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Sampling settings in active learning for investigating
inconsistency

Mengze Li

Abstract

Active learning has the potential to reduce labeling
costs in terms of time and money. In practical use, active
learning works as an e�cient data labeling strategy. An-
other point of view to look at active learning is to consider
active learning as a learning problem, where the training
data is queried by the active learner. Under this perspec-
tive, an important question is inconsistency: can classifiers
trained using active learning converge to the same result as
using random sampling given an infinite number of data.
In this paper, we discuss the possibility and potential con-
sequences of using new sampling settings other than sam-
pling without replacement in active learning to analyze the
inconsistency problem. Moreover, a third sampling setting
is defined to simulate the infinite data scenario in incon-
sistency. We compare the traditional setting, sampling
without replacement in active learning with sampling with
replacement in active learning, and true active learning.
Furthermore, the two unusual sampling settings provide
insight into the inconsistency problem. (1)Regularization
parameter without adjustment can lead to inconsistency.
(2)Querying data ”really” close to the decision boundary
can also bring threats to active learning.

1 Introduction

How to make use of available data with little annota-
tion cost is a fundamental question in classification prob-
lems. In fully supervised learning, samples are drawn ran-
domly from the data pool to obtain labels. The approach
using random sampling is called passive sampling in con-
trast to active learning. The samples acquired by random
sampling are considered independent and identically dis-
tributed, following the true underlying distribution. Ac-
tive learning strategies allow the learning algorithm to ex-
plore in the unlabeled data pool itself. In one active learn-
ing iteration, the active learner draws one or more data
samples to be labeled according to active learning strate-
gies. The most simple and commonly used active learning
strategy is uncertainty sampling [1,15]. In uncertainty ac-
tive learning, the active learner finds the sample in the un-
labeled data pool that the classifier is least certain about
its prediction. Once the label of this sample is acquired,
this sample is removed from the current data pool and be
added to the training data. In active learning, one sam-
ples without replacement, meaning one sample can only
be selected once. If no additional stopping criteria is set,

active learning stops once all available samples in the pool
are labeled.

One goal of active learning is to reduce the cost of
data labeling by actively selecting samples to query la-
bels. It is expected to use less labeled data to achieve
a competitive classification performance compared to the
classification performance when all data in the pool are la-
beled and used for training. There are concerns about the
e↵ect of active learning. Firstly, even though each active
learning strategy has its intuition and reasoning to select
the most informative instance, there is no hard proof that
active learning is guaranteed to achieve a better perfor-
mance than random sampling when the same amount of
training samples are selected. Several studies [5, 10] have
shown that active learning strategies can perform worse
than random sampling. The second question about the
performance of active learning is inconsistency: given in-
finite number of samples, does active learning converge to
the same result as random sample? The problem of in-
consistency is fundamental in active learning but receives
little attention. This paper focuses on the inconsistency
problem. Even though inconsistency is considered a result
of sampling bias in active learning [3,9,14], the exact link
between them is not clear.

Sampling without replacement is a default setting in
active learning [1, 15]. Nevertheless, when we investigate
the inconsistency problem in active learning, this setting
has two limitations: (1) the performance of active is af-
fected by the number of available samples; (2)active learn-
ing cannot run infinite times. Therefore, we implement
two unusual settings for active learning to illustrate and
understand the inconsistency problem. Sampling with re-
placement [9] allows us to conduct active learning until
infinity but cannot simulate a scenario with an infinite
number of samples. The idea of simulating an infinite
number of samples is further extended into a new setting
named true active learning in this article. In true active
learning, it is assumed the distribution of data in the fea-
ture space is known, and it is possible to query instance
located anywhere in the feature space.

In this paper, we illustrate the limitations of sampling
with and without replacement and show the consequences
of sampling under two unusual settings. We find both
two new settings meet the problem of inconsistency. The
performance of the two new settings is worse than usual
active learning in terms of surrogate loss. We believe this
is a result of building a classifier with less optimal reg-



ularization parameter. When using active learning with
replacement, sampling eventually gets stuck by sampling
two single points and do not query other samples.

Moreover, using the two unusual sampling settings in
active learning, we make several attempts to investigate
into inconsistency. We find that the regularization param-
eter under sampling bias is indeed one factor of inconsis-
tency in active learning. If the regularization parameter
is not adjusted, it is possible to lead to a model that fits
only the training data but not fit the true distribution of
the data. Also, if sampling happens really close to the de-
cision boundary, there are more chances of getting more
unhelpful data and a↵ect the probability estimation of the
classifier. Unhelpful samples refer to the ones whose true
class labels is di↵erent from the prediction of the classifier,
which is trained on a large amount of samples independent
and identically distributed.

This paper is organized as follows. Section 2 pro-
vides background for the active learning system we im-
plemented, including the active learning strategy and the
classifier, and how we evaluate performance for the sys-
tem. Section 3 explains the three sampling settings used in
this article with details. Consequences and explanations
of implementing sampling with replacement are provided
in section 4. We show our experiment setup and results
in section 5, and provide analysis on sampling settings
and the problem of inconsistency. Section 6 summarizes
the findings of the research and propose future research
questions.

2 Background

This section provides additional background for the
paper.

2.1 Uncertainty sampling

In uncertainty active learning, there are three main
approaches to identify the most uncertain sample [15].
The least confidence method selects the sample with the
lowest posterior probability of the class that the sample
is assigned to. Margin sampling incorporates the poste-
rior of the second probable class. The sample with the
smallest di↵erence between the two posteriors is selected.
Entropy is a more general approach since calculating in-
formation entropy takes all class labels into consideration.
Even though these approaches are based on di↵erent in-
tuitions, they produce the same results in binary classifi-
cation problems. Least confidence is used in this article
since it is the most computationally e�cient method.

2.2 Logistic regression for binary classification

In this paper, we use logistic regression as a classifica-
tion method considering it has a linear decision boundary
and naturally a probabilistic model. For a binary classifi-
cation problem with class labels from 1, -1, the following

cost function is minimized, considering a L2 form regular-
ization. C is the regularization parameter. A smaller value
of C specifies a stronger regularization. The latter part of
the cost function is the sum of logistic loss for a predic-
tion. Furthermore, using logistic regression would have
the potential to produce interpretable models. The de-
cision boundary, the estimated posterior probability over
dataset distribution, can be directly obtained from the
trained classifier.

!, c = argmin
!,c

1

2
!T! +C

NX

i=1

log(exp(�yi(X
T
i ! + c)) + 1)

(1)

2.3 Performance measure in active learning

Error rate or accuracy [2, 6, 16] is a commonly used
method for classifier evaluation, in both active learning
and supervised learning problems. F1 score, area under
ROC curve(AUC) are also used for imbalanced problems
and di↵erent circumstances [7, 13]. By plotting a learn-
ing curve of error rate over running time/number of se-
lected samples, we would be able to evaluate active learn-
ing strategies like supervised classification.

Besides error rate, surrogate loss, as a second criterion
for performance measure, can be used for plotting learning
curves [9]. In logistic regression, logistic loss is directly
optimized as a surrogate of accuracy(0-1 loss). Therefore,
surrogate loss on a large test set is expected to get smaller
as more samples are selected and labeled in supervised
classification. It will be a question whether this remains
true in active learning. Moreover, there is no guarantee
that optimized surrogate loss will lead to good accuracy.

3 Sampling settings in active learning

Figure 1: Classification example of two 1D Gaussian dis-
tributions

Consider a binary classification task of 2 1-dimensional
Gaussian distribution, centered at [1] and [-1] with the
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variance of 0.25. The probability density function(fig 1)
for each class can be denoted as P (x|y�) and P (x|y+).
Similar to data collection in practical settings, we can
draw a certain number of samples from each class distri-
bution and construct an unlabeled data pool as in pool-
based active learning. The available unlabeled pool is de-
noted as Dunlabeled = {x1, x2, ..., xn}. After annotation,
these unlabeled data samples can be utilized as training
data for classification. The labeled data set or the training
set is denoted as Dtrain = {(x1, y1), (x2, y2), ..., (xm, ym)},
where y is the class label assigned to the sample. We as-
sume a large amount of independent test set is available
for evaluation, and thus the labeled dataset is fully used
for training and does not need to be further divided.

The key question is in what manner to select samples
and assign labels. In passive learning, samples are selected
randomly for annotation. The benefit of passive learning
is that no extra system or computation is required to de-
cide which point to label. While in active learning, an
extra sample selection process based on a particular sam-
pling strategy(such as uncertainty sampling) is required
before labeling one (or one batch of) sample(s). Active
learning is usually considered e↵ective for e�cient label-
ing. Usual active learning(AL) and random sampling(RS)
are two traditional sampling settings that have been well
defined. Each sample can be selected only once in these
two settings. As active learning proceeds, the size of the
unlabeled poolDunlabeled gets smaller and the labeled pool
Dtrain has more training data. Even though uncertainty
sampling and active learning could select very di↵erent
samples, as the available amount of data run out in the
unlabeled pool, the choice of possible sample to select be-
comes smaller. As a result, usual active learning is ex-
pected to work well only in the initial stages. In other
words, if we decide to select a fixed number of samples,
the performance of active learning without replacement
is influenced by the size of available samples in the pool.
The more data we have in the pool, the more active learn-
ing plays its role. For example, in uncertainty sampling,
active learners typically choose samples that they are least
uncertain about, which are the samples closest to the deci-
sion boundary, close to 0 in the above example. The active
learners believe the samples closest to the current decision
boundary will improve the classifier the most. However,
the exact sample to be selected depends on the current
available unlabeled data samples. All samples may lo-
cate far from the decision boundary. Also, there may be
few samples located in the desired area, but after several
iterations of active learning, we would have sampled all
these samples and have to select samples relatively less
close. Another disadvantage is if we label all samples in
the data pool, both active learning and random sampling
lead to the same result.

A second sampling setting in active learning is sam-
pling with replacement(resampling). The idea of resam-
pling in the unlabeled datapool aims to isolate the e↵ect
of active learning from available data to fully utilize the

power of active learning. After an active learning iter-
ation, the selected sample is added to the training set
with label while the sample remains in the unlabeled data
pool. This way of sampling is the so-called sampling with
replacement. The motivation to implement sampling with
replacement is that it is less a↵ected by the available data
samples compared to usual active learning. Sampling with
replacement allows querying an infinite number of samples
with guarantee that active learning can select the most
desirable point without being forced to select the unla-
beled but less representative samples. Even though some
samples in the desired areas are less represented by the
available data, sampling with replacement can reuse the
samples.

Following the same intuition, we can expect active
learning will reach its best performance if an infinite num-
ber of samples are provided and also reused. We define
the true active sampling(True AL) scenario for a syn-
thetic dataset as follows. After each training, the classifier
reaches its optimal performance based on the current la-
beled data and then active learner queries the most uncer-
tain sample. In uncertainty sampling, the most uncertain
sample will be located closest to the decision boundary of
the trained model. This most uncertain sample x0 is the
one located exactly on the current decision boundary of
the classifier in the setting of an infinite number of sam-
ples. Therefore, a sample(of 1 dimension) located on the
decision boundary is generated as the queried sample. We
define the label of this sample x0 as one outcome of a ran-
dom variable following a Bernoulli distribution, shown in
Eq 2, where p is calculated following the Bayesian theorem
shown in Eq 3.

Px0(y+) = p = 1� Px0(y�) (2)

p = P (y+|x) =
p(x|y+)

p(x|y+) + p(x|y�)
(3)

4 Consequences of sampling with
replacement

Previous work [9] using active learning with replace-
ment to investigate inconsistency found sampling with re-
placement can lead to increasing surrogate loss. We be-
lieve this is due to a combination of 2 reasons: (1)only two
samples are queried by active learners after several iter-
ations; (2)As active learning proceeds, the regularization
parameter requires adjustment to the fit new training set.
Both reasons are related to sampling bias introduced by
active learning.

4.1 Sampling between two points

When conducting active learning with these active
learners would always end up selecting between two sam-
ples. This may seem both expected and strange. As we
know, uncertainty sampling likes sampling close to the
decision boundary. These final two samples are exactly
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the two closest to the decision boundary.How does active
learning end up here? The following figure provides a sim-
ple example. There is no quantitative approach to mea-
sure sampling bias. But when the training set consists
mostly of duplicates of two samples, the sampling bias is
becoming a problem.

Figure 2: An example illustrating how active learning ends

up with selecting between two points. Assume we have four

labeled samples(marked with black color) at the beginning of

active learning, we could achieve a classifier with the initial

classification decision boundary. Considering sample B is the

one closest to it, the active learner is very likely to select B

for labeling. After adding B to the labeled data set, we get

a new classifier with a new decision boundary. After we get

this, the active learner will either select sample A or B. If

sample A is selected to be labeled data pool, the classification

decision boundary shifts a little to the right. And then, the

most uncertain sample will be sample B, and thus, the decision

boundary moves back. And therefore we can find the decision

boundary shifting between these two samples and no longer

consider other samples from the data pool.

4.2 Increasing surrogate loss and regularization
under sampling bias

A possible reason that the surrogate loss increases are
because of regularization term used in logistic regression.
Eq 1 is the loss function implemented in ”scikit-learn”.
The loss function consists of two parts, the regularization
part and the sum of log loss over all training samples.
As the number of selected labeled samples increase, the
sum of log loss increases, therefore leaving the e↵ect of
the regularization smaller. This means even under the
same regularization parameter, the strength of regulariza-
tion is becoming softer as the number of training samples
increase. Normally this would not be a problem in usual
classification tasks, which does not have sampling bias,
considering that a large number of training samples inde-
pendent and identically distributed are less likely to overfit
the model. However, in active learning with replacement,
this is not the case. Training a classifier with a training
set consisting of two samples can lead to overfitting and
give the active learner blind confidence if the regulariza-
tion becomes soft.

We replace the ”sum” calculation with ”average” in
the loss function. The loss function is in Eq 4. Under this
condition, the strength of regularization does not change

during the process of active learning.

!, c = argmin
!,c

1

2
!T!+
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N
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i=1

log(exp(�yi(X
T
i !+ c))+1)

(4)

5 Experiments

5.1 Implementation details

In this section, we carry out experiments mainly on ar-
tificial datasets for binary classification. The aim of using
this dataset is to illustrate the performance of sampling
under di↵erent settings. Artificial dataset is easier to in-
terpret compared to real-world experiments. A logistic
regression classifier is used in the active learning pipeline.
We use l2-form logistic regression for the classification task
and the regularization parameter is set to 1000(� = 0.001).
We use Scikit-Learn [11] implementation for the classifier
and ”liblinear” [4] algorithm to find solution to the mini-
mization problem defined in section 2.2. To evaluate the
performance of each sampling settings objectively, an in-
dependent test set of 20,000 data samples are generated in
all experiments. For both artificial dataset, two instances
from each class are randomly selected and labeled before
the start of active learning. And in each active learning
iteration, one single instance is queried for label accord-
ing to the most uncertain rule. For each experiment, we
report the result for each setting averaged on 1000 repe-
titions.

Two artificial datasets are constructed, including
Gaussian dataset as defined in section 3 and the ABA
dataset as described in [8]. The ABA data set consists
of three Gaussian distribution where one Gaussian distri-
bution is one class located in the middle while the other
class is a mixture of two Gaussian distribution on the two
sides of the first one(see figure 3). The three Gaussian
distribution have the same variance of 0.04 and located at
[-1], [0], and [1] respectively.

Figure 3: ABA dataset for binary classification

5.2 Performance of di↵erent sampling settings

We evaluate the performance of active learning under
three di↵erent sampling settings.
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Figure 4: Learning curves of selecting 30(20 for ABA dataset) samples from di↵erent pool size. The two figures on
the left are the learning curves(log loss and error rate) on Gaussian dataset, while the other two figures on the right
side are the learning curves on ABA dataset.

Influence of pool size on usual active learning
The first designed experiment is used to illustrate influ-
ence of pool size on active learning. Fig 4 shows the per-
formance of conducting active learning under the di↵er-
ent sizes of the data pool. In the Gaussian dataset, the
learning curves in fig 4.(a) and 4.(c) are plotted based
on active sample selection of 30 samples, under a pool of
size 30,60,90,120 and 150 respectively. Besides, the re-
sults of 30 randomly selected samples are compared with
the active learning solutions. In the ABA dataset, we ac-
tively select 20 instances from a pool each of size 20, 24,
32, 40 and 60. The learning curves can be seen in fig
4.(b) and 4.(d). In both applications, the performance of
active learning under a small pool approaches the perfor-
mance of random sampling as active learning continues,
especially when the pool has the same amount of samples
as the number of intended selected samples. If we look
at the Gaussian dataset alone, we find that a larger un-
labeled pool can achieve better performance in terms of
both error rate and surrogate loss. This example shows
that active learning has the power to utilize the current
available data we have access to. Regardless of the size of
the pool, active learning has the ability to find the most

informative sample within and thus making labeling more
e�cient. However, on the other hand, the potential of ac-
tive learning is not fully explored when only a relatively
small number of samples are available. In this sense, eval-
uating an active learning strategy under a limited number
of samples is guaranteed to be influenced by the pool size.
In the second example, ABA dataset, what we find strange
is that active learning using a larger sized pool leads to a
better result in terms of error rate but also a worse result
in terms of surrogate loss. The ABA dataset is designed
for linear classifiers not to work. Research [8] has shown
that the error rate of such a classifier can be as worse
as 50%. In this example, active learning with relatively
more available data achieve the error rate of close to 0.25.
We find that provided two positive samples in the middle
and two negative samples each from a cluster, in the very
first active learning iteration, the sampler selects an in-
stance from the positive class in the middle. Afterwards,
the queried samples are either close to 0.5 or close to -0.5.
Therefore only the samples from the two nearby Gaus-
sian distributions are labeled. Sampling only moves to
the third Gaussian distribution when all data in the first
two Gaussian distributions are labeled. In this example,
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Figure 5: Histograms showing when sampling starts alternate between two samples. Plot on the left is the result of
Gaussian dataset while the one on the right is from ABA dataset.

using active learning could lead to a better classifier with
a lower error rate sometime. However, this also proves
the sampling bias and the inconsistency problem in active
learning. We believe if the underlying unlabeled data can
be generated infinitely, it is possible that the active learner
never go query any instance in the third distribution.

Sampling with replacement As discussed in section
4, there are two main problems sampling with replace-
ment: the increasing surrogate loss and sample selection
eventually stuck between two points. In the two artificial
datasets, we experimentally confirmed that active learn-
ers always queries two opposing samples eventually. Fig-
ure 5 are histograms showing when the phenomenon oc-
curs each time under di↵erent pool sizes. When the pool
size is small, the active learner stops querying other sam-
ples at the beginning of active learning. While it happens
later, when the pool size gets larger. When the available
number of data in the pool goes as large as to 10,000,
we do not observe the problem happening in the first 100
active learning iterations. But according to figure 5, we
believe if more active learning iterations are continued, it
will still lead to the problem happen. Similar to usual
active learning, active learning with replacement is also
influenced by the pool size. With more collected data, ac-

tive learning converges to a solution with a lower error rate
but higher log loss. Another problem is, when the pool
size is small(smaller than 90 in the Gaussian dataset), the
performance of active learning with resampling can con-
verge to a result worse than random sampling in terms
of error rate. If we look at the surrogate loss, we be-
lieve the increasing surrogate loss is a results of applying
the same regularization parameter on classification prob-
lems with di↵erent levels of sampling bias. While in the
ABA dataset, learning curves plotted on error rate does
not change much when di↵erent pool size are provided.
While the log loss shows similar performance as Gaussian
dataset.

Performance comparison between di↵erent
sampling settings We compare the performance of true
active learning with usual active learning and active learn-
ing with replacement using. A pool size of 1000 is used in
the two latter sampling settings in order to decrease the
e↵ect of available samples on active learning. The result
of such comparison on two dataset is shown in fig 7 and
fig 8. In the Gaussian dataset, true active learning suf-
fers from increasing surrogate loss, the same problem as
active learning with replacement. In this case, this rea-
son of the increasing surrogate loss is also considered less
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Figure 6: learning curves of selecting 30(20 for ABA dataset) samples from di↵erent pool sizes under sampling with
replacement. The two figures on the left are the learning curves(log loss and error rate) on Gaussian dataset, while
the other two figures on the right side are the learning curves on ABA dataset.

optimal regularization strength and sampling bias. In the
Gaussian dataset, true active learning converge to a worst
result in terms of error rate, even worse than random sam-
pling. Moreover, both active learning with resampling and
true active learning experienced an increasing surrogate
loss and thus do not converge the same result as random
sampling provides.

5.3 Analyzing inconsistency problems

Each sampling setting su↵ers from a certain problems
and has its disadvantages. Usual active learning is af-
fected by the number of available sample in the pool and
cannot really sample until infinity. Active learning with
replacement eventually selects between two instances and
all other data are overlooked. Also, the performance of
sampling with replacement is influenced by the available
pool size, even if, theoretically, sampling can be done in-
finite times. True active learning is not a↵ected by the
available data, but it leads to a worse model fit. Despite
the fact that sampling with replacement in active learning
and true active learning are hard to apply to real-world
applications and is less practical, we believe they can be
used to provide insight into the inconsistency problem of

Figure 7: Comparison of three sampling settings on Gaus-
sian dataset

active learning.
Threats of sampling close to the decision

boundary True active learning is designed to be the per-
fect active learning setting but underperforms compared
to other sampling settings as shown in figure 7 and fig-

7



Figure 8: Comparison of three sampling settings on ABA
dataset

ure 8 in terms of error rate on two data sets. One extra
experiment is carried out to investigate the reason why
true active learning converge to a solution worse than ran-
dom sampling. In this experiment, for the classification
task on the Gaussian data set, samples are not queried
by an active learner. Instead, each time, we add a sam-
ple from the region nearby the decision boundary. More
specifically, we randomly sample a data from a Gaussian
distribution with mean [0] and variance 0.01 and add this
sample to the training set. Similar to true active learn-
ing, the label of each selected sample is generated from a
correspondent random variable following a Bernoulli dis-
tribution. A learning curve based on error rate is shown
in figure 9 when 100 samples are selected following this
manner. As we can see, adding more training data is
giving a worse performance in terms of error rate. A pos-
sible reason is that samples close to the decision boundary
have a relatively similar probability from each class, i.e,
p(x|y+) ⇡ p(x|y�). One thing we observe in the exper-
iment is that many unhelpful samples are selected when
acquiring data. The unhelpful samples have a di↵erent
class label from what a classifier which is trained with
su�cient i.i.d. data predicts. We believe sampling un-
helpful data does harm to probability estimation and can
even give a completely wrong prediction where the error
rate can drop to as low as 0.975.

Regularization and sampling bias When the regu-
larization parameter is averaged upon the existing number
of labels as in Eq4, we find that the surrogate loss does
not deteriorate as shown in fig 10. All three sampling set-
tings have smaller log loss when the log loss is averaged in
the loss function. Under random sampling, the learning
curve has little di↵erence no matter which loss function is
used. While in the other two settings, the problem of in-
consistency is not observed when calculating the average
of each sample in the loss function. Therefore, we argue
that the increasing surrogate loss under sampling with re-
placement in active learning and true active learning is a

Figure 9: Results of training a classifier using samples
near the decision boundary

result of unmatched regularization strength.
To confirm a higher sampling bias exists in sampling

with replacement and true active learning, we try to mea-
sure the sampling bias for Gaussian dataset. Prabhu1 [12]
proposed to build a separate support vector machine clas-
sifier using the same training data. The number of sam-
ples used as support vectors represent the level of sampling
bias. While in this experiment, we measure the average
distance from each sample to the optimal decision bound-
ary(”o” in Gaussian dataset). If samples are independent
and identically distributed, it is expected that the aver-
age distance to point 0 is 1.0. Under sampling bias, more
samples are from the region near the decision boundary.
Thus the average distance is smaller than 1 in uncertainty
sampling. A smaller value represents a higher bias. The
average distance under three sampling settings can be seen
in table 1. Random sampling produce results without any
sampling bias. While all settings of active learning have
a relatively smaller average distance and thus a higher
sampling bias. From the table, selected samples by ac-
tive learning with replacement and true active learning do
have a high sampling bias. However, it is not clear why
usual active learning does not su↵er from the increasing
surrogate loss.

6 Conclusion

We compare the performance in terms of error rate
and surrogate loss of three sampling settings. Through
experiments we find that the usual active learning out-
performs the other two sampling settings. We show that
both sampling with and without replacement cannot sim-
ulate infinite number of available samples. while true ac-
tive learning is closer to an ideal active learning problem
with infinite number of samples. The reason why sampling
with replacement underperforms is a combination of reg-
ularization parameter and repeated sampling. And the
fact that true active learning underperforms than usual
active learning provides warning about possible dangers
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Average distance std

Random sampling 1.01 0.47
Usual active learning 0.23 0.20

Active learning with replacement 0.13 0.19
True active learning 0.11 0.20

Table 1: Average distance to point ”0” under di↵erent sampling settings

Figure 10: Results of calculating the average of log loss in
loss function under three sampling settings. RS A means
using average in the loss function under random sampling.

of sampling close to the decision boundary. There are
several research questions and directions to be researched
upon this paper. To list a few: (1)Can we adjust the reg-
ularization parameters according to sampling bias in the
training dataset; (2) a deeper investigation into inconsis-
tency problem using sampling with replacement and true
active learning; (3) an extension to other sampling strate-
gies; (4) an extension to other classifiers.
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