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C O V E R  I M A G E :

Different zones within the Faculty of Architecture and the Built Environment at TU Delft.
Being able to simulate (as further depicted) the propagation of the Bluetooth signals 
at any position, can enable the improvement of an Indoor Localization System.
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ABSTRACT

The performance of an Indoor Positioning System is highly related to the place-
ment of the transmitting nodes that are used as references for the positioning es-
timations. Within this graduation project, we propose a methodology that can be
used to optimize such a deployment and thus, increase the performance of an In-
door Positioning System that a) is based on Received Signal Strength Fingerprint-
ing and b) is orientated towards providing location or zone estimations instead of
exact positioning.

The optimization process involves 4 fundamental components. Firstly, the mod-
eling of the obstructions in the indoor environment and also the zone modeling.
Then, the definition of the performance metric that can be used to evaluate each
different deployment scenario, in which case, our proposed metric considers the
separation area and distances between the zones in the RSS vector space. The third
component is the radio propagation model, required for simulating the transmit-
ted signals from each node, where a model based on the ray tracing technique is
selected. Finally, the last component is the selection of the optimization function
that will control and drive the whole optimization process by choosing which de-
ployment schemes to evaluate. For that, the utilization of a Genetic Algorithm has
been selected.

The evaluation of our methodology showed that the most problematic regions in
terms of localization accuracy are, as expected, those where different zones be-
come adjacent. Yet, comparisons between regular node deployments and our op-
timized solutions indicated that, regardless the number of nodes, our optimization
introduced in each case an overall localization improvement that was especially
concentrated at the most problematic regions.

i





ACKNOWLEDGEMENTS

This document is the culmination of a long lasting research journey at TU Delft,
upon the completion of which, I would like to take the opportunity to first express
my heartfelt gratitude to both my mentors Edward and Martijn. To begin with, by
delegating to me a subject which lies exactly in the epicenter of my interests has
proved to be decisive for shaping the often laborious task of undertaking a gradua-
tion project, into a truly enjoyable experience. Moreover, their insights and advice
have served as a lever in effectively orienteering my work and writing, steering me
at all times towards the right track.

Specifically referring to Edward’s influence on my work, a fact speaking for itself
is that if it weren’t for his course on location awareness, I would have probably
never found interest in the field of indoor positioning and localization. Hence, not
only this thesis, but also my forthcoming PhD pursuing on the subject of mobility
prediction in indoor environments, would be non-existent.

Yet, I would additionally like to thank all those, family of course but also friends,
who made my journey even easier without them even realizing it much. Either
it is my fellow Geomatics students, or my beloved climbing group, or my Delft
buddies, or my since-childhood friends; everyone helped in their own unique and
deeply touching way.

iii





Contents

1 Introduction 1
1.1 Motivation and Problem Statement. . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Scientific Relevance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Optimization’s Test Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Research Questions and Scope . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Theoretical Background 7
2.1 Indoor Positioning Techniques using BLE Signals . . . . . . . . . . . . . . . 7

2.1.1 Proximity Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 Bluetooth Direction Finding . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.3 Lateration Using RSSI . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.4 RSSI Fingerprinting. . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 The Challenge of RSSI-based Positioning . . . . . . . . . . . . . . . . . . . 11
2.3 The Optimization’s Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Related work 15
3.1 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Radio Propagation Models. . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 Optimization Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3.1 Genetic Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3.2 Simulated Annealing . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.4 Modeling the Indoor Space . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Methodology 21
4.1 Defining the Location Distinctiveness . . . . . . . . . . . . . . . . . . . . . 21
4.2 Measuring the Location Distinctiveness . . . . . . . . . . . . . . . . . . . . 24

4.2.1 Selecting a Positioning Technique. . . . . . . . . . . . . . . . . . . . 24
4.2.2 From the overall Location Distinctiveness to a representative one . . 26
4.2.3 Modeling the Separation Area . . . . . . . . . . . . . . . . . . . . . . 29
4.2.4 Modeling the Separation Distances . . . . . . . . . . . . . . . . . . . 31
4.2.5 Maximizing the Minimum Separation Distance . . . . . . . . . . . . 34
4.2.6 Maximizing the Product of the n Shortest Separation Distances . . . 34

4.3 Modeling effectively the Indoor Environment . . . . . . . . . . . . . . . . . 36
4.4 Developing the Simulation Engine . . . . . . . . . . . . . . . . . . . . . . . 38
4.5 Genetic Algorithm Integration . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.5.1 Data Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.5.2 The Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.5.3 Fitness Check and Selection . . . . . . . . . . . . . . . . . . . . . . . 48
4.5.4 Crossover and Mutation . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.5.5 Genetic Algorithm Challenges . . . . . . . . . . . . . . . . . . . . . . 50

4.6 Improving Further the Searching Functionality . . . . . . . . . . . . . . . . 51

v



Contents

5 Evaluation Process 53

6 Results & Interpretation 57
6.1 Deployment Solutions Found . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.1.1 Setups for an Optimal Minimum Separation Distance . . . . . . . . 57
6.1.2 Setups for an Optimal Product of n Shortest Separation Distances . . 62

6.2 Evaluation of the Localization Improvement. . . . . . . . . . . . . . . . . . 64
6.2.1 Assessing the kNN performance for k=1 . . . . . . . . . . . . . . . . 64
6.2.2 Assessing the kNN performance for k∈{3,5} . . . . . . . . . . . . . . 68

7 Conclusions 71
7.1 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
7.2 Reflection & Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
7.3 Future Work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

vi



List of Figures

1.1 Position/Location aspects in a spatial scene . . . . . . . . . . . . . . . . . . 3
1.2 Fusion between Point Cloud model & Floor Plan . . . . . . . . . . . . . . . 4

2.1 Triangulation 3D Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Trilateration 2D Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 RSSI distributions of devices having different orientations . . . . . . . . . . 12
2.4 The 3 BLE Advertisement Channels in 2.4GHz Band . . . . . . . . . . . . . 12
2.5 RSSI distributions of devices at 2 different node orientations . . . . . . . . 13

3.1 The life cycle of a Genetic Algorithm . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Minimization based on SA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.1 Set of positions that is a subset of more than 1 locations . . . . . . . . . . . 21
4.2 Validating the location intersections . . . . . . . . . . . . . . . . . . . . . . . 22
4.3 Changing the separation distance of the RSs . . . . . . . . . . . . . . . . . . 23
4.4 Changing the separation distance of the RSs (with changed variance) . . . 25
4.5 Signal coverage under unobstructed propagation . . . . . . . . . . . . . . . 26
4.6 Signal coverage under obstructed propagation . . . . . . . . . . . . . . . . . 27
4.7 From the Physical 2D Space to the Radio Signatures . . . . . . . . . . . . . 28
4.8 Physical Zones having irregular Shape . . . . . . . . . . . . . . . . . . . . . . 29
4.9 Circular Manhattan-Alpha-Shaping Procedure . . . . . . . . . . . . . . . . . 30
4.10 Zone Perimeter example based on the Circular Manhattan-Alpha-Shaper . 30
4.11 The final Separation Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.12 Separation Area & Distances (Example 1) . . . . . . . . . . . . . . . . . . . . 32
4.13 Separation Distances (Example 2) . . . . . . . . . . . . . . . . . . . . . . . . 32
4.14 Class Interconnections at different Cell Sizes . . . . . . . . . . . . . . . . . . 33
4.15 Class Interconnections at a more complex Scenario . . . . . . . . . . . . . . 33
4.16 Separation Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.17 Perpendicularity of the zone’s borders . . . . . . . . . . . . . . . . . . . . . . 37
4.18 Modeled Obstructions in the Indoor Environment . . . . . . . . . . . . . . 37
4.19 Modeled Zones in the Indoor Environment . . . . . . . . . . . . . . . . . . . 38
4.20 Ray Launching Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.21 Corridor View within the Indoor Environment . . . . . . . . . . . . . . . . . 39
4.22 BLE Beacon Set & Mount Type used for the Sampling . . . . . . . . . . . . . 40
4.23 Unobstructed connections of Node/Sample Positions . . . . . . . . . . . . 41
4.24 FSPL Distance to RSSI Observations . . . . . . . . . . . . . . . . . . . . . . . 41
4.25 Labels of the Attenuation Coefficients . . . . . . . . . . . . . . . . . . . . . . 42
4.26 Training the Radio Propagation Engine . . . . . . . . . . . . . . . . . . . . . 43
4.27 Radio Attenuation due to Refraction . . . . . . . . . . . . . . . . . . . . . . . 44
4.28 Radio Propagation Example from a BLE Node . . . . . . . . . . . . . . . . . 44
4.29 RSSIs Mapping for a Node Position . . . . . . . . . . . . . . . . . . . . . . . . 46

vii



List of Figures

4.30 An Individual Chromosome (or Solution) for a 5-Node Setup . . . . . . . . 47
4.31 The Phases of Crossover and Mutation (based on a 4-Node Setup) . . . . . 50
4.32 Continuous space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.33 Large cell size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.34 2x smaller cell size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.35 Separation Distances of the Zones at 45cm Cell-Size . . . . . . . . . . . . . 52
4.36 Separation Distances of the Zones at 72cm Cell-Size . . . . . . . . . . . . . 52

5.1 None-Optimized Regular (Regular) Deployment of 30 Nodes . . . . . . . . 54
5.2 None-Optimized (Regular) Deployment of 15 Nodes . . . . . . . . . . . . . 54
5.3 None-Optimized (Regular) Deployment of 5 Nodes . . . . . . . . . . . . . . 55
5.4 Sample Cells used for the Simulated Evaluation . . . . . . . . . . . . . . . . 55
5.5 Sample & Node Positions for the RSSI gathering . . . . . . . . . . . . . . . . 56

6.1 Optimal Deployment for 30 Nodes (Opt1 - Cell Size 45cm) . . . . . . . . . . 58
6.2 Optimal Deployment for 30 Nodes (Opt1 - Cell Size 72cm) . . . . . . . . . . 58
6.3 Node Placement next to Door Openings . . . . . . . . . . . . . . . . . . . . 59
6.4 Node Placement at the far Side of Zones . . . . . . . . . . . . . . . . . . . . 59
6.5 Optimal Deployment for 15 Nodes (Opt1 - Cell Size 45cm) . . . . . . . . . . 60
6.6 Optimal Deployment for 15 Nodes (Opt1 - Cell Size 72cm) . . . . . . . . . . 60
6.7 Optimal Deployment for 5 Nodes (Opt1 - Cell Size 45cm) . . . . . . . . . . 61
6.8 Optimal Deployment for 5 Nodes (Opt1 - Cell Size 72cm) . . . . . . . . . . 61
6.9 Optimal Deployment for 30 Nodes (Opt2 - Cell Size 45cm) . . . . . . . . . . 62
6.10 Optimal Deployment for 15 Nodes (Opt2 - Cell Size 72cm) . . . . . . . . . . 63
6.11 Optimal Deployment for 5 Nodes (Opt2 - Cell Size 45cm) . . . . . . . . . . 63
6.12 Distances to Nearest Localization Error . . . . . . . . . . . . . . . . . . . . . 65
6.13 Distances to Nearest Localization Error . . . . . . . . . . . . . . . . . . . . . 67
6.14 Localization based on more than 1 Neighbors . . . . . . . . . . . . . . . . . 69

viii



Acronyms

AP Access Point. 2, 15

BLE Bluetooth Low Energy. vii, 1, 2, 4, 5, 7–11, 15, 19, 25, 26, 40

EM Electromagnetic. 1, 7

FSPL Free Space Path Loss. 40, 42

GA Genetic Algorithm. 6, 17, 18, 46, 47, 50, 73

GNSS Global Navigation Satellite Systems. 2, 17

GPS Global Positioning System. 9

IPS Indoor Positioning System. 1, 2, 8, 10, 11, 13, 21, 22, 53, 71, 73, 74

ISM Industrial, Scientific and Medical. 1, 7

kNN k-Nearest Neighbors. 10, 56, 68

LBS Location-Based Services. 2

RS Radio Signature. 22–25, 27, 56, 66, 68

RSSI Received Signal Strength Indicator. vii, viii, 9–13, 15, 16, 26, 27, 29, 40, 43, 45, 46,
51, 56, 74

SA Simulated Annealing. 18, 19

SNR Signal-to-Noise Ratio. 16

UWB Ultra-Wide Band. 9, 10

ix





1
Introduction

Nowadays, it is rather easy to depict the importance of radio transmissions in ev-
ery aspect of daily life, when finding a place on earth’s surface having no artificial
signals, is quite challenging. Even at the most distant places, where no cellular
coverage, Television/Radio providers or other terrestrial broadcasting services ex-
ist and unless one is well hidden underground or underwater, various EM waves
transmitted from space, will still be there.

Based on the application’s characteristics and according to international regula-
tions (International Telecommunication Union, 2016), the radio signals may prop-
agate through reserved parts of the electromagnetic spectrum. For the case of in-
dustrial, scientific and medical applications, a corresponding Band (ISM) has been
specified, where well-known wireless technologies such as Wi-Fi and Bluetooth are
assigned (J.-S. Lee et al., 2007). A modified version of the latter, offering reduced
power consumption while operating at the same frequency of 2.4GHz, namely the
Bluetooth Low Energy (BLE), is the transmission technology that will be consid-
ered throughout this graduation project.

Since the development of the BLE specification, this technology has been con-
stantly gaining attention in various fields, such as Health-care, Wellness and Sports,
Home Automation, Internet of Things, etc. (Gomez et al., 2012). However, yet an-
other BLE application of great importance would be Indoor Positioning and Nav-
igation. This service typically suggests the installation of a mesh of BLE Beacons
and a receiver that is able to "listen" to the transmitted signals. Then, depending
on the positioning technique used, these signals are processed to finally produce
an estimation of the receiver’s position (Faragher and Harle, 2015).

As implied, an IPS can be based on various positioning techniques, such as trian-
gulation, trilateration, multilateration, fingerprinting, etc. (H. Liu et al., 2007). The
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Chapter 1. Introduction

fingerprint approach involves matching signal patterns with already known ones
that have been georeferenced and stored within a database; while, it received this
specific name, since these patterns are expected to be as unique, as a fingerprint
can be. As noted in (Faragher and Harle, 2015), this method is the de-facto local-
ization technique for (LBSs) on consumer devices today, while implementations
using BLE signals have been shown to deliver among the most successful results
(Faragher and Harle, 2015). Therefore, this combination (i.e. BLE-Fingerprinting)
shall be respected throughout this graduation project.

1.1. Motivation and Problem Statement
Every mesh/network deployment could be evaluated based on some performance
metric. Contrariwise, knowing this metric beforehand might enable the deploy-
ment of the network in such a way, that its performance becomes optimal. An
example of such an optimization can be the distribution of cellular antennas in a
town so that the coverage is maximized (Amzallag et al., 2005), or the deployment
of Wi-Fi Access Points (APs) in a university so that the disconnections of walking
users are minimized (Taufiq et al., 2011), or even the deployment of a GNSS con-
stellation for maximum visibility (McKay and Pachter, 1997).

An IPS is a type of network that is straightforwardly coupled with the property of
position. More than that, however, is also connected to the notion of location.
Unlike a position, the description of which is narrowly directed by the numerical
coordinates of a dimensionless point, a location can be perceived in many differ-
ent ways. It can be all corridors, a desk, an open hall without physical boundaries,
or even an elevator in a building. In all cases, the common characteristic is that
the location can be considered as a superset of positions which are all attributed
with the same thematic identifier; namely, the location where they belong.

Thus far, all research related to placement optimization of BLE nodes used in IPSs,
has been done with respect to the positional accuracy. In practice, however, a BLE-
based IPS often offers broader area/proximity estimations instead of positioning
estimations of high accuracy. In these Location-enabled IPSs, the benefits of the
so far proposed optimizations are not maximal, since the optimization process is
highly consumed at enhancing aspects that have limited effect. Therefore, during
this graduation project, a similar optimization problem will be faced. In this case,
however, adjusting the placement of positioning nodes with the goal to increase
the location prediction among different area sections (e.g. room A, B, etc.).

Besides the improvement in both the localization accuracy and navigation func-
tionality, such an optimization could potentially increase also the cost-effectiveness
ratio, leading ultimately to lower deployment costs, since less transmitting nodes
might be needed to reach sufficient levels of performance.
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1.2. Scientific Relevance
As it will become clear in Section 3.1, so far, when the subject of study is to identify
an entity within space, the leading interest of the associated research has been es-
sentially the improvement of the accuracy of the positioning estimations in terms
of numerical coordinates, or in other words, the minimization of the difference be-
tween the coordinates of the estimated position and the actual position. Although
this notion is highly applicable to various scientific fields (e.g. Surveying, Radio
Navigation, etc.), there are still cases, such as the field of Geomatics, where the
symbolic enrichment of a position may be the most interesting feature (Kolodziej
and Hjelm, 2006).

Even for indoor positioning systems offering highly accurate positioning coverage
(e.g. sub-meter), it is easy to depict the value of grouping different points in space,
into distinct spatial sets (or locations) of specific semantic properties. For exam-
ple, a university student searching for the "Lecture Hall B3", would prefer making
a lookup based on the room’s name in a hypothetically provided indoor position-
ing system App, instead of some specific coordinates. In a similar way, other users
having mobility impairments would recognize the worth of an indoor position-
ing system that supports space semantics as described by L. Liu et al., 2019, to be
able to search for navigation routes via zones that are accessible by them. This
importance and generally the difference between localization and positioning as-
pects has been acknowledged even from plainly technical sources (Karl and Willig,
2005). For example, in Figure 1.1 sacrificing the general positional accuracy to in-
crease the general localization accuracy (e.g. the building is on the left of the river
and not the right) might be preferable.

Figure 1.1: Position/Location aspects in a spatial scene
(source: Dorling Kindersley Limited)
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1.3. Optimization’s Test Case
Although the broader lines of our proposed optimization have already been intro-
duced (Xenakis, Meijers, et al., 2019), in this thesis, the actual implementation is
presented. For this purpose, a real indoor environment has been considered as
the test case where the optimization of an actual node deployment is being exam-
ined. More specifically, this environment is an area of approximately 900m2 within
the Faculty of Architecture and the Built Environment at TU Delft and since our
methodology involves the modeling of this environment, different model sources
including the digital blueprints of the building and a recently acquired point cloud
(Staats, 2017) have been utilized to produce an, as accurate as possible, represen-
tation of the indoor space.

Figure 1.2: Fusion between Point Cloud model & Floor Plan
(sources: BK, Google Earth, Bart Staats)

1.4. Research Questions and Scope
As observed, literature’s focus has so far been the improvement of the physical (in
terms of numerical coordinates) positioning estimation. However, since position-
ing is only the basic part of a true location-aware solution, the objective of this
research project is to cover this void by providing a direct optimization for local-
ization purposes. Achieving that would arouse a cross-disciplinary contribution
since Location-enabled Indoor Positioning Systems are not solely relevant to the
field of Geomatics. Having this objective in mind, the formulation of the following
main research question arises:

To what extent can the placement of BLE nodes used for fingerprint-based position-
ing, be optimized to increase the location distinctiveness in an indoor environment?
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1.4. Research Questions and Scope

Increasing the location distinctiveness means, in other words, to improve the ac-
curacy of the zone prediction among different zone-areas. However, to eventually
achieve that, the following emerging sub-questions need to be answered first:

• How can the location distinctiveness be defined for an indoor positioning sys-
tem?

• Which metric would be most suitable for measuring the location distinctive-
ness among different zone areas?

• Which radio propagation model would offer good accuracy-complexity ratio?

• Which optimization algorithm should be utilized to support even large scale
optimizations?

• How can the optimization results be evaluated?

The exploration of all aforementioned research questions shall be done through-
out the rest of this graduation project. However, this exploration is not limitless
and thus, its scope should be clarified.

To begin with, as it will become clear, the major factor affecting the pragmatical
optimization’s magnitude is the accuracy of the simulation of the radio signals.
Regarding the latter, however, several adoptions which are going to be made, in-
troduce the corresponding limitations. For example, for the radio transmission
modeling, we only consider a specific type of BLE nodes as shown in Figure 4.22
(having specific software and hardware configurations). Therefore, our modeling
might be less representative for other types of BLE nodes.

Moreover, since positioning nodes are often placed on vertical walls (especially
when the ceiling is high), our optimization shall consider as candidates only these
positions.

Outside the scope of this project is to also find the minimum number of nodes
required for a given performance. For that, it is required that we first accurately
model the radio noise in the system and as it will be explained in Section 2.2, this
task is highly complicated.

Finally, although this would be quite illustrative, the evaluation of our optimiza-
tion shall only be performed in a simulated environment instead of a real one.
Nevertheless, this does not diminish its value since evaluating the optimization
in a real scenario would essentially evaluate the accuracy of the environment and
radio propagation modeling, instead of the value of our proposed metric.
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1.5. Thesis Outline
The rest of this thesis is structured as follows:

Chapter 2 provides the essential theoretical background that is required for under-
standing the subject without hassle. Different positioning techniques are briefly
summarised, with the fingerprint approach being discussed in more detail. More-
over, the necessary steps composing such an optimization process are explained
and justified.

Chapter 3 presents the relevant research that has been done heretofore and elab-
orates on different options that were available for adopting in our methodology.

The applied methodology had to respect several assumptions and constraints re-
garding the definition of the localization performance and the modeling of both
the signal propagation and the environment within which the signals propagate.
These became the foundation of the methodology and are discussed in Chapter 4.
Moreover, this chapter covers the integration of artificial intelligence into the opti-
mization’s process by describing how a Genetic Algorithm (GA) became the driver
of this process.

The setup and process used to evaluate the optimization’s success is described in
Chapter 5.

Chapter 6 presents the results of the applied evaluation and provides an analysis
and an interpretation of them.

Chapter 7 elaborates on the knowledge that has been extracted throughout this
thesis, applying critical thinking and answering individually the formed research
questions. Finally, suggestions are given regarding future work.
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2
Theoretical Background

For geo-locating an entity, one can choose between different approaches that can
be classified in various ways. These include the positioning accuracy that the so-
lution could offer (ranging from µm to km), the nature of the signals that are used
to deduct the position (e.g. magnetic, electro-magnetic, sound, gravitational, etc),
or even the total implementation & usage costs. BLE signals belong to the family
of EM radiation at the ISM Band, and a positioning system based on them can be
quite economical for the level of positioning detail that it may offer.

2.1. Indoor Positioning Techniques using BLE Signals
Depending on the nature of the signals, there are also different ways to analyse
them for producing positioning estimations. Each technique may consider differ-
ent signal properties (e.g. the wave’s amplitude, phase, angle of incidence, travel
time, etc.) introducing at the same time some corresponding constraints. For ex-
ample, to be able to measure at an effective level, the travel time of a radio sig-
nal that propagates at the speed of light, specialized (and quite expensive) equip-
ment are required. This section presents the indoor positioning techniques that
can be used with BLE signals (individually or even combined), specifying also in
each case, the signal’s property that the method is based on.

2.1.1. Proximity Detection
Bluetooth and consequently, BLE technology has seen great success due to the
underlying low hardware costs and its high suitability for numerous applications
that require reliable connectivity with low power consumption. Yet, for indoor po-
sitioning and localization purposes, BLE suffers from some important drawbacks
which are discussed in Section 2.2, making its effective utilization quite challeng-
ing. Because of that, better than a few-meters accuracy may not be easily achieved
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in an IPS that is based on BLE signals, unless more equipment and maintenance
effort is utilized. Since that translates to higher implementation costs, the most
usual and also simplistic method for BLE positioning is the proximity detection.

Proximity detection works by deploying several transmitting BLE nodes at known
positions and then measuring with a receiver (at an unknown position), the ampli-
tude (i.e. the amount of energy carried) of all incoming signals. Finding the node
that sent the strongest received signal, is enough for deciding that the receiver is
closest to that node’s known position. This technique requires that during the de-
ployment, the positions or locations of the nodes are recorded; which is a fairly
"inexpensive" process. Yet, such an IPS can basically offer valuable positioning
estimations only when the receiver is next to a node.

2.1.2. Bluetooth Direction Finding
On 2019, after the release of the Bluetooth’s Core Specification v5.1 (Woolley, 2019),
a new positioning technique became officially available for IPSs which are based
on BLE technology. This technique depends on a set of additional modules that in-
corporate specialized arrays of antennas that are able to identify the direction from
which the signals were received (Angle of Arrival case) or the direction towards
which the signals have been transmitted (Angle of Departure case). To achieve
that, the system considers both the phase and amplitude properties of them. Even-
tually, a position estimation can be deduced via a series of trigonometric calcula-
tions as shown in Figure 2.1, a process known as triangulation which is tradition-
ally used in the field of surveying. Depending on the topology and density of these
modules, an IPS (Location-enabled or not) that relies on this method could poten-
tially offer across the deployment area, positioning or location estimations of very
high accuracy; but at an expense corresponding to the number of modules.

Figure 2.1: Triangulation 3D Setup
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2.1. Indoor Positioning Techniques using BLE Signals

2.1.3. Lateration Using RSSI
Among the most important and generally utilized positioning techniques is the
Trilateration. Its importance becomes apparent when realizing that without it,
satellite positioning systems such as the Global Positioning System (GPS) could
not exist, along with every other service or product that depends on it. Trilatera-
tion belongs to the greater family of Lateration techniques, the common charac-
teristic of which is the ability to deduce positioning estimations via geometrical
calculations that are based on distances and known positions, as illustrated in Fig-
ure 2.2. For calculating these distances, such systems often depend on very precise
clock mechanisms that have the ability to distinguish moments in time in fine de-
tail. Therefore, knowing that waves propagate at predictable speeds (i.e. close to
the speed of light) and by measuring for how long a signal has been traveling, the
system can estimate a distance.

Figure 2.2: Trilateration 2D Setup (source: Alan Zucconi)

Trilateration as described above (i.e. based on timing signals) has been proved
to be very successful for outdoor spaces. Yet, for indoor spaces, where there are
many obstructions that can reflect a signal, this approach becomes quite prob-
lematic. Reflections lead to a problem called multipath where, as the name sug-
gests, signals are reaching the receiver from many different paths and after various
propagation times, making it difficult for the receiver to identify the true origin of
the signal and thus, the real distance from it. Although there are radio technolo-
gies that are (at some level) capable of solving the problem of multipathing in an
indoor environment, such as the Ultra-Wide Band (UWB) standard (Kolodziej and
Hjelm, 2006), BLE still suffers from it. For that reason, this type of signals cannot
be effectively timed and so, Trilateration requires another way of deducing these
distances; namely, the attenuation to distance modeling which is a technique at-
tempting to express the distance that a signal has traveled, as a function of its Re-
ceived Signal Strength Indication (RSSI).
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The trilateration technique, as suggested from our research question in Section 1.4,
is not the one being considered in this project. Yet, research projects exist with an
objective close to ours (i.e. positioning optimization via deployment adjustment
of BLE nodes) which do consider the trilateration technique. Taking an example
of them (Haagmans, 2017) it can be argued that among their strong points is their
direct applicability to other (even more accurate) technologies such as the UWB.

At this point, it should be noted that, although the attenuation and distance prop-
erties are indeed highly related, in practice, numerous other factors which are dif-
ficult to model and that also affect the signal’s attenuation (e.g. reflections, re-
fractions, interferences, antenna geometry, etc.) act as noise, introducing to this
model a lot of uncertainty.

2.1.4. RSSI Fingerprinting
RSSI Fingerprinting is the last, but also the most utilized technique in IPSs which
are based on BLEs signals. It is a powerful classification technique that is generally
applicable to a broader category of problems where pattern-matching of sensed
signals is involved. As it shall be explained, it does introduce several important
requirements in terms of time consumption for its implementation; yet, among its
strong points are the facts that:

• it can be easily combined with different types of signals (leading to more
accurate and reliable estimations),

• it does not require any additional/specialized equipment or even to be aware
of where the signals are coming from,

• it reduces the need for modeling the sources of noise and

• its effectiveness is at some degree related to the amount of time that has
been dedicated for its implementation.

Fingerprinting technique for indoor positioning applications considers the atten-
uation of the signals and is practically divided into 2 phases; the training phase
and the evaluation phase. During the training phase and assuming that a set of
transmitting nodes is deployed in the area, a receiver records at different sample
positions a) an identifier for this position (e.g. its coordinates) which is typically
appointed manually from the user, b) which signals can be received at that posi-
tion and c) their corresponding RSSIs. The entire recording process produces a
trained database (or a Radiomap) for the IPS where the fingerprinting is imple-
mented. During the evaluation phase, a new reading is received at an unknown
position, recording this time only the b and c parameters. Then, depending on
the positioning algorithm being used (e.g. Bayesian Methods, k-nearest Neighbors
(kNN), Neural Networks, etc (H. Liu et al., 2007)), the system attempts to classify
the new reading based on the Radiomap.
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In the proximity approach which was discussed in Section 2.1.1, although there is
no training phase, the position of the nodes is known. In that case, the system can
offer reliable estimations for unknown positions that are close to these nodes. In
this case, however, although the placement of the nodes is not known, the sample
positions that were used during the training phase, are known. As such, the system
can offer reliable estimations for unknown positions that are close to the positions
that were sampled from the user during that training phase. This means that, po-
tentially, more detailed (and time consuming) training phase, could lead to better
performance for the IPS.

2.2. The Challenge of RSSI-based Positioning
Self-evidently, for the RSSI fingerprinting technique to work best, it is important
that the conditions affecting the radio propagation in the indoor environment re-
main as invariable as possible. For example, if after the training phase, a transmit-
ting node was moved to another place, then this would introduce a lot of ambiguity
to the positioning method. However, achieving perfect radio consistency between
the sampling procedures is in practice not possible due to the numerous factors
that affect the signal’s attenuation. A list of such factors can be very long including
moving obstacles and absorbers (e.g. people walking), changes in furniture, inter-
ference from other radio devices, etc. Yet, even if all these factors were eliminated
from the equation, as it has been shown (Xenakis and Verbree, 2018), there are
two others that are almost impossible to predict. Namely, the receiver’s antenna
orientation in respect to the transmitter’s antenna orientation, and vice versa.

More specifically, Figure 2.3 presents 4 different smartphone receivers that each
has been used 4 different times to measure the attenuation from a beacon. The
experiment was done in a controlled environment where the only change between
these 4 times was the smartphone’s orientation in respect to the transmitting node
(i.e. each smartphone image can be thought as how the node sees the smart-
phone). As illustrated from the four plots, even by changing the phone’s orien-
tation, the RSSI distribution changes significantly. The kernels (or spikes) within
each distribution correspond to one of the three (37-38-39 of Figure 2.4) channels
on which the BLE standard is designed to operate.

The same plot reveals another significant problem regarding the invariability of
the radio conditions between a training and an evaluation phase. It is clear that
between different devices, the received attenuation differs which means that a
trained Radiomap that has been produced using a specific device, would be ac-
tually less representative when an evaluation check would be done with RSSI sam-
ples from another device; which is practically what happens in reality.
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Figure 2.3: RSSI distributions of devices having different orientations

Figure 2.4: The 3 BLE Advertisement Channels in 2.4GHz Band
(source: Argenox Technologies LLC)
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A usual attempt to reduce at some level the impact of having different signal re-
sponses under different orientations of a device, is to sample during the training
phase many and evenly distributed (to avoid any bias towards specific ones) ori-
entations. Although this leads to greater variances of RSSI values, it may allow
randomness to smooth over time some of the noise.

Introducing another dimension of ambiguity, the same problem can be observed
when the orientation of the transmitting node (in respect to the receiver) is the
only parameter that changes. Figure 2.3 presents how the Gaussian RSSI distribu-
tion of 3 different devices changes unevenly, when the orientation of the node is
changing. Nevertheless, it can be seen that for each device, this change remains
the same across different sampling moments (Scan 1/Scan 2).

Figure 2.5: RSSI distributions of devices at 2 different node
orientations

The inconsistency of the radio conditions act as noise to the positioning or local-
ization process and is the most significant factor that affects the performance of
any IPS which is based on the attenuation of the signals. However, although it is
very challenging to accurately model and correct this inevitable noise, efforts can
be made to reduce at some level how prone the system is to it. In essence, this is
where the placement optimization of the positioning nodes is expected to play a
role.
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2.3. The Optimization’s Workflow
To optimize the placement of a set of positioning nodes it is required that a specific
workflow is respected. Without a doubt, different deployment scenarios need to
be assessed and the one offering the best performance shall be selected as the
best solution. However, to manually install and measure on the field all possible
setups, is impossible and thus, an automated mechanism is required that will be
able to simulate all these different scenarios. As expected, such a simulator needs
to be aware of not only the geometry and properties of the indoor environment
for which the optimization is performed, but also the physical laws affecting the
radio propagation within it. Therefore, modeling the indoor environment and the
radio propagation are two additional components that the optimization workflow
requires.

The next step is to define a performance metric, or in other words, to "teach"
the optimization mechanism how does a good localization performance look like.
This metric will be applied for each different simulated scenario, leading eventu-
ally to the optimal solution.

Finally, the last step that the optimization workflow requires, is to develop a func-
tion to act as the driver for the whole optimization process. Undoubtedly, simulat-
ing in a brute-force approach all possible deployment scenarios, would certainty
find the best setup. In practice, however, even with the help of the simulator, it
would be impossible to assess all possible cases since these can be infinite. There-
fore, the task for this function is to identify and assess the deployment scenarios
which have the highest probability of offering the optimal performance.
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Searching through the scientific literature, one can easily find hundreds of research
papers broadly related to mesh optimization. In this case, however, where local-
ization based on RSSI Fingerprinting is involved, the most relevant projects have to
do with a) Wi-Fi or BLE Node placement optimization for indoor positioning pur-
poses, or b) Wi-Fi Access Point placement optimization for any other purposes.
The second category was also reviewed because BLE and Wi-Fi systems operate at
the same radio band and thus, their signal propagations are very similar.

As expected, the common characteristic in each case, was the consideration of the
workflow that was mentioned in Section 2.3; namely, 1) which metric of perfor-
mance is being considered, 2) which signal propagation model is being used and
3) which function is implemented to optimize the chosen metric.

3.1. Performance Metrics
From all reviewed papers, most had considered (usually among other metrics too)
the total coverage and signal strength in the area of interest (Adickes et al., 2002;
Q. Chen et al., 2014; A. Dalla’Rosa et al., 2011; Alexandre Dalla’Rosa et al., 2008; K.
Farkas et al., 2013; Fortune et al., 1995; Grubisic et al., 2009; Ji et al., 2002; Kang
et al., 2013; Kondee et al., 2015; Kouhbor et al., 2006; Liang et al., 2012; Liao et
al., 2011; Maksuriwong et al., 2003; Moreno et al., 2015; Nagy and L. Farkas, 2000;
Politi et al., 2016; Vilović and Burum, 2014; Yoon and Kim, 2013; Yun et al., 2008;
Zhang et al., 2014). That, since most applications had utilized Wi-Fi APs and so, the
RSSI coverage could not be neglected even in the cases where the mesh was highly
intended for indoor positioning purposes. However, the success of an indoor posi-
tioning service essentially depends on the accuracy of the positioning estimation,
which does not solely depend on the total signal strength. Therefore, other metrics
that are completely orientated towards indoor positioning, might be better.
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On the other hand, although several research projects did use as a metric, the po-
sitioning accuracy (trying to minimize the expected error of the position’s estima-
tion) (Baala et al., 2009; Y. Chen et al., 2006; Ficco et al., 2013; Hara and Fukumura,
2008; He et al., 2011; Laitinen and Lohan, 2016; D. Li et al., 2015; Liao et al., 2011;
Redondi and Amaldi, 2013; Roberto et al., 2003; Sharma et al., 2010; Voronov, 2017;
Zhang et al., 2014), making an accurate prediction of the error of a positioning esti-
mation is quite challenging, due to the complexity of properly modeling the error’s
sources themselves.

In fingerprint-based positioning applications, since statistical uncertainty cannot
be avoided, the more discrete the estimations are, the better. According to this
perception, another optimization approach is to maximize the vector distance of
RSSI fingerprints in the area of interest. Although this idea has been favoured by
the latest papers on this field (Alsmady and Awad, 2017; G. Chen et al., 2013; Q.
Chen et al., 2014; Du and Yang, 2017; Eldeeb et al., 2018; Meng et al., 2012), it
still has some points of criticism, mainly related to the way that this distance is
statistically measured.

Other performance metrics that have been suggested in literature, measure the
Channel interferences (Moreno et al., 2015; Wertz et al., 2004), and the Signal-
to-Noise Ratio (SNR) at the area of interest (Fang and Lin, 2010; Rengarajan and
Veciana, 2005; Talau et al., 2013). These, however, are more applicable for infras-
tructures using Wi-Fi nodes.

It is worth mentioning that in many cases, the objective of the research was to also
optimize the number of nodes needed to be deployed (and thus the installation
cost) (Q. Chen et al., 2014; K. Farkas et al., 2013; Ficco et al., 2013; He et al., 2011;
Huszák et al., 2012; Kondee et al., 2015; Kouhbor et al., 2006; Laitinen and Lohan,
2016; D. Li et al., 2015; Liang et al., 2012; Maksuriwong et al., 2003; Mc Gibney et
al., 2010; Moreno et al., 2015; Nagy and L. Farkas, 2000; Redondi and Amaldi, 2013;
Rengarajan and Veciana, 2005; Talau et al., 2013).

3.2. Radio Propagation Models
As already discussed, to find the best node-setup scenario for an environment,
it is important to be able to simulate the radio propagation within that. For this
purpose, several options are available offering different trade-offs between com-
putational complexity and accuracy.

The simplest radio propagation models are the empirical ones that do not consider
the physical geometry of the propagation environment (e.g. one-slope model, lin-
ear attenuation model, etc. (Luo, 2013)). These models offer fast but less accurate
estimations for indoor environments and thus, they have mostly been avoided in
literature.
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Another kind of signal propagation models are those respecting stochastic pro-
cesses. These assume the existence of underlying physical phenomena, such as
Multipath Fading, affecting the signal propagation in a statistical manner. The
well-known Log-Distance Path Loss or Log-Normal Shadowing Model (Akl et al.,
2006) falls into this category and literature review showed that, so far, most papers
have been using a mix between them and various considerations of the obstacles
within the propagation environment.

The last type of radio propagation models are the deterministic ones, which in-
clude a) the Ray-optical models and b) the Finite-Difference Time-Domain like
ones (Remley et al., 2000). These can offer the highest level of accuracy since they
consider at an analytical level, both the electromagnetic properties and the prop-
agation environments. This accuracy, however, comes with a cost in complexity
(and computational load) and so, only a few optimization projects were found hav-
ing adopted them (Grubisic et al., 2009; Minkara and Shepherd, 2014; Moreno et
al., 2015; Wertz et al., 2004; Yun et al., 2008).

3.3. Optimization Functions
Throughout the literature review, after having defined a) which metric to optimize
and b) how the signal propagation should be simulated within the indoor environ-
ment, the next step was evidently to choose a function to handle this optimization.
In general, two specific approaches have been the most favored ones. Namely the
use of Genetic Algorithms and the use of Simulated Annealing Algorithms.

3.3.1. Genetic Algorithms
The goal of a GA is to translate the principles of Charles Darwin’s natural selection,
into a recursive procedure for solving an optimization problem; an approach that
has seen wide application in various scientific fields. In the case of Geomatics, a
recent example would be (Saleh and Chelouah, 2004), where this technique was
used to optimize the observation capability of a GNSS-based surveying network.

As shown in Figure 3.1, this procedure is mainly the repetition of 3-steps: the selec-
tion, crossover and mutation steps. Initially, a population of individual chromo-
somes (or optimization solutions) is generated. Then, the strongest chromosomes
(or best solutions) are selected in order to be preserved or mixed in pairs, produc-
ing the next generation of chromosomes. Some of these new chromosomes are
then randomly mutated (producing again a slightly different solution) to ensure
that the vast search-space is explored better. This 3-step process is then repeated,
until some threshold is reached. Literature review showed that this approach was
the most favoured one (Adickes et al., 2002; Alsmady and Awad, 2017; Eldeeb et al.,
2018; Ficco et al., 2013; Grubisic et al., 2009; J.-H. Lee et al., 2007; Maksuriwong et
al., 2003; Nagy and L. Farkas, 2000; Vilović and Burum, 2014; Yoon and Kim, 2013;
Yun et al., 2008; Zhang et al., 2014).

17



Chapter 3. Related work

Figure 3.1: The life cycle of a Genetic Algorithm

3.3.2. Simulated Annealing
Following GA, the next most used in literature (Q. Chen et al., 2014; K. Farkas et al.,
2013; Kondee et al., 2015; Roberto et al., 2003; Sharma et al., 2010) optimization
method for adjusting the placement of indoor positioning nodes, is the Simulated
Annealing (SA). SA is another powerful tool, that has been used across several sci-
entific disciplines for solving various optimization problems. As an example, in
the field of Geomatics and Remote Sensing, Chang et al. (2011) used this approach
for optimal band selection for high-dimensional remote sensing images.

Similarly to GA, this iterative algorithm also tries to mimic an external (found in
metallurgy) procedure called annealing, which helps making metals durable by
heating and slowly cooling them. In practice, the searching starts with a random
solution and a predefined high temperature. On each iteration, the current solu-
tion is altered and the new version is compared to the previous one, in terms of
quality. If the new version is better, then it replaces the previous solution. Oth-
erwise, based on current temperature (which gets reduced on each iteration) and
the quality difference of the two solutions, the algorithm decides which one to
choose. This allows for a worse solution to be chosen and thus, to escape from lo-
cal optima, which means that (in the same way as GA does) the vast search-space
is explored better.
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Figure 3.2: Minimization based on SA (Ledesma et al., 2012).

Figure 3.2 presents 3 solution moments of a SA optimization problem, during which,
the objective is to reach the global minimum. As illustrated, higher temperatures
increase the "kinetic energy" of the solutions, helping them escape local optima.

3.4. Modeling the Indoor Space
As described in Chapter 1, during this graduation project, the placement of BLE
nodes used for indoor localization will be adjusted, to increase the radio distinc-
tiveness among different zones. First, however, these zones need to be modeled.
This requires a space subdivision process, which is a known problem in literature
and has comprehensively been discussed (Diakité and Sisi Zlatanova, 2018; Wor-
boys, 2011; S. Zlatanova et al., 2014). With respect to that, there are two essential
aspects needed to be considered. The geometry part, since it is required for the ra-
dio simulation, and then, the semantics part, which will define the different zones.

We should, once again, clarify that our literature review has considered only re-
search projects, the objective of which is the closest to our research question. Namely,
the improvement of the localization performance via the placement optimization
of BLE nodes that are used along with the fingerprinting technique. Although this
thesis is the very first attempt trying to address this exact problem, yet, the same
objective, but from the positioning point of view (and not the localization), has al-
ready been heavily examined. This means that optimization research efforts that
considered other positioning techniques (such as the trilateration which was dis-
cussed in Section 2.1.3) were not considered since these approaches are funda-
mentally different and not easily comparable. With that said, out of all reviewed
papers in Section 3.1, only one (A. Dalla’Rosa et al., 2011) examined during the
optimization process, the 3rd dimension; and there is a good reason for that. A
comparison showed that although the results between the 2D and 3D cases, were
similar, the 3D case took (for a small model) 500% more time, while this percentage
gets exponentially higher as the model is enlarged.
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The geometry decomposition into different sections, introduces the second im-
portant aspect; the semantics. Dividing a small indoor-space (e.g. a house) into
distinct zones, might sound intuitively straightforward. For example, one could
distinguish a living room, a kitchen, a bathroom, etc., being separated by walls.
However, what happens if walls were not there (e.g. a kitchen being connected
with the living room, with no walls in between)? A problem becoming even more
evident as the area increases (e.g. airports, train stations). At the same time, quite
often we might be interested in separating an indoor space based on non phys-
ical criteria. For example, a museum might want to cluster different rooms into
thematic zones (e.g. Paleolithic, Mesolithic, etc.).

The actual value of the optimization-product we aim to develop, can only be seen
through its implementation in an indoor location-based service (LBS) which, as
a final-product, would be utilizing the spatially optimized BLE nodes for localiza-
tion or navigation purposes. Between these two products, the geometry and, most
importantly, the semantic aspects need to be linked. For example, lets assume that
the aforementioned museum was offering as a final-product, an indoor position-
ing service that the visitors could use to identify their locations. If this product
was not aware of the aforementioned clustering, it could not take advantage of the
enhancement that the optimization-product could offer (i.e to optimally distin-
guish the Paleolithic zone to the Mesolithic zone). On the contrary, most probably
it would affect its performance. With that said, it is required that the indoor spatial
model of the final-product can also support such a location awareness.

Although the development of a custom (and proprietary) model is always an op-
tion, there are already several well-established standards that could be used for
modeling an indoor space. These include formats like KML (OGC, 2015), being
mostly oriented towards integrations with earth browsers; Shapefile, which is a
very popular GIS data format by ESRI (ESRI, 1998); GeoJSON; IFC (BuildingSmart,
2016), offering an extensive data schema for applications in the Architecture, En-
gineering and Construction industry domain; CityGML (OGC, 2012), designed for
bigger scale modeling (cities); and also, IndoorGML (OGC, 2016). Each one of
them has its strengths and weaknesses, however, among all, the IndoorGML seems
to be the most powerful and suitable to be used in a final-product that could take
advantage of our optimization.

IndoorGML respects several critical to our case, notions. These are the «Cellular
space» which defines how the entire indoor space shall be decomposed (namely,
into a set of distinct cells); the «Topological representation» which is essential for
any indoor navigation application; and the «Semantic representation», «Geomet-
ric representation» and «Multi-Layered representation». The importance of these
notions for an indoor model has been thoroughly discussed in (K.-J. Li et al., 2019)
and without doubt, it is also directly applicable to our aforementioned needs.
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Methodology

4.1. Defining the Location Distinctiveness
Before developing a quantitative metric that can measure how successful the lo-
calization in an IPS is, it is required that, first, a definition for this quality is given.
From the main research objective, it can be inferred that the term "location dis-
tinctiveness" is used to signify this performance. Therefore, defining location dis-
tinctiveness and thus, addressing the first research question, is our initial goal.

As the term suggests, locations in an IPS can be assessed with regard to their dis-
tinctiveness. This assessment could be done using various metrics of uniqueness,
however, since this research considers Location-enabled Indoor Positioning Sys-
tems where the estimations are based on radio signals, it follows that this distinc-
tiveness needs to be assessed in terms of these signals.

Figure 4.1: Set of positions that is a subset of more than 1 locations

21



Chapter 4. Methodology

As denoted in Section 1.1, the location can be considered as a superset of positions
which are all attributed with the same thematic identifier; namely, the location
where they belong. However, a position can simultaneously belong to more than
one locations. For example, being in the elevator, at a corridor of a building sec-
tion. This notion is illustrated in Figure 4.1 where the given set of positions (black
dots) is a subset of all 3 locations.

Intuitively, the relations of the locations in Figure 4.1 are perfectly reasonable. Yet,
allowing for this scenario contradicts the optimization’s philosophy which is to
make in an IPS, a location more distinct to the other ones. For that reason, the in-
tersections of the locations need to be eliminated via location reformation. Such
an example is shown in Figure 4.2, where there is no conflict with the concept of lo-
cation distinctiveness. Only then, it will become possible to select which location
unions to assess in terms of their distinctiveness.

Figure 4.2: Validating the location intersections.
ABC subset belongs now to a distinct location.

Although the positions above can be described by dimensionless points, the amount
of their coordinates conform with a common dimension in space to which they all
(and thus, the location itself) belong. Since an IPS represents the 3-Dimensional
physical space of our reality, these positions are bound to this limit. Therefore, the
location distinctiveness refers to locations of at most 3 dimensions.

At the physical level, each one of the above positions is in a bidirectional binding
with a unique, yet continuously varying Radio Signature (RS). Knowing some of
these Position-RS bindings enables us to use positioning techniques as described
in Section 2.1 and do reversed lookups based on new RSs from positions that are
unknown; a lookup that eventually leads to a known position and its location.
Quite often, the location where the unknown position belongs is in reality (al-
though we are not aware of it because the position is unknown) the same as the
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location where the known position belongs. As a result, the higher the probability
this happens during lookups, the higher the location distinctiveness for the system
is proved to be.

The factor affecting the aforementioned probability is the variation degree of these
Radio Signatures. Assuming that we had two known positions, a Green and a Pur-
ple one that belonged to two different locations. Each one of these positions would
be bound to a unique, yet continuously varying Radio Signature. This scenario
is illustrated in Figure 4.3 where these two RS variations are presented using two
probability functions. From the first plot (on the top), it is clear that the most prob-
able RS at the Green position (the peak of the Green function) is on the left side
(i.e. lower in Radio Signature units) when compared to the most probable RS at
the Purple position.

Figure 4.3: Changing the separation distance of the Radio Signatures

Let’s assume that we have a new RS taken randomly from one of these two posi-
tions above (i.e. although we are not aware of it, it could either be the Green or
the Purple position). Let us also assume that this RS is the same as the RS at the
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Green Peak above. Using the two probability functions, we can make a reversed
lookup based on this new RS. As the vertical line shows, the probability that this
RS is found at the Green position is higher than the probability that this RS is found
at the Purple position (with some probability difference). This could be an indica-
tion that, probably, the new RS belongs to the location where the Green position
also belongs. However, this may not always be the case. Due to the variations, it
is possible that, in fact, this new RS corresponds to the Purple position and thus,
the location where that belongs. The RSs where this error could happen, are the
ones at the intersection of these two probabilities. The bigger their range (which
is indicated with the red marking in the plots), the less distinct these locations are
which translates to a worse location distinctiveness.

Let’s assume now that the noise which was responsible for the variations, remained
the same. It would then be better if the probability functions were repositioned in
a way to reduce this range of possible errors (second plot). Therefore, the overall
(from all possible positions that belong to any of the locations) RS span where lo-
calization errors are not possible, defines how location distinctiveness can be per-
ceived. That clarifies that the location distinctiveness is a performance that does
not describe individually a specific location, but instead, it is used to describe, in
overall, a group of locations under specific radio conditions.

4.2. Measuring the Location Distinctiveness
In the previous section (Section 4.1) a definition for the location distinctiveness
was given. However, measuring this performance is far from straightforward and
this complexity is due to several reasons. These shall be discussed in the following
sections, leading eventually to a definition of suitable metrics for location distinc-
tiveness.

4.2.1. Selecting a Positioning Technique
To begin with, it should be emphasized that the location distinctiveness is bound
to the positioning technique which is used for the aforementioned lookups. Differ-
ent approaches would produce different scores of location distinctiveness. There-
fore, it is important that, first, a positioning technique is selected for the place-
ment optimization of the nodes. From the main Research Objective (Section 1.4),
it is clear that this research considers the fingerprint-based positioning technique.
Yet, as mentioned in Section 2.1.4, there are various algorithms that can be used
based on this technique.

In Section 2.2 the problem of modeling the noise was described. A problem that
prevents us from being able to know the variations of the Radio Signatures at each
position. As a consequence, algorithms based on probabilistic approaches could
not easily be utilized for the optimization and thus, they shall be avoided. This
means that for any single position, a non-varying RS shall be appointed. To pre-
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vent this limitation rendering the utilization of the location distinctiveness unfea-
sible, we need first to adopt the hypothesis that by adjusting the positions of the
nodes (and thus the Radio Signatures of the positions), the underlying RS variation
at each position (which we cannot model) will remain unchangeable. This way, we
can axiomatically say that, regardless the placement of these nodes, the further the
RS distributions in Figure 4.3, the better for the location distinctiveness. If this hy-
pothesis was not made, then it could be possible that spreading the distributions
by changing the node positions, would lead to bigger ranges of possible errors, as
depicted in Figure 4.4.

Figure 4.4: Changing the separation distance of the Radio Signatures
(with changed variance)

An algorithm which is quite suitable for the purpose and is also in accordance with
the related literature review in Section 3.1, is the Euclidean distance of the RSs.
Therefore, this approach shall be ultimately selected and implemented as follows:

Let us denote by NP N the number of BLE positioning nodes in the indoor environ-
ment and by NK P the number of the known positions that belong to some location.
Each one of these known positions is in a binding with a unique Radio Signature,

25



Chapter 4. Methodology

an RSSI vector, which is composed by the average attenuation of the signals that
arrive at that known position from each of the nodes. We can denote these atten-
uations by A(pn,kp) where pn is the node from which the signals are arriving and
kp is the known position. During the evaluation phase, a new Radio Signature is
captured at an unknown position, containing the RSSIs from all the BLE nodes.
These RSSIs are denoted by RSpn where pn is the node from which the signals are
arriving. The final step is to find which kp in NK P offers the minimum Euclidean
distance between the RSpn and the A(pn,kp). A distance calculated as follows:√√√√ NP N∑

pn=1

∣∣RSpn − A(pn,kp)
∣∣2

It should be noted that in case a node cannot reach a known or unknown position,
an RSSI of -100dBm is used.

4.2.2. From the overall Location Distinctiveness to a representative one
The next challenge involved in the process of measuring the location distinctive-
ness is the fact that according to its definition, all possible positions should be
considered. However, since space is continuous and there is no analytical way to
achieve that, a representative set of positions shall be used for this measurement
instead. It is important to state that by doing that, we assume that the overall loca-
tion distinctiveness can be approximated by using a finite set of positions within
the assessed locations. An assumption that may allow for critical thinking.

Finding these positions and implementing an algorithm which can use their Radio
Signatures to compute the system’s location distinctiveness, introduces the need
of converting the continuous space into a discrete one. Such a conversion can be
illustrated through the following group of figures (Figure 4.5, Figure 4.6), where an
example of a 2-node setup within a 2-dimensional indoor environment is used.

Figure 4.5: Signal coverage under unobstructed propagation
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More specifically, the left part of Figure 4.5 illustrates an open (no walls) space
that consists of 4 different zones (i.e. 4 locations). These are divided by a grid of
sub-space cells having a total resolution of 10x10. Each cell can be defined by 1)
a centroid position where a specific Radio Signature exists, b) its cell size and c)
the zone where it belongs. Although the following does not apply in the continu-
ous space of reality, in current discrete space, the aforementioned RS is allocated
to the entire cell. At the corners, 2 transmitting nodes (blue & red) have been in-
stalled and their radio coverages have been simulated (based on a simplistic radio
propagation model) and presented on the right parts of the figure. Since no walls
exist, the signal propagates unobstructed and thus, very smoothly.

Figure 4.6 presents the same example, but this time, including walls (obstructed
scenario); a difference being used to emphasize the impact of different obstruc-
tion scenarios to the radiomap.

Figure 4.6: Signal coverage under obstructed propagation

At each sub-space cell, the combination of the 2 signals produces a distinct vec-
tor of 2 RSSI values. Namely, the Radio Signature at that position. Plotting the
vectors of the obstructed scenario (Figure 4.6) would result in Figure 4.7, where
each dimension corresponds to a specific node. Therefore, illustrating a 3-node
setup would result in a 3-dimensional graph, while a bigger setup would require a
hyper-dimensional representation. Grouping the RSSI vectors by their zones can
help us approximate (in the RSSI vector space) the overall Radio Signatures which
according to our hypothesis in Section 4.2.1 (i.e. the further the RSs, the better for
the location distinctiveness), we need to spread. In the figures below, these can
be found colored respectively using an approximated alpha shape. Every position
within a shape belongs to the corresponding class (i.e. zone), while, all positions
that are outside these shapes (separation space) belong to no class.
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Figure 4.7 makes it clear that the centroid positions which define the physical bor-
der of the zones, also define the borders of their Radio Signatures. Therefore, these
can become the representative set of positions which shall be used to measure
the location distinctiveness. Ultimately, this association between the physical and
vector space enables the transmutation of increasing the location distinctiveness,
into the task of increasing the (n-Dimensional) Euclidean space that lies between
them.

Figure 4.7: From the Physical 2D Space to the Radio Signatures
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4.2.3. Modeling the Separation Area
To increase the Euclidean area between the classes of the Radio Signatures (in RSSI
space) which are shown in Figure 4.7, may seem like a fairly straightforward task.
Yet, this introduces an additional level of complexity regarding the way this area
(its shape) is defined. As already discussed, the topology of the zone borders be-
tween the physical and the RSSI space are the same. Therefore, the borders of the
area that we are after shall be computed based on the physical shape of the zones.

To begin with, computational geometry offers various different methods on how
the borders of this physical area could be defined, either in two or three dimen-
sions. One approach could be to first calculate the Convex Hull containing all the
physical zones which, at the next step, would be excluded from it, leaving only the
separation area. Although this approach would be quite sufficient for cases where
the indoor environment is coherent (like the indoor environment of our example
in Figure 4.6), yet it would not be effective for physical spaces that have irregular
shapes, such as the one presented in Figure 4.8. The problem is that the physical
separation area that the Convex Hull would produce in this case (grey area), would
result in a radio separation area that is much bigger than the effective radio area
that the positioning utilizes; and that, would lead to an optimization process that
is highly "wasted" in separating Radio Signatures that are already effectively sepa-
rated (e.g. due to the big distances outside the building).

Figure 4.8: Physical Zones having irregular Shape

The solution is to calculate an alpha shape within which, separating the Radio Sig-
nature is meaningful. In other words, a shape that results in an effective separation
area. With that in mind, a methodology was developed that respects the Man-
hattan topology of the cells as depicted in Figure 4.9. According to this method,
the Alpha-Shaper starts from the left-most cell and procedurally encloses the cells
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(ensuring that no cell is left outside the Alpha-Shape) by prioritizing first the "a"
directions and secondly the "b" directions. Eventually, after having parsed all 4
directions, a perimeter such as the one shown in Figure 4.10 has been produced.

Figure 4.9: Circular Manhattan-Alpha-Shaping Procedure

From there, the next step for calculating the physical separation area of the zones
(i.e. locations) is to identify the cells that are part of each zone’s border. These cells
are the ones which are not connected with another cell that belongs to the same
zone, at all their cardinal directions (top, bottom, left, right). In Figure 4.10, these
cells are depicted using stronger colors.

Figure 4.10: Example of a Zone Perimeter (black cells)
produced by the Circular Manhattan-Alpha-Shaper
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Having generated the above features and via their differences, we can compute the
physical separation area. Such an example is presented in Figure 4.11 (dark area).
Therefore, the topology of this area can now be used to define the radio separation
area (in vector space), which the optimization process aims to maximize.

Figure 4.11: The final Separation Area

4.2.4. Modeling the Separation Distances
Up to this point, our methodology has led to the generation of a radio separation
area (i.e. a hyper-plane in the n-Dimensional vector space of Radio Signatures),
the topology of which is defined by the borders of the locations (i.e. zones) in
the 2-Dimensional physical space. Our optimization’s objective is to maximize it.
However, assuming that such an area may have 100 dimensions (due to the use
of 100 positioning nodes), the integration required for the computation alone of
such surface, before even starting to iteratively repeat this calculation a few mil-
lion times until we converge to an optimal solution, suggests how preventive it is.
Therefore, another indirect approach is required, introducing, of course, the cor-
responding margin of inaccuracy.

Probably, among the most rational ideas would be to perform a dense triangula-
tion (e.g. based on Delaunay triangulation) using as points, the cells. This would
reduce the problem into calculating the sums of every produced 2-dimensional
triangle which lie in the n-Dimensional space. However, after benchmark exper-
iments, the computational cost of this calculation was proved to be still very de-
manding for the optimization’s purposes. Therefore, another more simplistic idea
was approached.

31



Chapter 4. Methodology

An area of a function is related to the accumulation of a set of specific distances
within it. This notion is close to Riemann’s sum where these distances gain some
width and can be used to approximate the integral of this function via a finite sum
(Nykamp, 2019). Taking advantage of this deduction, we introduce the concept
of the "Separation Distances" for those cells that are on the border of a zone and
within the separation area, to act as the feature being considered during the op-
timization. For each one of these cells which belongs to some zone, this distance
can be defined by the connection with the physically closest to it cell that belongs
to another zone. Applying this rule to the above used examples, result in the sepa-
ration distances that are presented in Figure 4.12 and Figure 4.13 respectively.

Figure 4.12: Separation Area & Distances (Example 1)

Figure 4.13: Separation Distances (Example 2)
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The strong points of this approach are obvious. Firstly, to calculate an Euclidean
distance is computational as inexpensive as it can gets. Also, decomposing the
area to sub parts allows us to locally identify where the separation is at its highest
or lowest. Moreover, this approach is implementable in every case, regardless the
cell size (Figure 4.14) or the complexity of the indoor environment (Figure 4.15).

However, the introduction of these separation distances has also two important
down sides. To begin with, measuring the length of an interconnection which is
practically a fixed-dimensional feature, misses capturing the entire and true length
of the real surface. It would be like measuring the shortest distance between two
points on a 3-dimensional hill, but instead of respecting its 3D curvature, the mea-
sured distance would have considered the direct path (i.e. travelling through the
hill). Yet, the closer these distances physically are (which depends on how we de-
fine/draw them), the smaller this curvature is, leading to less errors. The second
disadvantage of this approach is that it introduces a bias that is related to the phys-
ical corners of the zones. At these positions, the distances become more densified,
which can be noticed from the examples below.

Figure 4.14: Class Interconnections at different Cell Sizes

Figure 4.15: Class Interconnections at a more complex Scenario
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4.2.5. Maximizing the Minimum Separation Distance
As emphasized in the previous chapter, one of the strongest points of the "Separa-
tion Distances" is the fact that it becomes possible to identify where the separation
is at its highest or lowest. Therefore, we can assess different deployment scenarios
and ultimately opt for the one, within which, the minimum separation distance
was found to be the biggest across all of the scenarios. The pair of cells where this
connection is situated, have the highest probability of offering wrong estimations
in the Indoor Position System. Therefore, by opting for any other solution would
lead to an even worse localization performance at that region.

In accordance with the above, to maximize the location distinctiveness using this
metric, the optimization needs for every different deployment scenario to mea-
sure all distances and extract the minimum one. In the end, among all extracted
minimum distances, the biggest one would be the optimal solution in overall.

4.2.6. Maximizing the Product of the n Shortest Separation Distances
The metric we defined in Section 4.2.5 ensures a minimum performance at the re-
gion where the localization is the most problematic. However, it does not guaran-
tee that this deployment also offers the highest Radio Signature separation across
the entire environment. This can become more clear using the examples pre-
sented in Figure 4.16, where 3 separation distances (red, green, blue) are shown
for 3 different deployment scenarios.

In this example, we can make the assumption that the only separation distances
within the indoor environment are the 3 colored lines (rgb). Therefore, maximiz-
ing the overall localization performance means that these distances need to be-
come as long as possible. The distances corresponding to the optimal deployment
that was found using the above metric (i.e. the maximization of the minimum
separation distance or MMD), is represented by the first case. There, the red sepa-
ration, which is the lowest in that optimal deployment, is still bigger compared to
the other deployments. Yet, although in the next deployment scenario (which has
no name), the red separation is shorter compared to MMD, the other two distances
are remarkably higher. As a result, for an overall performance increase, all (or at
least most) of the distances need to "somehow" increase as much as possible.
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Figure 4.16: Separation Scenarios

The problem here, however, is that the increase of each distance is reversely and
in a non linear way dependent to the increase of the others. Given this, a naive ap-
proach would be to compare the sum of these distances across different scenarios
and, eventually, opt for the maximum one (i.e. Maximum Distance Accumulation
or MDA). From the figure, it becomes clear that this metric would lead to a deploy-
ment where although the accumulated distance is maxed, the performance gain
has been transferred only in a single region (i.e. the blue one). Intuitively, it would
be like placing all nodes next to each other in one room. Therefore, to increase the
overall distances as much as possible and in an way that the shortest distances are
not diminished, is among the biggest challenges for our optimization.

With that in mind, along with the Minimum Separation Distance, an alternative
performance metric is also examined. Namely, the Product of the n Shortest Sep-
aration Distances. Depending on the parameter n, the maximization of these two
metrics can lead to an optimization that is quite similar (or identical in case n is
1). However, the larger the n, the more weight is given to the less problematic dis-
tances, leading probably to a separation that is in overall bigger.

The reason why the product has been considered here (and not the summation for
example) is because it has the property of favouring big values and disfavouring
values that are approaching zero; which is very close to the reasoning behind this
metric. Moreover, as expected, the parameter n is the most important factor for
this metric and its value should better be defined after tryouts. Yet, an educated
guess for that value would be to reflect the amount of interconnections that are
expected to be the most problematic ones.
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4.3. Modeling effectively the Indoor Environment
The indoor environment of the examples that were used in Section 4.2.2 (regard-
ing the conversion of the continuous physical space into a discrete one), was two
dimensional. Yet, as mentioned in Section 4.1, the location distinctiveness and
thus, its optimization, can refer to physical locations of up to 3 dimensions. Such
an optimization mechanism has to begin with properly modeling the indoor envi-
ronment, along with the zones of interest, as discussed in Section 3.4.

Starting with the first aspect, a major decision needs to be taken regarding the
dimensions of the model. To maximize the radio distinctiveness among different
zones by adjusting the node placement, one needs to be able to simulate the radio
propagation within the indoor environment. Therefore, since an accurate radio
propagation model requires the utilization of an accurate representation of the
propagation space, the more detailed this indoor model is, the better. In theory,
a point cloud-based 3D model that would include even furniture surfaces, would
perform the best. However, since the model’s complexity affects highly the speed
of the optimization, a more efficient approach is needed.

As mentioned in Section 3.4, in a similar research project where both 2D and 3D in-
door models where examined, the 2D approach outperformed the 3D one. There-
fore, for the optimization, a 2D indoor model shall be used. Although opting for
this approach means that we practically neglect the exact geometry of any win-
dows, doors, or half wall openings, leading to the corresponding margin of errors,
yet during the development of the radio propagation model that shall be discussed
in Section 4.4, the nodes and receivers where all placed at the same height.

The need to decompose the geometry of the 2D model defined above, into differ-
ent zones, introduces the second aspect; the semantics. However, considering that
the zoning process may not always be straightforward, it needs to be defined.

With respect to the aforementioned, we apply the following 4 rules:

• Assigned cells must be completely enclosed by their zones: A cell shall be assigned
to a zone only if it is, physically, entirely contained within that zone. This
means that the grid’s cell size highly affects the way zones are considered
during the optimization.

• Zones must not overlap: A physical position or area should not belong to differ-
ent zones, since that would contradict with the zone distinctiveness notion.

• The interior of each zone must be continuous: Having zones that are discontin-
uous introduces impracticality to their utilization and thus, it should be avoided.

• Zone’s borders must be perpendicular to the reference grid: During the optimiza-
tion process, the indoor model (i.e. the obstructions along with the zones)
need to be spatially indexed into a reference grid. Ensuring that the bor-
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ders of the zones are perpendicular (or parallel) to the axes of this grid (Fig-
ure 4.17) is crucial to the optimization’s speed, due to the reduction of the
geometrical calculations needed to be done during the radio propagation
modeling.

Figure 4.17: Perpendicularity of the zone’s borders

It is worth mentioning that these rules allow for scenarios where the zoning is not
watertight (white cells in Figure 4.17), or zones that do not follow the physical ob-
structions of the indoor model (e.g. North & West cells of pink zone in same figure).

Respecting the aforementioned methodology, the indoor environment of the Fac-
ulty of Architecture and the Built Environment at TU Delft (presented in Section 1.3)
was modeled. Starting with the digitization of the obstructions, 3 different types
were considered which can be seen in Figure 4.18. These include thick concrete
walls (dark brown), thin concrete walls (red) and wooden walls (light brown).

Figure 4.18: Modeled Obstructions in the Indoor Environment
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The next step was to model the indoor zones (or locations), the distinction of
which we are interested in maximizing. In total, 7 different zones were modeled,
each representing a single room or corridor within the environment. These zones
are presented in Figure 4.19 using different colors.

Figure 4.19: Modeled Zones in the Indoor Environment

4.4. Developing the Simulation Engine
One of the most crucial parts of the optimization mechanism is the radio propaga-
tion modeling and that, because its accuracy is directly affecting the optimization’s
quality and performance. As mentioned in Section 3.2, the best results require the
implementation of a deterministic model and so, this will be our approach too.

More specifically, for estimating the associated power fields at every sampled cell,
the ray launching technique is going to be utilized based on the Geometrical Op-
tics phenomena of reflection and refraction (as illustrated in Figure 4.20). Assum-
ing that each node broadcasts omnidirectional, a sufficient number of rays will
be evenly (in terms of angle) generated and traced. The term sufficient is used to
denote the importance of delivering ultimately (even after many reflections and
refractions) the generated signal to every cell, that in reality would indeed receive
it. The attenuation of each ray will be the result of a) the distance path-loss dur-
ing its propagation in free space, b) the attenuation due to reflections and c) the
attenuation due to refractions.
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Figure 4.20: Ray Launching Example

During the simulation, several reflection and refraction coefficients need to be
considered for the different types of obstructions. Although generic estimations
can be found in literature, a more accurate but also much more involved approach
would be to compute the optimal ones for the specific propagation environment
(Figure 4.21).

Figure 4.21: Corridor View within the Indoor Environment
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To find the underlying coefficients, the first step was to deploy across the area (at
regular and known positions-Np) 30 BLE nodes at a height of ≈ 1.7m. Then using
a 1-axis 360◦ rotatable mount which was also set at a height of ≈ 1.7m, we sampled
60 times (again at regular and known positions-Sp) the attenuation of every re-
ceived signal. Each scan lasted 6 minutes with the receiver performing a complete
rotation every 18 seconds (i.e. 20 turns in 6 minutes). The BLE beacons along with
the tripod mount are shown in Figure 4.22, whereas each node and sample posi-
tion can be found mapped within Figure 5.5.

Figure 4.22: BLE Beacon Set & Mount Type used for the Sampling

For every position combination Np-Sp, a set of RSSIs was collected. Then, for each
one of these sets, a probability function was produced, the average of which be-
came the representative attenuation for that combination. Since there are 30 Np’s
and 60 Sp’s, the total combinations (or connections) are 1800. By appending these
positions to the obstructions model (Figure 4.18), it became possible to identify
which connections are unobstructed (i.e. there is no wall intersecting their di-
rect line of sight). These unobstructed connections are presented in Figure 4.23,
where the connection distances are implied by their colors (green for short con-
nections and red for further connections). Since longer connections in an indoor
environment have an increased probability that some wall will obstruct them, it is
reasonable that the identified unobstructed connections are mostly short ones.

The representative attenuation of each unobstructed Np-Sp pair was plotted against
the physical distance between them (i.e. the connection distance), producing the
graph of Figure 4.24. These values were then used to develop a Free Space Path
Loss (FSPL) model based on which, attenuation estimations may be produced
given some distance. As suggested by this model, the attenuation of a BLE sig-
nal would still reach -100dBm after 60 meters of unobstructed propagation within
the selected indoor environment. The reason why the value of -100dBm has been
considered here, is because signals that are weaker than that tend to be missed
by receivers. Therefore, as also suggested in subsection 4.2.1, RSSIs lower than
-100dBm shall be generally ignored.
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Figure 4.23: Unobstructed connections of Node/Sample Positions

Figure 4.24: FSPL Distance to RSSI Observations
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So far, we have a model which can be used to estimate at a position x that lies
at some distance from the transmitting BLE node, the attenuation of an unob-
structed signal (according to that propagation distance). However, signals may
not always be able to reach that position x without being obstructed and/or re-
flected. For that reason, we need to develop also a model that shall handle these
cases. As already specified, the attenuation of a signal at any position depends a)
on the attenuation due to the travelled distance (described by the FSPL model we
already developed) and b) the attenuation due to the number of reflections and re-
fractions. Since in our indoor model, 3 different obstruction types have been used
(Figure 4.18), the total amount of attenuation coefficients are 6 (Figure 4.25).

Figure 4.25: Labels of the Attenuation Coefficients

To be able to compute the value of each coefficient and thus, enable the develop-
ment of a propagation simulator that is able to handle also reflections and refrac-
tions, we utilized our indoor model to launch 1080 equally distributed rays from
every node (Np). Each ray had a length of 60 meters and for that distance, we
tracked the number of reflections and refractions for all possible trajectories.

To understand better this concept, we can refer to the Ray Launching Example of
Figure 4.20. There, the Np is the Rays Launching Point and from the equally dis-
tributed (light blue) rays, it can be seen that only 2 manage in some way to reach
their destination (purple Sp). In one case via a direct line of sight (originating from
Ray1), and in another case via one reflection (originating from Ray2). The latter
path is one of the three different trajectory scenarios that generally correspond
to Ray2. The other scenarios would be a) 1 Refraction & 1 Reflection and b) 2
Refractions. From this description, it might not be immediately straightforward,
yet for 30 nodes, the total amount of trajectories for which we had to ultimately
track the corresponding amount of reflections and refractions, were billions. An
example of trajectory scenarios corresponding to one node position can be seen
in Figure 4.26.

To train our propagation model (i.e. to find the best coefficients), the 1800 repre-
sentative attenuations were used as the ground truth through a continuous func-
tion of 4 iterated steps. The first one was to select some (logical) attenuation co-
efficients. The next one was to apply these coefficients to the billions of possible
trajectory scenarios and to compute for each case, the final resulting attenuation.
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Then, the next step was to identify for each of the 1800 Np-Sp connections, the tra-
jectory offering the least attenuation (i.e. find the path from which the strongest
signal came). The last step was to compute the total difference between the 1800
attenuations of the ground truth and the 1800 simulated attenuations. Finally,
these 4 steps were repeated until the total difference was minimized and every
time, at the first step, some new coefficients were evaluated. A process leading to
the development of a radio propagation model that offered an average RSSI error
of -3.39dBm (compared to the ground truth).

Figure 4.26: Training the Radio Propagation Engine

At this point, it should be stated that having not trained our propagation model
and having used instead coefficients taken from literature research, the best achieved
average RSSI error would be ≈ −11dBm. Moreover, our training methodology re-
lies on the fact that the attenuation of a propagated signal does not depend on the
energy of the incidental signal, as depicted in Figure 4.27.

The developed model is considered to be among the most crucial components
for the whole optimization process. It enables us to quickly simulate different de-
ployment scenarios via generated Radiomaps, like the one being presented in Fig-
ure 4.28. In this example, the attenuation of the signals being transmitted from the
green node, is visualized, across the indoor environment.
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Figure 4.27: Radio Attenuation due to Refraction

Figure 4.28: Radio Propagation Example from a BLE Node
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4.5. Genetic Algorithm Integration
Having developed the simulation engine that will allow us to quickly assess differ-
ent node-placement scenarios, the next step is to develop the algorithm that will
handle the whole optimization process. This algorithm shall work as a black box
where the input data will be 1) the 2D model of the indoor environment and 2) the
number of nodes needed to be deployed within it in an optimal way, according to
how this was defined in Section 4.2.5 and Section 4.2.6. Eventually, the output of
this black box shall be the optimal positions of these nodes, along with the corre-
sponding Radiomap which can be used to evaluate the solution.

During the optimization process it is not feasible to assess every possible deploy-
ment scenario. Nonetheless, there are alternatives which can be borrowed from
the field of Artificial Intelligence, that can help us converge quickly to a solution
being close to the optimal one. Such an approach is the use of a Genetic Algo-
rithm, the implementation of which shall be discussed in this chapter.

4.5.1. Data Preparation
The model of the indoor environment that will be used during the optimization
needs to respect the rules explained in Section 4.3 regarding the definition of the
zones (i.e. the locations that we are interested in making more distinct within an
Indoor Positioning System). Using that model and by following the methodology
proposed in Section 4.2.4, the separation distances can be generated. For each
cell that is part of this connectivity, it is required that we know for every possi-
ble node position, the corresponding received attenuation (RSSI). Creating such
an RSSI mapping will purge the need of re-executing the expensive ray-launching
process every time we do a check. Figure 4.29 illustrates an example of such an
RSSI-mapping. Allowing nodes to be deployed only at the zone borders (i.e. as-
suming these represent walls), then in this figure, the green circle represents such
a possible node position. Then, the attenuation that a separation cell would have
from that node is presented using the red-yellow color-scheme.
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Figure 4.29: RSSIs Mapping for a Node Position

4.5.2. The Encoding
The utilization of a Genetic Algorithm for solving a problem requires that the prob-
lem is first encoded in accordance with the GA’s life circle that was presented in
Section 3.3.1. Since every implementation is unique, this section presents a new
one that specifically applies to the purposes of our optimization’s problem.

In a Genetic Algorithm, a possible solution (e.g. the deployment positions of the
nodes) is represented by an Individual (Chromosome). This Individual is com-
posed from a sequence of genes, each one of which has often a binary (0/1) iden-
tity. In our case, the size of this sequence of genes can reflect the possible positions
where a node can be installed. Every different gene, or cell, may have a binary state
depending on whether a node is installed there (1) or not (0). Therefore, arranging
all cells in such a sequence, leads to the creation of an Individual. An example of
such a Chromosome is presented in Figure 4.30 where 5 nodes have been placed
in 5 specific positions. Since during the optimization, the setup size is constant,
the amount of the allowed "non-zero" genes is also constant.
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Figure 4.30: An Individual Chromosome (or Solution) for a 5-Node
Setup

It is evident that the indoor model used in this chapter’s examples has a cell size
which is much bigger than the ones used in the optimization’s test cases. This has
led to the generation of a relatively small number of possible placement positions,
when the same number in the first test case is 840 and thus, every Individual there
is composed by a sequence of 840 genes.

The very first stage of a GA is the generation of the initial Population of random
Individuals, the amount of which typically remains the same throughout the gen-
erations successions. After assessing different Population sizes in terms of their
converging performance, the one that was used in the end was 105. Therefore,
at the first stage, each one of these 105 Individuals had a random gene sequence,
respecting always the required amount of the "non-zero" genes (according to the
setup size). This Population shall, via the iterative process of natural selection,
lead to better and better generations of solutions.

47



Chapter 4. Methodology

After the generation of the initial Population of Individuals (i.e. solutions), a repet-
itive circle begins involving 1) fitness checks, based on which, the fittest Individu-
als are selected and 2) crossovers of these Individuals leading to new and strongest
generations of the Population. Although it is possible to introduce a convergence
threshold which can be used to trigger the termination of this circle, our imple-
mentation avoids doing so because it is difficult to do quantitative predictions of
the performance metrics that are used to measure the localization distinctiveness.

4.5.3. Fitness Check and Selection
In Section 4.2.5 and Section 4.2.6 2 different metrics were developed for measur-
ing the localization performance of an Indoor Positioning System. For each one
of these metrics, an assessment method has been developed, taking as input, the
Individual solution and outputting the corresponding measured performance. It
should be stated that during a single optimization process, only one of these meth-
ods is considered.

During the Selection phase, the employed assessment method is used to measure
the performance of each one of the 105 Individuals within the Population. Then,
the 50 fittest Individuals (i.e. deployment scenarios offering the best localization
performance according to the used metric) are selected and combined in pairs.
This results in 25 pairs of parents, where each pair shall breed 4 new Individuals.

4.5.4. Crossover and Mutation
Having identified the 25 strongest pairs of Chromosomes that will become parents,
we proceed to the crossover & mutation phase, from which the new generation
shall emerge, replacing the previous one. To begin with, the strongest Individual
which is among the parents, is directly copied to the new generation to ensure that
the fittest solution will not be lost. Along with it, 4 new random Individuals are ad-
ditionally added to the next generation to ensure that the optimization algorithm
spends also some resources for actively searching the vast space of solutions.

As mentioned, every pair from the 25 selected ones shall generate 4 new Chromo-
somes that each will inherit some characteristics from each parent. Hence, 100
new Chromosomes along with the 5 previously mentioned ones which directly
passed to the next generation, will compose the new Population of 105 again Indi-
viduals. The exact process is depicted in Figure 4.31, where a simplified example
of the genesis of a new Individual from 2 parents is showed.

In this example, each parent has 10 genes, 4 of which have a "non-zero" identity
(i.e. a node is installed at that cell). The first step of the crossover phase is to iden-
tify which genes between the parents are not identical. In these cases, a random
gene selection is made, leading eventually to a new sequence of genes with prob-
ably inherited characteristics from both parents. Then, a mutation is performed
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during which, every gene has a small probability to switch its identity. It was ob-
served that this probability should depend on the size of the sequence because
too many mutations result in a very slow convergence. In the example, the purple
genes are the ones that received a mutation, although this change corresponds to
a probability of 2/10 which is an exaggeration. After the mutation, the new gen-
erated Chromosome will have probably an invalid amount of "non-zero" genes.
Therefore, a validation check is required that will randomly correct the Individual
and convert it into a valid one. After the reproduction of the new generation, one
circle of natural selection has closed and the next begins. This involves a brand
new Selection and Crossover process, the continuation of which is allowed until a
convergence has been observed.

The total amount of cells along with the setup size is critical to the complexity of
the algorithm since these, together, define the number of all possible combina-
tions. These can be calculated using the expression:

n!

p !(n −p)!

where n the nodes in the setup and p the available positions. Hence, the amount
of all possible combinations for the 30-nodes optimization on the first test case is
≈ 1.2e-55.

This 55-digit number makes it clear that the search space where the optimal so-
lution lies, is vast. For that reason, the more computational power is spent for
this search, the better and so, designing the Genetic Algorithm to be able to uti-
lize more computational resources is highly beneficial. With that in mind, the ex-
act implementation of our Genetic Algorithm supports parallel threads which can
communicate with each other when a thread has identified a better global Individ-
ual. Moreover, each thread has a different mutation rate which allows for a wide
search variety; from a highly random search, to fine-searching near local optima.
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Figure 4.31: The Phases of Crossover and Mutation
(based on a 4-Node Setup)

4.5.5. Genetic Algorithm Challenges
Although the performance of our GA’s implementation in terms of solution qual-
ity shall be discussed in detail in the next chapter (Chapter 6), some important
considerations regarding its speed performance should be noted.

To begin with, after finding a new optimal solution, then, the more time is spend
on trying to find an even better one, the higher the probability that the algorithm
spends resources for assessing solutions that have already been reassessed. That,
since the vast number of possible solutions do not allow for tracking which Chro-
mosomes have already been generated (and thus, become possible to prevent their
re-generation).

Furthermore, after having stuck into a local optimum and assuming that the true
best solution has not already been found, the algorithm relies mostly on the muta-
tion mechanism (and in our case, the random Individuals too) to be able to escape
it. However, this escaping capability is inversely proportional to the capability of
convergence towards a finest solution, making the selection of the ideal thresh-
old a notable challenge. Experiments showed that within the first 15 minutes and
for a 30-nodes setup, our algorithm has typically converged to an optimal solution
which is very similar to the optimal solution of other optimization instances.
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4.6. Improving Further the Searching Functionality
Decreasing the computational calculations is crucial for the optimization. For
that, several practices can be followed which are discussed below.

In Section 4.2, it became evident that the continuous space (Figure 4.32) needs to
be converted into a discrete one, for assigning RSSI values across the cells. This will
generate a grid of cells and since its resolution (e.g. Figure 4.33 or Figure 4.34) has
a direct impact on both the computational load and the accuracy, its cell-size shall
be parameterizable to be able to explore different accuracy/complexity ratios.

Figure 4.32: Continuous space Figure 4.33: Large cell size Figure 4.34: 2x smaller cell size

With that in mind, two different grid resolutions will be used for comparison pur-
poses; one based on a cell-size of 45cm and another one based on a cell-size of
72cm. For the first case and in accordance with the methodology explained in Sec-
tion 4.2.4 regarding the modeling of the separation distances, the corresponding
connections are presented in Figure 4.35, whereas for the second case (i.e. 72cm
cell-size), the corresponding connections are shown in Figure 4.36.

An additional way for improving the search functionality is to ensure perpendicu-
larity and parallelism for the building model. As it has already been mentioned, an
excessive number of signal rays is expected to be launched for intersection checks
against various wall features. For that reason, and since most building models
always maintain a 90° angle perpendicularity, we can significantly reduce the ge-
ometrical calculations by ensuring that each feature in the building model is per-
pendicular or parallel to the X, Y reference axes.

In the end, the computational complexity of the optimization is expected to be
mostly affected by the amount of the nodes and the size of the area. Therefore,
if the entire process could be divided, based on those factors, into many different
parallel operations, it would enable us to utilize the power of parallel computing
and improve further the search performance.
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Figure 4.35: Separation Distances of the Zones at 45cm Cell-Size

Figure 4.36: Separation Distances of the Zones at 72cm Cell-Size
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5
Evaluation Process

In Chapter 4, a discussion was made regarding each component that participates
in the whole optimization process. This process has been integrated in "Mesh Op-
timizer"; a software developed during this graduation project which can identify
node deployments of any setup size that offer improved localization performance.
However, being aware of the extent of this performance gain is quite important and
so, the optimization algorithm needs to be also evaluated. Therefore, this chapter
describes the entire evaluation’s setup and process.

To begin with, the evaluation shall be performed considering the environment of
our case study which is within the faculty of Architecture and the Built Environ-
ment at TU Delft (Section 1.3). For this evaluation, the localization performance
of 3 different (in terms of setup size) non-optimized deployment scenarios will
be compared with the localization performance of the corresponding optimized
ones. The 3 non-optimized setups are shown in Figure 5.1 (30-nodes setup), Fig-
ure 5.2 (15-nodes setup) and Figure 5.3 (5-nodes setup). The node deployment
in each non-optimized scenario respects common practices that administrators
often follow during IPS installations (i.e. regular placement).

To compute the localization performance in each deployment scenario, the loca-
tions of 60 sample cells shall be classified and compared with the ground truth.
These cells are presented in Figure 5.4 along with their IDs and true locations (the
ground truth). Hence, this figure can be used as a reference for mapping between
zones and cells. It should be also mentioned that throughout this evaluation, the
solutions for the grid of the highest resolution (i.e. 45cm) shall be used.
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Figure 5.1: None-Optimized Regular (Regular) Deployment of 30
Nodes

Figure 5.2: None-Optimized (Regular) Deployment of 15 Nodes
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Figure 5.3: None-Optimized (Regular) Deployment of 5 Nodes

Figure 5.4: Sample Cells used for the Simulated Evaluation
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One could notice that the 60 sample cells which have been selected for the eval-
uation, match the sample positions that were utilized during the RSSI gathering
that was used to train our radio simulator. Moreover, one can also notice that the
non-optimized deployments match the node deployment (Figure 5.5) that was ap-
parent during that RSSI gathering. This means that in case we wished to evaluate
in real life our 3 optimized solutions, we would not have to sample again for the
non-optimized scenarios (which, alone, is 3 days of work-load). Lastly, it should be
marked that although these sample positions are well spread across the area (con-
sidering also all door openings), the simulated evaluation might ideally consider
not only 60 cells, but all of them.

The localization algorithm that will be used for the classification of (the location
of) each sample point, is the kNN algorithm. According to that, the k nearest (in
Radio Signature units) neighbor-cells are selected and their locations are used to
identify which location has been detected most of the times. Although the most
common kappa coefficient for positioning purposes is 1, two others (3 and 5) shall
be additionally used to enable comparisons. Using 1 as kappa would always return
a correct localization because a) the set of the evaluated cells is the same as the set
of the neighbor-cells (being considered for the localization) and b) there is no RS
variation in the system. Therefore, the closest neighbor of a cell being evaluated,
is always the cell itself at zero distance.

Since the most often kappa coefficient is 1, another approach shall be used to as-
sess its expected performance. Namely, the distance to the first wrong neighbor-
cell. The term wrong is used here to denote that the neighbor-cell belongs to a
zone that is not the same as the zone where the evaluated cell belongs. This will
suggest how close (in RS units) we are at that position, to a wrong estimation.

Figure 5.5: Sample & Node Positions for the RSSI gathering
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6.1. Deployment Solutions Found
6.1.1. Setups for an Optimal Minimum Separation Distance
This section presents the optimal node setups that the proposed optimization dis-
covered while considering the first performance metric (i.e. minimum separation
distance). In each case and as mentioned in Section 4.6, two different grid reso-
lutions are used for comparison purposes; one based on a cell-size of 45cm and
another one based on a cell-size of 72cm.

For a 30-nodes setup, the optimal node placements are presented in Figure 6.1
and Figure 6.2 accordingly. From the perspective of human’s intelligence, it can be
noticed that positions where the signals can pass from a zone to the other while
undergoing low attenuation, are highly favoured. Such places are the ones close to
door openings (Figure 6.3) or windows. Moreover, most of the placement positions
lie within the separation area, whereas some few can also be found at the far ends
of the zones as presented in Figure 6.4. A comparison between the two different
cell-sizes suggests that the setups do not match exactly. This may be related to the
fact that the "grid-ification" process of the zones produced a) zone borders that
are not identical and b) cells of different geometries and thus, different interaction
characteristics with the propagated rays of the radio simulator. Yet, in most of the
regions, one can identify common deployment patterns.
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Figure 6.1: Optimal Deployment for 30 Nodes (Opt1 - Cell Size 45cm)

Figure 6.2: Optimal Deployment for 30 Nodes (Opt1 - Cell Size 72cm)
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Figure 6.3: Node Placement next to Door Openings

Figure 6.4: Node Placement at the far Side of Zones

For a 15-nodes setup, the optimal deployments are presented in Figure 6.5 and Fig-
ure 6.6 accordingly. As in the previous case, although the placement between the
different cell-sizes does respect common patterns, it is not identical. Contrariwise,
when comparing each deployment solution with the corresponding bigger setup
above (i.e. 30 nodes), several cell positions can be even found to be exactly the
same. Also, once again, positions next to obstruction-less zone borders seem to
have been favoured at some level. Lastly, the best solutions that the optimization
discovered for a 5-nodes setup are presented in Figure 6.7 and Figure 6.8 accord-
ingly. Although the aforementioned observations are applicable in these cases too,
it should further be noticed that the deployment of the grid with cell-size 45cm
(Figure 6.7) is almost a subset of the placement presented in Figure 6.6 (15 Nodes,
Cell-Size 72cm optimization).
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Figure 6.5: Optimal Deployment for 15 Nodes (Opt1 - Cell Size 45cm)

Figure 6.6: Optimal Deployment for 15 Nodes (Opt1 - Cell Size 72cm)
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Figure 6.7: Optimal Deployment for 5 Nodes (Opt1 - Cell Size 45cm)

Figure 6.8: Optimal Deployment for 5 Nodes (Opt1 - Cell Size 72cm)
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6.1.2. Setups for an Optimal Product of n Shortest Separation Distances
This section presents the optimal solutions (Figure 6.9 - Figure 6.11) that our opti-
mization discovered when considering the second proposed performance metric;
namely, the product of the n shortest separation distances. The maximization of
this metric was driven again by the Genetic Algorithm, but in this case, only the
most detailed grid resolution has been assessed (i.e. Cell Size of 45cm), whereas
for the coefficient n, the percentage of 5% has been selected. These shall also be
the deployments that will be evaluated in the following sections.

As explained in subsection 4.2.6, the objective of this 2nd optimization is to at-
tempt to increase further the overall separation distances and thus, lead hopefully
to better localization performance. However, in the following figures, the impact
of this new objective cannot easily be noticed. In general, the same patterns as in
the previous optimizations can be found, leading to no clear, intuitively, indication
of what the differences between the deployment scenarios are.

Figure 6.9: Optimal Deployment for 30 Nodes (Opt2 - Cell Size 45cm)
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Figure 6.10: Optimal Deployment for 15 Nodes (Opt2 - Cell Size
72cm)

Figure 6.11: Optimal Deployment for 5 Nodes (Opt2 - Cell Size 45cm)
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6.2. Evaluation of the Localization Improvement
Respecting the evaluation’s process presented in Chapter 5, the next step is to
assess in terms of localization performance, our optimal deployment solutions
against the corresponding non-optimal scenarios.

6.2.1. Assessing the kNN performance for k=1
Comparing the localization performance between the non-optimized and the op-
timized scenarios results in the data of Figure 6.12 and Figure 6.13. The first figure
corresponds to the deployment solutions that were produced via the optimization
of the minimum separation distance, whereas the second figure corresponds to
the solutions that were produced via the optimization of the product of the 5%
shortest separation distances. The second figure includes also the differences be-
tween these two metrics.

Starting with the first case (minimum separation distance in Figure 6.12), one can
notice 3 different tables. Each table represents a different node setup size, start-
ing at the left with the biggest one (30 nodes) and ending at the right with the
smallest one (5 nodes). Every table has 5 columns. The first column contains
the position IDs of the sample cells that are being evaluated. Then, each one of
these cells belongs (in reality) to the zone that is shown within the second column.
The third column corresponds to the non-optimized deployment and presents the
distance in Radio Signature units to the closest wrong (i.e. belonging to another
zone) neighbor-cell. Contrariwise, the fourth column presents the same feature,
but within the optimized deployment. Lastly, the fifth column presents the local-
ization improvement (in percentage) that the optimized deployment introduced.
The higher this value is, the less probable for the localization to be incorrect.

Each table has been sorted based on its third column (i.e. the separation distances
in the non-optimized deployments), resulting in a linear distance increase. A color
gradient has also been used for the distances to make it easier to interpret the re-
sults. Moreover, the lowest and highest values within the 3rd and 4th columns are
highlighted using colored bounding boxes.

The data of Figure 6.12 suggest an overall localization improvement which be-
comes more apparent as the node-setup decreases. Due to the aforementioned
sorting, the cells where the localization is more prone to errors are found at the
upper part of the table. There, the lower distances are represented with stronger
shades of redness. Yet, a comparison between the upper part of the non-optimized
and optimized columns suggests that in the optimized cases, a performance in-
crease has been achieved since there, this shade becomes less intense. This im-
provement is notably apparent in the upper part of the 5-node setup optimization,
where the separation improvements are reaching up to +237% (at sample position
9 which is the most problematic region in the non-optimized scenario).
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Figure 6.12: Distances to Nearest Localization Error
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This improvement, however, did not happen without a cost. It is evident that the
performance at positions where the localization was exceptional (e.g. cell 42 which
was 40,1 RS units away from the closest wrong neighbor) had to be reduced. This
sounds intuitively correct since to gain performance somewhere, you may have to
lose it from somewhere else. Nevertheless, in each case, the optimization led to
a minimum separation distance that is higher compared to the one within non-
optimized setups.

It is important to mention that although the optimization resulted (at some level)
in a distance balancing between the upper and lower parts, in practice, this may
not always mean more accurate localization. That, because, in reality, the accu-
racy of the localization depends (aside from the aforementioned distances) also
from the noise of the Radio Signatures; a dependency which is unknown to us. To
understand this notion better, we could assume that, due to noise, a correct esti-
mation would demand a minimum distance of 40 units; a distance that was only
achieved at cell 42 in the 30-nodes setup. However, by balancing the Radio Signa-
tures and lowering this distance by -28%, would result in losing the only valuable
position we already had.

The results of the optimization’s assessment based on the 2nd performance metric
(Product of n Shortest Distances), are shown in Figure 6.13. The structure of the
presented tables is the same as in Figure 6.12, however, a new column has been
added here showing the differences in performance gain between the two metrics.
As in the previous case, one can notice again a general performance gain in the
upper distances but also a loss in the lower ones.

On one hand, this metric showed that its purpose was fulfilled since, according
to the last column, the optimization led to a bigger overall gain (i.e. in average:
+2.2%, +4.6% and +6.9%) when compared to the performance gain of the 1st opti-
mization. It should be noted that this increase was becoming bigger as the node-
setup was decreasing. However, at the same time, the variance of these distances
was also increasing which suggests a more intense change of the entire Radiomap.
Lastly, it is important to emphasize that although the overall performance has
been increased, to achieve that, the minimum distances had to become lower
compared to the previous metric. Yet, these distances still remained bigger com-
pared to the non-optimized scenario.
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Figure 6.13: Distances to Nearest Localization Error
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6.2.2. Assessing the kNN performance for k∈{3,5}
The above results help us estimate how the proposed optimizations may affect the
localization performance, when 1 is used as the kappa coefficient in the kNN al-
gorithm. Figure 6.14 presents a more direct evaluation of this performance, where
now, 3 and 5 are used as the kappa coefficients. As in the previous case, this fig-
ure presents 3 tables (one for each setup-size) where both metrics (O1 denoting
the first metric and O2 denoting the second one) are included. Each row corre-
sponds to a specific evaluated cell position, the ID and true location of which can
be found at the left columns. For every one of these cells, a location estimation
has been performed in both the non-optimized and the two optimized scenarios,
using the kNN algorithm and both kappa coefficients. The binary data within the
table represent the binary state of correct or false localization. For example, con-
sidering the 5-nodes setup and the non-optimized case and after having found the
3 closest neighbors (i.e. k:3) of Cell 8 which belongs in reality to zone oost430, it
was measured that most of these neighbors (i.e. at least 2) belonged to the same
zone. Hence, a correct location estimation. However, in the optimized case us-
ing the minimum separation distance, the majority of the neighbors belonged to
another zone and thus, in that case, the estimation was incorrect.

The summation of the correct estimations lies at the bottom of the columns, sig-
nifying better or worse overall localization performance. There, the green & red
labels denote which coefficient produced the best performance. It is evident that,
in every case, using as coefficient the value 3 (instead of 5) led to a better per-
formance. This phenomenon, in accordance also with the previous results, may
imply that using 1 as coefficient might lead to even better localization. Moreover,
comparing the non-optimized to the optimized scenarios, for k=3, one can no-
tice that the performance metrics led indeed to better localization performance.
However, for k=5, the opposite was happening (i.e. the optimization was leading
to worst localization). Moreover, the comparison between the two proposed met-
rics, reveals that the maximization of the minimum separation distance offered, in
every case, better localization outcomes.

Finally, since a) the noise is considered in any case invariant and b) the localization
is based on the kNN algorithm which basically measures distances (in RS units) to
neighbors, it should be emphasized that any performance improvement mainly
implies a better topology of this neighborhood, rather a pragmatic improvement
in the localization accuracy. The latter could only be proved after considering also
the noise which is a major influencing parameter.
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Figure 6.14: Localization based on more than 1 Neighbors
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7
Conclusions

In this chapter, the knowledge that has been acquired throughout the graduation
project shall be jointly considered for providing an educated answer to the for-
mulated research questions. Furthermore, a discussion shall be made regarding
the contribution of this thesis, our reflections and also our suggestions regarding
future work.

7.1. Research Questions
1. How can the location distinctiveness be defined for an indoor positioning system?

Locations can be assessed using various metrics of uniqueness. Yet, since Location-
enabled IPSs are typically based on radio signals, it can be inferred that their dis-
tinctiveness should also be assessed in terms of these.

Despite its polymorphous nature, a generalization can be made according to which,
any location in 1, 2 or 3 dimensions can be considered as a superset of positions.
Each one of these inherit as a thematic identifier, the single location to which they
belong and is, at the same time, in a binding with a continuously varying Radio
Signature which can be used to identify the position itself. However, due to the
above variation, the identification process is not always accurate, leading often to
positions that belong to other locations. As a result, the higher the probability this
happens, the lower the location distinctiveness for the system is proved to be.

The margin within which these errors could occur, can be seen as an area of com-
mon radio signatures between the correct and the wrong position candidates. The
smaller the area, the more distinct these radio signatures are, translating even-
tually to a better location distinctiveness. Therefore, the overall (from all possi-
ble positions) span where localization errors are not possible, defines how loca-
tion distinctiveness can be perceived. According to this definition, it follows that

71



Chapter 7. Conclusions

the location distinctiveness is a performance that does not describe individually a
specific location, but instead, it is used to describe, in overall, a group of locations
under specific radio conditions.

2. Which metric would be most suitable for measuring the location distinctiveness
among different zone areas?

The location distinctiveness is bound to the way the radio signatures are utilized by
the positioning techniques. Our proposal considers fingerprint-based approaches
that respect the Euclidean space between the radio signatures. According to that,
measuring the location distinctiveness requires that, first, a representative set of
positions has been selected. This introduces the need of modeling the zones and
converting the continuous space into a discrete one for extracting the positions
that physically define the separation area between those zones. The same posi-
tions define also the separation borders of the Radio Signatures which shall be
considered during the location distinctiveness measurement. To extract these po-
sitions in a meaningful way, an alpha shaping algorithm has to be utilized. Al-
though computation geometry has various approaches to offer, a new simple and
effective approach is proposed; namely, the Circular Manhattan Alpha Shaper.

To accurately measure the separation area of the Radio Signatures is highly im-
practicable. Therefore, alternative approaches should be utilized, introducing the
corresponding margin of inaccuracy. A quite suitable solution is to perform a
dense triangulation and thus, reduce the problem into calculating the sums of
every generated triangle area. However, in the cases where more simplistic and
efficient metrics are needed (e.g. for optimization purposes) two indirect metrics
are proposed as the most suitable metrics. These do not measure separation ar-
eas, but instead, separation distances between positions that are on the border of
a zone and within the separation area. For each one of these positions, this dis-
tance can be defined by the connection with the physically closest to it position
that belongs to another zone.

• Minimum Separation Distance: This metric can identify the region where
the Radio Separation is the smallest (or even the highest). That region is
expected to have the lowest probability of offering correct localization esti-
mations.

• Product of the n Shortest Separation Distances: Depending on the n coeffi-
cient, this metric can be quite similar to the previous one (even identical for
n=1). For higher n values, this metric can offer bigger separation (in overall)
distances.
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3. Which radio propagation model would offer good accuracy-complexity ratio?

One of the most crucial parts of the optimization mechanism is the radio propa-
gation modeling and that, because its accuracy is directly affecting the optimiza-
tion’s quality and performance. Therefore, empirical models that do not consider
the physical geometry of the propagation environment should be avoided for such
a task. Currently, the most accurate radio propagation models are considered to
be the Finite-Difference Time-Domain ones. However, since these are computa-
tionally impossible to utilize, the next best candidates for our purpose are the ones
which are based on Geometrical Optics. Both literature review and our results sug-
gested that these can offer high levels of accuracy since they consider at an analyt-
ical level, both the electromagnetic properties and the propagation environments.

4. Which optimization algorithm should be utilized to support even large scale op-
timizations?

According to literature, both Simulated Annealing and Genetic Algorithms are pow-
erful techniques that enable large scale optimizations. Since GAs have been favoured
the most, this technique was eventually integrated into our optimization method-
ology. Although this renders comparisons between the two approaches impossi-
ble, yet, the performance of the implemented GA surpassed our expectations.

Two major difficulties were encountered during the development of this algorithm.
Firstly, how to encode our specific problem into the philosophy of natural selec-
tion and secondly, how to balance its searching scope between random search and
weighted search. Having done that, however, its speed performance proved to
be quite remarkable. Even for large deployments, the solutions seem to converge
sooner or later towards the same solution region which is impressive considering
the vast search space.

Another property making GAs good candidates for large scale optimizations is
their easy parallelizability. This enables the algorithm to scale according as much
as the available computational resources allow.

5. How can the optimization results be evaluated?

To be aware of the extent of our optimization’s performance is quite important
and so, the optimization needs to be evaluated for each different node setup size.
During this evaluation, the localization performance under some non-optimized
deployment shall be compared with the localization performance under the cor-
responding optimized one. This performance can be computed for a set of sample
cells and based on the kNN algorithm. The non-optimal deployments can reflect
common practices that administrators often follow during IPS installations (i.e.
regular placement). Yet, in an ideal scenario, our optimized solution should be
compared to many different scenarios via a Monte Carlo process.
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Having addressed the above sub-questions, we can now provide a concluding an-
swer to the main research question:

To what extent can the placement of BLE nodes used for fingerprint-based posi-
tioning, be optimized to increase the location distinctiveness in an indoor envi-
ronment?

To be able to measure the exact extent to which the placement of BLE nodes can be
optimized and lead to better location distinctiveness, is quantitatively quite chal-
lenging. That, because location distinctiveness not only was approached from dif-
ferent directions (i.e. Separation Area, Separation Distances, etc), but also because
in each case, the magnitude of the units was dependent via complicated relations
from many other factors (e.g. cell-size, convergence of the GA, zone modeling,
radio propagation modeling, etc).

Yet, the simulated evaluation showed that every optimized deployment introduced
better location distinctiveness and thus, localization performance, when the esti-
mations were based on the Nearest Neighbor. Moreover, it should be noted that
a performance gain is also expected even when other localization techniques are
used along with the fingerprinting (e.g. Bayesian Estimations). Finally, this op-
timization is expected to also have effect in the non-simulated cases. Otherwise,
our radio propagation modelling was not accurate enough.

7.2. Reflection & Contribution
This graduation project introduces, for the first time, an optimization approach for
Indoor Positioning Systems which are based on RSSI Fingerprinting and are orien-
tated towards providing location estimations instead of exact positioning. Since
localization refers to spatial information which lies in the heart of Geomatics, any
improvement of these systems would be a contribution to the field of Geomatics.
Yet, such systems are not solely relevant to the field of Geomatics, since the span
of their applications is cross-disciplinary. Therefore, the contribution of our op-
timization is accordingly expansive. The evaluation of this approach showed that
regardless the size of the node setup, our optimization does offer a localization
improvement and thus, any installation of such systems should consider it.

Since our optimization requires a series of mechanisms (i.e. the radio simulation,
the indoor modeling, the metric implementation and the search engine) which are
quite expensive in terms of time & cost to develop or acquire, it is expected that our
methodology may not be easily applicable. Yet, even without the development of
an automated optimizer, our evaluation showed some deployment insights (e.g.
placement of nodes across door openings) that are already useful to anyone being
responsible for the installation of an IPS that is location enabled.
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7.3. Future Work
The main objective of this graduation project was to develop a methodology for
optimizing the deployment of BLE nodes, leading to better localization within an
Indoor Positioning System. This objective has been reached, however, there are
still closely relevant aspects worth researching further.

To begin with, in this project, the radio noise has not been considered. There-
fore, modelling also the attenuation variations would introduce new paths and
possibilities to our current work. It would not only become possible to research
the minimum number of nodes required for a specific level of performance, but
it would also enable the utilization of other localization techniques (e.g. Bayesian
estimations).

Moreover, another research direction worth considering is to remove any place-
ment constraints (e.g. only at walls) for the BLE nodes and to even enable the third
dimension in case we have enough computational resources. In such case, highly
accurate indoor models (e.g. based on point clouds) could also be used.

Finally, to put our methodology also to a practical test, we could also perform an
evaluation within a real test scenario.
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