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a b s t r a c t 

The Best-Worst Method (BWM) uses ratios of the relative importance of criteria in pairs based on the as- 

sessment done by decision-makers. When a decision-maker provides the pairwise comparisons in BWM, 

checking the acceptable inconsistency, to ensure the rationality of the assessments, is an important step. 

Although both the original and the extended versions of BWM have proposed several consistency mea- 

surements, there are some deficiencies, including: (i) the lack of a mechanism to provide immediate 

feedback to the decision-maker regarding the consistency of the pairwise comparisons being provided, 

(ii) the inability to consider the ordinal consistency into account, and (iii) the lack of consistency thresh- 

olds to determine the reliability of the results. To deal with these problems, this study starts by proposing 

a cardinal consistency measurement to provide immediate feedback, called the input-based consistency 

measurement, after which an ordinal consistency measurement is proposed to check the coherence of the 

order of the results (weights) against the order of the pairwise comparisons provided by the decision- 

maker. Finally, a method is proposed to balance cardinal consistency ratio under ordinal-consistent and 

ordinal-inconsistent conditions, to determine the thresholds for the proposed and the original consistency 

ratios. 

© 2019 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

The Best Worst Method (BWM), which is a Multi-Criteria De-

ision Making (MCDM) method that was recently developed by

ezaei [37] , uses ratios of the relative importance of criteria in

airwise comparisons provided by a decision-maker (DM), based

n two evaluation vectors: the Best criterion against the Other

riteria, and the Other criteria against the Worst criterion. The

eights of the criteria are obtained by solving a nonlinear [37] or

 linear model [38] . Compared to one of the most popular pair-

ise comparison-based MCDM methods, Analytic Hierarchy Pro-

ess (AHP), BWM requires fewer comparison data, while being able

o generate more consistent comparisons, allowing it to produce

ore reliable results according to previous analyses [37] . Thanks

o its simplicity and reliability, BWM has been widely applied to

ddress a host of different problems [29,39,49] . For more detailed
✩ This paper was processed by Associate Editor Dias. 
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305-0483/© 2019 The Authors. Published by Elsevier Ltd. This is an open access article u
nformation, readers are referred to a recent survey on the BWM

32] . 

BWM and other pairwise comparisons methods, like AHP and

NP (Analytical Network Process), are based on a DM’s evaluations

f the relative priorities of the decision-making elements as cap-

ured in a complete pairwise comparison matrix [41] , incomplete

airwise comparison matrix [19] or vectors [37] . One of the ad-

antages of using pairwise comparisons is that they allow us to

stimate the inconsistency of a DM’s preferences. Usually, the con-

istency level of the judgements is related to the rationality of the

M and his/her ability to discriminate between criteria/alternatives

21] . The DM’s judgments have to meet the cardinal transitiv-

ty condition to be perfectly consistent; otherwise, the DM is not

ully consistent, which may imply some irrationality in the relative

eight estimates. 

To check how inconsistent (deviating from the condition of full

onsistency) a full set of pairwise comparisons may be, Saaty [40] ,

n their seminal work on the AHP, proposed a consistency mea-

urement (Saaty index), but since then, many other consistency

ndices have been proposed [10] . Basically, the existing consis-

ency measurements can be divided into two groups: the input-

ased measurements and output-based measurements [28] . The
nder the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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measurements in the former group are based on the input, i.e.

preferences assigned to pairwise comparisons, e.g. Koczkodaj index

[24] , while the output-based consistency measurements are based

on the weights or rankings. In this group, there are, for instance,

Saaty’s index [40] and the geometric consistency index proposed

by Crawford and Williams [13] . 

The consistency measurements mentioned above were initially

designed for complete pairwise comparison matrices and we can-

not use them to measure the consistency degree of incomplete

pairwise comparison matrices where some judgments are miss-

ing [19] . To adapt the consistency indices to incomplete pairwise

comparison matrices, one of the most popular approaches is to

complete the pairwise comparison matrices [16,47] and then mea-

sure their consistency in the traditional manner [19,28] . Instead

of completing the matrix, a graph-theoretic approach can be used

to generate all possible preferences by enumerating all spanning

trees, after which the variance of these preferences can be used as

a measure of inconsistency [6,31,44] . Replacing triads with cycles

[28] is another way to estimate the inconsistency. 

One might see BWM as a special case of incomplete pairwise

comparison matrix. Although the method only uses a specific sub-

set of 2n-3 comparisons gathered in two representative vectors,

these preferences can be represented equivalently by an incom-

plete pairwise comparison matrix. One could argue that we could

then complete the two vectors to create a full matrix and measure

the inconsistency by using the approaches mentioned above. How-

ever, not only will that make the measurement more difficult (un-

realistic), it will also destroy the simplification (non-redundancy)

philosophy embedded in BWM. Therefore, to check the consistency

by using this specific method, Rezaei [37] proposed a consistency

measurement (sometimes referred to as inconsistency measure-

ment) in the original version of BWM. Later, the extended BWM

methods also provided corresponding consistency measurements

similar to the original consistency measurement. For example, Mou

et al. [35] extended BWM to include intuitionistic fuzzy multiplica-

tive preference relations, and provided a new definition for the

consistency algorithm to check consistency, while Guo and Zhao

[18] proposed a consistency ratio (also referred to as inconsistency

ratio) for fuzzy BWM, and Aboutorab et al. [1] explained a corre-

sponding consistency ratio for the Z-numbers BWM. 

However, the existing studies on BWM lack a metric/tool to

provide the DM/analyst with immediate feedback regarding the

consistency of the pairwise comparisons. The consistency ratios

obtained by the existing consistency measurements of BWM are

based on the outputs instead of directly on the inputs. A DM can

only obtain the consistency ratio and check the consistency after

the entire optimization process is completed, by using the existing

consistency measurements. However, it has been shown that con-

fronting the DM with the inconsistencies in his/her assessments af-

ter he/she has already gone through the entire elicitation process is

ineffective [34] . In addition, the consistency ratios obtained by the

original BWM, graph-theoretic approach [6,31,44] and the methods

of replacing triads with cycles [28] are overall indicators that show

the consistency of the pairwise comparison system as a whole, so

they cannot help the DM locate their most inconsistent judgments.

A proper consistency measurement should indeed assist the DM

in identifying the most inconsistent comparisons [14] and achieve

sufficiently consistent preferences [17,36] . Although some input-

based consistency measurements for general incomplete pairwise

comparison matrices, including the Koczkodaj index [24] and the

Salo and Hämäläinen index [43] , can be applied to BWM, some of

their properties are not as desirable as we expected, as discussed

in Section 3 . 

Moreover, the existing studies on consistency measurement in

the BWM thus far fail to take ordinal consistency into considera-

tion. Consistency in pairwise comparisons can be divided into two
ategories: cardinal consistency and ordinal consistency [45] . The

xisting consistency ratios of BWM only measure cardinal consis-

ency. However, even if the judgements have a high level of car-

inal consistency, they can be still contradictory, according to the

esearch of Kwiesielewicz and Van Uden [30] . The contradiction is

aused by the violation of ordinal consistency, i.e. there is a dis-

repancy in the criteria importance rankings obtained from the

wo pairwise comparison vectors in BWM. If the preferences are

rdinal-consistent, the final ranking will not change with the car-

inal consistency ratio, only the intensity could vary; but if they

re ordinal-inconsistent, a change in the cardinal consistency ra-

io could affect the final ranking [45] . Thus, in order to ensure a

M provides a stable judgement, it is important to check his/her

rdinal consistency status, and indicate to what extent the ordi-

al consistency has been violated. There are several ordinal consis-

ency measurements for the complete pairwise comparison matri-

es, like the ordinal coefficient proposed by Jensen and Hicks [22] ,

he dissonance measurement proposed by Siraj et al. [45,46] . How-

ver, they cannot be applied to incomplete pairwise comparison

atrices or the two vectors used in BWM. 

Furthermore, there is no threshold for the consistency ratio of

WM in existing literature. Although BWM has been widely used

nd the consistency measurements help a DM check the relia-

ility of his/her preferences, the absence of threshold associated

ith the existing consistency measurements makes it hard to pro-

ide a meaningful interpretation. Without a consistency thresh-

ld, the DM/analyst is left with the major problem of having to

ecide when his/her judgments should be revised and when it

hould be accepted, not to mention the consideration of the num-

er of criteria and the scale of evaluation, making the situation

ven more complicated. The 10% rule of thumb of AHP has long

een criticised [5,7,33] , and even Saaty later suggested additional

hreshold values of 5% and 8% for 3 and 4 criteria, respectively

42] . Although some other methods have been proposed to deter-

ine consistency thresholds [2,4,33] , most of them are applied in

omplete pairwise comparison matrices, which cannot be used di-

ectly for incomplete pairwise comparison matrices. Thus, design-

ng a threshold determination algorithm for BWM can fill this gap.

As such, the contribution of this study is threefold: (i) Develop-

ng a mechanism designed to provide a DM with immediate feed-

ack regarding his/her consistency status and making the elicita-

ion process more effective. To this end, we propose an input-based

onsistency measurement, which is simple to use and has several

esirable properties; (ii) Developing an ordinal consistency ratio

hat shows a DM’s violation level involving ordinal consistency and

omplements the cardinal consistency measurement. With this ra-

io, a DM can revise his/her judgments to meet the ordinal con-

istency condition, which is a minimum requirement for a logi-

al and rational DM; (iii) The most significant contribution of this

tudy is to establish thresholds for the consistency ratios (the pro-

osed consistency ratio and the original consistency ratio) used

n BWM. 

The remainder of the paper is structured as follows: In

ection 2 , the original BWM and its consistency measurement are

ntroduced. An input-based consistency ratio is proposed as an al-

ernative to replace the original output-based consistency ratio in

ection 3 . An ordinal consistency measurement is formulated in

ection 4 . The threshold tables are presented in Section 5 , followed

y the conclusion in Section 6 . 

. The best worst method and consistency measurement 

In this part, the basic steps of the original BWM are briefly in-

roduced, and the original output-based consistency measurement

s reviewed. 
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.1. The basic steps of BWM 

As a pairwise comparison method, BWM uses ratios of the rel-

tive importance of criteria in pairs estimated by a DM, from the

wo evaluation vectors, A BO and A OW 

. The weights of the criteria

an be obtained by solving the linear or nonlinear program [38] .

he basic steps of the original BWM can be summarized as below:

Step 1 Have the set of evaluation criteria { C 1 , C 2 , · · · , C n } deter-

mined by the DM. 

Step 2 Have the best (e.g. the most influential or important) and

the worst (e.g. the least influential or important) criteria

determined by the DM. 

Step 3 Determine the preferences of the best over all the other

criteria using a number from { 1 , 2 , . . . , 9 } . The obtained

Best-to-Others vector is: A BO = ( a B 1 , a B 2 , · · · , a Bn ) , where

a B j represents the preference of the best criterion C B over

criterion C j , j = 1 , 2 , · · · , n . 

Step 4 Determine the preferences of all the criteria over the

worst criterion using a number from { 1 , 2 , . . . , 9 } .
The obtained Others-to-Worst vector is: A OW 

=
( a 1 W 

, a 2 W 

, · · · , a nW 

) , where a jW 

represents the preference

of criterion C j over the worst criterion C W 

, j = 1 , 2 , · · · , n . 

Step 5 Determine the weights ( w 

∗
1 , w 

∗
2 , · · · , w 

∗
n ) by solving the

following model: 

min max 
j 

{∣∣∣∣w B 

w j 

− a B j 

∣∣∣∣, ∣∣∣ w j 

w W 

− a jW 

∣∣∣}, 

s.t. 

n ∑ 

j=1 

w j = 1 , w j ≥ 0 , for all j. (1) 

Model (1) can be transformed into the following model: 

min ξ

s.t. ∣∣∣∣w B 

w j 

− a B j 

∣∣∣∣ ≤ ξ , for all j, ∣∣∣ w j 

w W 

− a jW 

∣∣∣ ≤ ξ , for all j, 

n ∑ 

j=1 

w j = 1 , w j ≥ 0 , for all j. (2) 

.2. The original consistency measurement 

In the remainder of this paper, when we talk about a pairwise

omparison system, we will refer to the set of judgments contained

n vectors A BO and A OW 

. Given this notion, we are able to pro-

ide the definition of cardinal consistency for the set of preferences

ontained in a pairwise comparison system. 

efinition 1 (Cardinal consistency) . A pairwise comparison system

s cardinal-consistent if 

 B j × a jW 

= a BW 

, for all j, (3) 

here a BW 

is the preference of the best criterion over the worst

riterion. 

However, it is common practice to allow a pairwise comparison

ystem to deviate, to some extent, from the condition of cardinal-

onsistency. Thus, a consistency ratio is necessary to indicate how

nconsistent a DM is. The consistency measurement proposed in

he original BWM is based on ξ ∗, which is the optimal objective

alue (the output) of the optimization model (2) , so we call it
n output-based consistency measurement (we will use an output-

ased consistency measurement instead of using the original con-

istency measurement in the remainder of the paper). The ratio

sed to indicate the consistency level is called Output-based Con-

istency Ratio , noted as C R O (we will use output-based consistency

atio or C R O to represent original consistency ratio from now on),

as defined as follows [37] : 

efinition 2 (Output-based Consistency Ratio) . The Output-based

onsistency Ratio C R O is defined as 

 R 

O = 

ξ ∗

ξmax 
(4) 

here ξ ∗ is the optimal objective value of model (2) and ξmax is

he maximum possible ξ , which can be derived from [37] : 

2 − ( 1 + 2 a BW 

) ξ + 

(
a 2 BW 

− a BW 

)
= 0 . (5) 

The range of C R O is [0 , 1] . The closer C R O is to 0, the more con-

istent the judgments are. In particular, C R O = 0 means that the

omparisons are cardinally consistent. 

. The proposed consistency measurement 

The consistency ratio proposed in the original BWM can only

e obtained after the entire elicitation process has finished, which

eans it cannot provide a DM with immediate feedback involving

is/her consistency. To overcome this problem and to provide a DM

ith a clear and immediate idea of his/her consistency level, we

ropose an input-based consistency measurement for BWM that is

asy to compute and has clear and simple algebraic meaning and

nterpretation. Furthermore, we will see that it has several desir-

ble properties (in comparison to the existing indices) and a high

orrelation with the output-based consistency measurement. 

In accordance with the original index, the new inconsistency in-

ex proposed in the following section only attains value 1 when,

iven a BW 

, there exists a C j such that a B j = a jW 

= a BW 

. This is pos-

ible because the index considers the maximum violation of local

nconsistencies and the value 1 can actually be attained. None of

he indices studied by Kułakowski and Talaga [28] has this prop-

rty. Besides this similarity, we will also show the resemblance be-

ween the old and the new index using some numerical analyses. 

.1. The input-based consistency ratio 

In contrast to the Output-based Consistency Ratio ( C R O ), the ra-

io we propose in this paper can immediately indicate a DM’s con-

istency level by using the input he/she provides, i.e. his/her pref-

rences, instead of going through the entire optimization process,

hich is why it is called an Input-based Consistency Ratio ( C R I ): 

efinition 3 (Input-based Consistency Ratio) . The Input-based Con-

istency Ratio C R I is formulated as follows: 

 R 

I = max 
j 

CR 

I 
j (6) 

here 

R 

I 
j = 

{ 

∣∣a B j × a jW 

− a BW 

∣∣
a BW 

× a BW 

− a BW 

a BW 

> 1 

0 a BW 

= 1 

. (7) 

C R I is the global input-based consistency ratio for all criteria,

R I 
j 

represents the local consistency level associated with criterion

 j . 

Compared to the output-based consistency measurement, the

nput-based consistency measurement has several advantages: 
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Table 1 

Input-based consistency ratio of each criterion. 

Price Quality Comfort Safety Style 

a B j 1 2 4 3 8 

a jW 8 4 4 2 1 

CR I 
j 

0 0 0.14 0.04 0 
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Now, since S ⊂ S we know that max (S) ≥ max ( S ) . �
1. It can provide immediate feedback. The input-based consistency

measurement is based on the input (preferences), which means

it is not necessary to complete the entire elicitation process.

The output-based consistency measurement on the other hand,

is based on the output (weights), making it a difficult way to

determine the consistency level. By using the simple calcula-

tion of the input-based consistency measurement, it is easy to

provide a DM with immediate feedback. 

2. It is easy to interpret: it is the maximum normalized discrep-

ancy between the value of a BW 

and its estimated value calcu-

lated as the indirect comparison a B j × a jW 

. 

3. It can provide a DM with a clear guideline on the revision

of the inconsistent judgement(s). The CR 

O indicates the global

consistency level, but it cannot show the DM which judgement

should be revised. The local CR 

I , however, displays the consis-

tency levels associated to individual criteria; after identifying

the maximum local CR 

I , the most inconsistent judgement can

be located, after which a DM can revise his/her judgements ac-

cordingly, instead of modifying them without a guideline. 

4. It is model-independent. This CR 

I can be applied independently

to measure the consistency level in various form of BWM mod-

els, e.g. a non-linear or linear model, or a multiplicative model

[11] . For example, the linear BWM model [38] does not have an

effective consistency measurement, while the non-linear BWM

model [37] has a different interpretation than the multiplicative

BWM model [11] . By using the input-based consistency ratio,

however, they are the same in all three models. Actually, the

input-based consistency measurement does not depend on the

optimization models. 

Example 1. To illustrate the proposed consistency measurement,

we adopt the car evaluation example from the original BWM [38] ,

in which the best criterion is price and the worst criterion style.

The pairwise comparisons vectors of A BO and A OW 

are presented in

the second and third rows respectively. By using the input-based

consistency measurement in Eq. (7) , the CR I 
j 
s are represented in

the last row of Table 1 . 

From Table 1 , by using the maximum measurement (6) , we can

obtain the global C R I , 0.14. One of the advantages of the input-

based consistency measurement is that we can immediately locate

the most inconsistent pairwise comparison from this table, which

in this case is the preferences regarding the criterion comfort . If the

 R I is too high, the DM’s preferences have to be modified . 

3.2. Properties of the input-based consistency measurement 

As indicated by Brunelli [8] , it is important that formal proper-

ties of inconsistency indices be investigated to check their techni-

cal soundness and rule out possible unreasonable behaviours. The

next proposition will show that C R I satisfies a number of reason-

able properties. 

Proposition 1. The proposed consistency measurement, C R I =
max j CR I 

j 
satisfies the following properties: 

1. C R I = 0 if and only if the preferences are cardinal-consistent . 

2. C R I is invariant with respect to a permutation of the indices of the

criteria . 
3. C R I is normalized, i.e. 0 ≤ C R I ≤ 1 . 

4. If we consider a fully consistent pairwise comparison system, mov-

ing one of the preferences a B j or a jW 

away from their original

value in the range [ 1 , a BW 

] will result in an increase of the value

of C R I . 

5. When a BW 

> 1 , C R I is a continuous function with respect to the

values of a B j , a jW 

, a BW 

for all j. 

6. If we remove a criterion which is neither the best nor the worst

from the decision problem, then the value of C R I cannot increase . 

roof. It is useful to consider the ordered set 

 = 

〈
CR 

I 
j | j = 1 , . . . , n 

〉
= 

〈 ∣∣a B j a jW 

− a BW 

∣∣
a BW 

a BW 

− a BW 

| j = 1 , . . . , n 

〉 

o that we can consider C R I to be a function of S, i.e. C R I (S) , and,

ltimately, of the preferences of the decision-maker. 

1. If the preferences are consistent, then a B j a jW 

= a BW 

, for all

j, from which we obtain S = 〈 0 , . . . , 0 〉 and C R I = 0 . In the

other direction C R I = 0 only if S = 〈 0 , . . . , 0 〉 . If a BW 

= 1 , CR I 
j 
= 0 ,

C R I = 0 , and a B j = a jW 

= 1 , a B j a jW 

= 1 × 1 = 1 = a BW 

, it is fully

cardinal-consistent; If a BW 

� = 1 , then the only case leading to

S = 〈 0 , . . . , 0 〉 is when the numerators of the elements of S are

all equal to zero, which is possible only if a B j a jW 

= a BW 

, for all

j, which is the consistency condition. 

2. A reordering of the criteria corresponds to an application of

a permutation map σ : { 1 , . . . , n } → { 1 , . . . , n } to the indices j.

The new set 

S σ = 

〈
CR 

I 
σ ( j ) | j = 1 , . . . , n 

〉
has the same elements of S, but in a different order. However,

since the max function is symmetric, max (S) = max ( S σ ) , for all

permutations of the indices. 

3. The normalization, C R I ∈ [ 0 , 1 ] , follows from the definition CR I 
j 

together with the facts that (1) | a B j a jW 

− a BW 

| ≥ 0 , (2) a BW 

≥ 1 ,

(3) when a BW 

= 1 , C R I = 0 ; when a BW 

> 1 , a BW 

a BW 

− a BW 

>

0 and (4) | a B j a jW 

− a BW 

| ≤ a BW 

a BW 

− a BW 

, because when the

left-hand side a B j a jW 

≥ a BW 

, a B j a jW 

≤ a BW 

a BW 

, a B j a jW 

− a BW 

≤
a BW 

a BW 

− a BW 

, so the inequality holds; when the left-hand

side a B j a jW 

< a BW 

, then a BW 

should be larger than 2, and the

right-hand side a BW 

a BW 

− a BW 

≥ a BW 

, therefore a BW 

− a B j a jW 

≤
a BW 

a BW 

− a BW 

, the inequality holds also. 

4. For each j � = B, W , we want to study the reaction of C R I (S) to

changes in a single comparison in the range [ 1 , a BW 

] . In this

case 1 ≤ a jW 

, a B j ≤ a BW 

, and we can consider a BW 

a constant.

Let us consider the effect of a variation of a B j in C R I by taking

its partial derivative 

∂CR 

I 

∂ a B j 

= 

a jW 

( a BW 

a BW 

− a BW 

) 

(
a B j a jW 

− a BW 

)∣∣a B j a jW 

− a BW 

∣∣ . 

We can see that 

∂C R 

I 

∂ a B j 

{
< 0 , 

∣∣a B j a jW 

< a BW 

> 0 , 
∣∣a B j a jW 

> a BW 

, 

which shows that C R I ( a B j ) is a U-shaped function in [1 , a BW 

] ,

with minimum in the consistent case ( a B j a jW 

= a BW 

). The same

conclusion follows if we consider a jW 

instead of a B j . 

5. Straightforward. C R I is a continuous function for all a BW 

> 1 . 

6. If we assume that the criterion which is eliminated, say C i , is

neither the best nor the worst, then a BW 

remains unchanged

and we can define a new set S −i which disregards C i : 

S −i = 

〈
C R j | j ∈ { 1 , . . . , n } \ { i } 〉. 
−i j j −i 
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Fig. 1. The relationship between a B j , a jW and CR in the input-based (a) and the output-based (b) consistency measurements when the maximum scale is 9. 
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Fig. 2. Relation between C R O and C R I (9 criteria 9-scale). 
Note that these properties are adaptations of well-known prop-

rties already proposed and justified in the framework of pairwise

omparison matrices. In particular, Properties 1, 2, 4 and 5 stem

rom those proposed by Brunelli and Fedrizzi [9] , Property 3 from

he normalization proposed by Koczkodaj et al. [26] , and Property

 from the contraction property proposed by Koczkodaj and Urban

25] . 

It is worth mentioning that Property 6 would not be satisfied

y an approach based on the average of the local inconsistencies

ike Salo and Hämäläinen index [43] . 

.3. Relationship between the input-based and output-based 

onsistency ratio 

In the input-based consistency measurement, when the num-

er of criteria larger than 2, for two pairwise comparisons, a B j and

 jW 

∈ { 1 , 2 , . . . , 9 } , the relationship between them and their corre-

ponding C R I s is shown in Fig. 1 (a). Likewise, we can calculate the

elationship between a B j , a jW 

∈ { 1 , 2 , . . . , 9 } and their C R O s for the

utput-based consistency measurement in BWM, which is shown

n Fig. 1 (b). 

It is clear that these two relationship figures have similar

hapes, which indicates they should have a high correlation. 

To determine the agreement between these two indices, we

nalyse them from a statistical perspective by numerical simula-

ions. Firstly, we randomly generated a set of 20,0 0 0 pairs of pair-

ise comparison vectors ( A BO and A OW 

) in a 9 criteria problem

ith 1–9 scales to represent the preferences provided by DMs in

WM. Then we computed the input-based consistency ratios and

he output-based consistency ratios ( C R I , C R O ) for each pair of vec-

ors in this 20,0 0 0 random pairs set. Each pair ( C R I , C R O ) is repre-

ented by a point in the scatter plot in Fig. 2 . 

As a B j , a jW 

∈ { 1 , 2 , . . . , 9 } take values from a discrete scale, the

ossible C R O s and C R I s are limited. Thus, although we have ob-

ained 20,0 0 0 C R O s and C R I s , they distribute only in these limited

ossibilities, which is why there are much fewer than 20,0 0 0 dots

n this scatter plot. 

We compute the Pearson’s correlation coefficient between C R O s

nd C R I s to check the linear correlation between them. The result

f Pearson’s correlation coefficient in this case is 0.9942, which

eans these C R O s and C R I s have a very high linear correlation. We

lso consider the Spearman index to measure the extent to which

 R O s and C R I s are co-monotone. The result of the Spearman index
s 0.9963, which means these two variables are highly monotoni-

ally related. 

When we calculate all the Pearson’s and Spearman’s corre-

ation coefficients with respect to 3–9 criteria under maximal

cale from 3 to 9, the minimum Pearson’s and the minimum

pearman’s correlation coefficients are 0.979 and 0.958, respec-

ively. As such, based on these high correlation coefficients, the

nput-based consistency measurement and the output-based 

onsistency measurement have a very good agreement, so they

ould be used interchangeably. Nevertheless, due to its advan-

ages discussed in Section 3.1 , there are valid reasons to prefer

he input-based consistency measurement to the output-based

onsistency measurement. 

. Ordinal consistency measurement 

In this section, an ordinal consistency ratio is proposed to de-

ermine the extent to which a DM violates the ordinal consistency.

ome properties for this ratio are presented and the relationship

etween ordinal consistency and cardinal consistency is analysed. 
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Fig. 3. The percentage of ordinal-consistent paired vectors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 

Ordinal consistency ratio for each criterion. 

Price Quality Comfort Safety Style 

a B j 1 2 4 3 8 

a jW 8 4 4 2 1 

O R j 0 0 0.3 0.2 0 
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4.1. Ordinal consistency 

Kwiesielewicz and Van Uden [30] have shown that, even if a

pairwise comparison matrix passes the consistency test, it can still

be contradictory. Therefore, in addition to calculating the cardinal

consistency, it is also important to check whether the rankings of

the criteria obtained from the two pairwise comparison vectors

A BO and A OW 

are the same in BWM, in what we call ordinal con-

sistency condition . The meaning of ordinal consistency in BWM is

slightly different from that in early studies, which is mainly based

on the circular triads [20,23,27] . We define the ordinal consistency

in BWM as below: 

Definition 4 (Ordinal consistency) . In the BWM, a pairwise com-

parison system is said to be ordinal-consistent if the order relations

of the two paired comparison vectors ( A BO and A OW 

) are the same.

That is, the following conditions should be satisfied: (
a Bi − a B j 

)
×

(
a jW 

− a iW 

)
> 0 or 

(
a Bi = a B j = a iw 

)
, for all i and j. 

(8)

The ordinal consistency is the usual weak transitivity condition

which should be the minimum requirement for a logical and ratio-

nal DM [48] . Intuitively, one might consider ordinal consistency to

be easily satisfied, but that is not true, especially when the num-

ber of criteria is large. To see how it develops, we randomly gener-

ated 10 0,0 0 0 paired vectors for each combination of criteria num-

ber from 3 to 9 to simulate the preferences for BWM. After cate-

gorizing, we can see the percentage of ordinal-consistent pairs is

reduced dramatically as the number of criteria increases, as shown

in Fig. 3 . In reality, the situation is better than the randomly gener-

ated vectors, but after checking the data used in the original BWM,

we found that only 24.4% of them are ordinal-consistent. 

4.2. Ordinal consistency ratio 

Since the ordinal consistency has a vital impact on the ranking

of the criteria, it is necessary to check whether the preferences vi-

olate the ordinal consistency, and, if so, to what extent. To do so,

we need to define an index, which we call Ordinal Consistency Ratio

(hereafter simply OR) in this study. 

Definition 5 (Ordinal Consistency Ratio) . The Ordinal Consistency

Ratio OR of a pairwise comparison system is defined as: 

OR = max 
j 

O R j (9)
here 

 R j = 

1 

n 

n ∑ 

i =1 

F 
((

a Bi − a B j 

)
×

(
a jW 

− a iW 

))
, for all i and j (10)

here F (x ) is a step function defined as: 

 ( x ) = 

{ 

1 i f x < 0 

0 . 5 i f x = 0 and 
0 otherwise 

((
a Bi − a B j 

)
� = 0 or 

(
a jW 

− a iW 

)
� = 0 

)
. 

(11)

The rationale of O R j formulation is that if criterion C j over-

eighs criterion C i , then the ordinal consistency should satisfy

 Bi > a B j and a jW 

> a iW 

, i.e. ( a Bi − a B j ) × ( a jW 

− a iW 

) > 0 . If only

ne of ( a Bi − a B j ) and ( a jW 

− a iW 

) is equal to 0, we say that, in

his situation, it violates weak ordinal relation [12,15] , but if both

re equal to 0, it is ordinal-consistent. 

O R j is called local ordinal consistency ratio, indicating the de-

ree of consistency with respect to the jth criterion. With this or-

inal consistency ratio ( O R j ∈ [ 0 , 1 ] ), we can find out which crite-

ion violates the relative order (and to what extent), and the higher

he O R j is, the more contradictory the preferences has regarding

his criterion C j . 

OR is called global ordinal consistency ratio, which reflects the

rdinal consistency of the pairwise comparison system provided by

he DM. 

xample 2. We use the car evaluation preferences example from

he original BWM again (showed in the Example 1 in Section 3.1 )

o explain the ordinal consistency measurement. From the prefer-

nce vector A BO , we can easily get the ranking of the criteria: price

quality � safety � comfort � style. The ranking from the A WO 

ector: price � quality ∼ comfort � safety � style (“�” means su-

erior to, “∼” means indifferent to). The orders of the criteria are

ifferent in these two vectors, thus the preferences of this DM vio-

ate the ordinal consistency. By using the ordinal consistency mea-

urement from Eqs. (9) - (11) , we can obtain the ordinal consistency

atios regarding each criterion in Table 2 , which represent the or-

inal violation level of each criterion. The global ordinal consis-

ency ratios can be calculated from Eq. (9) , which is 0.3 in this

ase. 

Combining the cardinal and ordinal consistency ratios, a DM

an check his/her rationality during the preference elicitation pro-

ess. This immediate feedback helps the DM confronts his/her in-

onsistencies as soon as they arise, making this process more ef-

ective [34] . 

.3. Properties of the ordinal consistency ratio 

The index OR ( Eq. (9) ) satisfies three basic properties. To enun-

iate the properties, we need to acknowledge that each vector A BO 

nd A OW 

induces an order relation on the set of criteria. That is to

ay, for example, a Bi > a B j ⇒ i ≺ j and a iW 

= a jW 

⇒ i ∼ j. 

1. OR ( A BO , A OW 

) = 0 if and only if the preferences in the vectors

A BO , A WO induce the same order relation on the set of criteria. 

2. OR is invariant with respect to permutations of criteria. 
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Fig. 4. The inclusion relation between ordinal and cardinal consistency. 
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1 In each scale, we use discrete number from 1 to the largest grade which is 

actually the a BW . For example, if we use 7-scale, the grades used in A BO and A OW 
3. Given two vectors A BO and A WO representing the same order

relation on the set of criteria, when we choose one preference

(component of a vector) and we move it away from its original

value in the range [ 1 , a BW 

] , this can only increase the value of

OR or leave it unchanged. 

Since these properties are similar to those in Proposition 1 , the

ssociated proof is omitted for the sake of brevity. 

.4. The relationship between ordinal consistency and cardinal 

onsistency 

Analysing the data used in the original BWM [37,38] , we

an obtain the inclusion relation between cardinal and ordinal

in)consistency of the preferences obtained from different DMs,

hich is graphically presented in Fig. 4 . For example, the pairwise

omparison system with cardinal consistency is a subset of which,

ith ordinal consistency, the ordinal inconsistent system is a sub-

et of cardinal inconsistency. 

The inclusion relation between cardinal consistency and ordinal

onsistency shown in Fig. 4 is formalized in the Proposition 2 and

orollary 1 . 

roposition 2. If a pairwise comparison system is cardinal-

onsistent, it must be ordinal-consistent . 

roof. Taking the cardinal consistency condition ( a Bi × a iW 

=
 BW 

, a B j × a jW 

= a BW 

, where a Bi , a iW 

, a B j , a jW 

, a BW 

≥ 1 ),

nd ordinal consistency condition ( ( a Bi − a B j ) × ( a jW 

− a iW 

) > 0

r ( a Bi = a B j & a jW 

= a iW 

) ), we shall show that, given a pair-

ise comparison system, cardinal consistency implies either (1).

( a Bi − a B j ) × ( a jW 

− a iW 

) > 0 or (2). a Bi = a B j & a jW 

= a iW 

. 

(1) If a Bi = a B j , then a jW 

= 

a BW 

a B j 
= 

a BW 

a Bi 
= a iW 

, vice versa, the

comparison is ordinal-consistent; 

(2) If a Bi � = a B j , or a jW 

� = a iW 

, ( a Bi − a B j ) × ( a jW 

− a iW 

) = a Bi ×
a jW 

− a B j × a jW 

− a Bi × a iW 

+ a B j × a iW 

From the notion of cardinal consistency, we know that: 

a Bi × a iW 

= a BW 

, a B j × a jW 

= a BW 

, a jW 

= 

a BW 

a B j 

, a iW 

= 

a BW 

a Bi 

so, 

a Bi × a jW 

− a B j × a jW 

− a Bi × a iW 

+ a B j × a iW 

= 

a Bi × a BW 

a B j 

+ 

a B j × a BW 

a Bi 

− 2 a BW 

= 

a BW 

(
a 2 

Bi 
+ a 2 

B j 

)
a Bi a B j 

− 2 a BW 

= 

a BW 

(
a 2 

Bi 
+ a 2 

B j 
− 2 a B j a Bi 

)
a Bi a B j 

= 

a BW 

(
a Bi − a B j 

)2 

a Bi a B j 

> 0 . 

Therefore, the comparison is also ordinal-consistent. �

orollary 1. If a pairwise comparison system is ordinal-inconsistent,
t must be cardinal-inconsistent . a
. Thresholds for BWM 

Even though we can easily identify the inconsistent judgement

y using the consistency measurements proposed in this study, re-

uiring the DM to achieve perfect cardinal and ordinal consistency

s unrealistic. However, the question involving the degree to which

nconsistency can be accepted has far been lacking in the study of

WM. As such, to bridge this gap, a threshold has to be defined. In

he following section, based on the concept of ordinal and cardinal

onsistency measurement, a method to derive consistency thresh-

lds is proposed. 

.1. A methodology for determining the thresholds 

Inspired by Amenta et al. [3,4] , we develop a method for de-

ermining the thresholds for BWM, which is based on the cardi-

al consistency measurement and the definition of ordinal consis-

ency. The thresholds for BWM are established, not only for the

nput-based consistency measurement, but also for the output-

ased consistency measurement. However, we use the input-based

onsistency ratio ( C R I ) to illustrate this approach. 

The basic idea is that, based on the concept of ordinal consis-

ency, if a decision-maker is ordinal-consistent, the ranking of the

nal weights obtained from the two preference vectors ( A BO and

 OW 

) will not change with C R I , only the intensities may vary. In

his sense, we can suggest that the preferences provided by the

M are reliable. 

We use Monte-Carlo method to simulate the probability distri-

ution of C R I s . In this study, we analyse the entire problem space

overing the weighting problems, with the number of criteria rang-

ng from 3 to 9, and where the preferences can be assigned with

he largest evaluation grade from 3 to 9, we call them 3-scale to

-scale. 1 Consequently, in all, there are 7 × 7 = 49 combinations to

e analysed. For each combination, we randomly generated 10,0 0 0

airs of ordinal-consistent vectors, each pair acting as the two

ectors A BO and A OW 

. We categorized this group as an acceptable

roup , and calculated all the C R I s of this group. Likewise, we ran-

omly generated 10,0 0 0 pairs of ordinal-inconsistent vectors and

alculated their C R I s , which is categorized as an unacceptable group .

Theoretically, we can obtain all the possible C R I s of the accept-

ble group in each situation, taking the maximum as a boundary

boundary 1), the C R I s above this boundary are not acceptable, be-

ause they can only be ordinal-inconsistent. Although, practically,

t is very difficult to traverse all the possibilities, we still assume

hat the maximum C R I from 10,0 0 0 pair of vectors as the boundary

, because the likelihood of having a higher value than this bound-

ry is very low. For example, the maximum consistency value of 9-

riterion and 9-scale ordinal-consistent pairwise comparison vec-

ors is 0.7639, which means that, for any judgments whose C R I s

re bigger than this value in a 9-criterion and 9-scale size prob-

em, they should be rejected. 

However, that does not automatically mean that the C R I s within

hat boundary are necessarily acceptable, because they could still

e ordinal-inconsistent, and ordinal inconsistency is what we set

ut to reject. Based on this idea, the minimum C R I could be used

s a boundary (boundary 2), all of the C R I s within this boundary

re acceptable. For example, the minimum consistency value of 9-

riterion and 9-scale ordinal-inconsistent paired vectors is 0.0694,

f the C R I s obtained are smaller than this boundary, they should be

ccepted. 

Values of C R I greater than boundary 1 are assumed to be totally

nacceptable, while values below boundary 2 are assumed totally
re randomly selected from { 1 , 2 , . . . , 7 } . 
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Fig. 5. The kernel distribution of C R I s of the two groups (9-criteria 9-scale). 
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Fig. 6. The acceptance and rejection relative proportions of the two groups (9- 

criteria 9-scale). 
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acceptable. Between boundary 1 and 2, we expect that there ex-

ists a threshold, making the proportion of ordinal inconsistency we

accept as small as possible, and beyond the threshold, the propor-

tion of ordinal consistency we reject should be as small as possi-

ble. In statistical terms, our goal is to minimize the sum of Type

I error (false positive) and Type II error (false negative). This idea

can be more clearly visualized in a kernel smoothing distribution

in 9-criteria and 9-scale combination, as shown in Fig. 5 . 

From the idea explained above, the empirical cumulative distri-

bution function can be used to achieve our purpose. 

Definition 6. (Empirical cumulative distribution function). The em-

pirical cumulative distribution function of C R I can be defined as: 

ˆ F ( α) = 

1 

N 

N ∑ 

i =1 

I 
{

CR 

I 
i ≤ α

}
(12)

where I{ �} is the indicator function: 

I 
{

CR 

I 
i ≤ α

}
= 

{
1 i f CR 

I 
i 
≤ α

0 otherwise 
, (13)

and N is the pair number of pairwise comparisons, CR I 
i 

is the i th

( i ∈ { 1 , · · · , N } ) input-based consistency ratio obtained from this N

pairs of preferences, α ∈ [ 0 , 1 ] is the possible threshold. 

We now distinguish the distribution function based on two

groups: (1) for the Acceptable group, the cumulative distribution of

 R I in ordinal-consistent situation is denoted as ˆ F A (α) ; (2) for the

Unacceptable group, the cumulative distribution of C R I in ordinal-

inconsistent situation is denoted as ˆ F U (α) . 

The rejected part of the ordinal-consistent group is 1 − ˆ F A (α) ,

which can be seen in the blue area B in Fig. 5 , and the accepted

ordinal-inconsistent group is ˆ F U (α) , which is the red area R. We

can calculate the relative rejected proportion of the C R I s in the ac-

ceptable group ( P A 
re jected 

) and the accepted proportion of the C R I s in

the unacceptable group ( P U 
accepted 

) using the following formulas: 

P A re jected = 

1 − ˆ F A ( α) 

1 − ˆ F A ( α) + 

ˆ F U ( α) 
, (14)

P U accepted = 

ˆ F U ( α) 

1 − ˆ F A ( α) + 

ˆ F U ( α) 
. (15)
The relationship between these two proportions is shown in

ig. 6 , which shows how the possibility of acceptance (red line

ith squares) and rejection (blue line with circles) distribute in the

wo groups according to the selected threshold from 0 to 1. 

The goal is to obtain a threshold which makes the red and blue

reas in Fig. 5 as small as possible, or makes the relative propor-

ions of the two groups in Fig. 6 as close as possible. If there ex-

sts a C R I obtained from the two groups which makes P A 
re jected 

=
 

U 
accepted 

, the two lines in Fig. 6 will intersect at that point, which

eans that the proportion of rejection in the acceptable group and

he proportion of acceptance in the unacceptable group are the

ame. However, as the obtained C R I s are discrete, there could be

o C R I at the intersection point, which means that we need to find

ut the intersecting coordinate of the two lines, using the corre-

ponding C R I as the threshold. The simulation algorithm for ob-

aining the threshold is illustrated in the Appendix . 

.2. Approximated thresholds for the input-based consistency ratio 

Based on the algorithm presented above, we can finally estab-

ish the thresholds for BWM. In Table 3 , we have obtained the con-

istency thresholds for combinations which range from 3–9 criteria
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Fig. 7. Thresholds for different combinations using input-based consistency mea- 

surement. 

Table 3 

Thresholds for different combinations using input-based consistency measurement. 

Criteria 

Scales 3 4 5 6 7 8 9 

3 0.1667 0.1667 0.1667 0.1667 0.1667 0.1667 0.1667 

4 0.1121 0.1529 0.1898 0.2206 0.2527 0.2577 0.2683 

5 0.1354 0.1994 0.2306 0.2546 0.2716 0.2844 0.2960 

6 0.1330 0.1990 0.2643 0.3044 0.3144 0.3221 0.3262 

7 0.1294 0.2457 0.2819 0.3029 0.3144 0.3251 0.3403 

8 0.1309 0.2521 0.2958 0.3154 0.3408 0.3620 0.3657 

9 0.1359 0.2681 0.3062 0.3337 0.3517 0.3620 0.3662 
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Table 4 

Threshold for different combinations using output-based consistency measurement. 

Criteria 

Scales 3 4 5 6 7 8 9 

3 0.2087 0.2087 0.2087 0.2087 0.2087 0.2087 0.2087 

4 0.1581 0.2352 0.2738 0.2928 0.3102 0.3154 0.3273 

5 0.2111 0.2848 0.3019 0.3309 0.3479 0.3611 0.3741 

6 0.2164 0.2922 0.3565 0.3924 0.4061 0.4168 0.4225 

7 0.2090 0.3313 0.3734 0.3931 0.4035 0.4108 0.4298 

8 0.2267 0.3409 0.4029 0.4230 0.4379 0.4543 0.4599 

9 0.2122 0.3653 0.4055 0.4225 0.4445 0.4587 0.4747 
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ith highest evaluation grades from 3 to 9 based on the input-

ased consistency measurement. 

The thresholds in the combinations with 3-criteria and the

ombinations with 3-scale are relatively special. The thresholds in

-scale problem remain unchanged even the number of criterion

hanges, because, no matter how many criteria there are, the max-

mum C R I in the acceptable group and the minimum C R I in the un-

cceptable group are equal to 0.1667. In most other cases, we can

ee that the thresholds have a tendency to increase along with the

umber of criteria and with the scale of the preferences, as shown

n Fig. 7 . 2 

.3. Approximated thresholds for the output-based consistency ratio 

By using the same algorithm in the Appendix , we can also de-

ermine the thresholds for the C R O in different combinations, as

hown in Table 4 . 3 

Compared to the thresholds obtained from the input-based con-

istency measurement, the thresholds of the output-based consis-

ency measurement are slightly higher. 

Finally, by using the approximated consistency thresholds ob-

ained above, we can check whether or not the consistency of the

M is acceptable. For instance, since the overall C R I in the illustra-

ive example in Section 3.1 is 0.14, which is less than the thresh-

ld of 0.2958 (in 5-criteria and 8-scale combination), as shown in

able 3 , it is acceptable. If we use C R O , which is 0.223, we can see

hat it is also below the threshold of 0.4029, as shown in Table 4 . 
2 The combinations with 2-scale for the C R I are not shown in Table 3 and Fig. 7 , 

ut it is worth mentioning that the threshold should be 0 in this case, because, 

hen the preferences are ordinal-consistent, C R I = 0 . Therefore, the DM should re- 

ise his or her preferences when C R I > 0 . 
3 The threshold for the C R O in the combinations with 2-scale is 0, because when 

he preferences are ordinal-consistent, C R O = 0 . 

s

A

 

s

Thanks to these thresholds, C R I and C R O now have a meaningful

nterpretation, because we can now determine whether they are

cceptable or not. The thresholds for C R I can help a DM check

is/her pairwise comparisons before solving the optimization

rogram. 

. Conclusion 

In this paper, we addressed the consistency issue in BWM.

irst, we argued that the output-based consistency measurement

n BWM cannot provide immediate feedback to a DM, and only

nforms the DM about any inconsistencies in his/her assessments

fter the entire elicitation process has finished, which has been

roven to be ineffective. In addition, existing consistency indices

esigned for the incomplete pairwise comparison matrices are not

s desirable as we expected. To remedy that state of affairs, we

ropose an input-based consistency ratio, which has a number of

esirable properties and a high correlation to the original ratio, to

ndicate the DM’s consistency status during the preference elic-

tation process. This input-based consistency ratio is simple and

s easy for a DM to identify his/her most inconsistent judgments.

hen, to complement the cardinal consistency measurement, we

roposed an ordinal consistency measurement to explicate the

ossible contradictions even in cases where the cardinal consis-

ency of a DM’s pairwise comparisons is considered to be good

nough. This ratio not only shows how much a DM violates the

rdinal consistency, but also provides a convenient way to identify

nd correct the conflicts involved. Finally, with the help of Monte-

arlo simulations, we determined the thresholds for the input-

ased and output-based consistency ratios in different scales with

ifferent numbers of criteria. The idea is to balance the ordinal

onsistency and inconsistency, making the portion of the cardinal

onsistency ratios that violate ordinal consistency to be accepted as

mall as possible and the portion of the cardinal consistency ratios

hat satisfy ordinal consistency to be rejected as small as possi-

le. With these thresholds, a DM can decide whether or not to re-

ise his/her earlier assessments. And because the input-based con-

istency measurement can indicate the consistency level regarding

ach criterion, it can be used in the preference revision process. 

The method of determining the thresholds only considers

hether the judgments are ordinal-consistent or not and has not

aken the violation level into account. This will be examined in fu-

ure studies. Similarly to the approach what was adopted in this

aper, this method can also be applied to fuzzy consistency mea-

urements to determine their corresponding thresholds. 

cknowledgement 

The authors gratefully acknowledge financial support for PhD

tudy from China Scholarship Council (No. 201708440305 ). 

https://doi.org/10.13039/501100004543


10 F. Liang, M. Brunelli and J. Rezaei / Omega 96 (2020) 102175 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix 

The algorithm for obtaining the threshold for the C R I is il-

lustrated as follows and its graphical representation is shown in

Fig. 8 . 

Step 1 Generate pairwise comparison vectors. Suppose we have

n criteria ( n = 3 , 4 , ..., 9 ), two random vectors A BO =
( a B 1 , . . . , a Bn ) and A OW 

= ( a 1 W 

, . . . , a nW 

) with the maxi-

mum scale m ( m = 3 , 4 , ..., 9 ), are created to represent the

pairwise comparisons vectors A BO and A OW 

in BWM. The

elements in A BO and A OW 

are integers randomly selected

from domain [ 1 , m ] . 

Step 2 Establish the ordinal-consistent group. After creating a

pair of vectors a B and a W 

, it will be assigned to the

ordinal-consistent group if it satisfies ordinal consistency

condition (8) , and i = i + 1 . 

Step 3 Establish the ordinal-inconsistent group. If the paired vec-

tor generated in Step 1 does not satisfy the ordinal con-
Fig. 8. Graphical representation
sistency condition, it will be assigned to the ordinal-

inconsistent group, and j = j + 1 . 

Step 4 Continue to create the ordinal-consistent and ordinal-

inconsistent groups through steps 1–3, until the size of

both groups is 10,0 0 0. 

Step 5 Calculate the C R I for all the paired vectors in these two

groups by using Eqs. (6) , (7) . 

Step 6 Calculate the empirical cumulative distribution of C R I for

the two groups by using Eqs. (12) , (13) . 

Step 7 Calculate the relative rejected proportion of the C R I s

in the acceptable group ( P A 
re jected 

) and the accepted

proportion of the C R I s in the unacceptable group ( P U 
accepted 

)

by using Eqs. (14) , (15) . 

Step 8 If there exists a CR I 
T 

making P A 
re jected 

= P U 
accepted 

, then this

CR I 
T 

is the threshold. If not, go to next step. 

Step 9 Identify the cross point of the lines of P A 
re jected 

and P U 
accepted 

,

the C R I at this point is used as the threshold. 
 of simulation algorithm. 
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