1 

Analysis of tidal straining as driver for estuarine circulation in wellmixed estuaries
Tidal straining, which can mathematically be described as the covariance between eddy viscosity and vertical shear of the alongchannel velocity component, has been acknowledged as one of the major drivers for estuarine circulation in channelized tidally energetic estuaries. In this paper, the authors investigate the role of lateral circulation for generating this covariance. Five numerical experiments are carried out, starting with a reference scenario including the full physics and four scenarios in which specific key physical processes are neglected. These processes are longitudinal internal pressure gradient forcing, lateral internal pressure gradient forcing, lateral advection, and the neglect of temporal variation of eddy viscosity. The results for the viscosityâ€“shear covariance are correlated across different experiments to quantify the change due to neglect of these key processes. It is found that the lateral advection of vertical shear of the alongchannel velocity component and its interaction with the tidally asymmetric eddy viscosity (which is also modified by the lateral circulation) is the major driving force for estuarine circulation in wellmixed tidal estuaries.

[PDF]
[Abstract]

2 

The effects of the internal flow structure on SPM entrapment in the Rotterdam Waterway
Field measurements are presented, which are the first to quantify the processes influencing the entrapment of suspended particulate matter (SPM) at the limit of saltwater intrusion in the Rotterdam Waterway. The estuarine turbidity maximum (ETM) is shown to be maintained by the trapping of fluvial SPM at the head of the salt wedge. The trapping process is associated with the raining out of fluvial SPM from the upper, fresher part of the water column, into the layer below the pycnocline. The dominant mechanisms responsible are baroclinic shear flows and the abrupt change in turbulent mixing characteristics due to damping of turbulence at the pycnocline. This view contrasts with the assumption of landward transport of marine SPM by asymmetries in bed stress. The SPM transport capacity of the tidal flow is not fully utilized in the ETM, and the ETM is independent of a bedbased supply of mud. This is explained by regular exchange of part of the ETM with harbor basins, which act as efficient sinks, and that the Rotterdam Waterway is not a complete fluvial SPM trap. The supply of SPM by the freshwater discharge ensures that the ETM is maintained over time.
Hence, theETMis an advective phenomenon. Relative motion between SPM and saltwater occurs because of lags introduced by resuspension. Moreover,SPM that lags behind the salt wedge after high water slack (HWS) is eventually recollected at the head. Hence, SPM follows complex transport pathways and the mechanisms involved in trapping and transport of SPM are inherently threedimensional.

[PDF]
[Abstract]

3 

The Evolution of Inhomogeneous Wave Statistics through a Variable Medium
The interaction of ocean waves with variable currents and topography in coastal areas can result in inhomogeneous statistics because of coherent interferences, which affect wavedriven circulation and transport processes. Stochastic wave models, invariably based on some form of the radiative transfer equation (or action balance), do not account for these effects. The present work develops and discusses a generalization of the radiative transfer equation that includes the effects of coherent interferences on wave statistics. Using multiple scales, the study approximates the transport equation for the (complete) secondorder wave correlation matrix. The resulting model transports the coupledmode spectrum (a form of the Wigner distribution) and accounts for the generation and propagation of coherent interferences in a variable medium. The authors validate the model through comparison with analytic solutions and laboratory observations, discuss the differences with the radiative transfer equation and the limitations of this approximation, and illustrate its ability to resolve coherent interference structures in wave fields such as those typically found in refractive focal zones and around obstacles.

[PDF]
[Abstract]

4 

Advection of the salt wedge and evolution of the internal flow structure in the Rotterdam Waterway
An analysis of field measurements recorded over a tidal cycle in the Rotterdam Waterway is presented. These measurements are the first to elucidate the processes influencing the alongchannel current structure and the excursion of the salt wedge in this estuary. The salt wedge structure remained stable throughout the measuring period. The velocity measurements indicate decoupling effects between the layers and that bedgenerated turbulence is confined below the pycnocline. The barotropic M4 overtide structure is imposed at the mouth of the estuary, and the generation of M4 overtides within the estuary is found to be relatively small. Internal tidal asymmetry does not make a significant contribution to the M4 velocity frequency band. Instead, the combination of barotropic and baroclinic forcing, in conjunction with the suppression of turbulence at the interface, provides the main explanation for the time dependence and mean structure of the flow in the Rotterdam Waterway. This gives rise to the observed differences in the length of the flood and ebb, in the magnitudes of the flood and ebb velocities, in the length of the slack water periods, and in the timing of the onset of slack water at the surface and near the bed. It results in the formation of distinct exchange flow profiles at the head of the salt wedge around slack water and the creation of maximal velocities at the pycnocline during flood. Advection governs the displacement and structure of the salt wedge since turbulent mixing is suppressed. The tidal displacement of the salt wedge controls the height of the pycnocline above the bed at a particular site. Hence, it controls the height to which bedgenerated turbulence can protrude into the water column. Consequently, the authors find asymmetries in the structure of the internal flow, turbulent mixing, and bed stresses that are not related to classical internal tidal asymmetry.

[PDF]
[Abstract]

5 

Drivers of residual estuarine circulation in tidally energetic estuaries: straight and irrotational channels with parabolic cross section
The generation of residual circulation in a tidally energetic estuary with constant longitudinal salinity gradient and parabolic cross section is examined by means of a twodimensional crosssectional numerical model, neglecting river runoff and Stokes drift. It is shown how the longitudinal and lateral residual circulation can be decomposed into contributions from various processes such as tidal straining circulation, gravitational circulation, advectively driven circulation, and horizontal mixing circulation. The sensitivity of the residual circulation and its components from various processes to changes in forcing is investigated by varying the Simpson number (nondimensional longitudinal buoyancy gradient) and the unsteadiness parameter (nondimensional tidal frequency), as well as the bed roughness and the width of the estuary. For relatively weak salinity gradient forcing, the tidal straining circulation dominates the residual exchange circulation in support of classical estuarine circulation (upestuary flow near the bed and downestuary flow near the surface). The strength of the longitudinal estuarine circulation clearly increases with increased salinity gradient forcing. However, when the Simpson number exceeds 0.15, the relative contributions of both gravitational circulation and advectively driven circulation to estuarine circulation increase substantially.
Lateral residual circulation is relatively weak for small Simpson numbers and becomes flood oriented (divergent flow near the bed and convergent flow near the surface) for larger Simpson numbers because of increasing contributions from gravitational and advectively driven circulation. Increasing the unsteadiness number leads to decreased longitudinal and lateral residual circulation. Although changes in bed roughness result in relatively small changes in residual circulation, results are sensitive to the width of the estuary, mainly because of changes in residual exchange circulation driven by tidal straining.

[PDF]
[Abstract]

6 

Residual sediment fluxes in weaklytoperiodically stratified estuaries and tidal inlets
In this idealized numerical modeling study, the composition of residual sediment fluxes in energetic (e.g., weakly or periodically stratified) tidal estuaries is investigated by means of onedimensional water column models, with some focus on the sediment availability. Scaling of the underlying dynamic equations shows dependence of the results on the Simpson number (relative strength of horizontal density gradient) and the Rouse number (relative settling velocity) as well as impacts of the Unsteadiness number (relative tidal frequency). Here, the parameter space given by the Simpson and Rouse numbers is mainly investigated. A simple analytical model based on the assumption of stationarity shows that for small Simpson and Rouse numbers sediment flux is down estuary and vice versa for large Simpson and Rouse numbers. A fully dynamic water column model coupled to a secondmoment turbulence closure model allows to decompose the sediment flux profiles into contributions from the transport flux (product of subtidal velocity and sediment concentration profiles) and the fluctuation flux profiles (tidal covariance between current velocity and sediment concentration). Three different types of bottom sediment pools are distinguished to vary the sediment availability, by defining a time scale for complete sediment erosion. For short erosion times scales, the transport sediment flux may dominate, but for larger erosion time scales the fluctuation sediment flux largely dominates the tidal sediment flux. When quarterdiurnal components are added to the tidal forcing, upestuary sediment fluxes are strongly increased for stronger and shorter flood tides and vice versa. The theoretical results are compared to field observations in a tidally energetic inlet.

[PDF]
[Abstract]
