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Abstract
Approximately one-third of individuals with chronic epilepsy, a condition resulting 
from uncontrolled brain activity, do not respond to medication. Animal models 
are widely used to investigate the mechanism underlying epilepsy, so better drug 
treatments can be developed for this disease. In such studies, epileptiform activity, 
assessed by EEG recordings, can be used as a marker for the development of the 
disease. However, the analysis of EEG recordings is typically done manually, which 
is time-consuming, subject to observer bias, error-prone, and lacks consistency and 
efficiency. In this paper, we develop a novel automated methodology for detecting 
and classifying epileptiform activity, which is tested using the intrahippocampal 
kainic acid (IHKA) mouse model, a representation of human temporal lobe epilepsy. 
For that, EEG/LFP recordings are obtained from biological experiments using the 
IHKA mouse model for data acquisition. We use a spike detection method that 
combines an improved version of the nonlinear energy operator (NEO) with the 
automatic NEO thresholding (ANT) algorithm. The proposed method is implemented 
in Python as an automated and time-efficient algorithm, given its adaptability to 
different spike and epileptiform event criteria, making it suitable for use in preclinical 
and potentially future clinical studies. Using our proposed methodology, we 
achieve a 93.1% accuracy in detecting epileptiform events and a 95.8% accuracy 
in classification. Moreover, the time for analysis of EEG recordings was reduced by 
98.8% compared to manual analysis. Additionally, to demonstrate the potential of the 
algorithm for brain–machine interfaces (BMI) applications, we develop a hardware 
architecture and implement it using both an application-specific integrated circuit 
(ASIC) and a field programmable gate array (FPGA). The FPGA shows the feasibility 
of near real-time implementation, and for our ASIC implementation, we achieve a 
post-layout area of 9114 µm2 with a dynamic power consumption of 16.09 μW using 
TSMC 40 nm technology.

Keywords  Epilepsy, Classification, Spike detection, Seizure detection, IHKA mouse 
model, ASIC, FPGA
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1  Introduction
Epilepsy is a neurological disorder characterized by recurrent seizures, caused by abnor-
mal and excessive neuronal activity in the brain that affects approximately 65 million 
people worldwide [12]. The consequences of epilepsy can be severe to patients as sei-
zures may lead to symptoms like loss of consciousness. Prolonged inability to control 
these attacks can cause cognitive decline and in rare cases, may even result in the death 
of the patient [9]. Approximately 60% of patients with epilepsy suffer from partial (or 
focal) epilepsy, meaning that seizures originate in a specific region of the brain. The most 
common type of partial epilepsy is Temporal Lobe Epilepsy (TLE), which typically origi-
nates from the hippocampus, entorhinal cortex, or amygdala [10]. Around one-third of 
patients with TLE are resistant to medication, making it one of the most drug-resistant 
types of epilepsy [7]. Preclinical studies in rodents in which epilepsy is evoked are per-
formed to investigate the underlying disease mechanisms in search of new treatments 
for epilepsy. A commonly used model for studying TLE and effects of anti-seizure drugs 
is the intrahippocampal Kainic Acid (IHKA) mouse model. In this model, a status epi-
lepticus is induced by unilateral hippocampal kainate injection, that initiates the devel-
opment of chronic epilepsy consisting in recurrent focal hippocampal epileptiform 
activity [3, 5, 23, 25] epileptiform activity, i.e. excessive, uncontrolled and highly syn-
chronized neuronal network activity [21], is visible in electroencephalography (EEG) or 
local field potential (LFP) recordings and traditionally analyzed manually by experts. As 
preclinical studies typically generate a lot of longitudinal EEG/LFP recordings, visual 
analysis is a time-consuming process and prone to observer bias and error [2]. The epi-
leptiform activity detected in EEG/LFP recordings can be categorized into two main 
types: isolated spikes and epileptiform events. The epileptiform events can be classified 
into various subgroups based on, e.g. their duration or frequency features of the network 
activities within the event [23]. All forms of epileptiform activity can potentially serve as 
indicators of the progression of epilepsy.

Several commercial software packages are available that offer spike and/or burst detec-
tion features [14, 15], while open-source efforts have produced tools to detect epilepti-
form activity, extract spikes, and classify events into different subgroups [8, 22, 24, 27]. 
In general, spikes can be detected using automatic spike detectors for which multiple 
methods exist, such as thresholding, energy operators, and machine learning models [6, 
17, 28], whereas the epileptiform event classification is typically model-specific given 
variation in epileptiform event features across epilepsy models. Implementing a robust 
and automated analysis method is essential for any epilepsy model, as spike morpholo-
gies can vary widely, and noise levels often fluctuate across time and datasets.

A few efforts to automate the detection of epileptiform events using data from dif-
ferent animal epilepsy models have been made already. For instance, Kyle et al.  [8] 
developed a method to extract both spikes and epileptiform events by first applying 
spike detection using amplitude thresholding and subsequently detection of epilepti-
form events. Although this approach is time-efficient, as it reduces manual activity, its 
reliance on manually set thresholds for spike detection limits its robustness to noise. 
Moreover, overly lenient criteria for defining epileptiform events can increase the risk 
of false positives. Zeidler et al.  [27] introduced a method that first filters the signal and 
then highlights segments likely to include a behavioral seizure manifestation. While this 
approach reduces the time required for data analysis, it still relies on a manually set spike 
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threshold, which may not work consistently across different datasets. Wei et al.  [24] 
described a machine learning based method which is more robust as it can extrapolate 
patterns beyond the training set. In this method, an XGBoost algorithm is introduced, 
trained on multiple mouse models of epilepsy and tested on a distinct epilepsy mouse 
model that successfully detected epileptiform events. However, this particular machine 
learning model is not suitable for the present study with the IHKA model, as it is trained 
and developed for data obtained from scalp-based EEG recordings rather than intra-
cerebral LFP recordings. Unlike LFP, which captures localized neural network activity, 
EEG encompasses neural activity from the entire brain. Also, training an already imple-
mented machine learning model, such as the XGBoost algorithm, is quite complex, as it 
requires an extensive labeled dataset, which in turn demands significant manual analy-
sis. Regarding the final step of analysis, the classification of different types of epilepti-
form events, there is, to our knowledge, only one study, by  [22], that implemented an 
automated analysis approach on LFP data from the IHKA model. The method used is 
based on a spike and event detection approach that was introduced for an encephalitis-
induced epilepsy model by [1], which marks spikes based on amplitude, width, instan-
taneous energy, and slope. The event detection was modified by [22] to be applicable to 
the epileptiform activity features of the IHKA model, using the description of epilepti-
form event features by [23]. While that method is able to detect and classify epileptiform 
activity in the IHKA model, it has two clear downsides: (1) spike detection makes use of 
thresholds that need to be set manually, and (2) both automated spike and event detec-
tion rely on a visual analysis step, which thereby still requires time-demanding manual 
inspection. Developing an automated, time-efficient method that can detect and classify 
epileptiform activity from EEG/LFP recordings from the IHKA model would facilitate 
research, improve accuracy, and accelerate advancements in epilepsy altogether.

In this paper, we present a new methodology for the automated detection and clas-
sification of epileptiform activity in EEG/LFP recordings that consists of three steps 
and is developed using LFP data from the preclinical IHKA mouse model of epilepsy. In 
the first step, a spike detector is introduced using an improved version of the nonlinear 
energy operator (NEO) and automatic NEO thresholding (ANT) combination. Secondly, 
an epileptiform event detector is proposed that can detect epileptiform events using a 
generalized description. Finally, an epileptiform event classifier is proposed that classifies 
epileptiform events into one of four types using event duration and local spike frequency. 
The overview of the proposed real-time classification framework for epileptiform activ-
ity is illustrated in Fig. 1. The source code of the automated analysis approach is available 
on (https://git​hub.com/Raj​endra154/LU​MC-TUD-R​eal-time-classification-IHKA-MM).

Fig. 1  Overview of the proposed real-time classification framework for epileptiform activity in the intrahippocam-
pal kainic acid mouse model

 

https://github.com/Rajendra154/LUMC-TUD-Real-time-classification-IHKA-MM


Page 4 of 23Vermeulen et al. Discover Applied Sciences          (2025) 7:1065 

The key contributions of this paper are:

 	• EEG/LFP data is acquired through real experiments conducted on the IHKA mouse 
model.

 	• We propose a new and automated method for detecting and classifying epileptiform 
activity in the IHKA mouse Model. The proposed method is implemented as a 
Python algorithm, streamlining the analysis of LFP recordings and reducing the time 
required for processing.

 	• We implement the proposed method in real-time as both an ASIC and FPGA to 
show the working as a Brain-Machine Interface.

The algorithm was manually verified by two animal epilepsy experts (G.K. and E.A.T.) 
using 108 h of hippocampal EEG/LFP recordings from the IHKA model and the results 
of the automated epileptiform event analysis approach show accurate detection and 
classification with drastically reduced analysis time compared to the manual analysis 
method.

The remainder of the paper is organized as follows: in Sect. 2, the IHKA mouse model 
is explained by going over the mice and their surgery procedure in the preclinical stud-
ies, after which descriptions of the epileptiform activity are given. Section 3 introduces 
the proposed epileptiform activity detector and its algorithmic implementation in 
Python. Section 4 introduces the proposed hardware implementation, which is imple-
mented using VHDL and Verilog. Section 5 gives an overview of the experimental setup, 
and Sect. 6 goes over the results obtained; the conclusions are given in Sect. 7.

2  Intrahippocampal kainic acid model
2.1  Animals

Electrographic EEG/LFP recordings were obtained from the intrahippocampal kainic 
acid (IHKA) mouse model and used for the development and testing of epileptiform 
activity detection and classification. For the IHKA model, C57BL/6J male mice (Janvier, 
France) at the age of 10–12 weeks were utilized. During experimental procedures, all 
mice were kept under standard housing conditions (temperature of 22 ± 1.5 °C, 12/12 h 
light/dark cycle) with food and water ad libitum.

2.2  Surgery

Animals were anaesthetized with isoflurane (induction 4%; maintenance 1.5%) in pres-
surized air. Carprofen (5 mg/kg) was injected subcutaneously 15 min before surgery as 
preemptive analgesia. During surgery mice were placed in a stereotactic device. After 
scalp skin resection, small craniotomies were drilled in the skull using a dentist s bore 
(Fine Science Tools, USA). Kainic Acid (KA; 200 ng in 50 nL 0.9% NaCl; Sigma-Aldrich, 
USA) was injected into the CA1 region of the dorsal hippocampus (anterioposterior: 
−  2.0 mm; mediolateral: 1.5 mm; dorsoventral: − 1.3 mm; Fig. 2A) using a glass 0.5 μL 
NanoVolume on-column syringe (0.23 mm OD needle; Trajan Scientific and Medical, 
USA) at a rate of 0.1 μL/min controlled by a UMP2 micro-infusion pump (World Preci-
sion Instruments, USA). To limit backflow of fluid, the needle was maintained in situ 
for 2 min before and 5 min after injection. After surgery, mice were placed in a recov-
ery box with temperature controlled at 30  °C for 30  min. Status epilepticus, which 
occurs in the hours after intrahippocampal KA injection, was monitored using video 



Page 5 of 23Vermeulen et al. Discover Applied Sciences          (2025) 7:1065 

recording combined with post hoc behavioural analysis. The severity of status epilepti-
cus was assessed using the Racine scale [19], with a modification to include an additional 
stage 6 defined as clonic seizures accompanied by repetitive vigorous jumping and fall-
ing around the cage. Only mice that experienced vigorous convulsive status epilepticus, 
defined as a status lasting longer than 3 h with recurrent seizures progressing to stages 3 
6 were selected for microelectrode placement a week later. Mice were video monitored 
until normal behavior (defined as exploration and/or grooming) resumed and returned 
to their home cages.

One week later, during a second surgery, custom-made microelectrodes (75 μm plati-
num/iridium; PT6718, Advent Research Materials, UK) were placed in the same CA1 
area and coordinates of the dorsal hippocampus (Fig. 2B). Additional micro-electrodes 
were placed in the contralateral hippocampus and the bilateral cortex (bilateral visual 
cortex V1 and motor cortex M1 ipsilateral to the hemisphere in which kainic acid was 
injected) to assess any spread of electrographic epileptiform activity. Reference and 
ground electrodes were placed in the cerebellum. Then, the micro-electrodes were con-
nected to a 7-channel pedestal (Plastic One, USA) and secured to the skull with den-
tal cement (DiaDent Europe, NL). All IHKA mice were confirmed by Nissl staining to 
display unilateral neuronal loss and gliosis in dorsal CA1-3 hippocampal regions, and 
dentate gyrus granule cell dispersion, in accordance with classical neuropathological fea-
tures of TLE [3, 11].

2.3  EEG/LFP recordings and pre-processing

Mice were connected to the seven-channel commutator in a Faraday-shielded record-
ing cage at week 5 post-KA injection (i.e. 5 weeks after status epilepticus) for continu-
ous EEG/LFP and video recording during the chronic epileptic stage. The obtained LFP 
recordings from cortical and hippocampal regions were pre-amplified (3×), filtered (0.05 
500 Hz) and amplified (200×) using custom built hardware, and digitized at 5 kHz. The 
data were then post-hoc down-sampled to 1 kHz for further analysis. Note that datasets 

Fig. 2  EEG/LFP recordings in the IHKA mouse model. a Schematic of the kainic acid (KA) injection site in the 
CA1 area of the dorsal hippocampus assessed by post hoc histology in coronal sections. The arrow indicates the 
malformed (including dispersion of the normally compact cell layers) and damaged (i.e. gliosis, cell loss) ipsilateral 
hippocampus, indicating successful KA injection and development of an epileptogenic zone. b Schematic of the 
position of the LFP recording electrodes, whereby the LFP electrode in the right dorsal hippocampus at the site 
of KA injection (i.e. ipsilateral) is used for detecting the epileptiform activity in this area. c Experimental design of 
surgeries and video-EEG/LFP recordings. Of note, EEG/LFP recordings started at 5 weeks post-KA injection/status 
epilepticus. d Representative examples of LFP recordings from the contralateral and ipsilateral (site of KA injection 
and the epileptic focus) CA1 area of the hippocampus. The ipsilateral side contains spontaneous focal epilepti-
form events with hallmark electrographic characteristics typical for the IHKA model, i.e. high voltage sharp waves 
(HVSW) and hippocampal paroxysmal discharges (HPD). This feature of unilateral hippocampal HVSW and HPD 
epileptiform activity was observed in all IHKA mice used in the study

 



Page 6 of 23Vermeulen et al. Discover Applied Sciences          (2025) 7:1065 

with other sampling rates can be analysed as well by adapting the sampling rate features 
in the source code (see line 18 to 36 in ​h​t​t​p​s​:​​/​/​g​i​t​​h​u​b​.​c​o​​m​/​R​a​​j​e​n​d​r​​a​1​5​4​/​​L​U​M​C​-​T​​U​D​-​
R​​e​a​l​-​t​​i​m​e​-​c​​l​a​s​s​i​f​​i​c​a​t​​i​o​n​-​I​H​K​A​-​M​M​/​p​u​l​l​s) of the automated script analysis. After ​m​a​n​
u​a​l inspection of 6 h of recordings/mouse in week 5 and 6 - to confirm that mice had 
entered the chronic epilepsy stage with frequent occurrence of HVSW and HPD events - 
12 h of continuous LFP recordings were used per animal (in total 9 IHKA mice) for post-
hoc analysis of epileptiform activity. Following the experiments, mice were sacrificed for 
histology procedures to confirm electrode locations and assess cellular damage in the 
KA-injected hippocampus (Fig. 2C).

2.4  Electrographic epileptiform activity

With respect to the types of epileptiform activity in the IHKA mouse model, both spikes 
and epileptiform events were recorded and specifically present in the ipsilateral CA1 
recording. Spikes are visible in the hippocampal LFP recordings and are defined as tran-
siently increased neuronal activity that is distinguishable from background activity with 
negative and positive peaks of activity. The duration of a spike was defined to range from 
40 to 100 ms, and spike amplitude was defined to be larger than 1.5× the baseline ampli-
tude of the signal. The baseline amplitude was considered to be the average amplitude of 
a 20-second signal segment with no epileptiform activity. Of note, the shape of a spike 
can vary depending on the neuron that fires, the type of epilepsy, and the stage of epi-
lepsy. Further, spikes can be categorized as ictal or interictal, where ictal spikes are found 
inside epileptiform events, and interictal spikes are found outside such events.

An epileptiform event can be described as a group of spikes that follows a set of 
requirements with respect to spike frequency, spike amplitude, and the duration of the 
event. The first type of epileptiform event that occurs in the IHKA model is a spike train, 
which has a duration between 2 and 5  s. Within a spike train, spikes were defined to 
have an amplitude of at least 3× the baseline amplitude, spike frequency should be at 
least 2 Hz, and the interval between subsequent events should be minimally 3 s. High 
voltage sharp waves (HVSW) are a second form of epileptiform event in the IHKA 
model, with the same criteria with regard to spike frequency and amplitude and inter-
event interval as a spike train, i.e. spike frequency >2 Hz, spike amplitudes >3× baseline 
amplitude and interevent interval >3  s. HVSW duration, however, is longer than that 
of a spike train, ranging from 5 to 20 s. HVSW can show evolution in their spike fre-
quency and pattern but are typically regular in terms of spiking activity. An example of 
HVSW is shown in Fig. 2D, in which the HVSW shows no clear evolution over time ( 
monomorphic ). The last type of epileptiform event in the IHKA model concerns hip-
pocampal paroxysmal discharges (HPDs), which typically start with HVSW-like activity 
followed by spikes with an amplitude of at least 2× the baseline amplitude and a spike 
frequency of at least 5 Hz. Figure 2D illustrates an example of an HPD event, showing 
the start of the event consisting of HVSW-like activity, followed by spikes with higher 
frequency and lower amplitude. The figure clearly shows that HPD are polymorphic as 
they exhibit evolution in spike pattern and frequency. HPD events are further catego-
rized into short HPDs (sHPDs) and ictal HPDs (iHPDs). HPD events with a duration of 
5 to 10 s are classified as sHPDs and HPD events with a duration of at least 10 s are clas-
sified as iHPDs. Moreover, an HVSW event which exceeds 20 s is classified as an iHPD. 

https://github.com/Rajendra154/LUMC-TUD-Real-time-classification-IHKA-MM/pulls
https://github.com/Rajendra154/LUMC-TUD-Real-time-classification-IHKA-MM/pulls
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Note that in the investigated data set no generalized (convulsive) epileptiform seizures 
[11] were observed. Table 1 summarizes all types of recorded events together with their 
characteristics.

3  Proposed detector and classifier of epileptiform activity
Figure 1 presents an overview of the data flow in the proposed methodology for detect-
ing and classifying epileptiform activity in the IHKA model, including its algorithmic 
implementation. The process begins with data collection and is followed by pre-pro-
cessing. The source code of the final analysis approach is available on ​h​t​t​p​s​:​​/​/​g​i​t​​h​u​b​.​c​
o​​m​/​R​a​​j​e​n​d​r​​a​1​5​4​/​​L​U​M​C​-​T​​U​D​-​R​​e​a​l​-​t​​i​m​e​-​c​​l​a​s​s​i​f​​i​c​a​t​​i​o​n​-​I​H​K​A​-​M​M​/​p​u​l​l​s. The ​p​r​e​-​p​r​o​c​
e​s​s​e​d EEG/LFP recordings are then used as input to the spike detector, which has the 
detected spikes as output. These detected spikes are then processed by the epileptiform 
event detector to identify all types of epileptiform events. This includes distinguishing 
between ictal events (a subset of epileptiform events) and interictal spikes based on a 
general description. Finally, the event classifier categorizes events based on the above-
indicated event classifications and provides outputs of the detected events, classification 
of the detected event and the interictal spikes.

3.1  Spike detector

Spike detection is an important part of the proposed detection and classification 
method, as the epileptiform event detector (and subsequent classifier) relies on the 
detected spikes. It is important that the spike detection method is computationally sim-
ple as it should be implemented in the hardware, must be robust to EEG/LFP noise and 
needs to be automated so no manual intervention is needed. The section below high-
lights various existing spike detection methods with their advantages and disadvantages 
that provide the background for the approach implemented in our spike detector. We 
performed a qualitative comparison of four prior methods suitable for IHKA mouse 
model signal processing, considering factors algorithmic complexity, speed, robustness 
to noise and automation.

3.1.1  Existing methods

The most basic spike detection methods make use of amplitude thresholding (AT) [6, 
20], which has a low computational burden but lacks robustness with respect to noise 
and the change of signal characteristics in different datasets as shown in Table 2. More-
over, every dataset requires its own thresholding, which is a non-automated implemen-
tation that needs extensive manual intervention. Another commonly used method is the 
discrete wavelet transform (DWT) [16], which decomposes an EEG/LFP signal into dif-
ferent frequency components and has the advantage that it can accurately identify the 
timing and frequency characteristics of spikes with good noise suppression capabilities. 

Table 1  Characteristics of different types of epileptiform events in the IHKA model
Spike train HVSW sHPD iHPD

Spike amplitude
(× Baseline amplitude)

≥ 2 ≥ 3 ≥ 2 ≥ 2

Spike frequency ≥ 2 Hz ≥ 2 Hz ≥ 5 Hz ≥ 5 Hz
Minimum event duration 2 s 5 s 5 s 10 s
Maximum event duration 5 s 20 s 10 s -
Interevent interval ≥ 3 s ≥ 3 s ≥ 3 s ≥ 3 s

https://github.com/Rajendra154/LUMC-TUD-Real-time-classification-IHKA-MM/pulls
https://github.com/Rajendra154/LUMC-TUD-Real-time-classification-IHKA-MM/pulls
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Drawbacks of this method are that choosing an appropriate wavelet is crucial, and the 
method is computationally intensive. Machine learning methods are also available, such 
as the convolutional neural network (CNN) developed by [17]. The EEG/LFP signal is 
split up into different frequency bands, which helps achieve high sensitivity and accu-
racy. The downside is that implementing the method is computationally intensive and 
needs a training dataset. Lastly, energy operators, such as the amplitude slope opera-
tor (ASO) [28] and the nonlinear energy operator (NEO) [13], are methods that use 
instantaneous energy in a signal to detect spikes. NEO and ASO are both spike detection 
methods that are robust to noise and computationally efficient. NEO, in combination 
with automatic NEO thresholding (ANT) [26], even allows for automated spike detec-
tion using a dynamically calculated threshold.

3.1.2  Spike detector overview

A block diagram of the proposed spike detector using NEO and ANT is shown in Fig. 3. 
It highlights the individual components of the detector, which include the NEO calcula-
tor, three Infinite Impulse Response (IIR) filters and the ANT calculator. The ANT cal-
culator comprises two key estimators: the root mean square (RMS) frequency (ΩRMS) 
estimator and the standard deviation of the background noise (σn) estimator.

3.1.3  Nonlinear energy operator

The NEO calculator implements Equation 1, which calculates the instantaneous energy 
from an amplitude component, x2(n), and a frequency component, x(n + 1)x(n − 1).

ψ[x(n)] = x2(n) − x(n + 1)x(n − 1)� (1)

3.1.4  Infinite impulse response filters

Three IIR filters are implemented using Eq. 2, where α is the feedback coefficient and 
α < 1. As shown in Fig. 3, IIR Filter 1, combined with the subtraction mechanism, repre-
sents an improvement over the circuit previously proposed [26].

Table 2  Overview of spike detection methods and their advantages and disadvantages
Spike detection method Complexity Speed Robustness to noise Automatic
AT [6] + + – –
CNN [17] – + + +
DWT [16] – – + –
NEO [13] and 
ANT [26]

+ + + +

Fig. 3  Block diagram of the proposed spike detector, consisting of three IIR filters, an NEO calculator and an ANT 
calculator
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This IIR filter is designed to calculate the spike amplitude while effectively eliminating 
temporal signal drift. The remaining two IIR filters are employed to smoothen the signal 
in order to improve the processing accuracy. IIR filter 1 is implemented using α = 1

300 , 
filter 2 using α = 1

4 , and filter 3 uses α = 3
32 .

y(n) = αx(n − 1) + (1 − α)y(n − 1)� (2)

3.1.5  Automatic NEO thresholding

ANT is implemented using Eq. 3, where C is a scalar, σn is the standard deviation of 
the noise, and ΩRMS  is the RMS frequency. The standard deviation of the noise and 
the RMS frequency are both estimated, as calculating them requires too much computa-
tional power. For the scalar, a standard value of C = 14 is chosen.

Thψ = Cσ2
nΩ2

rms� (3)

Equation 4 shows the estimation of σn, which is obtained from the median absolute 
deviation (MAD) [18], where the median is taken over a window of the absolute value of 
the output of IIR filter 2.

σMAD
n = median(|x(n)|)

0.6745
� (4)

The estimation of the RMS frequency is done by making use of the zero-cross frequency. 
Equation 5 shows the estimation, where nz  is the number of zero-crossings inside the 
window of size Nz . Following [26], the input signal should be the output of IIR filter 2, 
but the temporal drift removal also removes a lot of zero-crossings. Because of this, the 
signal checked for zero-crossings is the input of the spike detector.

Ωrms = nz

2Nz
π� (5)

The spike detector explained above does not meet the requirement for accuracy (see 
Sect. 6.2). To improve the accuracy, the value of C in Equation 3 can be adjusted during 
analysis. With the ability to adjust C and to keep the analysis time efficient, the window 
for both the estimation of σn and ΩRMS  is chosen to be the entire dataset as this results 
in just one threshold for the whole dataset.

3.2  Epileptiform event detection

The second step, as illustrated in Fig. 1, is the detection of epileptiform events. A general 
description of epileptiform events is made (see Table 3) to detect in this stage all types of 
epileptiform events. The detection method checks the signal, using the detected spikes, 
for events fulfilling the general description of an epileptiform event. The data require-
ment for the spike detection methodology includes sufficiently long and high-resolution 
recordings with clear amplitude variations and temporal precision to capture events of 
varying durations and frequencies for reliable detection and classification. To gener-
ate the algorithm, a baseline amplitude calculation is first performed to determine the 

Table 3  Description of a general epileptiform event used by the event detector
Spike amplitude Spike frequency Event duration Inter-event interval
≥ 2× Baseline ≥ 2 Hz ≥ 2 s ≥ 3 s
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amplitude requirement. This is followed by the creation of a detection loop, and finally, a 
function called preliminary spikes check is implemented.

3.2.1  Baseline amplitude calculation

The first requirement defines that the spike amplitude, needs to be larger than two times 
the baseline amplitude, whereby the baseline amplitude is the amplitude of the signal 
without detected spikes. To calculate the amplitude, a signal segment of 30 s that does 
not contain spikes is selected, and the middle 20 s should have a noise level that is not 
influenced by nearby spikes. From these 20  s, the baseline amplitude is calculated by 
taking the 97th percentile of all samples. The baseline amplitude can change over time, 
and thus, the baseline amplitude is adjusted when feasible. That is, an adjustment is per-
formed every time a segment of 30 s with no spikes is found, and the update takes place 
using an IIR filter with α = 0.2.

3.2.2  Detection loop

A detection loop is incorporated to identify epileptiform events based on the general 
characteristics as specified in Table 3. A flowchart illustrating this detection process is 
provided in Fig. 4. Moreover, hardware implementation details related to this loop are 

Fig. 4  Flowchart of the generalized epileptiform event detection methodology used in our implementation
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discussed in Sect.  4. The algorithm systematically iterates over each detected spike to 
evaluate key parameters, specifically, spike amplitude, frequency, and inter-spike inter-
val. The inter-spike interval, in this context, serves as a criterion for segmenting distinct 
events by ensuring that a minimum temporal separation of 3 s is maintained between 
successive events. Please note that the detection mechanism uses a sliding window 
approach to analyze spike sequences. Each new spike is added to the candidate event 
window and the most recent spikes are checked against predefined conditions to deter-
mine whether they conform to the characteristics of an epileptiform event. If one of the 
last two spikes fails to satisfy these conditions, either in terms of amplitude threshold, 
spike rate, or timing that the algorithm concludes the current candidate event. This step 
is referred to as the completion of the preliminary spike check, which is described in 
detail in the subsequent section. Once a preliminary candidate event is identified, its 
total duration is evaluated. If the duration falls below the minimum required threshold, 
the candidate is discarded, as it does not meet the temporal definition of a valid epilep-
tiform event. In such a case, to avoid missing overlapping or closely spaced potential 
events, the detection loop resumes from the second spike of the discarded sequence (i.e., 
“spike = first spike + 1”). This ensures an analysis of all possible spike combinations and 
minimizes the risk of missing true events due to rigid windowing or segmentation. By 
combining parameter-based filtering with a systematic iteration strategy, this detection 
loop enables identification of epileptiform activity while maintaining compatibility with 
both algorithmic and hardware-level implementations.

3.2.3  Preliminary spikes check

As explained in Sect.  2.4, HPD events typically starts with HVSW-like activity, which 
results in the start of HPD events containing higher amplitude but lower frequency 
spikes than the rest of the event. These lower frequency spikes can reach frequencies 
below 2 Hz, which causes the detection loop to ignore them. However, if these spikes are 
within 3 s of each other and this group is within 3 s of an event, these spikes should be 
included with the rest of the event if a frequency of at least 2 Hz is reached. To include 
these, the event detection loop of Fig. 4 is run after event detection over the spikes in 
front of the event.

3.3  Epileptiform event classification

The classification of epileptiform events follows when the general epileptiform event 
detection itself is finished and is based both on the duration of an event and the spike 
frequency inside events. Epileptiform events were detected using the general descrip-
tion of Table 3. When comparing this to the content in Table 1, it is clear that the general 
event description closely resembles that of spike trains and HVSW events. Because of 
this, all events are automatically classified as spike train (if they have a duration between 
2 and 5 s), as HVSW (if they have a duration between 5 to 20 s), or as iHPD (when they 
last longer than 20, see also description of HPD classes). Events are classified as HPD if 
a peak spike frequency of at least 5 Hz is reached, which is based on the description by 
[23], stating that an HPD event is required to have 5 continuous seconds with at least 
25 spikes inside. The event detector keeps track of the peak spike frequency of 5 con-
tinuous seconds in an event and is classified as HPD if it reaches the threshold of 25 
spikes/5 s, i.e. 5 Hz. The distinction between sHPD and iHPD is then made on duration. 
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Events between 5 and 10  s are classified as sHPD, and longer events are classified as 
iHPD. Note that these variables in the algorithm are parameterized to allow easy exten-
sion for broader use. This means the algorithm can be adapted to fit other event criteria, 
also allowing application to other preclinical epilepsy models. In the source code (avail-
able on ​h​t​t​p​s​​:​/​/​g​i​t​​h​u​b​.​c​​o​m​/​R​​a​j​e​n​d​r​a​1​5​4​/​L​U​M​C​-​T​U​D​-​R​e​a​l​-​t​i​m​e​-​c​l​a​s​s​i​f​i​c​a​t​i​o​n​-​I​H​K​A​-​
M​M​/​p​u​l​l​s​)​, details concerning the epileptiform event parameters are described in lines 
18 to 36, and can be adapted, also allowing application to additional preclinical epilepsy 
models.

4  Hardware implementation
Hardware implementation of the epileptiform activity detector and classifier follows the 
structure explained in the previous section but has some adjustments to support real-
time detection and classification. Future real-time implementation is possible by the 
immediate execution of the spike detection algorithm on hardware platforms (FPGA/
ASIC) during live EEG/LFP data acquisition. The lightweight and efficient design 
ensures minimal processing delay, supporting operation during real-time recordings in 
mice. A block diagram of the system is shown in Fig. 5, which shows the interconnection 
of the sub-systems. The input of the system is a 16-bit signal using a two s complement 
and fixed-point representation. The first bit is used as a sign bit, the following four bits 
are used for the integer, and the last eleven bits are used for the fraction. With this rep-
resentation, all values between − 16.0000 and 15.9995 can be represented in the system 
with a resolution of 0.0005. The system runs with a clock of 1000 Hz, which is the same 
frequency as sampling in the dataset.

The output of the system has five flags: (1) spike detector threshold calculated, (2) 
spike detected, (3) event detected, (4) HVSW classification, and (5) HPD classification. 
The threshold flag indicates if a threshold for the spike detector has been calculated. The 

Fig. 5  Block diagram of the epileptiform activity detector and classifier implemented in hardware

 

https://github.com/Rajendra154/LUMC-TUD-Real-time-classification-IHKA-MM/pulls
https://github.com/Rajendra154/LUMC-TUD-Real-time-classification-IHKA-MM/pulls
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flags for event detection, HPD and HVSW classification have a delay of 5 s. This is due to 
the requirement for an event to have a duration of at least 5 s.

4.1  Spike detector

The spike detector is based on the block diagram highlighted in Fig. 3 and is adjusted to 
suit hardware-efficient implementation. This section will go over the IIR filter and the σn 
estimator implementations as those vary from what was explained in Sect. 3.1.2.

4.1.1  Infinite impulse response filters

The IIR filters, described by Equation 2, can be implemented more efficiently when using 
binary values. As α < 1, a multiplication is performed by the numerator and a division 
is performed by the denominator. This division can be replaced by binary right shifts 
which is shown in Equation 6, where G1 and G2 are the nominators and 1/(2S) denotes 
a right bit shift by S. Table 4 shows the implemented filters and their respective gains 
and shift values.

y(n) = G1
x(n − 1)

2S
+ G2

y(n − 1)
2S

� (6)

4.1.2  σn estimator

Calculating the MAD as shown in Equation 4 is a costly operation as taking the median 
over a window needs a lot of memory allocation. Yang and Mason  [26] introduced a 
hardware-efficient implementation for estimating σn by following the statistical theory 
that the probability of Gaussian noise exceeding σn is known to be 0.159. Figure 6 shows 
the block diagram of the σn estimator. The input signal is compared with the estimated 
σn, σest

n , and outputs a ′1′ if the input signal is greater. The amount of ′1′s inside a win-
dow of size M is counted and subtracted from 0.159 × M . This result is fed into a digital 
integrator and is then used to update σest

n  every M clock cycles. The loop keeps updat-
ing until a convergence is detected after which the converged value σn is output by the 
system.

4.2  Epileptiform event detector

In Sect. 3.2 the proposed epileptiform event detector is described, which is visualized 
by the flowchart in Fig. 4, where the green and purple elements are implemented in the 
hardware. The yellow elements of the detector were left out of the hardware implemen-
tation as the implementation should be real-time and efficient. Changes made to the 
working of the event detector are highlighted in this section.

4.2.1  Amplitude calculation and check

The amplitude calculation and check have been left out of the hardware implementation 
to support a real-time system and to save area on memory. The amplitude calculation 
is required for both the negative and positive peaks and requires two comparisons per 

Table 4  The values for the IIR filters implemented in hardware using two gains and a binary shift
Value of G1 Value of G2 Value of S

Filter 1 2 510 9
Filter 2 3 1 2
Filter 3 3 29 5



Page 14 of 23Vermeulen et al. Discover Applied Sciences          (2025) 7:1065 

sample for the 100 samples after a spike is detected. The baseline amplitude calculation 
requires the calculation of the 97th percentile of 20, 000 continuous samples. Both these 
calculations require significant area for memory and the baseline amplitude calcula-
tion can negatively affect the future near real-time behavior of the system. The negative 
impact on the (near) real-time behavior is caused by the fact that a segment of 20 s with-
out any spikes needs to be found before the calculation can be performed, resulting in an 
idle time before events can be detected.

4.2.2  Nested loop

The nested detection loop, shown in Fig. 4, is indicated by the yellow element contain-
ing spike = “1st spike′′ + 1. This implementation mostly impacts the (near) real-time 
working of the system but also requires extra memory. The real-time working of the sys-
tem is impacted greatly by the nested loop as it starts event detection using a previous 
spike. This helps with the correct detection of the start and end of events but will cause 
extra delay if added, which is undesirable for a near real-time system.

4.2.3  Preliminary spikes check

The preliminary spikes check was introduced, as explained in Sect.  3.2.3, to correctly 
detect the start of HPD events. Hardware implementation of this function is not via-
ble as the algorithmic, non-real-time implementation, checks the spikes in front of a 
detected event to correct the detection. If this were to be implemented in the hardware, 
a delay of the longest detectable event needs to be added to show a detected event with 
preliminary spikes, which would result in the system not running real-time. The effect of 
leaving out the preliminary spikes check is that the beginning of some HPD events will 
not be detected correctly.

Fig. 6  Block diagram of the estimation of σn implemented in hardware
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4.3  Epileptiform event classifier

The epileptiform event classifier is also simplified with respect to the presented version 
in Sect. 3.3; that is, the events are classified into only HVSW and HPD events as these 
are the most important elements relevant for the development of epilepsy. As explained 
in Sect. 3.3, an event will be classified automatically as an HVSW event unless 5 con-
tinuous seconds with at least 25 spikes are detected. The classifier is implemented using 
a ring buffer, which saves the moment in time when a spike is detected. Using the ring 
buffer the number of spikes in the previous 5 s is tracked, when the event detection flag 
goes high a check on the amount of spikes determines the classification. During the time 
the event detection flag is high, the classification can change from HVSW to HPD if the 
number of spikes in the buffer reaches 25. The classification relies on event detection 
and thus has a delay of at least 5 s, the maximum delay is not known as this can be the 
length of an entire epileptiform event if the last 5 s contain 25 spikes.

To address the variability and noise inherent in the LFP signal, particularly across elec-
trodes and subjects, our methodology parametrizes key criteria such as spike duration 
and frequency, enabling flexible tuning based on experimental context. This approach 
improves robustness and adaptability, reducing the risk of misclassifying border-
line events. Furthermore, the parameterized structure can support future integration 
of adaptive thresholding mechanisms, as demonstrated in our previous work using 
an adaptive multi-threshold encoding for spiking neural network application [4]. This 
design choice lays the groundwork for developing a more automated and generalizable 
system for future near real-time epileptiform activity detection and classification.

5  Experimental setup
5.1  Performance metrics

The performance results of the spike detector, event detector, and event classifier are 
represented using one or more of the following metrics. (1) Accuracy, which indicates 
the rate of correct detections or classifications, illustrated in Equation 7 and given in 
percentage. (2) Sensitivity, as part of Equation 8, showing the rate of positive detec-
tions or classifications, which are correctly identified. (3) Precision, as part of Equation 
9, indicating the number of true detections or classifications over the total number of 
true events. These metrics make use of True Positive (TP), False Positive (FP), and False 
Negative (FN) detection. True Negative (TN) is not considered as this results in a large 
bias. The formulas for the three metrics are shown below.

Accuracy = TP

TP + FP + FN
� (7)

Sensitivity = TP

TP + FN
� (8)

Precision = TP

TP + FP
� (9)

5.2  Spike detector

The spike detector is evaluated using a synthetic dataset which consists of 8 recordings 
of 48 h with noise levels ranging from 0.05 dB to 0.2 dB at an interval of 0.05 dB [18]. 
The naming structure used for the different datasets starts with E (easy) or D (difficult), 
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which refers to the difficulty level of clustering the spikes (not important for this work) 
and ends with the value of the noise level. With these datasets, the proposed spike detec-
tor can be evaluated and compared to three different methods: the standard implemen-
tation of NEO and ANT, ASO [28], and DWT [16]. As the implementations of ASO and 
DWT only have results on accuracy this is the only metric used to evaluate performance.

5.3  Event detector and classifier

The output of the epileptiform event detector and classifier were reviewed by an animal 
epilepsy expert (G.K.), who indicated the TP, FP and FN detections and classifications 
from which the performance metrics were calculated. For the event detector 48 h and 
for the classifier 108 h of input EEG/LFP recordings from the IHKA model were used, 
originating from 8 and 9 mice, respectively. After the evaluation of the event detector, 
the algorithm has been adjusted, and with the new version the event classifier has been 
evaluated.

5.4  Hardware implementation

The development flow of the hardware implementation is shown in Fig. 7. The algorithm 
was first developed in Python and has been implemented in the hardware description 
languages (HDL) of Verilog and very high speed integrated circuit (VHSIC) program 
hardware description language (VHDL). The python algorithm was manually verified 
after which the hardware simulations done in Questasim were compared to verify cor-
rect working. The process is split up into the workflow of the development of an ASIC 
and of an FPGA.

5.4.1  Application specific integrated circuit

Using Cadence Genus, a worst corner synthesis of the design was done with the TSMC 
40 nm library. The system clock frequency was set to a frequency of 5000 Hz, which is 

Fig. 7  Development flow of the hardware implementation
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the lowest clock frequency allowed by Genus. From the worst corner analysis, results 
on area and power were generated for the spike detector, event detector, event classi-
fier, and the full design. Using the synthesized design a place and route was made using 
Cadence Innovus using a density of 0.7 and the post-layout results in realistic results on 
power and area.

5.4.2  Field programmable gate array

The design has been synthesized using Xilinx Vivado for a demonstration on a PYNQ-
Z1 board containing a ZYNQ-7000 series FPGA. The clock of the system is set to 1000 
Hz and 300,000 16-bit values in two s complement and fixed point representation are 
loaded into the BRAM and used as input signal. The synthesis for the FPGA gives results 
on power usage and area, which is reported in the available logic blocks on the FPGA.

6  Results
6.1  Spike detector

The results of the four spike detection methods (see Table 2) were compared with box 
plots in Fig. 8. The Wavelet transform (DWT) was found to have an average accuracy of 
89.5%, whereas ASO had an average accuracy of 91.1%. Both the standard and improved 
version of the NEO and ANT implementation achieved a higher accuracy, the standard 
version had an accuracy of 92.9%, while the improved version had an accuracy of 93.3%. 
This is a marginal improvement achieved by removal of the temporal drift. The improve-
ment was achieved using an IIR filter that was originally implemented to allow spike 
amplitude calculations, and because of this, no overhead is added to the spike detec-
tion. Next to the fact that the improved version achieved the highest accuracy, it is also 
clear that the minimum and maximum accuracy values are closer to each other, indicat-
ing this method is more stable. This suggests that this method is indeed robust to noise, 
which was one of the requirements for the spike detector.

Fig. 8  Accuracy of spike detection of the proposed approach (in red, right) with three existing spike detection 
methods, i.e., wavelet transform (DWT), ASO and combined NEO & ANT (see also qualitative features of these and 
other existing methods in Table 2)
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6.2  Epileptiform event detector

We next conducted a detailed quantitative analysis to benchmark of our automated 
event detection and classification approach, using standard performance metrics such 
as accuracy, sensitivity, and precision. Figure 9 shows the accuracy, sensitivity and preci-
sion retrieved from the manual analysis of the output of 48 h of input data to the epi-
leptiform event detector. The event detector had an average accuracy of 93.6%, with a 
precision of 99.0% and a sensitivity of 94.0%. From Fig. 9 it is clear that there is one out-
lier for both accuracy and sensitivity results, corresponding to the same dataset. The low 
sensitivity indicates that a lot of events were missed in detection. During the manual 
analysis of this dataset, it became clear that the spike detection accuracy for this data-
set was not high enough to support accurate event detection. As the event detection 
fully relies on the spike detection an improvement was made to the spike detector. The 
improvement entails the ability to adjust the scalar C from Equation 3. This results in 
some manual work during analysis, but the option to adapt spike detector provides flex-
ibility to achieve better overall results on sensitivity and accuracy.

6.3  Epileptiform event classifier

The results from the manual analysis of 108 h of EEG recording (input data) for the event 
classifier are shown on the right in Fig. 9. For the manual analysis, identification of epi-
leptiform events was based on the criteria described by [23], and performed manually 
with substantial agreement (Cohen s kappa 0.81) based on independent analysis of half 
of the data-set (i.e. 54 h) by two raters. In the analysis of the event classifier, the ability to 
adjust the scalar C in the spike detector was included. The event classifier had an accu-
racy of 95.8% with a sensitivity of 95.8% and a precision of 95.8%. When comparing the 
results on detection and classification in Fig. 9, we can see that the classifier achieves a 
higher consistency over the three metrics on all the datasets. The consistency is visible 
in the small spread indicated by the quartile and maximum data values for classification. 
The results are directly correlated as both the detector and classifier fully rely on the 
spike detector. However, we cannot directly compare both results and give an impact 
value to the added ability to adjust scalar C. Still, this stability in the classifier results 

Fig. 9  Illustration of accuracy, sensitivity and precision results from both the epileptiform event detector (on the 
left) and classifier (on the right) extracted using the automated algorithm compared to the manual analysis of the 
same 48 h of ipsilateral hippocampal LFP data
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shows that the adjustment of scalar C positively impacts the results with little manual 
work added.

6.4  Complete system for automated epileptiform activity detection

The automated epileptiform activity detector and classifier reduced analysis time of the 
108 h of LFP data to just 20 min, compared to 27 h required for manual analysis, result-
ing in a 98.8% time saving, as described in Table 5. Secondly, the epileptiform activity 
detector and classifier achieved a constant high level of detection and classification accu-
racy, which removed the dependability on expert analysis and removed inter-observer 
biases and errors. Our approach achieved a superior sensitivity of 94.0% for detection 
and 95.8% for classification over the approach introduced by [22] that achieved a sensi-
tivity of 86–90%. The achieved time reduction of >80% by [22] was also lower than the 
98.8% in the current work, which can be explained by the almost fully automated imple-
mentation of our work.

6.5  Application specific integrated circuit

A demonstration of future real-time event detection is shown in Fig.  10 showing the 
output signals of the hardware simulation as detected spikes and classified events. The 
response time of the detection and classification is demonstrated through the hard-
ware simulation outputs, where spikes, events, and their respective classifications where 
HVSW and HPD are near-instantly (i.e. for 1 min of data producing output within 0.2 s) 
generated, highlighting the system’s capability for near real-time signal analysis. The area 
and power consumption results gathered from the synthesis are shown in Fig. 11, which 
shows that the spike detector together with the interconnect takes up the biggest part 
of the area and uses the most power. Moreover, it is clear that the distribution in area 

Table 5  Manual analysis time versus computational time for LFP recordings
Time to get input data 108 h
Time for manual analysis 27 h
Computation time 20 min
Time reduction 98.8%

Fig. 10  Output results of both the algorithm, and its hardware implementation. a Input LFP recording. b The 
output of the algorithmic implementation in Python: red markers indicate the detected spikes, the coloured area 
indicates the detected event, and the colour indicates the classification. c Output signals of the hardware simula-
tion where Spike indicates a detected spike, Event a detected event and HVSW and HPD represent the classification 
of a detected event
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and power usage are correlated, as the percentage per part of the design is almost equal. 
The area of the spike detector could be reduced by decreasing the input bit size, which 
resulted in a lower resolution throughout the system, as everywhere the size of the input 
signal Is used.

The area and power results of the place and route are shown in Table 6 from which it 
is evident that the ASIC design reached an area of 9114 μm2 that is 13.6% larger than 
the synthesis achieved. This is because an ASIC gives a more realistic result on area, as 
the netlist resulting from the synthesis is realistically routed in the design. The layout 
gathered from the place and route is shown in Fig.  12. External memory blocks (e.g., 
SRAM and DRAM) are not integrated, as inputs were directly applied to the system for 

Table 6  Chip area and power consumption results of the placed and routed design and the FPGA 
implementation

ASIC FPGA
Tool Cadence Genus Xilinx Vivado
Technology TSMC 45 nm PYNQ-Z1 board with

ZYNQ-7000 FPGA
Supply voltage 1.0 V 1.00 V
Clock 5000 Hz 1000 Hz
Area 9114 μm2 815 LUTs

427 Registers
8 DSPs

Static power 6.66 μW 114 mW
Dynamic power 16.09 μW 58 mW

Fig. 12  Layout of the physical design

 

Fig. 11  Area and power consumption results from the synthesis of the design using Genus and TSMC 40nm library
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this proof-of-concept, and thus no performance metrics provided on these aspects. This 
choice simplifies the architecture but limits the completeness of performance metrics at 
full system-level.

6.6  Field programmable gate array

The algorithm was successfully implemented on an FPGA to show the working as a Brain 
Machine Interface (BMI). All the outputs of the system are routed to LEDs, the input 
data is stored on the BRAM, and the reset is linked to a switch. The area and power 
results are reported in Table 6 in addition to the ASIC results; although a direct com-
parison is not possible as both implementations make use of different technologies, a 
realistic image is given if one of two implementations is further developed.

7  Conclusion
In this paper, we propose a new method for the detection and classification of epilep-
tiform activity using data from EEG/LFP recordings gathered from a preclinical study, 
in this case of the IHKA mouse model. Our method is based on a spike detection stage, 
which is followed by an epileptiform event detector that uses a general description of 
all types of epileptiform events. The last stage is an epileptiform event classifier, which 
classifies events based on their duration and intra-event spike frequency into one of 
four groups. The detection and classification algorithm is implemented in Python and 
was found to reach a general epileptiform event detection accuracy of 93.1%. Epilepti-
form events were classified with an accuracy of 95.8%, and the implemented algorithm 
yielded a time reduction of 98.8% compared to manual analysis. Our approach achieved 
equal or better accuracy over existing epileptiform event detection methods described 
in the literature, but most of all, yielded a superior time reduction that was possible as 
the algorithm is automated to a level exceeding that of existing methods due to a mini-
mal manual input. Real-time hardware implementation of the algorithm was developed 
using HDL. Power and area results were gathered using the TSMC 40nm library and a 
Zynq 7000-series FPGA. The work was demonstrated using the FPGA, which shows the 
potential of a brain-machine interface (BMI). Overall, our detection approach has the 
potential to streamline research and accelerate advancements in epilepsy studies by pro-
viding a complete package that includes a spike detector, epileptiform event detector and 
classifier with better accuracy while significant reduction in the analysis time. Because 
our epileptiform event detection algorithm can be tailored to different spike and event 
criteria, it holds promise for broader use in additional preclinical epilepsy models as well 
as future clinical applications with scalp EEG data.
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