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I. Introduction

A IRCRAFT safety is threatened by various in-flight faults. One

of the critical fault cases is control reversal, which indicates

the phenomenon that the real control effect is reversed from what is

expected [1]. Control reversal can be caused by various factors,

including aeroelasticity [2], hardware connection errors [3], pilot

errors [4], and coupling effects [5]. When an aircraft wing has

insufficient torsional stiffness, the trailing-edge aileron deflection

can change the local angle of attack of thewing, consequently leading

to aeroelasticity-caused roll reversal. This is often coupledwith high-

speed effects such as compressibility. Hardware connection errors

in the hydraulic actuation system can also lead to control reversal.

Faulty actuators were the cause of several rudder reversals on Boeing

737 aircraft in the 1990s, contributing to accidents [3].
Control reversal can easily lead to the loss of control in-flight [1].

Unfortunately, it is a challenging problem that many flight control

methods, such as model reference adaptive control [6] and sliding

mode control [7], cannot deal with. Almost all the nonlinear robust

control designs using Lyapunov’s direct methods require the control

direction information,which is used to determine the signs of the time

derivative of the corresponding Lyapunov functions [1,6,8,9]. Con-

trollers using the Lyapunov argument are much more difficult to

design if a priori knowledge of control directions is unavailable. In

the mathematics and control communities, the challenging unknown

control direction problem has been solved by introducing the Nuss-

baum gain in the adaptive control design [8,10]. This approach has

wide applicability in various mechanical systems [10,11]. However,

the Nussbaum-gain-based control often requires very high control

frequency. More importantly, it only has guaranteed stability when

the control sign is unknown but invariant. Therefore, it cannot deal

with in-flight control reversal. Another solution is the fault-tolerant

control (FTC) framework [12], which has great potential to achieve

aircraft flight control tasks even in the presence of faults.
The FTC schemes can be classified into passive FTC and active

FTC. The passive FTC approach is only robust against prespecified
faults, excluding control reversal. By contrast, the active approach

generally has border applicability because its control law is aware of

faults [12,13]. The fault information can be disclosed by online fault

detection and identification (FDI) or fault estimation (FE), which

adopts methods such as unknown input observer [14], sliding mode

observer [15], Kalman filter [16], and learning observer [17].

Although many FDI/FE methods for aircraft sensory and actuator

faults have been proposed, managing simultaneously occurring mul-
tisource faults is still an open challenge. Moreover, some practical

factors including external disturbances, sensing bias and noise, and

model uncertainties can seriously reduce the performance of the

existing FDI/FE methods [15]. Furthermore, to reconstruct the accu-

rate fault information, state-of-the-art FDI/FE observers often require

a strict matching condition or a strictly positive-real condition [18],

which can be violated when there are redundant and strongly coupled
sensors and/or actuators.
Once the fault information is disclosed, another important part of

active FTC is the control design. A multiple-model adaptive control

schemewas developed in [19] to compensate for actuation sign errors

and inertia parameter uncertainties in a rigid spacecraft attitude

tracking control problem. It uses a control switching algorithm based

on a set of adaptive estimators to guarantee the global attitude
tracking performance, in which 2p estimators and 2q cost functions
are required for ap-input, q-output system. This control strategy was

also extended for a flexible spacecraft tracking problem in the

presence of actuation sign faults and aeroelastic uncertainties in

[20]. Recently, one inverse gain switching adaptive control method

was proposed in [1] for tolerating control reversal and parametric

uncertainties. This challenging control problem was solved by find-

ing the fixed point solution for a model reference adaptive control
with the dynamic inverse. However, it can only deal with linear

systems and potentially suffers from Zeno behavior.
Nonlinear incremental control has shown great potential in solving

aircraft FTC problems [21,22]. The most well-known incremental

control method is incremental nonlinear dynamic inversion (INDI)

[22,23]. The only model information required by INDI is the control
effectiveness estimation. Even so, by exploiting sensory measure-

ments, the robustness of INDI against model uncertainties and exter-

nal disturbances is significantly improved over that of nonlinear

dynamic inversion [23]. Incremental sliding mode control (INDI-

SMC) is a hybridization between INDI and (higher-order) sliding-

mode controllers/observers for generic multi-input–multi-output

(MIMO) nonlinear systems [21]. Lyapunov-based analysis and sim-

ulation validations show that INDI-SMC can passively resist a wider
range of uncertainties, actuator faults, and structural damage with

reduced minimum possible control/observer gains [21].
Despite the promising robustness of INDI-SMC, it requires one

critical sufficient condition: the estimation of the control effective-

ness matrix should be sufficiently close to its true value (quantitative

expression can be found in [21]). However, in the control reversal

fault case, this condition is violated. Consequently, neither the
boundedness of the residual error nor the stability of the closed-loop

system can be guaranteed. Moreover, the Lyapunov-based stability

and robustness analysis of INDI-SMC also has limitations. First,

sensing errors, especially that of the high-order output derivatives,

are not considered. Second, the assumption of sufficiently high

sampling frequency is appliedwithout presenting an explicit criterion

for how high the sampling frequency should be.
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This Note proposes an active incremental sliding mode control

approach denoted as A-INDI-SMC. It is empowered with an online

incremental FDI unit, which can promptly reconstruct control sign

changes despite multisource faults, sensing bias and noise, and

model uncertainties. The harmful Zeno behavior is also prevented

by using multiple time-step incremental measurements and the

dwell-time technique. Moreover, sensing errors are considered in

the Lyapunov-based stability and robustness analysis. Furthermore,

an explicit and quantifiable expression for the ultimate bound of the

tracking error, as a function of the sampling frequency and perturba-

tion bounds, is derived. The effectiveness of A-INDI-SMC is vali-

dated by an aircraft command tracking problem, in the presence of

control reversal, model uncertainties, sensing errors, actuator faults,

and structural damage.
The rest of this Note is structured as follows. The INDI-SMC

method is analyzed in Sec. II. Section III proposes the A-INDI-SMC.

The aircraft FTCvalidations are presented in Sec. IV.Conclusions are

drawn in Sec. V.

II. Analysis andLimitation Exposure of the Incremental
Sliding Mode Control

This section briefly reviews the incremental sliding mode control

method and its corresponding stability analysis. Furthermore, the

limitations of INDI-SMC, especially in the presence of control

reversal, are exposed.

A. System Dynamics and Control Objective

Consider an MIMO nonlinear system described in the continuous

time domain by

_x � f�x; u�; y � h�x� (1)

where x ∈ Rn, u ∈ Rm, and y ∈ Rm are the system state, input, and

output, respectively, and f∶Rn → Rn and h∶Rn → Rm are continu-

ous functions. The elements of h are denoted as hi, i � 1; : : : ; m.

Using the Lie derivatives, the input–output mapping of the system is

given by

y�ρ� � g�x; u� (2)

where ρ � �ρ1; ρ2; : : : ; ρm�⊤ represents the relative degree, and

g�x; u� � �Lρ1
f h1;L

ρ2
f h2; : : : ;L

ρm
f hm�⊤. Define the external state as

ξ⊤ � �ξ⊤1 ; ξ⊤2 ; : : : ; ξ⊤m�, ξi � �hi;Lfhi; : : : ;L
�ρi−1�
f hi�⊤, i � 1; : : : ; m.

Denote ne � ρ1 � ρ2� · · · �ρm, then the internal state vector is

η ∈ Rn−ne . Apply the change of coordinates as z ↦ T�x�, which is a
diffeomorphism on a domainD, then a new state representation z⊤ �
�η⊤; ξ⊤� is created. The nonlinear system inEq. (1) is then transformed

into a canonical form as [23]

_η � f in�η; ξ�; _ξ � Acξ� Bcg�x; u�; y � Ccξ (3)

Taking the first-order Taylor series expansion of Eq. (2) at t − h,
where t is the current time and h is one sampling interval, we obtain

the incremental dynamics:

y�ρ� � y�ρ�
����
0

� ∂g�x; u�
∂x

����
0

Δx� ∂g�x;u�
∂u

����
0

Δu� R1�x;u; h�

≜ y�ρ�0 �A0�x�Δx�B0�x�Δu� R1�x;u; h� (4)

where �⋅�j0 means evaluating �⋅� at �x0 � x�t − h�;u0 � u�t − h�;
d0 � d�t − h��. The state and control variations in one incremental

time step are Δx � x − x0 and Δu � u − u0, respectively. R1 is the

expansion remainder, whose Lagrange form is

R1�x; u; h� �
1

2

∂2g�x; u�
∂2x

����
m

Δx2 � 1

2

∂2g�x; u�
∂2u

����
m

Δu2

� ∂2g�x; u�
∂x∂u

����
m

ΔxΔu (5)

where �⋅�jm means evaluating �⋅� at �xm; um�, where xm ∈
�x�t − h�; x�t�� and um ∈ �u�t − h�; u�t��.
Assumption 1: Assume that the reference signal yr �

�yr;1; yr;2; : : : ; yr;m�⊤ and its derivatives up to y�ρi�r;i are bounded and

continuous.
Because of the limited actuator bandwidth, not all the reference

commands (such as the step reference) can be perfectly tracked in

reality. In practice, the sharp commands are commonly smoothened

using command filtering, after implementing which, Assumption 1 is

normally satisfied [15,23].
Denote the reference state vector as r � �r1; r2; : : : ; rm�⊤ with

ri � �yr;i; y�1�r;i ; : : : ; y
�ρi−1�
r;i �, i � 1; : : : ; m. Define the tracking error

vector as e � ξ − r. Substitute Eq. (4) into Eq. (3), then the error

dynamics are given by

_e � Ace� Bc

h
y�ρ�0 �B0�x�Δu�A0�x�Δx� R1�x; u; h� − y�ρ�r

i
(6)

where y�ρ�r � �yρ1r;1; yρ2r;2; : : : ; yρmr;m�⊤. The control objective is tomake y

tracks its reference yr while tolerating faults.
Considering model uncertainties, actuator faults, structural dam-

age, and control reversal, the control effectiveness matrix of a system

is modeled asB0�x� � �B̂0�x� � ~B0�x��Λ, where B̂0�x� is a known
nominal model [20,24]; ~B0�x� represents the unknown control dis-

tribution matrix uncertainty owing to actuator faults and structural

damage; Λ � diagfw1; w2; : : : ; wmg, jwij � 1, i � 1; : : : m, is an

unknown time-varying sign-switching matrix. Consequently, the

incremental input–output mapping in Eq. (4) is written as

y�ρ� � y�ρ�0 � �B̂0�x� � B̂0�x��ΛΔu�A0�x�Δx� R1�x;u; h�
(7)

Assumption 2: The control effectiveness matrix uncertainty sat-

isfies k ~B0�x�B̂−1
0 �x�k ≤ �b < 1, where �b is an unknown positive

constant.
The inequality condition in Assumption 2 specifies a constraint on

the uncertainties of the control effectiveness matrix. This (largest

singular value) 2-norm constraint means the maximum magnifica-

tion, which can be undergone by any vector when acted on by the

control effectiveness uncertainties matrix ~B0�x�B̂−1
0 �x�, is smaller

than 1. To be specific, this Note supposes that the uncertain control

effort is less than the nominal control effort.

B. Fundamental Limitations of the INDI-SMC

The standard INDI-SMC law for stabilizing the error dynamics in

Eq. (6) is designed as [21]

u � u0 � Δuindi-s; Δuindi-s � B̂−1
0 �x�

�
vc � vs − ŷ�ρ�0

�
;

vc � −Ke� y�ρ�r ; vs � −Kssgn�σ�γ (8)

where K ∈ Rm×n is designed such that Ac −BcK is Hurwitz;

γ ∈ �0; 1�, Ks ∈ Rm×m is positive diagonal matrix; sgn�σ�γ �
�jσ1jγ1 sign�σ1�; : : : ; jσmjγmsign�σm��⊤; and ŷ�ρ�0 is the measurement

or estimation of y�ρ�0 . The sliding variable is designed as σ �
Se − Se�0� � ∫ t

0Koe dτ, where S ∈ Rm×n, Ko ∈ Rm×n with Ko �
−S�Ac −BcK�, and S� diagfSig, Si � �Ki;1;: : : ;Ki;ρi−1;1� ∈ Rρi .

Substituting Eq. (8) into Eq. (6), we have

2412 J. GUIDANCE, VOL. 45, NO. 12: ENGINEERING NOTES

D
ow

nl
oa

de
d 

by
 T

U
 D

E
L

FT
 o

n 
D

ec
em

be
r 

1,
 2

02
2 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.G
00

66
90

 



_e � �Ac −BcK�e� Bc

h
vs �

�
B0�x�B̂−1

0 �x� − I
��

vc � vs − ŷ�ρ�0

�

� ~y�ρ�0 � δ�z; h�
i
≜ �Ac −BcK�e� Bc�vs � εindi-s� (9)

in which ~y�ρ�0 � y�ρ�0 − ŷ�ρ�0 and δ�z; h� � �A0�x�Δx �
R1�x; u; h��jz�T�x0�;u�u0�Δuindi-s .

Assumption 3: The measurement or estimation error of y�ρ�0 is

bounded, i.e., k ~y�ρ�0 k ≤ �δy, where the constant �δy is the upper norm

bound of ~y�ρ�0 .

Assumption 4 [21]:The term δ�z; h� in Eq. (9), which contains the
closed-loop values of the expansion remainder R1 and A0�x�Δx, is
bounded, i.e., kδ�z; h�k ≤ �δz, where the constant �δz is the upper norm
bound of δ�z; h�.
These two assumptions are reasonable, which is explained as

follows. The sensing error ŷ�ρ�0 , which is caused by noise, sensor

dynamics, and sensor bias, is normally bounded [25]. Besides, if ŷ�ρ�0

is estimated, the boundedness of estimation error is the basic require-
ment for the design of an estimator or filter [26,27]. Moreover, based
on the analysis in [21,22], the value of kδ�z; h�k approaches zero as
sampling frequency increases, and there always exists an h for
guaranteeing the boundedness of kδ�z; h�k.
From the closed-loop dynamics using INDI-SMC (Eq. (9)), it can

be observed that the perturbation terms εindi-s influence the stability
and performance. It is noteworthy that INDI-SMC in the literature

does not consider sensing error, i.e., ~y�ρ�0 � 0 [21]. Furthermore,

control reversal is also not considered by INDI-SMC, i.e., Λ ≠ I.

DenoteΦ0�x� � I −B0�x�B̂−1
0 �x�, and the following lemmas have

been proved.
Lemma 1 [21]: If kΦ0�x�k ≤ �b < 1, under Assumption 4, when

~y�ρ�0 � 0, for sufficiently high sampling frequency, the residual error

εindi-s of INDI-SMC given by Eq. (9) is ultimately bounded as

lim
t→∞

kεindi-sk ≤
�Δvc

�b� �Δvs
�b� �δz

1 − �b
(10)

where �Δvc and �Δvs are the bounds of Δvc � vc − vc0 and Δvs �
vs − vs0 , respectively.
Lemma 2 [23]: If kεindi-sk ≤ �δε is satisfied for all z ∈ Rn, and _η �

f in�η; ξ� is input-to-state stable, then the state z in Eq. (3) is globally

ultimately bounded by a class K function of �δε.
Remark 1: It can be observed from Lemmas 1 and 2 that

kΦ0�x�k ≤ �b < 1 is a critical sufficient condition for system stability.
In practice, actuator faults and structural damage lead to changes in

B0�x�. In the absence of control reversal, i.e.,Λ � I, then kΦ0�x�k ≤
�b < 1 is equivalent to Assumption 2, which is naturally satisfied

without requiring the adaptation of B̂0�x� in many fault cases [21].

However, control reversal (Λ ≠ I) violates kΦ0�x�k ≤ �b < 1 even
under Assumption 2. Consequently, both the boundedness of the
residual error and the stability of the system cannot be guaranteed
under of control of INDI-SMC. The INDImethod also has promising
disturbance rejection ability as discussed in [23]. The bounds of
residual error and ultimate bounds of state are correlated to the bound
of the disturbance variations [23].
Remark 2: The stability analysis of INDI-SMC also has limita-

tions. First, sensing errors are not considered in INDI-SMC. Second,
the variation bounds �Δvc ,

�Δvs ,
�δz are all influenced by the sampling

frequency. However, the assumption of sufficiently high sampling
frequency is used in Lemma 1without presenting an explicit criterion
for how high the sampling frequency should be.

III. Active Incremental Sliding Mode Control Against
Control Reversal

An active incremental sliding mode control approach, denoted as
A-INDI-SMC, will be proposed in this section. Its objective is to
provide stable and desirable tracking even in the presence of control
reversal. Moreover, an explicit and quantifiable expression for the

ultimate bound of the tracking error, as a function of the sampling
frequency and perturbation bounds, will be derived. The control
structure of A-INDI-SMC is presented in Fig. 1. The FDI unit is
used to identify the control direction by using a discrete-time incre-
mental online FE approach.
Assumption 5: There is a minimum admissible time TD between

two consecutive sign switches of the diagonal elements of the
matrix Λ.

A. Fault Detection and Identification Design

In the presence of control reversal, reconstructing the changed sign
promptly is essential. Therefore, the following FDI unit is introduced
to identify the control direction matrix Λ online.
Using B̂0�k�, Φ�k�, ~y�ρ�0 �k�, ŷ�ρ��k�, Δu�k�, R1�k�, and A0�k� to

represent thevalue of B̂0�x�,Φ0�x�, ~y�ρ�0 , ŷ�ρ�,Δu�t�,R1�x; u; h�, and
A0�x� at t � kh, respectively, recall that y�ρ�0 �k� � ŷ�ρ�0 �k� � ~y�ρ�0 �k�,
then Eq. (7) is written in a recursive way as

ŷ�ρ�0 �k� 1� ≜ ŷ�ρ�0 �k� � �B̂0�k� � ~B0�k��Λ�k�Δu�k� �A0�k�Δx�k�
�R1�k� � ~y�ρ�0 �k�− ~y�ρ�0 �k� 1� (11)

In the above incremental dynamic equation, the first two terms
on the right-hand side are more dominate than the rest. Therefore,

define ~δFDI�k� ≜ A0�k�Δx�k� � R1�k� � ~y�ρ�0 �k� − ~y�ρ�0 �k� 1� as

the lumped uncertainty term, then the dynamics in Eq. (11) can be
rewritten as

ŷ�ρ�0 �k� 1� � ŷ�ρ�0 �k� � �B̂0�k� � ~B0�k��Λ�k�Δu�k� � ~δFDI�k�
(12)

From Eq. (12), it can be derived that

�I� B̂−1
0 �k� ~B0�k��Λ�k�

� B̂−1
0 �k�

�
ŷ�ρ�0 �k� 1� − ŷ�ρ�0 �k� − ~δFDI�k�

�
�Δu�k��† (13)

where �Δu�k��† is the pseudoinverse ofΔu�k�. Under Assumption 2,

the diagonal elements of �I� B̂−1
0 �k� ~B0�k�� are positive. Using the

diagonal matrix characteristics of Λ, and considering ~δFDI as an
uncertainty, then the sign of Λ is derived from Eq. (13) as

ŵi�k� � sign
h�

B̂−1
0 �k�

�
ŷ�ρ�0 �k� 1� − ŷ�ρ�0 �k�

�
�Δu�k��†

�
i;i

i
;

∀i � 1; 2; : : : ; m (14)

in which the subscript �⋅�i;i denotes the ith diagonal element of a

matrix; ŵi�k� is the identified control direction of the ith actuator.

Denote the ith row of the matrix B̂−1
0 �k� as bi ∈ R1×m and denote

the ith element of the vector �Δu�k��† as hui ∈ R, then the estimation

of wi in Eq. (14) is simplified to ŵi�k� � sign�bi�k��ŷ�ρ�0 �k� 1�−
ŷ�ρ�0 �k��hui�k��. Analogously, considering uncertainty, the real value
of wi is sign�bi�k��ŷ�ρ�0 �k� 1� − ŷ�ρ�0 �k� − ~δFDI�k��hui�k��. There-
fore, the estimation in Eq. (14) leads to the following error:

Fig. 1 The control structure of A-INDI-SMC.
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~wi�k� �
�
sign

h
bi�k�

�
ŷ�ρ�0 �k� 1� − ŷ�ρ�0 �k� − ~δFDI�k�

�i

− sign
h
bi�k�

�
ŷ�ρ�0 �k� 1� − ŷ�ρ�0 �k�

�i�
sign�hui�k�� (15)

where ~wi � wi − ŵi. In case that jbi�k��ŷ�ρ�0 �k� 1� − ŷ�ρ�0 �k��j >
jbi�k� ~δFDI�k�j, we have ~wi�k� � 0. In other words, wi is accurately
identified by Eq. (14). Otherwise, incorrect identification of control

direction could happen. Under Assumptions 3 and 4, k ~δFDI�k�k <
�δz � �δy. Therefore, the condition jbi�k��ŷ�ρ�0 �k� 1� − ŷ�ρ�0 �k��j >
��δz � �δy�kbi�k�k1 guarantees a correct sign identification using

Eq. (14).
In the literature, it is widely assumed that ~y�ρ�0 � 0 [22,23,28]. This

simplification leads to the FDI condition: jbi�k��ŷk�ρ�0 �k� 1�−
ŷ�ρ�0 �k��j > �δzkbi�k�k1. Since �δz approaches zero as h decreases

[23], this condition can be easily satisfied under high sampling rate.
However, if the measurement is corrupted by sensory noise and

biases, it is possible that ~y�ρ�0 becomes comparable to the term

ŷ�ρ�0 �k� 1� − ŷ�ρ�0 �k�, which would lead to incorrect identification

in ŵi�k�. Assume that the control effectiveness B0�x� is slowly time

varying, i.e., B̂0�k� ≈ B̂0�k − i�, Λ�k� ≈ Λ�k − i�, i � 1; : : : ; N,
then we evaluate the dynamics in Eq. (12) at the previous N time
step and surmise them together, which leads to

�I� B̂−1
0 �k� ~B0�k��Λ�k�

XN
j�1

Δu�k − j�

≈ B̂−1
0 �k�

�
ŷ�ρ�0 �k� − ŷ�ρ�0 �k − N�

�
− B̂−1

0 �k�
XN
j�1

~δFDI�k − i� (16)

Using Eq. (16), the sign identification law in Eq. (14) is updated to

ŵi�k�

�
8<
:
sign

h�
B̂−1

0 �k�
�
ŷ�ρ�0 �k�− ŷ�ρ�0 �k−N�

�
HN�k�

�
i;i

i
; t− tϵ > τd

ŵi�k−1�; otherwise

(17)

in which the dwell-time condition [29] is introduced to manage
the transient behaviors. The step N is selected to satisfy Nh < TD;

HN�k� is the pseudoinverse of
P

N
j�1 Δu�k − j�; tϵ is the previous

instant when the control sign change is detected; τd > 0 is the
dwell-time constant. The complete identified matrix is therefore

Λ̂ � diagfŵ1; ŵ2; : : : ; ŵmg. The selection of N and τd is related to
system dynamics. For fast dynamics, their values should be relatively

smaller. The condition for correctly identifying Λ̂ even in the pres-

ence of ~δFDI is updated as

���bi�k�
�
ŷ�ρ�0 �k� − ŷ�ρ�0 �k − N�

���� > ��δz � �δy�Nkbi�k�k1 (18)

Remark 3: In most aircraft fault scenarios, Eq. (18) can be easily
satisfied. Even if the sign identification ofwi cannot instantaneously
follow the real one, the system will remain stable if the incorrect
identify period is small as compared to the period without identi-
fication error [15,29]. It is worth noting that the control inputs will
increase along with the wrong estimation of control sign. After that,

the increment of y�ρ�0 will also increase toward satisfying the con-

dition in Eq. (18). Therefore, the condition for correctly identifying Λ̂
will be satisfied after a transient interval.

B. A-INDI-SMC Design

Based on the identified control direction Λ̂, this subsection
presents the A-INDI-SMC law. Using Eq. (7), the error dynamics
in Eq. (6) becomes

_e � Ace� Bc

�
y�ρ�0 � �B̂0�x� � ~B0�x��ΛΔu�A0�x�Δx

� R1�x; u; h� − y�ρ�r

�
(19)

which can be discretized using Euler’s forward approximation as

e�k� 1� � �I� hAc�e�k� � hBc

�
y�ρ�0 �k� � �B̂0�k�

� ~B0�k��Λ�k�Δu�k� �A0�k�Δx�k� �R1�k�− y�ρ�r �k�
�

(20)

The discrete-time active incremental sliding mode control is

proposed as

Δua−i−s�k� � Λ̂�k�B̂−1
0 �k�

�
vc�k� � vs�k� − ŷ�ρ�0 �k�

�
(21)

where the identification of Λ̂�k� has been discussed in Sec. III.A. The
nominal virtual control is designed as vc�k� � −Ke�k� � y�ρ�r �k� for
stabilizing the unperturbed system andvs is designed for perturbation
compensations. Design the discrete sliding variable σ�e�∶Rn → Rm

as

σ�k� � Se�k�−Se�0� �EI�k�; EI�k� �EI�k− 1��Kee�k− 1�
(22)

where Ke � −hS�Ac −BcK�. Consider the motions on the sliding

surface, i.e., σ�k� 1� � σ�k� � 0; then using Eqs. (20) and (22), the
following equations are derived:

8>>><
>>>:

S�I� hAc�e�k� − Se�0� �EI�k� 1� � hSBc

�
y�ρ�0 �k�

�B0�k�Δu�k� �A0�k�Δx�k� � R1�k� − y�ρ�r �k�
�
� 0

Se�k� − Se�0� �EI�k� � 0; EI�k� 1� � EI�k� � Kee�k�
(23)

Using Eq. (23), the equivalent control [7] is calculated by

Δueq�k� � B−1
0 �k�

�
y�ρ�r �k� −Ke�k� − yE0 �k� − δ�k�

�
(24)

in which δ�k� � �A0�x�Δx� R1�x; u; h��ju�u0�k��Δua−i−s�k�. Sub-

stitute Eq. (24) into Eq. (20), the ideal sliding mode dynamic

equation results in e�k� 1� � �I� h�Ac −BcK��e�k�, which indi-
cates that, on the sliding surface, the desired error dynamics

are achieved, which ensures that e converges to zero and ξ → r.
To compensate for uncertainties and disturbances, the sliding

mode virtual control vs is designed as vs�k� � −Kssgn�σ�k��γ �
−�Ks;1jσ1�k�jγsign�σ1�k��; : : : ; Ks;mjσm�k�jγsign�σm�k���⊤, where

Ks;i > 0, γ ∈ �0; 1�, i � 1; : : : ; m.

C. Stability and Robustness Analysis

The stability and robustness of the A-INDI-SMC method in the

presence of control reversal, model uncertainties, and sensing errors

will be analyzed in this subsection.
Theorem 1: Under Assumptions 2–5, if f in�η; ξ� is continuously

differentiable and globally Lipschitz in �η; ξ�, and the origin of _η �
f in�η; 0� is globally exponentially stable, then using the proposed

control law in Eq. (21), the tracking error e in Eq. (19) converges to an
arbitrary small bound, while the internal state η in Eq. (3) is globally
ultimately bounded.
Proof 1:Assume that the system satisfies the identifiable condition

in Eq. (18), then Λ�k�Λ̂�k� � I holds on. Substituting Eq. (21) and

Eq. (20) into Eq. (22) yields
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σ�k� 1� � S�I� hAc�e�k� − Se�0� �EI�k� � Kee�k�
� hSBc

�
y�ρ�0 �k� � �B̂0�k� � ~B0�k��Λ�k�Λ̂�k�B̂−1

0 �k�

×
�
vc�k� � vs�k� − ŷ�ρ�0 �k�

�
� δ�k� − y�ρ�r �k�

�

� σ�k� � hSBc

�
−Kssgn�σ�k��γ � ~B0�k�B̂−1

0 �k�

×
�
vc�k� � vs�k� − ŷ�ρ�0

�
� ~y�ρ�0 �k� � δ�k�

�
(25)

Denote ~B0�k�B̂−1
0 �k� ≜ Φs�k� and ~y�ρ�0 �k� � δ�k� ≜ ~Δs�k�, then

using the controller in Eq. (21) leads to

y�ρ��k� � vc�k�� vs�k�� ~Δs�k��Φs�k�
�
vc�k� � vs�k�− ŷ�ρ�0 �k�

�

≜ vc�k�� vs�k� � εa−i−s�k� (26)

Analogous to the derivations in [21], and using Eq. (26), the

residual cancellation error of A-INDI-SMC follows:

εa−i−s�k� � Φs�k�
�
vc�k� � vs�k� − vc�k − 1� − vs�k − 1�

− εa−i−s�k − 1� � ~y�ρ�0 �k�
�
� ~Δs�k�

� −Φs�k�εa−i−s�k − 1� �Φs�k��Δvc�k� � Δvs�k��
� �I�Φs�k�� ~y�ρ�0 �k� � δ�k� (27)

Referring to [30], the incremental terms Δvc�k�,Δvs�k� are in the
order of magnitude of O�h2�. Under Assumption 2, kΦs�k�k �
k ~B0�k�B̂−1

0 �k�k ≤ �b < 1. Recall that under Assumptions 3 and 4,

k ~y�ρ�0 k ≤ �δy and kδ�z; h�k ≤ �δz, and thus the residual error in Eq. (27)
is derived as

kεa−i−s�k�k ≤ �bkεa−i−s�k − 1�k � �b
�
kΔvc�k� � Δvs�k�k

�
� �δz

� �1� �b��δy

≤ �bkkεa−i−s�0�k �
Xk
j�1

h
�bjkΔvc�j� � Δvs�j�k

� �b�j−1�
�
�δz � �1� �b��δy

�i
(28)

Using the sum formula of geometric series, it follows that

kεa−i−s�k� 1�k ≤ �bk�1kεa−i−s�0�k �
�
�Δvc � �Δvs

� �b − �bk�1

1 − �b

� �δz
1 − �bk

1 − �b
� �δy

�1 − �bk��1� �b�
1 − �b

(29)

Using the fact that �b < 1, we have limk→∞kεa−i−sk ≤
�� �Δvc � �Δvs� �b∕1 − �b� � ��δz∕1 − �b� � ��1� �b��δy∕1 − �b�, which

shows an explicit ultimately bound expression of εa−i−s as a function
of the perturbation bounds �δz, �Δvc ,

�Δvs , and the sensing error

bound �δy.
Following Eq. (25), the difference equation of σ�k� is

Δσ�k� � σ�k� 1� − σ�k� � hSBc�−Kssgn�σ�k��γ � εa−i−s�k��
(30)

Then, each element ofΔσ�k� is calculated asΔσi�k� � hεa−i−s;i�k�−
hKs;ijσi�k�jγsign�σi�k��, where εa−i−s;i is the ith element of εa−i−s.
1) When the sliding variable σi�k� > 0, this yields Δσi�k� �

−hKs;ijσi�k�jγ � hεa−i−s;i�k�. It is observed that ∀σi�k� ≥
�jεa−i−s;ij∕Ks;i�1∕γ , Δσi�k� < 0, σi�k� decreases, until it enters the

range 0 < σi�k� ≤ �jεa−i−s;ij∕Ks;i�1∕γ .

2) When the sliding variable σi�k� < 0, Eq. (30) becomes
Δσi�k� � hKs;ijσi�k�jγ � hεa−i−s;i�k�. It is observed that ∀σi�k� ≤
−�jεa−i−s;ij∕Ks;i�1∕γ , Δσi�k� > 0, σi�k� increases, until it enters the
range −�jεa−i−s;ij∕Ks;i�1∕γ ≤ σi�k� < 0.
Therefore, the controller leads to a quasi-sliding motion in a finite

time T1 with jσi�k�j ≤ �δs;i � �jεa−i−s;ij∕Ks;i�1∕γ , whose size can be

made arbitrarily small. Denote the sliding variable in a quasi-sliding

motion as σsm � �σsm;1; σsm;2; : : : ; σsm;m�⊤, where σsm;i�k� has a

magnitude of O��δs;i� due to the nonideal sliding motion. The

quasi-sliding mode dynamics are

e�k� 1� � �I� h�Ac −BcK��e�k� � hBc�vs�k� � εa−i−s�k��
� �I� h�Ac −BcK��e�k� � Bc�SBc�−1Δσsm�k� (31)

in whichΔσsm�k� � σsm�k� 1� − σsm�k�. Recall that ρ�I� h�Ac−
BcK�� � �λ < 1, where ρ�⋅� denotes the spectral radius of a

matrix �⋅� ∈ Rn×n. Then the inequation ke�k� 1�k≤ �λke�k�k�
kΔσsm�k�k holds because kBc�SBc�−1k � 1. During the sliding

motion, we have kΔσsm�k�k ≤ 2
����
m

p
�δs�k�, where �δs�k� �

supi�1;: : : ;m�jεa−i−s;i�k�j∕Ks;i�1∕γ . Define K � infi�1; : : : ;m Ks;i, then

ke�ks � k� 1�k ≤ �λke�ks � k�k � 2
����
m

p
�δs�k�

≤ �λks�1ke�k�k � 1 − �λks

1 − �λ
2

����
m

p �kεa−i−s�k�k
K

�
1∕γ

(32)

Substituting Eq. (29) into Eq. (32), and using the fact that

limk→∞ �bk → 0 and limks→∞ �λk → 0 lead to

lim
k→∞

ke�k�k ≤
2

����
m

p

1 − �λ

�� �Δvc � �Δvs� �b� �δz � �1� �b��δy
K�1 − �b�

�
1∕γ

≜ ε⋆

(33)

Equation (33) provides an explicit expression of the ultimate

bound of the tracking error e as a function of �b, the sampling interval

h, the spectral radius of Ac −BcK, the sensing error bound �δy, and

the sampling interval-related perturbation bounds �δz, �Δvc , and
�Δvs .

Since the reference signal r is designed to be bounded, i.e., krk < �r,
Eq. (33) also leads to a bounded external state ξ.
Regarding the internal dynamics, choose V in�η� defined in Dη �

fη ∈ Rn−neg as the candidate Lyapunov function for _η � f in�η; ξ�.
Since the origin _η � f in�η; 0� is globally exponentially stable, then

there exists class K∞ functions α 0
1 and α 0

2 such that α 0
1�kηk� ≤

kV in�η�k ≤ α 0
2�kηk� is satisfied. In the meanwhile, V in�η� satisfies

�∂V in∕∂η�f in�η; 0� ≤ −c3kηk2, k∂V in∕∂ηk ≤ c4kηk for some posi-

tive constants c3 and c4. Because f in�η; ξ� is continuously differ-

entiable and globally Lipschitz in �η; ξ�, then there exists a global

Lipschitz constantL such that kf in�η;ξ�−f in�η;0�k≤L�kek�krk�,
∀ η ∈ Rn−ne . As a result, the time derivative of V in�η� satisfies [23]

_V in�η� �
∂V in

∂η
f in�η; ξ�

≤
∂V in

∂η
f in�η; 0��

���� ∂V in

∂η

����kf in�η; ξ� − f in�η; 0�k

≤ −c3kηk2 � c4Lkηk�kek � krk�

≤ −c3�1 − θ1�kηk2; ∀ kηk ≥
c4L�kek � krk�

c3θ1
(34)

with constant θ1 ∈ �0; 1�. Denote the initial time point as t0, and
μ ≜ �c4L∕c3θ1��supt0�T1≤τ≤t�kek � krk��. As a result, there exists
a class KL function β 0 such that kηk ≤ β 0�kη�t0 � T1�k;
t − t0 − T1� � α 0

1
−1�α 0

2�μ��, ∀t ≥ t0 � T1. Analogous to the results

in [23], the normal value of the internal state satisfies
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kηk ≤ θ2ε
⋆ � α 0−1

1

�
α 0
2

�
c4L

c3θ1
�ε⋆ � �r�

��
; ∀t ≥ t0 � T1 � T2

(35)

for some finite T2 > 0 and θ2 > 0. This shows that η is globally
ultimately bounded by a classK function of ε⋆ and �r. This completes
the proof. □

Remark 4: For the nonlinear system modeled in Eq. (7), the term

Φ0�x� equals I − �B̂0�x� � ~B0�x��ΛB̂−1
0 �x�. It can be observed that

if ∃i,wi � −1, then ρ�Φ0�x�� > 1. As a consequence, the bounded-
ness of the perturbation term in Eq. (9), as well as the closed-loop
stability of INDI-SMC presented in Sec. II.B, cannot be guaranteed.
By contrast, the newly proposed A-INDI-SMC has boarder appli-
cability. This is because even if ∃i,wi � −1, with the help of FDI in
Sec. III.A, Λ�k�Λ̂�k� � I in Eq. (25). Consequently, εa−i−s�k� in
Eq. (27) is bounded under Assumption 2, which further leads to
guaranteed closed-loop stability.
Remark 5: In the case of Λ�k�Λ̂�k� ≠ I, the system will remain

stable under very short incorrect identification intervals, which is
explained as follows. In the activating period of unstable mode, the
sliding variable Δσi�k� � hKs;ijσi�k�jγsign�σi�k�� � hεa−i−s;i�k�.
Suppose that the unmatched sign identification happens in the tran-
sient internal �kf; kR�. Denote the upper bound of jεa−i−s;i�k�j in this
period as �ε. DenoteMs as the set of stable modes, andMu represents
the set of unstablemode. Suppose that λ1 � min�hKs;ijσi�k�jγ − h�ε�,
k ∈ Ms is the minimal rate of decay in the stable mode, and
λ2 � max�hKs;ijσi�k�jγ � h�ε�, k ∈ Mu is the maximum rate of

growth in the unstable mode. Then, for any k ∈ �kf; kR�, from the

differential inequality theory, one has jσi�k� kf�j ≤ jσi�kf�j−
λ1Ts � λ2Tu, where Ts and Tu represent the activating period
for stable modes, and the activating period of unstable mode, respec-
tively. Consequently, if the incorrectly identified intervals satisfy
Tu < �λ1∕λ2�Ts, then jσi�k� kf�j ≤ jσi�kf�j. In conclusion, the sys-
temwill remain stable if the activating period of the correctly identified
wi is long enough comparedwith that of the unmatched intervals [15].
That is to say the energy stored during a transient interval with awrong
identification can be extracted in the longer stable intervals for con-
tinuous systems under bounded inputs [29].

Remark 6: In the literature, the term y�ρ�0 is often assumed to be

accurately known [22,23,28]. Although in observer-based control

methods the estimation error term ~y�ρ�0 is often dropped out for the

convenience of control design [23,31], it should be kept in the closed-
loop system equations for rigorous stability and robustness analysis.

By contrast, the impacts of ~y�ρ�0 on the closed-loop dynamics have

been explicitly considered in the preceding analysis.
Remark 7:The explicit and quantifiable expression in Eq. (33) also

makes it possible to select a sampling interval h based on the tracking
performance requirement, instead of weakly assuming the sampling
frequency to be sufficiently high [21]. In general, the incremen-

tal perturbation bounds �δz, �Δvc are inversely correlated to h; thus
reducing h is beneficial for performance enhancement if hardware
permits. Given a prescribed tracking performance requirement, i.e.,
limk→∞ke�k� 1�k, and with the pre-estimation of the upper bounds
of the uncertainties, then the control parameters and the sampling
interval h can be selected using Eq. (33).

IV. Numerical Validations

In this section, the proposed A-INDI-SMC method will be vali-
dated by an aircraft FTC problem, considering sensing errors, control
reversal, model uncertainties, actuator faults, and structural damage.

A. Fault-Tolerant Flight Control Design

The actuator fault cases considered in this Note include loss of
control surface area, control surface jamming, and the oscillatory
failure cases (OFCs). Referring to the investigations in [21,24],
structural damage may lead to changes in aerodynamic properties,
inertia properties, and control effectiveness. An attitude control

system is designed to make an aircraft robustly track the references
of roll angle ϕ and pitch angle θ while minimizing the sideslip angle

β. Denote the roll, pitch, and yaw rates asω � �p; q; r�⊤. The control
inputs have aileron deflection δa, elevator deflection δe, and rudder
deflection δr. Consequently, the controlled variables are chosen as

y � �ϕ; θ; β�⊤. The nonlinear attitude dynamics of an aircraft with

x1 � �ϕ; θ; β�⊤,x2 � �p; q; r�⊤,x � �x⊤1 ; x⊤2 �⊤, and control inputu �
�δa; δe; δr�⊤ are given as [21,23]

	
_x1 � f1�x� � g1�x1�x2
_x2 � �1 − κ�f2�x� � κf 0

2�x� � �1 − κ�g2�x�u� κg 0
2�x�u

(36)

where κ ∈ �0; 1� is designed as a unit step function to indicate sudden
faults that happened during the flight. The prefault dynamics f1�x1�,
g1�x1� can be found in [22], while the postfault dynamics are

f 0
2�x� �

�
1

m 0 ~S ~S�J 0
�−1�

~S ~ωV −
1

m 0 ~S ~ω ~Sω − ~V ~S⊤ω − ~ω ~SV

− ~ωJ 0ω −
1

m 0 ~SF
0 �M 0

f

�
(37)

g 0
2�x� �

�
1

m 0 ~S ~S�J 0
�−1

B 0
u (38)

where V denotes the airspeed, ~ω represents the skew-symmetric
matrix ofω,m 0 denotes the mass for damaged aircraft, J 0 represents
the modeled inertia matrix for damaged aircraft, and F 0 denotes
new total force vector after faults. Denote the distance vector
from origin center of mass O to the new c.m. location O 0 as

rOO 0 � �rΔx; rΔy; rΔz�⊤. ~S denotes the skew-symmetric matrix of

the corresponding vector �m 0rΔx; m 0rΔy; m 0rΔz�⊤. It is nonzerowhen
using the non-center of mass approach, which leads to coupled
translational and rotational motions. After structural damage, control

reversal, and/or actuator fault occurs, theB 0
uu ∈ R3×1 term represents

the moment vector generated by control surfaces, while the M 0
f ∈

R3×1 term represents the moment vector that is not related to control
surface deflections.
For the system given in Eq. (36), the vector relative degree is

ρ � �2; 2; 2�⊤. Therefore, we obtain

y�2� � ∂�f1�x1� � g1�x1�x2�
∂x1

�f1�x1� � g1�x1�x2�

� g1�x1���1− κ�f2�x�� κf 0
2�x�� �1− κ�g2�x�u� κg 0

2�x�u�
(39)

which further leads to

B�x; κ� � g1�x1�

�1 − κ�g2�x� � κg 0

2�x�
�

(40)

The A-INDI-SMC method in Eq. (21) is applied for the system in
Eq. (36) as

Δua−i−s�k� � Λ̂�k��B̂0�k��−1
�
vc�k� � vs�k� − ŷ�2�0 �k�

�
(41)

where the nominal control effectivematrix is B̂0�k� � g1�x�g2�x�j0.
For an aircraft with actuator fault and structural damage, it is

reasonable to assume that ~Δs is bounded [21]. Therefore, using
Theorem 1, for faults scenarios that satisfy Assumption 2 (for
the system modeled as Eq. (36), this is equivalent to

k�κg1�x1��g 0
2�x� − g2�x��j0��g1�x�g2�x�j0�−1k < 1), and the newly

proposed A-INDI-SMC guarantees stable fault-tolerant tracking.

B. Numerical Simulations

The designed fault-tolerant flight control in Sec. III will be numeri-
cally evaluated on a public model of F-16. Actuators are modeled as
second-order linear systems with rate and position limits (parameters
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from Table 2 of Ref. [21]). The fault cases considered in this section

include the effectiveness loss and jamming of rudder, aileron, eleva-

tor, structural damage, as well as control reversal. The influences of

actuator faults and structural damage are modeled using the methods
in [21].
The simulated fault scenarios are as follows. The actuator faults

happen at t � 2 s: the aileron lost 30% of its effectiveness; the

elevator lost 50% of its the effectiveness; the rudder lost 40% of its

effectiveness. Moreover, at t � 2 s, the right aileron runs away and
get jammed at 15.05°. The solid OFC fault is also added to the left

elevator. Apart from these actuator faults, structural damage is added

from t � 8 s. Specifically, the right wing lost 25% of its area; the

entire left horizontal stabilator and a half of the vertical tail are also

lost. On top of these faults, the actuation sign of all actuators is

reversed at t � 14 s, and are then reversed again at t � 24 s.
The angular acceleration sensor dynamics (containing bias) is

modeled as a first-order linear systemGa�s� � 1.4∕0.02s� 1, using
the ideal angular acceleration measurement as the input. In addition,

the power spectral density (PSD) height of the angular acceleration

measurement noise is set to 10−5. Parametric uncertainties with

magnitudes lower than 10% are also added during simulations.
The attitude tracking commands are designed as smoothly com-

bined sigmoid functions. If the reference is not continuous, it is

suggested to use command filtering to smoothen the reference. The
aircraft is initially trimmed at a steady-level flight condition with

airspeed equals 600 ft∕s and altitude equals 12,000 ft. The initial

states for the aircraft are x1 � �0; 0; 0�°, x2 � �0; 0; 0�°∕s. The sam-
pling interval h � 0.01 s. The control parameters are kept invariant
as K1 � �10; 5�, K2 � �10; 5�, K3 � �5; 2�, K � diagfK1;K2;K3g,
S1 � �5; 1�, S2 � �5; 1�,S3 � �2; 1�,Ks;1 � 1,Ks;2 � 1,Ks;3 � 0.5,

and γ � 0.25. Furthermore, we chooseN � 3 and τd � 0.07 s in the

FDI algorithm. These gain selections lead to �λ � 0.98 in Eq. (32).
Three FTC methods are compared: the INDI control method [22],

the INDI-SMC method [21], and the A-INDI-SMC proposed in this
Note. The simulation results are shown in Figs. 2–6. The attitude
tracking responses are given in Fig. 2. It can be observed that the
sensing error, actuator faults, and structural damage can be tolerated by
the INDI, INDI-SMC, and A-INDI-SMC methods. However, when
control reversal occurs at t � 14 s, both INDI and INDI-SMC are
unable to stabilize the aircraft,while the newlyproposedA-INDI-SMC
is able to tolerate all the faults while continuing in executing the
tracking task. These phenomena confirm Theorem 1 and Remark 4.
The control inputs are shown in Fig. 3a, from which it can be

seen that the actuators are saturated under the control of INDI and
INDI-SMC when control reversal occurs. By contrast, the proposed
A-INDI-SMC does not suffer from saturation or severe oscillations.
The sliding variable responses of INDI-SMC [Eq. (8)] and A-INDI-
SMC [Eq. (22)] are illustrated in Fig. 3b. It can be observed that the
sliding variables of INDI-SMC become unbounded when control
reversal happens. By contrast, even though the sliding variables of
A-INDI-SMC shortly leave the sliding surfaces when a fault is
encountered, they will converge back to the surfaces in finite time.

Fig. 2 Attitude tracking performance comparisons of INDI, INDI-SMC, and A-INDI-SMC.

Fig. 3 Control inputs and sliding mode variable responses.
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Figure 4a shows the sensing errors (including noise and time-

varying biases) added to the angular acceleration measurements.

As explained in Sec. IV.B, the time-varying biases are calculated

by filtering the ideal angular acceleration measurements. Since after

control reversal happens, INDI and INDI-SMC become unstable,

their ~y�2�0 values also become unbounded. The zoomed-in subplots

of Fig. 4a show the influences of measurement noise in steady-state

phases.

Fig. 4 Sensing error and the residual error.

Fig. 5 Responses of control effectiveness uncertainty and the FDI unit identification results.

Fig. 6 The bounds of uncertainties and the estimated bounds of the residual and tracking errors.
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The residual cancellation errors are presented in Fig. 4b. It can be
seen that εindi and εindi-s remain bounded when no reversal happens

(kΦ0�x�k ≤ �b < 1), which confirms Lemma 1. However, after con-
trol reversal is encountered, εindi and εindi-s become unbounded,
which confirms Remark 1 and Remark 4. On the contrary, with the
help of incremental FE, A-INDI-SMC is able to guarantee an
unbounded εa−i−s, verifying the discussions in Remark 4. This
boundedness is of crucial importance for maintaining stable tracking
(Fig. 2) in faulty scenario.
The control effectiveness matrix uncertainties k ~B0B̂

−1
0 k, kΦ0k,

and ρ�Φs� are illustrated in Fig. 5a.Assumption 2, k ~B0�x�B̂−1
0 �x�k ≤

�b < 1, is satisfied. Moreover, it can be seen that the condition

kΦ0�x�k ≤ �b < 1 is violated using INDI and INDI-SMCafter control
reversal occurs as discussed in Remark 1. The fault detection results
in Fig. 5b show that by using A-INDI-SMC, the control reversals are
identified within 0.2 s. The spikes in ŵi and ρ�Φs� are mainly caused
bymultisource faults. Shortly after a fault is encountered or when the
tracking commands change rapidly, the inequality in Eq. (18) can
be violated in short intervals. Nevertheless, Fig. 5b shows that
these intervals are much shorter than the intervals where the control
directions are correctly identified. Therefore, according to Remark 5,
the system using A-INDI-SMC remains stable, which is verified
by Fig. 2.
To analyze the impacts of various sources of uncertainty on the

ultimate bound of the residual and tracking errors, the trajectories of
�δy�k��k ~y0�k�k, �δz�k��ky�ρ��k�− ŷ�ρ�0 �k�−B0�k�Δu�k�k, �δv�k� �
kvc�k� � vs�k� − vc�k − 1� − vs�k − 1�k, and �δσ�k� � kΔσ�k�k are
plotted. The estimated upper bounds of the residual cancellation error
of INDI-SMC and A-INDI-SMC are calculated using Eq. (28) as

�̂ε�k� � �b �̂ε�k− 1�� �b�δv�k− 1�� �̂δy�k− 1�� �̂δz�k− 1�. Moreover,

their tracking error upper bounds are estimated using Eq. (31) as

�̂e�k� � �λ �̂e�k − 1� � �δσ�k − 1�. The terms �̂δi, i � y; z, are the known

approximations of the upper bounds �δi, i � y; z, with �̂δi ≥ �δi.
Figure 6 shows the bounds of uncertainties and the estimated

bounds of residual and tracking errors. It can be seen that the
variations of �δv, �δy, and �δz are induced by faults and command

variations. After a perturbation occurs, �δz gradually converges to a
small bound around zero. Moreover, when using INDI and INDI-
SMC, these state-related uncertainties become unbounded after
control reversal happens. Comparing the relative magnitudes of the

uncertainties, Fig. 6a shows that �δz has the highest magnitude

throughout the time history, which is followed by �δy. As discussed
in Sec. III.C, under high sampling frequency, the variations of virtual
control have limited impacts on the closed-loop behavior, which is

verified by the small magnitude of �δv. Figure 6b verifies that the
real kεk and kek are indeed always smaller than their estimated
bound. Regarding the ultimate bounds of εa-i-s and e, they can be

estimated by Eqs. (29) and (33) as kεa-i-sk ≤ 1.3425 rad∕s2 and
kek ≤ 0.0180 rad. These values are very close and slightly larger

than the true ultimate bounds shown in Figs. 2b and 6b: kεa-i-sk ≤
0.2210 rad∕s2 and kek ≤ 0.0101 rad. These results confirm the
ultimate bound estimation expressions in Eqs. (29) and (33).
In summary, Figs. 2–6 verify that the proposed A-INDI-SMC can

actively resist parametric model uncertainties, actuator faults, struc-
tural damage, and control reversal, while the tracking error e and the
uncertainty ε all become unbounded if control reversal occurs when
INDI and INDI-SMC in the literature are applied.

V. Conclusions

This Note aims for designing a nonlinear control method that can
actively tolerate sudden in-flight control reversal, parametric model
uncertainties, sensing errors, actuator faults, and structural damage.
The promising incremental sliding mode control (INDI-SMC)
method, which is a hybridization between nonlinear incremental
control and sliding mode control, is first analyzed. Lyapunov-based
stability and robustness analysis exposes that there exists a critical
sufficient condition for ensuring the boundedness of the residual error

and the stability of the closed-loop system. However, even though
this sufficient condition is normally satisfied in moderate damage
cases, some severe faults, including control reversal, can violate it,
leading to instability.
In view of this critical limitation, this Note proposes an active

incremental sliding mode control approach, denoted as A-INDI-
SMC. An FDI unit is designed that can promptly reconstruct control
sign switches in the presence of multisource faults, sensing bias and
noise, and model uncertainties. It is also shown that this FDI unit is
free from Zeno behavior. Lyapunov-based stability and robustness
analysis proves that the proposed A-INDI-SMC can guarantee sys-
tem stability even in the presence of control reversal by virtue of the
FDI unit. Moreover, previously ignored sensing imperfections,
including sensor lagging dynamics, bias, and noise, are considered
in the analysis. Furthermore, explicit and quantifiable expressions for
the ultimate bounds of the tracking error and residual error as a
function of the sampling frequency and perturbation bounds are
derived. This allows selecting the sampling frequency and control
parameters based on performance requirements.
The theoretical outcomes are verified by an aircraft command

tracking problem with sudden in-flight control reversal, parametric
model uncertainties, sensing errors, actuator faults, and structural
damage. Simulation results show that although the INDI and the
INDI-SMC can passively tolerate some actuator faults and structural
damage, they both become unstablewhen control reversal occurs. By
contrast, the proposed A-INDI-SMCmethod can actively and simul-
taneously resist all the simulated sudden faults. Its sliding variables
also converge to zero in finite time after faults happen. Moreover, the
proposed incremental FDI unit is able to reconstruct the switched
control sign within 0.2 s. Furthermore, the theoretical ultimate bound
expressions for the tracking error and residual error, explicitly includ-
ing sampling frequency, are also verified by numerical simulations.
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