RV×V ,
M ∈ R be a feasible solution of ϑ′w(G). Consider the sum∑

x,y∈I
w(x)1/2w(y)1/2K(x, y).

This sum is at least∑
x,y∈I

w(x)1/2w(y)1/2w(x)1/2w(y)1/2 =

(∑
x∈I

w(x)

)2

because K − (w1/2)(w1/2)T is positive semidefinite.
The sum is also at most∑

x∈I
w(x)K(x, x) ≤M

∑
x∈I

w(x)

because K(x, x) ≤ M and because K(x, y) ≤ 0 whenever x 6= y as I forms an
independent set. Now combining both inequalities proves the theorem. �

Multiple-size spherical cap packings. We first consider packings of spher-
ical caps of several radii on the unit sphere Sn−1 = {x ∈ Rn : x · x = 1 }. The
spherical cap with angle α ∈ [0, π] and center x ∈ Sn−1 is given by

C(x, α) = { y ∈ Sn−1 : x · y ≥ cosα }.
Its normalized volume equals

w(α) =
ωn−1(Sn−2)

ωn(Sn−1)

∫ 1

cosα

(1− u2)(n−3)/2 du,

where ωn(Sn−1) = (2πn/2)/Γ(n/2) is the surface area of the unit sphere. Two
spherical caps C(x1, α1) and C(x2, α2) intersect in their topological interiors if and
only if the inner product of x1 and x2 lies in the interval (cos(α1+α2), 1]. Conversely
we have

C(x1, α1)◦ ∩ C(x2, α2)◦ = ∅ ⇐⇒ x1 · x2 ≤ cos(α1 + α2).

A packing of spherical caps with angles α1, . . . , αN is a union of any number of
spherical caps with these angles and pairwise-disjoint interiors. The density of the
packing is the sum of the normalized volumes of the constituting spherical caps.

The optimal packing density is given by the weighted independence number
of the spherical cap packing graph. This is the graph with vertex set Sn−1 ×
{1, . . . , N}, where a vertex (x, i) has weight w(αi), and where two distinct ver-
tices (x, i) and (y, j) are adjacent if cos(αi + αj) < x · y.

In Section 4.2 we will extend the weighted theta prime number to the spherical
cap packing graph. There we will also derive Theorem 4.1.2 below, which gives
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upper bounds for the densities of packings of spherical caps. We will show that the
sharpest bound given by this theorem is in fact equal to the theta prime number.

In what follows we denote by Pnk the Jacobi polynomial P
((n−3)/2,(n−3)/2)
k of

degree k, normalized so that Pnk (1) = 1. Jacobi polynomials are orthogonal polyno-

mials defined on the interval [−1, 1] with respect to the measure (1− u2)(n−3)/2du.
See for instance Andrews, Askey, and Roy [2] for more information.

Theorem 4.1.2. Let α1, . . . , αN ∈ (0, π] be angles and for i, j = 1, . . . , N
and k ≥ 0 let fij,k be real numbers such that fij,k = fji,k and

∑∞
k=0 |fij,k| <∞ for

all i, j. Write

(1) fij(u) =

∞∑
k=0

fij,kP
n
k (u).

Suppose the functions fij satisfy the following conditions:

(i)
(
fij,0 − w(αi)

1/2w(αj)
1/2
)N
i,j=1

is positive semidefinite;

(ii)
(
fij,k

)N
i,j=1

is positive semidefinite for k ≥ 1;

(iii) fij(u) ≤ 0 whenever −1 ≤ u ≤ cos(αi + αj).

Then the density of every packing of spherical caps with angles α1, . . . , αN on the
unit sphere Sn−1 is at most max{ fii(1) : i = 1, . . . , N }.

When N = 1, Theorem 4.1.2 reduces to the linear programming bound for
spherical cap packings of Delsarte, Goethals, and Seidel [27]. In Section 4.4 we
use semidefinite programming instead of linear programming to perform explicit
computations for N = 2.

Translational packings of bodies and multiple-size sphere packings.
We now deal with packings of spheres with several radii in Rn. Theorem 4.1.3
presented below can be used to find upper bounds for the densities of such packings.
In fact, it is more general and can be applied to packings of translates of different
convex bodies.

Let K1, . . . , KN be convex bodies in Rn. A translational packing of K1, . . . , KN
is a union of translations of these bodies in which any two copies have disjoint
interiors. The density of a packing is the fraction of space covered by it. There are
different ways to formalize this definition, and questions appear as to whether every
packing has a density and so on. We postpone further discussion on this matter
until Section 4.3 where we give a proof of Theorem 4.1.3.

Our theorem can be seen as an analogue of the weighted theta prime num-
ber ϑ′w for the infinite graph G whose vertex set is Rn × {1, . . . , N} and in which
vertices (x, i) and (y, j) are adjacent if x+Ki and y+Kj have disjoint interiors. The
weight function we consider assigns weight volKi to vertex (x, i) ∈ Rn×{1, . . . , N}.
We will say more about this interpretation in Section 4.3.

For the statement of the theorem we need some basic facts from harmonic
analysis. Let f : Rn → C be an L1 function. For u ∈ Rn, the Fourier transform of f
at u is

f̂(u) =

∫
Rn
f(x)e−2πiu·x dx.
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We say that function f is a Schwartz function (also called a rapidly-decreasing
function) if it is infinitely differentiable, and if any derivative of f , multiplied by any
power of the variables x1, . . . , xn, is a bounded function. The Fourier transform
of a Schwartz function is a Schwartz function, too. A Schwartz function can be
recovered from its Fourier transform by means of the inversion formula:

f(x) =

∫
Rn
f̂(u)e2πiu·x du

for all x ∈ Rn.

Theorem 4.1.3. Let K1, . . . , KN be convex bodies in Rn and let f : Rn →
RN×N be a matrix-valued function whose every component fij is a Schwartz func-
tion. Suppose f satisfies the following conditions:

(i) the matrix
(
f̂ij(0)− (volKi)1/2(volKj)1/2

)N
i,j=1

is positive semidefinite;

(ii) the matrix of Fourier transforms
(
f̂ij(u)

)N
i,j=1

is positive semidefinite for

every u ∈ Rn \ {0};
(iii) fij(x) ≤ 0 whenever K◦i ∩ (x+K◦j ) = ∅.

Then the density of any packing of translates of K1, . . . , KN in the Euclidean
space Rn is at most max{ fii(0) : i = 1, . . . , N }.

We give a proof of this theorem in Section 4.3. When N = 1 and when the con-
vex body K1 is centrally symmetric (an assumption that is in fact not needed) then
this theorem reduces to the linear programming method of Cohn and Elkies [21].

We apply this theorem to obtain upper bounds for the densities of binary sphere
packings, as we discuss in Section 4.1.3.

4.1.2. Computational results for binary spherical cap packings. We
applied Theorem 4.1.2 to compute upper bounds for the densities of binary spherical
cap packings. The results we obtained are summarized in the plots of Figure 1.

For n = 3, Florian [30,31] provides a geometric upper bound for the density of
a spherical cap packing. He shows that the density of a packing on S2 of spherical
caps with angles α1, . . . , αN ∈ (0, π/3] is at most

max
1≤i≤j≤k≤N

D(αi, αj , αk),

where D(αi, αj , αk) is defined as follows: Let T be a spherical triangle in S2 such
that if we center the spherical caps with angles αi, αj , and αk at the vertices of T ,
then the caps intersect pairwise at their boundaries. The number D(αi, αj , αk) is
then defined as the fraction of the area of T covered by the caps.

In Figure 1 (B) we see that for N = 2 it depends on the angles whether the
geometric or the semidefinite programming bound is sharper. In particular we see
that near the diagonal the semidefinite programming bound is at least as good as
the geometric bound; see also Figure 1 (A).

We can construct natural multiple-size spherical cap packings by taking the
incircles of the faces of spherical Archimedean tilings. A sequence of binary packings
is for instance obtained by taking the incircles of the prism tilings. These are
the Archimedean tilings with vertex figure (4, 4,m) for m ≥ 3 (although strictly
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Figure 1. Upper bounds on the packing density for N = 2. The
horizontal and vertical axes carry the spherical cap angle; the colors
indicate the density, or in the case of plot (B) whether the SDP
bound or the geometric bound is sharper.

speaking for m = 4 this is a spherical Platonic tiling). The question then is whether
the packing associated with the m-prism has maximal density among all packings
with the same cap angles π/m and π/2 − π/m, that is, whether the packing is
maximal. The packing for m = 3 is not maximal while the one for m = 4 trivially
is, since here there is only one cap size, and adding a 9th cap yields a density greater
than 1.

Heppes and Kertész [48] showed that the configurations for m ≥ 6 are max-
imal, and the remaining case m = 5 was later shown to maximal by Florian and
Heppes [32]. Florian [30] showed that the geometric bound given above is in fact
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sharp for the cases where m ≥ 6, and for the m = 5 case it is not sharp but still
good enough to prove maximality (notice that given a finite number of cap angles,
the set of obtainable densities is finite).

Now we illustrate that Theorem 4.1.2 gives a sharp bound for the density of
the packing associated to the 5-prism, thus giving a simple proof of its maximality.
The theorem also provides a sharp bound for m = 4 but whether it can provide
sharp bounds for the cases m ≥ 6 we do not know at the moment. The numerical
results are not decisive.

We shall exhibit functions

fij(u) =
4∑
k=0

fij,kP
n
k (u)

that satisfy the conditions of Theorem 4.1.2 with f11(1) = f22(1) = 5w(α1)+2w(α2)
where

α1 =
π

5
, α2 =

3π

10
, w(α1) =

1

2

(
1− cos

π

5

)
, w(α2) =

1

2

(
1− cos

3π

10

)
.

For a sharp solution, the inequalities in the proof of Theorem 4.1.2 must be equal-
ities, so the fij,k have to satisfy the following linear conditions:

0 = f11

(
cos

2π

5

)
= f11

(
cos

4π

5

)
= f ′11

(
cos

4π

5

)
= f12(0) = f22(−1);

the product (
f11,0 f12,0

f12,0 f22,0

)(
25w(α1) 10

√
w(α1)w(α2)

10
√
w(α1)w(α2) 4w(α2)

)
equals(

25w(α1)2 + 10w(α1)w(α2)
√
w(α1)w(α2)(10w(α1) + 4w(α2))√

w(α1)w(α2)(25w(α1) + 10w(α2)) 10w(α1)w(α2) + 4w(α2)2

)
;

for k = 1, . . . , 4 the product of the two matrices

(
f11,k f12,k

f12,k f22,k

)
and(

w(α1)(5Pk(1) + 10Pk(cos 2π
5 ) + 10Pk(cos 2π

4 ))
√
w(α1)w(α2)10Pk(0)√

w(α1)w(α2)10Pk(0) w(α2)(2Pk(1) + 2Pk(−1))

)
equals zero. This linear system together with the additional assumptions

0 = f11(−1) = f12

(
− 95

100

)
= f ′12

(
− 95

100

)
has a one-dimensional space of solutions from which it is easy to select one that
fulfills all requirements of Theorem 4.1.2.

For the remaining 13 Archimedean solids in dimension n = 3 we are only
able to show maximality of the packing associated to the truncated octahedron, the
Archimedean solid with vertex figure (6, 6, 5). Its density is 0.9056 . . ., the geometric
bound shows that the density is at most 0.9088 . . ., and using the semidefinite
program we get 0.9079 . . . as an upper bound. The first packing with caps of angles
arcsin(1/3) and arcsin(1/

√
3) that would be denser is obtained by taking 19 of the
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smaller caps and 4 of the bigger caps, and has density 0.9103 . . . The upper bounds
show however that it is not possible to obtain this dense a packing, thus showing
that the truncated octahedron packing is maximal.
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Figure 2. Upper bounds on the packing density for N = 1, the
horizontal axis represents the spherical cap angle and the vertical
axis the packing density.

We also used our programs to plot the upper bounds for N = 1, the classical
linear programming bound of Delsarte, Goethals, and Seidel [27], for dimensions
n = 3, 4, and 5 in Figure 2. To the best of our knowledge these kinds of plots
were not made before and they seem to reveal interesting properties of the bound.
For better orientation we show in the plots the packings where the linear program-
ming bound is sharp (cf. Levenshtein [68]; Cohn and Kumar [22] proved the much
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Figure 3. The horizontal axis carries the ratio between the radii of
the small and the large spheres. The vertical axis carries our upper
bound. Our bounds for dimensions 2, . . . , 5 are shown together.

stronger statement that these packings provide point configurations that are uni-
versally optimal). The dotted line in the plot for n = 3 is the geometric bound,
and since we know that both the geometric (cf. Florian [30]) and the semidefinite
programming bounds are sharp for the given configurations, we know that at these
peaks the bounds meet.

An interesting feature of the upper bound seems to be that it has some periodic
behavior. Indeed, the numerical results suggest that for n = 3, the two bounds
in fact meet infinitely often as the angle decreases, and that between any two of
these meeting points the semidefinite programming bound has a similar shape.
Although in higher dimensions we do not have a geometric bound, the semidefinite
programming bound seems to admit the same kind of periodic behavior.

4.1.3. Computational results for binary sphere packings. We applied
Theorem 4.1.3 to compute upper bounds for the densities of binary sphere packings.
The results we obtained are summarized in the plot of Figure 3, where we show
bounds computed for dimensions 2, . . . , 5. A detailed account of our approach is
given in Section 4.5. We now quickly discuss the bounds presented in Figure 3.

Dimension 2. Only in dimension 2 have binary sphere (i.e., circle) packings been
studied in depth. We refer to the introduction in the paper of Heppes [47] which
surveys the known results about binary circle packings in the plane.

Currently one of the best-known upper bounds for the maximum density of a
binary circle packing is due to Florian [29]. Florian’s bound states that a packing
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of circles in which the ratio between the radii of the smallest and largest circles is r
has density at most

πr2 + 2(1− r2) arcsin(r/(1 + r))

2r
√

2r + 1
,

and that this bound is achieved exactly for r = 1 (i.e., for classical circle packings)
and for r = 0 in the limit.

The question arises of which bound is better, our bound or Florian’s bound.
From our experiments, it seems that our bound is worse than Florian’s bound, at
least for r < 1. For instance, for r = 1/2 we obtain the upper bound 0.9174426 . . .,
whereas Florian’s bound is 0.9158118 . . . Whether this really means that the bound
of Theorem 4.1.3 is worse than Florian’s bound, or just that the computational
approach of Section 4.5 is too restrictive to attain his bound, we do not know.

It is interesting to note that for r = 1, that is, for packings of circles of one
size, our bound clearly coincides with the one of Cohn and Elkies [21]. This bound

seems to be equal to π/
√

12, but no proof of this is known.

Dimension 3. Much less is known in dimension 3. In fact we do not know about
other attempts to find upper bounds for the densities of binary sphere packings in
dimensions 3 and higher.

Let us compare our upper bound with the lower bound by Hopkins, Jiao, Still-
inger, and Torquato [52]. The record holder for r ≥ 0.2 in terms of highest density
occurs for r = 0.224744 . . . and its density is 0.824539 . . . Our computations show
that there cannot be a packing with this r having density more than 0.8617125 . . .,
so this leaves a margin of 5%.

Another interesting case is r =
√

2 − 1 = 0.414 . . . Here the best-known lower
bound of 0.793 . . . comes from the crystall structure of sodium chloride NaCl. The
large spheres are centered at a face centered cubic lattice and the small spheres are
centered at a translated copy of the face centered cubic lattice so that they form a
jammed packing. Our upper bound for r =

√
2− 1 is 0.813 . . ., less than 3% away

from the lower bound. Therefore, we believe that proving optimality of the NaCl
packing might be doable.

Dimension 4 and beyond. In higher dimensions even less is known about binary
sphere packings. We observed from Figure 3 that it seems that the upper bound is
decreasing: as the radius of the small sphere increases from 0.2 to 1, the bound seems
to decrease. This suggests that the bound given by Theorem 4.1.3 is decreasing in
this sense, but we do not know a proof of this.

We also do not know the limit behavior of our bound when r approaches 0.
Due to numerical instabilities we could not perform numerical calculations in this
regime of r.

4.1.4. Improving the Cohn-Elkies bounds. We now present a theorem
that can be used to find better upper bounds for the densities of monodisperse
sphere packings than those provided by Cohn and Elkies [21]; our theorem is a
strengthening of theirs.

Fix ε > 0. Given a packing of spheres of radius 1/2, we consider its ε-tangency
graph, a graph whose vertices are the spheres in the packing, and in which two
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vertices are adjacent if the distance between the centers of the respective spheres
lies in the interval [1, 1 + ε).

Let M(ε) be the least upper bound on the average degree of the ε-tangency
graph of any sphere packing. Our theorem is the following:

Theorem 4.1.4. Take 0 = ε0 < ε1 < · · · < εm and let f : Rn → R be a Schwartz
function such that

(i) f̂(0) ≥ volB, where B is the ball of radius 1/2;

(ii) f̂(u) ≥ 0 for all u ∈ Rn \ {0};
(iii) f(x) ≤ 0 whenever ‖x‖ ≥ 1 + εm;
(iv) f(x) ≤ ηk whenever ‖x‖ ∈ [1 + εk−1, 1 + εk) with ηk ≥ 0, for k ∈ [m].

Then the density of a sphere packing is at most the optimal value of the following
linear programming problem in variables A1, . . . , Am:

(2)
max f(0) + η1A1 + · · ·+ ηmAm

A1 + · · ·+Ak ≤ U(εk) for k ∈ [m],
Ak ≥ 0 for k ∈ [m],

where U(εk) ≥M(εk) for k = 1, . . . , m.

In Section 4.6 we give a proof of Theorem 4.1.4 and show how to compute
upper bounds for M(ε) using the semidefinite programming bounds of Bachoc and
Vallentin [9] for the sizes of spherical codes. There we also show how to use semi-
definite programming and the same ideas we employ in the computations for binary
sphere packings (cf. Section 4.5) to compute better upper bounds for the densities
of sphere packings.

Dimension Lower bound Cohn-Elkies bound New upper bound

4 0.12500 0.13126 0.130587
5 0.08839 0.09975 0.099408
6 0.07217 0.08084 0.080618
7 0.06250 0.06933 0.069193
9 0.04419 0.05900 0.058951

Table 1. For each dimension we show the best lower bound
known, the bound by Cohn and Elkies [21], and the upper bound
coming from Theorem 4.1.4.

In Table 1 we show the upper bounds obtained through our application of
Theorem 4.1.4. To better compare our bounds with those of Cohn and Elkies, on
Table 1 we show bounds for the center density of a packing, the center density of
a packing of unit spheres being equal to ∆/ volB, where ∆ is the density of the
packing, and B is a unit ball.

We omit dimension 8 because for this dimension it is already believed that the
Cohn-Elkies bound is itself optimal, and therefore as is to be expected we did not
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manage to obtain any improvement over their bound. We also note that the bounds
by Cohn and Elkies are the best known upper bounds in all other dimensions shown.

In dimension 3 the Cohn-Elkies bound is 0.18616 whereas the optimal sphere
packing has center density 0.17678. We can improve the Cohn-Elkies bound to
0.184559 which is also better than the upper bound 0.1847 due to Rogers [83].

4.2. Multiple-size spherical cap packings

In this section we prove Theorem 4.1.2 and discuss its relation to an extension
of the weighted theta prime number for the spherical cap packing graph.

4.2.1. Proof of Theorem 4.1.2. Let x1, . . . , xm ∈ Sn−1 and r : {1, . . . ,m} →
{1, . . . , N} be such that

m⋃
i=1

C(xi, αr(i))

is a packing of spherical caps on Sn−1.
Consider the sum

(3)

m∑
i,j=1

w(αr(i))
1/2w(αr(j))

1/2fr(i)r(j)(xi · xj).

By expanding fr(i)r(j)(xi · xj) according to (1) this sum is equal to

∞∑
k=0

m∑
i,j=1

w(αr(i))
1/2w(αr(j))

1/2fr(i)r(j),kP
n
k (xi · xj).

By the addition formula (cf. e.g. Section 9.6 of Andrews, Askey, and Roy [2]) for

the Jacobi polynomials Pnk the matrix
(
Pnk (xi · xj)

)m
i,j=1

is positive semidefinite.

From condition (ii) of the theorem, we also know that the matrix
(
fr(i)r(j),k

)m
i,j=1

is positive semidefinite for k ≥ 1. So the inner sum above is nonnegative for k ≥ 1.
If we then consider only the summand for k = 0 we see that (3) is at least

(4)

m∑
i,j=1

w(αr(i))
1/2w(αr(j))

1/2fr(i)r(j),0P
n
0 (xi · xj) ≥

( m∑
i=1

w(αi)

)2

,

where the inequality follows from condition (i) of the theorem.
Now, notice that whenever i 6= j, the caps C(xi, αr(i)) and C(xj , αr(j)) have

disjoint interiors. Condition (iii) then implies that fr(i)r(j)(xi · xj) ≤ 0. So we see
that (3) is at most

(5)

m∑
i=1

w(αi)fr(i)r(i)(1) ≤ max{ fii(1) : i = 1, . . . , N }
m∑
i=1

w(αi).

So (3) is at least (4) and at most (5), yielding

m∑
i=1

w(αi) ≤ max{ fii(1) : i = 1, . . . , N }. �
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4.2.2. Theorem 4.1.2 and the Lovász theta number. We now briefly
discuss a generalization of ϑ′w to infinite graphs and its relation to the bound of
Theorem 4.1.2. Similar ideas were developed by Bachoc, Nebe, Oliveira, and Val-
lentin [8].

Let G = (V,E) be a graph, where V is a compact space, and let w : V → R≥0

be a continuous weight function. An element in the space C(V × V ) of real-valued
continuous functions over V × V is called a kernel. A kernel K is symmetric if
K(x, y) = K(y, x) for all x, y ∈ V . It is positive if it is symmetric and if for

any m ∈ N and for any x1, . . . , xm ∈ V , the matrix
(
K(xi, xj)

)m
i,j=1

is positive

semidefinite. The weighted theta prime number of G is defined as

(6)

ϑ′w(G) = inf M
K − w1/2 ⊗ (w1/2)∗ is a positive kernel,
K(x, x) ≤M for all x ∈ V ,
K(x, y) ≤ 0 for all {x, y} 6∈ E where x 6= y,
M ∈ R, K ∈ C(V × V ) is symmetric.

One may show, mimicking the proof of Theorem 4.1.1, that ϑ′w(G) ≥ αw(G).
Let G = (V,E) be the spherical cap packing graph as defined in Section 4.1.1.

We will use the symmetry of this graph to show that (6) gives the sharpest bound
obtainable by Theorem 4.1.2.

The orthogonal group O(n) acts on Sn−1, and this defines the action of O(n)
on the vertex set V = Sn−1 × {1, . . . , N} by A(x, i) = (Ax, i) for A ∈ O(n). The
group average of a kernel K ∈ C(V × V ) is given by

K((x, i), (y, j)) =

∫
O(n)

K(A(x, i), A(y, j)) dµ(A),

where µ is the Haar measure on O(n) normalized so that µ(O(n)) = 1. If (K,M) is
feasible for (6), then (K,M) is feasible too. This follows since for each A ∈ O(n),
a point (x, i) has the same weight as A(x, i), and two points (x, i) and (y, j) are
adjacent if and only if A(x, i) and A(y, j) are adjacent. Since (K,M) and (K,M)
have the same objective value M , and since K is invariant under the action of O(n),
we may restrict to O(n)-invariant kernels (i.e., kernels K such that K(Au,Av) =
K(u, v) for all A ∈ O(n) and u, v ∈ V ) in finding the infimum of (6).

Schoenberg [85] showed that a symmetric kernel K ∈ C(Sn−1×Sn−1) is positive
and O(n)-invariant if and only if it lies in the cone spanned by the kernels (x, y) 7→
Pnk (x · y). We will use the following generalization for kernels over V × V .

Theorem 4.2.1. A symmetric kernel K ∈ C(V × V ), with V = Sn−1 ×
{1, . . . , N}, is positive and O(n)-invariant if and only if

(7) K((x, i), (y, j)) = fij(x · y)

with

fij(u) =

∞∑
k=0

fij,kP
n
k (u),

where
(
fij,k

)N
i,j=1

is positive semidefinite for all k ≥ 0 and
∑∞
k=0 |fij,k| < ∞ for

all i, j = 1, . . . , N , implying in particular that we have uniform convergence above.
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Before we prove the theorem we apply it to simplify problem (6). If K is an
O(n)-invariant feasible solution of (6), then K −w1/2 ⊗ (w1/2)∗ is a positive O(n)-
invariant kernel, and hence can be written in the form (7). Using in addition that
Pn0 = 1, problem (6) reduces to

ϑ′w(G) = inf M
fii(0) + w(αi) ≤M for all 1 ≤ i ≤ N,
fij(u) + (w(αi)w(αj))

1/2 ≤ 0 when −1 ≤ u ≤ cos(αi + αj),

M ∈ R and
(
fij,k

)N
i,j=1

positive semidefinite for all k ≥ 0.

By substituting fij,0 − (w(αi)w(αj))
1/2 for fij,0 we see that the solution to this

problem indeed equals the sharpest bound given by Theorem 4.1.2.

Proof of Theorem 4.2.1. If we endow the space C(Sn−1) of real-valued con-
tinuous function on the unit sphere Sn−1 with the usual L2 inner product, then for f ,
g ∈ C(V ),

〈f, g〉 =

N∑
i=1

∫
Sn−1

f(x, i)g(x, i) dω(x)

gives an inner product on C(V ). The space C(Sn−1) decomposes orthogonally as

C(Sn−1) =

∞⊕
k=0

Hk,

where Hk is the space of homogeneous harmonic polynomials of degree k restricted
to Sn−1. With

Hk,i = { f ∈ C(V ) : there is a g ∈ Hk such that f(·, j) = δijg(·) },

it follows that C(V ) decomposes orthogonally as

C(V ) =

∞⊕
k=0

N⊕
i=1

Hk,i.

Given the action of O(n) on V , we have the natural unitary representation on
C(V ) given by (Af)(x, i) = f(A−1x, i) for A ∈ O(n) and f ∈ C(V ). It follows
that each space Hk,i is O(n)-irreducible and that two spaces Hk,i and Hk′,i′ are
O(n)-equivalent if and only if k = k′. Let

{ ek,i,l : k ≥ 0, 1 ≤ i ≤ N , and 1 ≤ l ≤ hk }

be a complete orthonormal system of C(V ) such that ek,i,1, . . . , ek,i,hk is a basis of
Hk,i. By Bochner’s characterization [15], a kernel K ∈ C(V × V ) is positive and
O(n)-invariant if and only if

(8) K((x, i), (y, j)) =

∞∑
k=0

N∑
i′,j′=1

fij,k

hk∑
l=1

ek,i′,l(x, i)ek,j′,l(y, j),

where each
(
fij,k

)N
i,j=1

is positive semidefinite and
∑∞
k=0 |fij,k| <∞ for all i, j.
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By the addition formula (cf. Chapter 9.6 of Andrews, Askey, and Roy [2]) we
have

hk∑
l=1

ek,l(x)ek,l(y) =
hk

ωn(Sn−1)
Pnk (x · y)

for any orthonormal basis ek,1, . . . , ek,hk of Hk. It follows that

hk∑
l=1

ek,i′,l(x, i)ek,j′,l(y, j) = δii′δjj′
hk

ωn(Sn−1)
Pnk (x · y),

and substituting this into (8) completes the proof. �

Bochner’s characterization for the kernel K, which we used above, usually as-
sumes that the spaces under consideration are homogeneous, so that the decompo-
sitions into isotypic irreducible spaces are guaranteed to be finite. This finiteness is
then used to conclude uniform convergence. Since the action of O(n) on V is not
transitive, we do not immediately have this guarantee. We can still use the charac-
terization, however, since irreducible subspaces of C(V ) have finite multiplicity.

4.3. Translational packings and multiple-size sphere packings

Before giving a proof of Theorem 4.1.3 we quickly present some technical con-
siderations regarding density. Here we follow closely Appendix A of Cohn and
Elkies [21].

Let K1, . . . , KN be convex bodies and P be a packing of translated copies of
K1, . . . , KN , that is, P is a union of translated copies of the bodies, any two copies
having disjoint interiors. We say that the density of P is ∆ if for all p ∈ Rn we have

∆ = lim
r→∞

vol(B(p, r) ∩ P)

volB(p, r)
,

where B(p, r) is the ball of radius r centered at p. Not every packing has a density,
but every packing has an upper density given by

lim sup
r→∞

sup
p∈Rn

vol(B(p, r) ∩ P)

volB(p, r)
.

We say that a packing P is periodic if there is a lattice L ⊆ Rn that leaves P
invariant, that is, which is such that P = x + P for all x ∈ L. In other words,
a periodic packing consists of some translated copies of the bodies K1, . . . , KN
arranged inside the fundamental parallelotope of L, and this arrangement repeats
itself at each copy of the fundamental parallelotope translated by vectors of the
lattice.

It is easy to see that a periodic packing has a density. This is particularly
interesting for us, since in computing upper bounds for the maximum possible
density of a packing we may restrict ourselves to periodic packings, as it is known
(and also easy to see) that the supremum of the upper densities of packings can
be approximated arbitrary well by periodic packings (cf. Appendix A in Cohn and
Elkies [21]).
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To provide a proof of the theorem we need another fact from harmonic analysis,
the Poisson summation formula. Let f : Rn → C be a Schwartz function and L ⊆ Rn
be a lattice. The Poisson summation formula states that, for every x ∈ Rn,∑

v∈L
f(x+ v) =

1

vol(Rn/L)

∑
u∈L∗

f̂(u)e2πiu·x,

where L∗ = {u ∈ Rn : u · x ∈ Z for all x ∈ L } is the dual lattice of L and where
vol(Rn/L) is the volume of a fundamental domain of the lattice L.

Proof of Theorem 4.1.3. As observed above, we may restrict ourselves to
periodic packings. Let L ⊆ Rn be a lattice and x1, . . . , xm ∈ Rn and r : {1, . . . ,m} →
{1, . . . , N} be such that

P =
⋃
v∈L

m⋃
i=1

v + xi +Kr(i)

is a packing. This means that, whenever i 6= j or v 6= 0, bodies xi + Kr(i) and v +
xj + Kr(j) have disjoint interiors. This packing is periodic and therefore has a
well-defined density, which equals

1

vol(Rn/L)

m∑
i=1

volKr(i).

Consider the sum

(9)
∑
v∈L

m∑
i,j=1

(volKr(i))1/2(volKr(j))1/2fr(i)r(j)(v + xj − xi).

Applying the Poisson summation formula we may express (9) in terms of Fourier
transform of f , obtaining

1

vol(Rn/L)

∑
u∈L∗

m∑
i,j=1

(volKr(i))
1/2(volKr(j))

1/2f̂r(i)r(j)(u)e2πiu·(xj−xi),

where L∗ is the dual lattice of L.
Since f satisfies condition (ii) of the theorem, matrix

(
f̂r(i)r(j)(u)

)m
i,j=1

is posi-

tive semidefinite for every u ∈ Rn. So the inner sum above is always nonnegative.
If we then consider only the summand for u = 0, we see that (9) is at least

1

vol(Rn/L)

m∑
i,j=1

(volKr(i))1/2(volKr(j))1/2f̂r(i)r(j)(0)

≥ 1

vol(Rn/L)

m∑
i,j=1

volKr(i) volKr(j)

=
1

vol(Rn/L)

( m∑
i=1

volKr(i)
)2

,

(10)

where the inequality comes from condition (i) of the theorem.
Now, notice that whenever v 6= 0 or i 6= j one has fr(i)r(j)(v + xj − xi) ≤

0. Indeed, since P is a packing, if v 6= 0 or i 6= j then the bodies xi + Kr(i)
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and v+xj +Kr(j) have disjoint interiors. But then also Kr(i) and v+xj−xi+Kr(j)
have disjoint interiors, and then from (iii) we see that fr(i)r(j)(v + xj − xi) ≤ 0.

From this observation we see immediately that (9) is at most

(11)

m∑
i=1

volKr(i)fr(i)r(i)(0) ≤ max{ fii(0) : i = 1, . . . , N }
m∑
i=1

volKr(i).

So (9) is at least (10) and at most (11). Putting it all together we get that

1

vol(Rn/L)

m∑
i=1

volKr(i) ≤ max{ fii(0) : i = 1, . . . , N },

proving the theorem. �

We mentioned in the beginning of the section that Theorem 4.1.3 is an analogue
of the weighted theta prime number for a certain infinite graph. The connection will
become more clear after we present a slightly more general version of Theorem 4.1.3.

An L∞ function f : Rn → CN×N is said to be of positive type if f(x) = f(−x)∗

for all x ∈ Rn and for all L1 functions ρ : Rn → CN we have∫
Rn

∫
Rn
ρ(y)∗f(x− y)ρ(x) dxdy ≥ 0.

When N = 1 we have the classical theory of functions of positive type (see
e.g. the book by Folland [33] for background). Many useful properties of such
functions can be extended to the matrix-valued case (that is, to the N > 1 case)
via a simple observation: a function f : Rn → CN×N is of positive type if and only
if for all p ∈ CN the function gp : Rn → C such that

gp(x) = p∗f(x)p

is of positive type.
From this observation two useful classical characterizations of functions of pos-

itive type can be extended to the matrix-valued case. The first one is useful when
dealing with continuous functions of positive type. It states that a continuous
and bounded function f : Rn → CN×N is of positive type if and only if for every
choice x1, . . . , xm of finitely many points in Rn, the block matrix

(
f(xi− xj)

)m
i,j=1

is positive semidefinite.
The second characterization is given in terms of the Fourier transform. It

states that an L1 function f : Rn → CN×N is of positive type if and only if the

matrix
(
f̂ij(u)

)N
i,j=1

is positive semidefinite for all u ∈ Rn. So in the statement

of Theorem 4.1.3, for instance, one could replace condition (i) by the equivalent
condition that f be a function of positive type.

When N = 1, the previous two characterizations of functions of positive type
date back to Bochner [14].

With this we may give an alternative and more general version of Theorem 4.1.3.

Theorem 4.3.1. Let K1, . . . , KN be convex bodies in Rn and let f : Rn →
RN×N be a continuous and L1 function. Suppose f satisfies the following conditions:

(i) the matrix
(
f̂ij(0)− (volKi)1/2(volKj)1/2

)N
i,j=1

is positive semidefinite;
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(ii) f is of positive type;
(iii) fij(x) ≤ 0 whenever K◦i ∩ (x+K◦j ) = ∅.

Then the density of every packing of translates of K1, . . . , KN in the Euclidean
space Rn is at most max{ fii(0) : i = 1, . . . , N }.

Let V = Rn × {1, . . . , N}. Notice that the kernel K : V × V → R such that

K((x, i), (y, j)) = fij(x− y),

implicitly defined by the function f , plays the same role as the matrix K from
the definition of the theta prime number (cf. Section 4.2.2). For instance, this is a
positive kernel, since f is of positive type and hence for any L1 function ρ : V → R
we have that ∫

V

∫
V

K((x, i), (y, j))ρ(x, i)ρ(y, j) d(x, i)d(y, j) ≥ 0.

Theorem 4.3.1 can then be seen as an analogue of the weighted theta prime number
for the packing graph with vertex set V that we consider.

When one reads through the proof of Theorem 4.1.3, the one step that fails
when f is L1 instead of Schwartz is the use of the Poisson summation formula.
Indeed, sum (9) is not anymore well-defined in such a situation. The summation
formula also holds, however, under somewhat different conditions that are just what
we need to make the proof go through. The proof of the following lemma makes
use of the well-known interpretation of the Poisson summation formula as a trace
formula, which for instance is explained by Terras [94, Chapter 1.3].

Lemma 4.3.2. Let f : Rn → CN×N be a continuous function of bounded support
and positive type. Then for every lattice L ⊆ Rn, every x ∈ Rn, and all i, j = 1,
. . . , N we have

∑
v∈L

fij(x+ v) =
1

vol(Rn/L)

∑
u∈L∗

f̂ij(u)e2πiu·x.

Proof. Since each function fij is continuous and of bounded support, the
functions gij : Rn/L→ C such that

gij(x) =
∑
v∈L

fij(x+ v)

are continuous. Indeed, the sum above is well-defined, being in fact a finite sum
(since fij has bounded support), and therefore gij can be seen locally as a sum of
finitely many continuous functions.
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Let us now compute the Fourier transform of gij . For u ∈ L∗ we have that

ĝij(u) =

∫
Rn/L

gij(x)e−2πiu·x dx

=

∫
Rn/L

∑
v∈L

fij(x+ v)e−2πiu·x dx

=

∫
Rn
fij(x)e−2πiu·x dx

= f̂ij(u).

So we know that

(12) gij(x) =
1

vol(Rn/L)

∑
u∈L∗

f̂ij(u)e2πiu·x

in the sense of L2 convergence. Our goal is to prove that pointwise convergence also
holds above.

To this end we consider for i = 1, . . . , N the kernel Ki : (Rn/L)× (Rn/L)→ C
such that

Ki(x, y) =
∑
v∈L

fii(v + x− y).

Since each function fii is of bounded support and continuous, each kernel Ki

is continuous. Since for each i we have that fii(x) = fii(−x) for all x ∈ Rn
(since f is of positive type), each kernel Ki is self-adjoint. Notice that the func-
tions x 7→ (vol(Rn/L))−1/2e2πiu·x, for u ∈ L∗, form a complete orthonormal sys-
tem of L2(Rn/L). Each such function is also an eigenfunction of Ki, with eigen-

value f̂ii(u). Indeed, we have∫
Rn/L

Ki(x, y)(vol(Rn/L))−1/2e2πiu·y dy

= (vol(Rn/L))−1/2

∫
Rn/L

∑
v∈L

fii(v + x− y)e2πiu·y dy

= (vol(Rn/L))−1/2

∫
Rn
fii(x− y)e2πiu·y dy

= (vol(Rn/L))−1/2

∫
Rn
fii(y)e2πiu·(x−y) dy

= f̂ii(u)(vol(Rn/L))−1/2e2πiu·x.

Since f is of positive type, the matrices of Fourier transforms
(
f̂ij(u)

)N
i,j=1

,

for u ∈ Rn, are all positive semidefinite. In particular this implies that the Fourier
transforms of fii, for i = 1, . . . , N , are nonnegative. So we see that each Ki is
a continuous and positive kernel. Mercer’s theorem (see for instance Courant and
Hilbert [24]) then implies that Ki is trace-class, its trace being the sum of all its
eigenvalues. So for each i = 1, . . . , N , the series

(13)
∑
u∈L∗

f̂ii(u)
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converges, and since each summand is nonnegative, it converges absolutely.
Suppose now that i, j = 1, . . . , N are such that i 6= j. Since the matrices of

Fourier transforms are nonnegative, for all u ∈ Rn we have that the matrix(
f̂ii(u) f̂ij(u)

f̂ij(u) f̂jj(u)

)

is positive semidefinite, and this in turn implies that |f̂ij(u)|2 ≤ f̂ii(u)f̂jj(u) for
all u ∈ Rn. Using then the convergence of the series (13) and the Cauchy-Schwarz
inequality, one gets

∑
u∈L∗

|f̂ij(u)| ≤
∑
u∈L∗

(f̂ii(u)f̂jj(u))1/2 ≤
(∑
u∈L∗

f̂ii(u)

)1/2(∑
u∈L∗

f̂jj(u)

)1/2

,

and we see that in fact for all i, j = 1, . . . , N the series∑
u∈L∗

f̂ij(u)

converges absolutely.
This convergence result shows that the sum in (12) converges absolutely and

uniformly for all x ∈ Rn/L. This means that the function defined by this sum is
a continuous function, and since gij is also a continuous function, and in (12) we
have convergence in the L2 sense, we must also then have pointwise convergence,
as we aimed to establish. �

With this we may give a proof of Theorem 4.3.1:

Proof of Theorem 4.3.1. Using Lemma 4.3.2, we may repeat the proof
of Theorem 4.1.3 given before, proving the theorem for continuous functions of
bounded support. To extend the proof also to continuous L1 functions we use the
following trick.

Let f : Rn → RN×N be a continuous and L1 function satisfying the hypothesis
of the theorem. For each T > 0 consider the function gT : Rn → RN×N defined
such that

gT (x) =
vol(B(0, T ) ∩B(x, T ))

volB(0, T )
f(x),

where B(p, T ) is the ball of radius T centered at p.
It is easy to see that gT is a continuous function of bounded support. It is also

clear that it satisfies condition (iii) from the statement of the theorem. We now
show that gT is a function of positive type, that is, it satisfies condition (ii).

For this pick any points x1, . . . , xm ∈ Rn. Let χi : Rn → {0, 1} be the char-
acteristic function of B(xi, T ) and denote by 〈φ, ψ〉 the standard inner product
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between functions φ and ψ in the Hilbert space L2(Rn). Then

gT (xi − xj) =
vol(B(0, T ) ∩B(xi − xj , T ))

volB(0, T )
f(xi − xj)

=
vol(B(xi, T ) ∩B(xj , T ))

volB(0, T )
f(xi − xj)

=
〈χi, χj〉

volB(0, T )
f(xi − xj).

This shows that the matrix
(
gT (xi−xj)

)m
i,j=1

is positive semidefinite, being the

Hadamard product, i.e. entrywise product, of two positive semidefinite matrices. We
therefore have that gT is of positive type.

Now, gT is a continuous function of positive type and bounded support, satis-
fying condition (iii). It is very possible, however, that gT does not satisfy condi-
tion (i), and so the conclusion of the theorem may not apply to gT . Let us now fix
this problem.

Notice that gTij converges pointwise to fij as T → ∞. Moreover, for all T > 0

we have |gTij(x)| ≤ |fij(x)|. It then follows from Lebesgue’s dominated convergence

theorem that ĝTij(0) → f̂ij(0) as T → ∞. This means that there exists a num-
ber T0 > 0 such that for each T ≥ T0 we may pick a number α(T ) ≥ 1 so that the
function hT : Rn → CN×N such that

hTii(x) = α(T )gTii(x) for i = 1, . . . , N,

hTij(x) = gTij(x) for i, j = 1, . . . , N with i 6= j

for all x ∈ Rn satisfies condition (i). We may moreover pick the numbers α(T ) in
such a way that limT→∞ α(T ) = 1.

It is also easy to see that each function hT is of positive type and bounded
support and satisfies condition (iii). Hence the conclusion of the theorem applies
for each hT , and so for every T ≥ T0 we see that

MT = max{hTii(0) : i = 1, . . . , N }
is an upper bound for the density of any packing of translated copies of K1, . . . , KN .
But then, since gTii(0) = fii(0) for all T ≥ 0, and since limT→∞ α(T ) = 1, we see
that

max{ fii(0) : i = 1, . . . , N } = lim
T→∞

MT ,

finishing the proof. �

4.4. Computations for binary spherical cap packings

In this and the next section we describe how we obtained the numerical results
of Sections 4.1.2 and 4.1.3. Our approach is computational: to apply Theorems 4.1.2
and 4.1.3 we use techniques from semidefinite programming and polynomial opti-
mization.

We start by briefly discussing the case of binary spherical cap packings. Next
we will discuss the more computationally challenging case of binary sphere packings.

It is a classical result of Lukács (see e.g. Theorem 1.21.1 in Szegö [93]) that a real
univariate polynomial p of degree 2d is nonnegative on the interval [a, b] if and only
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if there are real polynomials q and r such that p(x) = (q(x))2 +(x−a)(b−x)(r(x))2.
This characterization is useful when we combine it with the elementary but powerful
observation (discovered independently by several authors, cf. Laurent [67]) that a
real univariate polynomial p of degree 2d is a sum of squares of polynomials if and
only if p(x) = v(x)TQv(x) for some positive semidefinite matrix Q, where v(x) =
(1, x, . . . , xd) is a vector whose components are the monomial basis.

Let α1, . . . , αN ∈ (0, π] be angles and d be an integer. Write v0(x) =
(1, x, . . . , xd) and v1(x) = (1, x, . . . , xd−1). Using this characterization together
with Theorem 4.1.2, we see that the optimal value of the following optimization
problem gives an upper bound for the density of a packing of spherical caps with
angles α1, . . . , αN .

Problem A. For k = 0, . . . , 2d, find positive semidefinite matrices
(
fij,k

)N
i,j=1

,

and for i, j = 1, . . . , N , find (d + 1) × (d + 1) positive semidefinite matrices Qij
and d× d positive semidefinite matrices Rij that minimize

max

{ 2d∑
k=0

fii,k : i = 1, . . . , N

}
and are such that (

fij,0 − w(αi)
1/2w(αj)

1/2
)N
i,j=1

is positive semidefinite and the polynomial identities

(14)

2d∑
k=0

fij,kP
n
k (u) + 〈Qij , v0(u)v0(u)T〉

+ 〈Rij , (u+ 1)(cos(αi + αj)− u)v1(u)v1(u)T〉 = 0

are satisfied for i, j = 1, . . . , N . C

Above, 〈A,B〉 denotes the trace inner product between matrices A and B.
Problem A is a semidefinite programming problem, as the polynomial identities (14)
can each be expressed as 2d + 1 linear constraints on the entries of the matrices
involved. Indeed, to check that a polynomial is identically zero, it suffices to check
that the coefficient of each monomial 1, x, . . . , x2d is zero, and for each such
monomial we get a linear constraint.

In the above, we work with the standard monomial basis 1, x, . . . , x2d, but we
could use any other basis of the space of polynomials of degree at most 2d, both
to define the vectors v0 and v1 and to check the polynomial identity (14). Such a
change of basis does not change the problem from a formal point of view, but can
drastically improve the performance of the solvers used. In our computations for
binary spherical cap packings it was enough to use the standard monomial basis.
We will see in the next section, when we present our computations for the Euclidean
space, that a different choice of basis is essential.

We reported in Section 4.1.2 on our calculations for N = 1, and 2 and n = 3,
4, and 5. The bounds, for the angles under consideration, do not seem to improve
beyond d = 25, so we use this value for d in all computations. To obtain these
bounds we used the solver SDPA-QD, which works with quadruple precision floating
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point numbers, from the SDPA family [36]. To generate the input for the solver
we wrote a SAGE [84] program using SDPSL [79] (our programs are distributed as
part of SDPSL).

4.5. Computations for binary sphere packings

In this section we discuss our computational approach to find upper bounds for
the density of binary sphere packings using Theorem 4.1.3. This is a more difficult
application of semidefinite programming and polynomial optimization techniques
than the one described in Section 4.4.

It is often the case in applications of sum of squares techniques that, if one
formulates the problems carelessly, high numerical instability invalidates the final
results, or even numerical results cannot easily be obtained. This raises questions
of how to improve the formulations used and the precision of the computations, so
that we may provide rigorous bounds. We also address these questions and, since
the techniques we use and develop might be of interest to the reader who wants to
perform computations in polynomial optimization, we include some details.

4.5.1. Theorem 4.1.3 for multiple-size sphere packings. In the case of
sphere packings, Theorem 4.1.3 can be simplified. The key observation here is
that, when all the bodies Ki are spheres, then condition (iii) depends only on
the norm of the vector x. More specifically, if each Ki is a sphere of radius ri,
then K◦i ∩ (x+K◦j ) = ∅ if and only if ‖x‖ ≥ ri + rj .

So in Theorem 4.1.3 one can choose to restrict oneself to radial functions. A
function f : Rn → C is radial if the value of f(x) depends only on the norm of x.
If f : Rn → C is radial, for t ≥ 0 we denote by f(t) the common value of f for
vectors of norm t.

The Fourier transform f̂(u) of a radial function f also depends only on the
norm of u; in other words, the Fourier transform of a radial function is also ra-
dial. By restricting ourselves to radial functions, we obtain the following version of
Theorem 4.1.3.

Theorem 4.5.1. Let r1, . . . , rN > 0 and let f : Rn → RN×N be a matrix-
valued function whose every component fij is a radial Schwartz function. Suppose f
satisfies the following conditions:

(i) the matrix
(
f̂ij(0)− (volB(ri))

1/2(volB(rj))
1/2
)N
i,j=1

is positive semidefi-

nite, where B(r) is the ball of radius r centered at the origin;

(ii) the matrix of Fourier transforms
(
f̂ij(t)

)N
i,j=1

is positive semidefinite for

every t > 0;
(iii) fij(w) ≤ 0 if w ≥ ri + rj, for i, j = 1, . . . , N .

Then the density of any packing of spheres of radii r1, . . . , rN in the Euclidean
space Rn is at most max{ fii(0) : i = 1, . . . , N }.

One might ask whether the restriction to radial functions worsens the bound of
Theorem 4.1.3. For spheres, this is not the case. Indeed, suppose each body Ki is
a sphere. If f : Rn → RN×N is a function satisfying the conditions of the theorem,
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then its radialized version, the function

f(x) =

∫
Sn−1

f(‖x‖ξ) dωn(ξ),

also satisfies the conditions of the theorem, and it provides the same upper bound.
This shows in particular that, for the case of multiple-size sphere packings, Theo-
rem 4.5.1 is equivalent to Theorem 4.1.3.

4.5.2. A semidefinite programming formulation. To simplify notation
and because it is the case of our main interest we now take N = 2. Everything in
the following also goes through for arbitrary N with obvious modifications.

To find a function f satisfying the conditions of Theorem 4.5.1 we specify f
via its Fourier transform. Let d ≥ 0 be an odd integer and consider the even
function ϕ : R≥0 → R2×2 such that

ϕij(t) =

d∑
k=0

aij,kt
2k,

where each aij,k is a real number and aij,k = aji,k for all k. We set the Fourier
transform of f to be

f̂ij(u) = ϕij(‖u‖)e−π‖u‖
2

.

Notice that each f̂ij is a Schwartz function, so its Fourier inverse is also Schwartz.
The reason why we choose this form for the Fourier transform of f is that it

makes it simple to compute f from its Fourier transform by using the following
result.

Lemma 4.5.2. We have that

(15)

∫
Rn
‖u‖2ke−π‖u‖

2

e2πiu·x du = k!π−ke−π‖x‖
2

L
n/2−1
k (π‖x‖2),

where L
n/2−1
k is the Laguerre polynomial of degree k with parameter n/2− 1.

For background on Laguerre polynomials, we refer the reader to the book by
Andrews, Askey, and Roy [2].

Proof. With f(u) = ‖u‖2ke−π‖u‖2 , the left hand side of (15) is equal to f̂(−x).
By [2, Theorem 9.10.3] we have

f̂(−x) = 2π‖x‖1−n/2
∫ ∞

0

s2ke−πs
2

Jn/2−1(2πs‖x‖)sn/2 ds,

where Jn/2−1 is the Bessel function of the first kind with parameter n/2− 1. Using
[2, Corollary 4.11.8] we see that this is equal to

(16) π−k
Γ(k + n/2)

Γ(n/2)
e−π‖x‖

2

1F1

( −k
n/2

;π‖x‖2
)
,

where 1F1 is a hypergeometric series.
By [2, (6.2.2)] we have

1F1

( −k
n/2

;π‖x‖2
)

=
k!

(n/2)k
L
n/2−1
k (π‖x‖2),
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where (n/2)k = (n/2)(1 + n/2) · · · (k − 1 + n/2).
By substituting this in (16), and using the property that Γ(x+ 1) = xΓ(x) for

all x 6= 0,−1,−2, . . ., we obtain the right hand side of (15) as desired. �

So we have

fij(x) =

∫
Rn
ϕij(‖u‖)e−π‖u‖

2

e2πiu·x du =

d∑
k=0

aij,k k!π−ke−π‖x‖
2

L
n/2−1
k (π‖x‖2).

Notice that it becomes clear that fij is indeed real-valued, as required by the theo-
rem.

Consider the polynomial

p(t) =

d∑
k=0

akt
2k.

According to Lemma 4.5.2, if g(x) is the Fourier inverse of ĝ(u) = p(‖u‖)e−π‖u‖2 ,

then g(‖x‖) = q(‖x‖)e−π‖x‖2 , where

q(w) =

d∑
k=0

ak k!π−kL
n/2−1
k (πw2)

is a univariate polynomial. We denote the polynomial q above by F−1[p]. Notice
that F−1[p] is obtained from p via a linear transformation, i.e., its coefficients are
linear combinations of the coefficients of p. With this notation we have

fij(x) = F−1[ϕij ](‖x‖)e−π‖x‖
2

.

Let

(17) σ(t, y1, y2) =

2∑
i,j=1

d∑
k=0

aij,kt
2kyiyj .

If this polynomial is a sum of squares, then it is nonnegative everywhere, and

hence the matrices
(
ϕij(t)

)2
i,j=1

are positive semidefinite for all t ≥ 0. This implies

that f satisfies condition (ii) of Theorem 4.5.1. (The converse is also true, that if

the matrices
(
ϕij(t)

)2
i,j=1

are positive semidefinite for all t ≥ 0, then σ is a sum

of squares; For a proof see Choi, Lam, Reznick [20]. This fact is related to the
Kalman-Yakubovich-Popov lemma in systems and control; see the discussion in
Aylward, Itani, and Parrilo [5].)

Moreover, we may recover ϕ, and hence f̂ , from σ. Indeed we have

ϕ11(t) = σ(t, 1, 0),

ϕ22(t) = σ(t, 0, 1), and

ϕ12(t) = (1/2)(σ(t, 1, 1)− σ(t, 1, 0)− σ(t, 0, 1)).

(18)

So we can express condition (i) of Theorem 4.5.1 in terms of σ. We may also express
condition (iii) in terms of σ, since it can be translated as

(19) F−1[ϕij ](w) ≤ 0 for all w ≥ ri + rj and i, j = 1, 2 with i ≤ j.
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If we find a polynomial σ of the form (17) that is a sum of squares, is such that

(20)
(
ϕij(0)− (volB(ri))

1/2(volB(rj))
1/2
)2
i,j=1

is positive semidefinite, and satisfies (19), then the density of a packing of spheres
of radii r1 and r2 is upper bounded by

max{F−1[ϕ11](0),F−1[ϕ22](0)}.
We may encode conditions (19) in terms of sums of squares polynomials (cf. Sec-

tion 4.4), and therefore we may encode the problem of finding a σ as above as a
semidefinite programming problem, as we show now.

Let P0, P1, . . . be a sequence of univariate polynomials where polynomial Pk
has degree k. Consider the vector of polynomials v, which has entries indexed
by {0, . . . , bd/2c} given by

v(t)k = Pk(t2)

for k = 0, . . . , bd/2c. We also write V (t) = v(t)v(t)T.
Consider also the vector of polynomials m with entries indexed by {1, 2} ×

{0, . . . , bd/2c} given by

m(t, y1, y2)i,k = Pk(t2)yi

for i, j = 1, 2 and k = 0, . . . , bd/2c.
Since σ is an even polynomial, it is a sum of squares if and only if there are

positive semidefinite matrices S0, S1 ∈ R(d+1)×(d+1) such that

σ(t, y1, y2) = 〈S0,m(t, y1, y2)m(t, y1, y2)T〉+ 〈S1, t
2m(t, y1, y2)m(t, y1, y2)T〉.

From the matrices S0 and S1 we may then recover ϕij and also F−1[ϕij ]. A
more convenient way for expressing ϕij in terms of S0 and S1 is as follows. Consider
the matrices

Y11 =

(
1 0
0 0

)
, Y22 =

(
0 0
0 1

)
, and Y12 =

(
0 1/2

1/2 0

)
.

Then

ϕij(t) = 〈S0, V (t)⊗ Yij〉+ 〈S1, t
2V (t)⊗ Yij〉

and

F−1[ϕij ](w) = 〈S0,F−1[V (t)](w)⊗ Yij〉+ 〈S1,F−1[t2V (t)](w)⊗ Yij〉,
where F−1, when applied to a matrix, is applied to each entry individually.

With this, we may consider the following semidefinite programming problem
for finding a polynomial σ satisfying the conditions we need.

Problem B. Find (d+ 1)× (d+ 1) real positive semidefinite matrices S0 and S1,
and (bd/2c+ 1)× (bd/2c+ 1) real positive semidefinite matrices Q11, Q22, and Q12

that minimize

max{〈S0,F−1[V (t)](0)⊗ Y11〉+ 〈S1,F−1[t2V (t)](0)⊗ Y11〉,
〈S0,F−1[V (t)](0)⊗ Y22〉+ 〈S1,F−1[t2V (t)](0)⊗ Y22〉}

and are such that

(21)
(
〈S0, V (0)⊗ Yij〉 − (volB(ri))

1/2(vol(B(rj))
1/2
)2
i,j=1
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is positive definite and the polynomial identities

(22)
〈S0,F−1[V (t)](w)⊗ Yij〉+ 〈S1,F−1[t2V (t)](w)⊗ Yij〉

+ 〈Qij , (w2 − (ri + rj)
2)V (w)〉 = 0

are satisfied for i, j = 1, 2 and i ≤ j. C

Any solution to this problem gives us a polynomial σ of the shape (17) which
is a sum of squares and satisfies conditions (19) and (20), and so the optimal value
is an upper bound for the density of any packing of spheres of radius r1 and r2.
There might be, however, polynomials σ satisfying these conditions that cannot
be obtained as feasible solutions to Problem B, since condition (22) is potentially
more restrictive than condition (19) (compare Problem B above with Lukács’ result
mentioned in Section 4.4). In our practical computations this restriction was not
problematic and we found very good functions.

Observe also that Problem B is really a semidefinite programming problem.
Indeed, the polynomial identities in (22) can each be represented as d + 1 linear
constraints in the entries of the matrices Si and Qij . This is the case because
testing whether a polynomial is identically zero is the same as testing whether each
monomial has a zero coefficient and so, since all our polynomials are even and of
degree 2d, we need only check if the coefficients of the monomials x2k are zero
for k = 0, . . . , d.

4.5.3. Numerical results. When solving Problem B, we need to choose a
sequence P0, P1, . . . of polynomials. A choice which works well in practice is

Pk(t) = µ−1
k L

n/2−1
k (2πt),

where µk is the absolute value of the coefficient of L
n/2−1
k (2πt) with largest absolute

value. We observed in practice that the standard monomial basis performs poorly.
To represent the polynomial identities in (22) as linear constraints we may

check that each monomial x2k of the resulting polynomial has coefficient zero. We
may use, however, any basis of the space of even polynomials of degree at most 2d
to represent such identities. Given such a basis, we expand each polynomial in
it and check that the expansion has only zero coefficients. The basis we use to
represent the identities is P0(t2), P1(t2), . . . , Pd(t

2), which we observed to work
much better than t0, t2, . . . , t2d. Notice that no extra variables are necessary if
we use a different basis to represent the identities. We need only keep, for each
polynomial in the matrices F−1[V (t)](w), F−1[t2V (t)](w), w2V (w), and V (w), its
expansion in the basis we want to use.

The plot in Figure 3 was generated by solving Problem B with d = 31 using
the solver SDPA-GMP from the SDPA family [36]. To generate the solver input
we wrote a SAGE [84] program using SDPSL [79] working with floating-point
arithmetic and precision of 256 bits; see the examples in the source distribution
of SDPSL for the source code. For each dimension 2, . . . , 5 we solved Problem B
with r1 = r/1000 and r2 = 1 for r = 200, 201, . . . , 1000; the reason we start
with r = 200 is that for smaller values of r the solver runs into numerical stability
problems. We also note that the solver has failed to solve some of the problems, and
these points have been ignored when generating the plot. The number of problems
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that could not be solved was small though: for n = 2 all problems could be solved,
for n = 3 there were 6 failures, for n = 4 we had 18 failures, and finally for n = 5
the solver failed for 137 problems.

With our methods we can achieve higher values for d, but we noticed that
the bound does not improve much after d = 31. For instance, in dimension 2
for r1 = 1/2 and r2 = 1, we obtain the bound 0.9174466 . . . for d = 31 and the
bound 0.9174426 . . . for d = 51.

∗ ∗ ∗
In the previous account of how the plot in Figure 3 was generated, we swept under
the rug all precision issues. We generate the data for the solver using floating-point
arithmetic, and the solver also uses floating-point arithmetic. We cannot therefore
be sure that the optimal value found by the solver gives a valid bound at all.

If we knew a priori that Problem B is strictly feasible (that is, that it admits
a solution in which the matrices Si and Qij are positive definite), and if we had
some control over the dual solutions, then we could use semidefinite programming
duality to argue that the bounds we compute are rigorous; see for instance Gijswijt
[39, Chapter 7.2] for an application of this approach in coding theory. The matter
is however that we do not know that Problem B is strictly feasible, neither do we
have knowledge about the dual solutions. In fact, most of our approach to provide
rigorous bounds consists in finding a strictly feasible solution.

A naive idea to turn the bound returned by the solver into a rigorous bound
would be to simply project a solution returned by the solver onto the subspace given
by the constraints in (22). If the original solution is of good quality, then this would
yield a feasible solution.

There are two problems with this approach, though. The first problem is that
the matrices returned by the solver will have eigenvalues too close to zero, and
therefore after the projection they might not be positive semidefinite anymore. We
discuss how to handle this issue below.

The second problem is that to obtain a rigorous bound one would need to
perform the projection using symbolic computations and rational arithmetic, and
the computational cost is just too big. For instance, we failed to do so even for d = 7.

Our approach avoids projecting the solution using symbolic computations. Here
is an outline of our method.

(1) Obtain a solution to the problem with objective value close the optimal
value returned by the solver, but in which every matrix Si and Qij is
positive definite by a good margin and the maximum violation of the
constraints is very small.

(2) Approximate matrices Si and Qij by rational positive semidefinite matri-
ces S̄i and Q̄ij having minimum eigenvalues at least λi and µij , respec-
tively.

(3) Compute a bound on how much constraints (22) are violated by S̄i and Q̄ij
using rational arithmetic. If the maximum violation of the constraints is
small compared to the bounds λi and µij on the minimum eigenvalues,
then we may be sure that the solution can be changed into a feasible
solution without changing its objective value too much.
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We now explain how each step above can be accomplished.
First, most likely the matrices Si, Qij returned by the solver will have eigenval-

ues very close to zero, or even slightly negative due to the numerical method which
might allow infeasible steps.

To obtain a solution with positive definite matrices we may use the following
trick (cf. Löfberg [70]). We solve Problem B to find its optimal value, say z∗. Then
we solve a feasibility version of Problem B in which the objective function is absent,
but we add a constraint to ensure that

max{〈S0,F−1[V (t)](0)⊗ Y11〉+ 〈S1,F−1[t2V (t)](0)⊗ Y11〉,
〈S0,F−1[V (t)](0)⊗ Y22〉+ 〈S1,F−1[t2V (t)](0)⊗ Y22〉} ≤ z∗ + η,

where η > 0 should be small enough so that we do not jeopardize the objective
value of the solution, but not too small so that a good strictly feasible solution
exists. (We take η = 10−5, which works well for the purpose of making a plot.) The
trick here is that most semidefinite programming solvers, when solving a feasibility
problem, will return a strictly feasible solution — the analytical center —, if one
can be found.

This partially addresses step (1), because though the solution we find will be
strictly feasible, it might violate the constraints too much. To quickly obtain a
solution that violates the constraints only slightly, we may project our original
solution onto the subspace given by constraints (22) using floating-point arithmetic
of high enough precision. If the solution returned by the solver had good precision
to begin with, then the projected solution will still be strictly feasible.

As an example, for our problems with d = 31, SDPA-GMP returns solutions
that violate the constraints by at most 10−30. By doing a projection using floating-
point arithmetic with 256 bits of precision in SAGE, we can bring the violation
down to about 10−70 without affecting much the eigenvalues of the matrices.

So we have addressed step (1). For step (2) we observe that simply converting
the floating-point matrices Si, Qij to rational matrices would work, but then we
would be in trouble to estimate the minimum eigenvalues of the resulting rational
matrices in a rigorous way. Another idea of how to make the conversion is as follows.

Say we want to approximate floating-point matrix A by a rational matrix Ā.
We start by computing numerically an approximation to the least eigenvalue of A.
Say λ̃ is this approximation. We then use binary search in the interval [λ̃/2, λ̃] to
find the largest λ so that the matrix A − λI has a Cholesky decomposition; this
we do using floating-point arithmetic of high enough precision. If we have this
largest λ, then

A = LLT + λI

where L is the Cholesky factor of A − λI. Then we approximate L by a rational
matrix L̄ and we set

Ā = L̄L̄T + λI,

obtaining thus a rational approximation of A and a bound on its minimum eigen-
value.

Our idea for step (3) is to compare the maximum violation of constraints (22)
with the minimum eigenvalues of the matrices. To formalize this idea, suppose that
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constraints (22) are slightly violated by S̄i, Q̄ij . So for instance we have

(23)
〈S̄0,F−1[V (t)](w)⊗ Y11〉+ 〈S̄1,F−1[t2V (t)](w)⊗ Y11〉

+ 〈Q̄11, (w
2 − (2r1)2)V (w)〉 = p,

where p is an even polynomial of degree at most 2d. Notice that we may compute an
upper bound on the absolute values of the coefficients of p using rational arithmetic.

To fix this constraint we may distribute the coefficients of p in the matrices S̄0

and Q̄11 (a very similar idea was presented by Löfberg [70]). To make things precise,
for k = 1, . . . , d write

i(k) = min{bd/2c, k − 1},
j(k) = k − 1− i(k).

Pairs (i(k), j(k)) correspond to entries of the matrix V (w). Notice that the poly-
nomial (w2 − (2r1)2)V (w)i(k)j(k) has degree 2k.

So the polynomials

R0 = F−1[V (t)00](w),

R1 = (w2 − (2r1)2)V (w)i(1)j(1),

...

Rd = (w2 − (2r1)2)V (w)i(d)j(d)

form a basis of the space of even polynomials of degree at most 2d. We may then
express our polynomial p in this basis as

p = α0R0 + · · ·+ αdRd.

Now, we subtract α0 from (S̄0)(1,0),(1,0) and αk from (Q̄11)i(k)j(k), for k = 1, . . . , d.
The resulting matrices satisfy constraint (23), and as long as the αk are small
enough, they should remain positive semidefinite. More precisely, it suffices to
require that d ‖(α1, . . . , αd)‖∞ ≤ µ11 and |α0| ≤ λ0.

There are two issues to note in our approach. The first one is that it has to be
applied again twice to fix the other two constraints in (22). The applications do not
conflict with each other: in each one we change a different matrix Q̄ij and different
entries of S̄0. We have to be careful though that we consider the changes to S̄0 at
once in order to check that it remains positive semidefinite.

The second issue is how to compute the coefficients αk. Computing them explic-
itly using symbolic computation is infeasible. One way to do it then is to consider
the basis change matrix between the bases x2k, for k = 0, . . . , d, and R0, . . . , Rd,
which we denote by U . Then we know that

‖(α0, . . . , αd)‖∞ ≤ ‖U−1‖∞‖p‖∞,

where ‖p‖∞ is the ∞-norm of the vector of coefficients of p in the basis x2k.
So if we have an upper bound for ‖U−1‖∞ we are done. To quickly find such

an upper bound, we use an algorithm of Higham [49] (cf. also Higham [50]) which
works for triangular matrices, like U . This bound proved to be good enough for our
purposes.
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4.6. Improving sphere packing bounds

We now prove Theorem 4.1.4 and show how to use it in order to compute the
bounds presented in Table 1.

Proof of Theorem 4.1.4. Let x1, . . . , xN ∈ Rn and L ⊆ Rn be a lattice
such that ⋃

v∈L

N⋃
i=1

v + xi +B

is a sphere packing, where B is the ball of radius 1/2 centered at the origin. We may
assume that, if i 6= j and v 6= 0, then the distance between the centers of v+xi+B
and xj+B is greater than 1+εm. Indeed, we could discard all xi that lie at distance
less than 1 + εm from the boundary of the fundamental parallelotope of L. If the
fundamental parallelotope is big enough (and if it is not, we may consider a dilated
version of L instead), this will only slightly alter the density of the packing, and
the resulting packing will have the desired property.

Consider the sum

(24)

N∑
i,j=1

∑
v∈L

f(v + xi − xj).

Using the Poisson summation formula, we may rewrite it as

1

vol(Rn/L)

N∑
i,j=1

∑
u∈L∗

f̂(u)e2πiu·(xi−xj).

By discarding all summands in the inner sum above except the one for u = 0,
we see that (24) is at least

N2 volB

vol(Rn/L)
.

For k = 1, . . . , m, write Fk = { (i, j) : ‖xi− xj‖ ∈ [1 + εk−1, 1 + εk) }. Then we
see that (24) is at most

Nf(0) + η1|F1|+ · · ·+ ηm|Fm|.

So we see that

N volB

vol(Rn/L)
≤ f(0) + η1

|F1|
N

+ · · ·+ ηm
|Fm|
N

.

Notice that the left-hand side above is exactly the density of our packing. Now,
from the definition of M(ε), it is clear that for k = 1, . . . , m we have

|F1|
N

+ · · ·+ |Fk|
N
≤M(εk),

and the theorem follows. �
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To find good functions f satisfying the conditions required by Theorem 4.1.4 we
use the approach from Section 4.5. We fix an odd positive integer d and specify f
via its Fourier transform, writing

ϕ(t) =

d∑
k=0

akt
2k

and setting

f̂(u) = ϕ(‖u‖)e−π‖u‖
2

.

Using Lemma 4.5.2 we then have that

f(x) = F−1[ϕ](‖x‖)e−π‖x‖
2

,

where

F−1[ϕ](w) =

d∑
k=0

akk!π−kL
n/2−1
k (πw2)

is a polynomial obtained as a linear transformation of ϕ.

Constraint (ii), requiring that f̂(u) ≥ 0 for all u ∈ Rn, can be equivalently
expressed as requiring that the polynomial ϕ should be a sum of squares.

Recalling the result of Lukács mentioned in Section 4.4, one may also express
constraint (iii) in terms of sums of squares: one simply has to require that there
exist polynomials p0(w) and q0(w) such that

F−1[ϕ](w) = −(p0(w))2 − (w2 − (1 + εm)2)(q0(w))2.

In a similar way, one may express constraints (iv). For instance, for a given k,
we require that there should exist polynomials pk(w) and qk(w) such that

F−1[ϕ](w)e−π(1+εk−1)2

− η1 = −(pk(w))2− (w− (1 + εk−1))((1 + εk)−w)(qk(w))2,

and this implies (iv).
So we may represent the constraints on f in terms of sums of squares, and there-

fore also in terms of semidefinite programming, as we did in Sections 4.4 and 4.5.
There is only the issue that now we want to find a function f that satisfies con-
straints (i)–(iv) of the theorem and that minimizes the maximum in (2). This does
not look like a linear objective function, but since by linear programming duality
this maximum is equal to

min f(0) + y1U(ε1) + · · ·+ ymU(εm)
yi + · · ·+ ym ≥ ηi for i = 1, . . . , m,
yk ≥ 0 for k = 1, . . . , m,

we may transform our original problem into a single minimization semidefinite pro-
gramming problem, the optimal value of which provides an upper bound for the
densities of sphere packings.

It is still a question how to compute upper bounds for M(ε). For this we
use upper bounds on the sizes of spherical codes. A spherical code with minimum
angular distance 0 < θ ≤ π is a set C ⊆ Sn−1 such that the angle between any two
distinct points in C is at least θ. In other words, a spherical code with minimum
angular distance θ gives a packing of spherical caps with angle θ/2. We denote
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by A(n, θ) the maximum cardinality of any spherical code in Sn−1 with minimum
angular distance θ.

For ε ≤ (
√

5− 1)/2 we have

M(ε) ≤ A(n, arccos t(ε)), where t(ε) = 1− 1

2(1 + ε)2
.

This follows from the proof of [22, Lemma 4.1] which we replicate here for the
convenience of the reader: Suppose x, y ∈ Rn are such that ‖x‖, ‖y‖ ∈ [1, 1 + ε]
and ‖x− y‖ ≥ 1. Then by the law of cosines

cos∠(x, y) =
‖x‖2 + ‖y‖2 − ‖x− y‖2

2‖x‖ ‖y‖
≤ ‖x‖

2 + ‖y‖2 − 1

2‖x‖ ‖y‖
.

The right hand side is convex as a function of ‖x‖ or ‖y‖ individually, so it is upper
bounded by the maximal value at the four vertices of the square [1, 1 + ε]2. Since

ε ≤ (
√

5−1)/2, the maximum occurs for ‖x‖ = ‖y‖ = 1+ε, which gives the desired
bound.

For the bounds of Table 1 we took d = 31. To compute upper bounds for A(n, θ)
we used the semidefinite programming bound of Bachoc and Vallentin [9]. The
bounds we used for computing Table 1 are given in Table 2.

Finally, we mention that all numerical issues discussed in Section 4.5 also hap-
pen with the approach we sketched in this section. In particular, the choices of bases
are important for the stability of the semidefinite programming problems involved.
We use the same bases as described in Section 4.5 though, so we skip a detailed
discussion here. Notice moreover that our bounds are rigorous, having been checked
with the same approach described in Section 4.5.

Dimension (ε, U(ε)) pairs

4 (0.008097, 24), (0.017446, 25), (0.025978, 26), (0.036951, 27)
5 (0.003013, 45), (0.008097, 46), (0.013259, 47), (0.017446, 48)
6 (0.002006, 79), (0.004024, 80), (0.006054, 81), (0.008097, 82)
7 (0.001001, 136), (0.002006, 137), (0.003013, 138), (0.004024, 139),

(0.005037, 140)
9 (0.003013, 373), (0.029233, 457), (0.030325, 459), (0.031421, 464),

(0.032520, 468), (0.033622, 473)

Table 2. For each dimension considered in Table 1 we show here
the sequence ε1 < · · · < εm and the upper bounds U(εk) used in
our application of Theorem 4.1.4.

We refrained from performing similar calculations for higher dimensions be-
cause of two reasons. Firstly, we expect that the improvements are only minor.
Secondly, the computations of the upper bounds for M(ε) in higher dimensions re-
quire substantially more time as one needs to solve the semidefinite programs with
a high accuracy solver, see Mittelmann and Vallentin [74].





CHAPTER 5

Optimal polydisperse packing densities using
objects with large size ratio

This chapter is based on the publication “D. de Laat, Optimal polydisperse
packing densities using objects with large size ratio, in preparation”.

Abstract. Let ∆ denote the optimal packing density of Euclidean space by
unit balls. We show the optimal packing density using two sizes of balls approaches
∆+(1−∆)∆ as the ratio of the radii tends to infinity. More generally, if B is a body
and B a finite set of bodies, then we show the optimal density ∆{rB}∪B of packings
using congruent copies of the bodies {rB} ∪ B converges to ∆B + (1−∆B)∆{B} as
r tends to zero.

5.1. Introduction

There has been extensive research into the determination of optimal monodis-
perse packing densities. A well-known example is Hales’s proof of the Kepler conjec-
ture on the optimal sphere packing density in R3 [44]. More recently, packings with
polydispersity have been investigated: New lower and upper bounds for the density
of packings of spheres using several sizes have been given in respectively [53] and
[60]. In applications, sphere packings can be used to model many-particle systems,
and here it is important to also consider polydispersity as this can “dramatically
affect the microstructure and the effective properties of the materials” [97]. In this
note we discuss the case of wide dispersity; that is, the case where the size ratio of
the larger to the smaller objects grows large. One would expect boundary behavior
to become negligible as the ratio of the radii tends to infinity, which intuitively
means the density converges to ∆ + (1−∆)∆, see for instance [96]. To the best of
our knowledge a proof of this has not yet been published. Here we provide such a
proof which used standard techniques albeit it is not trivial.

We prove the following theorem:

Theorem 5.1.1. Suppose B is a body and B is a finite set of bodies. Then,

lim
r↓0

∆{rB}∪B = ∆B + (1−∆B)∆{B}.

Here ∆B denotes the optimal packing density using the bodies from the set B. In R2

this means that by taking B to be the unit disk and B = {B}, the theorem says the
optimal packing density using two sizes of disks converges to 0.9913 . . . as the ratio
of the radii goes to infinity. In R3 this means the optimal packing density using two
sizes of balls converges to 0.9326 . . . as the ratio of the radii goes to infinity.
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5.2. Packings and density

We define a body to be a bounded subset of Rn that has nonempty interior and
whose boundary has Lebesgue measure zero. Such a set B is Jordan measurable
[13], which means it admits inner and outer approximations by simple sets whose
measures are arbitrarily close to the Lebesgue measure of B. Moreover, since the
interior of a body is nonempty it contains a nontrivial ball and hence has strictly
positive Lebesgue measure.

A packing using a set of bodies B is a set of congruent copies of the elements
in B such that the interiors of the copies are pairwise disjoint. In other words, a
packing is of the form

P =
{
RiBi + ti : i ∈ N, Ri ∈ O(n), ti ∈ Rn, Bi ∈ B

}
,

where (RiB
◦
i + ti) ∩ (RjB

◦
j + tj) = ∅ for all i 6= j, where B◦i denotes the interior of

Bi, and where O(n) is the orthogonal group. Let ΣB be the set of packings that use
bodies from B and ΛB the set of packings P ∈ ΣB that have rational box periodicity ;
that is, for which there exists a p ∈ Q such that |P |+pei = |P | for all i ∈ [n], where
|P | =

⋃
P denotes the carrier of P , and where ei is the ith unit vector.

The density and upper density (provided these exist) of a subset S of Rn are
defined as

ρ(S) = lim
r→∞

λ(S ∩ rC)

rn
and ρ(S) = lim sup

r→∞

λ(S ∩ rC)

rn
.

Here λ is the Lebesgue measure on Rn, and C is the unit cube centered about the
origin. The upper density ρ̄(|P |) is defined for every P ∈ ΣB, because for each r > 0,
the set |P |∩rC is Lebesgue measurable with measure at most rn. The density ρ(|P |)
is defined for all P ∈ ΛB: Let p ∈ Q be a period of P , then D = λ(|P |∩kpC)/(kp)n

does not depend on k ∈ N, and for r inbetween kp and (k + 1)p we have

λ(|P | ∩ kpC)

((k + 1)p)n
≤ λ(|P | ∩ rC)

rn
≤ λ(|P | ∩ kpC)

((k + 1)p)n
+

((k + 1)p)n − (kp)n

((k + 1)p)n
,

where the rightmost term as well as |λ(|P |∩kpC)
((k+1)p)n −D| converge to 0 as k →∞.

We define the optimal packing density for packings that use bodies from B by

∆B = sup
P∈ΣB

ρ(|P |) = sup
P∈ΛB

ρ(|P |).

The second equality follows because for each P ∈ ΣB, we can construct a periodic
packing with rational box periodicity whose density is arbitrarily close to ρ(|P |) by
taking the subpacking contained in a sufficiently large cube and tiling space with
this part of the packing. One could wonder whether the optimal density depends
on the fact that C is a cube, but it follows from [42] that the optimal density ∆B
is also equal to supP∈ΛB limr→∞ λ(|P | ∩ (rB + t))/λ(rB), where t is any point in
Rn and where B is any compact set that is the closure of its interior and contains
the origin in its interior.
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5.3. Packings of wide polydispersity

We first show that a packing, and hence the interstitial space of a packing, can
be approximated uniformly by grid cubes. Given S ⊆ Rn and k ∈ Z, define the
packings

Gk(S) =
{
Ck,t : t ∈ Zn, Ck,t ⊆ S

}
and Gk(S) =

{
Ck,t : t ∈ Zn, Ck,t ∩ S 6= ∅

}
,

where Ck,t is the cube [ t1
2k
, t1+1

2k
] × · · · × [ tn

2k
, tn+1

2k
] having side length 1

2k
. Given a

set P of subsets of Rn, let P c = Rn \ |P |.

Lemma 5.3.1. Let B be a finite set of bodies. Then

ρ(|Gk(|P |)|) ↑ ρ(|P |) and ρ(|Gk(|P |)|) ↓ ρ(|P |)

and hence

ρ(|Gk(P c)|) ↑ 1− ρ(|P |) and ρ(|Gk(P c)|) ↓ 1− ρ(|P |)

as k →∞ for P ∈ ΛB uniformly.

Proof. Let ε > 0 and P ∈ ΛB. Since P has rational box periodicity, the pack-
ings Gk(|P |) and Gk(|P |) have rational box periodicity, which means the densities
ρ(|Gk(|P |)|) and ρ(|Gk(|P |)|) are defined. For each k ∈ Z we have

|Gk(|P |)| ⊆ |P | ⊆ |Gk(|P |)|,

hence

ρ(|Gk(|P |)|) ≤ ρ(|P |) ≤ ρ(|Gk(|P |)|).
We have

ρ(|Gk(|P |)|) = lim
r→∞

λ(|Gk(|P |)| ∩ rC)

rn
≥ lim
r→∞

1

rn

∑
B∈P :B⊆rC

λ(|Gk(B)|)

and

ρ(|Gk(|P |)|) = lim
r→∞

λ(|Gk(|P |)| ∩ rC)

rn
≤ lim
r→∞

1

rn

∑
B∈P :B∩rC 6=∅

λ(|Gk(B)|).

Every B ∈ B is Jordan measurable, so there exists a number K = K(B, ε) such
that

λ(|Gk(B)|) ≥ λ(B)− ε and λ(|Gk(B)|) ≤ λ(B) + ε

for all k ≥ K. Since B is a finite set, this implies

ρ(|Gk(|P |)|) ≥ lim
r→∞

1

rn

∑
B∈P :B⊆rC

(λ(B)− ε)

and

ρ(|Gk(|P |)|) ≤ lim
r→∞

1

rn

∑
B∈P :B∩rC 6=∅

(λ(B) + ε)
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for all k ≥ maxB∈BK(B, ε). Since each body B in the finite set B is bounded, there
exists a number r0 = r0(B) ≥ 0 such that

lim
r→∞

1

rn

∑
B∈P :B⊆rC

λ(B) ≥ lim
r→∞

λ(|P | ∩ (r − r0)C)

rn
= lim
r→∞

λ(|P | ∩ rC)

(r + r0)n
= ρ(|P |)

and

lim
r→∞

1

rn

∑
B∈P :B∩rC 6=∅

λ(B) ≤ lim
r→∞

λ(|P | ∩ (r + r0)C)

rn
= lim
r→∞

λ(|P | ∩ rC)

(r − r0)n
= ρ(|P |).

Moreover, each body in the finite set B has nonempty interior, so there exists a
constant c = c(B) such that the number of congruent copies of elements from B
that fit in a cube of radius r + r0 is at most crn. Hence,

lim
r→∞

1

rn

∑
B∈P :B⊆rC

ε ≤ cε and lim
r→∞

1

rn

∑
B∈P :B∩rC 6=∅

ε ≤ cε.

Hence, for all k ≥ maxB∈BK(B, ε) we have

ρ(|Gk(|P |)|) ≥ ρ(|P |)− cε and ρ(|Gk(|P |)|) ≤ ρ(|P |) + cε,

which implies

ρ(|Gk(|P |)|) ↑ ρ(|P |) and ρ(|Gk(|P |)|) ↓ ρ(|P |),

as k →∞ for P ∈ ΛB uniformly. This then implies

ρ(|Gk(P c)|) = 1− ρ(|Gk(|P |)|) ↑ 1− ρ(|P |)

and

ρ(|Gk(P c)|) = 1− ρ(|Gk(|P |)|) ↓ 1− ρ(|P |)
as k →∞ for P ∈ ΛB uniformly. �

Let B and B′ be sets of bodies. Given P ∈ ΛB, define

ΛB′(P ) =
{
Q ∈ ΛB∪B′ : Q = P ∪R, R ∈ ΛB′

}
.

The optimal density of such packings is given by ∆B′(P ) = supQ∈ΛB′ (P ) ρ(|Q|).
In the following lemma we give the optimal density when a part of the packing is
already fixed.

Lemma 5.3.2. Suppose B is a body and B is a finite set of bodies. Then

lim
r↓0

∆{rB}(P ) = ρ(|P |) + (1− ρ(|P |))∆{B} for P ∈ ΛB uniformly.

Proof. Let ε > 0 and P ∈ ΛB. By Lemma 5.3.1 there exists an integer
K = K(B, ε) such that

ρ(|Gk(P c)|) ≥ 1− ρ(|P |)− ε for all k ≥ K.

By the definition of density there exists a scalar R = R(k,B, ε) > 0 such that for
every 0 < r ≤ R we can pack each cube in Gk(P c) with congruent copies of rB
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with density at least ∆{B} − ε. Taking the union of these packings together with
{P} gives a packing from ∆{rB}(P ) which has density at least

ρ(|P |) + ρ(|Gk(P c)|)(∆{B} − ε) ≥ ρ(|P |) + (1− ρ(|P |)− ε)(∆{B} − ε)
≥ ρ(|P |) + (1− ρ(|P |))∆{B} − 2ε.

This implies

∆{rB}(P ) ≥ ρ(|P |) + (1− ρ(|P |))∆{B} − 2ε for all 0 < r ≤ R.

By Lemma 5.3.1 there exists an integer K ′ = K ′(B, ε) such that

ρ(|Gk(P c)|) ≤ 1− ρ(|P |) + ε for all k ≥ K.

Again by the definition of density there exists a scalar R′ = R′(k,B, ε) such that
for each 0 < r ≤ R′ and each Q ∈ Λ{rB}(P ), the intersection of Q \ P with a cube

from Gk(P c) has density at most ∆{B} + ε in that cube. So,

ρ(|Q|) = ρ(|P |) + ρ(|Q \ P |) ≤ ρ(|P |) + ρ(|Gk(P c)|)(∆{B} + ε)

≤ ρ(|P |) + (1− ρ(|P |) + ε)(∆{B} + ε)

≤ ρ(|P |) + (1− ρ(|P |))∆{B} + 2ε+ ε2,

hence

∆{rB}(P ) ≤ ρ(|P |) + (1− ρ(|P |))∆{B} + 2ε+ ε2 for all 0 < r ≤ R′. �

We prove the main theorem by using the uniform convergence in the above
lemma:

Proof of Theorem 5.1.1. We have Λ{rB}∪B =
⋃
Q∈ΛB

Λ{rB}(Q), so

∆{rB}∪B = sup
P∈Λ{rB}∪B

ρ(|P |) = sup
Q∈ΛB

sup
P∈Λ{rB}(Q)

ρ(|P |) = sup
Q∈ΛB

∆{rB}(Q),

and

lim
r↓0

∆{rB}∪B = lim
r↓0

sup
Q∈ΛB

∆{rB}(Q).

By Lemma 5.3.2, we have

lim
r↓0

∆{rB}(Q) = ρ(|Q|) + (1− ρ(|Q|))∆{B},

and since convergence is uniform for Q ∈ ΛB, we can interchange limit and supre-
mum and obtain

lim
r↓0

sup
Q∈ΛB

∆{rB}(Q) = sup
Q∈ΛB

lim
r↓0

∆{rB}(Q) = sup
Q∈ΛB

(ρ(|Q|) + (1− ρ(|Q|))∆{B})

= ∆{B} + (1−∆{B}) sup
Q∈ΛB

ρ(|Q|) = ∆{B} + (1−∆{B})∆B,

and since ∆{B}+(1−∆{B})∆B = ∆B+(1−∆B)∆{B} this completes the proof. �

As a special case of the above theorem we obtain the result in the abstract of
this note: We have limr↓0 ∆{B,rB} = ∆ + (1−∆)∆, where B is the closed unit ball
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and where ∆ = ∆{B}. By recursively applying the above theorem and rewriting
the resulting expression we see that if B1, . . . , Bk are bodies, then

lim
rk↓0
· · · lim

r1↓0
∆{r1B1,...,rkBk} = ∆{B1} + (1−∆{B1}) lim

rk↓0
· · · lim

r2↓0
∆{r2B2,...,rkBk}

= 1− (1−∆{B1}) · · · (1−∆{Bk}).

Moreover, if B is a body and B = {rB : r > 0}, then for each k we have

∆B ≥ lim
rk↓0
· · · lim

r1↓0
∆{r1B,...,rkB} = 1− (1−∆{B})

k,

so we get the intuitive result ∆B = 1.



CHAPTER 6

A semidefinite programming hierarchy for packing
problems in discrete geometry

This chapter is based on the publication “D. de Laat, F. Vallentin, A semi-
definite programming hierarchy for packing problems in discrete geometry, Math.
Program., Ser. B 151 (2015), 529-553.”

Abstract. Packing problems in discrete geometry can be modeled as finding
independent sets in infinite graphs where one is interested in independent sets which
are as large as possible. For finite graphs one popular way to compute upper
bounds for the maximal size of an independent set is to use Lasserre’s semidefinite
programming hierarchy. We generalize this approach to infinite graphs. For this we
introduce topological packing graphs as an abstraction for infinite graphs coming
from packing problems in discrete geometry. We show that our hierarchy converges
to the independence number.

6.1. Packing problems in discrete geometry

Many, often notoriously difficult, problems in discrete geometry can be modeled
as packing problems in graphs where the vertex set is an uncountable set having
additional geometric structure.

The most famous example is the sphere packing problem in 3-dimensional space,
the Kepler problem, which was solved by Hales [44] in 1998. Here the vertex set
is R3 and two points are adjacent whenever their Euclidean distance is in the open
interval (0, 2).

An independent set of an undirected graph G = (V,E) is a subset of the vertex
set which does not span an edge. In the sphere packing case, an independent set
corresponds to centers of unit balls which do not intersect in their interior. Now one
is trying to find an independent set which covers as much space as possible. What
“much” means depends on the situation. When the vertex set V , the container, is
compact and when we pack identical shapes we can simply count and we use the
independence number

α(G) = sup{|I| : I ⊆ V, I is independent}.

If the objects are of different size we provide them with a weight w(x) and we
use the weighted independence number

αw(G) = sup
{∑
x∈I

w(x) : I ⊆ V, I is independent
}
.

77
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In the non-compact sphere packing case one needs to use a density version of the
independence number since maximal independent sets have infinite cardinality: The
(upper) point density of an independent set I ⊂ R3 is

δ(I) = lim sup
R→∞

|I ∩ [−R,R]3|
vol([−R,R]3)

,

where [−R,R]3 is the cube centered at the origin with side length 2R. This measures
the number of centers of unit balls per unit volume. To determine the geometric
density of the corresponding sphere packing we multiply δ(I) by the volume of the
unit ball.

More examples include:

— Error correcting q-ary codes: V = Fnq , where {x, y} ∈ E if their Hamming
distance lies in the open interval (0, d). If q = 2 we speak about binary
codes and if we restrict to all code words having the same Hamming norm
we speak about constant weight codes.

— Spherical codes: V = Sn−1, where {x, y} ∈ E if their inner product lies in
the open interval (cos(θ), 1).

— Codes in real projective space: V = RPn−1, where {x, y} ∈ E if their
distance lies in the open interval (0, d).

— Sphere packings: V = Rn, where {x, y} ∈ E if their Euclidean distance
lies in the open interval (0, 2).

— Binary sphere packings: V = Rn × {1, 2} where {(x, i), (y, j)} ∈ E if the
Euclidean distance between x and y lies in the open interval (0, ri + rj)
and w(x, i) = rni volBn, where Bn is the unit ball.

— Binary spherical cap packings: V = Sn−1×{1, 2} where {(x, i), (y, j)} ∈ E
if the inner product of x and y lies in the open interval (cos(θi + θj), 1)
and w(x, i) is the volume of the spherical cap {z ∈ Sn−1 : x · z ≥ cos(θi)}.

— Packings of congruent copies of a convex body: V = Rn o SO(n) where
(x,A) and (y,B) are adjacent if x+AK◦ ∩ y +BK◦ 6= ∅, where K◦ is the
interior of the convex body K.

Currently, these problems have been solved in only a few special cases. One
might expect that they will never be solved in full generality, for all parameters.
Finding good lower bounds by constructions and good upper bounds by obstructions
are both challenging tasks. Over the last years the best known results were achieved
with computer assistance: Algorithms like the adaptive shrinking cell scheme of
Torquato and Jiao [95] generate dense packings and give very good lower bounds.
The combination of semidefinite programming and harmonic analysis often gives
the best known upper bounds for these packing problems. This method originated
from work of Hoffman [51], Delsarte [26], and Lovász [71].
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6.2. Lasserre’s hierarchy for finite graphs

Computing the independence number of a finite graph is an NP-hard problem as
shown by Karp [55]. Approximating optimal solutions of NP-hard problems in com-
binatorial optimization with the help of linear and semidefinite optimization is a very
wide and active area of research. The most popular semidefinite programming hier-
archies for NP-hard combinatorial optimization problems are the Lovász-Schrijver
hierarchy [72] (the N+-operator) and the hierarchy of Lasserre [64]. Laurent [65]
showed that Lasserre’s hierarchy is stronger than the Lovász-Schrijver hierarchy.

We now give a formulation of Lasserre’s hierarchy for computing the indepen-
dence number of a finite graph G = (V,E). Here we follow Laurent [65]. The t-th
step of Lasserre’s hierarchy is:

last(G) = max
{∑
x∈V

y{x} : y ∈ RI2t≥0, y∅ = 1, Mt(y) is positive semidefinite
}
,

where It is the set of all independent sets with at most t elements and where
Mt(y) ∈ RIt×It is the moment matrix defined by the vector y: Its (J, J ′)-entry
equals

(Mt(y))J,J ′ =

{
yJ∪J′ if J ∪ J ′ ∈ I2t,
0 otherwise.

The first step in Lasserre’s hierarchy coincides with the ϑ′-number, the strength-
ened version of Lovász ϑ-number [71] which is due to Schrijver [86]; for a proof see
for instance the book by Schrijver [88, Theorem 67.11]. Furthermore the hierarchy
converges to α(G) after at most α(G) steps:

ϑ′(G) = las1(G) ≥ las2(G) ≥ . . . ≥ lasα(G)(G) = α(G).

Lasserre [64] showed this convergence in the general setting of hierarchies for
0/1 polynomial optimization problems by using Putinar’s Positivstellensatz [81].
Laurent [65] gave an elementary proof, which we discuss in Section 6.8.

Many variations are possible to set up a semidefinite programming hierarchy:
For instance one can consider only “interesting” principal submatrices to simplify
the computation and one can also add more constraints coming from problem spe-
cific arguments. In fact, in the definition of last(G) we used the nonnegativity
constraints yS ≥ 0 for S ∈ I2t. Even without them, the convergence result holds,
and the first step in the hierarchy coincides with the Lovász ϑ-number.

A rough classification for all these variations can be given in terms of n-point
bounds. This refers to all variations which make use of variables yS with |S| ≤ n.
An n-point bound is capable of using obstructions coming from the local interaction
of configurations having at most n points. For instance the Lovász ϑ-number is a
2-point bound and the t-th step in Lasserre’s hierarchy is a 2t-point bound. The
relation between n-point bounds and Lasserre’s hierarchy was first made explicit by
Laurent [66] in the case of bounds for binary codes.

6.3. Topological packing graphs

The aim of this paper is to define and analyze a semidefinite programming
hierarchy which upper bounds the independence number for infinite graphs arising
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from packing problems in discrete geometry. For this we consider graphs where
vertices which are close are adjacent, and where vertices which are adjacent will stay
adjacent after small enough perturbations. These two conditions will be essential
at many places in this paper. We formalize them by the following definition.

Definition 6.3.1. A graph whose vertex set is a Hausdorff topological space
is called a topological packing graph if each finite clique is contained in an open
clique. An open clique is an open subset of the vertex set where every two vertices
are adjacent.

It clearly suffices to verify the condition for cliques of size one and two.
Of course, every graph is a packing graph when we endow the vertex set with the

discrete topology. However, weaker topologies give stronger conditions on the edge
sets. For instance, when the vertex set of a topological packing graph is compact,
then the independence number is finite because every single vertex is a clique.

A distance graph G = (V,E) is a graph where (V, d) is a metric space, and where
there exists D ⊆ (0,∞) such that x and y are adjacent precisely when d(x, y) ∈ D.
If D is open and contains the interval (0, δ) for some δ > 0, then G is a topological
packing graph. That D contains an interval starting from 0 implies that vertices
which are close are adjacent, and that D is open implies that adjacent vertices will
stay adjacent after small enough perturbations. The binary spherical cap packing
graph as defined in Section 6.1 is a compact topological packing graph with the
usual topology on the vertex set Sn−1 × {1, 2}. And although there exists a metric
compatible with this topology which gives the graph as a distance graph1, it is easier
and more natural to work directly with the topological packing graph structure.

Notice that in Definition 6.3.1 requiring all cliques to be contained in an open
clique — which by Zorn’s lemma is equivalent to all maximal cliques being open —
would give a strictly stronger condition.2

6.4. Generalization of Lasserre’s hierarchy

Now we introduce our generalization of Lasserre’s hierarchy for compact topo-
logical packing graphs.

Before we go into the technical details we like to comment on the choice of spaces
in our generalization: In Lasserre’s hierarchy for finite graphs the optimization
variable y lies in the cone3 RI2t≥0. One might try to use the same cone when I2t is
uncountable. But then there are too many variables and it is impossible to express
the objective function. At the other extreme one might try to restrict this cone to
finitely (or countably) supported vectors. But then we do not know how to develop
a duality theory like the one in Section 6.7. A duality theory is important for
concrete computations: Minimization problems can be used to derive upper bounds

1Assume θ1 < θ2 and let ε be some number strictly between (1 − θ1/θ2)/2 and 1. Let

D = (0, 1), and let d((x, i), (y, j)) be given by εδi6=j + (1 − εδi6=j) arccos(x · y) (θ1 + θ2)−1 when

x · y < cos(θi + θj) and 1 otherwise.
2Consider the graph with vertex set [0, 1] × Z where (x, i) and (y, j) are adjacent if i = j

or when x and y are both strictly smaller than |i − j|−1 (for i 6= j). Here each finite clique is

contained in an open clique, but the countable clique {0} × Z is not.
3In this paper cones are always assumed to be convex.
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rigorously. We use a cone of Borel measures where we have “one degree of freedom”
for every open set.

In Section 6.6 we use the topology of V to equip the set It, consisting of the
independent sets which have at most t elements, with a Hausdorff topology. There
we also use the topological packing graph condition to show that It is compact.

Let C(I2t) be the set of continuous real-valued functions on I2t. By the Riesz
representation theorem (see e.g. [11, Chapter 2.2]) the topological dual of C(I2t),
where the topology is defined by the supremum norm, can be identified with the
space M(I2t) of signed Radon measures. A signed Radon measure is the difference
of two Radon measures, where a Radon measure ν is a locally finite measure on the
Borel algebra satisfying inner regularity : ν(B) = sup{ν(C) : C ⊆ B, C compact}
for each Borel set B. Nonnegative functions in C(I2t) form the cone C(I2t)≥0. Its
conic dual (C(I2t)≥0)∗ is the cone of positive Radon measures

M(I2t)≥0 = {λ ∈M(I2t) : λ(f) ≥ 0 for all f ∈ C(I2t)≥0}.

Denote by C(It×It)sym the space of symmetric kernels, which are the continuous
functions K : It × It → R such that

K(J, J ′) = K(J ′, J) for all J, J ′ ∈ It.

We say that a symmetric kernel K is positive definite if

(K(Ji, Jj))
m
i,j=1 is positive semidefinite for all m ∈ N and J1, . . . , Jm ∈ It.

The positive definite kernels form the cone C(It × It)�0. The dual of C(It × It)sym

can be identified with the space of symmetric signed Radon measuresM(It×It)sym.
Here a signed Radon measure µ ∈M(It × It) is symmetric if

µ(E × E′) = µ(E′ × E) for all Borel sets E and E′.

We say that a measure µ ∈ M(It × It)sym is positive definite if it lies in the dual
cone M(It × It)�0 = (C(It × It)�0)∗.

Now we are ready to define our generalization:

— The optimization variable is λ ∈M(I2t)≥0.

— The objective function evaluates λ at I=1, where in general,

I=t = {S ∈ It : |S| = t},

and so when t = 1 we simply deal with all vertices, as singleton sets. This
is similar to the objective function

∑
x∈V y{x} in Lasserre’s hierarchy for

finite graphs.

— The normalization condition reads λ({∅}) = 1.

— For generalizing the moment matrix condition “Mt(y) is positive semidef-
inite” we use a dual approach. Let Tt be the operator such that for all
vectors y and all matrices Y we have 〈Mt(y), Y 〉1 = 〈y, TtY 〉2, where 〈·, ·〉1
is the trace inner product of matrices and 〈·, ·〉2 is standard vector inner
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product. Instead of directly generalizing the operator Mt, we will dualize
the following generalization of the operator Tt:

At : C(It × It)sym → C(I2t) by AtK(S) =
∑

J,J ′∈It:J∪J′=S
K(J, J ′).

We have ‖AtK‖∞ ≤ 22t‖K‖∞, so At is bounded and hence continuous.
Thus there exists the adjointA∗t : M(I2t)→M(It×It)sym and the moment
matrix condition reads A∗tλ ∈M(It × It)�0.

Definition 6.4.1. The t-th step of the generalized hierarchy is

last(G) = sup
{
λ(I=1) : λ ∈M(I2t)≥0, λ({∅}) = 1, A∗tλ ∈M(It × It)�0

}
.

Clearly, we have a nonincreasing chain

(25) las1(G) ≥ las2(G) ≥ . . . ≥ lasα(G)(G) = lasα(G)+1(G) = . . .

which stabilizes after α(G) steps, and specializes to the original hierarchy if G is a
finite graph. Each step gives an upper bound for α(G) because for every independent
set S the measure

λ =
∑

R∈I2t:R⊆S

δR, where δR is the delta measure at R,

is a feasible solution for last(G) with objective value |S|. To see this we note that
λ({∅}) = 1, and for any K ∈ C(It × It)�0 we have

〈K,A∗tλ〉 = 〈AtK,λ〉 =
∑

R∈I2t:R⊆S

∑
J,J ′∈It:J∪J′=R

K(J, J ′)

=
∑

J,J ′∈It:J,J ′⊆S

K(J, J ′) ≥ 0.

In Section 6.7 we consider the dual program of last(G), which is

last(G)∗ = inf
{
K(∅, ∅) : K ∈ C(It × It)�0,

AtK(S) ≤ −1I=1(S) for S ∈ I2t \ {∅}
}
,

and we show that strong duality holds in every step:

Theorem 6.4.2. Let G be a compact topological packing graph. For every t ∈ N
we have last(G) = last(G)∗, and if last(G) is finite4, then the optimum in last(G)
is attained.

In Section 6.8 we show that the chain (25) converges to the independence num-
ber:

Theorem 6.4.3. Let G be a compact topological packing graph. Then,

lasα(G)(G) = α(G).

4We show this in Remark 6.9.4.
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A variation of last(G) can be used to upper bound the weighted independence
number of a weighted compact topological packing graphG with a continuous weight
function w : V → R≥0. We extend w, with the obvious abuse of notation, to a
function w : I2t → R≥0 where only singleton sets have positive weight. It turns
out, by Lemma 6.6.2, that also the extension is continuous. Then we replace the
objective function λ(I=1) by λ(w).

6.5. Explicit computations in the literature

Explicit computations of n-point bounds have been done in a variety of situa-
tions. The following table provides a guide to the literature:

Packing problem 2-point bound 3-point bound 4-point bound

Binary codes Delsarte [26] Schrijver [89]
Gijswijt,
Mittelmann,
Schrijver [40]

q-ary codes Delsarte [26]
Gijswijt,
Schrijver,
Tanaka [41]

Constant weight codes Delsarte [26]
Schrijver [89],
Regts [82]

Spherical codes
Delsarte,
Goethals,
Seidel [27]

Bachoc,
Vallentin [9]

Codes in RPn−1 Kabatiansky,
Levenshtein [54]

Cohn,
Woo [23]

Sphere packings
Cohn,
Elkies [21]

Binary sphere and
spherical cap packings

de Laat,
Oliveira,
Vallentin [60]

Congruent copies
of a convex body

Oliveira,
Vallentin [80]

For the first three packing problems in this table one can use Lasserre’s hierarchy
for finite graphs. For the last five packing problems in this table our generalization
can be used, where in the last three cases one has to perform a compactification of
the vertex set first.

We elaborate on the connection between these n-point bounds and our hierarchy
in Section 6.9. The convergence of the hierarchy, shows that this approach is in
theory capable of solving any given packing problem in discrete geometry. One
attractive feature of the hierarchy is that already its first steps give strong upper
bounds as one can see from the papers cited in the table above.

6.6. Topology on sets of independent sets

Let G = (V,E) be a topological packing graph. In this section we introduce a
topology on It, the set of independent sets having cardinality at most t.

We equip the direct product V t with the product topology and the image of V t

under the map

q : (v1, . . . , vt) 7→ {v1, . . . , vt}
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with the quotient topology. When we add the empty set to the image we obtain
the collection subt(V ) of all subsets of V of cardinality at most t, which obtains
its topology from the disjoint union topology. Compactness of subt(V ) follows
immediately from compactness of V . Handel [46, Proposition 2.7] shows that it is
Hausdorff.

Given U1, . . . , Ur ⊆ V , define

(U1, . . . , Ur)t = {S ∈ subt(V ) : S ⊆ U1 ∪ · · · ∪ Ur, S ∩ Ui 6= ∅ for 1 ≤ i ≤ r}.
Handel [46] observes

q−1((U1, . . . , Ur)t) =
⋃

τ :{1,...,t}→{1,...,r}
τ surjective

Uτ(1) × · · · × Uτ(t).

This shows that if the sets Ui are open, then (U1, . . . , Ur)t is open. In fact, if B is
a base for V , then

Bt = {(U1, . . . , Ur)t : 1 ≤ r ≤ t, U1, . . . , Ur ∈ B}
is a base for subt(V ). Moreover, if {u1, . . . , ur} is an element in an open set U in
subt(V ), then there are open neighborhoods Ui of ui such that the open neighbor-
hood (U1, . . . , Ur)t of {u1, . . . , ur} is a contained in U .

We now endow It with a topology as a subset of subt(V ). Clearly, I=1 is
homeomorphic to V . It is also immediate that It is Hausdorff. Furthermore, it is
compact:

Lemma 6.6.1. Let G = (V,E) be a compact topological packing graph. Then It
is compact for every t ∈ N.

Proof. We will show that It is closed, respectively that its complement Dt =
subt(V ) \ It is open in the compact space subt(V ). Let {x1, . . . , xr} ∈ Dt be
arbitrary. Without loss of generality we may assume that x1 and x2 are adjacent.
By the topological packing graph condition there exists an open clique U ⊆ V
containing both x1 and x2. Since V is a Hausdorff space there exist disjoint open sets
U1 and U2 such that x1 ∈ U1 ⊆ U and x2 ∈ U2 ⊆ U . Each set in (U1, U2, V, . . . , V )t
contains at least one edge, so (U1, U2, V, . . . , V )t ⊆ Dt. The set (U1, U2, V, . . . , V )t
is an open neighborhood of {x1, . . . , xr}. Hence, Dt is open. �

If the topology on V comes from a metric, then the topology on subt(V ) is
given by the Hausdorff distance, see for example Borsuk and Ulam [17]. This indi-
cates that subsets of nonequal cardinality can be close in the topology on subt(V ).
However, in the following lemma, we use the topological packing graph condition
to show that independent sets of different cardinality are in different connected
components of It.

Lemma 6.6.2. Let G = (V,E) be a topological packing graph. The map It → N,
S 7→ |S| is continuous for every t ∈ N. In particular, I=t is both open and closed.

Proof. Let {Sα} be a net in It converging to {x1, . . . , xr} ∈ It, where we
assume the xi to be pairwise different. By the topological packing graph condition,
there exist pairwise disjoint open cliques Ui such that xi ∈ Ui. The set (U1, . . . , Ur)t
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is open and contains {x1, . . . , xr}. Hence, we eventually have Sα ∈ (U1, . . . , Ur)t.
Then |Sα| ≥ r since the Ui are pairwise disjoint and |Sα| ≤ r since the Ui are
cliques. �

6.7. Duality theory of the generalized hierarchy

6.7.1. A primal-dual pair. In this section we derive the dual program of the
t-th step in our hierarchy last(G).

We want to have a symmetric situation between primal and dual. We consider
the dual pairs (C(I2t),M(I2t)) and (C(It× It)sym,M(It× It)sym) together with the
corresponding nondegenerate bilinear forms

〈f, λ〉 = λ(f) =

∫
f(S) dλ(S) and 〈K,µ〉 = µ(K) =

∫
K(J, J ′) dµ(J, J ′).

We endow the spaces with the weakest topologies compatible with the pairing:
the weak topology on the function spaces and the weak* topology on the measure
spaces. From now on we will always use these topologies unless explicitly stated
otherwise. Because the cones defined in Section 6.4 are closed, it follows from the
bipolar theorem that

(M(I2t)≥0)∗ = C(I2t)≥0 and (M(It × It)�0)∗ = C(It × It)�0.

Hence, the situation is completely symmetric.

Recall that the operator

At : C(It × It)sym → C(I2t), AtK(S) =
∑

J,J ′∈It:J∪J′=S
K(J, J ′)

is continuous in the norm topologies, so it follows that it is continuous in the weak
topologies. In the next subsection we use that its adjoint A∗t is injective:

Lemma 6.7.1. Let G = (V,E) be a compact topological packing graph. Then
the operator At is surjective for every t ∈ N.

Proof. Let g be a function in C(I2t). The continuity of

u : It × It → sub2t(V ), (J, J ′) 7→ J ∪ J ′

follows from [46]. Hence

h : u−1(I2t)→ R, (J, J ′) 7→ g(J ∪ J ′)
AtJ (J ∪ J ′)

is continuous where J is the kernel which evaluates to 1 everywhere.
The set I2t is closed in sub2t(V ), so the preimage u−1(I2t) is closed in It × It.

Since It×It is a compact Hausdorff space there exists, by Tietze’s extension theorem,
a function H ∈ C(It × It) such that H(J, J ′) = h(J, J ′) for all J, J ′ ∈ It. For each
S ∈ I2t we then have

AtH(S) =
∑

J,J ′∈It:J∪J′=S
H(J, J ′) =

∑
J,J ′∈It:J∪J′=S

h(J, J ′)

=
1

AtJ (S)

∑
J,J ′∈It:J∪J′=S

g(J ∪ J ′) = g(S). �
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Using the theory of duality in conic optimization problems, see for instance
Barvinok [10], we derive the dual hierarchy:

last(G)∗ = inf
{
K(∅, ∅) : K ∈ C(It × It)�0,

AtK(S) ≤ −1I=1
(S) for S ∈ I2t \ {∅}

}
,

where one should note that by Lemma 6.6.2 the characteristic function 1I=1
is

continuous. It follows from weak duality that last(G) ≤ last(G)∗, and hence last(G)∗

upper bounds the independence number. In the following lemma we give a simple
direct proof.

Lemma 6.7.2. Let G = (V,E) be a compact topological packing graph. Then

α(G) ≤ last(G)∗

holds for all t ∈ N.

Proof. Suppose K is feasible and L is an independent set. Then

0 ≤
∑

J,J ′∈subt(L)

K(J, J ′) =
∑

S∈sub2t(L)

AtK(S)

= K(∅, ∅) +
∑
x∈L

AtK({x}) +
∑

S∈sub2t(L)\sub1(L)

AtK(S) ≤ K(∅, ∅)− |L|. �

The hierarchy last(G)∗ stabilizes after α(G) steps, because the variables and
constraints are the same for each t ≥ α(G). By Lemma 6.6.2 the set It is both open
and closed in It+1, which means we can extend a feasible kernel K of last(G)∗ by
zeros to obtain a feasible solution to last+1(G)∗ with the same objective value. This
shows that the hierarchy is nonincreasing; that is, last+1(G)∗ ≤ last(G)∗ for all t.
These results also follow from strong duality as discussed next.

6.7.2. Strong duality. In this section we prove Theorem 6.4.2: We have
strong duality between the problems last(G) and last(G)∗. We will show the finite-
ness of last(G)∗ in Remark 6.9.4.

For proving Theorem 6.4.2 we make use of a closed cone condition, which for
example is explained in Barvinok [10, Chapter IV.7]. For this we have to show that
last(G) has a feasible solution, which we already know from Section 6.4, and that
the cone

K =
{

(A∗t ξ − µ, ξ({∅}), ξ(I=1)) : µ ∈M(It × It)�0, ξ ∈M(I2t)≥0

}
is closed in M(It × It)sym × R× R. The above cone is the Minkowski difference of

K1 =
{

(A∗t ξ, ξ({∅}), ξ(I=1)) : ξ ∈M(I2t)≥0

}
and

K2 =
{

(µ, 0, 0) : µ ∈M(It × It)�0

}
.

By a theorem of Klee [56] and Dieudonné [28] the Minkowski difference K1 −K2

is closed when the three conditions

(A) K1 ∩K2 = {0},
(B) K1 and K2 are closed,
(C) K1 is locally compact.
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are satisfied. The fact that K2 is closed follows immediately since M(It × It)�0 is
closed. We now verify the other conditions:

Lemma 6.7.3. K1 ∩K2 = {0}.

Proof. We will show that ξ ∈ M(I2t)≥0 with ξ({∅}) = 0 is the zero measure
if A∗t ξ ∈M(It × It)�0.

Let f ∈ C(It × It)sym be given by

f(J, J ′) =

{
1 if J = J ′ = ∅,
0 otherwise.

Then A∗t ξ({(∅, ∅)}) = 〈f,A∗t ξ〉 = 〈Atf, ξ〉 = ξ({∅}) = 0.

For n ∈ Z define gn ∈ C(It) by

gn(S) =

{
|n| if S = ∅,
1/n otherwise.

Since gn ⊗ gn ∈ C(It × It)�0 and A∗t ξ ∈ M(It × It)�0 we have A∗t ξ(gn ⊗ gn) ≥ 0.
We have that A∗t ξ(gn ⊗ gn) equates to

n2A∗t ξ
(
{(∅, ∅)}

)
+

1

n2
A∗t ξ

(
It \ {∅} × It \ {∅}

)
+ 2 sign(n)A∗t ξ

(
{∅} × It \ {∅}

)
.

The first term is zero, so the sum of the last two terms is nonnegative for each n.
By letting n tend to plus and minus infinity we see that A∗t ξ({∅} × It \ {∅}) = 0.

Define h ∈ C(It × It)sym by

h(J, J ′) =


1 if J = ∅ and J ′ = ∅,
1/2 if J = ∅ or J ′ = ∅,
0 otherwise.

Since ξ is a positive measure we have ‖ξ‖ = ξ(I2t), but

ξ(I2t) = 〈Ath, ξ〉 = 〈h,A∗t ξ〉 = A∗t ξ({(∅, ∅)}) +A∗t ξ({∅} × It \ {∅}) = 0,

so ξ = 0. �

Remark 6.7.4. The set I2t is a subset of the power set 2V . A power set
is a monoid with the associative binary operation ∪ and unit element ∅. Monoids
have sufficient structure for defining functions of positive type, which in this case are
functions f : 2V → R for which the matrices (f(Ji∪Jj))mi,j=1 are positive semidefinite

for all m ∈ N and J1, . . . , Jm ∈ 2V . This monoid is commutative (i.e., J∪J ′ = J ′∪J
for all J, J ′ ∈ 2V ) and idempotent (i.e., J ∪ J = J for all J ∈ 2V ), so the matrix(

f(∅) f(J)
f(J) f(J)

)
is positive semidefinite,

and so 0 ≤ f(J) ≤ f(∅) for all J ∈ 2V [11, p. 119]. In particular, a function
of positive type which vanishes at the unit element is identically zero. This re-
sembles the situation in the proof of Lemma 6.7.3. To see this we show that one
can view λ ∈ M(I2t) with A∗tλ ∈ M(It × It)�0 as a “measure of positive type”.
For this we notice that a function f : 2V → R is of positive type if and only if
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S∈2V f(S)

∑
J∪J′=S g(J)g(J ′) ≥ 0 for all finitely supported functions g : 2V → R.

Going from the monoid 2V to the “truncated monoid” I2t, and from functions to
measures, we have the natural definition that a measure λ ∈ M(I2t) is of positive
type if

∫
At(g ⊗ g)(S) dλ(S) ≥ 0 for all g ∈ C(I2t), which is the case if and only

if A∗tλ ∈ M(It × It)�0. Moreover, if we define a convolution and an involution on
C(I2t) by f ∗ g = At(f ⊗ g) and f∗ = f , respectively, then a measure λ is of positive
type if and only if λ(f∗ ∗ f) ≥ 0 for all f ∈ C(I2t). This agrees with the definition
of measures of positive type as given for instance in [33, Chapter 6.3] for locally
compact groups, where a different algebra is used.

Before we consider condition (C) we need some background: A cone is locally
compact if it is locally compact as a topological space, that is, each point in the
cone is contained in a compact neighborhood relative to the cone. A cone is locally
compact if the origin has a compact neighborhood relative to the cone: For each
point x in the cone and each neighborhood U of the origin there is an r > 0 such
that x ∈ rU . A convex base B of a cone K is a convex subset of the cone such that
every nonzero x ∈ K can be written in a unique way as a positive multiple of an
element in B. A cone is pointed if it does not contain a line. Now we can state a
theorem of Klee and Dieudonné [56, (2.4)]: A nonempty pointed cone in a locally
convex vector space is closed and locally compact if and only if it admits a compact
convex base.

Lemma 6.7.5. K1 is closed and locally compact.

Proof. Set
B = {ξ ∈M(I2t)≥0 : 〈1I2t , ξ〉 = 1}.

The map
M(I2t)→ R, ξ 7→ 〈1I2t , ξ〉

is continuous, so the preimage of {1} under this is closed. Hence, B is closed in
the space of probability measures on I2t, which is compact by the Banach-Alaoglu
theorem. So, B is compact as well.

By Lemma 6.7.1 A∗t is injective, so the map ξ 7→ (A∗t ξ, ξ({∅}), ξ(I=1)) is injective
and the image of B under this map is a compact convex base for K1. Hence, by
Klee, Dieudonné, the cone K1 is closed and locally compact. �

Remark 6.7.6. In this remark we show that for infinite graphs the cone K2

is not locally compact, and hence it is important that only one of the two cones is
required to be locally compact in condition (C). If V is an infinite set, then so is It,
which means that M(It) is an infinite dimensional (Hausdorff) topological vector
space which is therefore not locally compact. The Banach-Alaoglu theorem says
that the closed ball of radius r centered about the origin inM(It) is compact. This
means that it cannot be a neighborhood of the origin. Thus, for each r > 0 there
exists a net {λβ} ⊆ M(It) converging to the origin, such that ‖λβ‖ = r for all β.

Let f ∈ C(It × It)sym and ε > 0. The set

span{c g ⊗ g : c ∈ R, g ∈ C(It)}
is a point separating and nowhere vanishing subalgebra of C(It×It)sym, so it follows
from the Stone-Weierstrass theorem that it is dense in the uniform topology. This



6.8. CONVERGENCE TO THE INDEPENDENCE NUMBER 89

means that there exists a function f̃ =
∑m
i=1 cigi ⊗ gi such that ‖f̃ − f‖∞ ≤ ε/r2.

Then,

|λβ ⊗ λβ(f)| ≤ |λβ ⊗ λβ(f)− λβ ⊗ λβ(f̃)|+ |λβ ⊗ λβ(f̃)|

≤ ‖λβ ⊗ λβ‖‖f − f̃‖∞ +

m∑
i=1

ciλβ(gi)
2 → ε.

So, the net {λβ ⊗ λβ} in M(It × It)�0, which satisfies ‖λβ ⊗ λβ‖ = r2 for each β,
converges to the origin. Therefore, none of the closed balls centered about the origin
is a neighborhood of the origin in M(It × It)�0. Since compact sets are bounded,
this means that the origin does not have a compact neighborhood inM(It× It)�0,
so this cone is not locally compact and neither is K2.

6.8. Convergence to the independence number

In this section we prove Theorem 6.4.3: The chain (25) converges to the inde-
pendence number α(G).

Our proof can be seen as an infinite-dimensional version of Laurent’s proof of
the convergence of the hierarchy for finite graphs G = (V,E). In [65] she makes
use of the fact that the cone of positive semidefinite moment matrices where rows
and columns are indexed by the power set 2V is a simplicial polyhedral cone; an
observation due to Lindström [69] and Wilf [99]. More specifically,

(26) {M ∈ R2V ×2V : M � 0,M is a moment matrix} = cone{χSχT
S : S ⊆ V },

where a moment matrix M is a matrix where the entry MJ,J ′ only depends on the

union J ∪ J ′ and where the vector χS ∈ R2V is defined componentwise by

χS(R) =

{
1 if R ⊆ S,
0 otherwise.

The proof of (26) uses the inclusion-exclusion principle. In our proof the fol-
lowing form of the inclusion-exclusion principle will be crucial: Given finite sets A
and C, ∑

B:A⊆B⊆C

(−1)|B| = (−1)|A|
∑

B⊆C\A

(−1)|B|

= (−1)|A|
|C\A|∑
i=0

(
|C \A|

i

)
1|C\A|−i(−1)i

= (−1)|A|(1− 1)|C\A| =

{
(−1)|A| if A = C,

0 otherwise.

In our proof we are also faced with two analytical difficuties because we consider
infinite graphs: 1. The cone {A∗tλ : λ ∈ M(I2t)} ∩ M(It × It)�0 is not finitely
generated. 2. Also the power set 2V is too large.

The second problem we solve by considering the set I = Iα(G) instead of 2V . In
fact, already when we defined the hierarchy we used measures on independent sets
instead of measures on all subsets of the vertices.
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The first problem we solve by using weak vector valued integrals (as discussed
in for instance [33, Appendix 3]) instead of finite conic combinations: Let τ ∈
M(I) and νS ∈ M(I) so that S 7→ νS is a continuous map from I to M(I) with
supS∈I ‖νS‖ < ∞. Then f 7→

∫
νS(f) dτ(S) is a bounded linear map on C(I),

and hence defines a unique signed Radon measure ν on I which we denote by
ν =

∫
νS dτ(S). The point measures

δS and χR =
∑
Q⊆R

δQ

which we will use in the next proposition satisfy the above conditions, so we can
use them as integrants in vector valued integrals.

Now the proof of Theorem 6.4.3 will follow immediately from the following
proposition.

Proposition 6.8.1. Let G be a compact topological packing graph and suppose
λ is feasible for lasα(G)(G). Then there exists a unique probability measure

σ ∈ P(I) = {λ ∈M(I)≥0 : ‖λ‖ = 1}
such that

λ =

∫
χR dσ(R).

Proof. Existence: We have

λ =

∫
δS dλ(S) =

∫ ∑
R⊆S

(−1)|S\R|χR dλ(S),

because by the inclusion-exclusion principle∑
R⊆S

(−1)|S\R|χR =
∑
R⊆S

(−1)|S\R|
∑
Q⊆R

δQ =
∑
Q⊆S

δQ
∑

R:Q⊆R⊆S

(−1)|S\R| = δS .

The image of f ∈ C(I) under the linear map

C(I)→ R, f 7→
∫ ∑

R⊆S

(−1)|S\R|f(R) dλ(S)

has norm at most 2α(G)‖λ‖‖f‖∞, so the above linear functional is bounded and
hence defines a signed Radon measure σ on I. Then∫

χR(f) dσ(R) =

∫ ∑
R⊆S

(−1)|S\R|χR(f) dλ(S) = λ(f),

for each f ∈ C(I), so λ =
∫
χR dσ(R).

Uniqueness: If σ′ ∈ M(I2t) is another measure such that λ =
∫
χR dσ

′(R),
then

∫
χR d(σ − σ′)(R) = 0. Evaluating the above measure at a Borel set L ⊆ I=t

with t = α(G) gives

0 =

∫
χR(L) d(σ − σ′)(R) = (σ − σ′)(L),

so σ|I=t = σ′|I=t . Repeating this argument for t = α(G)− 1, . . . , 1, 0 shows σ = σ′,
which shows that σ is unique.
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Positivity: Let g ∈ C(I)≥0 be arbitrary and define f ∈ C(I) by

f(Q) =
∑
P⊆Q

(−1)|Q\P |
√
g(P ),

so that ∑
Q⊆R

f(Q) =
∑
Q⊆R

∑
P⊆Q

(−1)|Q\P |
√
g(P )

=
∑
P⊆R

(−1)|P |
√
g(P )

∑
Q:P⊆Q⊆R

(−1)|Q| =
√
g(R).

We have
0 ≤ 〈f ⊗ f,A∗α(G)λ〉 = 〈Aα(G)f ⊗ f, λ〉,

and since λ =
∫
χR dσ(R), the right hand side above is equal to∫ ∑

Q⊆R

Aα(G)(f ⊗ f)(Q) dσ(R).

Since we are in the final step of the hierarchy, we have that Aα(G)(f ⊗ f)(Q) can
be written as

∑
J∪J′=Q f(J)f(J ′), so the above equals

∫ ∑
Q⊆R

∑
J∪J′=Q

f(J)f(J ′) dσ(R) =

∫ ∑
Q⊆R

f(Q)

2

dσ(R) =

∫
g(R) dσ(R),

which shows that σ is a positive measure.

Normalization: σ is a probability measure, because

1 = λ({∅}) =

∫
χS({∅}) dσ(S) = ‖σ‖. �

Proposition 6.8.2. Let G be a compact topological packing graph. Then the
extreme points of the feasible region of lasα(G)(G) are precisely the measures χR
with R ∈ I.

Proof. If σ ∈ P(I) and λ =
∫
χR dσ(R), then

λ({∅}) =

∫
χR({∅}) dσ(R) = 1,

and for each K ∈ C(I × I)�0 we have

〈K,A∗α(G)λ〉 =

∫
χR(Aα(G)K) dσ(R) =

∫ ∑
J,J ′⊆R

K(J, J ′) dσ(R) ≥ 0,

so λ is feasible for lasα(G)(G). So we have the surjective linear map

L : P(I)→ F , σ 7→
∫
χR dσ(R),

where F denotes the feasible set of lasα(G)(G). By Proposition 6.8.1 the map L is
also injective. This means that

ex(F) = ex(L(P(I))) = L(ex(P(I)))
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and since ex(P(I)) = {δS : S ∈ I} (see for instance Barvinok [10, Proposition 8.4]),
the right hand side above is equal to L({δS : S ∈ I}) = {χR : R ∈ I}. �

Proof of Theorem 6.4.3 . Let λ be feasible for lasα(G)(G). By Proposi-

tion 6.8.1 there exists a probability measure σ on I such that λ =
∫
χS dσ(S).

Substituting this integral for λ in the definition of lasα(G)(G) gives

lasα(G)(G) ≤ max
{∫

χR(I=1)︸ ︷︷ ︸
|R|

dσ(R) : σ ∈ P(I)
}

= α(G),

and since we already know that lasα(G)(G) ≥ α(G), this completes the proof. �

6.9. Two and three-point bounds

6.9.1. Two-point bounds. The Lovász ϑ-number is a two-point bound origi-
nally defined for finite graphs. Bachoc, Nebe, Oliveira, and Vallentin [8] generalized
this to the spherical code graph, and they showed that it is equivalent to the linear
programming bound of Delsarte, Goethals, and Seidel [27]. The following general-
ization of the ϑ′-number for compact topological packing graphs G is natural:

ϑ′(G)∗ = inf
{
a : a ∈ R, F ∈ C(V × V )�0,

F (x, x) ≤ a− 1 for x ∈ V,
F (x, y) ≤ −1 for {x, y} ∈ I=2

}
.

Lemma 6.9.1. Let G be a compact topological packing graph. Then ϑ′(G)∗ has
a feasible solution.

For finite graphs one can show ϑ′(G)∗ admits a feasible solution by selecting a
matrix F with F (x, y) = −1 for {x, y} ∈ I=2 and the diagonal of F large enough
so as to make it diagonally dominant and hence positive semidefinite. For infinite
graphs it is not clear how to adapt this argument, so we use a different approach.

Proof Lemma 6.9.1 . By the topological packing graph condition there is for
each x ∈ V an open clique Cx containing x. Since V is a compact Hausdorff space,
it is a normal space, so there exists an open neighborhood Ux of x such that its
closure does not intersect V \Cx. By compactness there exists an S ⊆ V such that
{Ux : x ∈ S} is a finite open cover of V . By Urysohn’s lemma there is a function
fx ∈ C(V ) such that

fx(y)


= |S| if y ∈ Ux,
∈ [−1, |S|] if y ∈ Cx \ Ux,
= −1 if y ∈ V \ Cx.

Define
F ∈ C(V × V )�0 by F =

∑
x∈S

fx ⊗ fx, and a = |S|3 + 1.

Then,

F (y, y) =
∑
x∈S

fx(y)2 ≤ |S|3 = a− 1 for all y ∈ V.
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Moreover, if {y, y′} ∈ I=2, then at most one of y and y′ lies in Cx for every given
x ∈ S. So, fx(y)fx(y′) = −|S| if either y or y′ lies in Ux and fx(y)fx(y′) ≤ 1 if
neither y nor y′ lies in Ux. Hence, F (y, y′) ≤ −1 for all {y, y′} ∈ I=2, and it follows
that (a, F ) is feasible for ϑ′(G)∗. �

Now we show that the first step of our hierarchy equals the ϑ′-number for
compact topological packing graphs, as it is known for finite graphs.

Theorem 6.9.2. Let G be a compact topological packing graph. Then

las1(G)∗ = ϑ′(G)∗.

We prove this theorem by Lemma 6.9.3 and Lemma 6.9.6. We first show the
easy inequality.

Lemma 6.9.3. las1(G)∗ ≤ ϑ′(G)∗.

Proof. Assume (a, F ) is feasible for ϑ′(G)∗ and define K ∈ C(I1 × I1)sym by

K(∅, ∅) = a,

K(∅, {x}) = K({x}, ∅) = −1 for x ∈ V,
K({x}, {y}) = (F (x, y) + 1)/a for x, y ∈ V.

To show that K is positive definite we show that the matrix (K(Ji, Jj))
m
i,j=1 is

positive semidefinite for all m ∈ N and J1, . . . , Jm ∈ I1 pairwise different. If none
of the Ji’s is empty, then it follows directly. Otherwise we may assume that there
are x2, . . . , xm ∈ V such that J1 = ∅ and Ji = {xi} for i = 2, . . . ,m. We have(

K(Ji, Jj)−K(Ji, J1)K(J1, J1)−1K(J1, Jj)
)m
i,j=2

= a−1
(
F (xi, xj)

)m
i,j=2

,

so by the Schur complement
(
K(Ji, Jj)

)m
i,j=1

is positive semidefinite.

For x ∈ V we have

A1K({x}) = K({x}, {x}) +K({x}, ∅) +K(∅, {x}) = (F (x, x) + 1)/a− 2 ≤ −1,

and for {x, y} ∈ I=2 we have

A1K({x, y}) = K({x}, {y}) +K({y}, {x})
= (F (x, y) + 1)/a+ (F (y, x) + 1)/a ≤ 0.

So K is feasible for last(G)∗ and since K(∅, ∅) = a we have last(G)∗ ≤ ϑ′(G)∗. �

Remark 6.9.4. From this lemma we can see that for each t ∈ N the optimization
problem last(G)∗ has a feasible solution and so by strong duality the maximum in
last(G) is attained: By Lemma 6.9.1, ϑ′(G)∗ has a feasible solution, hence by the
lemma above las1(G)∗ also has one. Then this can be extended trivially to a feasible
solution for every last(G)∗.

To prove the other inequality we will use the following generalization of the
Schur complement.
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Lemma 6.9.5. Let X be a compact Hausdorff space and let x1, . . . , xn ∈ X be
elements such that the singletons {xi} are open. Suppose µ ∈M(X×X)sym is such
that the matrix A = (µ({(xi, xj)}))ni,j=1 is positive definite. Denote by F ⊆ C(X)
the set of functions which are zero on {x1, . . . , xn} and for g ∈ F define the vector
vg ∈ Rn by (vg)i = µ(1{xi} ⊗ g). Then µ is positive definite if and only if

µ(g ⊗ g)− vTgA−1vg ≥ 0 for all g ∈ F .

Proof. Mercer’s theorem says that a kernel K ∈ C(X × X)sym is positive
definite if and only if there exist sequences (fi)i and (λi)i in C(X) and R≥0 such
that K(x, y) =

∑∞
i=1 λifi ⊗ fi(x, y), where convergence is uniform and absolute. It

follows that µ ∈M(X ×X)�0 if and only if µ(f ⊗ f) ≥ 0 for all f ∈ C(X). Now we
use the technique as described in for instance the book by Boyd and Vandenberghe
[19, Appendix A.5.5] and note that the measure µ is positive definite if and only if
the function p : Rn ×F → R given by

p(r, g) = µ((r11{x1} + · · ·+ rn1{xn} + g)⊗ (r11{x1} + · · ·+ rn1{xn} + g))

= µ(g ⊗ g) + rTAr + 2rTvg

is nonnegative on its domain. We have ∇r p(r, g) = 2Ar + 2vg, so for fixed g, the
minimum of p is attained for r = −A−1vg. Hence p is nonnegative on its domain if
and only if µ(g ⊗ g)− vTgA−1vg ≥ 0 for all g ∈ F . �

Lemma 6.9.6. las1(G)∗ ≥ ϑ′(G)∗.

Proof. We will use the duals of ϑ′(G)∗ and las1(G)∗. We derive the dual ϑ′(G)
of ϑ′(G)∗ similarly to Section 6.7.1. We have

ϑ′(G) = sup
{
η(I2 \ {∅}) : η ∈M(I2 \ {∅})≥0,

η(I=1) = 1, T ∗η ∈M(I=1 × I=1)�0

}
,

where T : C(I=1 × I=1)→ C(I2 \ {∅}) is the operator defined by

TF (S) =

{
F ({x}, {x}) if S = {x},
1
2 (F ({x}, {y}) + F ({y}, {x})) if S = {x, y}.

Now we prove strong duality: ϑ′(G) = ϑ′(G)∗ and the optimum in ϑ′(G) is
attained. Following the approach from Section 6.7.2 we first observe that every
probability measure on I=1 is feasible for ϑ′(G). To complete the proof we show
that

K = {(T ∗η − ν, η(I2 \ {∅})) : ν ∈M(I=1 × I=1)�0,

η ∈M(I2 \ {∅})≥0, η(I=1) = 0}
is closed inM(I=1× I=1)sym×R. We decompose K as the Minkowski difference of

K1 = {(T ∗η, η(I2 \ {∅})) : η ∈M(I2 \ {∅})≥0, η(I=1) = 0}
and

K2 = {(ν, 0) : ν ∈M(I=1 × I=1)�0}.
It is immediate that K1∩K2 = {0} and again using the approach from Section 6.7.2
we see that K1 and K2 are closed and that K1 is locally compact.
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Now we show the inequality ϑ′(G) ≤ las1(G). Let η be an optimal solution for
ϑ′(G) and define λ ∈M(I2) by λ({∅}) = 1 and

λ(L) =

{
ϑ′(G)η(L) if L is a Borel set in I=1,
1
2ϑ
′(G)η(L) if L is a Borel set in I=2.

Then

λ(I=1) = ϑ′(G)η(I=1) = ϑ′(G).

To complete the proof we have to show A∗1λ ∈ M(I1 × I1)�0. We apply our
generalized Schur complement: Let g ∈ C(I1) be a function with g(∅) = 0. We have

A∗1λ(g ⊗ g) = ϑ′(G)T ∗η(g ⊗ g).

The symmetric bilinear form (h, g) 7→ T ∗η(h ⊗ g) is positive semidefinite because
T ∗η ∈ M(I=1 × I=1)�0, so we can apply the Cauchy-Schwarz inequality and opti-
mality of η to obtain

ϑ′(G)T ∗η(g ⊗ g) ≥ ϑ′(G)

T ∗η(1I=1
⊗ 1I=1

)
(T ∗η(1I=1

⊗ g))2 = (T ∗η(1I=1
⊗ g))2.

In the remainder of this proof we show

T ∗η(1I=1
⊗ g) = ϑ′(G)η(g).

Since

ϑ′(G)η(g) = λ(g) = A∗1λ(1∅ ⊗ g)

the proof is then complete by using the generalized Schur complement, Lemma 6.9.5.
Inspired by Schrijver [88, Theorem 67.10] we use Lagrange multipliers. First

observe that

T (1I=1
⊗ 1I=1

) = 1I2\{∅} and T ∗η(1I=1
⊗ 1I=1

) = η(I2 \ {∅}).

For u ∈ R2 define gu ∈ C(I=1) by gu = u1g + u2(1I=1 − g). For each u ∈ R2 with
η(g2

u) = 1, the measure η̃ defined by dη̃(S) = T (gu ⊗ gu)(S)dη(S) is feasible for
ϑ′(G). So, if we consider the problem of maximizing T ∗η(gu ⊗ gu) over all u ∈ R2

for which η(g2
u) = 1, then optimality of η implies that an optimal solution is attained

for u = 1.
It follows that there exists a Lagrange multiplier c ∈ R such that

∂

∂ui

∣∣∣∣
u=(1,1)

T ∗η(gu ⊗ gu) = c
∂

∂ui

∣∣∣∣
u=(1,1)

η(g2
u) for i = 1, 2.

Since

T ∗η(gu ⊗ gu) = uT
(

T ∗η(g ⊗ g) T ∗η(g ⊗ (1I=1
− g))

T ∗η(g ⊗ (1I=1
− g)) T ∗η((1I=1

− g)⊗ (1I=1
− g))

)
u

and

η(g2
u) = uT

(
η(g2) η(g(1I=1 − g))

η(g(1I=1 − g)) η((1I=1 − g)2)

)
u

we have

T ∗η(g ⊗ 1I=1
) = cη(g) and T ∗η((1I=1

− g)⊗ 1I=1
) = cη(1I=1

− g).
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By summing the last two equations we see that c = ϑ′(G), hence we have the desired
equality T ∗η(g ⊗ 1I=1

) = ϑ′(G)η(g). �

6.9.2. Three-point bounds. In this section we modify the 2t-point bound
last(G) to obtain a 2t+ 1-point bound for sufficiently symmetric graphs G.

Let G = (V,E) be a compact topological packing graph. We are interested
in two groups related to G. The group of graph automorphisms of G and the
group of homeomorphisms of the topological space V . When we endow the latter
group with the compact-open topology, it is a topological group with a continuous
action on V ; see Arens [4]. In the special case when G is a distance graph, as
defined in Section 6.3, the former group is contained in the latter. We say that G is
homogeneous if there exists a compact subgroup of the group of homeomorphisms
which consists only of graph automorphisms and is such that the action of Γ on V
is transitive.

Fix a point e ∈ V . By Ge we denote the induced subgraph of G with vertex set

V e = {x ∈ V : x 6= e and {e, x} 6∈ E}.
It follows that Ge is also a compact topological packing graph. We have α(G) ≥ 1+
α(Ge), and ifG is homogeneous, then α(G) = 1+α(Ge): If S is an independent set of
G, then there exists a graph automorphism γ with e ∈ γS, and (γS)\{e} ⊆ V e is an
independent set for α(Ge). So, for computing an upper bound on the independence
number of G we can also compute 1 + last(G

e). This yields a bound which is at
least as good as last(G):

Lemma 6.9.7. Suppose G is a compact topological packing graph. Then

1 + last(G
e) ≤ last(G).

Proof. We denote the sets of independent sets ofGe by Iet and Ie=t. Suppose λe

is feasible for last(G
e). Let λ = δe + λe. We have λ ≥ 0 and λ({∅}) = 1. Moreover,

since A∗tλ = δe ⊗ δe + A∗tλ
e and A∗tλ

e ∈ M(Iet × Iet )�0 ⊆ M(It × It)�0, we have
A∗tλ ∈ M(It × It)�0. So λ is feasible for last(G). We have 1 + λe(Ie=1) = λ(I=1),
which completes the proof. �



CHAPTER 7

Moment methods in energy minimization: New
bounds for Riesz minimal energy problems

This chapter is based on the publication “D. de Laat, Moment methods in en-
ergy minimization: New bounds for Riesz minimal energy problems, In preparation”.

Abstract. We use moment techniques to construct a converging sequence of op-
timization problems to find the ground state energy of interacting particle systems.
We approximate the problems in this sequence by block diagonalized semidefinite
programs. For this we develop harmonic analysis techniques for spaces consisting
of subsets of another space, and we develop symmetric sum of squares techniques.
We compute the second step of our hierarchy for the Thomson problem and Riesz
s-energy problems with s = 2, 4. Here the numerical results suggest these bounds
are sharp for the five particle case. This is the first time a 4-point bound has been
computed for a continuous problem.

7.1. Introduction

We consider the problem of finding the ground state energy of a system of
interacting particles. An important example is the Thomson problem, where we
minimize the sum ∑

1≤i<j≤N

1

‖xi − xj‖2

over all sets {x1, . . . , xN} of N distinct points in the unit sphere S2 ⊆ R3. Here
‖xi−xj‖2 is the chordal distance between xi and xj . A simple optimality proof for
the configuration consisting of three equally spaced particles on a great circle was
given in 1912 [34], but for N > 3 we seem to require more involved techniques. In
1992, Yudin [100] introduced a beautiful method, based on earlier work for spherical
codes by Delsarte, Goethals, and Seidel [27], which in addition to the N ≤ 3 cases
can be used to prove optimality for 4, 6, and 12 particles (see [1] for the 12 particle
case). Here the configurations are given by the vertices of the regular tetrahedron,
octahedron, and icosahedron.

Yudin’s bound is a relaxation of the above energy minimization problem; it
is a simpler optimization problem whose optimal value lower bounds the minimal
energy. This means the feasible solutions of the dual of this relaxation, which is a
maximization problem in the form of an infinite dimensional linear program, provide
energy lower bounds. For N = 2, 3, 4, 6, 12 the bound is sharp, and the optimal dual
solutions become optimality certificates. In 2006, Cohn and Kumar [22] used this

97
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method in their proof of universal optimality of the above configurations (as well as
many other configurations in higher dimensional spheres), where a configuration is
said to be universally optimal if it is optimal for all completely monotonic (smooth,
nonnegative functions whose derivatives alternate in sign) pair potentials in the
squared chordal distance. In the derivation of Yudin’s bound we consider conditions
on pairs of particles, and hence this is called a 2-point bound. In 2012, Cohn
and Woo [23] derived 3-point bounds for energy minimization based on earlier
work by Schrijver [41] for binary codes and Bachoc and Vallentin [9] for spherical
codes. They used this to prove universal optimality of the vertices of the rhombic
dodecahedron in RP2. In [76] this is extended to k-point bounds, but here the
sphere is required to be at least k − 1 dimensional, which means this approach
cannot be used to go beyond 3-point bounds for the Thomson problem.

In Section 7.2 we construct a hierarchy E1, E2, . . . of increasingly strong relax-
ations of the energy minimization problem. Each Et is a minimization problem
whose optimal value lower bounds the ground state energy E. To construct this hi-
erarchy we use the moment methods developed in [61], which generalize techniques
from the Lasserre hierarchy [64] in polynomial optimization to an infinite dimen-
sional setting. We can interpret the t-th step Et as a min{2t,N}-point bound, and
in Section 7.4 we prove convergence to the optimal energy in at most N steps. In ad-
dition to the moment conditions we derive in Section 7.3 a set of linear constraints,
where on the one hand we have enough constraints to ensure convergence of the
hierarchy and on the other hand have a small enough set of constraints to still allow
for a satisfying duality theory which is necessary for doing conrete computations.

The problems Et are infinite dimensional optimization problems where the op-
timization variables are measures. This naturally means that the optimization
variables in the dual problems E∗t are continuous functions, which in our case are
continuous kernels. In this chapter we show how to approximate the duals E∗t by
semidefinite programs that are block diagonalized into sufficiently small blocks so
that it becomes possible to numerically compute the 4-point bound E2 for inter-
esting problems. This leads to the best known bounds for these problems, and
by doing this we demonstrate the computational applicability of the theoretical
moment techniques developed in [61]. Here we are interested in the second step
because after symmetry reduction (see below) the 2-point bound E1 is essentially
the same as Yudin’s bound.

In Section 7.5 we define a class of infinite dimensional optimization problems
which occur naturally when forming moment relaxations for problems with infinitely
many binary variables. The relaxations Et fit into this framework, as well as the
relaxations for packing problem in discrete geometry as derived in [61]. To find good
energy lower bounds we need to find good feasible solutions of the dual optimization
problems E∗t . For this we work out a duality and symmetry reduction theory for this
more general class of problems. The symmetry reduced dual programs, denoted by
Ē∗t , are conic programs over the cone C(X ×X)Γ

�0 of continuous, positive definite,

Γ-invariant kernels on a certain compact metric space X (see below) equipped with
a continuous action of a compact group Γ. These are continuous functions K : X ×
X → R for which the matrix (K(xi, xj))

n
i,j=1 is positive semidefinite for all n ∈
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N and x1, . . . , xn ∈ X, and for which K(γx, γy) = K(x, y) for all γ ∈ Γ and
x, y ∈ X. We obtain an approximation to this optimization problem by replacing
the cone C(X ×X)Γ

�0 by an inner approximating cone. Given a sequence of inner
approximating cones whose union is uniformly dense, we give a sufficient condition,
which is satisfied in the case of energy minimization, under which the optimal values
of the corresponding sequence of approximating optimization problems converge to
the optimal value of the original problem.

To find good dual solutions we use harmonic analysis, sum of squares charac-
terizations, and semidefinite programming. These tools are also used for computing
the 2 and 3-point bounds mentioned above, but for t > 1, our dual programs E∗t
are quite different. In the 2 and 3-point bounds for the Thomson problem the dual
variables are continuous kernels K : S2 × S2 → R, which for 2-point bounds can be
assumed to be invariant under the orthogonal group O(3), and for 3-point bounds
under the stabilizer subgroup of a point e ∈ S2. In the dual programs Ē∗t , the
variables are kernels K ∈ C(X ×X)Γ

�0, where X is the set It of independent sets
of size at most t in a certain Γ-invariant graph G whose vertex set is the container
of the problem. For the Thomson problem the vertex set of G is the sphere S2

and Γ = O(3). In Chapter 3 we give a nonconstructive proof that for each X there
exists a sequence of finite dimensional, block diagonalized, inner approximating ker-
nels whose union is uniformly dense in this cone. By using harmonic analysis and
symmetric tensor powers, we show in Section 7.6 how to construct such a sequence
explicitly for the case where X = It given that we have some knowledge about the
harmonic analysis of the group action of Γ on the vertex set V of the graph. In the
case where V = S2 we explicitly derive this information and hence give an explicit
construction of the inner approximating cones. Together with the results from the
previous paragraph, this gives a concrete sequence of optimization problems, each
having finite dimensional variable space, whose objective values converge to Et.

Using a result from invariant theory, we show (see Section 7.7) how we can
write these problems, which now have finite dimensional variable space but still
infinitely many constraints, as semidefinite programs with finitely many polynomial
constraints. A semidefinite program is an optimization problem where we optimize
a linear functional over the intersection of an affine space with a cone of positive
semidefinite matrices. Semidefinite programming forms a powerful generalization of
linear programming and, as for linear programming, we have efficient algorithms for
solving them. A polynomial constraint here is the requirement that a polynomial,
whose coefficients depend on the entries of the matrix variable(s), is nonnegative
on a basic closed semialgebraic set. We can model these polynomial constraints as
semidefinite constraints using sum-of-squares characterizations from real algebraic
geometry. Together with the aforementioned results this yields a sequence of in-
creasingly large semidefinite programs whose optimal values converge to the ground
state energy.

To block diagonalize the inner approximating cones of the cone of invariant
positive definite kernels we use the symmetry of the sphere and the pair potential.
Energy minimization problems, however, admit even more symmetry: the particles
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are interchangeable. This means the polynomial constraints in the problems dis-
cussed above admit some additional symmetries. In Section 7.8 we give a simple
extension of Putinar’s theorem which allows us to exploit such symmetries. This
result in even futher block diagonalized semidefinite programs. These techniques
also apply to the 3-point bounds mentioned above, where this symmetry has not
been used before.

Although the N -th relaxation EN is guaranteed to give the optimal energy E,
it is possible that Et is already sharp for much smaller values of t. For example,
Yudin’s bound, which is essentially equal to the symmetry reduced version of E∗1 , is
sharp for the Thomson problem for N = 2, 3, 4, 6, 12. It would be very interesting
if this pattern continues; that is, if E2 would be sharp for several new values of N .
The 3-point bound is conjectured [23] to be sharp for N = 8, and since E2 is a
4-point bound one would expect it to be at least as good and hence also sharp for
N = 8. As a first step into investigating whether E2 is sharp for new values of N
– and to demonstrate that it is possible to compute the second step – we compute
E2 numerically for the Thomson problem with N = 5. The first 7 digits of the
solution obtained by the semidefinite programming solver agree with the energy of
the optimal configuration, which is a good indication that the bound is sharp. This
is the first time a 4-point bound has been computed for a continuous problem.

The 5 particle case on S2 is particularly interesting because it provides one of the
simplest mathematical models of a phase transition. By a phase transition we mean
that a slight change of the pair potential results in a discontinuous jump from one
global optimum to another. The Riesz s-energy of a configuration {x1, . . . , xN} ⊆
S2 is given by summing ‖xi − xj‖−s2 over all 1 ≤ i < j ≤ N . The configuration
consisting of the vertices of the triangular bipyramid is believed to be optimal for
0 < s ≤ 15.04 . . ., and the vertices of the square pyramid (where the latitude of the
base depends on the specific value of s) is believed to be optimal for the remaining
positive values of s. For no value of s an optimality certificate is known, although
optimality has been proved for s = 1 and s = 2 by essentially enumerating all
possibilities [90]. In addition to the s = 1 case we compute E2 for s = 2 and s = 4
where the numerical results suggest the bound is sharp. This leads to the following
conjecture:

Conjecture 7.1.1. Given 5 particles on S2, the bound E2 is sharp for the
Riesz s-energy potential for s = 1, 2, 4.

We have not been able to reliably compute the bound for larger values of s,
but it would be very interesting if the bound stays sharp throughout the phase
transition. Inspired by Conjecture 14 in [23] about the optimality of the 3-point
bound for N = 8 we pose the following question:

Question 7.1.2. Is the bound E2 universally sharp for 5 particles on S2?

Here by universally sharp we mean the bound is sharp for all completely mono-
tonic pair potentials in the squared chordal distance.



7.2. A HIERARCHY OF RELAXATIONS FOR ENERGY MINIMIZATION 101

7.2. A hierarchy of relaxations for energy minimization

In this section we derive a sequence of relaxations for the energy minimiza-
tion problem. We model the space containing the particles by a compact met-
ric space (V, d), and assume the pair potential is given by a continuous function
h : (0,diam(V )]→ R, where h(s)→∞ as s ↓ 0. We denote the number of particles
in the system by N . The optimal energy or ground state energy is given by the
minimum of ∑

1≤i<j≤N

h(d(xi, xj))

over all sets {x1, . . . , xN} of N distinct points from V . For the Thomson problem
we have V = S2 with metric d(x, y) = ‖x − y‖2 and pair potential the Coulomb
energy h(s) = 1/s.

To compactify this problem, which will be important when we discuss duality,
we introduce a graph which allows us to discard some configurations which are
clearly nonoptimal. We let B be an upper bound on the minimal energy. Such a
number can be obtained by computing the energy of an arbitrary configuration of
N distinct points. Let G be the graph with vertex set V , where distinct vertices
x and y are adjacent whenever h(d(x, y)) ≥ B. Let It be the set of independent
sets which have cardinality at most t, where an independent set is a subset of the
vertices for which no two vertices are adjacent. We endow It \ {∅} with a topology
as a subset of the quotient space V t/q, where q maps a tuple (x1, . . . , xt) to the set
{x1, . . . , xt}. We endow It with the disjoint union topology by It = It \ {∅} ∪ {∅};
that is, the set ∅ is an isolated point in It. Let I=t be the set of independent sets
of cardinality t. The set I=t obtains a topology as a subset of It. The graph G
is an example of a compact topological packing graph as defined in Chapter 6. A
topological packing graph is a graph whose vertex set is a Hausdorff topological
space where each clique is contained in an open clique. It follows that the sets It
and I=t are compact metric spaces. From the definition of B it follows that I=N is
nonempty.

The ground state energy can be computed as

E = min
{
χS(f) : S ∈ I=N

}
.

where f ∈ C(IN ) is defined as

f(S) =

{
h(d(x, y)) if S = {x, y} with x 6= y,

0 otherwise,

and

χS =
∑
R⊆S

δR,

where δR is the Dirac point measure at R (so that δR(f) = f(R)). Here C(IN ) is
the space of real-valued continuous functions on IN . The continuity of f follows
from the continuity of h and the fact that I2 is both open and closed in IN ; see
Lemma 6.6.2. Since we minimize the continuous function S 7→ χS(f) over a compact
set the minimum is attained.
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To obtain energy lower bounds we construct a hierarchy E1, E2, . . . of relax-
ations of the above problem. These are minimization problems where for every
feasible solution of E we can construct a feasible solution of Et having the same
objective value. The optimization problems Et have the important feature that we
can explicitly give the dual optimization problems, and we can prove the duality
gap to be zero. In Section 7.4 we show the N -th step EN in this hierarchy gives the
optimal energy, and that the extreme points of the feasible set of EN are precisely
the measures χS with S ∈ I=N . In other words, we show EN is a sharp relaxation
on E.

Denote byM(I2t) the space of signed Radon measures on I2t. Given S ∈ I=N ,
define λS ∈M(I2t) by restricting χS to I2t if 2t ≤ N , or by extending χS to I2t by
zeros if 2t ≥ N . In the t-th step Et of the hierarchy we will optimize over measures
λ on I2t which we require to satisfy some of the properties that are satisfied by λS .
The first of these properties is that λS is a positive measure. The second property
is that

λS(I=i) =

(
N

i

)
for all 0 ≤ i ≤ 2t,

where
(
N
i

)
= 0 for i > N . The third property is more subtle: The measure λS

satisfies a moment condition. We use the tools from Chapter 6 to define what we
mean by this. Define the operator

At : C(It × It)sym → C(I2t), AtK(S) =
∑

J,J ′∈It:J∪J′=S
K(J, J ′).

Here C(It × It)sym is the space of symmetric, continuous functions It × It → R,
which we call symmetric kernels. A symmetric kernel K is positive definite if the
matrix (K(Ji, Jj))

n
i,j=1 is positive semidefinite for all n ∈ N and J1, . . . , Jn ∈ It.

The positive definite kernels form a convex cone which we denote by C(It × It)�0.
By the Riesz representation theorem, the topological duals of C(It × It)sym and
C(I2t) can be identified with the spaceM(It×It)sym of symmetric Radon measures
and the space M(I2t) of Radon measures. Here a measure µ ∈ M(It × It) is said
to be symmetric if

µ(E × F ) = µ(F × E) for all measurable E,F ⊆ It.

The dual cone of C(It × It)�0 is defined by

M(It × It)�0 =
{
µ ∈M(It × It)sym : µ(K) ≥ 0 for all K ∈ C(It × It)�0

}
.

We have the dual operator

A∗t : M(I2t)→M(It × It)sym

defined by A∗tλ(K) = λ(AtK) for all λ ∈M(I2t) and K ∈ C(It× It)sym, and we use
this dual operator and the cone of positive definite measures to define the moment
condition on λ:

Definition 7.2.1. A measure λ ∈M(I2t) is of positive type if

A∗tλ ∈M(It × It)�0.
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See Remark 6.7.4 for an explanation why we use the term positive type here.
The measure λS is of positive type: For each K ∈ C(It × It)�0, we have

A∗tλS(K) =
∑
R⊆S

∑
J,J ′∈It:J∪J′=R

K(J, J ′) =
∑

J,J ′∈S:|J|,|J′|≤t

K(J, J ′) ≥ 0.

We define the t-th step in our hierarchy by optimizing over measures λ ∈ M(I2t)
satisfying the three properties discussed above.

Definition 7.2.2. For t ∈ N, define

Et = min
{
λ(f) : λ ∈M(I2t) positive and of positive type,

λ(I=i) =
(
N
i

)
for 0 ≤ i ≤ 2t

}
.

In Section 7.5.1 we prove strong duality, which implies the minimum here is
attained. The measure λS is feasible for Et by construction, so Et ≤ E for all t. In
a similar way we have Et ≤ Et+1 for all t.

7.3. Connection to the Lasserre hierarchy

A polynomial optimization problem is a problem of the form

inf{p(x) : x ∈ Rn, gj(x) ≥ 0 for j ∈ [m]},

where p, g1, . . . , gm ∈ R[x1, . . . , xn]. In general, finding the global minimum and
proving global optimality of a point x ∈ Rn are difficult problems. A powerful
and popular approach of obtaining lower bounds on the global minimum is to use
the Lasserre hierarchy, which is a sequence of increasingly strong semidefinite pro-
gramming relaxations. Here we are interested in binary polynomial optimization
problems, which are problems of the form

inf{p(x) : x ∈ {0, 1}n, gj(x) ≥ 0 for j ∈ [m]}.

These are, of course, special cases of polynomial optimization problems, because
we can enforce the constraints x ∈ {0, 1}n by adding the polynomial constraints
xi(1− xi) ≥ 0 and −xi(1− xi) ≥ 0 for each i ∈ [n].

If we assume the container of an energy minimization problem to be finite, say,
V = [n] for some n ∈ N, then we can write the problem E as the binary polynomial
optimization problem

min
{ ∑

1≤i<j≤n

f({i, j})xixj : x ∈ {0, 1}n, κ(x) = 0
}
,

where κ(x) =
∑n
i=1 xi − N , and where f is the pair potential as defined in the

previous section. To obtain a sequence of relaxations we apply a variation of the
Lasserre hierarchy to this problem. From this we then derive a possibly weaker
sequence of relaxations that admits a useful generalization to energy minimization
problems with an infinite container. This then leads to the hierarchy {Et} as defined
in Section 7.2, and this is how we originally came up with these relaxations.
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Denote by [n]t the set of all subsets of [n] of cardinality at most t and by [n]=t
the subsets of cardinality t. In a binary polynomial optimization problem we may
assume all polynomials to be square free, and for such a polynomial we write

p(x) =
∑

S∈[n]deg(p)

pSx
S , where xS =

∏
i∈S

xi.

Given an integer t ∈ N and a vector y ∈ R[n]2t , the t-th moment matrix Mt(y) ∈
R[n]t×[n]t is defined by Mt(y)J,J ′ = yJ∪J′ . The t-th localizing matrix with respect
to a polynomial g ∈ R[x1, . . . , xn] is the partial matrix Mg

t (y), which has the same
row and column indices as Mt(y), where the (J, J ′)-entry is set to∑

R∈[n]deg(g)

yJ∪J′∪R gR

whenever |J ∪J ′| ≤ 2t−deg(g). By Mp
t (y) � 0 we mean that y is a vector such that

Mp
t (y) can be completed to a positive semidefinite matrix (which is a semidefinite

constraint on y). Using these definitions we define, for t ≥ deg(p), the following
semidefinite programming relaxation of the binary polynomial optimization problem
given above:

inf
{ ∑
S∈[n]deg(p)

pSyS : y ∈ R[n]2t
≥0 , y∅ = 1, Mt(y) � 0,

Mgi
t (y) � 0 for i ∈ [m]

}
.

These relaxations where introduced by Lasserre in [64]. The only modifications
we make here is that we restrict y to be nonnegative, and originally the localizing
matrices Mgi

t (y) are defined to be full matrices indexed by [n]t−ddeg(gi)/2e, but here
we take them to be partial matrices indexed by [n]t. Typically, this does not make
the semidefinite programs much more difficult to solve, but in some cases, such as
the case of energy minimization as discussed here, it can lead to much stronger
bounds.

In the binary polynomial optimization problem formulation for the energy mini-
mization problem we have two polynomial constraints: κ(x) ≥ 0 and −κ(x) ≥ 0. So,
in the relaxation we have the constraints Mκ

t (y) � 0 and −Mκ
t (y) = M−κt (y) � 0,

which reduces to Mκ
t (y) = 0; that is, all specified entries of Mκ

t (y) are required to
be zero. These constraints reduce to the linear constraints

NyS =

n∑
j=1

yS∪{j} for all S ∈ [n]2t−1.

So, for energy minimization we get the relaxations

Lt = inf
{ ∑

1≤i<j≤n

f({i, j}) y{i,j} : y ∈ R[n]2t
≥0 , y∅ = 1, Mt(y) � 0,

NyS =

n∑
j=1

yS∪{j} for all S ∈ [n]2t−1

}
.

The linear constraints in these problems become problematic when we want to
generalize V from the finite set [n] to an infinite set. The reason being that in the
infinite dimensional generalization we want to use measures λ instead of vectors y
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(because this allows for a satisfying duality theory; see Section 7.5.1), and these
then become uncountably many “thin” constraints on λ. By thin we mean the
constraints are of the form λ(E) = b, where E is a measurable set with empty
interior. This means these constraints have no grip on measures which are zero on
sets with empty interior.

In the following proposition we show these constraints imply 2t + 1 natural
constraints on the vectors y. In particular, this proposition implies that for a
feasible solution y of Lt, we have yS = 0 for all S ⊆ [n] with |S| > N . If we replace
the linear constraints in Lt by these new constraints, then we obtain the problem
Et for the finite container V = [n].

Proposition 7.3.1. Let t ∈ N and y ∈ R[n]2t . If

y∅ = 1 and NyS =

n∑
j=1

yS∪{j} for all S ∈ [n]2t−1,

then ∑
S∈[n]=i

yS =

(
N

i

)
for all 0 ≤ i ≤ 2t.

Proof. For i = 0 we have∑
S∈[n]=i

yS = y∅ = 1 =

(
N

i

)
.

If
∑
S∈[n]=i−1

yS =
(
N
i−1

)
for some 0 ≤ i ≤ 2t− 1, then

∑
S∈[n]=i

yS =
1

i

∑
S∈[n]=i−1

∑
j∈[n]\S

yS∪{j} =
1

i

∑
S∈[n]=i−1

 n∑
j=1

yS∪{j} − |S|yS


=

1

i

∑
S∈[n]=i−1

(NyS − (i− 1)yS) =
1

i

∑
S∈[n]=i−1

(N − i+ 1)yS

=
N − i+ 1

i

∑
S∈[n]=i−1

yS =
N − i+ 1

i

(
N

i− 1

)
=

(
N

i

)
.

So, the proof follows by induction. �

In the following proposition we show that the constraints∑
S∈[n]=i

yS =

(
N

i

)
for 0 ≤ i ≤ 2t

imply a large number of the linear constraints in the formulation of Lt. In particular,
together with the previous proposition it shows that for t = N , the feasible set does
not change when we replace all

(
n
0

)
+ . . .+

(
n

2t−1

)
linear constraints in Lt with these

2t+ 1 constraints.
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Proposition 7.3.2. Let t ∈ N and y ∈ R[n]2t . If Mt(y) � 0 and∑
S∈[n]=j

yS =

(
N

j

)
for all 0 ≤ j ≤ t,

then

y∅ = 1 and NyS =

n∑
i=1

yS∪{i} for all S ∈ [n]t.

Proof. We have

y∅ =
∑

S∈[n]=0

yS =

(
N

0

)
= 1.

The identity y∅ = 1 together with Mt(y) � 0 implies yS ≥ 0 and 1yS − y2
S ≥ 0

for all S ∈ [n]t. That is, yS ∈ [0, 1] for all S ∈ [n]t. For all J, J ′ ∈ [n]t we have
yJyJ′ − yJ∪J′ ≥ 0, and hence yJ∪J′ ≤ yJyJ′ ≤ yJ .

Then, Mt(y) � 0 implies yR ≥ yS whenever R ⊆ S ∈ [n]t. Hence,

vS := (N − |S|)yS −
∑

x∈[n]\S

yS∪{x} ≥ 0 for all S ∈ [n]t.

Then,

1

i+ 1

∑
S∈[n]=i

vS =
N − i
i+ 1

∑
S∈[n]=i

yS −
1

i+ 1

∑
S∈[n]=i

∑
x∈[n]\S

yS∪{x}

=
N − i
i+ 1

∑
S∈[n]=i

yS −
1

i+ 1
(1 + i)

∑
S∈[n]=i+1

yS

=
N − i
i+ 1

(
N

i

)
−
(

N

i+ 1

)
=

(
N

i+ 1

)
−
(

N

i+ 1

)
= 0,

so vS = 0 for all S ∈ [n]t, hence

NyS =

n∑
i=1

yS∪{i} for all S ∈ [n]t. �

7.4. Convergence to the ground state energy

In this section we show the hierarchy {Et} converges to the optimal energy E
in at most N steps. Moreover, the extreme points of the feasible set of EN are
precisely the measures χS with S ∈ I=N . These results follow from the following
proposition, whose proof follows directly from the proof of Proposition 6.8.1.

Proposition 7.4.1. For each measure λ ∈ M(I2t) there exists a unique mea-
sure σ ∈M(I2t) such that λ =

∫
χS dσ(S). If λ is supported on It and is of positive

type, that is, A∗tλ ∈M(It × It)�0, then σ is a positive measure supported on It.

Using this proposition we can prove the convergence result:

Proposition 7.4.2. The N -th step EN gives the optimal energy E.
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Proof. Let λ ∈ M(I2N ) be feasible for EN . Then λ is supported on IN and
is of positive type. By Proposition 7.4.1 there exists a positive measure σ ∈M(IN )
such that λ =

∫
χS dσ(S). We have

1 =
(
N
0

)
= λ({∅}) =

∫
χS({∅}) dσ(S) =

∫
dσ = σ(IN ),

so σ is a probability measure. Moreover,

1 =
(
N
N

)
= λ(I=N ) =

∫
χS(I=N ) dσ(S) = σ(I=N ),

so σ is supported on I=N . The objective value of λ is given by

λ(f) =

∫
χS(f) dσ(S) ≥

∫
E dσ = E,

where the inequality follows since χS(f) ≥ E for all S ∈ I=N . It follows that
EN ≥ E. Since we already known EN ≤ E, this completes the proof. �

Using the ideas of the above proof together with the proof of Proposition 6.8.2
it follows that the extreme points of the feasible set of EN are precisely the measures
χS with S ∈ I=N .

7.5. Optimization with infinitely many binary variables

We discuss the duality theory and symmetry reduction for a more general type
of optimization problems which arise when we form moment relaxations of opti-
mization problems with infinitely many binary variables. This includes the moment
relaxations for both energy minimization and packing problems. Although there
are infinitely many variables, we assume that in a feasible solution only finitely
many of them active (nonzero) at the same time, and active variables cannot be too
close. For this we assume G = (V,E) to be a compact topological packing graph;
see Section 6.3. This means the vertex set V is a compact Hausdorff space where
every clique is contained in an open clique, where an open clique is an open subset
of V where every two vertices are adjacent.

Definition 7.5.1. Let G be a topological packing graph. Given integers t and
m, functions f, g1, . . . , gm ∈ C(I2t), and scalars b1, . . . , bm ∈ R, we define the opti-
mization problem H = H inf

G,t(h; g1, . . . , gm; b1, . . . , bm) by

H = inf
{
λ(f) : λ ∈M(I2t)≥0, A

∗
tλ ∈M(It × It)�0, λ(gi) = bi for i ∈ [m]

}
.

For energy minimization we have

Et = Hmin
G,t (f ; 1I=0

, . . . , 1I=2t
;
(
N
0

)
, . . . ,

(
N
2t

)
),

where G is the graph defined in Section 7.2, and f is the pair potential. For packing
problems, the t-th step of the hierarchy from Chapter 6 is given byHmax

G,t (1I=1 ; 1{∅}, 1),
where G is the packing graph defining the packing problem.
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7.5.1. Duality. The optimization problem H is a conic program over the cone
M(It × It)�0 ×M(I2t)≥0, where we refer the reader to Section 2.3 or [10] for an
introduction to conic programming. If we endow both M(It × It)sym and M(I2t)
with the weak* topologies, then the topological dual spaces can be identified with
C(It×It)sym and C(I2t). The tuples (C(I2t),M(I2t) and (C(It×It)sym,M(It×It)sym)
are dual pairs, and the dual pairings 〈f, λ) = λ(f) =

∫
f dλ and 〈K,µ〉 = µ(K) =∫

K dµ are nondegenerate. The dual cones are then given by C(It × It)�0 and
C(I2t)≥0, and by conic duality we obtain the dual conic program

H∗ = sup
{ m∑
i=1

biai : a ∈ Rm, K ∈ C(It × It)�0, f −
m∑
i=1

aigi −AtK ∈ C(I2t)≥0

}
.

By weak duality we have H∗ ≤ H. The following theorem, which is a slight gen-
eralization of the results in Section 6.7.2, gives a sufficient condition for strong
duality.

Theorem 7.5.2. If H admits a feasible solution, and if the set{
λ ∈M(I2t)≥0 : A∗tλ ∈M(It × It)�0, λ(f) = λ(g1) = · · · = λ(gm) = 0

}
,

is trivial, then strong duality holds: H = H∗ and the minimum in H is attained.

Proof. To show strong duality holds we use a closed cone condition; see Sec-
tion 2.3. This closed cone condition says that if H admits a feasible solution, and
the cone

K =
{

(A∗tλ− µ, λ(g1), . . . , λ(gm), λ(f)) : λ ∈M(I2t)≥0, µ ∈M(It × It)�0

}
is closed in M(It × It)�0 × Rm × R, then strong duality holds: H = H∗ and the
minimum in H is attained.

This cone decomposes as the Minkowski difference K = K1 −K2 with

K1 = {(A∗tλ, λ(g1), . . . , λ(gm), λ(f)) : λ ∈M(I2t)≥0}

and

K2 = {(µ, 0, 0) : µ ∈M(It × It)�0}.
By Klee [56] and Dieudonné [28], a sufficient condition for the cone K to be

closed is if K1 ∩ K2 = {0}, K1 is closed and locally compact, and K2 is closed.
The first condition K1 ∩K2 = {0} follows immediately from the hypothesis of the
theorem. In 6.7.5 it is shown that K1 is closed and locally compact. That K2 is
closed follows immediately from M(It × It)�0 being closed, which follows since it
is a dual cone. �

In Lemma 6.7.3 we show the set{
λ ∈M(I2t)≥0 : A∗tλ ∈M(It × It)�0, λ({∅}) = 0

}
is trivial, which means Theorem 7.5.2 applies whenever each λ ∈ M(I2t)≥0 with
λ(f) = λ(g1) = · · · = λ(gm) = 0 satisfies λ({∅}) = 0. For each t, the program Et
admits a feasible solution (see Section 7.2), and Et satisfies this property by the
constraint λ(I=0) =

(
N
0

)
. Thus for every t strong duality holds for the pair (Et, E

∗
t ).
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7.5.2. Symmetry reduction. Given a compact group Γ with a continuous
action on the vertex set V of a compact topological packing graph G, we say the
optimization problem H inf

G,t(f ; g1, . . . , gm; b1, . . . , bm) is Γ-invariant if

(1) the edge set of G is invariant under the action of Γ, so that the ac-
tion extends to a continuous action on IN given by γ{x1, . . . , xN} =
{γx1, . . . , γxN} and γ∅ = ∅;

(2) the functions f, g1, . . . , gm are Γ-invariant.

Using this definition the relaxations Et for energy minimization are Γ-invariant
whenever the metric d of the container V is Γ-invariant.

We use this symmetry to restrict to invariant variables in both the primal and
dual optimization problems. To obtain the optimal symmetry reduction we should
take Γ as large as possible. For energy minimization problems this means we should
take it to be the symmetry group of the metric space (V, d).

Let C(I2t)Γ be the subspace of Γ-invariant functions, and C(It × It)
Γ
sym the

subspace of symmetric Γ-invariant kernels, and define the cones

C(I2t)Γ
≥0 = C(I2t)≥0 ∩ C(I2t)Γ and C(It × It)Γ

�0 = C(It × It)�0 ∩ C(It × It)Γ
sym.

Given a function f ∈ C(I2t), we define its symmetrization f̄ ∈ C(I2t)Γ by f̄(S) =∫
Γ
f(γS) dγ, where we integrate over the normalized Haar measure of Γ. Similarly,

given a kernel K ∈ C(It × It)�0, we define its symmetrization K̄ by K̄(J, J ′) =∫
Γ
K(γJ, γJ ′) dγ. Using these definitions we can define the symmetrizations λ̄ and

µ̄ of measures λ ∈M(I2t) and µ ∈M(It×It)sym by λ̄(f) = λ(f̄) and µ̄(K) = µ(K̄).
It follows that the spaces M(I2t)

Γ and M(It × It)Γ
sym can be identified with the

duals of C(I2t)Γ and C(It×It)Γ
sym, and as in the nonsymmetrize situation these form

dual pairs.
Let C(I2t)Γ

≥0 be the cone defined by intersection C(I2t)≥0 with C(I2t)Γ, and

define the cones C(It × It)Γ
�0, M(I2t)

Γ
≥0, and M(It × It)Γ

�0 in a similar manner.
The operator At maps Γ-invariant kernels to Γ-invariant functions, so we can

view At as an operator C(It × It)Γ → C(I2t)Γ which means we can view (AΓ
t )∗ as

an operator M(I2t)
Γ →M(It × It)Γ

sym.
We can now define the symmetrization of a Γ-invariant primal problem H by

H̄ = min
{
λ(f) : λ ∈M(I2t)

Γ
≥0, (A∗t )

Γλ ∈M(It × It)Γ
�0, λ(gi) = bi for i ∈ [m]

}
,

and the symmetrization of the dual program H∗ by

H̄∗ = sup
{ m∑
i=1

biai : a ∈ Rm, K ∈ C(It × It)Γ
�0, f −

m∑
i=1

aigi −AtK ∈ C(I2t)Γ
≥0

}
.

If follows that the optimal values of H and H̄ coincide, and the optimal values of
H∗ and H̄∗ coincide. This implies H̄ = H̄∗ (which alternatively could be shown by
proving strong duality as is done in the previous section).

In the following section we show how to construct a nested sequence {Cd} of
inner approximating cones of C(It× It)Γ

�0 such that the union ∪∞d=0Cd is uniformly
dense in C(It × It)Γ

�0. The cones Cd are constructed so that optimization over
the cone Cd is easier than optimization over the cones Cd′ , with d′ > d, and the
cone C(It × It)Γ

�0. Moreover, we will use the Γ-invariance to block diagonalize the
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kernels in Cd so that optimization over Cd becomes feasible for small d for concrete,
sufficiently symmetric, problems. Let H∗d be the optimization problem H̄∗ with
the cone of invariant, positive definite kernels replaced by its inner approximation
Cd. Here we give a sufficient condition for the programs H∗d to approximate the
program H̄∗. To apply the following proposition for energy minimization we take
the symmetrized version of E∗t and select c = 0 and y = −e, where e is the all 1
vector.

Proposition 7.5.3. If there exists a scalar c ∈ R and a vector y ∈ Rm for
which cf −

∑m
i=1 yigi is a strictly positive function, then H̄∗d → H̄∗ as d→∞.

Proof. Select c ∈ R and y ∈ Rm for which cf −
∑m
i=1 yigi is a strictly positive

function. Let (a,K) be a feasible solution of H̄∗ and let ε > 0. Let

κ = min
S∈I2t

(
cf(S)−

m∑
i=1

yigi(S)

)
,

where the minimum is attained and strictly positive because we optimize a contin-
uous function over a compact set. Let δ > 0 be such that∣∣∣∣∣ δ

1 + δc

m∑
i=1

(yi − cai)bi

∣∣∣∣∣ ≤ ε.
We have f −

∑m
i=1 aigi −AtK ≥ 0, so

f + δcf −
m∑
i=1

(ai + δyi)gi −AtK ≥ κ.

which implies

f −
m∑
i=1

ai + δyi
1 + δc

gi −At
( 1

1 + δc
K
)
≥ κ

1 + δc
.

Since ∪∞d=0Cd is uniformly dense in C(It × It)
Γ
�0, and since At is a bounded

operator, there exists an integer d and a kernel L ∈ Cd such that∥∥∥∥At( 1

1 + δc
K
)
−AtL

∥∥∥∥
∞
≤ κ

1 + δc
.

This means that

f −
m∑
i=1

ai + δyi
1 + δc

gi −AtL ≥ 0,

so ((a+δy)/(1+δc), L) is feasible for H̄∗d , and by the choice of δ the objective value
of this feasible solution lies withing distance ε of the objective of (a,K). �

7.6. Inner approximating cones via harmonic analysis

In this section we show how to construct a sequence of inner approximating
cones whose union is uniformly dense in C(It × It)Γ

�0. As shown in the previous
section we can use this to construct a sequence of approximatings to H̄∗. In cer-
tain cases, including the case of energy minimization, the optimal values of these
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approximations converge to H̄∗. The inner approximating cones are finite dimen-
sional, which means each of the approximating optimization problems has finite
dimensional variable space. Moreover, we use the symmetry to give a simultaneous
block diagonalization of the kernels in these inner approximating cones, which is
crucial for performing computations.

A good way to approximate kernels is to express them in terms of their Fourier
coefficients and set all but finitely many of these coefficients to zero. To perform the
Fourier transform we need the zonal matrices, and to construct the zonal matrices
we need a symmetry adapted system. In Section 7.6.1 we explain these concepts for
the general cone CC(X × X)Γ

�0 of Hermitian, Γ-invariant, positive definite kernels
on a compact metrizable space X with a continuous action of the compact group Γ,
and we show how this yields a sequence of tractable inner approximating cones. The
relevant proofs are in Chapter 3, where we also give the extreme rays of the above
cone, prove that the union of the inner approximating cones is uniformly dense,
and give a nonconstructive proof that a symmetry adapted system, and hence the
desired sequence of inner approximating cones, always exists.

The main goal of this section is to construct the inner approximating cones
explicitly. In Section 7.6.2 we do this by embedding the space It into a simpler
space Xt and constructing inner approximations of CC(Xt ×Xt)

Γ
�0. We then show

this yields such a sequence of CC(It × It)Γ
�0 by restricting the kernels to It× It. We

show how symmetric tensor powers can be used to construct a symmetry adapted
system for the space Xt. For this we need a symmetry adapted system for the vertex
set V and we need to know how tensor products and symmetric tensor powers of
the irreducible representations spanned by this system decompose into irreducibles.
In Section 7.6.3 we show how to do this for the case where t = 2, V = S2 and
Γ = O(3). Together this yields an explicit sequence of inner approximating cones of
C(I2 × I2)Γ

�0 for the case where V = S2 and Γ = O(3). We will use this to perform
concrete computations.

7.6.1. Symmetry adapted systems and zonal matrices. Let X be a com-
pact metrizable space and Γ a compact group with a continuous action on X. We
start by defining a complete orthonormal system of X. Let µ be a Radon probabil-
ity measure on X which is strictly positive and Γ-invariant; that is, µ(U) > 0 and
µ(γU) = µ(U) for every open set U ⊆ X and every γ ∈ Γ. Such a measure always
exists as is shown in Lemma 3.3.1. A continuous orthonormal system of X is a set
of continuous, complex-valued functions on X which are orthonormal with respect
to the L2

C(X,µ) inner product

〈f, g〉 =

∫
f(x)g(x) dµ(x).

Such a system is said to be complete if its span is uniformly dense in the space
CC(X) of continuous, complex valued functions on X.

To define what it means for such a system to be symmetry adapted we need
some representation theory. A unitary representation of Γ is a continuous group
homomorphism from Γ to the group U(H) of unitary operators on a nontrivial
Hilbert space H, where U(H) is equipped with the weak or strong (they are the



112 7. MOMENT METHODS IN ENERGY MINIMIZATION

same here) operator topology. Such a representation is said to be irreducible whenH
does not admit a nontrivial closed invariant subspace. Two unitary representations
π1 : Γ→ U(H1) and π2 : Γ→ U(H2) are equivalent if there exists a unitary operator
T : H1 → H2 which is Γ-equivariant; that is, Tπ1(γ)u = π2(γ)Tu for all γ ∈ Γ and
u ∈ H1. Let Γ̂ be a complete set of inequivalent irreducible unitary representations
of Γ, and denote the dimension of such a representation π by dπ. A particularly
important example of a unitary representation is given by

L : Γ→ U(L2
C(X,µ)), L(γ)f(x) = f(γ−1x).

A complete continuous orthonormal system of X is said to be a symmetry
adapted system of X if there exist numbers 0 ≤ mπ ≤ ∞ for which we can write
the system as {

eπ,i,j : π ∈ Γ̂, i ∈ [mπ], j ∈ [dπ]
}
,

where Hπ,i = span{eπ,i,1, . . . , eπ,i,dπ} is equivalent to π as a unitary subrepresen-
tation of L, and where there exist Γ-equivariant, unitary operators Tπ,i,i′ : Hπ,i →
Hπ,i′ with eπ,i′,j = Tπ,i,i′eπ,i,j for all π, i, i′, and j. In Theorem 3.3.5 we show
such a system always exists. The number mπ is given by the dimension of the space
HomΓ(X,Hπ) of Γ-equivariant, continuous functions from X to the Hilbert space
Hπ of the representation π, and hence does not depend on the choice of symmetry
adapted system.

The spaces Hπ,i defined above are finite dimensional, irreducible subrepresen-
tations of L spanned by continuous functions and which are pairwise orthogonal
and whose (algebraic) sum is uniformly dense in C(X;C). When we are given a set
of spaces satisfying these properties, then we can construct a complete orthonormal
symmetry adapted system by simply selecting appropriate bases of each of these
spaces.

Let CC(X × X)Γ
�0 be the cone of complex-valued, Γ-invariant, positive def-

inite kernels, where a complex-valued kernel K is said to be positive definite if∑n
i,j=1 cicjK(xi, xj) ≥ 0 for all n ∈ N, x ∈ Xn, and c ∈ Cn. An extreme direction

of a cone is an element x in the cone for which R≥0x is an extreme ray, which means
that for all x1, x2 ∈ K with x = x1 + x2 we have x1, x2 ∈ R≥0x. In Theorem 3.2.3
we show a kernel K ∈ CC(X ×X)Γ

�0 is an extreme direction if and only if there
exists π ∈ Γ̂ and ϕ ∈ HomΓ(X,Hπ) such that

K(x, y) = 〈ϕ(x), ϕ(y)〉 for all x, y ∈ X.

If mπ < ∞, then the conic hull of all extreme directions corresponding to π is
of the form { mπ∑

i,j=1

Ai,j〈ϕi(·), ϕj(·)〉 : A ∈ Cmπ×mπ , A � 0
}
,

where ϕ1, . . . , ϕmπ is a basis of HomΓ(X,Hπ). That is, this conic hull is isomorphic
to a complex positive semidefinite cone. This suggests how to block diagonalize the
cone CC(X ×X)Γ

�0, but since Γ̂ and mπ are infinite for the cases we are interested
in, we need to consider convergence.
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Given a symmetry adapted system {eπ,i,j} of X, for each π ∈ Γ̂ we define the
zonal matrix

Zπ(x, y) = Eπ(x)Eπ(y)∗ for x, y ∈ X,
where Eπ(x) is the matrix defined as Eπ(x)i,j = eπ,i,j(x) for x ∈ X, i ∈ [mπ], and
j ∈ [dπ]. The Fourier coefficients of a kernel K ∈ CC(X ×X) are then defined by

K̂(π) =

∫∫
K(x, y)Zπ(x, y)∗ dµ(x)dµ(y), for π ∈ Γ̂,

where the matrices are integrated entrywise. The inverse Fourier transform reads

K(x, y) =
∑
π∈Γ̂

mπ∑
i,i′=1

K̂(π)i,i′Zπ(x, y)i,i′ ,

where the series converges in L2 (see Proposition 3.4.1). By Proposition 3.4.3 the

kernel K is positive definite if and only if K̂(π) is positive semidefinite for all π ∈ Γ̂.
In the special case where the action of Γ on X has finitely many orbits and K is
positive definite, the above series converges absolutely-uniformly (this is a part of
Bochner’s theorem, see Theorem 3.4.4 for an alternative proof). We are interested
in the situation of infinitely many orbits where the above series generally does not
converge uniformly.

For each π ∈ Γ̂, let Rπ,0 ⊆ Rπ,1 ⊆ . . . be finite subsets of [mπ] such that⋃∞
d=0Rπ,d = [mπ] and such that for each d, the set Rπ,d is empty for all but finitely

many π. Let Zπ,d be the finite principal submatrix of Zπ containing only the
rows and columns indexed by elements from Rπ,d. Let Cπ,d be the cone of kernels
of the form (x, y) 7→ 〈A,Zπ,d(x, y)∗〉, where A ranges over the complex positive
semidefinite matrices. Let Cd be the Minkowski sum

∑
π∈Γ̂ Cπ,d. Then we have

C0 ⊆ C1 ⊆ . . . ⊆ CC(X ×X)Γ
�0.

In Theorem 3.4.5 we show
⋃∞
d=0 Cd is uniformly dense in CC(X ×X)Γ

�0.

7.6.2. Harmonic analysis on subset spaces. Here we show how to con-
struct a sequence {Cd} of inner approximating cones of CC(It × It)Γ

�0 as discussed
in the previous section. We give a construction in two steps: First we construct such
a sequence for the cone CC(Xt ×Xt)

Γ
�0, where Xt is a larger – but simpler – space

containing It as an embedding. Then we restrict the kernels in the approximating
cones to the smaller space It × It.

Let

Xt =

t⋃
i=0

V i/Si,

where Si is the symmetric group on i elements. The set Xt obtains a topology by
using the topology of V and the product, quotient, and disjoint union topologies.
The group Γ has a continuous action on Xt by

γ
{

(xσ(1), . . . , xσ(i)) : σ ∈ Si
}

=
{

(γxσ(1), . . . , γxσ(i)) : σ ∈ Si
}
.

The space It embeds as a closed, Γ-invariant subspace into Xt by the embedding
which sends {x1, . . . , xi} ∈ I=i to {(xσ(1), . . . , xσ(i)) : σ ∈ Si}. Notice we could have
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embedded It in V t/St ∪ {e} (where the empty set maps to an additional point e),
but for computational reasons it is preferable to use Xt.

We first show that each kernel in CC(It × It)Γ
�0 is the restriction to It × It of a

kernel from CC(Xt ×Xt)
Γ
�0. It then follows that a sequence of inner approximating

cones whose union is uniformly dense in the latter cone yields such a sequence for
the former cone.

Lemma 7.6.1. Let X be a compact metric space with a continuous action of a
compact group Γ, and let Y be a closed, Γ-invariant subspace of X. Every kernel in
CC(Y × Y )Γ

�0 is the restriction to Y × Y of a kernel in CC(X ×X)Γ
�0.

Proof. Let K ∈ CC(Y × Y )Γ
�0. By Mercer’s theorem there exists a sequence

of functions {ei} in CC(S) such that
∑∞
i=1 ei ⊗ ei converges uniformly to K. In

particular this means
∑∞
i=1 |ei|2 converges uniformly.

Given a point x ∈ X, define

Yx =
{
y ∈ Y : d(y, x) ≤ d(z, x) for all z ∈ X

}
,

where d is the metric on X. For each i we define the lower semicontinuous function
ci on X by

ci(x) = min
y∈Yx

|ei(y)|2.

Since X is a compact metric space, it is perfectly normal, which implies the existence
of a function ι ∈ C(X) such that ι|Y = 1 and ι|X\Y < 1. By the Tietze extension
theorem there exist functions fi ∈ C(X;C) with fi|Y = ei. Let

Qi = {x ∈ X : |fi(x)|2 ≥ ci(x) + 1/2i}.
The set Qi is disjoint from Y , and it follows from ci being lower semicontinuous
that Qi is closed and hence compact. So, Mi = maxx∈Qi ι(x) exists and is strictly
smaller than 1. Let

Bi = max
x∈Qi

|fi(x)|√
ci(x) + 1/2i

,

and let ki be an integer such that Mki
i Bi ≤ 1. It follows that

|gi|2 ≤ ci +
1

2i
, where gi = ιkifi.

Let ε > 0. Let N1 ∈ N such that
∑∞
i=N1

1/2i ≤ ε/2. Let N2 ∈ N such that∥∥∥∥∥
n∑

i=m

|ei|2
∥∥∥∥∥
∞

≤ ε

2

for all n ≥ m ≥ N2. This is possible because
∑∞
i=1 |ei|2 converges uniformly and

hence Cauchy uniformly. Let N = max{N1, N2}. Then,∥∥∥∥∥
n∑

i=m

gi ⊗ gi

∥∥∥∥∥
∞

≤

∥∥∥∥∥
n∑

i=m

|gi|2
∥∥∥∥∥
∞

≤

∥∥∥∥∥
n∑

i=m

ci

∥∥∥∥∥
∞

+

n∑
i=m

1/2i.

We have ∥∥∥∥∥
n∑

i=m

ci

∥∥∥∥∥
∞

= sup
x∈X

n∑
i=m

min
y∈Yx

|ei(y)|2.
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We can use the axiom of choice to select an element yx ∈ Yx for each x ∈ X. It
follows that

sup
x∈X

n∑
i=m

min
y∈Yx

|ei(y)|2 ≤ sup
x∈X

n∑
i=m

|ei(yx)|2 = sup
x∈Y

n∑
i=m

|ei(x)|2 =

∥∥∥∥∥
n∑

i=m

|ei|2
∥∥∥∥∥
∞

≤ ε

2
.

and
∑n
i=m 1/2i ≤ ε/2, so

∑n
i=m gi ⊗ gi converges uniformly Cauchy and hence

uniformly. Let P be the limit function.
Define K̃ ∈ CC(X×X)Γ

�0 by K̃(x, y) =
∫
P (γx, γy) dγ, where we integrate over

the normalized Haar measure of Γ. Since P |Y×Y = K is Γ-invariant, the restriction

of K̃ to Y × Y equals K, which completes the proof. �

We use symmetric tensor powers to give an explicit construction of a symmetry
adapted system of Xt. Here it is convenient to define the measure ν on Xt in terms
of a strictly positive Radon probability measure µ on V by

ν(f) =

t∑
i=0

∫
· · ·
∫
V

f({(xσ(1), . . . , xσ(i)) : σ ∈ Si
}

) dµ(x1) · · · dµ(xi).

First some background on symmetric tensor powers: The (algebraic) tensor
product U ⊗ V of two complex vector spaces U and V is the unique (up to isomor-
phisms) complex vector space for which there exists a bilinear map φ : U×V → U⊗V
such that each bilinear map h : U × V → W into another complex vector space W
admits a unique linearization through φ; that is, there is a unique linear map
h̃ : U ⊗ V → W with h = h̃ ◦ φ. The map φ is unique, and we use the notation
a ⊗ b = φ(a, b). In general, φ is not surjective, but if {ui} and {vj} are bases of
U and V, then {ui ⊗ vj} is a basis of U ⊗ V (the elements in the image of φ are
called rank-1 tensors). The tensor product is associative and we use the notation
V⊗n for the nth tensor power; that is, V⊗n = V ⊗ · · · ⊗ V (n times) of V. Given
vector spaces V1, . . . ,Vn, vectors vi ∈ Vi, and an element σ in the symmetric group
Sn, we use the notation (⊗ni=1vi)

σ = ⊗ni=1vσ(i), and extend this linearly to ⊗ni=1Vi.
We use this to define the nth symmetric tensor power of V by

V�n =
{ ∑
σ∈Sn

wσ : w ∈ V⊗n
}
.

It follows from the polarization identity that V�n = span{v⊗n : v ∈ V}, and this
shows wσ = w for all w ∈ V�n and σ ∈ Sn.

If U and V have inner products, then we equip the tensor product U ⊗ V with
the inner product 〈u1 ⊗ u2, v1 ⊗ v2〉 = 〈u1, v1〉〈u2, v2〉, where we extend linearly in
the first and antilinearly in the second component. This defines a topology on the
tensor product, and the tensor product of two Hilbert spaces is defined to be the
completion of the vector space tensor product in this topology. This extends to
finite products, and we define

H�n =
{ ∑
σ∈Sn

wσ : w ∈ H⊗n
}

= cl(span{v⊗n : v ∈ H}).
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The (inner) tensor product representation π1⊗π2 : Γ→ U(H1⊗H2) of two unitary
representations π1 : Γ→ U(H1) and π2 : Γ→ U(H2) is defined by

(π1 ⊗ π2)(γ)(v1 ⊗ v2) = (π(γ)v1)⊗ (π(γ)v2).

This can also be extended to finite products and finite (symmetric) powers.
Let Li : L

2
C(V, µ)�i → L2

C(Xt, ν) be the operator defined by

Li(f)|({(xσ(1), . . . , xσ(i)) : σ ∈ Si}) = f(x1, . . . , xi).

These are isometric, Γ-equivariant operators with pairwise orthogonal images, and
the sum of the images under Ti of the ith symmetric algebraic tensor powers of
CC(V ) is uniformly dense in CC(Xt).

We assume we have a symmetry adapted system of V . Such a system defines
a sequence {Hk}mk=1 (where 1 ≤ m ≤ ∞) of irreducible and pairwise orthogonal
subrepresentations of L2

C(V, µ) whose sum is uniformly dense in CC(V ). The spaces
m⊗
k=1

H�τkk , for τ ∈ Di =
{
τ ∈ Nm0 :

m∑
k=1

τk = i
}
,

are orthogonal, Γ-invariant subspaces of L2
C(V, µ)⊗i (in the tensor product here we

exclude the factorsH�τkk where τk = 0, so that this becomes a finite tensor product).
For each 0 ≤ i ≤ t, we will define a unitary, Γ-equivariant operator

Ti :
⊕
τ∈Di

m⊗
k=1

H�τkk → L2
C(V, µ)�i,

such that the algebraic sum of Ti(⊗mk=1H
�τk
k ) over all τ ∈ Di is uniformly dense in

the ith algebraic tensor product of CC(V ).
The space ⊗mk=1H

�τk
k decomposes into irreducible representations; that is, there

exist Γ-equivariant, unitary operators

Mτ :
⊕
π∈Rτ

Hπ →
m⊗
k=1

H�τkk ,

where Rτ is a finite subset of Γ̂, and where Hπ is the Hilbert space of the irreducible
representation π ∈ Γ̂. In the following section we construct these operators Mτ

explicitly for the case where t = 2, V = S2, µ is the surface measure on S2, and
Γ = O(3).

Let {eπ,1, . . . , eπ,dπ} be an orthonormal basis of Hπ. Then,{
Li(Ti(Mτ (eπ,j))) : 0 ≤ i ≤ t, τ ∈ Di, π ∈ Rτ , j ∈ [dπ]

}
is a symmetry adapted system of Xt.

In the remainder of this section we give the definition of Ti and show it is a
Γ-equivariant and unitary operator. This generalizes a result from [3] to infinite
direct sums, and we additionally consider unitarity and equivariance. Given τ ∈ Di,
we let Aτ be the subgroup of all σ ∈ Si for which the set{ j−1∑

k=1

τk + 1,

j−1∑
k=1

τk + 2, . . . ,

j∑
k=1

τk

}
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is invariant under the permutation σ : [i]→ [i] for each j ∈ [m]. Let Bτ be the left
coset space of Si modulo Aτ . Given τ ∈ Di, w ∈ ⊗mk=1H

�τk
k , and [σ] ∈ Bτ , the

operation w 7→ wσ is well-defined, and

1

|Bτ |
∑

[σ]∈Bτ

wσ ∈ L2
C(V, µ)�i.

Moreover, if we fix an element wτ ∈ ⊗mk=1H
�τk
k for every τ ∈ Di, then wστ and wσ

′

τ ′

are orthogonal if τ 6= τ ′ or σ 6= σ′. So we can define Ti by sending an element
w ∈ ⊗mk=1H

�τk
k , where τ ∈ Di, to 1/|Bτ |

∑
[σ]∈Bτ w

σ and extending by linearity.

Lemma 7.6.2. The operators Ti are unitary and Γ-equivariant, and the alge-
braic sum of Ti(⊗mk=1H

�τk
k ) over all τ ∈ Di is uniformly dense in the ith algebraic

symmetric tensor power of CC(V ).

Proof. By definition Ti is linear. It is also an isometry: Given w ∈ ⊗mk=1H
�τk
k ,

we have

‖Ti(w)‖ =

∥∥∥∥∥∥ 1

|Bd|
∑

[σ]∈Bτ

wσ

∥∥∥∥∥∥ =
1

|Bτ |
∑

[σ]∈Bτ

‖wσ‖ = ‖w‖.

The span of the elements of the form (
∑m
k=1 vk)⊗i, where vk ∈ Hk for k ∈ [m]

and vk = 0 for all but finitely many k, is uniformly dense in the ith algebraic tensor
power of CC(V ). Such an element has a preimage under Ti:

( m∑
k=1

vk

)⊗i
=

m∑
k1,...,ki=1

i⊗
j=1

vkj =
∑

{k1,...,ki}⊆[m]

∑
σ∈Si

i⊗
j=1

vkσ(j)

=
∑
τ∈Di

∑
[σ]∈Bτ

( m⊗
k=1

v⊗τkk

)σ
= Ti

( ∑
τ∈Di

m⊗
k=1

v⊗τkk

)
.

So, the image of algebraic direct sum of the spaces ⊗mk=1H
�τk
k over all τ ∈ Di under

Ti is uniformly dense in ith algebraic tensor product of CC(V ) and hence is dense in
L2
C(V )�i. Hence, Ti is an isometry whose image is dense in L2

C(V )�i and therefore
is a unitary operator.

Since the spaces Hk are π-invariant, the spaces ⊗mk=1H
�τk
k , for τ ∈ Di, are

π⊗i-invariant. So, for w ∈ ⊗mk=1H
�τk
k , with τ ∈ Di, we have

Ti(π
⊗i(γ)w) =

1

|Bτ |
∑

[σ]∈Bτ

(π⊗i(γ)w)σ =
1

|Bτ |
∑

[σ]∈Bτ

π⊗i(γ)wσ

= π⊗i(γ)

 1

|Bτ |
∑

[σ]∈Bτ

wσ

 = π⊗i(γ)Ti(w),

which means that Ti is Γ-equivariant. �
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7.6.3. Explicit computations for the sphere. In this section we construct
a symmetry adapted system of X2, where

X2 =

2⋃
i=0

V i/Si, V = S2, and Γ = O(3),

and where X2 has the measure ν as defined in the previous section. We then use this
to construct the zonal matrices and inner approximating cones of CC(X2 ×X2)Γ

�0.
For some material we only state the results and provide references. For less familiar
material in this context, such as our use of O(3) instead of SO(3), the focus on
cartesian coordinates instead of spherical coordinates, and the focus on symmetric
tensor powers, we give more details. The formulas and constants are given explicitly,
so that these can be used to construct a software implementation to compute the
zonal matrices.

Let H` ⊆ CC(S2) be the space of spherical harmonics of degree `. A spherical
harmonic is the restriction to S2 of a homogeneous polynomial in C[x, y, z] that
vanishes under the Laplacian ∆ = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2; see for instance [38].
The space H` has dimension 2` + 1. Moreover, these spaces are orthogonal and
form irreducible subrepresentations of the unitary representation

Ls : SO(3)→ U(L2
C(S2, ω)), Ls(γ)f(x) = f(γ−1x),

where ω is the invariant measure on the sphere with normalization ω(S2) = 4π. The
subrepresentations H` in fact form a complete set of subrepresentations: The (alge-
braic) sum of the spaces H` is uniformly dense in CC(S2), and L2

C(S2, ω) decomposes
as the Hilbert space direct sum of the spaces H`. Moreover, up to equivalence these
are all irreducible representations of SO(3).

The Laplace spherical harmonics Y m` provide an explicit set of orthonormal
bases of the spaces H` = span{Y m` : m = −`, . . . , `}. The functions Y m` are
typically defined as

Y m` (ϑ, ϕ) = cm` P
m
` (cos(ϕ))eimϑ,

where we use the spherical coordinates

x = cos(ϑ) sin(ϕ), y = sin(ϑ) sin(ϕ), z = cos(ϕ).

Here

cm` = (−1)m

√
(2`+ 1)

4π

(`−m)!

(`+m)!

is a normalization constant, and Pm` is the `th associated Legendre polynomial of
order m, where both use the Condon–Shortley phase convention. We can define
Pm` as

Pm` (z) = (−1)m(1− z2)m/2
dm

dzm
(P`(z))

where

P`(x) =
1

2``!

d`

dx`
(x2 − 1)`.

is the `th Legendre polynomial.



7.6. INNER APPROXIMATING CONES VIA HARMONIC ANALYSIS 119

In cartesian coordinates Y m` becomes

cml P
m
l

(
z√

x2 + y2 + z2

)(
x+ iy√
x2 + y2

)m
,

and by using the identity x2 + y2 + z2 = 1 as well as the above definition of the
associated Legendre polynomials, we can write Y m` as the polynomial

Y m` (x, y, z) = (−1)mcm`
dm

dxm
(P`(z)) (x+ iy)m.

From the definition of P` we see that when ` is even (odd), then every term of
P` has even (odd) degree. This means we can multiply the terms in Y m` (x, y, z)
with appropriate powers of x2 + y2 + z2 to make Y m` (x, y, z) into a homogeneous
polynomial of degree `.

In general an inner tensor product (see previous section) of irreducible represen-
tations is not irreducible. By the above discussion we know that a tensor product
H`1 ⊗H`2 must be isomorphic to a direct sum of the spaces H`. Indeed, we have

H`1 ⊗H`2 ' H|`1−`2| ⊕ · · · ⊕ H`1+`2 .

The SO(3)-equivariant, unitary operator

Φ`1,`2 : H`1 ⊗H`2 → H|`1−`2| ⊕ · · · ⊕ H`1+`2

is rather nontrivial, but can be given explicitly through the Clebsch–Gordan coef-
ficients [38], which can be expressed as

C`,m`1,m1,`2,m2
= δm1+m2=m

( (2`+ 1)(`1 + `2 − `)!(`1 − `2 + `)!(−`1 + `2 − `)!
(`1 + `2 + `+ 1)!

· (`1 +m1)!(`1 −m1)!(`2 +m2)!(`2 −m2)!(`+m)!(`−m)!
)1/2

·
∞∑

ν=−∞
(−1)ν

(
ν!(`1 + `2 − `− ν)!(`1 −m1 − ν)!(`2 +m2 − ν)!

· (`− `2 +m1 + ν)!(`− `1 −m2 + ν)!
)−1

,

by setting

Φ`1,`2(Y m1

`1
⊗ Y m2

`2
) =

`1+`2∑
`=|`1−`2|

∑̀
m=−`

C`,m`1,m1,`2,m2
Y m`

and extending by linearity. Since the Clebsch–Gordan coefficients are real numbers,
it follows that

Φ−1
`1,`2

(Y m` ) =

`1∑
m1=−`1

`2∑
m2=−`2

C`,m`1,m1,`2,m2
Y m1

`1
⊗ Y m2

`2
.
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For any set of scalars {cm} we have

Φ`′,`′
( `′∑
m1=−`′

cm1
Y m1

`′ ⊗
`′∑

m1=−`′
cm1

Y m1

`1

)

=

2`′∑
`=0

∑̀
m=−`

 `′∑
m1,m2=−`′

cm1
cm2

C`,m`′,m1,`′,m2

Y m` ,

and by using the symmetry relation

C`,m`2,m2,`1,m1
= (−1)`1+`2−`C`,m`1,m1,`2,m2

of the Clebsch–Gordan coefficients, we obtain

`′∑
m1,m2=−`′

cm1
cm2

C`,m`′,m1,`′,m2
= 0

for all odd numbers `, so

Φ`′,`′(H�2
`′ ) ⊆ H0 ⊕H2 ⊕ · · · ⊕ H2`′ ,

We have

dim(H�2
`′ ) =

(
dim(H`′) + 1

2

)
=

(
2`′ + 2

2

)
= 2(`′)2 + 3`′ + 1

=

`′∑
k=0

(4k + 1) = dim(H0 ⊕H2 ⊕ · · · ⊕ H2`′),

so

H�2
`′ ' H0 ⊕H2 ⊕ · · · ⊕ H2`′ .

Let Φ` be the isomorphism H�2
` → H0 ⊕H2 ⊕ · · · ⊕ H2` defined by Φ` = Φ`,`|H�2

`
.

We have shown how L2
C(S2, ω) decomposes into SO(3)-irreducible representa-

tions, and how tensor products and symmetric tensor powers of these irreducibles
decompose into irreducibles. In the next section it will be essential that instead
of the group SO(3), we consider the full symmetry group O(3) of S2. The special
orthogonal group SO(3) forms a normal subgroup of O(3). Since R3 is odd dimen-
sional, the inversion operation x 7→ −x is not contained in SO(3). This operation,
which we denote by −I, generates a 2 element normal subgroup of O(3), and the or-
thogonal group O(3) is isomorphic to the direct product Z2×SO(3). Consequently,
for each irreducible representation H` of SO(3), we define two nonequivalent irre-
ducible representations πp` : O(3)→ U(Hp` ), with p = ±1, where H+1

` and H−1
` are

both isomorphic to H` as Hilbert spaces, and where πp` |SO(3) is equivalent to H`,
but where πp` (−I)f = pf . It follows that πp` is a subrepresentation of the unitary
representation

L : O(3)→ U(L2
C(S2, ω)), L(γ)f(x) = f(γ−1x)

if and only if p = (−1)`. For f1 ∈ Hp1

`1
and f2 ∈ Hp2

`2
we have

(πp1

`1
⊗ πp2

`2
)(−I)(f1 ⊗ f2) = πp1

`1
(−I)f1 ⊗ πp2

`2
(−I)f2 = p1p2(f1 ⊗ f2),
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which implies

Hp1

`1
⊗Hp2

`2
' Hp1p2

|`1−`2| ⊕ · · · ⊕ H
p1p2

`1+`2
and (Hp`′)

�2 ' H+1
0 ⊕H

+1
2 ⊕ · · · ⊕ H

+1
2`′ .

We can view the operators Φ`1,`2 and Φ` defined above as O(3)-equivariant, unitary

operatorsHp1

`1
⊗Hp2

`2
→ Hp1p2

|`1−`2|⊕· · ·⊕H
p1p2

`1+`2
and (Hp`′)�2 → H+1

0 ⊕H
+1
2 ⊕· · ·⊕H

+1
2`′ .

We use these operators to give an explicit definition of the operators Mτ from
the previous section. Let e` denote the vector in N∞0 where (e`)`′ = δ`,`′ . For
τ ∈ D0, Mτ becomes the identity operator H1

0 → C. Each τ ∈ D1 is of the form
τ = e` for some `, and Mτ is the identity operator Hp` → H

p
` , where p = (−1)`. If

τ ∈ D2 is of the form τ = e`1 + e`2 with `1 6= `2, then Mτ is given by the operator
Φ−1
`1,`2

. If τ ∈ D2 is of the form 2e` for some ` ∈ N0, then Mτ is given by Φ−1
` .

The representations in Γ̂ can be indexed by (`, p) ∈ N0×{±1}, and a symmetry
adapted system of X2 has the form{

e(`,p),τ,m : ` ∈ N0, p = ±1, τ ∈ R(`,p), −` ≤ m ≤ `
}
,

where R(`,p) = R0
(`,p) ∪R

1
(`,p) ∪R

2
(`,p),

R0
(`,p) =

{
{0} if ` = 0 and p = 1,

∅ otherwise,

R1
(`,p) =

{
{e`} if p = (−1)`,

∅ otherwise,

and

R2
(`,p) =

{
e`1 + e`2 : δ2-` ≤ |`1 − `2| ≤ ` ≤ `1 + `2, (−1)`1+`2 = p

}
,

where δ2-` is 1 if ` is odd, and 0 if ` is even. Here the basis element e(`,p),τ,m can
be computed as Li(Ti(Mτ (Y m` ))), where i =

∑
`′ τ`′ .

The rows and columns of the zonal matrices Z(`,p)(T, T
′) constructed using this

symmetry adapted system are indexed by R(`,p). To obtain the finite dimensional
inner approximating cones we need to select finite subsets R(`,p),d ⊆ R(`,p) so that
∪∞d=0R(`,p),d = R(`,p), and for each d only finitely many sets R(`,p),d are nonempty.
The natural way to do that here is to define

R(`,p),d =
{
τ ∈ R(`,p) :

∑
`′

τ`′ ≤ d
}

;

that is, if we view the basis elements as multivariate polynomials, we restrict the
degree to be at most d.

Although the symmetry adapted system constructed in this section does not
consist of real-valued functions, it can easily be verified that the resulting zonal ma-
trices do have real-valued entries. Following the discussion at the end of Section 3.4
we see that we then also get a sequence of inner approximating cones of the cone
C(X2×X2)Γ

�0 consisting of real-valued kernels. The proof of Lemma 7.6.1 also works
for real-valued kernels, so this yields the desired sequence of inner approximating
cones of C(I2 × I2)Γ

�0.
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7.7. Reduction to semidefinite programs with polynomial constraints

In this section we reduce the dual hierarchy for the Thomson problem to a se-
quence of semidefinite programs with polynomial constraints. Here, by a polynomial
constraint we mean the requirement that a polynomial, whose coefficients depend
linearly on the entries of the positive semidefinite matrix variable(s), is positive on
a basic closed semialgebraic set. A basic closed semialgebraic set is a subset of Rn
that has a description of the form

S(g1, . . . , gm) = {x ∈ Rn : gi(x) ≥ 0 for i ∈ [m]},

where g1, . . . , gm ∈ R[x1, . . . , xn], and the polynomials defining the semialgebraic
sets are assumed to be part of the description of the problem. In the next section
we show how these programs can be approximated by semidefinite programs and
how symmetries in these polynomial constraints can be exploited to (further) block
diagonalize the semidefinite programming formulations.

Following Section 7.2 and Section 7.5 the t-th step in the dual hierarchy for the
Thomson problem reads

E∗t = sup
{ 2t∑
i=0

(
N

i

)
ai : a ∈ R{0,...,2t}, K ∈ C(It × It)�0,

ai +AtK(S) ≤ f(S) for S ∈ I=i and i = 0, . . . , 2t
}
,

where It is the set of independent sets of cardinality at most t in the graph on the
unit sphere S2 defined in Section 7.2, and where

f(S) =

{
‖x− y‖−1

2 if S = {x, y} with x 6= y,

0 otherwise.

In the symmetrized version of this problem, as derived in Section 7.5.2, we restrict
the kernels in the cone C(It × It)�0 to be O(3)-invariant, and in Section 7.6.3 we
construct the sequence

Cd =
{∑
π∈Γ̂

〈
Aπ, Zπ,d(·, ·)∗

〉
: Aπ ∈ S

Rπ,d
�0 for π ∈ Γ̂

}
of inner approximations to the latter cone. By replacing C(It × It)O(3)

�0 with Cd we
obtain the sequence of approximations:

Q̃t,d = sup
{ 2t∑
i=0

(
N

i

)
ai : a ∈ R{0,...,2t}, A ∈

⊕
π∈Γ̂

S
Rπ,d
�0 ,

ria,A(S) ≤ f(S) for S ∈ I=i and i = 0, . . . , 2t
}
,

where

ria,A(S) = ai +At
(∑
π∈Γ̂

〈
Aπ, Zπ,d(·, ·)

〉)
(S).

For each t and d, the problem Qt,d has finite dimensional variable space, and we
have limd→∞Qt,d = E∗t = Et and limd→∞QN,d = E.
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Let R[x1, . . . , xi] be the ring of real polynomials in 3i variables, where each xj is
a vector of 3 variables. In Section 7.6.3 we construct the matrix entries of Zπ using
the spherical harmonics, and this defines polynomials pia,A ∈ R[x1, . . . , xi] with

ria,A({x1, . . . , xi}) = pia,A(x1, . . . , xi) for all {x1, . . . , xi} ∈ I=i.

The coefficients of pia,A depend linearly on the vector a and the matrices Aπ. These

polynomials pia,A ∈ R[x1, . . . , xi] are O(3)-invariant:

pia,A(x1, . . . , xi) = p(γx1, . . . , γxi) for all x1, . . . , xi ∈ S2 and γ ∈ O(3).

It follows from the first fundamental theorem of invariant theory for the or-
thogonal group [59, Theorem 10.2] that pia,A can be written as a polynomial in the(
i+1
2

)
inner products. Restricted to sphere we have the identities xj · xj = 1, for

j ∈ [i], so there is a polynomial qia,A ∈ R[u1, . . . , u(i2)
] such that

pia,A(x1, . . . , xi) = qia,A(x1 · x2, x1 · x3, . . . , xi · xi) for all x1, . . . , xi ∈ S2.

The polynomial qia,A is not unique in general. The use of this theorem is why, as

mentioned in the previous section, we need O(3)-invariance, instead of just SO(3)-
invariance. For otherwise the polynomials qia,A would also depend on the determi-
nants of the 3 × 3 matrices whose columns are given by vectors from {x1, . . . , xi},
which would mean we have too many variables.

The degenerate polynomials q0
a,A and q1

a,A have 0 variables; they are linear
combinations of the entries of the vector a and the matrices Aπ. The constraints
ria,A|I=i ≤ 0 for i = 0, 1 in Qt,d therefore reduce to the two linear constraints

q0
a,A ≤ 0 and q1

a,A ≤ 0.

For distinct x, y ∈ S2 we have

f({x, y}) =
1

‖x− y‖2
=

1√
2− 2x · y

.

So, by using the substitution w =
√

2− 2u we can write the constraint r2
a,A|I=2t

≤
f |I=2t in Qt,d as the polynomial nonnegativity constraint

1− w − w q2
a,A(1− w2/2) ≥ 0

on the interval [B−1, 2].
The set of independent sets of cardinality i can be described as

I=i =
{
{x1, . . . , xi} ⊆ S2 : xj · xj′ ≤ 1− 1

2
B−2 for 1 ≤ j < j′ ≤ i

}
.

Let

I=i =
{

(x1 · x2, x1 · x3, . . . , xi−1 · xi) : {x1, . . . , xi} ∈ I=i
}
.
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A constraint ria,A|I=i ≤ 0 for i ∈ {3, . . . , 2t} can be written as qia,A|I=i
≤ 0. This

means we can write the problem Qt,d as

Q̃t,d = sup
{ 2t∑
i=0

(
N

i

)
ai : a ∈ R{0,...,2t}, A ∈

⊕
π∈Γ̂

S
Rπ,d
�0 ,

q0
a,A ≤ 0, q1

a,A ≤ 0,

1− w − w q2
a,A(1− w2/2) ≥ 0 for w ∈ [B−1, 2],

qia,A|I=i
≤ 0 for i = 3, . . . , 2t

}
.

Given a feasible solution (a,K) of Q̃t,d, we can modify a slightly so that all polyno-
mial inequalities are satisfied strictly. So, the program Qt,d, defined to be the same
as Q̃t,d except that we replace all inequalities by strict inequalities, has the same
optimal value.

To describe I=i as a semialgebraic set we first observe that by using the Gram
decomposition of a positive semidefinite matrix, it can be written as

I=i =
{
u ∈ R(i2) : uj ≤ 1− 1/(2B2) for j ∈ [

(
i
2

)
], E(u) � 0, rank(E(u)) ≤ 3

}
,

where E(u) is the symmetric i× i-matrix with ones on the diagonal and the entries
of u in the upper and lower diagonal parts. Using Sylvester’s criterion for positive
semidefinite matrices we obtain the semialgebraic description

I=i =
{
u ∈ R(i2) : uj ≤ 1− 1/(2B2) for j ∈ [

(
i
2

)
],

g(u) ≥ 0 for g ∈ Gi,j with 2 ≤ j ≤ 3,

g(u) = 0 for g ∈ Gi,j with 4 ≤ j ≤ i
}
,

where Gi,j is the set of principal minors (the determinants of principal submatrices)
of E(u) of order j.

From the symmetry of the sphere and pair potential it follows that the poly-
nomials pia,A are O(3)-invariant. The Thomson problem, however, admits even
more symmetry: the particles are interchangeable. The polynomials pia,A are in-
variant under the symmetric group; that is, pia,A(x1, . . . , xi) = pia,A(xσ(1), . . . , xσ(i))
for all x1, . . . , xi ∈ S2 and σ ∈ Si. This extra symmetry translates into symme-
try in the polynomials qia,A: The relation between the x and u variables gives a
group homomorphism τi from the symmetric group on i elements to the symmet-
ric group on

(
i
2

)
elements. For example, τ2 is the trivial map S2 → S1, and τ3

sends the generators (1, 2) and (1, 3) of S3 to the generators (2, 3) and (1, 2) of
S3. The map τ4 sends the generators (1, 2), (2, 3), and (3, 4) of S4 to the elements
(3, 5)(2, 4), (1, 2)(5, 6), and (4, 5)(2, 3) of S6. We can view τi(S4) as a subgroup
of the orthogonal group O(

(
i
2

)
), where we represent the group elements as per-

mutation matrices. The polynomials qia,A are invariant under the representation
Li : τi(Si)→ O(R[u]), Li(γ)p(u) = p(γ−1u). Moreover, the sets Gi,j , for 0 ≤ j ≤ i,
are invariant under this representation Li.
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7.8. Invariant polynomials in the quadratic module

In this section we first explain how Putinar’s theorem can be used to approx-
imate a semidefinite program with polynomial constraints by a sequence of block
diagonal semidefinite programs. We then show how symmetry of the polynomial
constraints can be used to further block diagonalize these semidefinite programming
formulations. By using the problems Q2,d from the previous section as example we
show this can lead to significant computational savings.

The quadratic module generated by a set of polynomials g1, . . . , gm from the
ring R[x] = R[x1, . . . , xn] reads

M(g1, . . . , gm) =
{ m∑
i=0

gisi : s0, . . . , sm ∈ R[x] are sum of squares polynomials
}
,

where for convenience g0 always denotes the constant one polynomial. Polynomials
in M(g1, . . . , gm) are nonnegative on the basic closed semialgebraic set

S(g1, . . . , gm) =
{
x ∈ Rn : gi(x) ≥ 0 for i ∈ [m]

}
.

The usefulness of the quadratic module stems from Putinar’s theorem [81], which
says that under the condition that {g1, . . . , gm} has the Archimedean property,
every strictly positive polynomial on S(g1, . . . , gm) is contained in M(g1, . . . , gm).
A set of polynomials {g1, . . . , gm} has the Archimedean property if its quadratic
module contains a polynomial p whose semialgebraic set S(p) is compact; this is an
algebraic certificate of the compactness of S(g1, . . . , gm).

For e ∈ N0, we define the truncated quadratic module Me(g1, . . . , gm) in the
same way as we defined M(g1, . . . , gm), except that we require si to have degree at
most 2hi, where hi = b(e−deg(gi))/2c. This is different from the set we obtain when
we restrict the degrees of the polynomials in M(g1, . . . , gm) to be at most 2hi, since
terms can cancel each other out. Putinar’s theorem shows that each polynomial p
that is strictly positive on S(g1, . . . , gm) is contained in Me(g1, . . . , gm) for every
large enough e. In [78] an upper bound on the smallest e for which this is true is
given in terms of the polynomials g1, . . . , gm, the degree of p, and how close p is to
having a zero on S(g1, . . . , gm).

Let vi(x) be a vector whose entries form a basis of the polynomials of degree at
most hi. The cone of sum of squares polynomials of degree at most 2hi consists of
polynomials of the form

si(x) = vi(x)TQivi(x),

where Qi ranges over the positive semidefinite matrices of size
(
n+hi
n

)
. Here a

Cholesky factorization Qi = RT
i Ri can be used to prove vi(x)TQivi(x) is a sum of

squares. This implies

Me(g1, . . . , gm) ' S(n+h0
n )

�0 × · · · × S(n+hm
n )

�0 .

Given a semidefinite program with polynomial constraints, we say we model a
polynomial constraint p|S(g1,...,gm) > 0 by a degree d sum of squares characterization
if we introduce the additional positive semidefinite matrix variables Q0, . . . , Qm and
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replace the above constraint by a set of linear constraints which enforce the identity

p(x) =

m∑
i=0

gi(x)vi(x)TQivi(x).

To obtain a set of linear constraints for the above identity we can express the
left and right hand sides in terms of the same basis and equate the coefficients
with respect to this basis. As discussed in Chapter 4, the choice of basis for the
entries of vi and the basis choice for the linear constaints can have great impact on
the numerical conditioning of the resulting semidefinite program. The semidefinite
programs we obtain in this way become arbitrarily good as we take characterizations
of higher degrees, and if the semidefinite program with polynomial constraints has
an optimal solution, then the optimum is obtained for finite degree sum of squares
characterizations.

If p is invariant under the action of a group, then we can further block diag-
onalize the matrices Qi. Let Γ be a finite subgroup of O(n). This induces the
orthogonal representation L : Γ → O(R[x]), L(γ)p(x) = p(γ−1x), where the inner
product on R[x] is given by 〈p, q〉 =

∑
α pαqα. A polynomial p is Γ-invariant if

L(γ)p = p for all γ ∈ Γ, and a set of polynomials {g1, . . . , gm} is Γ-invariant if
{L(γ)g1, . . . , L(γ)gm} = {g1, . . . , gm} for all γ ∈ Γ. We denote by Γgi the stabi-
lizer subgroup of Γ with respect to gi. In the next proposition we show that if
the polynomials p and the set {g1, . . . , gm} are invariant, then the sum of squares
polynomials are invariant under the corresponding stabilizer subgroups.

Proposition 7.8.1. Every Γ-invariant polynomial p ∈ Md(g1, . . . , gm) can be
written as p =

∑m
i=0 gisi, where si is a Γgi-invariant sum of squares polynomial

with deg(si) ≤ hi.

Proof. Let ∆i,j = {γ ∈ Γ : L(γ)gj = gi}, so that ∆i,i = Γgi . We have

p(x) =
1

|Γ|
∑
γ∈Γ

L(γ)p(x) =
1

|Γ|
∑
γ∈Γ

m∑
i=0

gi(γ
−1x)si(γ

−1x)

=
1

|Γ|

m∑
i=1

gi(x)

m∑
j=1

∑
γ∈∆i,j

sj(γ
−1x)

So, if we define

s̄i(x) =
1

|Γ|

m∑
j=0

∑
γ∈∆i,j

si(γ
−1x),

then p(x) =
∑m
i=0 gi(x)s̄i(x). The functions s0, . . . , sm are sums of squares polyno-

mials because the cone of sum of squares polynomials is O(n)-invariant. Moreover,
for η ∈ ∆i,i we have

L(η)s̄i(x) =
1

|Γ|

m∑
j=0

∑
γ∈∆i,j

si(γ
−1η−1x) =

1

|Γ|

m∑
j=0

∑
γ∈η∆i,j

si(γ
−1x),

so ∆i,i-invariance of si follows from the fact that η∆i,j = ∆i,j for all η ∈ ∆i,i. �
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As shown in [37], the representation of a polynomial as a sum of squares can be
block diagonalized when the polynomial is Γ-invariant. In our application to Q2,d,
the representation L only uses permutation matrices, so we give a derivation for
this slightly simpler case. Assume v(x) consists of monomials. We represent L(γ)

as a real
(
n+h
h

)
×
(
n+h
h

)
matrix with respect to the basis spanned by the entries of

v(x), so that L(γ) is a permutation matrix and v(γ−1x) = L(γ)v(x) for each γ ∈ Γ.
Then,

s(x) =
1

|Γ|
∑
γ∈Γ

p(γ−1x) =
1

|Γ|
∑
γ∈Γ

v(γ−1x)TQv(γ−1x)

=
1

|Γ|
∑
γ∈Γ

v(x)TL(γ)TQL(γ)v(x) = v(x)TQ̄v(x),

where

Q̄ =
1

|Γ|
∑
γ∈Γ

L(γ)TQL(γ).

The matrix Q̄ commutes with L(γ) for all γ ∈ Γ, so we can view it as a Γ-invariant,

positive definite kernel [
(
n+h
h

)
]× [

(
n+h
h

)
]→ R, and we can use the techniques from

Chapter 3 to block diagonalize it. The block sizes are given by the numbers mπ,
where mπ denotes the number of times the real irreducible representation π occurs
in a complete orthonormal symmetry adapted system of R[x]h. These numbers can
be computed through the use of a Hilbert–Poincaré series. The subspaces R[x]=k
of R[x]d consisting of homogeneous polynomial of degree k are Γ-invariant, and we
have R[x]d = ⊕dk=0R[x]=k. We denote the number of times π occurs in a complete
orthonormal symmetry adapted system of R[x]=k by mk

π, so that mπ =
∑d
k=0m

k
π.

The Molien series is the formal power series

ψπ(t) =

∞∑
k=0

mk
πt
k =

1

|Γ|
∑
γ∈Γ

trace(π(γ))

det(I − tL(γ))
,

where the second equality is a theorem of Molien [75]. We use a Magma [18]
implementation to compute the block sizes in the block diagonalization of Q.

We apply this to the problems Q2,d. We model the polynomial constraints
qia,A|I=i

< 0, for i = 3, 4, using the semialgebraic description of I=4 as given
in the previous section. In the description of I=4 we do not just have polynomial
inequalities but also a polynomial equality: we restrict to u for which det(E(u)) = 0.
We could model this constraint by just having the constraints det(E(u)) ≥ 0 and
−det(E(u)) ≥ 0, but this is inefficient. Instead we have free variables zα and the
characterization

q4
a,A(u) + v0(u)TQ0v0(u) +

3∑
j=2

∑
g∈G4,j

g(u)vg(u)TQgvg(u)(27)

+ det(E(u))
∑

α∈N6
0:‖α‖1≤e−4

zαu
α1
1 · · ·u

α6
6 = 0.
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e
(6+be/2c

6

)
g0 G4,2 G4,3

0 1 1 0 0
1 1 1 0 0
2 7 2 1 0
3 7 2 1 1
4 28 5 4 1
5 28 5 4 3
6 84 12 13 3
7 84 12 13 9
8 210 29 33 9
9 210 29 33 27
10 462 63 75 27
11 462 63 75 69
12 924 124 153 69
13 924 124 153 153
14 1716 228 291 153
15 1716 228 291 306
16 3003 395 519 306
17 3003 395 519 570
18 5005 654 882 570
19 5005 654 882 999
20 8008 1040 1435 999

Table 1. Largest block sizes in semidefinite programming formu-
lations of Q2,d with and without exploiting symmetry.

In practice, the occurence of large blocks in a semidefinite program is problem-
atic, and given that the numerical conditioning does not get much worse, we prefer
to have several smaller blocks instead. The sizes of the matrices Aπ in Q2,d grow
slowly in d, so the largest block in the semidefinite programming approximations
of Q2,d will occur in modeling the polynomial constraint q4

a,A|I=4 < 0 by a sum
squares characterization. Here q4

a,A is a polynomial of degree d in 6 variables. If
we use sum of squares characterizations of degree e (in practice we usually take
d ≤ e ≤ 2d), then without the use of symmetry, the largest block will have size(

6+be/2c
6

)
. The stabilizer subgroup of τ4(S4) with respect to the constant 1 polyno-

mial is isomorphic to S4, and with respect to a polynomial g ∈ G4,j , it is isomorphic
to the Klein-Four group for j = 2 and to S3 for j = 3. In Table 1 we show in the
second column the size of Q0 in (27) when not using symmetry reduction. In the
third column we show the size of the largest block size in the block diagonalization
of Q0. In the fourth and fifth columns we show the size of the larges block size
in the block diagonalization of Qg for g ∈ G4,j . Here we see that (at least in this
range) the largest matrix in the semidefinite program is approximately a factor 6
smaller when using this symmetry reduction.

7.9. Computations

Given a system of N particles, we know the N -th step EN is guaranteed to give
the optimal energy E. It could be the case, however, that for many problems the
bound Et is sharp for much smaller values of t. After symmetry reduction the dual
of the first step E∗1 essentially reduces to Yudin’s bound, and hence is sharp for the
Thomson problem with N = 2, 3, 4, 6, 12. The goal here is to show it is possible to
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compute the second step E2, which is a 4-point bound, and to show it is sharp (up
to solver precision) for N = 5.

To compute E2 for the Thomson problem with N = 5 we write a program
which generates the semidefinite program Q2,6 from Section 7.7, where we model the
polynomial inequalities using the techniques described in Section 7.8. We compute
the optimal value of this semidefinite program with a semidefinite programming
solver and check that the optimal objective is equal, up to solver precision, to the
energy of the vertices of the triangular bipyramid.

Our code is written in Julia [12], which is a high-level dynamic language which
allows for quick experimentation (which we have done extensively for this project)
with different algorithms and data structures, and it has a high quality just-in-time
compiler which makes code execution fast.

First we generate the symmetry adapted system and zonal matrices described
in Section 7.6.3. For this we constructed a simple library for sparse multivariate
polynomials, which includes generators for the Laplace spherical harmonics and
code for generating the Clebsch–Gordan coefficients. To generate high quality input
for the solver we perform the computations in high precision arithmetic using the
MPFR library [35].

As described in Section 7.7 we write the generated polynomial entries of the
zonal matrices in terms of the inner products. For this we need to solve a large
number of instances of the following problem: Let p ∈ R[x1, . . . , xi], where each
xi is a vector of 3 variables, be O(3)-invariant. We want to find a polynomial

q ∈ R[u1, . . . , us], with s =
(
i+1
2

)
, such that

p(x1, . . . , xi) = q(x1 · x1, x1 · x2 . . . , xi · xi).

As mentioned before, such a q is guaranteed to exist, and hence p must have even de-
gree 2d. If m ∈ R[u1, . . . , us] is a monomial, then the polynomial m(x1 ·x2, . . . , xi−1 ·
xi) is homogeneous of degree 2 deg(m). This means we may assume deg(q) ≤ d.
We construct a linear system Ax = b, where the rows of A and b are indexed by
monomials in 3i variables up to degree 2d, and the columns of A and rows of x by
the monomials in s variables up to degree d. The size of A quickly grows large: for
i = 4 and d = 6 it has about 2.7 million rows. The matrix is sparse, however, where
the maximum number of nonzero’s in a row is 3d, and although this is exponential,
for d = 6 this is just 729. We therefore store A in a sparse data structure. For
i = 4, the system Ax = b has more rows than columns. So we use a least squares
approach and solve ATAx = ATb instead. The matrix A typically is not of full col-
umn rank (q is not unique), which means ATA is singular, so instead we solve the
system (ATA + εI)x = ATb, where ε > 0 is small. Because a high precision solver
which can work with sparse data structures is not readily available, we implement
a simple pivoting Cholesky factorization algorithm. We use this to compute the
Cholesky factorization ATA + εI = PRTRPT, where P is a permutation matrix,
and retrieve x using backwards substitution. Finally, we use the equation relating
p and q to verify the correctness of the computed polynomial up to a large number
of digits.
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We use Magma [18] code to generate the block diagonalized sum of squares
characterizations described in Section 7.8. This code uses Magma functions to com-
pute the stabilizer subgroups and irreducible representations automatically. Then
we implement the algorithm described in [91] to generate the symmetry adapted
systems. We transfer these into our Julia code to construct the block diagonalized
sum of squares formulations.

We develop a simple semidefinite programming specification library in Julia
which we use in combination with the above code to generate the semidefinite
programs. This program outputs files in the SDPA-sparse format which can function
as input file for many semidefinite programming solvers. We solve the generated
semidefinite programs using CSDP [16], which implements a machine precision
primal-dual interior point method to solve the semidefinite programs.

In addition to computing the Coulomb energy for the Thomson problem, we
use a different variable substitution in Section 7.7 to compute the Riesz-s energy for
s > 1. Due to this variable substitution we, the degree that we need in the sums of
squares characterization for modeling the i = 2 polynomial constraint, depend on
s. The configuration consisting of vertices of the triangular bipyramid has Riesz-s
energy

6

2s/2
+

3

3s/2
+

1

4s/2
.

We compute our bound for s = 1, 2, 4. For s = 1, 2 we use e = 12 for the i = 2
sum of squares characterization and for s = 4 we use e = 16. In all cases we
use e = 8 for the i = 3 and i = 4 sum of squares characterizations. For each of
these values of s the solver solves the problem to optimality, and at least the first
7 digits of the solver output agree with the corresponding energy of the vertices of
the triangular bipyramid. For s ∈ {3, 5, 6, 7}, the solver solves the problems with
reduced accuracy, but the bound seems sharp. For higher values of s we cannot
draw a conclusion from the solver output.

A next step would be to solve these problems with a high precision solver.
However, current high precision solvers such as SDPA-QD and SDPA-GMP [92] do
not currently perform well if the primal or dual semidefinite program is not strictly
feasible. In our problems we have free variables (the ai variables and the variables
in the sum of squares modeling of the i = 4 polynomial constraints), and we model
each of these as the difference of two nonnegative variables, which implies the primal
problems are unbounded and the dual problems are not strictly feasible. It would
be very useful to find an approach such as in [57] to model these free variables in
a way that preserves strict feasibility and that also preserves the block diagonal
structure.

In [23] a 3-point bound is used to obtain rigorous proofs. Here the floating point
output of the semidefinite programming solver is turned into an optimality proof
by rounding the matrices to symbolic matrices in such a way they become feasible
and sharp. To do the same for our bound we need to have a symbolic (instead of
floating point) formulation of the semidefinite program. This means we need to
compute the zonal matrices exactly. One approach for this would be to compute
the polynomials pia,A symbolically (using number fields for the coefficients), and use
Gröbner bases to compute the polynomials qia,A exactly. Alternatively, it would be
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very interesting to derive explicit closed form formulas for the zonal matrices. By
formulating these problems as semidefinite programs where both the primal and
dual are strictly feasible, it may be possible to solve these with a high precision
solver and round the solutions to symbolic solutions which are optimal and feasible
as can be checked using the exact formulation of the problem.
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[34] L. Föppl, Stabile Anordnungen von Elektronen im Atom, J. Reine Angew. Math. 141 (1912),

251–302, DOI 10.1515/crll.1912.141.251 (German).
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Summary

In this thesis we develop techniques for solving problems in extremal geometry.
We give an infinite dimensional generalization of moment techniques from polyno-
mial optimization. We use this to construct semidefinite programming hierarchies
for approximating optimal packing densities and ground state energies of particle
systems. For this we define topological packing graphs as an abstraction for the
graphs arising from geometric packing problems, and we prove results concerning
convergence and strong duality. We use harmonic analysis to perform symmetry
reduction and reduce to a finite dimensional variable space in the optimization prob-
lems. For this we explicitly work out the harmonic analysis for kernels on spaces
consisting of subsets of another space. We show how sums of squares character-
izations from real algebraic geometry can be used to reduce the infinitely many
constraints to finitely many semidefinite constraints, where we focus in particular
on numerical conditioning and symmetry reduction. We perform explicit computa-
tions for concrete problems: We give new bounds for binary spherical cap packings,
binary sphere packings, and classical sphere packing problems. This can be used,
for instance, to give a simple optimality proof of a binary spherical cap packing. We
compute the second step of our hierarchy where the numerical results suggest the
bound is sharp for the 5-particle case of the Thomson and related problems. This
is the first time a 4-point bound has been computed for a continuous problem.
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Samenvatting

In dit proefschrift ontwikkelen we technieken voor het oplossen van proble-
men in de extremale meetkunde. We geven een oneindigdimensionale generalisatie
van de momentwerkwijze uit de polynomiale optimalisatie. Deze gebruiken we om
hiërarchieën van semidefiniete programma’s te construeren, waarmee we optimale
dichtheden van stapelingen en grondtoestanden van deeltjessystemen kunnen bere-
kenen. Hiervoor definiëren we topologische stapelingsgrafen als een abstractie voor
de grafen die behoren tot meetkundige stapelingsproblemen, en we bewijzen resulta-
ten aangaande convergentie en sterke dualiteit. We gebruiken harmonische analyse
voor symmetriereductie en voor het eindigdimensionaal maken van het toegelaten
gebied van de optimalisatieproblemen. Hiervoor werken we de harmonische ana-
lyse voor kernen op ruimtes bestaande uit deelverzamelingen van andere ruimtes
expliciet uit. We laten zien hoe som-van-kwadraten-technieken uit de reële alge-
bräısche meetkunde gebruikt kunnen worden om van oneindig veel restricties naar
eindig veel semidefiniete restricties te gaan, waarbij we in het bijzonder ingaan op
numerieke conditionering en symmetriereductie. We voeren expliciete berekeningen
voor concrete problemen uit: We geven nieuwe grenzen voor binaire bolkapstapelin-
gen, binaire bolstapelingen en het klassieke bolstapelingsprobleem. Dit gebruiken
we bijvoorbeeld voor het geven van een eenvoudig optimaliteitsbewijs voor een bi-
naire bolkapstapeling. We berekenen de tweede stap in onze hiërarchie, waar de
numerieke resultaten suggereren dat dit een scherpe afschatting geeft voor het vijf-
deeltjesgeval van het Thomsonprobleem en van gerelateerde problemen. Dit is de
eerste keer dat een vierpuntgrens is berekend voor een continu probleem.
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