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ABSTRACT
The problem of network flow congestion occurring in power net-

works is increasing in severity. Especially in low-voltage networks

this is a novel development. The congestion is caused for a large

part by distributed and renewable energy sources introducing a

complex blend of prosumers to the network. Since congestion man-

agement solutions may require individual prosumers to alter their

prosumption, the concept of fairness has become a crucial topic of

attention. This paper presents a concept of fairness for low-voltage

networks that prioritizes local, outer matching and allocates grid

access through fair division of available capacity. Specifically, this

paper discusses three distinct principal notions of fair division; pro-

portional, egalitarian, and nondiscriminatory division. In addition,

this paper devises an efficient algorithmic mechanism that com-

putes such fair allocations in limited computational time, and proves

that only egalitarian division results in incentive compatibility of

the mechanism.

CCS CONCEPTS
• Networks→ Network resources allocation; • Hardware→
Smart grid; • Computing methodologies→Multi-agent systems.
KEYWORDS
fairness, fair division, energy, smart grid, flow networks, congestion

management, local matching, resource allocation
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1 INTRODUCTION
With the increasing share of renewable energy sources comes an

increase in electrical grid congestion [26]. The consequences of this

rapid increase in congestion are already seen in soaring congestion

management costs [18], even at the low- and medium-voltage levels.

Current grid congestion management is insufficiently prepared
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for the changes in electrical grid operation brought about by the

energy transition. New solutions for congestion management come

in various forms [12, 20, 28], often focusing on the introduction of

electric vehicles (EVs) [14, 17, 21, 22] or the decentralized, multi-

agent aspect of distributed energy resources (DERs) [6, 25, 27].

However, these solutions typically do not explicitly take into

account a concept of fairness. Meanwhile, the energy transition

is bringing about a paradigm shift from ‘supply follows demand’

to ‘demand follows supply’ that, as a consequence, places the re-

sponsibility for congestion increasingly on individual prosumers.

This development makes it crucial to explicitly incorporate con-

cepts of fairness in congestion management solutions [13]. The

European Commission emphasizes the importance of fairness in

energy, stating that “energy is a critical good, absolutely essential

for full participation in modern society. The clean energy transition

also needs to be fair for those sectors, regions or vulnerable parts

of society affected by the energy transition.” [9]

In this paper we lay a theoretical foundation for fair conges-

tion management, using a congestion model similar to those used

in [4, 15, 21, 26]. We propose an algorithmic mechanism of low

computational complexity that combines a locally oriented novel

fairness concept with principal notions of fair division. We prove

that this algorithmic mechanism divides the available network ca-

pacity maximally over the prosumers.

Specifically, in this paper we propose local, outer matching as

a novel concept of fairness for congestion management in low-

voltage networks. This concept of fairness requires that congestion

is resolved with recursive matching of supply and demand in lo-

calities outward from nodes in the network. Local, outer matching

thus prioritizes matching in the peripheral of the network, reducing

strain and losses on the network infrastructure.

Still, when congestion occurs, the available network capacity

must be fairly divided over the affected prosumers. The fair division

of goods and fairness in general are established and active fields

of research in mathematics and economics [2, 3, 5, 8, 19, 24]. One

application domain is that of communications networks, where

network capacity must be fairly divided over users [11]. While con-

gestion management in power flow networks faces similar fair di-

vision problems, power flow networks are concerned with a single-

commodity flow as opposed to peer-to-peer data transmission. In

the energy domain currently, fairness is considered mostly for EV

charging [7] and DER related pricing [16].

In this paper we discuss three principal notions of fair division

that may be combined with the novel fairness concept of local,

outer matching to perform its division. The principal notions of

fair division we discuss here are: proportional, first proposed by

Steinhaus [23] and sometimes referred to as ‘simple fair division’;

https://doi.org/10.1145/3396851.3397701
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egalitarian, which is closely related to the concept of envy-freeness

first proposed by Gamow and Stern [10]; and nondiscriminatory,

which is a natural counterpart to the egalitarian notion of fair

division.

It is apparent that fairness in power flow networks has a combi-

nation of aspects. On the one hand, fair division of network capacity

is required. On the other hand, the single-commodity flow necessi-

tates supply-demand matching throughout the network. Matching

supply and demand locally is a newly accepted paradigm for en-

ergy networks that stimulates the use of local infrastructure. This

introduction of localities affects concepts of fairness [1]. Envisioned

autarkic-like local communities and neighbourhoods thus demand a

local approach to congestion management and concepts of fairness.

To this end, we devise an algorithmic mechanism that computes

the combination of local, outer matching with the discussed princi-

pal notions of fair division, resulting in locally oriented congestion

solutions that make maximal use of the network capacity. We then

prove that the egalitarian notion of fairness results in an incentive

compatible mechanism, while the proportional and nondiscrimina-

tory notions of fairness do not result in an incentive compatible

mechanism. Finally, we show that the proposed algorithmic mecha-

nism computes congestion solutions in limited computational time,

which is essential for application in the energy domain.

The contributions of this paper to the state of the art can be

summarised as follows:

• We propose a novel concept of fairness for congestion man-

agement called local, outer matching.

• We discuss the principal notions of proportional, egalitarian,

and nondiscriminatory fair division that we combine with

the concept of local, outer matching.

• We devise an algorithmic mechanism that combines local,

outer matching with notions of fair division to compute

maximal congestion solutions in limited computational time.

• We prove that this mechanism is incentive compatible when

using the egalitarian notion of fair division, and is not incen-

tive compatible when using the proportional or nondiscrim-

inatory notions of fair division.

The paper is organized as follows. First, Sections 2 and 3 in-

troduce the setting, model, and useful concepts. Section 4 then

formally defines division and discusses the three principal notions

of fair division. Section 5 defines the novel fairness concept of local,

outer matching and provides congestion solutions that are proven

to be local, outer matchings that make maximal use of network

capacity. Finally, Section 6 presents the algorithmic mechanism

that combines local, outer matching with the principal notions of

fair division. The incentive compatibility results follow in Section 7

and the computational complexity results in Section 8. Section 9

concludes the paper.

2 SETTING
We consider an electrical power flow network that consists of pro-

sumers connected to each other by electrical grid lines. These grid

lines have a maximum reliable capacity (which is usually less than

their physical or thermal limit). Grid congestion occurs when elec-

trical power flow caused by the prosumers exceeds some line capac-

ities. This means that it is not always possible to realise the desired

prosumption of all prosumers within the network constraints. Con-

gestion management is the practice of reducing, resolving, or pre-

venting grid congestion by deviating from the desired prosumptions

in order to accommodate the network constraints.

We follow a modelling approach similar to those in [4, 15, 21, 26]

that lay the theoretical foundations for congestion management,

e.g. by focusing on active power curtailment. As such, we model

an electrical power flow network as a tree (representing almost

all real-world low-voltage networks), the line capacities as edge

weights, the prosumers as agents that are either consumers or

producers located at the vertices, and the desired prosumptions

as agent desires. Low-voltage networks are usually connected to

larger electrical grids through a substation. This connection to an

external grid may be modelled as a virtual edge, which will also

have a line capacity modelled as an edge weight.

3 MODEL
Let 𝑇 = (𝑉 , 𝐸) be a rooted weighted tree. Let a virtual edge at the

root 𝑟 represent the connection to a virtual parent that represents

an external network. Let the edge weights be positive, representing

flow capacities. Denote the weight of an edge between vertex 𝑖 ∈ 𝑉
and its parent by 𝐶𝑖 . In addition, consider a set of agents 𝐴 dis-

tributed over the vertices 𝑉 . Finally, for each agent 𝑎 ∈ 𝐴, consider
its desire𝑑𝑎 . A positive desire indicates a consumer while a negative

desire indicates a producer. Let 𝑄, 𝑃 ⊂ 𝐴 be the sets of consumers

and producers, respectively.

Definition 3.1 (Congestion Tree). Define a congestion tree 𝑇 =

(𝑉 , 𝐸,𝐴) as a tree𝑇 = (𝑉 , 𝐸) with root 𝑟 , edge weights𝐶𝑖 for 𝑖 ∈ 𝑉 ,

and agents 𝑎 ∈ 𝐴 with desires 𝑑𝑎 located at the vertices 𝑖 ∈ 𝑉 .

The subtree of a congestion tree 𝑇 = (𝑉 , 𝐸,𝐴) is again a conges-

tion tree, and is denoted by 𝑇𝑖 = (𝑉𝑖 , 𝐸𝑖 , 𝐴𝑖 ) where 𝑖 is its root. A
subtree 𝑇𝑖 = (𝑉𝑖 , 𝐸𝑖 , 𝐴𝑖 ) inherits the edge weights of 𝑇 = (𝑉 , 𝐸,𝐴),
with its virtual edge inheriting the weight of the edge between 𝑖

and its parent in 𝑇 = (𝑉 , 𝐸,𝐴). See Figure 1 for a representation.

𝑟
𝑇 = (𝑉 , 𝐸,𝐴)

𝑖

𝐶𝑖

𝐹𝑖 𝑇𝑖 = (𝑉𝑖 , 𝐸𝑖 , 𝐴𝑖)

Figure 1: A representation of a congestion tree 𝑇 = (𝑉 , 𝐸,𝐴),
highlighting the situation around a vertex 𝑖.

3.1 Congestion Management
Congestion management is the practice of reducing, resolving, or

preventing congestion in a network, and can take various forms. In
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graph theory, flow networks consider flow resulting from a single

source and a single sink in a graph with flow capacities on the

edges. Power networks usually deal with a more complex situation

where many distributed prosumers are participating in a market.

In the context of congestion trees, congestion management is

performed by allocating network access to agents based on their

desires and the network constraints. Such allocations could be

strictly enforced or used as reference for penalties or incentives.

Definition 3.2. An allocation 𝑌 on a congestion tree𝑇 = (𝑉 , 𝐸,𝐴)
is a map 𝑌 : 𝐴→ R.

Notation. For 𝐵 ⊆ 𝐴, abbreviate
∑
𝑎∈𝐵 𝑌 (𝑎) as 𝑌 (𝐵).

When agents that represent prosumers are subject to such an allo-

cation, the resulting prosumptions lead to (electrical power) flows

in the network.

Definition 3.3 (Incoming and Locally Balanced Flows). Given an

allocation 𝑌 on a congestion tree𝑇 = (𝑉 , 𝐸,𝐴), define the incoming
flow 𝐹𝑖 (𝑌 ) and the locally balanced flow 𝐿𝐵𝐹𝑖 (𝑌 ) of a subtree 𝑇𝑖 =
(𝑉𝑖 , 𝐸𝑖 , 𝐴𝑖 ) as:

𝐹𝑖 (𝑌 ) = 𝑌 (𝐴𝑖 ) =
∑
𝑎∈𝐴𝑖

𝑌 (𝑎), (1)

𝐿𝐵𝐹𝑖 (𝑌 ) =
1

2


∑
𝑎∈𝐴𝑖

��𝑌 (𝑎)�� − ��� ∑
𝑎∈𝐴𝑖

𝑌 (𝑎)
���  . (2)

The incoming flow 𝐹𝑟 (𝑌 ) of an allocation 𝑌 on a congestion

tree 𝑇 = (𝑉 , 𝐸,𝐴) with root 𝑟 thus represents the total amount of

electrical power demanded of, or supplied to, the external grid. The

incoming flow also gives the flow over each edge, with 𝐹𝑖 (𝑌 ) being
the flow to vertex 𝑖 from its parent. See Figure 1 for a representation.

The locally balanced flow 𝐿𝐵𝐹𝑟 (𝑌 ) represents the total amount

of electrical power that flows between the agents within the con-

gestion tree 𝑇 = (𝑉 , 𝐸,𝐴) with root 𝑟 , including between agents

that share a vertex. The locally balanced flow 𝐿𝐵𝐹𝑟 (𝑌 ) is a mea-

sure for the matching of consumer and producer desires within the

congestion tree 𝑇 = (𝑉 , 𝐸,𝐴).
Definition 3.4 (Desire Compatible). An allocation 𝑌 on a conges-

tion tree 𝑇 = (𝑉 , 𝐸,𝐴) is desire compatible if

0 ≤ 𝑌 (𝑎) ≤ 𝑑𝑎 or 0 ≥ 𝑌 (𝑎) ≥ 𝑑𝑎 ∀ 𝑎 ∈ 𝐴. (3)

Definition 3.5 (Congestion Free). An allocation 𝑌 on a congestion

tree 𝑇 = (𝑉 , 𝐸,𝐴) is congestion free if, for each vertex 𝑖 ∈ 𝑉 , the
incoming flow 𝐹𝑖 (𝑌 ) of the subtree𝑇𝑖 = (𝑉𝑖 , 𝐸𝑖 , 𝐴𝑖 ) does not exceed
the flow capacity 𝐶𝑖 of its virtual edge:

|𝐹𝑖 (𝑌 ) | ≤ 𝐶𝑖 ∀ 𝑖 ∈ 𝑉 . (4)

Definition 3.6 (Feasible). An allocation 𝑌 on a congestion tree is

feasible if it is both desire compatible and congestion free.

The set of feasible allocations forms the solution space for the

problem of congestion management. Within this solution space,

some allocations are more desirable than others because they make

better use of the available network capacity.

Definition 3.7 (Base Allocation). A feasible allocation 𝑌 on a con-

gestion tree 𝑇 = (𝑉 , 𝐸,𝐴) with root 𝑟 is a base allocation if it max-

imizes the locally balanced flow 𝐿𝐵𝐹𝑟 (𝑌 ) and has incoming flow

𝐹𝑟 (𝑌 ) = 0.

A base allocation maximally matches consumer and producer

desires in a congestion tree, without interacting with the external

grid it is connected to.

Definition 3.8 (Max Allocation). A feasible allocation 𝑌 on a

congestion tree 𝑇 = (𝑉 , 𝐸,𝐴) with root 𝑟 is a max allocation if

it maximizes |𝐹𝑟 (𝑌 ) | under the condition that the locally balanced

flow 𝐿𝐵𝐹𝑟 (𝑌 ) is maximal.

A max allocation maximizes the use of the available network

capacity by making maximal use of the connection to the external

grid after maximally matching consumer and producer desires

internally. A max allocation can be viewed as a base allocation

plus an allocation of the remaining unmatched desires.

4 PRINCIPAL NOTIONS OF FAIR DIVISION
Congestion management leads directly to the question of fair di-

vision. The limited available network capacity does not belong to

any one agent, and thus it must be fairly divided. The field of fair

division of goods considers such division problems. In this case a

number of agents lay claim to a portion of a divisible good, the

network capacity, but the sum of their claims exceeds the avail-

ability of the good. Since energy is a critical good, it is of great

importance that the division of capacity, which dictates network

access, be fair to all agents. However, the notion of which choice of

division constitutes a fair division is subjective.

Consider two agents 𝑎 and 𝑏 that have respective claims 𝑑𝑎
and 𝑑𝑏 to a quantity 𝑘 of a divisible good. This situation may be

visualized as in Figure 2. The point of the claims (𝑑𝑎, 𝑑𝑏 ) represents
the outcome desired by the agents, while the line intersecting the

axes represents the available quantity 𝑘 of the good.

𝑘

𝑘 𝑑𝑎

𝑑𝑏
(𝑑𝑎, 𝑑𝑏)

45
◦

45
◦

Figure 2: Three principal notions of fair division illustrated:
proportional (green, middle), egalitarian (red, left), and
nondiscriminatory (blue, right).

The set of divisions is the set of points that exactly divide the

quantity 𝑘 and do not allocate to agents more than their claims. In

Figure 2 this is the set of points on the dashed line segment inside

the rectangle. If this set is empty because the quantity 𝑘 is larger

than the sum of the claims, then there is no real division problem

and the point of claims (𝑑𝑎, 𝑑𝑏 ) is taken as the division.
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This representation of the division of a good over claims can

be extended to any number 𝑛 of agents by an 𝑛-dimensional space

with an 𝑛 − 1 dimensional surface representing the quantity 𝑘 . This

leads to the following definition.

Definition 4.1 (Division). The division 𝐷𝑖𝑣 (𝑘,𝑌,𝐴) of a positive
value 𝑘 over an allocation 𝑌 (of claims) with positive values on a

set of agents 𝐴, is an allocation 𝐷 on 𝐴 with

𝐷 (𝐴) = min(𝑘,𝑌 (𝐴)) (5)

and

𝐷 (𝑎) ∈ [0, 𝑌 (𝑎)] ∀ 𝑎 ∈ 𝐴. (6)

If 𝑘 ≥ 𝑌 (𝐴), then 𝐷 is simply identical to the allocation 𝑌 on 𝐴.

A notion of fair division is the choice of a specific division from

the set of divisions. Visually, this means that a notion of fair division

is the choice of a specific point on the 𝑛 − 1 dimensional plane that

represents the quantity 𝑘 , inside the 𝑛-dimensional hyperrectangle

drawn by the origin and the claims. Figure 2 shows three principal

notions of fair division:

• The proportional notion of fairness finds the point where

the line from the origin to the point of claims intersects the

set of divisions. See the green line in Figure 2. Each agent

is allocated a portion of the good that is proportional to

the ratio of its claim to the sum of all claims. This division

treats all agents equally, preserving the relations between

the claims.

• The egalitarian notion of fairness finds the point in the set

of divisions that is closest to the origin. See the red line in

Figure 2. Each agent is allocated the same portion, unless

its claim is smaller than that portion. This division treats all

agents equally, reducing all claims to the same amount.

• The nondiscriminatory notion of fairness finds the point

in the set of divisions that is closest to the point of claims. See

the blue line in Figure 2. The portion of each agent is reduced

by the same amount regardless of its claim, to a minimum

of zero. This division treats all agents equally, reducing all

claims by the same amount.

5 LOCAL, OUTER MATCHING AND FAIRNESS
The matching of consumer and producer desires is an important

aspect of congestion management in congestion trees. On the one

hand, the distributed nature of prosumers in electrical power flow

networks is the cause of much congestion. On the other hand, the

presence of both consumers and producers provides opportunity for

mitigating or resolving congestion by locally balancing excessive

production or consumption.

Local matching of supply and demand is a newly accepted par-

adigm for future energy networks. It stimulates the use of local

infrastructure as a push towards envisioned autarkic-like local com-

munities and neighbourhoods, reducing strain and losses on the

energy network in the process. This local matching of supply and

demand also, again, emphasizes the importance of fairness. Factors

such as the relative locality of the prosumers will play an important

role in concepts of fairness regarding the energy domain.

We address this important problem by presenting local, outer

matching as an efficient and fair concept for matching consumer

and producer desires. A local, outer matching solution prioritizes

local matching in the peripheral where prosumers are furthest away

from the substation.

Definition 5.1 (Local, Outer Matching). A feasible allocation 𝑌 on

a congestion tree𝑇 = (𝑉 , 𝐸,𝐴) is a local, outer matching if the locally
balanced flow 𝐿𝐵𝐹𝑖 (𝑌 ) is maximal for each subtree𝑇𝑖 = (𝑉𝑖 , 𝐸𝑖 , 𝐴𝑖 ).

To make maximal use of the available network capacity, a local,

outer matching solution is sought that is also a max allocation or a

base allocation, depending on the envisioned interaction with the

external grid. A max allocation makes maximal use of the external

grid as well as the network capacity, while a base allocation is

self-balanced and makes maximal use of the network capacity for

internally balanced flows. See Figure 3 for some examples. The

𝐹𝑎𝑖𝑟𝑀𝑎𝑥 and 𝐹𝑎𝑖𝑟𝐵𝑎𝑠𝑒 allocations from Definition 5.2 present such

local, outer matching solutions. Their maximal capacity use and

local, outer matching are proven by Theorem 5.4.

1

𝑟1

𝑌 (𝑐) = 0

𝑖1

𝑌 (𝑏) = 2

𝑌 (𝑎) = −1

Solution 1

1

𝑟1

𝑌 (𝑐) = 1

𝑖1

𝑌 (𝑏) = 1

𝑌 (𝑎) = −1

Solution 2

0

𝑟1

𝑌 (𝑐) = 0

𝑖1

𝑌 (𝑏) = 1

𝑌 (𝑎) = −1

Solution 3

1

𝑟1

𝑌 (𝑐) = 2

𝑖1

𝑌 (𝑏) = 0

𝑌 (𝑎) = −1

Solution 4

Figure 3: Example congestion solutions for a simple conges-
tion tree 𝑇 = (𝑉 , 𝐸,𝐴) consisting of a root 𝑟 with 𝐶𝑟 = 1 con-
taining agent 𝑐 with 𝑑𝑐 = 2, and a second vertex 𝑖 with 𝐶𝑖 = 1

containing both agents 𝑏 and 𝑎 with 𝑑𝑏 = 2 and 𝑑𝑎 = −1. So-
lutions 1, 2, and 3 are local, outer matchings. Solutions 1, 2,
and 4 are max allocations. Solution 3 is a base allocation.

Let 𝑇 = (𝑉 , 𝐸,𝐴) be a congestion tree. Because of the priority

given to outer matching from the leaves towards the root, the

definitions of local, outer matching allocations are recursive. For a

vertex 𝑖 ∈ 𝑉 , the consumer and producer desires of all consumers

and producers at vertices outward from the vertex 𝑖 are maximally

matched. This results in a chain of matchings where consumer

and producer desires are partially already satisfied by local, outer

matching and partially remain unsatisfied. The remaining desires

also resolve congestion by dividing the available capacity.

Definition 5.2 (𝐹𝑎𝑖𝑟𝑀𝑎𝑥 and 𝐹𝑎𝑖𝑟𝐵𝑎𝑠𝑒 Allocations). Consider a
congestion tree𝑇 = (𝑉 , 𝐸,𝐴). Let 𝑐 (𝑟 ) be the set of child vertices of
the root 𝑟 . For each child 𝑖 ∈ 𝑐 (𝑟 ), let 𝐹𝑎𝑖𝑟𝑀𝑎𝑥𝑖 and 𝐹𝑎𝑖𝑟𝐵𝑎𝑠𝑒𝑖 be

the 𝐹𝑎𝑖𝑟𝑀𝑎𝑥 and 𝐹𝑎𝑖𝑟𝐵𝑎𝑠𝑒 allocations on 𝑇𝑖 = (𝑉𝑖 , 𝐸𝑖 , 𝐴𝑖 ). Let the
remaining desire 𝑅𝑒𝑚 for agents 𝑎 ∈ 𝐴 be defined as

𝑅𝑒𝑚(𝑎) =
{
𝐹𝑎𝑖𝑟𝑀𝑎𝑥𝑖 (𝑎) − 𝐹𝑎𝑖𝑟𝐵𝑎𝑠𝑒𝑖 (𝑎) if 𝑎 ∈ 𝐴𝑖 , 𝑖 ∈ 𝑐 (𝑟 )
𝑑𝑎 if 𝑎 ∈ 𝐴 is at 𝑟

(7)
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In the case that 𝑅𝑒𝑚(𝑄) ≥ |𝑅𝑒𝑚(𝑃) |, define the 𝐹𝑎𝑖𝑟𝑀𝑎𝑥 allocation

on the congestion tree 𝑇 = (𝑉 , 𝐸,𝐴) as follows:
For a producer 𝑝 ∈ 𝑃𝑖 with 𝑖 ∈ 𝑐 (𝑟 ),

𝐹𝑎𝑖𝑟𝑀𝑎𝑥 (𝑝) = 𝑅𝑒𝑚(𝑝) + 𝐹𝑎𝑖𝑟𝐵𝑎𝑠𝑒𝑖 (𝑝)
(
= 𝐹𝑎𝑖𝑟𝑀𝑎𝑥𝑖 (𝑝)

)
, (8)

for a producer 𝑝 ∈ 𝑃 at 𝑟 ,

𝐹𝑎𝑖𝑟𝑀𝑎𝑥 (𝑝) = 𝑅𝑒𝑚(𝑝)
(
= 𝑑𝑝

)
, (9)

for a consumer 𝑞 ∈ 𝑄𝑖 with 𝑖 ∈ 𝑐 (𝑟 ),
𝐹𝑎𝑖𝑟𝑀𝑎𝑥 (𝑞) = 𝐷𝑖𝑣 (𝐴𝑙𝑙𝑜𝑤𝑎𝑛𝑐𝑒, 𝑅𝑒𝑚,𝑄) (𝑞)+𝐹𝑎𝑖𝑟𝐵𝑎𝑠𝑒𝑖 (𝑞), (10)

for a consumer 𝑞 ∈ 𝑄 at 𝑟 ,

𝐹𝑎𝑖𝑟𝑀𝑎𝑥 (𝑞) = 𝐷𝑖𝑣 (𝐴𝑙𝑙𝑜𝑤𝑎𝑛𝑐𝑒, 𝑅𝑒𝑚,𝑄) (𝑞), (11)

where 𝐴𝑙𝑙𝑜𝑤𝑎𝑛𝑐𝑒 = |𝑅𝑒𝑚(𝑃) | +𝐶𝑟 .
The definition of the 𝐹𝑎𝑖𝑟𝐵𝑎𝑠𝑒 allocation on the congestion tree

𝑇 = (𝑉 , 𝐸,𝐴) is similar, taking instead 𝐴𝑙𝑙𝑜𝑤𝑎𝑛𝑐𝑒 = |𝑅𝑒𝑚(𝑃) |.
In the case that 𝑅𝑒𝑚(𝑄) ≤ |𝑅𝑒𝑚(𝑃) | the definitions are analo-

gous, only switching consumers and producers.

Informally, the definition of the 𝐹𝑎𝑖𝑟𝑀𝑎𝑥 allocation is as follows.

The remaining desire 𝑅𝑒𝑚 in Equation (7) represents the fact that

some parts of the desires of consumers and producers are already

matched with each other in the subtrees of the congestion tree 𝑇 =

(𝑉 , 𝐸,𝐴). See also Figure 4 for a visual aide. If the root 𝑟 has no

children, i.e. it is a leaf, then Equations (8) and (10) do not apply; this

is the base case of the recursion. When the consumers outweigh

the producers, the producer desires can be fully matched with

consumer desires as seen in Equations (8) and (9). The consumers,

however, have to divide the sum of producer desires: the𝐴𝑙𝑙𝑜𝑤𝑎𝑛𝑐𝑒 .

The 𝐹𝑎𝑖𝑟𝑀𝑎𝑥 allocation also includes interaction with the external

network up to the capacity𝐶𝑟 in the𝐴𝑙𝑙𝑜𝑤𝑎𝑛𝑐𝑒 , on top of matching

with the producer desires, as seen in Equations (10) and (11). Finally,

of course, all agents in subtrees also get the desires that were already

satisfied in those subtrees as seen in Equations (8) and (10).

𝑟

𝐶𝑟

𝐹𝑟 (𝐹𝑎𝑖𝑟𝑀𝑎𝑥)

𝑖 𝑗

𝑇 = (𝑉 , 𝐸,𝐴)

𝑇𝑖 = (𝑉𝑖 , 𝐸𝑖 , 𝐴𝑖 )
𝐶𝑖

𝐹𝑖 (𝐹𝑎𝑖𝑟𝐵𝑎𝑠𝑒𝑖 ) = 0

𝑇𝑗 = (𝑉𝑗 , 𝐸 𝑗 , 𝐴 𝑗 )

Figure 4: A representation of the recursive definition.

Proposition 5.3. The 𝐹𝑎𝑖𝑟𝑀𝑎𝑥 and 𝐹𝑎𝑖𝑟𝐵𝑎𝑠𝑒 allocations are,
respectively, a max allocation and a base allocation.

Proof. The proof is by induction. Let 𝑐 (𝑟 ), 𝐹𝑎𝑖𝑟𝑀𝑎𝑥𝑖 , 𝐹𝑎𝑖𝑟𝐵𝑎𝑠𝑒𝑖 ,

𝑅𝑒𝑚, and 𝐴𝑙𝑙𝑜𝑤𝑎𝑛𝑐𝑒 be as in Definition 5.2.

For the induction basis, let𝑇 = (𝑉 , 𝐸,𝐴) be a congestion tree with
only one vertex. Without loss of generality, assume that 𝑅𝑒𝑚(𝑄) ≥

|𝑅𝑒𝑚(𝑃) |. Note that 𝑅𝑒𝑚(𝑎) = 𝑑𝑎 for all agents 𝑎 ∈ 𝐴. Since

𝐷 (𝑎) ∈ [0, 𝑅𝑒𝑚(𝑎)] by Definition 4.1, it follows from Equations (9)

and (11) and their analogs for 𝐹𝑎𝑖𝑟𝐵𝑎𝑠𝑒 that both 𝐹𝑎𝑖𝑟𝑀𝑎𝑥 and

𝐹𝑎𝑖𝑟𝐵𝑎𝑠𝑒 are desire compatible allocations. Moreover, it follows

from Equation (11) and its analog for 𝐹𝑎𝑖𝑟𝐵𝑎𝑠𝑒 , respectively, that

𝐹𝑎𝑖𝑟𝑀𝑎𝑥 (𝑆) ≤ −𝐹𝑎𝑖𝑟𝑀𝑎𝑥 (𝑃) +𝐶𝑟 ⇒ 𝐹𝑎𝑖𝑟𝑀𝑎𝑥 (𝐴) ≤ 𝐶𝑟 (12)

𝐹𝑎𝑖𝑟𝐵𝑎𝑠𝑒 (𝑆) = −𝐹𝑎𝑖𝑟𝐵𝑎𝑠𝑒 (𝑃) ⇒ 𝐹𝑎𝑖𝑟𝐵𝑎𝑠𝑒 (𝐴) = 0 (13)

and thus that both 𝐹𝑎𝑖𝑟𝑀𝑎𝑥 and 𝐹𝑎𝑖𝑟𝐵𝑎𝑠𝑒 are congestion free al-

locations. Consequently, both 𝐹𝑎𝑖𝑟𝑀𝑎𝑥 and 𝐹𝑎𝑖𝑟𝐵𝑎𝑠𝑒 are feasible

allocations.

Since by Equation (9) and its analog for 𝐹𝑎𝑖𝑟𝐵𝑎𝑠𝑒 ,

𝐹𝑎𝑖𝑟𝑀𝑎𝑥 (𝑃) = 𝐹𝑎𝑖𝑟𝐵𝑎𝑠𝑒 (𝑃) =
∑
𝑝∈𝑃

𝑑𝑝 , (14)

it follows from Equation (13) that 𝐹𝑎𝑖𝑟𝐵𝑎𝑠𝑒 is a base allocation, and

from the properties of the division in Equation (11) that 𝐹𝑎𝑖𝑟𝑀𝑎𝑥

is a max allocation.

For the induction step, let 𝑇 = (𝑉 , 𝐸,𝐴) be a more general con-

gestion tree, and assume that the proposition holds for subtrees

𝑇𝑖 = (𝑉𝑖 , 𝐸𝑖 , 𝐴𝑖 ) with 𝑖 children of 𝑟 . The proof of the induction

step is similar to that of the induction basis. Again, without loss

of generality, assume that 𝑅𝑒𝑚(𝑄) ≥ |𝑅𝑒𝑚(𝑃) |. Since 𝐹𝑎𝑖𝑟𝑀𝑎𝑥𝑖 is

a desire compatible allocation for all children 𝑖 of 𝑟 , it follows in

the same way as before from Definition 4.1, Equations (8) to (11)

and their analogs for 𝐹𝑎𝑖𝑟𝐵𝑎𝑠𝑒 that both 𝐹𝑎𝑖𝑟𝑀𝑎𝑥 and 𝐹𝑎𝑖𝑟𝐵𝑎𝑠𝑒 are

desire compatible allocations. Moreover, since 𝐹𝑖 (𝐹𝑎𝑖𝑟𝐵𝑎𝑠𝑒𝑖 ) = 0

for all children 𝑖 of 𝑟 , it follows in the same way as before from

Equations (10) and (11) and their analogs for 𝐹𝑎𝑖𝑟𝐵𝑎𝑠𝑒 , respectively,

that

𝐹𝑎𝑖𝑟𝑀𝑎𝑥 (𝑆) ≤ −𝐹𝑎𝑖𝑟𝑀𝑎𝑥 (𝑃) +𝐶𝑟 ⇒ 𝐹𝑎𝑖𝑟𝑀𝑎𝑥 (𝐴) ≤ 𝐶𝑟 (15)

𝐹𝑎𝑖𝑟𝐵𝑎𝑠𝑒 (𝑆) = −𝐹𝑎𝑖𝑟𝐵𝑎𝑠𝑒 (𝑃) ⇒ 𝐹𝑎𝑖𝑟𝐵𝑎𝑠𝑒 (𝐴) = 0 (16)

and thus, since 𝐹𝑎𝑖𝑟𝑀𝑎𝑥𝑖 and 𝐹𝑎𝑖𝑟𝐵𝑎𝑠𝑒𝑖 are congestion free al-

locations for all children 𝑖 of 𝑟 , that both 𝐹𝑎𝑖𝑟𝑀𝑎𝑥 and 𝐹𝑎𝑖𝑟𝐵𝑎𝑠𝑒

are congestion free allocations. Consequently, both 𝐹𝑎𝑖𝑟𝑀𝑎𝑥 and

𝐹𝑎𝑖𝑟𝐵𝑎𝑠𝑒 are again feasible allocations.

Since by Equations (8) and (9) and their analogs for 𝐹𝑎𝑖𝑟𝐵𝑎𝑠𝑒 ,

𝐹𝑎𝑖𝑟𝑀𝑎𝑥 (𝑃) = 𝐹𝑎𝑖𝑟𝐵𝑎𝑠𝑒 (𝑃)

=
∑

𝑖 child of 𝑟

∑
𝑝∈𝑃𝑖

𝐹𝑎𝑖𝑟𝑀𝑎𝑥𝑖 (𝑝) +
∑

𝑝∈𝑃 at 𝑟

𝑑𝑝 , (17)

and 𝐹𝑎𝑖𝑟𝑀𝑎𝑥𝑖 is a max allocation for all children 𝑖 of 𝑟 , it follows

from Equation (16) that 𝐹𝑎𝑖𝑟𝐵𝑎𝑠𝑒 is a base allocation, and from the

properties of the division in Equations (10) and (11) that 𝐹𝑎𝑖𝑟𝑀𝑎𝑥

is a max allocation. □

Theorem 5.4. The 𝐹𝑎𝑖𝑟𝑀𝑎𝑥 and 𝐹𝑎𝑖𝑟𝐵𝑎𝑠𝑒 allocations are, respec-
tively, a max allocation and a base allocation that are local, outer
matchings.

Proof. Let 𝑐 (𝑟 ) and 𝐹𝑎𝑖𝑟𝐵𝑎𝑠𝑒𝑖 be as in Definition 5.2.

The theorem follows from Proposition 5.3 and the fact, as seen

from Equations (8) and (10) and their analogs for 𝐹𝑎𝑖𝑟𝐵𝑎𝑠𝑒 , that the

restrictions of 𝐹𝑎𝑖𝑟𝑀𝑎𝑥 and 𝐹𝑎𝑖𝑟𝐵𝑎𝑠𝑒 to a subtree 𝑇𝑖 = (𝑉𝑖 , 𝐸𝑖 , 𝐴𝑖 )
for a child 𝑖 ∈ 𝑐 (𝑟 ) fully contain the allocation 𝐹𝑎𝑖𝑟𝐵𝑎𝑠𝑒𝑖 . Since
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𝐹𝑎𝑖𝑟𝐵𝑎𝑠𝑒𝑖 is a base allocation and thus maximizes the locally bal-

anced flow on the subtree 𝑇𝑖 = (𝑉𝑖 , 𝐸𝑖 , 𝐴𝑖 ), so do 𝐹𝑎𝑖𝑟𝑀𝑎𝑥 and

𝐹𝑎𝑖𝑟𝐵𝑎𝑠𝑒 .

Through induction on subtrees it then follows that the 𝐹𝑎𝑖𝑟𝑀𝑎𝑥

and 𝐹𝑎𝑖𝑟𝐵𝑎𝑠𝑒 allocations maximize the locally balanced flow on all

subtrees of the congestion network 𝑇 = (𝑉 , 𝐸,𝐴). □

6 ALGORITHM: LOCAL, OUTER MATCHING
COMBINEDWITH FAIR DIVISION

This section presents an algorithmic mechanism that combines

local, outer matching with notions of fair division to compute

the 𝐹𝑎𝑖𝑟𝑀𝑎𝑥 and 𝐹𝑎𝑖𝑟𝐵𝑎𝑠𝑒 allocations on a congestion tree 𝑇 =

(𝑉 , 𝐸,𝐴). A sketch of the approach is as follows. First compute these

allocations on subtrees 𝑇𝑖 = (𝑉𝑖 , 𝐸𝑖 , 𝐴𝑖 ) for vertices 𝑖 ∈ 𝑉 from the

leaves towards the root 𝑟 . Each step considers one vertex 𝑖 and the

subtree 𝑇𝑖 = (𝑉𝑖 , 𝐸𝑖 , 𝐴𝑖 ). In this way, at each step, the 𝐹𝑎𝑖𝑟𝑀𝑎𝑥 and

𝐹𝑎𝑖𝑟𝐵𝑎𝑠𝑒 allocations for all subtrees with roots that are children of

the current vertex will have been computed already.

Algorithm 1 uses the divide function from Algorithm 2 to fairly

divide certain values over sets of agents. This is used for local, outer

matching and for resolving any potential congestion. The divide

function depends on the notion of fairness.

When the notion of fairness is egalitarian or nondiscriminatory,

the divide function in Algorithm 2 uses the water level function

from Algorithm 3. The water level function computes the level𝑤

that an allocation on a set of agents must be reduced to, per agent,

in order to divide a certain value equally over the set of agents.

6.1 Algorithmic Local, Outer Matching

Algorithm 1:Mechanism

Input: A congestion tree 𝑇 = (𝑉 , 𝐸,𝐴) and a fairness notion 𝑓

Output: The 𝐹𝑎𝑖𝑟𝑀𝑎𝑥 (𝐹𝑚) and 𝐹𝑎𝑖𝑟𝐵𝑎𝑠𝑒 (𝐹𝑏) allocations

1 𝐹𝑏 (𝑎) ← 0 ∀ 𝑎 ∈ 𝐴
2 𝐹𝑚(𝑎) ← 𝑑𝑎 ∀ 𝑎 ∈ 𝐴
3 while not all vertices in 𝑉 are marked do

4
Select an unmarked vertex 𝑖 ∈ 𝑉 with

no unmarked children and mark it

5 if 𝐹𝑚(𝑄𝑖 ) ≥ |𝐹𝑚(𝑃𝑖 ) | then
6 𝐷 ← Divide( |𝐹𝑚(𝑃𝑖 ) |, 𝐹𝑚,𝑄𝑖 , 𝑓 )
7 𝐸 ← Divide( |𝐹𝑚(𝑃𝑖 ) | +𝐶𝑖 , 𝐹𝑚,𝑄𝑖 , 𝑓 )
8 𝐹𝑏 (𝑞) ← 𝐹𝑏 (𝑞) + 𝐷 (𝑞) ∀ 𝑞 ∈ 𝑄𝑖

9 𝐹𝑚(𝑞) ← 𝐸 (𝑞) − 𝐷 (𝑞) ∀ 𝑞 ∈ 𝑄𝑖

10 𝐹𝑏 (𝑝) ← 𝐹𝑏 (𝑝) + 𝐹𝑚(𝑝) ∀ 𝑝 ∈ 𝑃𝑖
11 𝐹𝑚(𝑝) ← 0 ∀ 𝑝 ∈ 𝑃𝑖
12 else
13 Similarly
14 𝐹𝑚(𝑎) ← 𝐹𝑚(𝑎) + 𝐹𝑏 (𝑎) ∀ 𝑎 ∈ 𝐴
15 return 𝐹𝑚, 𝐹𝑏

Algorithm 1 visits all vertices in𝑉 exactly once, moving from the

leaves towards the root 𝑟 . At each step corresponding to a vertex 𝑖 ,

for each agent 𝑎 ∈ 𝐴𝑖 , two variables are subject to change. The

first variable, 𝐹𝑏 (𝑎), is from the 𝐹𝑎𝑖𝑟𝐵𝑎𝑠𝑒 allocation and can be

thought of as the satisfied desire that has already been allocated

to agent 𝑎 when considering only 𝑇𝑖 = (𝑉𝑖 , 𝐸𝑖 , 𝐴𝑖 ). The second

variable, 𝐹𝑚(𝑎), can be thought of as the remaining desire that can

still be allocated to agent 𝑎 in addition to its already satisfied desire,

when considering only 𝑇𝑖 = (𝑉𝑖 , 𝐸𝑖 , 𝐴𝑖 ).
At each step, the remaining desires 𝐹𝑚 of the consumers and

producers in 𝐴𝑖 are maximally matched with each other. This max-

imal matching is performed, when the consumers outweigh the

producers, by dividing the sum of the remaining producer desires

over the remaining consumer desires. The matched amounts are

moved from the remaining desires 𝐹𝑚 to the satisfied desires 𝐹𝑏.

This leaves either only consumers or only producers in terms of

remaining desires 𝐹𝑚 since either all consumers or all producers

have their entire remaining desires 𝐹𝑚 moved to their satisfied

desires 𝐹𝑏.

Simultaneously, at each step, any potential congestion is re-

solved by dividing the available capacity over the agents. This is

done, when the consumers outweigh the producers, by dividing an

amount equal to the sum of producer desires plus the capacity 𝐶𝑖
over the consumer desires. This amount can be thought of as the

allowance of the consumers.

As noted before, the satisfied desires 𝐹𝑏 will constitute the

𝐹𝑎𝑖𝑟𝐵𝑎𝑠𝑒 allocation. However, the remaining desires 𝐹𝑚 do not yet

constitute the 𝐹𝑎𝑖𝑟𝑀𝑎𝑥 allocation. In order to obtain the 𝐹𝑎𝑖𝑟𝑀𝑎𝑥

allocation, after all vertices have been visited by the algorithm, the

remaining desires 𝐹𝑚 and satisfied desires 𝐹𝑏 are added together.

At this point it has become easy to see that Algorithm 1 indeed

computes the 𝐹𝑎𝑖𝑟𝑀𝑎𝑥 and 𝐹𝑎𝑖𝑟𝐵𝑎𝑠𝑒 allocations. This result will

be formalized in Section 6.4.

6.2 Division for Different Notions of Fairness

Algorithm 2: Fair Division

1 Function Divide(𝑘,𝑌,𝐴, 𝑓 )
Input: A positive value 𝑘 , an allocation 𝑌 with positive

values on a set of agents 𝐴, and a fairness notion 𝑓

Output: A division 𝐷 (i.e. 𝐷 (𝐴) = min(𝑘,𝑌 (𝐴)) and
𝐷 (𝑎) ∈ [0, 𝑌 (𝑎)] for all 𝑎 ∈ 𝐴)

2 if 𝑘 ≥ 𝑌 (𝐴) then
3 𝐷 (𝑎) ← 𝑌 (𝑎) ∀ 𝑎 ∈ 𝐴
4 else if 𝑓 = proportional then
5 𝐷 (𝑎) ← 𝑌 (𝑎)/𝑌 (𝐴) · 𝑘 ∀ 𝑎 ∈ 𝐴
6 else if 𝑓 = egalitarian then
7 𝑤 ← WaterLevel(𝑘,𝑌,𝐴)
8 𝐷 (𝑎) ← min(𝑌 (𝑎),𝑤) ∀ 𝑎 ∈ 𝐴
9 else if 𝑓 = nondiscriminatory then
10 𝑤 ← WaterLevel(𝑌 (𝐴) − 𝑘,𝑌,𝐴)
11 𝐷 (𝑎) ← 𝑌 (𝑎) −min(𝑌 (𝑎),𝑤) ∀ 𝑎 ∈ 𝐴
12 return 𝐷

The division function in Algorithm 2 implements the division

from Definition 4.1. If the value 𝑘 to divide is not larger than 𝑌 (𝐴),
the function returns a division 𝐷 on 𝐴 that exactly divides the

value 𝑘 over the agents 𝑎 ∈ 𝐴 while not exceeding the claims 𝑌 (𝑎)
for agents 𝑎 ∈ 𝐴.
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The division function presented in Algorithm 2 supports the

three principal notions of fair division discussed in Section 4. How-

ever, it is of course possible to add any other possible division.

The division for the proportional notion of fairness is com-

puted with a straightforward ratio multiplication, allocating to

each agent 𝑎 ∈ 𝐴 a portion of the value 𝑘 that is proportional to

the ratio of the claim 𝑌 (𝑎) to the sum of claims 𝑌 (𝐴).
To compute the divisions for the egalitarian and nondiscrimi-

natory notions of fairness, the concept of the water level is used

by calling the water level function from Algorithm 3. These two

divisions are computed by respectively reducing the claims 𝑌 (𝑎) to
a water level𝑤 and by reducing the claims 𝑌 (𝑎) by a water level𝑤 ,

to a minimum of zero.

For the proportional notion of fairness, the computed division 𝐷

trivially satisfies the output conditions. For the egalitarian notion of

fairness, the computed division 𝐷 can directly been seen to satisfy

the output conditions by considering the output condition of the

water level function from Algorithm 3. To see that the computed

division 𝐷 also satisfies the output conditions for the nondiscrimi-

natory notion of fairness, consider that∑
𝑎∈𝐴

min(𝑌 (𝑎),𝑤) = 𝑌 (𝐴) − 𝑘 (18)

and thus that

𝐷 (𝐴) = 𝑌 (𝐴) −
∑
𝑎∈𝐴

min(𝑌 (𝑎),𝑤) = 𝑘. (19)

Informally, the part 𝑌 (𝐴) − 𝑘 that will not be allocated is divided

evenly over the agents 𝐴 and subtracted from their claims 𝑌 (𝐴).

6.3 Setting the Water Level

Algorithm 3: Setting the Water Level

1 Function WaterLevel(𝑘,𝑌,𝐴)
Input: A positive value 𝑘 and an allocation 𝑌 with

positive values on a set of agents 𝐴 with 𝑘 ≤ 𝑌 (𝐴)
Output: A value𝑤 such that

∑
𝑎∈𝐴 min(𝑌 (𝑎),𝑤) = 𝑘

2 i← 0

3 list← Sort(𝑌 (𝑎), 𝑎 ∈ 𝐴)
4 total← 𝑘

5 size← |𝐴|
6 level← 0

7 rise← list[i]
8 while total − size · rise > 0 do
9 total← total − size · rise

10 size← size − 1
11 level← list[i]
12 rise← list[i + 1] − level
13 i← i + 1
14 rest← total/size
15 𝑤 ← level + rest
16 return𝑤

Setting the water level refers to uniformly dividing a good over

claims by computing a single value referred to as the water level.

This water level value is used by egalitarian and nondiscriminatory

notions of fair division.

The water level function in Algorithm 3 takes a value 𝑘 and

an allocation 𝑌 on a set of agents 𝐴. It then computes the unique

level𝑤 that the values 𝑌 (𝑎) for agents 𝑎 ∈ 𝐴 must be reduced to in

order to exactly divide the value 𝑘 . Simply setting a single value

(𝑘 divided by the number of agents in 𝐴) for all agents 𝑎 ∈ 𝐴 does

not reach the intended goal as some agents may have claims lower

than that value. If that is the case, the unclaimed difference can be

divided over the other agents.

To do this, the water level function in Algorithm 3 starts by

sorting the claims 𝑌 (𝑎) from lowest to highest. It then checks if

it can allocate the lowest claim to all agents 𝑎 ∈ 𝐴. If yes, the

lowest claim is removed. It then checks if it can also allocate the

next lowest claim to all remaining agents. Once the next lowest

claim cannot be allocated to all remaining agents, the rest of the

unallocated value 𝑘 is evenly divided over the remaining agents.
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Figure 5: Steps of the water level function fromAlgorithm 3,
dividing the value 𝑘 = 24 (hatched surface area) over five
agents 𝑎 through 𝑒 with respective claims 1, 3, 6, 8, and 9.

The name of the function comes from this repeated raising of the

allocation from claim to claim that resembles the rising of a water

level. Like water poured into a series of connected containers, it

divides the quantity equally over the recipients. See also Figure 5.

6.4 Result of the Algorithm
Theorem 6.1. Algorithm 1 computes the combination of local,

outer matching with principal notions of fair division, resulting in the
𝐹𝑎𝑖𝑟𝑀𝑎𝑥 and 𝐹𝑎𝑖𝑟𝐵𝑎𝑠𝑒 allocations that correspond to maximal or no
interaction with the external grid, respectively.

Proof. At each step of Algorithm 1, the remaining desire 𝐹𝑚 is

equal to the remaining desire allocation 𝑅𝑒𝑚 from Definition 5.2.

Instead of adding the 𝐹𝑏 values and subtracting them again in the

next step, they are saved and added to the 𝐹𝑚 values only at the
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end of the algorithm. The variable updates in the algorithm are

identical to those in Definition 5.2.

The division function used in Algorithm 1 is provided by Algo-

rithm 2, and allows for combination with any of the three discussed

principal notions of fair division. □

6.5 Example Congestion Solutions
Figure 6 revisits the simple example congestion tree from Figure 3.
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Figure 6: 𝐹𝑎𝑖𝑟𝑀𝑎𝑥 allocations with different notions of fair
division for the simple congestion network 𝑇 = (𝑉 , 𝐸,𝐴)
from Figure 3. In this example, the 𝐹𝑎𝑖𝑟𝐵𝑎𝑠𝑒 allocation is the
same for all three principal notions of fair division.

Figure 7 shows a more complex congestion tree for which the

𝐹𝑎𝑖𝑟𝑀𝑎𝑥 allocation is computed with the egalitarian notion of fair

division. Figure 8 shows the steps that Algorithm 1 takes during this

computation. Once the root 𝑟 is reached, the 𝐹𝑎𝑖𝑟𝑀𝑎𝑥 allocation is

computed by adding the 𝐹𝑏 values to the 𝐹𝑚 values.

𝑟

6

𝐹𝑚(𝑓 ) = 4

𝑖

5
𝐹𝑚(𝑒) = 5

𝐹𝑚(𝑑) = −3

𝑗

2

𝐹𝑚(𝑐) = 4 𝑘

3

𝐹𝑚(𝑏) = 3

𝐹𝑚(𝑎) = −1

Initial 𝐹𝑚

𝑟

6

𝐹𝑚(𝑓 ) = 2

𝑖

5
𝐹𝑚(𝑒) = 3

𝐹𝑚(𝑑) = −3

𝑗

2

𝐹𝑚(𝑐) = 2 𝑘

3

𝐹𝑚(𝑏) = 3

𝐹𝑚(𝑎) = −1

Egalitarian 𝐹𝑎𝑖𝑟𝑀𝑎𝑥

Figure 7: Algorithm input (left) and output (right).

7 INCENTIVE COMPATIBILITY
One of the central concepts in the field of mechanism design is that

of incentive compatibility. A mechanism is designed with a certain

outcome inmind, for example a congestion free power flow network.

The designer of a mechanism lays out the rules in such a way that
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Figure 8: Algorithm steps from vertex 𝑘 to 𝑟 .

agents playing the game follow strategies that together reach the

intended outcome. This assumes that the agents want to play the

game, and that they will play it honestly. An incentive compatible

mechanism ensures that agents will participate truthfully.

The importance of truthful participation is emphasized when

dealing with fairness. Fairness often heavily depends on the out-

comes for the agents relative to each other. If agents can ‘game the

system’, the agents that do will obtain an unfair advantage over the

other agents. A mechanism that allows such strategies will require

strong assumptions about the participating agents or other means

of enforcing fairness.

Proposition 7.1. The mechanism presented in Algorithm 1 is
incentive compatible when the notion of fairness is egalitarian.

Proof. Consider the 𝐹𝑚 output of the mechanism, the proof

for the 𝐹𝑏 output is analogous. Let 𝑇 = (𝑉 , 𝐸,𝐴) be a congestion
tree containing an agent 𝑎 with true desire 𝑑∗𝑎 . Without loss of

generality, assume that agent 𝑎 is a consumer, i.e. 𝑑∗𝑎 > 0.

If agent 𝑎 reports 𝑑𝑎 = 𝑑∗𝑎 and the mechanism returns 𝐹𝑚(𝑎) =
𝑑∗𝑎 , then the agent cannot improve its situation by reporting another

desire 𝑑𝑎 because it is already in its preferred situation.
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If agent 𝑎 reports 𝑑𝑎 = 𝑑∗𝑎 and the mechanism returns 𝐹𝑚(𝑎) <
𝑑∗𝑎 , then the agent may try reporting another desire 𝑑𝑎 ≠ 𝑑∗𝑎 to

improve its situation. Since the mechanism returned 𝐹𝑚(𝑎) < 𝑑𝑎
when reporting 𝑑𝑎 = 𝑑∗𝑎 , it must be that the value of 𝐹𝑚(𝑎) + 𝐹𝑏 (𝑎)
was reduced at at least one step of the algorithm. Consider the first

step at which this happened, and the vertex 𝑖 corresponding to that

step. It must be that, initially, congestion occurred at this vertex, i.e.

|𝐹𝑚(𝑃𝑖 ) | +𝐶𝑖 < 𝐹𝑚(𝑄𝑖 ) at Algorithm 1 Line 7. Since 𝐹𝑚(𝑎) +𝐹𝑏 (𝑎)
was reduced at this vertex, it must have been true that 𝐹𝑏 (𝑎) > 𝑤

at Algorithm 2 Line 8. Note that the output 𝑤 of the water level

function in Algorithm 3 does not depend on values 𝑌 (𝑎) > 𝑤 .

It now follows that reporting𝑑𝑎 > 𝑑∗𝑎 causes the same congestion

at vertex 𝑖 , i.e. |𝐹𝑚(𝑃𝑖 ) | +𝐶𝑖 < 𝐹𝑚(𝑄𝑖 ) at Algorithm 1 Line 7, and

produces the same value 𝑤 at Algorithm 2 Line 7, resulting in

the same reduction of 𝐹𝑚(𝑎) + 𝐹𝑏 (𝑎) at this step as compared

to reporting 𝑑𝑎 = 𝑑∗𝑎 . Thus after this step, there is no difference

between reporting 𝑑𝑎 = 𝑑∗𝑎 and reporting 𝑑𝑎 > 𝑑∗𝑎 , leading the

mechanism to return the exact same value 𝐹𝑚(𝑎) < 𝑑∗𝑎 in both

cases.

It is possible that reporting 𝑑𝑎 > 𝑑∗𝑎 causes congestion at an

earlier step corresponding to a vertex 𝑗 . This does not change

the argument, since reporting 𝑑𝑎 = 𝑑∗𝑎 not causing congestion at

vertex 𝑗 implies that when reporting 𝑑𝑎 > 𝑑∗𝑎 , 𝐹𝑚(𝑎) + 𝐹𝑏 (𝑎) can
at most be reduced to 𝑑∗𝑎 at vertex 𝑗 .

Alternatively, reporting 𝑑𝑎 < 𝑑∗𝑎 may avoid the congestion

at vertex 𝑖 . However, this is only the case when 𝐹𝑚(𝑎) at Algo-
rithm 1 Line 7 is equal to or lower than the value 𝑤 at Algo-

rithm 2 Line 7 when reporting 𝑑𝑎 = 𝑑∗𝑎 . In other words, the re-

duction of 𝐹𝑚(𝑎) + 𝐹𝑏 (𝑎) to𝑤 + 𝐹𝑏 (𝑎) at vertex 𝑖 is only avoided if

it is already equal to or lower than𝑤 + 𝐹𝑏 (𝑎). The same argument

then applies to each following step corresponding to a vertex 𝑗 with

𝑎 ∈ 𝐴 𝑗 where congestion occurs when reporting 𝑑𝑎 = 𝑑∗𝑎 . It follows
that the mechanism output 𝐹𝑚(𝑎) when reporting 𝑑𝑎 < 𝑑∗𝑎 is equal

to or lower than the output 𝐹𝑚(𝑎) when reporting 𝑑𝑎 = 𝑑∗𝑎 .
This shows that agent 𝑎 cannot improve its situation by reporting

anything other than its true desire 𝑑∗𝑎 , i.e., being truthful is a weakly
dominant strategy. □

Proposition 7.2. The mechanism presented in Algorithm 1 is not
incentive compatible when the notion of fairness is proportional or
nondiscriminatory.

Proof. The proof is by counterexample. Let 𝑇 = (𝑉 , 𝐸,𝐴) be a
simple congestion tree with only one vertex 𝑟 , a capacity of 𝐶𝑟 = 8

on its virtual edge, and two agents 𝑎 and 𝑏 with true desires 𝑑∗𝑎 = 6

and 𝑑∗
𝑏
= 6. If both agents report their true desires, the mechanism

would return 𝐹𝑚(𝑎) = 4 and 𝐹𝑚(𝑏) = 4 for both the proportional

and the nondiscriminatory notions of fairness. However, if agent 𝑎

instead reports 𝑑𝑎 = 10 while agent 𝑏 still reports its true desire

𝑑𝑏 = 6, then themechanismwould return 𝐹𝑚(𝑎) = 5 and 𝐹𝑚(𝑏) = 3

for the proportional notion of fairness, or 𝐹𝑚(𝑎) = 6 and 𝐹𝑚(𝑏) =
2 for the nondiscriminatory notion of fairness. This shows that

agent 𝑎 can improve its situation by reporting a desire designed for

participation in the mechanism, rather than its true desire.

The same counterexample can be used for the 𝐹𝑏 output of the

mechanism by adding a third agent 𝑐 with 𝑑∗𝑐 = −8. □

Propositions 7.1 and 7.2 can be intuitively understood to hold true

by examining Figure 2. The three divisions corresponding to the

three principal notions of fair division are found at the intersection

of their respective lines with the line representing the quantity of

the good to be divided.

Two of the three principal notions of fair division correspond to

lines that depend on the point of the claims, and thus the point of in-

tersection depends on the point of the claims as well. Evidently, for

these two notions, the division correlates directly with the claims

reported by the agents. Indeed, for the proportional and nondis-

criminatory notions of fairness, an agent can directly influence the

division.

Conversely, for the egalitarian notion of fairness, the point of

intersection only depends on claims to a limited extent. Only an

agent that is allocated its entire claim would potentially be allocated

a larger amount by reporting a higher claim. Agents with claims

above a certain threshold cannot increase the amount allocated to

them by reporting a higher claim. The egalitarian division therefore

only correlates with the claims reported by the agents to the point

that each agent can claim their fair equal share and receive it.

8 COMPUTATIONAL COMPLEXITY
The water level function in Algorithm 3 sorts the 𝑌 (𝑎) values in
O(𝑚 ·log(𝑚)) time, where𝑚 is the number of agents in the input set

𝐴. It then enters a while loop which takes at most𝑚 − 1 iterations.
Thus the computational complexity of the water level function in

Algorithm 3 is O(𝑚 · log(𝑚)).
Algorithm 1 visits each vertex in 𝑉 exactly once, and at each

vertex calls the divide function in Algorithm 2 two times. For the

proportional notion of fairness, the divide function assigns𝑚 val-

ues, where𝑚 is the number of agents in the input set 𝐴. For the

egalitarian and nondiscriminatory notions of fairness, the divide

function calls the water level function at most once.

Therefore, the worst case computational complexity of Algo-

rithm 1 with the proportional notion of fairness is O(𝑛 ·𝑚), while
with the egalitarian and nondiscriminatory notions of fairness it is

O(𝑛 ·𝑚 · log(𝑚)). Here 𝑛 is the number of vertices in 𝑉 and𝑚 is

the total number of agents in 𝐴.

9 CONCLUSION AND DISCUSSION
We presented local, outer matching, Definition 5.1, as a novel con-

cept of fairness for congestion management in low-voltage net-

works. Local, outer matching addresses the important problem of

fairness in matching by prioritizing local matching in the peripheral

where prosumers are furthest away from the substation. We then

presented congestion solutions in Definition 5.2 that were proven

by Theorem 5.4 to be local, outer matchings that make maximal

use of the available network capacity. These congestion solutions

interchangeably employ established notions of fair division for di-

viding quantities such as capacity. In Section 4 we discussed three

distinct principal notions of fair division: proportional, egalitarian,

and nondiscriminatory division.

Subsequently, in Section 6, we presented an algorithmic mech-

anism that combines local, outer matching with notions of fair

division and computes congestion solutions which fairly resolve

congestion and make maximal use of available network capacity as
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proven by Theorem 6.1. In Section 6.2 we showed that the mech-

anism is able to employ different notions of fair division, and we

then went on to prove that the egalitarian notion of fairness re-

sults in an incentive compatible mechanism, Proposition 7.1, while

the proportional and nondiscriminatory notions of fairness do not,

Proposition 7.2.

Finally, in Section 8, we showed that the presented congestion

solutions can be computed by an algorithm with low computational

complexity. This makes the notion of fairness and the algorithm

suitable for sizeable and time sensitive congestion problems such

as those encountered in electrical grids.

The egalitarian notion of fair division resulting in an incentive

compatible mechanism is an obvious advantage over other notions

of fair division, but does not render other notions of fair division ob-

solete. Consensus on the accepted notion of fair division should be

a priority since fairness is fundamentally subjective and dependent

on setting. Additional penalties or incentives could be implemented

to make other notions of fair division feasible for use in this setting

if they are strongly preferred.

The algorithmic mechanism we presented in this paper is limited

to the acyclic networks that are found in real-world low-voltage

networks. It is likely that a similar algorithmic mechanism for more

general network structures would have a higher computational

complexity. Running in limited computational time is, however,

essential for the application in this domain.

The theoretical foundation that this paper lays may be extended

to more detailed models, for example including line losses by dis-

counting flows per line that is traversed. This raises the interesting

question of whether fairness lies with the sent quantity or the

received quantity.

Another potential avenue of research would be to look at other

fair ways of matching consumer and producer desires, for example

by changing the hierarchical structure of matching or by introduc-

ing time-shiftable consumers and producers.
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