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A B S T R A C T

This paper proposes a novel framework for simulating the dynamics of beams on elastic foundations.
Specifically, partial differential equations modeling Euler–Bernoulli and Timoshenko beams on the Winkler
foundation are simulated using a causal physics-informed neural network (PINN) coupled with transfer
learning. Conventional PINNs encounter challenges in handling large space–time domains, even for problems
with closed-form analytical solutions. A causality-respecting PINN loss function is employed to overcome
this limitation, effectively capturing the underlying physics. However, it is observed that the causality-
respecting PINN lacks generalizability. We propose using solutions to similar problems instead of training
from scratch by employing transfer learning while adhering to causality to accelerate convergence and ensure
accurate results across diverse scenarios. The primary contribution of this paper lies in introducing a causality-
respecting PINN loss function in the context of structural engineering and coupling it with transfer learning to
enhance the generalizability of PINNs in simulating the dynamics of beams on elastic foundations. Numerical
experiments on the Euler–Bernoulli beam highlight the efficacy of the proposed approach for various initial
conditions, including those with noise in the initial data. Furthermore, the potential of the proposed method
is demonstrated for the Timoshenko beam in an extended spatial and temporal domain. Several comparisons
suggest that the proposed method accurately captures the inherent dynamics, outperforming the state-of-the-art
physics-informed methods under standard 𝐿2-norm metric and accelerating convergence.
1. Introduction

Beams on elastic foundations (Fig. 1) are a fundamental and indis-
pensable structural component in civil engineering, providing critical
support and stability to different and diverse structures (Lamprea-
Pineda et al., 2022; Deng et al., 2023; Tsudik, 2012; Kabir and Aghdam,
2019; Hetényi and Hetbenyi, 1946). Due to their characteristic to dis-
tribute loads, mitigate deformations, and enhance structural stability,
these beams are extensively utilized in various structures, such as rail-
way tracks (Lamprea-Pineda et al., 2022), pile foundations embedded
in soils (Petrosian, 2022), and longitudinal fibers in a composite elas-
tomer (Tsudik, 2012), among others. Understanding their dynamics is
essential for ensuring the structural integrity of these systems, develop-
ing effective maintenance strategies, optimizing machine performance,
refining design methodologies, and enabling precise control mecha-
nisms. These issues highlight the need for advanced methodologies
to simulate and predict the underlying dynamics of beams on elastic
foundations, facilitating safer, more efficient, and reliable structures
and systems.
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However, accurately predicting the dynamics of beams on elastic
foundations through experiments and measurements could be infeasi-
ble (Chang et al., 1999). Conducting many experiments with varying
materials, conditions, and prototypes becomes impractical and pro-
hibitively costly. In practice, finite element-based software provides a
viable alternative for simulating such scenarios (Madenci and Guven,
2015). However, these software solutions are restricted in general-
ization. For instance, even a slight change in the problem domain
requires performing the entire new simulation from scratch, including
mesh creation and adjustments (Karniadakis et al., 2021). This non-
generalization becomes particularly problematic when different aspects
of the system need to be investigated separately or when multiple
design iterations are required. The number of simulations necessary for
tackling a design problem can quickly escalate into thousands, making
the task laborious and time-consuming.

Recently, deep learning and neural networks, in particular, have
been used extensively as surrogates to model the underlying physical
vailable online 18 February 2024
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Fig. 1. Simply supported beam on an elastic foundation under varying transverse force.

phenomenon (Jumper et al., 2021; Carleo et al., 2019) , including appli-
cations to shape optimization, resulting in cost-efficient shapes (Erdaş
et al., 2023; Aye et al., 2019; Yildiz et al., 2003). However, even state-
of-the-art supervised machine-learning approaches encounter similar
challenges as traditional experimental methods, requiring substantial
input–output data at various fidelities to learn the underlying dynamics
effectively. This large data requirement poses a significant hurdle, as
obtaining such vast data can be arduous and resource-intensive (Karni-
adakis et al., 2021).

One potential approach to mitigate the need for an enormous
amount of data is to incorporate the underlying physics into the learn-
ing procedure, thereby guiding the neural network based on physics
principles as presented by Raissi et al. (2019), Karpatne et al. (2017b,a,
2022), Meng et al. (2023), among others. One popular class of meth-
ods that adopts this approach is physics-informed neural networks
(PINNs) proposed by Raissi et al. (2019). PINNs are a form of semi-
supervised learning where the boundary and initial conditions serve as
input–output pairs while the solution is regularized by the governing
partial differential equations (PDEs). However, several challenges for
PINNs have emerged, including spectral bias (Wang et al., 2022),
shock learning (Fuks and Tchelepi, 2020), generalization with even
slight changes in physical parameters and computational domain (Kim
et al., 2021; Kapoor et al., 2023b,a), and difficulties dealing with large
coefficients (Krishnapriyan et al., 2021; Dekhovich et al., 2023; De Ryck
et al., 2023).

Another such open problem for vanilla PINNs is handling extensive
space–time domains, as discussed in Jagtap et al. (2020b), Lippe et al.
(2023), Jagtap and Karniadakis (2021), Shukla et al. (2021), among
others. This challenge can be attributed to the training process, as
vanilla PINNs tend to prioritize training at a higher time level due
to implicit gradient bias (Wang et al., 2022), leading to violation in
temporal causality and inaccurate solutions, particularly for problems
highly dependent on initial conditions.

Physical systems are known to possess an inherent causal struc-
ture. For instance, the deflection of the beam at any point in time is
causally linked to the previous state of the system (deflection), the
physical properties of the beam, and the external forces acting on it.
This causality is a fundamental aspect of how the beam equations
accurately model the behavior of beams in response to loads, making
it a useful tool in engineering and physics. The PINN model could
learn complicated solutions to PDEs when the causality is considered,
enabling progressive sequential-time learning of the solution.

Our work proposes to train PINN while respecting causality (Wang
et al., 2022) in the context of structural engineering, referred to as
causal PINN hereafter. In particular, our principal aim is to resolve the
training challenge and achieve precise predictions of beam dynamics in
a large space–time domain. This challenge is overcome by proposing a
modification in the training approach of PINNs, enforcing training at
lower time levels before progressing to subsequent ones. Consequently,
a weighted loss function is utilized, incorporating a causality param-
eter to preserve the physical causality inherent in beam dynamics.
The causal PINN approach, validated through numerical experiments,
demonstrates enhanced accuracy in prediction.
2

However, as we present in this work, even after employing causal
PINN, the models lack generalizability to different initial conditions and
computational domains, requiring each new problem to be solved from
scratch. This limitation reverts the problem to the need for extensive
simulations for each problem. To mitigate this issue, we propose em-
ploying transfer learning (TL) (Niu et al., 2020) in conjunction with
causal PINN. The idea of transfer learning is to utilize the knowledge
acquired from solving one problem in the form of trained model
parameters to be utilized in a similar or related problem, accelerating
the training process.

We examine the application of PINNs on well-known Euler–Bernoulli
and Timoshenko beam models on elastic foundations, specifically the
Winkler foundation (Lamprea-Pineda et al., 2022; Younesian et al.,
2019). Through the numerical examples in our manuscript, we show
that vanilla PINNs face challenges in approximating solutions for PDEs,
for which even analytical solutions are available. In practice, only a
handful of PDEs have analytical solutions that serve as prototypes for
proof of concept to validate a proposed method. The inefficiency of
vanilla PINNs in resolving solutions for such PDEs signifies its limited
applicability in the real world, which we tackle in this paper by
enforcing a causal training framework.

This paper proposes a novel approach to simulate beams on elastic
foundations using the Euler–Bernoulli and Timoshenko theories, em-
ploying a transfer learning-based causal PINN framework to conduct
comprehensive experiments. Specifically, transferring knowledge from
one initial condition to another, handling noisy initial conditions,
transferring knowledge for beams of different lengths, and systems with
significant time dependencies are addressed. The primary contributions
of this research paper are as follows:

A causality-respecting PINN loss function addresses the aforemen-
tioned limitations and effectively enforces the relevant physics. How-
ever, implementing this modified causal loss function requires a denser
neural network with more parameters. Considering the importance of
various factors in engineering structure design and the impracticality of
simulating every instant, transfer learning is proposed within the causal
PINN architecture. By incorporating transfer learning, the parameters
of the previously trained model are leveraged to initialize and train
new models. Consequently, this reduces the computational burden
and enables faster convergence for subsequent tasks, improving the
efficiency of simulating the dynamics of beams on elastic foundations.

The rest of the paper is structured as follows: Section 2 presents re-
lated works to this manuscript. Section 3 provides a detailed discussion
of vanilla and causal PINN. Section 4 introduces the proposed frame-
work of fusing transfer learning with causal PINN to train different
models. Section 5 presents the numerical experiments results, show-
casing the effectiveness of our methodology in addressing challenging
beam problems where the vanilla and advanced PINN-based methods
fail. Finally, the main findings are summarized, and conclusions drawn
from this study are presented in Section 6.

2. Related works

This section outlines the pertinent studies conducted within the
domain of transfer learning-driven PINNs, causal PINNs, and physics-
informed methodologies for the simulation of beam models.

Applying transfer learning within PINNs has garnered significant
attention (Goswami et al., 2020). Notably, Li et al. (2023) predicted
laser deposition temperature fields accurately without labeled data,
using physical losses and transfer learning. In another work, Liu et al.
(2022) utilized transfer learning for accurate temperature field in-
version with limited observations, employing a PINN and optimal
position selection. Roy and Guha (2023) developed a multi-objective
loss function and transfer learning for accurate elastoplastic solid me-
chanics solutions through PINN. In a different study, Haghighat et al.
(2023) proposed a transfer learning-based PINN framework for efficient
stress–strain constitutive modeling. While our research aligns with the
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fundamental principle of leveraging transfer learning, a distinguishing
aspect lies in our consideration of causality during the training of the
models.

In the literature, research has been conducted to enforce causality in
the PINN framework without incorporating transfer learning (Mu et al.,
2023). In another work, Penwarden et al. (2023) proposed a causal
framework incorporating transfer learning to simulate time-dependent
PDEs. Although our work shares similar ideas of incorporating causality
and utilizing transfer learning within the PINN framework, we employ
transfer learning to train distinct models under diverse conditions.
Conversely, Penwarden et al. (2023) employs transfer learning within a
particular problem by segmenting the domain into multiple subdomains
and leveraging insights from one subdomain to another, employing the
concepts of domain decomposition and PINNs (Jagtap and Karniadakis,
2021).

Recently, beam simulations have concentrated on physics-informed
methodologies, largely omitting the considerations of causality and
transfer learning. Noteworthy works include Bazmara et al. (2023),
which utilized PINNs for estimating nonlinear bending behavior within
a confined domain. Similarly, Kapoor et al. (2023d,c) delved into ap-
plying PINNs for the system of beam models and moving load problems,
albeit within the limited domain confines. Lee (2023) introduced a
spatio-temporal PINN tailored for analyzing the dynamics of cantilever
beams. In Xu et al. (2023), a self-adaptive PINN framework capable of
accommodating varying load conditions is presented. Additionally, Fal-
lah and Aghdam (2023) sought to enhance predictions by incorporating
supplementary data, all still constrained within the confined domain
bounded by the capabilities of PINNs. This work aims to enhance
the potential of physics-informed methodologies for simulating beam
dynamics.

3. Vanilla and causal PINN

This section is structured into two subsections. First, we provide
an overview of the architecture of the vanilla PINN (Raissi et al.,
2019). Second, a modification in the PINN loss function leading to
the incorporation of causality in the PINN loss function, as proposed
by Wang et al. (2022), is presented.

3.1. Vanilla PINN

Recently, PINNs have been widely used for solving PDEs across
diverse domains, including but not limited to works by Chen et al.
(2023), Zobeiry and Humfeld (2021), Shen et al. (2021). PINNs are
based on deep neural network (DNN) architecture, and the idea of
PINN is to incorporate physical knowledge in the loss function of DNN.
The loss function consists of two terms - a data term and a physics
term. The data term ensures that the neural network fits the provided
data points, while the physics term enforces the PDE constraints. Here,
the data term refers to the value of the quantity of interest at initial
and boundary points. Minimizing the data term amounts to measuring
the discrepancy between the predicted solution of the PINN and the
measured data points. The physics term incorporates the PDE con-
straints into the loss function, evaluating the differential operator of the
PDE using automatic differentiation (Paszke et al., 2017). The resulting
equation is then included as a penalty term in the loss function. To
elucidate these terms, we consider an abstract PDE as,

𝐷(𝑢(𝑥, 𝑡, 𝑘)) = 𝑓 (𝑥, 𝑡), (𝑥, 𝑡) ∈  ×  (1)

here 𝐷 is the differential operator,  is the spatial domain, and  is
he temporal domain. The unknown solution is 𝑢 depending on indepen-
ent space (𝑥) and time (𝑡) variables. A constant parameter is 𝑘, and 𝑓 is
he source term. To ensure the uniqueness of the solution, appropriate
nitial and boundary conditions are necessary for the considered PDE.

𝑢(𝑥, 0) = 𝑔(𝑥), (𝑥, 0) ∈  × 𝛤
(2)
3

(𝑥b, 𝑡) = �̄�(𝑥b, 𝑡), (𝑥b, 𝑡) ∈ 𝛺 × 
ere, 𝑔(𝑥) and �̄�(𝑥b, 𝑡) are the initial and boundary conditions, respec-
ively. The initial temporal region and spatial boundary are 𝛤 and 𝛺,
espectively. The loss function of PINNs is defined as follows

(𝜇) = 𝜆1𝐿PDE(𝜇) + 𝜆2𝐿IC(𝜇) + 𝜆3𝐿BC(𝜇) (3)

ere, 𝜇 represents the trainable network parameters. The individual loss
erms weighted by the hyperparameters 𝜆𝑖, 𝑖 = 1, 2, 3, are defined as,

PDE(𝜇) =
1

𝑁int

𝑁int
∑

𝑛=1
‖𝐷(𝑢∗(𝑥(𝑛), 𝑡(𝑛), 𝑘)) − 𝑓 (𝑥(𝑛), 𝑡(𝑛))‖𝑝 (4)

The loss terms for initial and boundary conditions in (3) are defined
as follows,

𝐿IC(𝜇) =
1
𝑁i

𝑁i
∑

𝑛=1
‖𝑢∗(𝑥(𝑛), 0) − 𝑔(𝑥(𝑛))‖𝑝

𝐿BC(𝜇) =
1
𝑁b

𝑁b
∑

𝑛=1
‖𝑢∗(𝑥(𝑛)b , 𝑡(𝑛)) − �̄�(𝑥(𝑛)b , 𝑡(𝑛))‖𝑝

(5)

here, 𝑁 is the total number of training points, which is the sum of
interior training points (𝑁int), initial training points (𝑁i), and boundary
training points 𝑁b. The approximation of 𝑢 by the neural network is
denoted by 𝑢∗. Training with 𝐿2-norm amounts to 𝑝 = 2. The primary
objective is minimizing (3) and obtaining optimal parameters (𝜇).
These optimized parameters are then utilized for predicting the PDE
solution 𝑢(𝑥, 𝑡),∀(𝑥, 𝑡) ∈  ×  .

3.2. Causal PINN

This subsection presents causal PINN, modifying the PINN loss
function (Wang et al., 2022). The notion of causal PINNs is inspired
by traditional numerical methods for solving differential equations that
prioritize resolving the solution at lower times before approximating
the solution at higher times. The modification in the loss function
pertains to the PDE term 𝐿PDE(𝜇), while the initial 𝐿IC(𝜇) and boundary
𝐿BC(𝜇) loss terms remain unchanged. The causal PDE loss term 𝐿PDE(𝜇)
is defined as

𝐿PDE(𝜇) =
𝑁t
∑

𝑖=1
𝑤𝑖𝐿PDE(𝑡𝑖, 𝜇)

𝑤1 = 1, 𝑤𝑖 = 𝑒−𝜖
∑𝑖−1

𝑘=1 𝐿PDE(𝑡𝑘 ,𝜇), 𝑖 = 2, 3,… , 𝑁t

(6)

Here, 𝑁t is the number of timesteps in which the computational domain
has been divided. The causality hyperparameter 𝜖 controls the steepness
of the weights. The modification introduces a weighting factor, 𝑤𝑖, for
loss at each time level 𝑡𝑖. The weight 𝑤𝑖 depends on the accumulated
PDE loss up to time 𝑡𝑖. The weights are adjusted to prioritize the fully
resolved solution at lower time levels by exponentiating the negative
of this accumulated loss. To summarize, the modified loss function
(𝐿PDE(𝜇)) for causal PINN could be written as

1
𝑁𝑡

[

𝑤1𝐿PDE(𝑡1, 𝜇) +
𝑁𝑡
∑

𝑖=2
𝑒−𝜖

∑𝑖−1
𝑘=1 𝐿PDE(𝑡𝑘 ,𝜇)𝐿PDE(𝑡𝑖, 𝜇)

]

(7)

From the above loss function, it is evident that for 𝐿PDE(𝜇) to
be minimized, the weights 𝑤1,… , 𝑤𝑁𝑡

should be large. However, the
weights are defined in such a way that the minimization of 𝐿PDE(𝑡𝑖, 𝜇)
only starts if all residuals 𝐿PDE(𝑡𝑗 , 𝜇), for 1 ≤ 𝑗 < 𝑖 are minimized
and vice versa. This modification of the loss function forces the neural
network to train the model sequentially and first train the model at
lower time levels. In other words, loss at time step 𝑡𝑖 should only be
minimized once losses at all previous time steps have been minimized.
Hence, the causal PINN loss function prioritizes fully resolved solutions
at lower time levels before approximating the solutions at higher time
levels.

In the following section, the proposed transfer learning framework
is presented along with the underlying motivation.
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Fig. 2. Proposed transfer learning framework in causal PINN: The top horizontal block outlines the training process of the causal PINN for the parent model, which is the
primary beam model under consideration. The model parameters, initialized using Xavier initialization within the first neural network, undergo training while adhering to causality.
The resulting parameters of the trained model serve as the initialization for 𝐽 subsequent tasks shown by the bottom vertical blocks (1 ≤ 𝑗 ≤ 𝐽 ). These tasks pertain to different
initial conditions and extensions of both spatial and temporal domains. The training of these subtasks is also performed to adhere to causality.
4. Transfer learning for causal PINN

Several factors are crucial for designing an engineering structure,
and solving the problem for each case is important. However, training
the neural network for every case is time-consuming and laborious.
Here, we propose to utilize transfer learning for beam problems on the
Winkler foundation. The idea is to train the parent beam model for
one case, for instance, to train an Euler–Bernoulli beam for a specific
initial condition and then utilize the parameters for different initial con-
ditions. The aim is to reduce the training time for the transfer learning
case compared to the case without transfer learning. This reduction
in computational time in terms of epochs is done by utilizing the
previously trained model parameters and using them as initialization
for subsequent cases.

The proposed approach incorporates transfer learning for different
scenarios for the same physical beam equation. Fig. 2 visually demon-
strates the steps: initially, the parent model is trained using causal
PINN for a significant number of epochs (𝑛1). Subsequently, the trained
parameters are utilized as an initialization for the training of other
problems of the physical equation with different initial conditions or for
an extended domain, which is trained for a reduced number of epochs
(𝑛2), where 𝑛2 ≪ 𝑛1, reducing the computational cost of training the
model again from the start. The step-by-step illustration is provided in
Fig. 2.

In Fig. 2, the top horizontal block illustrates the training of causal
PINN for the parent model, specifically the primary beam model,
either the Euler–Bernoulli or the Timoshenko beam model. Xavier
initialization (Glorot and Bengio, 2010) is utilized to train the parent
beam model to address the vanishing or exploding gradient problem in
neural networks. Proper weight initialization is crucial for stability and
convergence. The parent model captures common features applicable
to different subcases. The model parameters, generated using Xavier
initialization for the initial neural network, undergo a training process
adhering to the causal loss function. This training involves the resolu-
tion of solutions at lower times prior to approximating at higher times,
as shown by the snapshots of the resolved solution. As the number of
epochs increases, the model prediction at higher time levels improves
only when the solution at lower time levels has been resolved up to a
certain accuracy.
4

The resulting parameters from this training serve as the initializa-
tion for subsequent 𝑗 tasks presented by the bottom vertical blocks
in Fig. 2. Training subcases involve initializing parameters from the
parent model, speeding up convergence and avoiding training from
scratch. Reusing parameters reduces computational costs, making the
process more efficient. Knowledge transfer from the parent model
improves generalization, enabling submodels to adapt effectively to
variations in conditions or domains. These subcases involve diverse
initial conditions and extensions of both spatial and temporal domains.
Notably, the training of these subtasks is also performed by minimizing
the loss terms (7) and (5) in the loss function (3), ensuring a coherent
and principled transfer learning framework.

Transferring good knowledge from the parent beam model would
accelerate the convergence of subcases. However, dealing with highly
complex subcases presents a challenge where improving or optimizing
the network may not significantly enhance model accuracy. This situa-
tion is akin to the ‘‘Kolmogorov complexity’’ concept, which measures
the length of the shortest computer program required to produce a spe-
cific output. While not considered in the current work, it is important
to consider the Kolmogorov complexity of the parent task and subcases
as discussed in Bolon-Canedo and Remeseiro (2020), Kabir and Garg
(2023). In transfer learning, Kolmogorov complexity becomes pivotal
as it captures the intricacy within a dataset or the solution of the PDE
in our case. A highly complex solution containing intricate patterns
and possible noise can pose challenges for even well-optimized neural
networks in extracting meaningful features. This complexity is partic-
ularly pertinent in transfer learning, where pre-trained parent models
may face challenges in transferring knowledge effectively to a target
domain characterized by high intricacy. The diminished transferability
of knowledge hampers anticipated improvements in model accuracy.
To address this, reducing dataset complexity might be essential. The
trained model can better focus on crucial patterns by processing the
solution through feature reduction and noise elimination, fostering
improved generalization and accuracy in the target task (Olivares et al.,
2021; Whittaker et al., 2023).

The proposed framework addresses key structural engineering is-
sues, contributing to design, optimization, and control methodologies.
Causal PINNs prioritize lower time levels during training, enhancing
the understanding of temporal structural behaviors, especially critical



Engineering Applications of Artificial Intelligence 133 (2024) 108085T. Kapoor et al.
Fig. 3. Euler–Bernoulli beam displacement on the Winkler foundation (a.) Predicted solution using PINN (b.) Predicted solution using SA-PINN (c.) Predicted solution using causal
PINN (d.) Reference solution.
for dynamic load responses and environmental changes. Incorporating
transfer learning reduces the computational cost, aiding the application
of the approach in real-world scenarios. Fusing temporal causality
and transfer learning contributes to a larger design space exploration
essential for a structural design problem. The proposed framework
can be utilized to adapt the control strategies of structures based on
knowledge gained from lower time levels (Faria et al., 2024; Arnold
and King, 2021). This adaptability is valuable in developing control
systems that can respond dynamically to changes in the structural
environment, ensuring optimal performance and safety. The proposed
method could also help structural health monitoring by updating the
model as new data becomes available, enabling real-time monitoring
and early detection of potential issues (Mai et al., 2023; Liu and
Meidani, 2023).

In the next section, we perform a series of experiments to demon-
strate the efficacy of the proposed framework.

5. Numerical experiments

This section presents the numerical experiments for simulating the
dynamics of the Euler–Bernoulli and Timoshenko beam models us-
ing the proposed framework. The proposed framework is compared
with five PINN-based methodologies, namely vanilla PINNs (Raissi
et al., 2019), Self-adaptive PINNs (SA-PINN) (McClenny and Braga-
Neto, 2023), gradient-enhanced PINN (gPINN) (Yu et al., 2022), PINNs
with adaptive activation function (Adap. PINN) (Jagtap et al., 2020a),
and Wavelet PINN (Wav. PINN) (Uddin et al., 2023). In addition,
leveraging transfer learning, several other experiments are performed
for noisy data, different initial conditions, and extrapolation in both
spatial and temporal domains for the beam models.

The experimental setup involves first simulating the parent case
and utilizing the trained parameters for various subcases. Specifically,
transfer learning is employed for these subcases. The main model uti-
lizes a neural network architecture comprising four hidden layers with
200 neurons each. These hyperparameters are the same for baseline
PINNs and all other advanced PINN methods compared in this study,
to have a fair comparison. The activation function employed is the
hyperbolic tangent (tanh), and the limited-memory Broyden–Fletcher–
Goldfarb–Shanno (LBFGS) optimizer is utilized with a learning rate of
0.1. The parent model is trained for a total of 10,000 epochs. Within
the causal-respecting PINN function, the causality hyperparameter (𝜖)
is set to 5 and the number of timesteps 𝑁𝑡 is taken to be 100. During
the training process, 𝑁i = 500 initial points, 𝑁b = 1000 boundary
points, and 𝑁int = 10,000 interior points are considered. The weight
hyperparameters 𝜆1, 𝜆2 and 𝜆3 are taken to be 1 each. The selected
evaluation metric is the 𝐿2 relative error percentage () defined as

 =
‖𝑢∗ − 𝑢‖2

‖𝑢‖2
× 100 (8)

where 𝑢∗ is the approximated PDE solution by the neural network, and
𝑢 refers to the ground truth. We utilize the trained parameters (𝜇) of the
main model as initialization for training the subcase neural networks
for only 1500 epochs, achieving the same level of accuracy as the main
model.
5

Table 1
Euler–Bernoulli beam:  at 𝑡 = 1 for 𝑘 = 1.

PINN SA-
PINN

gPINN Adap.
PINN

Wav.
PINN

Causal
PINN

 5.33 5.15 3.54 5.32 4.38 0.03

5.1. Euler–Bernoulli beam

The Euler–Bernoulli beam model is a mathematical framework used
to analyze the behavior of beams when subjected to loads. It is derived
from the three-dimensional elasticity theory or through principles such
as Newton’s second law or the generalized Hamiltonian Principle (Öch-
sner, 2021). The model assumes certain simplifications: it neglects the
effects of rotary inertia and transverse shear deformations. The Euler–
Bernoulli beam equation describes the behavior of a beam subjected
to bending (Fig. 1). When the beam is supported on a Winkler foun-
dation, representing an elastic foundation, the Euler–Bernoulli beam
equation is modified to account for the interaction between the beam
and the foundation. This modified equation considers the stiffness of
the foundation and its influence on the behavior of the beam. The
mathematical model of a simply supported Euler–Bernoulli beam on
a Winkler foundation is described by Younesian et al. (2019)

𝑢tt + 𝑢xxxx + 𝑝(𝑥, 𝑡) = 𝑓 (𝑥, 𝑡), 𝑥 ∈ [0, 8𝜋], 𝑡 ∈ [0, 1] (9)

where 𝑢 represents the vertical displacement of the beam. 𝑢tt , and 𝑢xxxx
represent the two times partial derivative of 𝑢 with respect to 𝑡, and four
times partial derivative with respect to 𝑥, respectively. The loading on
the beam is defined by 𝑓 (𝑥, 𝑡) = (2 − 𝜋2) sin (𝑥) cos(𝜋𝑡). The initial and
boundary conditions are given as

𝑢(𝑥, 0) = sin(𝑥), 𝑢t (𝑥, 0) = 0

𝑢(0, 𝑡) = 𝑢(8𝜋, 𝑡) = 𝑢xx(0, 𝑡) = 𝑢xx(8𝜋, 𝑡) = 0
(10)

The foundation reaction, 𝑝(𝑥, 𝑡), assumes that the reaction at every
location is proportional to the displacement at a particular location,
and the springs are linear and independent, as described in (9). The
reaction force of the foundation is given by 𝑝(𝑥, 𝑡) = 𝑘𝑢(𝑥, 𝑡), where
𝑢(𝑥, 𝑡) is vertical displacement and 𝑘 is the stiffness of linear springs.
The exact solution for this problem is given by 𝑢(𝑥, 𝑡) = sin(𝑥) cos(𝜋𝑡).

Solving (9), one can determine the vertical displacement of the
beam at any point along its length and other important quantities of
interest, such as bending moments and beam acceleration. These quan-
tities help engineers understand how the beam will perform structurally
and ensure it meets the desired design criteria. By calculating the
displacement, engineers can check whether the beam deflects within
acceptable limits under the applied loads.

We simulate (9) with five different methods to establish that in-
corporating causality provides more accuracy in the predicted solution
than vanilla PINN, SA-PINN, adaptive activation PINN, wavelet PINN
and gPINN for beam dynamics. The results presented in Table 1 indicate
that vanilla PINN, SA-PINN, adaptive activation PINN, wavelet PINN
and gPINN provide less accurate displacement predictions at 𝑡 = 1 for
the Euler–Bernoulli equation for stiffness 𝑘 = 1. In contrast, causal
PINN yields more accurate displacement predictions as the relative
percent error is 0.03. This observation is further supported by the
findings depicted in Fig. 3(a), (b), which demonstrates that PINN and
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Fig. 4. Euler–Bernoulli beam equation on the Winkler foundation with noise in the initial condition of displacement of the beam Left: Predicted solution at final time (𝑡 = 1) with
10% Gaussian noise; Right: Predicted solution at final time (𝑡 = 1) with 20% Gaussian noise.
Fig. 5. Variation of weights (𝑤𝑖) and the corresponding loss at that time step (𝐿PDE(𝑡𝑖 , 𝜇)) over training epochs. (a:) Magnitude of six random weights (𝑤1 ,… , 𝑤6) varying with
pochs, where 𝑤1 < 𝑤2 … < 𝑤6. (b–c:) Zoomed-in segments of (a). (d) Relative percent error at six distinct time levels (𝐿PDE(𝑡𝑖 , 𝜇)) corresponding to weights (𝑤1 ,… , 𝑤6) varying
ith epochs. (e–f:) Zoomed-in segments of (d).
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A-PINN models are not accurate, particularly during the initial time,
ighlighted by the white rectangular box in Fig. 3. However, this chal-
enge is effectively overcome by incorporating a causality-respecting
oss function (Fig. 3(c)), which facilitates training the solution at lower
ime levels before training at higher times. Additional experiments
oncerning comparison of the proposed framework with a combination
f PINNs and recurrent neural architectures for the Euler–Bernoulli
eam equation on the Winkler foundation are presented in Appendix A.
urthermore, Additional plots for adaptive activation PINN, gPINN and
avelet PINN are presented in Appendix B.

Moreover, we empirically analyze the correlation between weights
𝑤𝑖) and the corresponding loss at that time step (𝐿PDE(𝑡𝑖, 𝜇)) for causal
INNs. We visualize the evolution of the magnitude of weights and
rrors over epochs for six random weights to understand how their
agnitudes impact model training at that time level. The goal is to

bserve how the error decreases as the magnitudes of the weights in-
rease over epochs, as shown in Fig. 5. Six random weights (𝑤1,… , 𝑤6)
re considered at time steps 0.06, 0.29, 0.30, 0.41, 0.45, and 0.53. From
ig. 5(a), it is evident that, as training progresses, the magnitude of
eights increases and approaches a value of 1. Figs. 5(b) and 5(c)
6

w

rovide zoomed-in segments of Fig. 5(a), revealing a sequential con-
ergence pattern at each time level: initially, 𝑤1 converges, followed
y 𝑤2, and so forth. After 6000 epochs, all weights nearly converge to
.

Fig. 5(d) illustrates the relationship between error and epochs,
emonstrating a consistent decrease in error with increasing epochs.
igs. 5(e) and 5(f) are zoomed-in segments of Fig. 5(d), showing a
equential reduction in error corresponding to an increase in the mag-
itude of weight. It is evident that as the weights sequentially increase
t each time level, the error also decreases sequentially. The observed
attern suggests that weights first converge at lower time levels before
rogressing to subsequent levels, gradually improving accuracy.

The parameters from compared PINN-based methods are not used
ubsequently to avoid incomplete or bad knowledge transfer. Only the
rained parameters from the causal PINN formulation are transferred
o the subsequent experiments presented in the next two subsections,
ostering convergence by effectively reducing the training epochs.

.1.1. Noisy initial conditions
This subsection presents the performance of the proposed method

ith noisy initial conditions. Initial conditions may not be perfectly
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Fig. 6.  vs noise percentage in the initial condition for the Euler–Bernoulli beam for
both approaches — with and without transfer learning.

Table 2
Euler–Bernoulli Beam:  at 𝑡 = 1 for different percentages of noise in the initial
ondition. ‘‘TL’’ refers to transfer learning, and ‘‘w/o’’ refers to without. Abbreviations
re used consistently for the following tables.

5% 10% 12.5% 15% 17.5% 20%

with TL 0.03063 0.03198 0.04180 0.06937 0.222182 0.23296
w/o TL 117.7389 45.65849 59.42882 19.7473 48.75515 29.50691

known in real-world scenarios or contain uncertainties or noise. By
learning displacements for noisy initial conditions, we can develop
models that accurately represent the system’s behavior under such
realistic conditions, allowing us to account for uncertainties and better
understand the actual response of the system. To observe the dynamics
of beam models under these conditions, we introduce Gaussian noise
in the initial condition ranging from 5% to 20%. The hyperparameter
election is the same as the main model, except for the number of
pochs. With transfer learning, we perform 1500 epochs instead of
0000.

Table 2 presents the results from 5% to 20% Gaussian noise levels
in the initial conditions for the displacement of the beam with and
without (w/o) using transfer learning. The proposed method predicts
𝑢 with less relative error percent. This prediction is significantly more
accurate compared to the case without transfer learning. Also, Fig. 4
shows the results for 10% and 20% noise levels in the initial conditions
or the displacement of the beam using transfer learning, demonstrating
he computational efficiency of the proposed method.

Fig. 6 illustrates the comparison of relative error percentages con-
erning the noise percentage for both methods, one with transfer
earning and the other without it. In the transfer learning scenario,
t becomes apparent that an increase in the noise percentage results
n a corresponding increase in the relative error percentage. When the
ubcases use the trained parameters for initialization, noise and error
ercentages exhibit a direct proportional relationship. However, in
ases where trained parameters are not utilized, no discernible pattern
merges due to the non-convergence in minimizing the loss function.

.1.2. Different initial displacements and velocities
In this section, we present the results of the Euler–Bernoulli beam

or different initial conditions characterized by the change in initial
isplacements and velocities of the beam. Learning deflections for
ifferent initial conditions and force functions allows for generaliza-
ion. Beams or structures can have varying initial conditions, such
s different magnitudes, positions, or load distributions. By learning
he deflections for a diverse set of initial conditions, we can develop
odels that capture the underlying patterns and behavior of the system,

nabling accurate predictions for unseen or novel initial conditions.
Here, we consider different initial conditions compared to the par-

nt model. The initial conditions for this case are 𝑢(𝑥, 0) = 𝑎 sin(𝑥) and
(𝑥, 𝑡 = 0) = 𝑎 sin(𝑥). The analytical solution for the corresponding
7

𝑡 f
Fig. 7. Euler–Bernoulli beam on the Winkler foundation for initial velocity for case 1:
Causal PINN prediction at final time 𝑡 = 1 with and without transfer learning.

Table 3
Euler–Bernoulli beam:  at 𝑡 = 1 for different
velocities.
𝑢∗  (case 1)  (case 2)

with TL 0.00105 0.02188
w/o TL 70.72229 193.85024

problem is 𝑢(𝑥, 𝑡) = 𝑎 sin(𝑥)𝑒𝑡. We utilize the trained parameters of the
uler–Bernoulli beam model as an initialization for training this prob-
em with different initial conditions considering 𝑎 = 1, 2 (representing
ase 1 and case 2 in Table 3). The hyperparameters remain unchanged;
he only change is the number of epochs, which is only 3000. Relative
rror percentages of displacement are presented in Table 3, which
hows a large difference in relative percent errors. From Fig. 7, it is
vident for the first case that the transfer learning approach achieves
ccurate predictions in fewer epochs.

.2. Timoshenko beam

The Timoshenko beam theory considers the shear deformation and
otational effects neglected in the Euler–Bernoulli beam equation (Öch-
ner, 2021). Hence, in addition to the quantity vertical displacement
𝑢), Timoshenko’s theory considers the cross-sectional rotation (𝜃) as
nother unknown variable. The mathematical model for a beam resting
n a Winkler foundation and subjected to an external load based on the
imoshenko beam theory is given as follows (Younesian et al., 2019)

𝜃tt − 𝜃xx + (𝜃 − 𝑢x) = 0;

𝑢tt + (𝜃 − 𝑢x)x + 𝑘𝑢 = ℎ(𝑥, 𝑡)
(11)

where the symbols have their usual meaning, as in the case of the
Euler–Bernoulli beam model. We consider ℎ(𝑥, 𝑡) = cos(𝑡) and the
computational domain to be 𝑥 ∈ [0, 3𝜋] and 𝑡 ∈ [0, 1]. The supporting
initial and boundary conditions are given as

𝜃(𝑥, 0) = 3𝜋
2

cos(𝑥) +
(

𝑥 − 3𝜋
2

)

, 𝜃𝑡(𝑥, 0) = 0

𝑢(𝑥, 0) = 3𝜋
2

sin(𝑥), 𝑢𝑡(𝑥, 0) = 0

𝜃(0, 𝑡) = 𝜃(3𝜋, 𝑡) = 𝑢(0, 𝑡) = 𝑢(3𝜋, 𝑡) = 0

(12)

The analytic solution for the rotation and vertical displacement is
given as follows

𝜃(𝑥, 𝑡) =
( 3𝜋

2
cos(𝑥) +

(

𝑥 − 3𝜋
2

))

cos(𝑡)

𝑢(𝑥, 𝑡) = 3𝜋
2

sin(𝑥) cos(𝑡)
(13)

Solving the Timoshenko beam model (11)–(12) would help engi-
eers obtain more accurate predictions of beam deflections and rota-
ions, especially for beams with high aspect ratios or subjected to high
hear forces. This accuracy is crucial for assessing structural integrity,
nsuring compliance with design criteria, and preventing potential

ailures.
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Fig. 8. Timoshenko beam on the Winkler foundation Top: Predicted Displacement (𝑢∗) (a.) Using PINN (b.) Using SA-PINN (c.) Using causal PINN (d.) Reference solution Bottom:
Predicted Rotation (𝜃∗) (e.) Using PINN (f.) Using SA-PINN (g.) Using causal PINN (h.) Reference solution.
Fig. 9. Timoshenko beam on the Winkler foundation at final time 𝑡 = 1. Left: Absolute error in predicting displacement (|𝑢 − 𝑢∗|); Right: Absolute error in predicting rotation
(|𝜃 − 𝜃∗|).
Table 4
Timoshenko beam:  at 𝑡 = 1 for 𝑘 = 1.

PINN SA-
PINN

gPINN Adap.
PINN

Wav.
PINN

Causal
PINN

𝑢∗ 119.17 137.15 119.17 240.78 238.46 1.2e−6
𝜃∗ 9.18 6.56 38.63 9.16 9.10 7.7e−6

Fig. 8 illustrates the predicted displacement and rotation throughout
the entire space–time domain. Figs. 8(c) and 8(g) depict the displace-
ment and rotation prediction using the causal PINN loss function.
Figs. 8(a–b) and 8(e–f) depict the displacement and rotation prediction
using vanilla PINN and SA-PINNs, respectively, illustrating its failure
in prediction. Additional plots for adaptive activation PINN, gPINN
and wavelet PINN are presented in Appendix B. Furthermore, Fig. 9
presents the absolute error in displacement and rotation resulting from
the causal PINN loss function. The maximum error magnitude falls
below 10−2, clearly indicating the accuracy of causal PINN.

Table 4 presents the relative percentage errors in predicting dis-
placement and rotation for vanilla PINN, SA-PINN, gPINN, adaptive
PINN, Wavelet PINN and causal PINN. In the case of causal PINN, both
quantities of interest, 𝑢, and 𝜃 exhibit errors in the magnitude of 10−6,
demonstrating its accuracy. Conversely, the other five state-of-the-art
PINN-based methods fail to adequately approximate the quantities of
interest, as evidenced by a relative error percent of over 100% for
displacement and an error of approximately 9% for rotation. The results
show that Causal PINN accurately predicts displacement and rotation
for the Timoshenko beam model.

5.3. Large space–time horizon

In the following two experiments, we show the potential of transfer
learning and predict the displacement and cross-sectional rotation in
a larger domain. We utilize transfer learning for extrapolating. There
are several benefits to knowing deflections on larger domains. Firstly,
it provides a better understanding of the structural behavior of the
beam under different loading conditions. By analyzing the deflection
8

over larger lengths, engineers can assess the beam’s overall stability
and structural integrity, which is crucial for designing safe and reliable
structures.

Secondly, calculating the deflection for extended domains allows for
more accurate predictions of the behavior of the beam in real-world
scenarios. This information is valuable in various engineering appli-
cations such as building design, bridge construction, and aerospace
engineering, where accurate deflection predictions are essential for
ensuring the structural performance and safety of the final product.

Also, studying the deflection of the beam over a larger domain
can help identify potential areas of weakness or excessive deformation.
This knowledge enables engineers to make informed decisions about
reinforcing certain sections or implementing design modifications to
improve the overall performance and durability of the structure.

Furthermore, studying larger domains can optimize material usage
and cost-effectiveness in construction projects. By accurately predicting
deflection, engineers can optimize the size, shape, and materials used to
construct beams, leading to more efficient designs and reduced material
waste.

5.3.1. Extended spatial domain
In this section, we consider the Timoshenko beam model in an

extended domain in space. The spatial domain for the parent model
is 𝑥 ∈ [0, 3𝜋]. Here, we utilize the parameters of the parent model
and train the subsequent models for different spatial domains, in par-
ticular 𝑥 ∈ [0, 5𝜋], 𝑥 ∈ [0, 6𝜋], and 𝑥 ∈ [0, 7𝜋]. The aim is to
observe the method’s potential in a larger domain, indicating that the
method generalizes well. The results obtained with and without transfer
learning are presented in Table 5, highlighting the superior accuracy
achieved by the proposed method when utilizing parameters from the
main model compared to training the model with Xavier initialization.
Fig. 10 top row presents the proposed method’s predictions of displace-
ment and rotation, indicating that the model generalizes well across the
spatial domain, inheriting the underlying structure and symmetry of the
solution.
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Fig. 10. Timoshenko beam on the Winkler foundation: Top Prediction for extended domain in space, 𝑥 ∈ [0, 7𝜋] Left: Displacement (𝑢∗); Right: Rotation (𝜃∗). Bottom Prediction
for extended domain in time for 𝑡 = 7 Left: Displacement (𝑢∗); Right: Rotation (𝜃∗).
Table 5
Timoshenko beam:  for extension in the spatial domain with 3000 epochs.
𝑥 With TL w/o TL

𝑢∗ 𝜃∗ 𝑢∗ 𝜃∗

[0, 5𝜋] 6.6 × 10−5 0.00011 2.34306 3.51362
[0, 6𝜋] 0.00653 0.00097 21.81964 30.67853
[0, 7𝜋] 1.52043 0.61573 11.00256 8.90537

5.3.2. Extended temporal domain
We now extend our investigation to the temporal domain based on

successfully generalizing the proposed method in the spatial domain. By
employing the trained parameters obtained from the parent model, we
train the same model with an extension in time, considering different
temporal domains, 𝑡 ∈ [0, 4], 𝑡 ∈ [0, 6], and 𝑡 ∈ [0, 7]. The relative
error percentage for all cases of the extended temporal domains is
presented in Table 6. We observe that the proposed method accurately
predicts displacement and rotation, while the approach without transfer
learning fails to provide the same level of accuracy. Fig. 10 bottom row
shows the predictions obtained by the proposed method for displace-
ment and rotation in an extended temporal domain. The results show
that utilizing transfer learning for extended domains in space and time
provides accurate results, conserving the structure and symmetry of the
solution.

6. Conclusions

This paper introduced a methodology for simulating the dynamics
of beam models based on Euler–Bernoulli and Timoshenko’s theories
on the Winkler foundation. By incorporating transfer learning within
a causality-respecting PINN framework, we addressed the need for
re-training the network when there are modifications to the initial
conditions or computational domain.

Numerical experiments demonstrated the effectiveness of the pro-
posed approach. For the Euler–Bernoulli beam, we utilized the trained
parameters from the parent model to simulate sub-cases with different
initial conditions, including noisy ones. For the Timoshenko beam,
we investigated its behavior in an extended spatial and temporal do-
main. These experiments showcased the generalization potential of the
proposed method.

We also performed comparisons of the proposed method with five
vanilla and advanced PINN-based methods. Results show that the
causality-respecting PINN with transfer learning reduces computational
9

Table 6
Timoshenko beam:  for extension in the temporal domain with 3000 epochs.
𝑡 With TL w/o TL

𝑢∗ 𝜃∗ 𝑢∗ 𝜃∗

[0, 4] 9.7e−6 2.4e−5 7.9e−5 0.00026
[0, 6] 0.00111 0.00085 0.01627 0.12266
[0, 7] 0.89122 0.05554 4.92954 2.50340

costs and improves convergence. The results indicate that the method
struggled to approximate the solutions accurately without transfer
learning.

Overall, our findings highlight the efficacy of the proposed method-
ology in simulating beam dynamics under diverse engineering scenar-
ios. By leveraging transfer learning and a causality-respecting PINN
framework, we can reduce training requirements while achieving accu-
rate results for various cases. This research opens up new possibilities
for efficiently predicting the dynamics of structural elements, leading
to advancements in structural engineering design, optimization, and
control.

Future researchers should consider specific nuances to successfully
apply the proposed framework in engineering domains. The perfor-
mance of the proposed framework can be sensitive to hyperparameters,
including the choice of causal parameter. Finding the optimal values
may require empirical hyperparameter optimization, which is gen-
erally required for deep learning methods. Transferring knowledge
from one engineering system to another requires understanding the
domain characteristics and aligning them appropriately. Applicabil-
ity of the proposed methodology in real-world engineering problems
necessitates validation in complex environments, emphasizing inter-
disciplinary knowledge. Additionally, the choice of transfer learning
method would depend on the real-world engineering challenge being
solved.

Future research directions involve extending the methodology to
other structural elements like systems of beams, strings and plates. An
alternative research trajectory may involve training a family of PDE
models and applying meta-learning techniques to derive a universal set
of parameters applicable across diverse models. This unified parameter
set could potentially be employed to test novel models, contributing
to a generalized and efficient approach in the field. The codes will be
made available upon publication.
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Table A.1
Euler–Bernoulli beam:  at 𝑡 = 1 for 𝑘 = 1.

PINN-RNN PINN-LSTM PINN-GRU

 5.77769 5.7789 5.8257
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Appendix A. Training PINNs followed by recurrent architectures

This appendix presents a comparison of the proposed framework
with a combination of PINNs and recurrent architectures for the Euler–
Bernoulli beam equation on the Winkler foundation. The application of
PINNs to solve PDEs has conventionally utilized deep neural network
(DNN) architectures, as opposed to recurrent neural networks (RNN) or
their gated variants such as Long Short-Term Memory (LSTM) (Hochre-
iter and Schmidhuber, 1997) or Gated Recurrent Unit (GRU) (Cho et al.,
2014). In a PINN framework employing deep neural networks, the input
comprises spatial and temporal variables, with the output representing
the quantity of interest. For example, in the Euler–Bernoulli beam
problem, the input variables are 𝑥 and 𝑡, and the output variable is
𝑢.

Translating this problem into a recurrent network architecture
would necessitate reformulating it as a sequential problem. The coordi-
nate at each time step 𝑡𝑛 (𝑥𝑗 , 𝑡𝑛) would become the input to a recurrent
architecture (RNN, LSTM, or GRU) cell, with the beam deflection at
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that time step (𝑢𝑛𝑗 ) serving as the output. However, transitioning from
a DNN to recurrent structures raises three significant issues.

First, in our causal PINN-based proposed framework, the solution is
learned sequentially, ensuring that the solution at a later time (e.g., 𝑢2𝑗 )
is only learned after the solution at an earlier time (e.g., 𝑢1𝑗 ) has been
learned to a desirable accuracy. In recurrent architectures, the solutions
at all time levels (𝑢1𝑗 , . . . , 𝑢𝑛𝑗 ) are trained simultaneously, contrary to
numerical methods where solutions at lower time levels are resolved
before higher time levels.

Second, in an RNN structure, due to the transfer of hidden state
information from one cell to the next, 𝑢2𝑗 depends on 𝑥𝑗 and 𝑡1, which
does not align with the physical problem. The deflection of a beam
acting under a force at a space–time location should depend only on
the current space–time location, not any previous locations.

Third, RNN structures process data time-step-wise, making it non-
trivial to incorporate boundary conditions intuitively. This difficulty is
exacerbated when additional conditions, such as Neumann boundary
conditions, need to be integrated, as in our case. Consequently, most
recurrent physics-informed architectures primarily focus on solving
ordinary differential equations (ODEs) rather than PDEs (Viana et al.,
2021; Zhai et al., 2023; Lai et al., 2021), where enforcing boundary
conditions within the loss function is relatively straightforward. Some
works also deal with minimizing the data loss along with physical loss,
taking the data prior from numerical methods (Liu et al., 2023; Bolandi
et al., 2023).

However, as proposed in Kapoor et al. (2023b) and Michałowska
et al. (2023), a hybrid approach combining neural PDE solvers with
a recurrent architecture could be utilized to use RNN structures along
with PINNs. A PINN is initially trained to incorporate boundary con-
ditions in such an approach (Kapoor et al., 2023b). Subsequently, the
trained model is processed through a recurrent architecture, leveraging
the synergy of physics and data for efficient model training.

Following, we conduct three comparisons of the proposed causal
PINN framework, with the combination of vanilla-PINN with recurrent
neural architectures (RNN, LSTM, and GRU) for the Euler–Bernoulli
beam on the Winkler foundation. We refer to the combination of PINN
with RNN, LSTM or GRU as PINN-RNN, PINN-LSTM, and PINN-GRU,
respectively. The PINN model is trained as discussed in Section 3 and
is tested on a grid of 256 × 200 in space–time. The tested data is
processed through the recurrent neural architecture, having an input
and output size of 256, a single hidden layer of size 32, and a sequence
length of 200, representing the time steps. The ADAM optimizer with a
learning rate 0.01 is used across all models, executing 20,000 epochs.
The trained recurrent models are finally tested on the same spatial
locations for a time step size of 0.001, implying testing on 1000 time
steps.

As presented in Table A.1, the results indicate that our proposed
causality-enforced PINN method outperforms PINN-RNN, PINN-LSTM,
and PINN-GRU. Consequently, the proposed framework empirically
provides a better framework to preserve causality and mitigate the
challenge of large space–time domains in vanilla PINN, at least for our
problem.
Fig. B.1. Euler–Bernoulli beam displacement on the Winkler foundation (a.) Predicted solution using adaptive activation function (Adap. activation) (b.) Predicted solution using
gradient enhanced PINN (gPINN) (c.) Predicted solution using wavelet PINN (Wav. PINN).

https://github.com/taniyakapoor/Causal-PINN-for-beam/tree/second
https://github.com/taniyakapoor/Causal-PINN-for-beam/tree/second
https://github.com/taniyakapoor/Causal-PINN-for-beam/tree/second
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Fig. B.2. Timoshenko beam on the Winkler foundation Top: Predicted Displacement (𝑢∗) (a.) Using adaptive activation PINN (Adap. PINN) (b.) Using gradient enhanced PINN
(gPINN) (c.) Using Wavelet PINN (Wav. PINN) Bottom: Predicted Rotation (𝜃∗) (d.) Using adaptive activation PINN (Adap. PINN) (e.) Using gradient enhanced PINN (gPINN)
(f.) Using Wavelet PINN (Wav. PINN).
Appendix B. Additional plots for the PINN-based compared meth-
ods

This appendix presents additional plots for the compared methods
(adaptive activation PINN, gPINN, and wavelet PINN) with our pro-
posed method. Fig. B.1 presents the results for these three methods
for the Euler–Bernoulli beam equation. Fig. B.2 presents the results for
these three methods for the Timoshenko beam equation.
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