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Abstract—A key part of efficient airport operational planning
is to have insight into potential flight delays and cancellations.
For airport planners, it is important to obtain flight delay or
cancellation predictions with a high degree of certainty, i.e. a high
precision. This allows planners to make sound decisions based on
these predictions. To obtain such predictions, machine learning
classification techniques are often applied. An important issue for
classification problems is that of imbalanced class distributions:
the number of actually cancelled/delayed flights is low. In general,
the imbalance is addressed by resampling the data using one
or more sampling techniques. However, resampling does not
necessarily correspond to an imbalance ratio that leads to the
best classification results. In this paper a systematic approach
is presented to deal with imbalanced data for classification
problems, while taking into account the preferences of airport
planners. A range of feasible imbalance ratios, together with
several classification algorithms and sampling techniques, are
considered. An optimal imbalance ratio is identified with respect
to relevant performance metrics. The approach is illustrated by
performing binary classification of flight cancellations and delays
at a large European airport. The results show that the highest
prediction precision is obtained using a base imbalance ratio,
whereas a higher imbalance ratio is needed to obtain the highest
F1-score. Specifically, the cancellation prediction performance is
increased by up to 243%, while its optimal imbalance ratio does
not correspond to resampling. In general, the results underline
the need to investigate the influence of varying data imbalance
ratios on the performance of classification algorithms.

Index Terms—flight delay, machine learning, imbalance, clas-
sification

I. INTRODUCTION

Flight on-time performance is an important measure for
airport and airline service quality. Before the COVID-19
crisis, the continuous growth of air traffic led to challenging
scheduling situations and an increase in flight delays and can-
cellations: In 2018, more than 11 million flights were operated
in Europe, with an average delay of 14.7 minutes, an increase
of 3.8% and 17% from 2017, respectively [1], [2]. After the

crisis, the air traffic volume is expected to restore to its pre-
crisis level within 5 years [3]. An increase in the number of
flight delays and cancellations has detrimental effects on an
airline’s and airport’s quality of service and revenue [4]. As
such, having the ability to anticipate which flights may be
cancelled or delayed is of great value for airports and airlines,
as it allows for pro-active decision making to mitigate the
effects of cancellations/delays. In order to anticipate flight
delays and cancellations it is necessary to predict these events
ahead of time, preferably with a high certainty, in order to
allow efficient managing of the airports resources.

One class of techniques that can be used to predict flight
delays and cancellations is that of machine learning classi-
fication techniques. In the past years, several studies have
developed machine learning algorithms to predict flight delays
and cancellations [5], emphasizing the importance of flight
on-time performance. One of the challenges of classification
problems is the fact that the used datasets can have an
imbalanced class distribution, i.e., the amount of samples
in the class of interest is only a fraction of the amount of
samples in the majority class. This imbalance leads to a low
performance of the classification algorithms [6], which usually
work best when having a balanced class distribution. Binary
flight cancellation and delay prediction is one example of a
classification problem where the issue of imbalanced class
distribution needs to be addressed. When considering regular
operations, a large majority of the flights are not delayed or
cancelled, causing the problem to be imbalanced.

In order to address the limitations caused by data imbalance,
many studies use oversampling and under-sampling techniques
such as Synthetic Minority Oversampling Technique (SMOTE)
[7], and Random Undersampling (RUS) [8]. However, when
using these techniques, a 50% − 50% sampling ratio is most
often used, which is not necessarily the ratio that leads
to the best performance of the prediction algorithms with



respect to the performance metrics considered. Moreover, the
performance metric of choice is usually accuracy, while this
may not be the most relevant performance metric for the
problem considered.

In this paper a systematic approach is proposed to analyse
and deal with the effects of highly imbalanced datasets when
predicting flight delays and cancellations. First, the most
relevant performance metric for the prediction problem is
selected. Then an adaptive sampling methodology is used to
determine which sampling technique and which imbalance
ratio yield the best classification performance with regard
to this metric. This approach is demonstrated using several
sampling techniques and classification algorithms, which are
applied to data on flights arriving/departing to and from a
large, European hub-airport, in the period 2015 - 2019. In
addition to flight operational data, weather data from METAR
weather reports [9] are considered. To the best of our knowl-
edge, this paper is the first to propose a systematic approach to
deal with the inherent imbalance of the prediction of flight on-
time performance, when formulated as a binary classification
problem.

This paper contributes to the current body of knowledge
concerning highly imbalanced datasets and flight on-time per-
formance as follows. From a practical point of view, this pro-
posed approach provides support for air transport stakeholders
such as airport coordinators who can use the predictions and
the proposed approach to assess flight schedules in advance
of the flight execution and take action in order to mitigate
the effects of flight delays and cancellations. Second, both
flight delays and cancellations are addressed, while existing
studies mainly focus on flight delay predictions and not flight
cancellations. Predictions for flight cancellations in particular
make use of highly imbalanced datasets, which are the focus of
this paper. Third, the approach presented in this paper can be
used to deal with imbalanced data in other fields of research,
when considering binary classification problems.

The remainder of this paper is structured as follows. Section
II presents the systematic approach to deal with the inherent
data imbalance, including the binary classification algorithms,
feature selection and relevant performance metrics, and ad-
dresses the classification results. Section III concludes the
research by discussing the approach, summarizing the most
important observations and providing suggestions for future
research directions.

Related work

In recent years, many studies have addressed the flight
delay prediction problem using machine learning techniques.
Usually, the authors express the problem as a classification
task: in [10], the authors predict airline delay on prediction
horizons of 5 days, 1 day and 0 days, using Decision Trees,
Random Forests, AdaBoost and k-Nearest-Neighbors classi-
fiers. The data is sampled using a combination of SMOTE
[7] and RUS [8]. In general, the Random Forest classifier
is found to have the best performance, with an accuracy of
0.80. In [11] flight delays are predicted on prediction horizons

of 5 months, 1 week and 1 day using Random Forests,
XGBoost and Deep Neural Networks. These algorithms make
use of airline data, originating from a low cost carrier. The
classifiers attain an average Average Under Curve (AUC)
score of 0.65 for a horizon of 1 day, with a maximum of
0.75 for certain airports. In [12] flight delay and cancellations
predictions are used to rank IATA strategic flight schedules
at London Heathrow Airport. The predictions are made using
three different classification algorithms, of which LightGBM
performs best, attaining a maximum F1-score of 0.60 for
the cancellation prediction problem. In [13] deep learning
algorithms are used to predict flight delays for airports in
the US, several hours before the operation. Weather data is
also considered in this study. It is found that the Recurrent
Neural Networks architecture results in the most reliable delay
prediction: an accuracy of 0.87 is obtained. In [14] an air
traffic delay prediction model is proposed that combines multi-
class Random Forests and an approximated delay propagation
model, which results in an accuracy of 0.87. Additionally, it is
found that departure delay and late arriving aircraft delay are
the most important features for the prediction. The authors use
SMOTE to resample the dataset. Finally, [15] perform multi-
class predictions for departing flight delay at Porto Airport,
several hours before the flight.

Other studies express the flight delay prediction problem
as a regression task. The authors of [16] investigate the
prediction of flight delays several months before the operation
for US airports. Using Gradient Boosted Decision Trees, the
authors find that the model predicts flight delay patterns with
a root mean square error (RMSE) of 8.2 and 10.7 minutes for
departure and arrival delay, respectively. Next, [17] estimate
flight delay several hours ahead of operation using several
algorithms, of which Random Forests performs best, with
an RMSE of 12.5 minutes. It is concluded that late aircraft
delay, carrier delay, weather delay and national airspace delay
have the largest effect on on-time performance. Furthermore,
[18] perform both classification and regression on the flight
delay prediction problem. Classification using the Gradient
Boosting Classifier with a combination of SMOTE and Tomek
Links [19] yields an accuracy of 0.94 and a recall of 0.91.
Regression with Random Forests produced an RMSE of 8.7
minutes. Lastly, [20] combine individual predictions made
using Random Forests regression to obtain delay probability
density functions for individual aircraft.

The topic of flight cancellation has been approached in vary-
ing ways in the literature: both [21] and [22] are studies utilis-
ing on-time performance data to propose an accurate decision-
support tool, integrating flight delays and cancellations. They
apply network models with minimum cost and maximum profit
objectives, respectively. The tool returns an optimal set of
flights to either delay or cancel. Furthermore, [23] investigate
flight cancellation behaviour by using an econometric discrete
choice model. The purpose of the research is to identify factors
that influence flight cancellations and to predict cancellation
probabilities. The results are incorporated in a queuing model,
which visualises the effects flight cancellations have on flight



delays. Lastly, [4] analyze the effect of an airline being part of
a global alliance on cancellations. It is concluded that airlines
belonging to an alliance are likely to have more flight cancel-
lations compared to non-alliance airlines. Complementary to
these studies, in this paper the cancellation problem is posed
as a binary classification problem.

On-time performance datasets are generally imbalanced,
and so are flight delays and cancellation datasets. Regarding
imbalance, multiple studies have been carried out on different
topics. First, [6] establish an approach to handle imbalanced
healthcare data by incorporating multiple different rebalancing
techniques. The proposed framework successfully improves
the detection of rare healthcare events due to look-alike
sound-alike mix-ups. A 45% increase in recall is observed
when combining a logistic regression algorithm with SMOTE.
Another study on the effects of data imbalance is [24]. Four
different rebalancing strategies are presented, combined with
a binary classification framework for scientific artifacts in the
evidence-based medicine domain. An increase of up to a factor
of three in the F1-score of the minority class was found for
some of the strategies. Within the field of aircraft on-time
performance the most popular approach is to reduce imbalance
by sampling with over- or undersampling techniques, such
as random oversampling [25], random undersampling [10],
[18], [26], SMOTE [10], [14], [18], [27], [28] and Tomek
Links [18]. Most studies choose to resample the delayed and
undelayed classes, without using a systematic approach to
choose the sampling ratio.

This paper aims to elaborate on previous work regarding
handling of imbalanced datasets and the prediction of flight
delay and cancellation using machine learning, by developing
a general approach to handle imbalance in on-time perfor-
mance datasets.

II. DEALING WITH IMBALANCE: A SYSTEMATIC APPROACH

In this section, a systematic approach is presented to select
an optimal imbalance ratio for an imbalanced dataset in the
context of binary classification for flight cancellation and
delay. The approach is demonstrated by predicting cancellation
and delays with two different classification algorithms and
two different sampling techniques, on a one-day prediction
horizon.

A. Data description and definitions

In this study, Amsterdam Airport Schiphol (AAS) is
considered as the reference airport where flights are scheduled
to depart from/arrive at. Two datasets are considered for the
proposed prediction algorithms: i) cancelled arrival/departure
flights and, ii) delayed arrival/departure flights.

i) Cancelled flights - Highly imbalanced dataset
A total of 1,956,418 arriving and departing flights to and

from AAS in the period 2015-2018 are considered. The dataset
is based on the strategic flight schedules [12] available in 2015-
2018 and contains information such as scheduled date and
time of the flight arrival/departure, origin/destination airport

of the scheduled flight and the airline that operates the flight.
These flights are operated by 256 airlines that fly to/from
649 airports. Furthermore, 54% of the flights have both the
destination and origin airport in the Schengen area. Out of all
considered flights 1.6% (30,695) are cancelled. Therefore this
dataset is considered to be highly imbalanced.

An arriving/departing flight is considered to be cancelled
if this flight is scheduled to arrive/depart at the reference
airport, but it is not operated on the day of the scheduled
arrival/departure.

ii) Delayed flights - Moderately imbalanced dataset
The flight delay dataset contains a total of 479,400 arriving

and departing flights to and from AAS during 2019. Similar
to the cancelled flights dataset, this dataset is based on
the strategic flight schedules available in 2019 and contains
information such as date and time of arriving/departing flights,
origin/destination airport and the airlines that operate the
flights. Specifically, the flights are operated by 99 different
airlines, flying from 336 unique origin airports and to 323
unique destination airports. This delay dataset is considered to
be moderately imbalanced with 34% (82,350) of all departing
flights being delayed, and 24% (57,253) of all arriving flights
being delayed.

An arriving/departing flight is considered to be delayed if
during operation, this flight arrives/departs 16 min or more
after the scheduled time of arrival/departure.

With regard to imbalance in datasets, the following defi-
nitions are introduced. The imbalance ratio of a dataset of
flights is defined as the ratio of delayed (cancelled) flights
to non-delayed (non-cancelled) flights. The base imbalance
ratio of a flight dataset is defined as the imbalance ratio
the considered dataset initially has. Lastly, the sampling ratio
applied to a flight dataset is defined as the ratio between the
amount of delayed (cancelled) flight samples after sampling
and the amount of delayed (cancelled) flight samples before
sampling.

As an example, a dataset of 100 flights, of which 20 are
delayed, has an imbalance ratio of 20/80, i.e. 0.25. If the
minority class is oversampled to a size of 40, the imbalance
ratio increases to 40/100, i.e. 0.40. An imbalance ratio of
100% corresponds with perfect resampling, where the number
of delayed (cancelled) and non-delayed (non-cancelled) flights
are equal.

Fig. 1 shows the delay distribution of the arriving/departing
flights in 2019 at and from AAS. These histograms show that
both the distributions of the arrival and departure flight delays
are unimodal with positive skew, i.e., the flights are more
likely to arrive/depart later than scheduled compared to earlier
than scheduled. Also, as expected, the histograms show that
the arriving flights generally experience less delay than the
departing flights.

Apart from the flight schedule specific datasets, the weather
conditions at the origin/destination airports such as the air
temperature, wind speed, visibility and pressure at sea level
are considered. These data are obtained from METAR [9].



Fig. 1: Departure and arrival delay distribution of flights
arriving and departing at/from AAS in 2019. The vertical red

line shows the delay threshold of 16 min.

Fig. 2: A flow diagram of the systematic approach to deal
with imbalanced data.

B. A systematic approach to deal with imbalanced data for
flight delay and cancellation predictions

Given the fact that the flight cancellation and delay datasets
are highly and moderately imbalanced, respectively, a sys-
tematic approach is proposed to deal with these imbalances
when predicting flight delays and cancellations. Fig. 2 shows
a schematic overview of the proposed approach. First, the
relevant performance metrics for flight delay and cancella-
tion prediction algorithms are identified. Next, an adaptive
sampling procedure is iteratively applied to the flight delay
and cancellation prediction algorithms. Finally, an optimal
imbalance ratio is determined. The available data is sampled
such that this imbalance ratio is attained and several binary
classification algorithms are run to predict whether flights are
delayed or cancelled.

Step 1: Identifying relevant performance metrics

First, performance metrics relevant for the prediction prob-
lem are identified. Common metrics for binary classification
algorithms are accuracy, precision, recall and F1-score. How-
ever, given that the datasets are highly and moderately imbal-
anced, accuracy is not considered as a relevant performance
metric.

Given the specific problem of flight delay/cancellation
prediction, in practice it is preferred by airport planners
to be able to predict whether flights are delayed/cancelled
with a high certainty, even at the cost of mis-classifying
many delayed/cancelled flights as not delayed/not cancelled.
Otherwise, a low certainty in the flight delay/cancellation
prediction may lead to less-informed decisions from an airport
planner, which may negatively affect stakeholders such as
airlines, passengers, etc. As such, in this study, precision is
considered to be the main performance metric (high certainty
of predictions), and F1-score as the second most important
metric (overall performance of the prediction algorithm).

Step 2: Prediction algorithms and adaptive sampling

In this step, several binary classification algorithms are
employed to predict flight delays and cancellations. Below
the feature selection and an adaptive sampling approach for
these classification algorithms are discussed.

1) Feature encoding and selection: Table I indicates
whether each feature is categorical, numerical or time-related.
The categorical features are target-encoded. Here, the target-
encoded value of a categorical feature is the probability of
the flight being delayed/cancelled, based on all samples that
fall into the same category [29]. For example, if 20 out of
all 50 flights from an airline X are delayed, then airline X is
encoded with value 0.4. The time features such as hour, day
of week and month are encoded using trigonometric functions
that preserve periodicity [11]. Lastly, all feature values are
scaled to the interval [0, 1] to eliminate feature domination or
ranking [10], [11].

Table I also shows which features have been selected for
predicting the departure delay, arrival delay and cancellations
using binary classification algorithms. The selection is
performed based on Pearson’s correlation coefficients. These
features are the flight number, the airline operating the
flight, the apron handler assigned to a flight at the airport,
the aircraft type used for the flight, the aircraft registration
number, the airport and country of origin/destination, the
number of times an origin-destination airport route is operated
per day by all aircraft arriving/departing at/from AAS, the
service type of the flight (passenger or freight), the month of
the year, the time of day, and, for both the destination and
origin airport: the wind speed, gust speed, air temperature, air
pressure, visibility and snow presence. Table I shows that the
delay classifiers make more use of time features, since busy
periods in the flight schedules are causes for flight delay. The
cancellation classifiers, however, make more use of weather
features such as visibility and snow presence, as they often
cause flight cancellations.

2) Binary classification algorithms: The flights are classi-
fied as delayed or cancelled using two binary classification
algorithms: Random Forests (RF) and Multilayer Perceptron
(MLP). Random Forests [30] is a collection of many clas-
sification trees which are each constructed using a different



TABLE I: Selected features for the delay and cancellation prediction problems.

Classifier Features
Departure delay Flight numberc, Airlinec, Handlerc, Aircraft typec, Aircraft registrationc, Destination airportc, Route frequencyn,

Montht, Timet, Gust speed (origin)n, Temperature (origin)n, Temperature (destination)n

Arrival delay Flight numberc, Handlerc, Aircraft typec, Aircraft registrationc, Origin airportc, Montht, Timet, Gust speed
(destination)n

Cancellations Flight numberc, Airlinec, Handlerc, Aircraft registrationc, Origin/destination airportc, Origin/destination countryc,
Service typec, Wind speedn, Pressuren, Visibilityn, Snown

c Categorical feature, target encoding
n Numerical feature
t Time feature, trigonometric encoding

subset of the training set, and using a different selection
of features. Each tree carries out a class vote, after which
the RF classifies using the majority vote. This approach
reduces overfitting and sensitivity to outliers, and enhances
the predictive accuracy. The Multilayer Perceptron [31] is
a feed-forward neural network with backpropagation, non-
linear activation functions and hidden layers. The MLP has
the advantage that it can learn non-linear relations. Both the
MLP and RF algorithms are well-established and often used
in the field of machine learning classification and are therefore
fitting to be used in the demonstration of our adaptive sampling
approach.

For both algorithms the datasets are split into train and test
data, with an 80%-20% ratio. Thus, a 5-fold Cross Validation
is used for these classifiers.

3) Adaptive sampling: In this part of the procedure, adap-
tive sampling is used to investigate the relation between
the imbalance ratio of the dataset used for the prediction
problem at hand (flight cancellation or delay prediction), and
the performance metrics considered relevant for the problem
(see Step 1). Adaptive sampling is performed as follows:
starting at the base imbalance ratio, the imbalance ratio is
iteratively increased by 5%, until it reaches 100%. For each
such imbalance ratio, the classification is performed using the
two classification algorithms introduced previously and the
sampling is performed using two sampling techniques. The
resulting values of the performance metrics selected in Step
1, i.e., precision and F1-score, are thus obtained for each
imbalance ratio. Lastly, for every combination of algorithm
and sampling technique, an optimal imbalance ratio is selected
such that precision and F1-score are highest.

The two sampling techniques, used to sample the considered
dataset for every imbalance ratio, remain to be introduced.
The first is an oversampling technique and the second is an
undersampling technique: Synthetic Minority Oversampling
Technique (SMOTE) [7] over-samples the minority class, i.e.
the cancelled/delayed flights, by creating synthetic samples
between samples and their nearest neighbours. When using
SMOTE, the samples are not duplicated. Random Undersam-
pling (RUS) [8] undersamples the majority class by leaving
out random samples from this class. Both techniques are well-
known in literature, and the approach presented in this paper
can be extended to different sampling techniques. In summary,

for every value of the imbalance ratio, the classification
is performed with four different settings: RF sampled with
SMOTE, RF sampled with RUS, MLP sampled with SMOTE
and MLP sampled with RUS.

Figs. 3 to 5 show the precision, recall and F1-score as
functions of the imbalance ratio for the cancellations, departure
delays and arrival delays, respectively, obtained using the
RF and MLP algorithms and the features as described in
Section II-A. The sampling techniques SMOTE and RUS are
indicated by S and R, respectively. The models are run with
the default hyper-parameter settings as hyper-parameter tuning
is performed at a later stage.

i) Cancellations

Fig. 3 shows that the precision score is highest at the base
imbalance ratio, 1.6%, for all combinations of algorithms and
sampling techniques. The precision rapidly decreases with
increasing imbalance ratio, until it levels at 0.05. The opposite
can be seen for the recall, which starts at a minimum and
increases with increasing imbalance ratio. There is a clearly
visible trade-off between recall and precision. Finally, the peak
of the F1-score is observed near a ratio of 10%. Since the F1-
score constitutes the harmonic mean between precision and
recall, the peak is observed at an imbalance ratio where neither
of the precision and recall attain extreme values. The results
also show that RF with SMOTE is insensitive to the imbalance
ratios for all metrics.

ii) Departure delays

For the departure delays, the imbalance ratio ranges between
55%, the base imbalance ratio, and 100%. The graphs for
precision, recall and F1-score are shown in Fig. 4. The
general trends are the same as for the performance of the
cancellation classifiers, but the performance differences are
smaller. Precision decreases with increasing imbalance ratio,
while recall increases with increasing imbalance ratio, for
both algorithms and sampling techniques. The F1-score also
gradually increases with the imbalance ratio.

iii) Arrival delays

Finally, for the arrival delays, the precision, recall and F1-
score graphs are shown in Fig. 5. The base imbalance ratio
for arrival delay lies at 33%. Again, there is a clear decreasing
trend for precision and an increasing trend for recall, with the
F1-score graph corresponding to their harmonic mean.
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Fig. 3: Precision (a), recall (b) and F1-score (c) as function of
the imbalance ratio, for cancellation prediction (RF = Random
Forest, MLP = Multilayer Perceptron, R = RUS, S = SMOTE.)
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Fig. 4: Precision (a), recall (b) and F1-score (c) as function of
imbalance ratio, for departure delay prediction (RF = Random
Forest, MLP = Multilayer Perceptron, R = RUS, S = SMOTE).
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Fig. 5: Precision (a), recall (b) and F1-score (c) as function of
the imbalance ratio, for arrival delay prediction (RF = Random
Forest, MLP = Multilayer Perceptron, R = RUS, S = SMOTE).

Step 3: Selecting an optimal imbalance ratio

In this step an optimal imbalance ratio is selected based
on the performance achieved in Step 2. As mentioned above,
an optimal imbalance ratio is the ratio for which the relevant
performance metric value (see Step 1) is highest.

Figs. 3a, 4a and 5a show that the highest precision is at-
tained at the base imbalance ratio, i.e. without using sampling,
for both classification algorithms. This shows that at the base
imbalance ratio the algorithms only classify those samples
as positive that have high certainty of being positive. This
leads to a small amount of false positives, and consequently
to a higher precision than for greater imbalance ratios. As
expected, the large amount of positive samples that cannot be
classified as such with high certainty by the algorithm lead to
a large amount of false negatives, and consequently to a lower
recall.

For the F1-score, the highest performance is obtained as
follows. For the cancellation results, an optimal F1-score
for MLP is obtained when using a 10% imbalance ratio
sampled with SMOTE (see Fig. 3c). An optimal F1-score
for RF is located at the 10% RUS imbalance ratio. Con-
sidering departure delay results, the MLP achieves the best
performance at 100% SMOTE and the RF at 100% RUS, as
shown in Fig. 4c. Finally, for the arrival delay results, the
highest F1-score is obtained at an imbalance ratio of 100%
RUS for MLP and 90% RUS for RF (see Fig. 5c). Due
to the greater imbalance in the cancellation dataset a larger
range of imbalance ratios is considered for the cancellation
prediction during the adaptive sampling procedure. This leads
to a larger range of precision and recall values for cancellations
(Figs. 3a and 3b), as opposed to the values for flight delay
(Figs. 4a, 4b, 5a and 5b). This explains why a clear optimum
imbalance ratio appears for the cancellation F1-score near 10%
(Fig. 3c), while for the delay F1-score the values are similar
for all considered imbalance ratios, and the optimum is less
pronounced compared to that of the cancellation prediction
(Figs. 4c and 5c).

A summary of these optimal selected imbalance ratios for
each classifier is shown in Table II.

Step 4: Performing hyper-parameter tuning

Following the selection of an optimal imbalance ratio,
hyperparameter tuning is performed for the flight cancellation,
departure flight delay and arrival flight delay classifiers. For
the RF classifier, the number of trees, selection criterion, maxi-
mum tree depth and maximum features per tree are considered
for tuning. For the MLP classifier, the hidden layer size, the
batch size, activation function, solver and the learning rate are
considered. In all cases, a random grid search is performed.
Table III and Table IV show the best hyperparameters for the
considered classifiers.



TABLE II: Optimal imbalance ratios corresponding to the maxima in the performance metric plots, for all classification
problems and both the Multilayer Perceptron (MLP) and Random Forest (RF) classifiers.

Cancellations Departure Delay Arrival Delay
MLP RF MLP RF MLP RF

Highest precision no sampling no sampling no sampling no sampling no sampling no sampling
Highest F1-score 10% SMOTE 10% RUS 100% SMOTE 100% RUS 100% RUS 90% RUS

TABLE III: Final hyper-parameters for Multilayer Perceptron (MLP).

Sampling Hidden layer size Batch size Activation Solver Learning rate

Cancellations Highest precision no sampling 100 (1 layer) 1000 ReLu sgd constant
Highest F1-score 10% SMOTE 100 (1 layer) 1000 ReLu adam constant

Departure
Delay

Highest precision no sampling 100 (1 layer) auto ReLu adam constant
Highest F1-score 100% SMOTE 100 (1 layer) auto ReLu adam constant

Arrival
Delay

Highest precision no sampling 100 (1 layer) 1000 logistic sgd adaptive
Highest F1-score 100% RUS 100 (1 layer) auto ReLu adam constant

TABLE IV: Final hyper-parameters for Random Forest (RF).

Sampling Number of trees Criterion Max depth Max features

Cancellations Highest precision no sampling 100 Entropy 10 0.2
Highest F1-score 10% RUS 300 Entropy 6 1.0

Departure
Delay

Highest precision no sampling 500 Gini 8 0.1
Highest F1-score 100% RUS 500 Entropy 6 1.0

Arrival
Delay

Highest precision no sampling 100 Gini 6 0.1
Highest F1-score 90% RUS 300 Entropy 6 0.7

TABLE V: Final performance metric results for cancellation, departure delay, and arrival delay prediction.

Cancellations Departure delays Arrival delays
Indicator MLP RF MLP RF MLP RF

Highest precision Accuracy 0.986 0.986 0.682 0.681 0.768 0.765
Precision 0.809 0.853 0.614 0.660 0.692 0.713
Recall 0.041 0.035 0.303 0.203 0.054 0.028
F1-score 0.079 0.068 0.406 0.311 0.101 0.054
AUC 0.772 0.850 0.691 0.691 0.680 0.693

Highest F1-score Accuracy 0.978 0.981 0.666 0.645 0.710 0.640
Precision 0.263 0.284 0.524 0.493 0.406 0.362
Recall 0.237 0.198 0.491 0.601 0.528 0.624
F1-score 0.249 0.233 0.507 0.542 0.459 0.458
AUC 0.854 0.839 0.679 0.685 0.712 0.700

C. Results - Binary classification for flight delays and can-
cellations with optimal imbalance ratios and hyper-parameter
tuning

Using the obtained optimal imbalance ratios and sampling
techniques for each prediction problem and selected metric of
interest, the classification algorithms are applied once more to
perform the final flight delay and cancellation predictions. The
results are summarized in Table V. All results are the mean
of a 5-Fold Cross Validation. In this table, ”highest precision”
and ”highest F1-score” indicate that the imbalance ratios have
been used that produce optimal results for the respective metric
(see Table II). For example, the highest F1-score of 0.507 for
departure delays with MLP is obtained using 100% SMOTE.

Table V can be used to compare the performance of the two
used classification algorithms, RF and MLP. For the cancella-
tion problem, the table shows that the precision performance of
RF is higher than that of MLP when optimizing for precision
(no sampling). The opposite is observed for the value of the

F1-score when optimizing for F1-score (10% sampling). For
the departure delay problem RF outperforms MLP for both
metrics of interest. For the arrival delay problem the difference
between the classifier performances is smaller and in the case
of F1-score the performance is similar, although the MLP does
attain a greater accuracy.

Table V shows that the general performance, as illustrated
by the F1-score, is better when the base imbalance ratio is
larger. When aiming for a high precision, the results show
that the departure delay results have the smallest difference
between recall and precision, followed by the arrival delay
and cancellation results. The trade-off between precision and
recall is therefore stronger for smaller base imbalance ratios,
as expected.

As shown in Step 3, sampling does not improve the pre-
cision in any of the cases. However, for F1-score a clear
improvement is observed when choosing an optimal imbalance
ratio. For example, when using the MLP classifier, the increase



is 243% for cancellation predictions, 74% for the departure
delays, and 354% for the arrival delays, compared to the base
imbalance ratio.

In general, the fact that large differences in the classification
performance are observed when comparing the precision,
recall and F1-score between the different imbalance ratios,
confirms the need for a systematic approach to deal with
imbalanced datasets regarding the flight cancellation and delay
classification problem.

III. CONCLUSION

In this paper, a systematic approach to deal with highly
imbalanced data for binary classification problems is devel-
oped, in order to enhance the performance of machine learning
algorithms predicting flight delays and cancellations, while
taking into account the preferences of airport planners re-
garding this performance. The presented approach emphasises
the need to identify the performance metrics relevant for the
considered problem. In the case of predicting flight delays
and cancellations, correct predictions are valuable to airport
coordinators. The predictions can be used to propose changes
to strategic flight schedules. However, the airlines, which are
subject to these change proposals, are expected to accept such
change proposals only if the predictions have a high certainty.
Hence, in this paper the performance metric considered to
be most relevant has been the precision, as a high precision
implies a high certainty in predictions. Additionally, the F1-
score has been considered.

The algorithms Random Forests and Multilayer Perceptron
are trained and tested with flight operational data from a large
European hub airport and weather data. The imbalance of the
data is mitigated by applying an adaptive sampling procedure
to the prediction problem using the sampling techniques
Random Undersampling (RUS) and Synthetic Minority Over-
sampling Technique (SMOTE), and investigating its effects on
the classifier performance.

The imbalance analysis and its results show that optimal
performance with respect to the metrics can be obtained by
varying the data imbalance ratios. Optimal precision is shown
to be found at base imbalance ratio (data without sampling),
for all algorithm and sampling technique combinations. In
order to find the optimal F1-score, sampling is shown to
be necessary. Increasing the imbalance ratio to the optimal
amount improves the F1-score by a significant factor for each
prediction problem. In the case of cancellation prediction,
the optimal imbalance ratio greatly differs from the ratio
corresponding to the conventional resampling (100%).

The proposed approach provides support for major hub-
airports to perform on-time performance prediction. Further-
more, the approach can be applied within other research
areas when considering imbalanced classification problems.
Moreover, the presented approach is not dependent on the type
of machine learning algorithm, the features considered, nor on
the type of data. Therefore, it is generic and can be applied
to any imbalanced binary classification problem.

As future work we plan to develop a systematic approach
to deal with imbalanced datasets on which multiclass classifi-
cation or regression is performed, which use different perfor-
mance metrics than are used for binary classification. Lastly,
we plan to apply our approach in an on-time performance
analysis of regional airports.
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