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Abstract

Does a convolutional neural network (CNN) always
have to be deep to learn a task? This is an im-
portant question as deeper networks are generally
harder to train. We trained shallow and deep CNNs
and evaluated their performance on simple regres-
sion tasks, such as computing the mean pixel value
of an image. For these simple tasks we show that
going deeper does not guarantee an improvement in
performance.

1 Introduction
A convolutional neural network (CNN) is a category of neural
networks in deep learning. CNNs are different from standard
artificial neural networks because they use additional convo-
lutional layers. They are employed for all kinds of computer
vision tasks: image classification [1], object detection [2], ob-
ject tracking [3], age estimation [4, 5] and human pose esti-
mation [6].

The architecture of CNNs has been studied extensively [7].
Deep CNNs usually show a significant improvement in per-
formance [7,8] as opposed to shallow networks. The trade-off
is that deeper networks are harder to train and require more
training data [9]. Thus, whether CNNs always have to be
deep is an important problem.

Some papers in the literature study this problem directly,
but only for classification tasks. Urban et al. [10] concludes
that deeper networks are better for image classification tasks.
Le et al. [11] states that “deep models have not yet proven to
be more effective than shallow models for text classification
tasks”. A recent survey paper on CNNs [7] states that “the
depth is an essential dimension in regulating learning capacity
of the networks”. We want to know if this is true for simple
regression tasks.

In this paper, we empirically evaluated CNNs with an in-
creasing number of convolutional layers on three different re-
gression tasks: mapping an input image to the mean, median
and standard deviation of its pixel values. We choose these
tasks because we can compute the actual mean, median and
standard deviation for each image easily. The central ques-
tion we tried to answer is: do CNNs have to be deep to learn
regression tasks?

For these specific task, the answer is no. Going deeper did
not improve the performance on these specific tasks. In fact,
for the standard deviation task deeper networks performed
worse.

2 Related work
In this section we discuss the relevant literature. First, we will
discuss two papers that compared deep and shallow models
for classification tasks. Then, we will briefly discuss a pa-
per that evaluated a deep CNN on a task similar to our tasks.
Finally, we will reinforce why studying deep CNNs on re-
gression problems is important.

Gregor et al. [10] trained networks on an image classifica-
tion task. They formed an ensemble of state-of-the-art deep
teacher networks and used those to label images. These la-
beled images were used to train shallow student networks.
The shallow student networks were not as accurate as their
teacher networks. Le et al. [11] compared deep and shallow-
and-wide networks on five standard text classification and
sentiment analysis tasks. On two out of five tasks, shallow-
and-wide networks had a higher accuracy, although the dif-
ference was small (0.2%). The performance was equal for
one tasks. For the other two tasks, the deeper network per-
formed better, but again slightly (0.3%). These observations
led the authors to conclude that deeper CNNs do not neces-
sarily perform better than shallow ones for text classifications
and sentiment analysis tasks. A limitation of this paper is that
they derived their deep networks from networks created for
image classification tasks. Deep CNNs created specifically
for text classification might be better than shallow ones.

Liu et al. [12] used a state-of-the-art network (VGG [13])
in the image classification domain, to train on a regression
task using MNIST dataset. The authors converted class labels
into floats by sampling from normal distributions. Predicting
those numbers was the regression task. Although they report
that their method was successful, they only used one specific
dataset and architecture and did not compare their results with
a shallow network.

A recent analysis of regression problems using CNNs [14]
states that there is a lack of “systematic evaluation of deep
learning advances in regression” and “an over abundance of
papers based on deep learning”. The authors say that this
“highlights again the importance of serious comparative em-
pirical studies to discern which are the key blocks in deep
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regression.” We hope our research contributes to the under-
standing what these key blocks are.

3 Methodology
In this section we describe the experimental setup during the
research. We first show the architecture of the networks and
explain the tasks in more detail. Thereafter, we describe the
dataset and hyperparameters used during training. Finally, we
describe the loss function we tried to minimize.

3.1 Networks
We created several networks with different number of layers.
We first created a base network [15] of which we derived all
other networks. We will refer to this network as ‘Base’. In
Figure 1 a diagram of ‘Base’ is shown.

We used 28x28 grayscale images as the input (see Section
3.2 for details about the dataset). The first layer was a convo-
lutional layer with a kernel size of 5x5 and 6 channels. We did
not use padding, hence the slight decrease in width and height
of the intermediate feature maps. This convolutional layer
was followed by a max pooling layer that reduced the dimen-
sions by half. These two layers are repeated once more. The
only difference is that the second convolutional layer uses 12
channels instead of 6. We have now come the layer that was
different between different networks. This layer was stacked
upon itself multiple times. In total we created 7 different net-
works where this layer was stacked 0, 1, 2, 3, 4, 5, and 10
times, respectively. We will refer to these networks with their
number of extra layers. We used padding to prevent reduc-
tion in dimensions. After all these layers we used three fully
connected layers to get to a single output neuron. We choose
the Rectified Linear Unit (ReLU) as activation function for
the hidden layers.

In addition to the CNNs we created a network without con-
volutional layers. This network consisted of an input layer of
784 neurons followed by the last three linear layers shown in
1. We refer to this network as None.

3.2 Tasks
In order to evaluate the networks, we created three simple
tasks. Simple, meaning it was easy to compute the true output
value of an input. Each task was a mapping f : R2 7→ R. We
define the mean (1), median (2) and standard deviation (3)
tasks as follows:

x̄ : x 7→ 1

N

k−1∑
i=0

l−1∑
j=0

xij(1)

med : x 7→ median(x)(2)

sx : x 7→

√√√√√k−1∑
i=0

l−1∑
j=0

(xij − x̄)2

N − 1
(3)

where N is the number of pixels, k the width and l the height
of a 2D array x.

3.3 Dataset
We used Zalando’s FashionMNIST [16] dataset for the three
tasks. This dataset consists of 60,000 training and 10,000 test
samples. Let x denote a sample from dataset X . Of the train-
ing samples, we used 55,000 for training and 5,000 for valida-
tion. Each sample is a 28x28 grayscale image in ten different
clothing categories. Since we focused on regression tasks, we
ignored the class labels. Instead, we computed x̄, med and sx
for each sample. We call these values targets and we denote a
target with y. Let Y be the set of all targets. We will refer to
the datasets used for tasks x̄, med and sx as MeanFMNIST,
MedianFMNIST and StdFMNIST respectively.

Distribution of targets
It is important to know the distribution of the dataset targets
because an unequal distribution can affect the performance of
a network. This might give an impression of a very high per-
formance, while instead there is a bias in the dataset. Figure
2 shows histogram plots of the distribution of the targets.

From the histograms it is clear that the MedianMNIST was
not equally distributed. Almost half of the samples have a
median of 0. The MeanFMNIST skews to the left, while the
StdFMNIST skews to the right.

3.4 Hyperparameters
Most of the hyperparameters were the same between different
networks. We used a batch size of 64 and a random seed of
42, unless otherwise stated. For optimization we used the
Adam algorithm [17]. We fine-tuned the learning rate and
number of epochs.

The learning rate is a crucial hyperparameter, since if it is
too large the average loss will increase [18]. If it is too low,
it might take a long time before the network converges. We
fine-tuned the learning rate for each network on each dataset,
using Pytorch Lightning built-in Learning Rate Finder. This
algorithm trains the network for a small run, increasing the
learning rate after each processed batch and notes the loss.
The result is a learning rate vs. loss plot. An example is
shown in Figure 3. From this plot a point with the sharpest
downward slope is chosen as the learning rate. See [19, 20]
for full details. We used the default parameters: start at 10−8,
stop at 1, try 100 learning rates and increment the learning
rate exponentially.

Knowing for how many epochs a model should be trained
is important to prevent over- and underfitting. So, we trained
networks Base and 10 on the MeanFMNIST for 130 epochs.
We only choose two networks because training for a large
number of epochs is time consuming.

3.5 Loss function
For the loss function we used the mean squared error (MSE):

MSE(Y, Ŷ ) =
1

n

n∑
i=1

(yi − ŷi)2

where Ŷ is the set of predicted targets and n the number of
samples. This is a standard loss function for regression prob-
lems and we find it easy to interpret.



Figure 1: Diagram of base network. The dimensions are written at the bottom; for example, 1@28x28 means 1 channel and a width and
height of 28. The layer enclosed with the dotted line, was repeated 0, 1, 2, 3, 4, 5 and 10 times to create different networks. The dimensions
written in the rectangles are the dimensions of the kernel. We used Rectified Linear Unit (ReLU) as the activation function for the hidden
layers. All networks outputted a single number.

Figure 2: Distribution of targets of MeanFMNIST, MedianFMNIST
and StdFMNIST datasets. Width of each bin is 0.02.

Figure 3: Example of loss vs. learning rate plot. The red dot indi-
cates the chosen learning rate. Using network 2 with a MeanFM-
NIST dataset.

4 Results
The results are shown in this section. For each experiment we
first describe what we have done, then show the results and
finally discuss important observations.

4.1 Experiment 1. Tuning learning rates
Each time we trained and tested a network we first tuned the
learning rate. We used the Pytorch Lightning Learning Rate
Finder (see Section 3.3) to find the learning rate. In Experi-
ment 3 we trained and tested each network on each dataset 10
times. In Table 1 we show the average of the learning rates
per network and dataset.

Learning rates

Model MeanFMNIST MedianFMNIST StdFMNIST

None 2.0 · 10−4 2.5 · 10−4 2.2 · 10−4

Base 4.1 · 10−2 1.7 · 10−1 9.2 · 10−4

1 7.9 · 10−2 5.8 · 10−4 1.2 · 10−3

2 5.8 · 10−2 1.5 · 10−3 1.1 · 10−3

3 1.1 · 10−2 1.6 · 10−2 2.0 · 10−3

4 6.0 · 10−3 5.2 · 10−3 2.3 · 10−3

5 2.2 · 10−3 2.3 · 10−4 2.2 · 10−3

10 2.1 · 10−3 8.5 · 10−4 8.6 · 10−2

Table 1: Fine-tuned learning rates for models on different datasets.

4.2 Experiment 2. Baseline performance
We tested three different baselines: zero, mean and median.
We expect the mean baseline to have the lowest MSE, as Tom
Viering stated during one of our meetings. Looking at the
distribution of MedianFMNIST we also expect that the zero
baseline works well for this dataset. In this experiment we
only used test samples of the datasets. We first computed the
mean and median of test targets for each dataset. For the zero
baseline we just took 0. Then, for each baseline and dataset,
we computed the MSE of the targets and the baseline. The



results are shown in Table 2, including the standard deviation
(σ) of the targets. The best performing baseline (lowest loss)
is shown as bold.

MSE

Dataset Zero Mean Median σ

MeanFMNIST 0.0981 0.0158 0.0160 0.1257
MedianFMNIST 0.1119 0.0711 0.1088 0.2667
StdFMNIST 0.1085 0.0061 0.0062 0.0781

Table 2: Test loss of test samples for different baselines.

From the results it is clear that the mean of the targets of
the training samples is the best performing baseline. This
verifies the claim by Tom Viering. We note that the median
is only slightly worse than the mean for MeanFMNIST and
StdFMNIST datasets. Surprisingly, the zero baseline for Me-
dianFMNIST is not quite as good as the mean baseline.

4.3 Experiment 3. How many epochs?
We trained networks Base and 10 for 130 epochs on the
MeanFMNIST dataset. The batch size was 64 and the learn-
ing rate according to Table 1. We logged the training and
validation loss on every epoch. So, the training loss was the
MSE over 55,000 samples and the validation loss the MSE
over 5,000 samples. Figure 4 shows the results. The blue
lines indicate the training loss, and the orange line shows the
validation loss.

Figure 4: Training loss of two networks as function of number of
epochs: zero extra layers and ten extra layers.

From Figure 4 it is clear that both the training and vali-
dation loss are decreasing. We do not observe a difference
between the two networks; both end with approximately the
same training and validation loss. The validation curves fluc-
tuate but stays close to the training curves. This suggests we
are not overfitting after 130 epochs, so we could still improve
the performance. To keep training duration manageable, we
ran all our subsequent experiments for 30 epochs. Also, after

training for 30 epochs the training and validation losses are
below the baseline (0.0158).

4.4 Experiment 4. Is deeper better?
In this experiment evaluated the performance of networks
Base, 1, 2, 3, 4, 5 and 10 on each task. We trained and tested
each network on each task ten times. In Figure 5 the average
test losses are shown. The errors bars indicate the standard
deviation.

When we compare the baseline losses with the test losses
we see that all networks are able to learn all tasks much better
than the baseline. For MeanFMNIST the best baseline has an
MSE of 1.58 · 10−2, while the networks all have an average
test loss in the order of 10−5. The average test losses of Medi-
anFMNIST are in the range of [8.73·10−4, 6.67·10−3], which
is closer to the baseline, 7.11 · 10−2, than the MeanFMNIST
test losses. For StdFMNIST the test losses are in the order
of 10−5, which is significantly lower than the best baseline
6.1 ·10−3. From these observations we conclude that the net-
works have the capacity to learn the tasks.

From the results of MeanFMNIST and MedianFMNIST
we conclude that deeper does not necessarily mean better.

Looking at the results of StdFMNIST we see that networks
Base, 1, 2, 3 have significantly lower test losses than network
4, 5 and 10. A possible explanation for this might be that
we stopped training early. In Experiment 3 we concluded
that 30 epochs was good enough, from experimenting with
the MeanFMNIST. If we trained networks 4, 5 and 10 for
more epochs, we might get a loss comparable to the other net-
works or even better. To further investigate this observation
we should run Experiment 3 using the StdFMNIST dataset
and train networks 4, 5 and 10 for more epochs. To get closer
to the real average test loss we can also increase the number
of training and test cycles.

4.5 Experiment 5. Are convolutional layers
required?

We trained and tested network None (without convolutional
layers) on each task. We did this ten times per task using
different initial weights. The results are shown in Figure 6.

It is immediately clear that this network is able to learn the
sx task better than the other two tasks. The test losses are also
listed in Table 3.

We can also compare these results with networks that have
a convolutional layer. Compare the results from Figure 6 with
the losses of Base network from Figure 5. We summarize the
results in Table 3.

We observe that adding convolutional layers is beneficial
when training on MeanFMNIST and MedianFMNIST. For
StdFMNIST there is no significant improvement.

5 Discussion
The most important finding from the results is that going
deeper does not necessarily improve performance for regres-
sion tasks. In the case of the sx task, the performance de-
creased for deeper networks. These findings are limited by
early stopping of training. We did this in order to keep train-
ing times manageable. To really know if this is true, we
should fine-tune the number of epochs.



Figure 5: Average test loss for 10 training and test cycles. The errors bars show the standard deviation. From the results for MedianFMNIST
network 10 we removed one outlier.

Figure 6: Average test loss over 10 training and test cycles for net-
work None. This network does not have any convolutional layers.

MSE

Dataset None Base

MeanFMNIST 1.21 · 10−3 1.12 · 10−5

MedianFMNIST 7.49 · 10−3 9.43 · 10−4

StdFMNIST 1.25 · 10−5 1.57 · 10−5

Table 3: Comparing test losses between a network with (Base) and
without (None) convolutional layers. There is no clear benefit of
using convolutional layers for sx task. For tasks x̄ and med the test
loss with convolutional layers is significantly lower.

Another important result is that for the sx task we might
not even need convolutional layers. For the other two tasks
using convolutional layers showed a significant improvement
in performance. We suspect this is because there is not spa-
tial aspect in our tasks. The networks do not have to learn
features from the images, which is the case in for example
image classification.

During experimentation we used Adam as an optimizer.
We were interested if Stochastic Gradient Descent (SGD)
would be a better optimizer. We overfitted networks Base
and 10 on a single batch of StdFMNIST and logged the train-
ing loss. We trained for 1,000 epochs, and did this separately
for Adam and SGD. The training curves for Adam showed
discontinuous jumps but was able to achieve a much lower

training loss than SGD. The training curves for SGD were
smooth. We are unsure what caused this behavior. This result
might explain the high standard deviation in the test losses
from Figure 5.

6 Conclusion
In this paper we presented the results of training shallow and
deep CNNs. Our main objective was to find out whether deep
networks are required for regression tasks. We evaluated the
networks on three different tasks: mapping an image to the
mean, median and standard deviation of pixel values. We
conclude that deep CNNs are not a requirement to achieve
good performance on these regression tasks. For the standard
deviation task, deeper networks showed worse test results.
However, this observed result could be attributed to training
for a fixed number of epochs. We should further investigate if
this still holds true when we train deeper networks for more
epochs. Our research was also limited to only three simple
regression tasks. In the future we would like to investigate
whether CNNs have to be deep for more complex regression
tasks, such as age or human pose estimation.

7 Responsible Research
The result presented in this paper do not have any ethical im-
plications because the studied tasks have no value in the real
world. Instead, we will reflect on the reproducibility of our
experiments. We will reflect on the six recommendations of
Yale Law School Roundtable on reproducible research [21].

The first recommendation is that all source-code should
be public. The code is hosted on GitHub and
can be accessed through https://github.com/Avonite/
context-project. The second recommendation is to as-
sign a unique id to released code. We do not expect our code
to change, so we did not follow this recommendation. The
datasets are included in the version control, so all experiments
are fully reproducible. This is not the case for the notebooks
we used. If the datasets change in the future, our results will
probably also change slightly. The third recommendation is
to describe computing environment and software version used
in the publication. All scripts ran on a HP ZBook Studio x360
G5 with a i7-8750H CPU @ 2.20GHz. The operating sys-
tem was Windows 10 Education 64-bit. All software with
versions can be found in requirements.txt in the repository.
We added an MIT license as per the fourth recommendation.
This means that anyone can freely reuse and experiment with

https://github.com/Avonite/context-project
https://github.com/Avonite/context-project


our code. This paper will be publicly available in the TU
Delft repository, so we fulfil the fifth recommendation. All
our scripts are written in Python files, i.e. plaintext, so these
should still be readable in the foreseeable future. This was
the sixth recommendation.
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