
Bachelor
Thesis
GonioTrainer for sport
D. Kester
J. Overdevest

Te
ch
ni
sc
he

U
ni
ve
rs
ite
it
D
el
ft

Bachelor Thesis
GonioTrainer for sport

by

D. Kester
J. Overdevest

to obtain the degree of Bachelor of Science
at the Delft University of Technology,

to be defended on Thursday July 2, 2015 at 9:00 AM.

Student: D. Kester 4221745
J. Overdevest 4215109

Project duration: April 20, 2015 – June 22, 2015
Thesis committee: Prof. dr. ir. R. Fastenau, TU Delft

Dr. ir. N. P. van der Meijs, TU Delft
Ing. J. Bastemeijer, TU Delft
MSc. O. den Braver, O’Sports

This thesis is confidential and cannot be made public until December 31, 2018.

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Preface
The choice for the ”GonioTrainer for sports” project for our bachelor thesis was really not difficult. A
combination of sport and engineering makes this project ideal for our personal and professional growth.
Now that the project is coming to an end, we realise the impact it had on us. During the project, we were
able to use all our acquired knowledge to identify, solve, test and document problems and solutions
on our own.We are thankful to the other group members, Bas Bosma, Rene Miedema, Ingo Schilken
and Mitchel Scoop, for being a huge inspiration. The project would certainly not have been possible
without the help of our technical supervisor Jeroen Bastemeijer. Not only would we like to thank him for
his technical support, but also for his encouragement when we faced difficulties. We would also like to
thank Otto den Braver en Diederik van der Steen (O’Sports) for their enthusiasm, quick response and
supply of resourses. The project was supervised by Prof.dr. K.A.A. Makinwa.

D. Kester
J. Overdevest

Delft, June 2015

iii

Contents

Abstract vii

1 Introduction 1

2 Problem definition 3
2.1 Problem Scope . 3
2.2 Design Requirements . 3

2.2.1 Physical specifications . 4
2.2.2 System specifications . 4

3 Related Search 5
3.1 Microcontroller . 5
3.2 Sensors . 5

3.2.1 Joint angle . 5
3.2.2 Inertial Measurement Unit (IMU). 6

3.3 Data storage . 7
3.3.1 On-board . 8
3.3.2 Off-board . 9
3.3.3 Data format . 9

3.4 Software . 9
3.4.1 Java application . 9
3.4.2 Website . 10
3.4.3 Database . 10

4 Implementation 11
4.1 Microcontroller . 12
4.2 Sensors . 12

4.2.1 Programmable Interrupt System . 13
4.3 Flash memory . 14
4.4 Control logic . 15
4.5 Cloud service . 16

4.5.1 Client side. 17
4.5.2 Server side . 18

5 Ethics 21
5.1 People. 21
5.2 Society . 21
5.3 Environment . 22

6 Results 23
6.1 Sensors . 23
6.2 Flash memory . 24
6.3 Cloud service . 25

6.3.1 Android application . 25
6.3.2 Website . 25

6.4 Integration . 25

7 Conclusion 27
7.1 Evaluation of requirements. 27

7.1.1 Costs . 27
7.1.2 Sample rate . 27
7.1.3 Data storage . 27

v

vi Contents

7.1.4 Peak detection . 27
7.1.5 Physical ports. 28
7.1.6 Integration . 28

8 Discussion 29
8.1 AS5601 push button . 29
8.2 Programmable Interrupt System . 29
8.3 Cloud service . 29
8.4 Real time sensor read out . 29

A Peak detection using the ARM® Cortex-M0 31
A.1 Background . 31
A.2 Design. 31
A.3 Implementation . 32
A.4 Results . 33

B Pin layout 35
B.1 RedBearLab nRF51228 . 35
B.2 AS5600 12-bit Programmable Contactless Potentiometer 36
B.3 MPU-6050 Board GY-521 . 37
B.4 Spansion S25FL512S 64 Mbyte Flash Non-Volatile Memory 38

C Costs 39

Bibliography 41

Abstract
In speed skating, the frontal area of the athlete is one of the major factors that influences the aerody-
namic drag he/she experiences [1]. The athlete can minimise the frontal area by going lower, and thus
bending more his/her knees. O’Sports would like to manufacture the GonioTrainer, a device that will
measure the knee of the skater and provide a stimulus to remind the skater to stay low. In order to
make this possible, sensors to measure the knee angle and an Inertial Measurement Unit are used to
record the athlete gestures. Data storage needs to be implemented to analyse the data afterwards on
a dedicated computer. The system must be designed as efficient as possible with scalability in mind,
resulting in a system ready for production. This is the motivation behind the BSc thesis work presented
in this document.
This thesis project focuses on the development of the GonioTrainer’s measurement module, or go-
niometer: a microcontroller connecting the peripherals and controlling the signals. Measuring the knee
angle and an Inetrial Measuremet Unit was done through IኼC at a sample rate of 100Hz. Storing the raw
data on a flash memory was possible through SPI and as well as transferring the contents to a smart-
phone though Bluetooth. Once the information is on a smartphone, it can be uploaded to an internet
server for easy access. Also, a special peak detection algorithm for speed skating was developed and
explained in appendix A of this document. Transferring the sensors measurements in real time to the
smartphone was not possible due to software/hardware conflicts. Note that the GonioTrainer emerged
from the idea to improve the performance of ice-skaters, but the end product is ready to be used within
different sport disciplines, once the conflicts are solved.

vii

1
Introduction

One of competitive forms of ice skating is known as speed skating. The winner is the one who travels a
predetermined distance in the least amount of time. Today, time differences between competitors are
incredibly small and are being measured in milliseconds. Every physical aspect that could contribute to
decrease time by a fraction of a second is currently profoundly scrutinised to improve the performance.
O’Sports, which will be referred to as ”the client”, has shown that the knee angle (see figure 1.1.) is
the most representative parameter to measure the performance of the skater. With this in mind, the
client wants to create the GonioTrainer. The GonioTrainer is a system that will continuously measure
the knee angle of the athlete during the training and will provide direct feedback when needed in the
form of a physical stimulus to the body.

Figure 1.1: The knee angle has been
shown to be the most representa-
tive parameter to measure the perfor-
mance of the skater [2]

The client already has prototypes of the GonioTrainer, but are
still struggling with the electrical part of the system. They would
like to manufacture the first batch of 100 GonioTrainers by the
end of 2015. This is why they came to us, a group of 6 elec-
trical engineering students. Our task (which will be our Bach-
elor End Project) is to design, implement and test the robust-
ness of the whole electrical system. A first attempt to design
the electrical part has already been done by a group of two stu-
dents. From their conclusions, the client was able to make spe-
cific choices about the sensors, the actuators and other (minor)
specifications. This left the client four major concerns about the
electrical system: data storage, wireless communication, micro-
controller and sensors configuration and the power supply. In
this thesis the link between the sensors and microcontroller to-
gether with the data storage of the GonioTrainer will be ad-
dressed.

Figure 1.2 is a simple representation of the GonioTrainer system. The
goniometer is the device that will measure the knee angle and will
send the measurements wireless to a smartphone. If a stimulus is
needed, the smartphone will instruct the feedback module to give a
stimulus to the athlete. The smart phone will also provide some statis-
tics during the training, so the coach/athlete can see the progress during the actual training. All mea-
sured data during a training will be stored entirely for a more advanced analysis after the training. The
GonioTrainer has also attracted the attention of other sports, where measuring a particular joint within
the body could be of great interest. Some examples of these sports include rowing, skiing and even
sailing have shown to have interest in this product. The different conditions where the GonioTrainer
could be used will be studied in order to develop a multi-sport GonioTrainer.

1

2 1. Introduction

Figure 1.2: An overly simplified block schematic of the GonioTrainer.

2
Problem definition

O’Sports, our client, would like to design, produce and sell the GonioTrainer. Such product is currently
unavailable on the market and the client wants to be the first. The client has some experience with
electronics, but not enough to develop the electronics needed for the GonioTrainer. A group of six
electrical engineering students has the task of doing so. This group is split in three subgroups of two
students each addressing specific tasks. Ideally, at the end of the project, all the efforts will be combined
to result in the electrical system of the GonioTrainer.

2.1. Problem Scope
In this report the design, implementing and testing of the data acquisition and logging of the GonioTainer
will be described. Wireless communication and power supply will not be addressed here, this is the
task of the others subgroups. Although power and communication is beyond the scope of our task, it
will still be taken into consideration in order to have the most efficient GonioTrainer.
The client wants to measure the knee angle (or any other joint in the body) with a contactless angle
encoder. The measurements will determine how an athlete is performing on a specific sport activity,
such as speed skating. The measurements need to be transferred to a smartphone for data analysis,
or need to be recorded in another way in the case the smartphone is not available. The last case
corresponds to an official competition, were measurements devices are allowed, but no smartphones.
After the competition, the measurements will be uploaded to the smartphone. When finishing a session,
the user should have easy access to the data. With this data, more detailed analysis can be performed
on a dedicated computer.
Using the measurements from the joint angle and dedicated algorithms, it is possible to determine
whether the athlete needs to change its posture. If this is the case, the feedback module will make
sure the athlete is aware of it. Because the user is won’t notice that he/she is doing something wrong
and his/her focus may lay on something else than his posture (e.g. during high intensity training,
posture and technique is often sacrificed for speed and power), it is important to provide the feedback
on the right moment. According to the client, the perfect moment to give feedback is 50ms after the
placement of the skate on ice (for speed skating). The client also concluded that it is not possible to
detect this placement moment with only the angle measurements. For this, the client wants an Inertial
Measurement Unit (IMU) to be available on the GonioTrainer. With this unit, the placement moment
should be easily found using accelerometer measurements.
The previous issues will be addressed in this report, taking the communication with the smartphone,
power supply and feedback module for granted. Algorithms regarding any kind of sports are not dis-
cussed here. The intention of this project is to provide the client with the electrical system of the
GonioTrainer, so they can further develop their product with their knowledge on a robust system.

2.2. Design Requirements
The GonioTrainer consists of three parts: the goniometer, the smartphone and the feedback module.
In order to use the GonioTrainer, the athlete will place the goniometer on the joint to be measured;

3

4 2. Problem definition

Figure 2.1: Artist impression of the goniometer on an ice skater [2]

the feedback module is placed where he/she feels comfortable receiving feedback. Finally he/she will
link both devices to his smartphone via Bluethooth. The athlete is now ready to start his training. The
GonioTrainer must be able to run continuously for at least 3 hours. This implies that the power supply
should at least provide energy for the specified 3 hours. The power supply is implemented in [3].

2.2.1. Physical specifications
The goniometer should weight less than 67 grams and fit into cylindrical enclosure of 5mm height and
35mm diameter. The goniometer will have two arms with straps at the ends to attach the device to
the athlete. Figure 2.1 shows an artist impression of the goniometer on an ice skater. The feedback
module should weight around 33 grams and fit into a 10mm x 17.5mm x 30 mm enclosure.
The GonioTrainer needs to be water resistant. This implies that the goniometer and the feedback
module must have as little as possible physical ports. The less ports, the more easy it is to make the
enclosure waterproof. The GonioTrainer will be used in damp, sweaty and/or wet environments with
temperatures ranging from -10 to 40 degrees celsius.

2.2.2. System specifications
The GonioTrainer must measure the joint angle with a sample rate larger than 60Hz, preferably 100Hz.
In order to measure the angle, the client specified the AS5600 magnetic encoder. The magnetic en-
coder will be placed in the centre of the goniometer. The measurements will be send real-time via
Bluetooth to the smartphone. The smartphone will decide if it is appropriate to give the athlete a stimu-
lus. If a stimulus is to be given, the smartphone will instruct the feedback module via Bluethooth to do
so. Besides themagnetic encoder, the goniometer must be equipped with an IMU (inertia measurement
unit) with the same specifications as the IMU of the iPhone 4s smartphone.
The measurements from the magnetic encoder and the IMU need to be recorded. How the measure-
ments are recorded is not specified by the client, as long as all the data is available at the end of a
training ready to be analysed by a personal computer.
The GonioTrainer must also meet the following specifications:

• The software licenses and tools must be freely available.

• Real time calculations such as a peak detection must be possible.

• IMU with interrupt system

• The whole electrical system for each GonioTrainer must fit in a €150 budget for a batch of 10
pieces, and €60 budget for a batch of 100 pieces.

• The GonioTrainer is required to have a minimum life span of 3 years.

3
Related Search

Before the implementation and design of the GonioTrainer is described, the different components will
be discussed and explained.

3.1. Microcontroller
The goniometer can be considered to be an embedded system, therefore a MicroController Unit (MCU)
will be used. The client expressed great interest in the nRF51822 System on Chip (SoC) by Nordic
Semiconductors. This SoC combines a 2.4 GHz transceiver with a ARM® Cortex-M0 CPU together
with a range of peripherals and memory options. The ARM Cortex Microcontroller Software Interface
Standard (CMSIS) hardware abstraction layer is implemented on the SoC and is available for the CPU.
The interesting peripheral blocks for the goniometer are the Serial Peripheral Interface (SPI) which
enables full duplex synchronous communication, and the Two-wire interface (TWI). The TWI makes it
possible to implement IኼC protocol to interconnect up to 127 individual devices. The nRF51228 has
also 31 general purpose I/O pins, which should be more than enough for our purposes.
Nordic Semiconductor is not the only one offering a Bluetooth Smart SoC solution. Argenox Technolo-
gies1 offers a guide explaining the most relevant Bluetooth SoC currently available on the market [4].
In this guide, besides the nRF51822, the following SoC are nominated as good candidates:

1. Texas Instruments CC2650

2. Dialog Semiconductor DA14580

The solution provided by Texas Instruments is discarded for the GonioTrainer because only Code
Composer Studio and IAR’s Embedded Workbench can be used for software development[5]. Both
tools are not open source nor free. second option, fromDialog Semiconductor is a very attractive option,
featuring the lowest current consumption of all the options mentioned on the guide. Unfortunately, the
software development is based on µVision IDE from Keil[6], which is again not open source nor free.
The nRF51822 results to be the best option for the GonioTrainer. Besides meeting the hardware
specifications, it also provides open source and free software development kits.

3.2. Sensors
Dedicated sensors are used to measure the posture of the athlete. The goniometer must be equipped
with the magnetic encoder (already specified by the client) and an Inertial Measurement Unit (IMU).

3.2.1. Joint angle
The client specified the use of the AS5600 (or AS5601) by AMS for the angle measurement, one is
being sold as a contactless potentiometer and the other as a contactless encoder. The sensing part
is the same for both. The AS5600 has a complementary analog or PWM (Pulse Width Modulation)
1Argenox Tecnologies is a company that provides costumers with design, manufacture, assembly, test and certification solutions
for Bluetooth integration in their projects

5

6 3. Related Search

output while the AS5601 has a push-button output [7][8]. The ICs have a 12 bit resolution, measuring
0 to 360 degrees and need to receive a supply voltage of either 3.3V or 5V with 6.5mA supply current.
The sample rate is 6667kHz. The sensor supports random/sequential read via the Fast-mode Plus IኼC
protocol (up to 1Mhz [9, p. 3]). The MCU only needs to read the values from the ANGLE register to
obtain the current value at the moment of reading.

3.2.2. Inertial Measurement Unit (IMU)
The Inertial Measurement Unit(IMU) is needed to find the exact placing moment of the skate on ice.
The IMU could also provide significant information when using the GonioTrainer in sports other than
skating. According to the specifications, the GonioTrainer must be equipped with an IMU with the
same specifications as of the iPhone 4S or later. The IMU of the iPhone 4S consists of accelerometer,
gyroscope and magnetometer [10]. For the GonioTrainer, only the accelerometer and the gyroscope
are of interest. An accelerometer is a transducer that measures the force exerted on a mass when
subjected to an accelerating motion [11, p. 48]. A gyroscope is used to measure orientation and is
based on the principle of conservation of angular momentum [12, p. 313]. A more detailed explanation
about accelerometers and gyroscopes is beyond the scope of this thesis.
Unfortunately, the are no public available specifications of the IMU from Apple (manufacter of the
iPhone). In order to chose the right IMU, the specifications were based on teardown websites, where
the iPhone 4s is disassembled in order to identify its component parts. We used the information pub-
lished by TechInsights. According to TechInsights, the iPhone 4S uses the LIS331DH accelerometer
and the L3G4200D 3-axis gyroscope, both from STMicroelectronic [13]. The specification from both
sensors can be found in table 3.1.

Device scale rate (Hz) resolution(bits)
LIS331DH [14] ±2/±4/±8/±16g2 0.5 to 1000 16
L3G4200D [12] 250/500/2000 °/s 100/200/400/800 16

Table 3.1: Specifications of the accelerometer and gyroscope in the iPhone4S

For a more efficient use of the available space on the goniometer, an accelerometer and gyroscope
on the same silicon die is desirable. This will lead to less physical connections and a more seamlessly
integration. The search for this device resulted in the MPU6050 by InvenSense. The MPU6050 unit
”is the world’s first and only 6-axis MotionTracking devices designed for the low power, low cost, and
high performance requirements of smartphones, tablets and wearable sensors”[15]. Some important
specifications are listed next:

• 400kHz Fast Mode I2C for communicat-
ing with all registers

• Input Voltage: 2.3 - 3.4V

• Temperature Range: -40°C to +85°C

• Programmable interrupt system.

• 10,000g shock tolerant

Figure 3.1: Orientation of Axes of Sensitivity and Polarity
of Rotation [16]

Besides the raw acceleration and gyroscopicmeasurements, the programmable interrupt systemmakes
theMPU an attractive choice. Each interrupt sourcemay be enabled and disabled individually. The data
ready interrupt is of special interest for timing purposes. The following three interrupts are of interest
for the GonioTrainer: Free Fall, Motion Detection and Zero Motion Detection. Each interrupt is gen-
erated based on two parameters: threshold and duration. Duration is the time the threshold condition

21g = 9.8፦/፬Ꮄ

3.3. Data storage 7

MPU-6050
Device scale rate (Hz) resolution(bits) operating current(A)

accelerometer ±2/±4/±8/±16g 1000 16 500μ
gyroscope 250/500/1000/2000 °/s 4 to 8000 16 5m

Table 3.2: Specifications of the accelerometer and gyroscope of the MPU6050

must be valid before generating the interrupt. The threshold condition for the interrupts are explained
in table 3.3. When a motion detection interrupt is generated, the Motion Detection Status register can
be read. This register reports the axis and polarity of motion which generating the interrupt (see figure
3.2). For example when a Zero Motion is detected, this register will also indicate when the Zero Motion
ceases to take place. The advantage of the interrupt system lies in decreasing the workload of the
microcontroller. By setting the threshold and duration parameters, it should be possible to detect the
placing moment of the skate. If it turns out that it is not possible to detect the placing moment solely
using the interrupt system, a peak detection algorithm must be implemented in the microcontroller (see
Appendix A).

+Z -Z +Y -Y +X -X Zero motion

Figure 3.2: 8 bit Motion Detection Status register. If an Motion Detection interrupt is generated, the 1’s in this register will indicate
the direction and orientation of the accelerometer that exceeded the threshold

Threshold Description [17]
Free Fall Detected when the absolute value of the accelerometer

measurements for the three axes are each less than the
detection threshold.

Motion Detected when the absolute value of any of the accelerom-
eter measurements exceeds the Motion detection thresh-
old.

Zero Motion Detected when the absolute value of the accelerometer
measurements for the 3 axes are each less than the detec-
tion threshold. Unlike Free Fall or Motion detection, Zero
Motion detection triggers an interrupt both when Zero Mo-
tion is first detected and when Zero Motion is no longer
detected.

Table 3.3: The MPU-6050 has a programmable interrupt system which can generate an interrupt signal based on this three
thresholds.

3.3. Data storage
Besides direct feedback, O’sports wants to analyse the posture of the rider after a training or a specific
exercise. Before the analysis takes place, the measurements of the sensors need to be stored during
the to-be-analysed race (data logging). In the near future, additional sensors might be added to the
system. This issue will be also taken into consideration for the data logging.
Starting with one magnetic encoder which will provide a 12-bit word (𝑛 = 1), equation 3.1 can be used
to calculate how much storage capacity is needed to store the raw data of the sensor with a sampling
frequency of 100Hz. A top-athlete can train up to 3 hours (10800 seconds) continuously, so this value
will be used as the sampling time. Filling in these values, one finds approximately 1,6 Mbyte3 of memory
storage is needed (for one sensor).

Capacity = word length (bits) × frequency (1/seconds) × sampling time (s) × n (3.1)
31 byte = 8 bits. 1kbyte = 1024 byte. 1 Mbyte = 1024 kbyte

8 3. Related Search

In the search for a more lighter, efficient and smaller goniometer, data logging on the device is disad-
vantageous. If the storage of the data is done in the goniometer, this will slightly increase the weight
and size, and impose some constrains on the energy consumption. In order to store the measure-
ments, advantage of the smartphone can be taken. During the direct feedback, the smartphone will
receive the measurements and determine if a stimulus is necessary or not. Because the smartphone
is already receiving the measurements, it could also log the entire ride. An extra advantage of this
method is that the goniometer will have one less physical port, making it easier to make it waterproof.
The smartphone data logging will be discussed in the section 3.3.2. Although the idea of the Gonio-
Trainer is to provide feedback during and after a training, how the athlete performed during a real race
is also valuable information. During a race, the rider will not receive direct feedback nor will he/she
carry a smartphone. The GonioTrainer will thus need on-board memory to record the data during the
race. After the race, the information could be transferred to the smartphone and proceed as usual.
This will be discussed on the section 3.3.1.

3.3.1. On-board
The goniometer must store data when the smartphone is not available. Once the smartphone is avail-
able, the goniometer can upload the data to the smartphone. Because it is not known when the smart-
phone will be available again, the data storage in the goniometer must be non-volatile. EEPROM
(Electrical Erase Programmable Read Only Memory) and flash are the most known types of non volatile
memory [18]. Flash is actually the name for a specific type of EEPROM. The difference lies in the fact
that flash erases large blocks of memory bits in parallel. This makes the erase operation faster.

Flash memory by Spansion The 512 Mbit (64 Mbyte) MirrorBit® Flash Non-Volatile Memory from
Spansion (S25FL512S) was chosen as the storage device in the goniometer. The amount of memory
available in this device is more than twice as needed to store both the measurements from magnetic
encoder and the IMU. Still, 64 Mbyte was chosen based on the multi-sport and the sensor extension
idea. The most relevant specifications of the S25FL512S are listed next[19]:

• Serial Peripheral Interface (SPI)

• Read at 6.25 Mbytes/s

• 512-byte Page Programming buffer (1500 kbytes/s)

• 256-kbyte Logical Sector Erase (500 kbytes/s)

• 100,000 Program-Erase Cycles on any sector typical

• 20 Year Data Retention typical

• Core Supply Voltage: 2.7V to 3.6V

• Temperature Range: -40°C to +85°C

• Maximum current consumption of 16mA while reading, 100mA while programming or erasing.

• Standby current consumption of typically 70µA

The flash IC consists of a main flash array divided in 256 sectors, containing each 512 pages with 512
bytes. A 32-bit byte resolution address is used for the address space (see figure 3.3).

not used (5 bits) sector(8 bits) page(9 bits) byte(9 bits)

Figure 3.3: 32-bit address format of the flash memory.

It is possible to read and program the flash array one byte at the time, but it is only possible to erase
per sector. Erasing a sector means setting all the bits in the sector to logic 1. In order to (write data)
program the flash array, the data is first passed to a 512 byte buffer (the size of a page), so a maximum
of a page of data can be programmed at the time. Programming means turning the logic 1’s on an

3.4. Software 9

erased byte to logic 0 when needed. Once a bit is set to 0, it can only be set to 1 by erasing the entire
sector where the bit is located. To read from the flash array, it is only necessary to specify the start
address, subsequently the device will output the data and automatically go to the next higher address
in sequential order until stopped by the MCU, in Spansion words: ”The entire memory can therefore
be read out with one single read instruction and address 000000h provided”[19, p. 90].

3.3.2. Off-board
During a training or exercise, the smartphone will process the data received from the sensors to deter-
mine if a stimulus is needed. Because the client is interested in analysing the performance after the
ride, the smartphone will also record the measurements. The client showed interest in being able to
access the recorded data through the internet. When a training session is finished, the smartphone
will upload the measurements to a server, where the client can have easy access to the data. The
communication between the goniometer and the smartphone will be through Bluetooth Smart and the
smartphone will be running on the Android OS. Bluetooth Smart is only supported in Android version
4.3 or later [20]. The memory requirements for this version states that the smartphone must have at
least 512MB of non-volatile storage available for application data [21]. Thus the smartphone used for
the GonioTrainer will have enough storage capacity to record the measurements of a training. The
requirements for the smartphone also state that it must include support for one or more forms of data
networking (either WIFI or cellular network coverage). Transfer of the measured data to a server should
be possible, this will be discussed in the next section. The smartphone will act as a buffer between the
goniometer and the database. Once the data is uploaded to the database, it can be removed from the
smartphone.

3.3.3. Data format
The client has been working with the comma separated format (CSV) format for the data processing.
This format has widely been used for exchanging data between programs. There is no a formal specifi-
cation, but the RFC 4180 standard defines that each record is separated by a line break and each field
in a record is separated with commas. Common usage for the records is ASCII [22]. At the end of each
training, the client will have easy access to a CSV file with the measurements ready to be analysed.

3.4. Software
The software part of this project can be split up into three parts: a Java application for user interaction,
a website for easy access to the measurements and a database to store the information regarding each
training session. The application on the smartphone can send a request to a PHP-script found on the
server[23], which does all the processing work and registers all data in a MySQL (Structured Query
Language) database. Eventually the file can be retrieved from a web page for extensive analysis of
the training session or race. Retrieving the data measurements on a PC gives rise to the opportunity
to do extensive calculations and graphical analysis.

3.4.1. Java application
The first version of the smartphone application will be developed for Android. Although Android is our
focus, other operating systems are explored for similar file upload capabilities. From Android OS 2.2+
onwards file upload is supported, however, the GonioTrainer requires a minimum of Android 4.3 for
the Bluetooth Smart link. iOS 6.0 and later, as well as Windows Phone 8.1 and higher are supporting
operating systems [24], which makes the coverage on the smartphone industry practically completely
for later development of the GonioTrainer.

Programming language Java is programming language used to develop Android applications. Java
was created later than C and C++. It added improved functionality that lacked in both programming
languages. Building applications in Java is especially advantageous because of the ease it has to
import libraries. The Android SDK is a developer tool that helps building, testing and debugging apps.
It contains many standard Java libraries (data structure libraries, math libraries, graphics libraries,
networking libraries and everything else you could want) and some additional special Android libraries.
Uploading a file requires one additional library not included in either the standard Android nor standard
Java library: the HttpComponents library. HttpComponents is made available by Apache Software

10 3. Related Search

Foundation [25]. HttpComponents provides several classes that can be used to accomplish Hypertext
Transfer Protocol (HTTP) connections and stream data through it. HTTP is a communication protocol
between a web client (Android device in our case) and the web server [26]. An HTTP request is a class
that consists of HTTP style requests, line requests, method requests, URL requests, header field and
body content. HTTP posting requests will be able to send the file from the smartphone to the server.
Themost commonmethods that are used by a client in an HTTP request are: GET, HEAD, POST, PUT,
DELETE, TRACE and OPTIONS. These are included in the HttpComponents library and are named
as: HttpGet, HttpPut, HttpHead, HttpPost, HttpTrace, HttpDelete, and HttpOptions [27]. HttpPost will
be used to request for acceptance of the origin server to enclose the entity in a posting request and the
actual posting the entity to the URL.

Developing environment Eclipse is a popular IDE (Integrated Development Environment) to develop
Android applications. It’s is open source and has many options to customise the environment and
adding useful plug ins [28].

3.4.2. Website
O’Sports wants the measurements to be easy accessible at the end of each training session. No fur-
ther specifications were given. Taking advantage of the smartphone Internet connection nowadays,
a clever solution is to upload the data directly to an online server and retrieving them via a website.
Most of the time, websites are build via the HyperText Markup Language (HTML). HTML is the most
frequent markup language used to describe the structure of a website. HTML contains only plain text
if no style is added. HTML files are hosted on at least one web server, which are only accessible via
the Internet through an Uniform Resource Locator (URL). [29]
HTML is static and therefore needs to be combined with Hypertext Preprocessor (PHP) to meet the
GonioTrainer’s needs to update the website whenever files are added or deleted. PHP is an HTML-
embedded server side scripting language, which gives web developers the opportunity to create dy-
namic web pages. The PHP-code is executed on the web server and afterwards its results are send to
the user’s computer to display it on the browser [30].

3.4.3. Database
Databases are digitally organised collections of data. Preferably all information regarding the Gonio-
Trainer should be stored in a database. In a future, hundreds of users might use the GonioTrainer, so
it is important that the data on the database is well-arranged. Every user should be able to request for
a specific training session from himself/herself from any date, any time and/or any training session.
MySQL is the most widely used Relational DataBase Management System (RDBMS). It’s capable
of being accessed and adjusted by PHP language. PHP is able to connect to the MySQL server, run
queries, and retrieve the results. SQL is the language used for managing data used in RDBMS. Queries
are the main SQL statements capable of selecting, inserting, updating and deleting specific data [31].

4
Implementation

Figure 4.1 is a block diagram showing how the described components of this thesis are connected.
The chosen joint angle sensor and IMU, as well as the external flash memory, will be driven by the
the nRF51822 System on Chip (SoC). The nRF51822 may perform digital processing on the mea-
surements before sending it via a Bluetooth link to the smartphone. The smartphone will do some
further processing on the measurements in order to determine if a stimulus is necessary (how this is
determined is beyond the scope of this thesis) as well as storing the raw data on an Internet server.
The client or end-user will be able to retrieve the measurements though this server to perform a more
detailed analysis on the data.

Figure 4.1: Block diagram showing the interconnection between the micro controller of the goniometer and its peripherals:
memory, IMU, rotary sensor, smarthone and server (feedback module is not shown).

In this chapter a detailed description will be given about the implementation of the system. The starting
point will be the nRF51822 SoC, which can be considered the heart of the whole system. The second
section will explain how the sensors are controlled through the IኼC protocol. In the third section, SPI will
be explained and how it is used to access the external memory, which is needed when a smartphone
is not available. Last section of this chapter deals with the connection between the smartphone and
a server for storing the measurements in the cloud. The reader should have a basic understanding
of Object Oriented programming. For the implementation of the GonioTrainer smartphone application
please refer to [32]. Figure 4.1 and the remainder of this chapter provide an abstract representation
how the different components are connected. For a more detailed representation on pin layout, the
reader is referred to appendix B.

11

12 4. Implementation

4.1. Microcontroller
TheRedBearLab nRF51882 development board was chosen to develop the system around the nRF51882
SoC (see figure 4.2). Nordic Semiconductor also provides their own development board, the nRF51
DK, but RedBearLab was chosen over Nordic Semiconductors because of its price and easy to acquire,
while still providing all the features needed. The SoC may be also referred as the host throughout the
remainder of this thesis.
There are three ways to program the nRF51882: using GCC with Nordic nRF51822 SDK, through the
mbed platform developed by ARM and with an Arduino library for nRF51882 developed by RedBear-
Lab themselves. The Nordic nRF51822 SKD provides an open source compiler free of charge where
one can take full advantage of the SoC, the price for this method is its complexity compared with the
other options. The Arduino library is an easy and simple way for people that are new to program-
ming. Arduino did not provide some advanced options, so this method was soon discarded for this
project. Using the Nordic SDK method, we could completely program and test the system ourselves
with Eclipse, but due to lack of time and complexity, the system will be implemented using Mbed. Mbed
is a platform developed by ARM which provides free software libraries and on-line tools for professional
prototyping. This platform gives an extra layer of abstraction to program the system. The goniometer
will be programmed in C++.

Figure 4.2: RedBearLab nRF51882 development board [33].

4.2. Sensors
Both sensors, the AS56011 and the MPU6050, will be controlled via the Inter-Integrated Circuit (IኼC)
interface. The IኼC-bus is a bidirectional 2-wire, Serial Data (SDA) and Serial Clock (SCL), bus for
efficient inter-IC control. The advantage of this protocol is that only two wires are used to communicate
with more than one device. Each device has an unique address.
The single Sensors class was created to use both sensors. The class uses the I2C library provided
by mbed. This library takes care of the signals between the nRF51822 and the sensors and with the
functions read() and write(), it is possible to write or read bytes to and from the sensors. The
important functions implemented by the Sensors class are described in table 4.1. When an instance
of the class is created, both setup functions are called. The update functions ensures that the sensor
measurements, at the moment, will be copied from the sensor registers to the nRF51822 register via
IኼC. Once the update functions are executed, the get functions can be used to read the measurements
of the sensors from nRF51822 memory.
The 12-bit sample from themagnetic encoder is found in two successive 8-bit registers. The first register
contains the 4 most significant bits (MSB), and the second register the remaining 8 bits. The same
applies for six 16-bit samples from the MPU6050 (one for each of the three axes of the accelerometer
and gyroscope). Besides the 14 bytes of sensor measurements, two additional register from the MPU
1This variant was provided by the client, no particular choice was made between the AS5600 and the AS5601

4.2. Sensors 13

Figure 4.3: Representation of IᎴC interconnections between sensors and nRF51822 SoC. The MPU6050 Int pin is connected to
one of GPIO of the SoC

Function Description
setupAngle() The current angle measured by the AS560x will be set as

the zero position
setupIMU() Set the interrupt system, the range from the accelerometer

and gyroscope and the sample frequency
updateAngle() The two 8-byte registers containing the 12-bit angle value

is read via IኼC and copied to the nRF51822 RAM
updateIMU() The 12 8-byte registers containing the 16-bit accelerometer

and gyroscopes values for each axis is read via IኼC and
copied to the nRF51822 RAM

getAngle() Returns the latest’s updated angle measurement
getIMU(n) Returns the latest 𝑛 byte updated IMU measurement. The

first 6 bytes corresponds to the accelerometer, and the re-
maining 6 from the gyroscope

Table 4.1: Functions for Angle and IMU read out. Each sensor has its own setup, update and get function.

are read. The registers contain information regarding the MPU interrupt system. The first byte indicates
which interrupt was generated, and the second register is the Motion Detection Status (see figure 3.2).
The maximum collection of data that can be obtained at a time from the GonioTrainer is 16 bytes.
The time it takes to copy the data from the sensors to the host registers depends on the SCL. For the
GonioTrainer, the SCL is set to 400kHz, which is the maximum SCL supported by the MPU6050. Each
data byte send via IኼC is accompanied with an acknowledgement bit [9]. Before we can read the data
from the sensors register, the register 8 bit address need to be send from the host to the sensor, thus to
read the values from one register byte, 17 bits are needed. To read data from successive registers, only
the start address need to be specified. The time to read 𝑛 successive registers can be calculated using
equation 4.1. To obtain the whole collection of data previously described, 4 successive measurements
are done: angle, IMU, interrupt status and motion status. Filling in the values in equation 4.1, the
readout of the sensor will take approximately 0.5ms (theoretically).

time(s) = 𝑛 ⋅ 9 + 9
frequency(Hz) (4.1)

4.2.1. Programmable Interrupt System
The MPU6050 is able to generate a Data Ready interrupt. The interrupt indicates that new data is
available from the accelerometer and gyroscope register. It will be used to indicate the microcontroller
to read (update) the new values. The interrupt is generated at the same sample rate as the gyroscope,

14 4. Implementation

which can be set from 33 to 8000Hz. Using this interrupt, there is no need to implement extra timers
on the microcontroller to read out the sensors. The Free Fall, Motion, Zero Motion interrupts can be
used alone or in combination to detect a specific gesture of the athlete. When one of this interrupt will
be generated was explained in the previous chapter.
For the specific case of identifying the positioning of the skate on the ice, a special peak detection
implementation for speed skating was designed. The reader is referred to Appendix A.

4.3. Flash memory
The Spansion S25FL512S 512 Mbit (64 Mbyte) flash non-volatile memory unit will be used to store the
measurements of the GonioTrainer when a smartphone is not available. The device connects to the
nRF51822 (the host) via a Serial Peripheral Interface (SPI).
The device supports the traditional SPI single serial input and output as well as two bit and four bit
serial commands. For our purposes, the single serial input and output option will be used to reduce the
complexity of the system and keep the interconnections between devices as low as possible. A block
representation is depicted in figure 4.4. Signals from the host to the memory device will be through the
MOSI (Master Out/Slave In) link and signals from memory to the host will go through the MISO (Master
In/Slave Out) link. The communication between the host and the memory device will be through 8-bit
commands, these indicate the type of information transfer or operation to be performed. Before the
communication between the host and the memory device can start, the host will drive CS (Chip Select)
low. In order to terminate the communication, the host will drive CS high. CS is used to select the
device on the SPI bus, this is needed when more than one SPI devices are connected to this bus. SCK
is the Serial CLock and marks the transfer of each bit between the host and the S25FL512S.

Figure 4.4: Block representation of SPI interconnections between flash memory and nRF51822 SoC.

To use the flash IC, the Memory class was created. Before the goniometer will start storing the mea-
surements, the flash array needs to be erased for the new data. For this, the bulkErase() function
was created. Erasing the entire 64Mbytes array can take up to 2 minutes [19, p. 4]. Therefore, a more
efficient sector based erase method was chosen. The time it takes to erase the memory now depends
on the amount of sectors used in the previous session. The new sectorErase() will check if the first
register of the first sector is erased. If not, it will erase the entire sector and proceed to the next until,
a sector is reached, where the first register has already been erased. Note that this implementation
makes it possible to only store one measurement session at the time. When a write, read or erase
operation is in progress, the Write in Progress bit in the Status Register will be set. This register can
always be read to check if the device is busy. isBusy() returns true if this bit is set, otherwise false.
This function is used during the erase operation to determine when the flash IC is done erasing and
ready to be programmed.
Once erased, the flash IC will be used to store the measurements from the sensors with a desirable
rate of 100Hz. This consists of the following steps:

1. reading the measurements from the sensors

2. passing them to the programming buffer

3. when buffer is full, recording the values to the main flash array.

It is necessary to ensure that these processes do not overlap. If so, the flash memory may be still
writing data into the registers, while a new measurement is being taken and loaded into the flash buffer
or main array. This will create a conflict, and timing issues may appear or run-time error could rise

4.4. Control logic 15

up. With a sample rate of 100Hz, there is 10ms span between the start of each measurement. In the
previous section has been encountered that the sensor read-out takes approximately 0.5ms. The time
it takes to load a byte into the memory buffer depends on the chosen SPI clock, which was conveniently
chosen to be the same rate as the IኼC clock. The time span between the end of loading into the buffer
and the start of the next measurements is therefore approximately 9ms.
The flash buffer is 512 bytes long. Each data read out consists of 16 bytes, meaning that after 32
measurements (or 320ms), the buffer will be full and the data needs to be passed to the main flash
array. The time to write the entire flash buffer into the registers, according to the data-sheet, is typically
0.3ms to a maximum of 0.75ms in extreme conditions (90°C). As a result, the previously calculated 9ms
interval is more than enough to store the data from the buffer into the registers, or ”memory dump”. In
order for this to work, a counter will be incremented on each period. After each 32th period, the counter
will be reset and the data on the buffer will be recorded into the main array. Figure 4.5 shows is a time
diagram for the reader to get an idea of how the data logging will take place. For convenience, the the
time needed to copy the data from the buffer into the registers is taken to be 0,5ms. Starting from 0ms,
the first memory dump will occur at 320ms, the second at 640ms and so on. From the figure it is also
clear that no timing issues can occur between reading the sensors, loading into the buffer and finally
dumping the data into the main flash array.

Figure 4.5: Timing diagram of the data logging. First the measurements from the sensors will be taken (red), and passed to the
memory buffer (purple). When the buffer is full, the data will be ”dumped” to the main flash array (red). Figure not to the scale

The pageProgram(address) and read(address) functions are used to specify the starting ad-
dress for the write(data) and read() functions. write(data) will copy the data byte into the
buffer and read() will return the value of the register addressed with pageProgram(address).

4.4. Control logic
The goniometer will be able to interact directly with the real world through a push button, which will
generate an interrupt and drive a LED (Light Emitting Diode). After careful analysis of the GonioTrainer
tasks, five different states were identified: idle, feedback, offline, read and off. Idle is the state at which
the power is on or after a reset; then the goniometer is ready and waiting for instructions from the
smartphone. During this state the smartphone can choose to set the goniometer into the remaining
four states. In the feedback state, the goniometer will read the measurements of both sensors, do
some data analysis and send the information in real time to the smartphone. The offline state is used
when the athlete wants to log the training or competition only, without feedback. During this mode the
athlete does not need to carry the smartphone (hence the name of this state) and the measurements
will be stored in the flash IC. The read state is used to read the measurements from the sensors stored
in the previous state and then transmitting it to the smartphone. The last state, off, will put the whole
system in minimum current consumption for storage. To implement each state, an interface (or abstract
class in C++ [34]) State was created. Each state will be derived from this interface. The State class
consists of four pure virtual functions: initialise(), execute(), pushButton() and exit().
The class also contains functions accessible to the derived state classes to control the LED.
In order to select the right mode and to make sure these perform as intended, a controller, the Con-
troller class, is created. The controller has a list with a reference to all the possible states and a
variable indicating the current state. The controller will set the current mode and call their functions
based on the inputs of the goniometer: the Bluetooth connection, the push button and the interrupt
generated by the MPU6050. When a new state is selected, the exit() function of the previous state

16 4. Implementation

initialise() execute() pushButton() exit()

IdleState N/A N/A N/A N/A
FeedbackState N/A Send measure-

ments to smart-
phone

Start reading
sensors

Stop reading
sensors

OfflineState N/A write measure-
ments to flash
IC

Erase flash
memory and
wait for button
to be pushed

Clear flags

ReadState N/A N/A Pass on data
from flash to
smartphone

N/A

OffState Set everything
in minimun
current con-
sumption

N/A N/A N/A

Table 4.2: For each state, the controller can call four different functions. Each function has a different task depending on the
current state, which is described on this table

is called. Thereafter, the initialise() function of the new state will be called. When the push but-
ton is pressed, the pushButton() function will the executed, and when the MPU6050 generates an
interrupt, execute() will run. See table 4.2 for a description of what the state functions do during a
particular state. The previous implementation is based on the strategy pattern, a software design pat-
tern that allows to change the behaviour of the program at runtime [35, p. 349]. An UML class diagram
of the goniotrainer is depicted in figure 4.6. It shows the relation between the different classes. Note
also that the GonioService class was included. This class is created by Rene Miedema and Ingo
Schilken for the Bluetooth communication.
When the nRF51822 is powered on (or reset), it will create an Controller object. After its creation,
the controller will initialise the sensors, create the different derived states objects and select the idle
state as default state. Once in the idle state, the controller will wait for the Bluetooth connection to select
a different state and call its functions based on the push button and MPU6050 interrupt. Interrupts2 can
make things easy, but special care need to be taken. Spending to much time in an interrupt could cause
timing problems and even run-time errors. Interrupts can form large queues when not used properly,
and prevent the system from returning to the main function.

Figure 4.7: Input/output goniometer

The Controller is implemented to be the go-
niometer’s highest level of abstraction. It should
be considered as a black box. The input is the
mode selector and a push button, and the output
are the sensor measurements and a LED (see
figure 4.7). The black box model provides a way
to integrate the system described in this thesis
together with the communication system devel-
oped by Ingo Schilken and Rene Miedema. The
LED is used to indicate the status of the goniome-
ter.

4.5. Cloud service
Succeeding the sensors read-out, conveying the data over Bluetooth to the smartphone and storing it
on a file created by the smartphone, the data will be uploaded to a server. This gives the user the ease
to easily download the measurements and perform extensive analysis on his/her training sessions.
Figure 4.8 depicts a simple flow-diargram for uploading the data, from the client side to the server side.

2An interrupt is a digital signal into a CPU that indicates some event has happened [36]

4.5. Cloud service 17

Figure 4.6: UML class diagram of the goniometer (mbed library not shown)

The smartphone implements the client side, creating the data file and setting up a connection with the
server. On the server side, a PHP script ensures that the file is copied on the server.

Figure 4.8: File upload split up into a client side and server side

4.5.1. Client side
On the client side, an Android application is run, which starts the process of uploading. An instance of
the (serverTask) class is created, which is a subclass of Asynctask that allows to perform back-
ground operations and at the same time execute tasks on the main threat3 (User Interface threat).
Asynctask automatically invokes four asynchronous steps when it is executed: onPreExecute(),
doInBackground(), onProgressUpdate() and onPostExecute()[38]. Figure 4.9 visualises the
implementation of subclassing the Java application.
onPreExecute() is invoked on the UI thread before a task is executed. Right after the previous
function is finished, doInBackground() is executed. onProgressUpdate() is only invoked when
publishProgress(Progress...) is called, so this function is optional and not used on the Gonio-
Trainer since the text files are relatively small (at most a few Mbytes for long measurements). Finally
onPostExecute() is invoked immediately after the background computation finishes.
AsyncTask is an abstract class provided by Android and is inevitable for tasks like file and network
accessing. As requests are send out to the server, response will be awaited. Android is a service
with single thread modes, so in case of waiting for response equals to non-responsibility of the screen.
In case of long operations in the UI thread, the screen is thus non-responses for a long time. Android
won’t even let the smartphones connect to internet without the use of Asynctask and returns the Main
Thread Exception error. This is also the reason AsyncTask is used for uploading the file to the server,
3A thread is a concurrent unit of execution[37]

18 4. Implementation

Figure 4.9: ServerTask is a subclass of AsyncTask. ServerTask makes it possible to upload a local file to an internet server.

so that the UI threat stays active.
uploadFile() is the function that is invoked in doInBackground() and is responsible for uploading
the file to the server. uploadFile() uses a small library called HttpComponents, which is explained
in section 6.3.1. Figure 4.9 shows that an instance of ServerTask contains the following three variables:

1. filePath defines the path of the file on the smartphone.

2. uploader defines the user that uploads the data file.

3. postReceiverURL is the URL to which the file is going to be posted.

Those three strings are arguments of the function uploadFile().
After establishing connection with the use of two classes from HttpComponents library (HttpClient
and HttpPost), data and additional information (time, date and name of uploader) is ready to be
posted. First a MultipartEntity needs to be set up, so it has a request entity suitable for an HTTP
multipart POST method. This creates our to be send data bundled and thus allows us to send multiple
parts at once. Once bundled, the data is send to the server using HttpPost and a response from the
server is received if an error has occurred.
A pseudo code of uploadFile is shown in algorithm 1. This is written such that it could be imple-
mented in other programming languages, especially for future development of the iOS application [39].
AFNetworking is a method that works on similar basis for iOS applications using HTTP post requests.

Algorithm 1 Uploading file
ℎ𝑡𝑡𝑝𝑐𝑙𝑖𝑒𝑛𝑡 = new DefaultHttpClient
ℎ𝑡𝑡𝑝𝑝𝑜𝑠𝑡 = new HttpPost
𝑒𝑛𝑡𝑖𝑡𝑦 = new Multipartentity
Create new File from filePath
Add file and additional information to entity
Post 𝑒𝑛𝑡𝑖𝑡𝑦
Execute ℎ𝑡𝑡𝑝𝑝𝑜𝑠𝑡
Receiving responses

4.5.2. Server side
The server side consists of a website segment and a database segment.

Website
The server side responds to a posting request using a PHP script, which executes and stores the
information that was send on the client side. The PHP script can be divided into three parts:

1. Initialising variables.

2. Checking whether the file path exists in the server storage.

3. Storing the file and concurrently saving its name and appended information in a MySQL database.

4.5. Cloud service 19

Initialising variables At first the file folder, where the file is ought to be stored, is defined. After which
the file name of the requested file is gathered and combined to a new file path. This is the path where
the file can be eventually found.

Checking file path This is where we get to point at which the existence of the file path is checked.
This is done by using the existing PHP function: file_exists(). A while-loop will go through this
function, as the return value is true. In the while-loop the file is split up in parts using pathinfo(),
which is able to return the directory name, basename, filename and extension. This enables us to set
up a counter and walk through the file paths and rename the file as long as it exists. This is how a
eventually an unique file path is brought forth.

Storing file As a unique file path is found, the file is ready to be stored. This is done through a
standard function defined in PHP: move_uploaded_file(). If the file is stored succesfully, the ad-
dress of the file and the supplemented information is then inserted into a MySQL database using a
SQL query. The address, user, time and date of transmitting can be found in the MySQL database.
Date_default_timezone_set(), date() and time() are standard defined PHP functions that
are able to return the current date and time. This opens up the possibility to search for specific training
sessions on the website using database queries.

Database
Organising data into overviewable tables is the key to a well-ordered database. Since the GonioTrainer
doesn’t retrieve heaps of data only one table is created (see figure 4.10): SessionList.

Figure 4.10: Table SessionList and its field values

Session is an an integer-type unique field that keeps record of the sessions that have been recorded. It
is defined with a Primary Key that serves as a unique ID and can easily be used to request for specific
rows in the table. Address is utilised as string that refers to the path where the specific training session
is stored. The string is captured in the MySQL database as char of length 255. The user that has
uploaded the file is recorded as User in the database. The field has type varchar and has a maximum
length of 30. Date and Time are two fields that represent the specific moment of uploading the file.

5
Ethics

Behind every engineering project, the same question always arises: is the project actually ethical?
According to the Dutch ”3m-responsibility” model [40], the engineer is responsible for the well-being
of the people (Mens), the society (Maatschappij) and the environment (Milieu). The engineer should
always take these three elements into consideration during the project, taking care that no element is
left behind or neglected. When the three elements are in balance, the project is said to be sustainable,
and therefore ethical.

5.1. People
The GonioTrainer has the ability to measure, collect and analyse data and behaviour from a human
being and upload this information on the Internet. With this point of view, the GonioTrainer can be
considered an element of the ”Internet of Things” (IoT). The IoT is a term formulated by Kevin Ashton
in 1999 [41]. Although the term is more than 15 years old, it started to gain popularity the last couple of
years. The idea is not only that people can interact with the Internet, but ”things” can too. Nowadays,
the number of new connected devices (except smartphones) could reach to 8 billion per year, which
results in 28 billion connected devices in 2020 [42]. These products will collect a vast amount of data
and make them available to the manufacturer. With all this information, the manufacture has a better
way to understand the customer. Understanding the user means that he/she will receive a product that
better meets his/her needs. All in all, it may sound great that in the future products will better suit our
needs, but this comes with the cost of privacy.
The end user may not be aware that information about him is being recorded and passed on. With the
information gathered by the client, gender, age and health may be deduced. It is the responsibility of
O’Sports to make this information not public nor sell it to third parties.

5.2. Society
The GonioTrainer is a new concept. People may dislike the idea that in future, traditional coaching
will be replaced by smartphones. If every athlete is to be trained the same way, sports may lose their
charm. O’Sports made clear that the GonioTrainer does not intent to replace the coach, but aid him.
Not everyone might believe these words, which could lead to the fact that the GonioTrainer will even-
tually face the same situation the Clap skates faced when introduced. Not everyone believed that it
could significantly improve the performance during a race, which let to big discussions. It took some
years, but nowadays, the Clap skate is almost a must-have for the experienced skater[43]. The Go-
nioTrainer has the advantage that it is not intended to be used during competition, which could make
the acceptance more easy and avoid starting controversies.

The GonioTrainer has the potential to increase the enthusiasm of the ”normal” people about sports.
The idea to train with a professional coach is the dream of many. With the GonioTrainer, this dream
can come true. Planning more practises with real-time feedback and having the availability to analyse
your own performance between the training sessions is a great way to stay in shape and avoid injuries.
This could lead to a more healthy society, currently dominated by the fast food chains [44].

21

22 5. Ethics

5.3. Environment
When developing a product, the designer must not only regard the function of the product, but also
think about the impact it could have on the environment, during and after its life span. Devices using
rechargeable batteries, like the GonioTrainer, should take special care of the batteries when these are
replaced or disposed, as they can case several damage to the environment [45]. A battery recycling
program is a great way to avoid environmental contamination.

6
Results

A frame that can be attached with two straps on the legs of a test person was used to test the imple-
mentation design explained in chapter 4 . On this frame, the sensors were mounted and connected to
the microcontroller through flexible cables (see figure 6.1). With this frame, a working prototype of the
goniometer can be realised and tested.

Figure 6.1: Test settings consisting of the frame and the microcontroller and its peripherals

6.1. Sensors
The serial output of the RedBearLab nRF51822 was used to pass on the measurements of the sensors
to a computer. A serial port terminal application on the computer made it possible to print the measure-
ments on the computer screen. With this method, it was straightforward to certify the measurements
from the sensors. Figure 6.2 shows a screen shot of the sensor read-out on a flat table. The accel-
eration of approximately 1g on the z-axis (see figure 3.2.2) of the accelerometer corresponds with the
acceleration exerted by the Earth on every object due to gravity. Printing the measurements on the
computer screen, also verified that the Data Ready interrupt works as intended and the sensor read
out can be done without fault at 100Hz.

23

24 6. Results

Figure 6.2: Screenshot of the sensors read out on a flat table. The acceleration angles correspond to the angle the z-axis of the
MPU is making with respect to the Earth’s surface.

Time (second)
15 16 17 18 19 20 21 22 23 24 25

A
cc

el
er

at
io

n
(g

)

0

20

A
ng

le
 (

de
gr

ee
)

100

150

Accelerometer
Kneeangle

Figure 6.4: Sample from the field test, showing the knee angle during a walk and one axis the acceleromenter.

6.2. Flash memory

Figure 6.3: Data logging in progress. Yellow signal is the Data
Ready interrupt, generated at a 100Hz rate. The blue signal is
CS, indicating that the memory buffer is being filled.

Extending the sensor testing, after each sensor
read-out the measurements were loaded into the
flash array as discussed in section 4.3. An oscil-
loscope was used to verify the correct behaviour
of the data logging. Figure 6.4 demonstrates that
our timing prediction in figure 4.5 holds. The yel-
low signals corresponds to the Data Ready inter-
rupt, indicating that the microcontroller is updat-
ing the sensor values at that time. After 32 pe-
riods, the memory buffer is full and a data dump
will take place. Right after CS (blue signal) goes
high, the the data dump will take place. After-
wards, the memory buffer will be ready for the
next period. As soon as the next Data Ready In-
terrupt is generated, a small gap of approximately
1ms is observed (sensor read out via IኼC), then
CS goes low indicating that the buffer is being
filled again.
A field test was done with the prototype, which consisted of walking and recording the measurements.
The measurements were downloaded to MATLAB afterwards via the serial port. Figure 6.4 shows a
sample of the measurements. The test was done to find out whether the recorded data was meaningful

6.3. Cloud service 25

Figure 6.6: Screenshot of the web page.

and to ensure that the system was robust enough for real world testing.

6.3. Cloud service
Cloud services has been tested using the smartphone and the Internet. Both section 6.3.2 and 6.3.1
below show how the results were retrieved on the website.

Figure 6.5: Screenshot of a simple
Java application for uploading a file

6.3.1. Android application
A simple Android application was created, containing only one button
triggering the upload of a local file on the smartphone to the server
(see Figure 6.5). The startUploading(View view) function is
activated starting a new session. At the same time, a text file is cre-
ated by WriteFile(). After the file has been created, the instance
ServerTask is created and executed (see section 4.5.1) that is respon-
sible for the file upload.

6.3.2. Website
The web page (see figure 6.6) shows the uploaded files. For testing
purposes, a file can also be uploaded from the site, in order to show
that the server and PHP scripts worked without the use of a smart-
phone.
The table shown on the right shows the data retrieved from the database
in chronological order with the newest entry showing up first. The en-
tries on the table demonstrates that the file uploading from a smart-
phone to a webserver works as desired.

6.4. Integration
The Controller class in section 4.4 was tested via the serial input.
It was possible to choose between the different states of the goniome-
ter from a keyboard. The whole system described in this thesis is now
ready to be tested with the Bluetooth communication system from Ingo
Schilken and Rene Miedema. The total size of the implementation is
49.5kbytes, far from the maximum of 256kbytes allowed. The first test
consisted of setting the goniometer in the desired state. The LED in-
dicated that this worked. Next data logging was tested. The goniome-
ter was successfully set in the Offline state. With the Read state, the

26 6. Results

measurements stored on the flash IC can be transferred to the smart-
phone. The measurements could be retrieved on the website. At this
point, the integration is a success. The last test is the real-time read
out of the sensors. As soon as the test started, the whole system
crashed. Timing was double checked by both groups, but no timing
conflicts were found. For the Bluetooth communication between the
goniometer and the smartphone, the S130 SoftDevice was used on
the nRF51822[32]. The SoftDevice ”integrates a low energy controller and host, and provides a full and
flexible API for building Bluetooth low energy System on Chip (SoC) solutions” [46]. On a later stage,
it was discovered that the SoftDevice restricts the access to the Programmable Peripheral Intercon-
nect(PPI). The PPI ”enables different peripherals to interact autonomously with each other using tasks
and events without use of the CPU” [47]. This could be the reason that the measurements could not
be passed on to the smartphone in real-time mode. Our suspicions where verified by different posts
in the forums from Mbed and Nordic Semiconductors. A conflict exists when using the TWI peripheral
and the SoftDevice at the same time.

7
Conclusion

The aim of this project was to develop a functional prototype of the GonioTrainer that satisfies the
specified design requirements. Chapter 6 describes the results of the tests on the requirements. This
section compares these test results with the requirements, and verifies if those are met.

7.1. Evaluation of requirements
7.1.1. Costs
The costs for components in the electrical system (excluding casing) are calculated for respectively a
batch of 10 and 100 pieces:

1. 10 pieces - €86.76. Requirement: €150

2. 100 pieces - €67.01. Requirement: €60.

Details of the costs for the specific components can be found in tables C.1 and C.2. The batch for 10
pieces has met the requirements easily. However, the amount for 100 pieces exceeds the requirement
by €7.01.
For the batch of 100 pieces, the requirement was not met. However, the memory is the only component
in our part that has been ascertained by the client, that is the only component which could be cut down in
costs. As the memory size is larger than specified, it could be decreased to lower the costs. Replacing
the Spansion S25FL12S 512 Mbit (64 Mbyte)by the Spansion S25FL256S 512 (32 Mbyte) Mbit reduces
the costs for a batch of 100 pieces by €1.68. This won’t make any sense in achieving the requirement.

7.1.2. Sample rate
Reading out sensors has been successfully done at a sample rate of 100Hz. The requirements state
that desired frequency has to been set to a minimum of 60 Hz. This requirement of data acquisition
has thus been met.

7.1.3. Data storage
As the results show in figures 6.3 and 6.4 data storage has been implemented successfully using SPI.
The Spansion S25FL512S 512 Mbit (64 Mbyte) flash non-volatile memory unit can store sensor data
(both the magnetic decoder and the IMU) up to 11 hours. This complies with the requiring 3 hours of
data logging. The measurements are easily accessible via a cloud based server. The file is uploaded
by the smartphone after each training session and data is stored in a database.

7.1.4. Peak detection
Motion Detection Interrupt is able to give an interrupt successfully in a multi-sport scope. The custom-
made peak detection has been implemented with success for speed skaters specifically on the micro-
controller, therefore meeting the specifications.

27

28 7. Conclusion

7.1.5. Physical ports
Only one button and one LED were used to implement the goniometer’s control logic. The physical
ports were therefore kept as few as possible.

7.1.6. Integration
The state of the goniometer can be set via an Android application. The data logging without the smart-
phone is also possible. The data from the flash IC can be transferred via Bluetooth with success. The
real-time sensors read-out failed. Both the Bluetooth Smart connection and 𝐼ኼ𝐶 interface didn’t expe-
rience any problems on a stand-alone basis. However, as the results point out in section 6.4, using
Bluetooth Smart and the IኼC interface created a conflict.

8
Discussion

This chapter discusses recommendations meant to improve the behaviour of the GonioTrainer.

8.1. AS5601 push button
The current system uses a physical push button. In future, the AS5601 push button function can be
used to reduce the number of physical ports, making the GonioTrainer more resistant to water.

8.2. Programmable Interrupt System
The Programmable Interrupt System could not have been fully tested. A ”dry-skateboard” would have
been a perfect way to obtain measurements and find the right parameters.

8.3. Cloud service
The website and database could be improved by adding extra functionality. To secure the athlete’s
performances, log in service helps establishing privacy for athletes. The user should have a clear
overview on their training sessions and official competition matches separately. Graphical analysis is
another feature that is of real importance for the realisation of the final product, as well as the ability to
export data elsewhere. Furthermore, the user might want to look for specific sessions in the past, the
use of SQL queries is definitely very useful for achieving this. The database could also be expended
by user-specific information. The ability to compare performances with the world’s best might also be
a feature that would attract a lot of sportsmen.

8.4. Real time sensor read out
The TWI peripheral should be accessible via special functions provided by the SoftDevice API. Once
this problem is solved, the GonioTrainer will be completed.

29

A
Peak detection using the ARM®

Cortex-M0
A custom-made peak detection algorithm has been designed for speed skaters that finds the exact
placement on ice moment. This appendix provides some background information about the skating
technique and how this has lead to the design and implementation of the algorithm in C++withMATLAB.

A.1. Background
Detection of the peak requires specific information on the technique of the athlete. Research has
been carried out by O’Sports to define the knee angle in the different stroke in a race: start stroke,
straightaway stroke and the corner stroke. and what impact the knee angle could have on the athlete’s
performance [2]. It claims that a lower centre of gravity of the speed skater results in less drag (smaller
frontal surface) and longer push off distance in the stroke. Due to the longer push off distance, the
skater is able to transfer more energy and thus be faster.
Figure A.1 shows a measurement period of two strokes of the knee angle. Different moments can be
distinguished in a stroke:

• PI is the moment of placement of the skate

• SP is where the gliding phase starts

• EP represents the end of the push-off.

Figure A.1: Knee angle in two straightaway strokes [2].

time (samples)
2900 2950 3000 3050 3100 3150 3200

Ac
ce

le
ra

tio
n

(g
)

-1

0

1

2

3

4
Accelerometer (x-axis)

Figure A.2: Acceleration (x-axis) in straightaway strokes.

The moment where stimulus must be given is between the placement of the skate and the start of
the gliding phase. The minimum in knee angle that determines SP can not be recognised in every
speed skater. That’s why O’Sports wants to use data from the accelerometer. Figure A.2 shows the
accelerometer data in the x-direction of the skater (sideways). The red asterisk shows the peak to be
determined. The data preceding the peak is relatively constant, which is because the skate is in air.
As the skate touches the ice, the first peak is caused (red asterisk). Now the peak has been detected,
an signal should be send to the smartphone indicating that a feedback can be given (if necessary).

A.2. Design
The previous background information is required to find the right peak. The client provided real mea-
surements of the magnetic encoder and the accelerometer of a speed skater. These measurements

31

32 A. Peak detection using the ARM® Cortex-M0

were imported to MATLAB to do the processing part and finding particular peaks for that specific speed
skater. However, the client pointed out that these measurements are not certain for every speed skater
and thus needed a robust algorithm.
With the knowledge that exists for the skating technique specific peaks can always be determined, the
algorithm could be designed sturdy. The end of the the push-off (global maximum of one single strike),
the valley (global minimum) after and the peak (local maximum) thereafter are detectable for every
speed skater. The MATLAB function findpeaks() is used to detect every useful peak to finally detect
the two local maximum and minimum marked by the red asterisks found in figure A.3. Input arguments
give the opportunity to remove unwanted peaks from desired peaks. Three input arguments have been
used [48]:

• minPeakHeight, returns only peaks higher than a predetermined value.

• minPeakDistance, returns only those peaks that are at least the predetermined number of sam-
ples apart from each other.

• Threshold, used to pick out those peaks that have a minimum height difference as defined by
’Threshold’.

The two marking points assign the interval in which the accelerometer data should be analysed and
detect the first peak that is gathered. The black triangle indicates the peak to be found.

time (sample)
1900 2000 2100 2200 2300 2400 2500 2600 2700

an
gl

e
(d

eg
re

e)

-20

-10

0

10

20

30
Kneeangle
Accelerometer

Figure A.3: MATLAB simulating the peak detection algorithm.

A.3. Implementation
The algorithm is implemented as a C++ Class, such that it could be executed on the ARM® Cortex-M0
microcontroller. The Peak class is created and consists of the attributes found in figure A.4. The input
are the measurements from the magnetic decoder and the x-axis of the accelerometer. The following
functions are declared in the class:

• PeakDetection() is the constructor required for an object to be created.

• setValues() is a function that initialises all parameters. Threshold, minPeakHeight and min-
PeakDistance are defined here for every peak. These parameters are adjustable such that the
algorithm can be optimised for every individual.

• saveAngle() and saveAccelerometer() are two buffers that saves the last three consec-
utive measurements. Its functionality equals the functionality of a shift register, which shifts the
measurements by one position in the array. The newest value added and the latest value is
removed from the array.

• Both functions findMaximum() and findMinimum() are used to detect local minima and max-
ima. The input arguments (specified in setValues()) could be utilised depending on which
specific peak is to be found. By checking the three consecutive values stored in the array and
taking the input arguments into considerations, the local minima and maxima can be found.

A.4. Results 33

• update() runs the algorithm. It detects the interval period in which the accelerometer data is
analysed for the placement peak. Since ice skating is a sequence of repeated periodic move-
ments, the end of the push-off (highest peak) can be used to indicate the starting point of one
period. Subsequently theminimum is found. Respectively themaximum andminimum afterwards
indicate the interval period. As the minimum is not detectable for every individual, a maximum
interval is set to 20 samples.

• isPeak() returns a boolean at the moment when the peak is found.

Figure A.4: Class Peak and its attributes and functions

A.4. Results
To test the algorithm, one period of the provided knee angle data was chosen, conditioned and im-
ported to the 33220A Fuction/Arbitrary Waveform Generator [49]. This arbitrary waveform simulates
the measurements taken from the AS5601. The results are depicted in figure A.5. The yellow signal
is the simulated knee angle. The blue signal is the digital output of the microcontroller. It is the correct
interval in which the accelerometer data should be analysed. The algorithm proved to be robust up to
3.5 Hz, which is by far larger than the maximum stroke frequency for speed skaters.

Figure A.5: Results of interval found using peak detection algorithm.

B
Pin layout

B.1. RedBearLab nRF51228

Figure B.1: Pin layout RedBearLab nRF51228[50]

35

36 B. Pin layout

B.2. AS5600 12-bit Programmable Contactless Potentiometer

Figure B.2: Schematic of AS5601 Contactless Potentiometer[7]

B.3. MPU-6050 Board GY-521 37

B.3. MPU-6050 Board GY-521

Figure B.3: GY-521 MPU-6050 breakout board [51]

Figure B.4: Schematic of MPU6050 (GY-521 Breakout)[51]

38 B. Pin layout

B.4. Spansion S25FL512S 64 Mbyte Flash Non-Volatile Memory

Figure B.5: Pin layout Spansion flash memory[19].

C
Costs

Below the costs are defined for a batch of 10 and 100 pieces respectively.

Table C.1: Costs for a batch of ten GonioTrainers

Component Quantity Price (euro) Amount Subtotal Store
Driver 10+ 3,7 1,00 3,7 Farnell

Charger 10+ 0,479 2,00 0,958 Farnell
DC-DC 10+ 6,92 2,00 13,84 Farnell

Bat1(300) 10+ 14,9 1,00 14,9 Farnell
Bat2(165) 10+ 14,39 1,00 14,39 Farnell

ISP 10+ 9,8 2,00 19,6 Texim-Europe
Flash 10+ 6,03 1,00 6,03 Farnell
IMU 10+ 5,87 1,00 5,87 Invensense

Magnetic decoder 10+ 2,44 1,00 2,44 Mouser
Vibration motor 10+ 6,77 1,00 6,77 Precision Microdrives

Total: 88,498

Table C.2: Costs for a batch of one hundred GonioTrainers

Component Quantity Price (euro) Amount Subtotal Store
Driver 100+ 2,53 1,00 2,53 Farnell

Charger 100+ 0,396 2,00 0,792 Farnell
DC-DC 100+ 3,56 2,00 7,12 Farnell

Bat1(300) 100+ 10,79 1,00 10,79 Farnell
Bat2(165) 100+ 9,8 1,00 9,8 Farnell

ISP 100+ 8,33 2,00 16,66 Texim-Europe
Flash 100+ 5,42 1,00 5,42 Farnell
IMU 100+ 5,59 1,00 5,59 Invensense

Hoeksensor 100+ 2,01 1,00 2,01 Mouser
Motor 100+ 6,3 1,00 6,3 Precision Microdrives

Total: 67,012

39

Bibliography
[1] L. Bardal. Measurement of frontal area of athletes in wind tunnel experiments. https://www.

ntnu.no/documents/11601816/b830b9bd-d256-42c4-9dfc-5726c0ae3596, 2009.

[2] O’Sports. Feedback system for speed skating.

[3] B. Bosma, M.C. Scoop. Bachelor of Science Thesis - GonioTrainer: Power supply and the Feed-
back Module. 2015.

[4] Argenox Technologies. A guide to selecting a bluetooth chipset. http://www.
argenox.com/bluetooth-low-energy-ble-v4-0-development/library/
a-guide-to-selecting-a-bluetooth-chipset/, 2015.

[5] Texas Instruments Incorporated. Cc2650 development kit. http://www.ti.com/tool/
cc2650dk, 2015.

[6] Dialog Semiconductor. Smartbond™ development tools. http:
//www.dialog-semiconductor.com/products/bluetooth-smart/
smartbond-development-tools, .

[7] AMS. As5601 datasheet: 12-bit programmable contactless encoder, October 2014.

[8] AMS. As5600 datasheet: 12-bit programmable contactless potentiometer, October 2014.

[9] NXPSemiconductorsN.V. I2c-bus specification and user manual. http://www.nxp.com/
documents/user_manual/UM10204.pdf, April 2014.

[10] Apple Inc. iphone 4s tech specs. https://www.apple.com/lae/iphone-4s/specs/, .

[11] P. Regtien. Modern Electronic Measuring Systems. Delft University Press, 1978.

[12] STMicroelectronics. Mems motion sensor: ultra-stable three-axis digital output gyro-
scope. http://www.st.com/st-web-ui/static/active/en/resource/technical/
document/datasheet/CD00265057.pdff, .

[13] TechInsights Inc. Apple iphone 4 teardown. http://www.techinsights.com/
reports-and-subscriptions/outlook-and-analysis/apple-iphone-4, .

[14] STMicroelectronics. Mems digital output motion sensor ultra low-power high performance 3-axes
“nano” accelerometer. http://www.st.com/web/en/resource/technical/document/
datasheet/CD00213470.pdf, .

[15] InvenSense Inc. Mpu-6000 and mpu-6050 register map and descriptions revision 4.0￼￼. http:
//store.invensense.com/Datasheets/invensense/RM-MPU-6000A.pdf, .

[16] InvenSense Inc. Mpu-6000 and mpu-6050 product specification revision 3.4￼￼. http://www.
farnell.com/datasheets/1788002.pdf, 2013.

[17] J. Rowberg. Mpu-6050 6-axis accelerometer/gyroscope. http://www.i2cdevlib.com/
devices/mpu6050#registers.

[18] Introduction to Flash Memory, volume 91, April 2003. IEEE.

[19] Spansion Inc. S25fl512s 512 mbit (64 mbyte) mirrorbit® flash non-volatile memory cmos 3.0 volt
core with versatile i/o serial peripheral interface with multi-i/o. http://www.spansion.com/
Support/Datasheets/S25FS512S_00.pdf, .

41

https://www.ntnu.no/documents/11601816/b830b9bd-d256-42c4-9dfc-5726c0ae3596
https://www.ntnu.no/documents/11601816/b830b9bd-d256-42c4-9dfc-5726c0ae3596
http://www.argenox.com/bluetooth-low-energy-ble-v4-0-development/library/a-guide-to-selecting-a-bluetooth-chipset/
http://www.argenox.com/bluetooth-low-energy-ble-v4-0-development/library/a-guide-to-selecting-a-bluetooth-chipset/
http://www.argenox.com/bluetooth-low-energy-ble-v4-0-development/library/a-guide-to-selecting-a-bluetooth-chipset/
http://www.ti.com/tool/cc2650dk
http://www.ti.com/tool/cc2650dk
http://www.dialog-semiconductor.com/products/bluetooth-smart/smartbond-development-tools
http://www.dialog-semiconductor.com/products/bluetooth-smart/smartbond-development-tools
http://www.dialog-semiconductor.com/products/bluetooth-smart/smartbond-development-tools
http://www.nxp.com/ documents/user_manual/UM10204.pdf
http://www.nxp.com/ documents/user_manual/UM10204.pdf
https://www.apple.com/lae/iphone-4s/specs/
http://www.st.com/st-web-ui/static/active/en/resource/technical/document/datasheet/CD00265057.pdff
http://www.st.com/st-web-ui/static/active/en/resource/technical/document/datasheet/CD00265057.pdff
http://www.techinsights.com/reports-and-subscriptions/outlook-and-analysis/apple-iphone-4
http://www.techinsights.com/reports-and-subscriptions/outlook-and-analysis/apple-iphone-4
http://www.st.com/web/en/resource/technical/document/datasheet/CD00213470.pdf
http://www.st.com/web/en/resource/technical/document/datasheet/CD00213470.pdf
http://store.invensense.com/Datasheets/invensense/RM-MPU-6000A.pdf
http://store.invensense.com/Datasheets/invensense/RM-MPU-6000A.pdf
http://www.farnell.com/datasheets/1788002.pdf
http://www.farnell.com/datasheets/1788002.pdf
http://www.i2cdevlib.com/devices/mpu6050#registers
http://www.i2cdevlib.com/devices/mpu6050#registers
http://www.spansion.com/Support/Datasheets/S25FS512S_00.pdf
http://www.spansion.com/Support/Datasheets/S25FS512S_00.pdf

42 Bibliography

[20] Android Developers. Bluetooth low energy. http://developer.android.com/guide/
topics/connectivity/bluetooth-le.html.

[21] Google Inc. Android 4.3 compatibility definition. http://static.googleusercontent.com/
media/source.android.com/en//compatibility/4.3/android-4.3-cdd.pdf, July
2013.

[22] Y. Shafranovich. Common format and mime type for comma-separated values (csv) files. http:
//tools.ietf.org/html/rfc4180, October 2015.

[23] Stanford University. Tutorial on client-server communica-
tions. https://web.stanford.edu/class/ee368/Android/
Tutorial-3-Server-Client-Communication-for-Android.pdf.

[24] V. Salminen. File upload support on mobile. http://viljamis.com/blog/2012/
file-upload-support-on-mobile/ year = 2002 .

[25] Apache Software Foundation. Apache httpcomponents. https://hc.apache.org/, .

[26] W3C. Hypertext transfer protocol architecture domain. http://tools.ietf.org/html/
rfc7230.

[27] O. Kalnichevski, J. Moore, J. van Gurp. Httpclient tutorial. https://hc.apache.org/
httpcomponents-client-ga/tutorial/pdf/httpclient-tutorial.pdf.

[28] The Eclipse Foundation. Eclipse ide for java developers. https://eclipse.org/downloads/
packages/eclipse-ide-java-developers/lunar, .

[29] Html and url. http://www.w3.org/TR/WD-html40-970917/htmlweb.html.

[30] Php manual. http://php.net/manual/en/.

[31] Oracle. The world’s most popular open source database. http://www.oracle.com/us/
products/mysql/overview/index.html.

[32] I. Schilken, R.D. Miedema. Bachelor of Science Thesis - GonioTrainer voor Sport: Communicatie
en Applicatiedesign. 2015.

[33] Red Bear Company Limited. Bluetooth low energy boards based on nordic nrf51822. http:
//redbearlab.com/nrf51822, .

[34] cplusplus.com. Polymorphism. http://www.cplusplus.com/doc/tutorial/
polymorphism/.

[35] E. Gamma, R. Helm, R. Johnson, J. Vlissides. Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley, 1994.

[36] S. Rosenthal. Interrupts might seem basic, but many programmers still avoid them. http://
www.sltf.com/articles/pein/pein9505.htm, 1995.

[37] Android. Thread. http://developer.android.com/reference/java/lang/Thread.
html, .

[38] Android. Asynctask. http://developer.android.com/reference/android/os/
AsyncTask.html, .

[39] Alamofire Software Foundation. Afnetworking. http://afnetworking.com, .

[40] L.Royakkers. Ethiek techniek. ThiemeMeulenhoff bv, 2014.

[41] K. Ashton. That ’internet of things’ thing. FRID Journal, 2009.

[42] Dialog Semiconductor. Internet of things: Market overview. http://www.thefaktory.com/
wp-content/uploads/2015/01/IoT-market-overview-Final.pdf, .

http://developer.android.com/guide/topics/connectivity/bluetooth-le.html
http://developer.android.com/guide/topics/connectivity/bluetooth-le.html
http://static.googleusercontent.com/media/source.android.com/en//compatibility/4.3/android-4.3-cdd.pdf
http://static.googleusercontent.com/media/source.android.com/en//compatibility/4.3/android-4.3-cdd.pdf
http://tools.ietf.org/html/rfc4180
http://tools.ietf.org/html/rfc4180
https://web.stanford.edu/class/ee368/Android/Tutorial-3-Server-Client-Communication-for-Android.pdf
https://web.stanford.edu/class/ee368/Android/Tutorial-3-Server-Client-Communication-for-Android.pdf
http://viljamis.com/blog/2012/file-upload-support-on-mobile/
http://viljamis.com/blog/2012/file-upload-support-on-mobile/
https://hc.apache.org/
http://tools.ietf.org/html/rfc7230
http://tools.ietf.org/html/rfc7230
https://hc.apache.org/httpcomponents-client-ga/tutorial/pdf/httpclient-tutorial.pdf
https://hc.apache.org/httpcomponents-client-ga/tutorial/pdf/httpclient-tutorial.pdf
https://eclipse.org/downloads/packages/eclipse-ide-java-developers/lunar
https://eclipse.org/downloads/packages/eclipse-ide-java-developers/lunar
http://www.w3.org/TR/WD-html40-970917/htmlweb.html
http://php.net/manual/en/
http://www.oracle.com/us/products/mysql/overview/index.html
http://www.oracle.com/us/products/mysql/overview/index.html
http://redbearlab.com/nrf51822
http://redbearlab.com/nrf51822
http://www.cplusplus.com/doc/tutorial/polymorphism/
http://www.cplusplus.com/doc/tutorial/polymorphism/
http://www.sltf.com/articles/pein/pein9505.htm
http://www.sltf.com/articles/pein/pein9505.htm
http://developer.android.com/reference/java/lang/Thread.html
http://developer.android.com/reference/java/lang/Thread.html
http://developer.android.com/reference/android/os/AsyncTask.html
http://developer.android.com/reference/android/os/AsyncTask.html
 http://afnetworking.com
http://www.thefaktory.com/wp-content/uploads/2015/01/IoT-market-overview-Final.pdf
http://www.thefaktory.com/wp-content/uploads/2015/01/IoT-market-overview-Final.pdf

Bibliography 43

[43] J. de Koning. Slapskate history and background. http://www.sportsci.org/news/
news9703/slapxtra.htm.

[44] J Currie, S. DellaVigna, E. Moretti, V. Pathania. The effect of fast food restaurants on obesity.
http://eml.berkeley.edu/~sdellavi/wp/fastfoodJan09.pdf.

[45] D. H. P. Kang, M. Chen , O. A. Ogunseitan. Potential environmental and human health impacts
of rechargeable lithium batteries in electronic waste. http://pubs.acs.org/doi/ipdf/10.
1021/es400614y.

[46] Nordic Semiconductor. S130 softdevice specification. https://www.nordicsemi.com/eng/
Products/Bluetooth-Smart-Bluetooth-low-energy/nRF51822, .

[47] Nordic Semiconductors. nrf51822. https://www.nordicsemi.com/eng/Products/
Bluetooth-Smart-Bluetooth-low-energy/nRF51822.

[48] MathWorks Inc. findpeaks. http://nl.mathworks.com/help/signal/ref/findpeaks.
html?refresh=true, .

[49] Agilent Technologies Inc. Agilent 33220a20 mhz waveform generator. http://cp.
literature.agilent.com/litweb/pdf/33220-90002.pdf, .

[50] Red Bear Company Limited. Redbearlab nrf51822 pinout. http://redbearlab.com/
redbearlab-nrf51822/, .

[51] Arduino. Mpu-6050 accelerometer + gyro. http://playground.arduino.cc/Main/
MPU-6050.

http://www.sportsci.org/news/news9703/slapxtra.htm
http://www.sportsci.org/news/news9703/slapxtra.htm
http://eml.berkeley.edu/~sdellavi/wp/fastfoodJan09.pdf
http://pubs.acs.org/doi/ipdf/10.1021/es400614y
http://pubs.acs.org/doi/ipdf/10.1021/es400614y
https://www.nordicsemi.com/eng/Products/Bluetooth-Smart-Bluetooth-low-energy/nRF51822
https://www.nordicsemi.com/eng/Products/Bluetooth-Smart-Bluetooth-low-energy/nRF51822
https://www.nordicsemi.com/eng/Products/Bluetooth-Smart-Bluetooth-low-energy/nRF51822
https://www.nordicsemi.com/eng/Products/Bluetooth-Smart-Bluetooth-low-energy/nRF51822
http://nl.mathworks.com/help/signal/ref/findpeaks.html?refresh=true
http://nl.mathworks.com/help/signal/ref/findpeaks.html?refresh=true
http://cp.literature.agilent.com/litweb/pdf/33220-90002.pdf
http://cp.literature.agilent.com/litweb/pdf/33220-90002.pdf
http://redbearlab.com/redbearlab-nrf51822/
http://redbearlab.com/redbearlab-nrf51822/
http://playground.arduino.cc/Main/MPU-6050
http://playground.arduino.cc/Main/MPU-6050

	Abstract
	Introduction
	Problem definition
	Problem Scope
	Design Requirements
	Physical specifications
	System specifications

	Related Search
	Microcontroller
	Sensors
	Joint angle
	Inertial Measurement Unit (IMU)

	Data storage
	On-board
	Off-board
	Data format

	Software
	Java application
	Website
	Database

	Implementation
	Microcontroller
	Sensors
	Programmable Interrupt System

	Flash memory
	Control logic
	Cloud service
	Client side
	Server side

	Ethics
	People
	Society
	Environment

	Results
	Sensors
	Flash memory
	Cloud service
	Android application
	Website

	Integration

	Conclusion
	Evaluation of requirements
	Costs
	Sample rate
	Data storage
	Peak detection
	Physical ports
	Integration

	Discussion
	AS5601 push button
	Programmable Interrupt System
	Cloud service
	Real time sensor read out

	Peak detection using the ARM® Cortex-M0
	Background
	Design
	Implementation
	Results

	Pin layout
	RedBearLab nRF51228
	AS5600 12-bit Programmable Contactless Potentiometer
	MPU-6050 Board GY-521
	Spansion S25FL512S 64 Mbyte Flash Non-Volatile Memory

	Costs
	Bibliography

