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Classifying Human Manual Control Behavior Using
LSTM Recurrent Neural Networks

Rogier Versteeg , Daan M. Pool , Member, IEEE, and Max Mulder , Senior Member, IEEE

Abstract—This article discusses a long short-term memory
(LSTM) recurrent neural network that uses raw time-domain data
obtained in compensatory tracking tasks as input features for
classifying (the adaptation of) human manual control with single-
and double-integrator controlled element dynamics. Data from two
different experiments were used to train and validate the LSTM
classifier, including investigating effects of several key data pre-
processing settings. The model correctly classifies human control
behavior (cross-experiment validation accuracy 96%) using short
1.6-s data windows. To achieve this accuracy, it is found crucial to
scale/standardize the input feature data and use a combination of
input signals that includes the tracking error and human control
output. A possible online application of the classifier was tested
on data from a third experiment with time-varying and slightly
different controlled element dynamics. The results show that the
LSTM classification is still successful, which makes it a promising
online technique to rapidly detect adaptations in human control
behavior.

Index Terms—Classification, cybernetics, human–machine sys-
tems, manual control, neural networks.

I. INTRODUCTION

CYBERNETICS theory describes the systematic adaptation
of a human controller (HC) to task variables such as the

display and controlled element (CE) dynamics [1], [2], [3], [4],
[5], [6], [7], [8], [9], [10], [11]. Gaining understanding of human
manual control behavior is challenging due to the nonlinear,
adaptive, and time-varying characteristics of the HC. Although
cybernetics is widely used in studying manual control and tuning
a plethora of human–machine systems [12], [13], the theory
and modeling approaches lag behind the rapid advancements
in technology (e.g., haptics and multimodal interfaces) and are
limited in capturing the full range of human manual control [7].

Current models and tools are often restricted to using linear
time-invariant model structures, have been validated mainly
for compensatory tracking, are designed for offline use, and
require large amounts of tracking data from many subjects. HC
control behavior is mostly analyzed in the frequency domain,
lumping all nonlinearities in a remnant signal, which is ill
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understood. State-of-the-art techniques to identify time-varying
adaptive HC behavior either offline [14] or in real time, e.g.,
using wavelets [15], ARX models [16], or extended Kalman
filters [17], are slow to converge and highly variable in detecting
changes in behavior. For these techniques to lag, 10 s or more
behind the actual change in HC behavior is not uncommon [16],
[17]; making them faster to respond comes at the cost of more
(faulty) modeled variations.

This all hampers attempts to create cooperative human–
machine systems, such as in human–automation teaming and
shared control systems [18]. Ideally, to safeguard stability, per-
formance, and safety, these systems include components that
monitor the dynamics of both the system to be controlled (the
CE) and the human controlling (HC). Whereas techniques to
identify changing CE dynamics, for instance to detect failures,
is an active field of research (see [19] for an overview in aviation),
the lack of progress in monitoring real-time human behavior is
becoming a problem. This is partly due to the fact that the CE
dynamics are more easily defined, and with that determined,
than the HC dynamics.

Whereas the HC output can be easily measured (the control
manipulator), the HC input(s) is not [20]. Especially in real-life
manual control, such as driving a car, the HC can have multiple
inputs (visual, somatosensory, etc.) and close an abundance of
loops [21], and human dynamics quickly become extremely
difficult to define and determine. This makes monitoring human
behavior and the design and tuning of adaptive human–machine
systems to support humans such a challenge: we do not know
enough about what they are actually doing. There is a clear need
for alternative methods to determine (the adaptation of) human
manual control behavior [7].

Time-domain black box “pattern recognition” models have
rarely been used in this field [3], [13]. Such techniques require
little or no a priori information, assume no form of the HC
dynamics, and can include nonlinearities which linear models
cannot. When such a black box model would be able to capture
unique patterns of HC behavior, it may be able to classify this
behavior in a variety of tasks, may require less data, and may
quickly detect time-varying behavior, possibly even in real time.
To avoid well-known risks of black box models and trivial
classification outcomes that do not generalize, knowledge from
cybernetics theory is required to assess any black box models of
HC behavior.

Most human behavior pattern recognition models use hand-
picked statistical features, calculated from raw time-domain
signals and then used as inputs to a classifier [22]. Many ap-
plications already exist, such as classification of driver style and
distraction [23], [24], [25]. A disadvantage of using statistical
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properties, however, is that these properties are task specific
and time consuming to tune [26]. Automated feature extraction
techniques are developed [27], but require specific knowledge
on the relevance of different statistical properties.

Research into neural network models capable of recogniz-
ing patterns from raw signals is a growing area of interest
in time-series classification [22]. Especially, long short-term
memory (LSTM) networks—designed specifically for sequence
prediction problems—achieve superior performance in raw sig-
nal time-series classification, as used for driver activity recogni-
tion [26], [28], [29] and disease diagnosis [30], [31]. Hence, this
particular technique may also be suitable for the classification
of HC behavior based on raw manual control task signals.

This article describes the capability of a time-domain pattern
recognition technique in HC behavior classification. The goal is
not to model the HC dynamic behavior, but rather to determine
what behavior the HC exhibits with the smallest possible amount
of data. An LSTM recurrent neural network is applied to data
from compensatory tracking tasks, classifying (adaptation of)
HC behavior with two different CE dynamics. The study is per-
formed by first training an LSTM network through supervised
learning, mapping HC input–output relations by providing a
labeled training dataset.

We selected a dataset that consists of human control input
and output signals measured during compensatory tracking tasks
with single-integrator (SI) or double-integrator (DI) CE dynam-
ics [32]. With a compensatory display, the input to the HC is
known. SI and DI dynamics are the most relevant in manual
control, as many dynamic systems controlled by humans can be
approximated by SI or DI dynamics, or dynamics that behave
as an SI at low frequencies and as a DI at higher frequencies.
Also, HC behavior is markedly different for these SI and DI
CE dynamics [1], which should enable reliable optimization
of classifier performance for various dataset configurations, to
investigate effects of the observed window size (WS), scaling
techniques, input signals, and amounts of training data on clas-
sifier performance.

This all serves the main purpose to maximize classifica-
tion performance across multiple tracking experiments with the
smallest amount of data, but also allows an investigation of what
tradeoffs need to be made. Having a successful classifier for just
small “snippets” of data would save computational effort, reduce
the need for large experiments, and potentially also allow for an
online use of the classifier.

The classifier’s robustness across experiments is investigated
using data from a second experiment, with different subjects,
tracking task settings, and CE characteristics (different SI and
DI dynamics gains) [33]. Can the classifier trained and validated
on data from the first experiment be used in an experiment with
different subjects and conditions? Finally, the best performing
LSTM network obtained is applied on test data from a third
experiment [16]. This experiment featured slightly different CE
dynamics (close to SI and DI dynamics, but not equal), was
performed in a different simulator, and featured a time-varying
change in these CE dynamics somewhere halfway the tracking
runs. This to investigate the network’s capability on detecting
time-varying human control behavior.

The rest of this article is organized as follows. Section II
provides elementary background on tracking tasks and describes

Fig. 1. Compensatory tracking task.

the three datasets, the data processing options, and the LSTM
model structure. Section III discusses the approach to answer
the main research questions. Section IV presents the results of
our study. Discussion and recommendations are presented in
Section V. Finally, Section VI concludes this article. Specifics
on the LSTM implementation are included in the Appendix.

II. METHOD

A. Background: Compensatory Tracking Tasks

The compensatory target-following task (see Fig. 1) is in-
vestigated to classify (the adaptation of) human manual control
behavior with SI and DI CE dynamics. The reader is referred
to many studies describing this task [1], [3], [6], [7], [10],
[11]. The HC closes the loop by responding to the only visual
cue presented—the error e between the target signal (forcing
function) ft and the CE response x—with a control output u, to
minimize the error. The linear part of the HC control response
is described by Hp(s); all nonlinearities and time variations are
lumped into the remnant n [1], [7], [34], [35].

Many dynamic systems controlled by humans can be ap-
proximated through “pure” SI or DI controlled dynamics or as
dynamics that behave as an SI at low frequencies and as a DI at
frequencies above the break frequency ωce. An example is the
aircraft pitch angle response to elevator inputs [32]:

Hce(s) = Kce/(s(s+ ωce)) (1)

Different values for the gainKce and break frequencyωce change
the CE response x to HC control inputs u.

Forcing functions, i.e., the target ft and disturbance fd signals
in Fig. 1, are used to “excite” the HC response, to assess
control performance, and to allow for the identification of HC
dynamics [7]. The disturbance signal fd is generally added when
both visual and motion cues are available, in order to dissect the
visual and motion contributions to HC behavior [7]. Both ft and
fd are often sum-of-sinusoids signals.

The HC dynamics response Hp(s) when controlling SI and
DI CE dynamics is well known to be modeled as [1], [7]

Hp(s) = Kp(TLs+ 1)e−sτe (2)

with Kp, TL, and τe the HC gain, lead compensation time
constant, and lumped time delay, respectively. These param-
eters are task dependent and can be selected using the “verbal
adjustments rules,” based on experiments [1]. With SI dynamics,
the lead time is zero; with DI dynamics, the lead is substantial
(≈ 2 s). Here, we aim to capture not only these distinctive
linear HC adaptations to CE dynamics, but also more subtle
and less well-known nonlinear HC adaptations [34], [35], using
an LSTM classifier.
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Fig. 2. TU Delft’s SIMONA Research Simulator (left) and compensatory
visual display (right), used in Experiments 1 and 2.

Fig. 3. TU Delft’s Human–Machine Interaction lab (left) and compensatory
pitch visual display (right), used in Experiment 3.

TABLE I
CONTROLLED ELEMENT DYNAMICS SPECIFICS

B. Three Datasets

Three compensatory tracking task datasets are used for the
research in this article. In Experiment 1 by Zollner et al. [32]
and Experiment 2 by Lu et al. [33], HC behavior was measured
for different CE dynamics, using the (left/right) compensatory
display of Fig. 2. In Experiment 3 by Plaetinck et al. [16], HC
responses were measured, for time-varying CE dynamics, using
the (up/down) compensatory display of Fig. 3.

The three experiments all used different ft, fd, Kce, and ωce

settings; see Table I and the corresponding publications for the
full details [16], [32], [33]. The most distinct conditions are the
pure SIHce,SI and pure DIHce,DI CE dynamics. These conditions
are used in this article to train, validate, and test the initial LSTM
network.

Data from Experiment 1 are used to train and validate the
pattern recognition network, Experiment 2 data are used to
validate the network performance, and Experiment 3 data are
used for testing of the trained classifier to detecting HC adap-
tation with time-varying CE dynamics. All data were recorded
with a 100-Hz sampling frequency (SF). The experiments are
summarized as follows.

1) Experiment 1: Zollner et al. [32] studied combinations of
CE dynamics and forcing function bandwidths ωi. Ten subjects
participated; each condition was tested five times (runs); each
run lasted 110 s. Compared to Experiment 2, this experiment has

Fig. 4. Comparison of tracking data amplitude between Experiment 1 (left)
and Experiment 2 (right), for SI (top) and DI (bottom) CE dynamics.

lower gain Kce values and, thus, lower amplitudes of signals e
andu (see Fig. 4). While Zollner et al. [32] also varied the forcing
function bandwidth ωi—as defined by McRuer and Jex [1]—
over different settings, in this article, only the SI and DI data for
the medium bandwidth ωi = 2.5 rad/s are used.

2) Experiment 2: Lu et al. [33] investigated combinations of
CE dynamics with/without simulator motion. A disturbance sig-
nal fd was added to dissect the visual and motion contributions
to HC behavior. Six subjects participated, conditions were tested
five times, and a run lasted 81.92 s. Here, only the data of the SI
and DI runs without motion are used.

3) Experiment 3: Plaetinck et al. [16] investigated HC be-
havior with fixed or time-varying CE dynamics described by
(1). In the time-varying runs, the CE dynamics changed halfway
the run, from Hce,1 to Hce,2, requiring the HC to adapt. These
dynamics approximated SI and DI dynamics, respectively: both
transitioned from SI to DI dynamics at either a high frequency
(6 rad/s) or a very low frequency (0.2 rad/s) (see Table I). Eight
subjects participated, conditions were tested three times, and a
run lasted 81.92 s.

C. Data Processing

Fig. 4 illustrates differences in the amplitudes for both the SI
and DI conditions, as well as for Experiments 1 and 2. Clearly, to
ensure classifier robustness across different experiments, which
possibly use different settings for the CE gain or forcing function
power, the time-series data need to be scaled to prevent the clas-
sifier from simply “learning” signal magnitude characteristics.
Hence, HC time-series data must be carefully prepared before it
is provided to the LSTM network.

1) Partitioning: A single run of Experiment 1 has 11 000
samples. Using such a long sequence as input to a neural
network can degrade the performance of some neural network
models significantly [36]. It is foreseen that it is required to
segment data in a fixed observed WS and/or to reduce the SF to
obtain adequate classification performance. Moreover, using a
smaller WS (e.g., 1 s rather than 30 s) would allow for real-time
online classification applications. Overlap is a way to improve
time sequence classification performance [37]. It increases the
amount of data available for training: 50% or 90% overlap would
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increase the dataset with 200% or 1000%, respectively. The
tradeoffs between WS, SF, overlap, and classification accuracy
will need to be investigated.

2) Input Feature Usage and Signal Time Derivatives: Ba-
sically, any signal in the tracking task (ft, e, u, x, etc.) can
be used as input to the classifier. Signals can be used one
by one, altogether, or in any combination. To capture solely
the adaptation of HC behavior to different CE dynamics, and
not the change in CE dynamics itself, only the HC input (the
error e) and HC output (the control signal u) are used as in-
puts for the classifier. Early attempts using other control-loop
signals, like ft or x, led to the classifier “picking up” on trivial
patterns—e.g., the known CE dynamics that relate u to x—and
thus no longer providing a useful classification of HC behavior.

To increase potential information for the LSTM, first-order
time derivatives are computed for e and u using a second-order
central difference approximation in the interior points and first-
order one-sided forward or backward difference approximations
at the signal boundaries. This yields two additional signals, ė and
u̇. Second-order derivatives ë and ü are not used; the first-order
derivatives yielded satisfactory performance.

3) Scaling: Applying scaling on the data is essential for
correct classification across different experiments and can
also increase convergence [38]. Three common scaling meth-
ods are considered and here applied on the HC output u
for illustration: 1) normalizing, where a maximum absolute
scaler is used to ensure positive and negative sign convention
by scaling the entire sequence between −1 and 1: û(t) =
u(t)/max(|min(−→u )|, |max(−→u )|); 2) standardizing (Z-score),
which removes the mean and scales to unit variance: û(t) =
(u(t)− μ)/σ, with μ the mean and σ the standard deviation of
the entire time sequence u; and 3) robust scaling, which removes
the median and scales the time sequence to its interquantile
ranges (first quantile and third quantile) [39].

Scalers can be applied to the entire tracking run, for offline
analysis, or to windows (splitted intervals), for real-time clas-
sification. When the observed WS is very small (e.g., 1 s),
there may be insufficient data to perform standardizing and
robust scaling. We test four options: 1) window-wise normalized
(suitable for real-time use); 2) entire run normalized; 3) entire
run standardized; and 4) entire run robustly scaled. All scalers
were implemented using Scikit-learn 0.21.1 [39].

The signals of Experiments 1 and 2 are originally expressed
in degrees and radians, respectively, resulting in large amplitude
differences. Fitting scaling parameters solely on the first exper-
iment and using these parameters to transform the data of the
second experiment results in large discrepancies between the
datasets. For the network to be able to generalize on data from
other experiments, each individual tracking run for each indi-
vidual participant has been scaled separately. Subsequently, the
tracking runs are split into separate windows and assigned to the
train, validation, and test datasets. For window-wise normalized,
the individual tracking runs are first split into separate windows,
then scaled for each separate window, and finally assigned to
train, validation, and test datasets.

D. Network Architecture

An LSTM neural network architecture is used to classify HC
behavior from time-domain data. LSTMs are a particular form

of recurrent neural networks [40]. Long-range dependencies
between data sequences (such as delayed effects) cannot be de-
tected in standard recurrent neural networks due to the vanishing
gradient problem [41], which is solved in LSTM networks. The
LSTM network and its hyperparameters are summarized in the
Appendix.

LSTMs are designed for sequence prediction problems and
can use time signals as inputs. Here, it is attempted to classify HC
behavior by training an LSTM neural network in a supervised
fashion, where all training data are labeled. The input data exist
in observed windows of (combinations of) measured signals
(e, ė, u, and u̇) from each individual subject and tracking run.
Labels are assigned to the observed windows according to its
corresponding class; here, HC behavior is representative for
control of either SI or DI CE dynamics.

III. APPROACH

Data provided to machine learning models are referred to as
features, and providing appropriate features is crucial in achiev-
ing high performance [42]. Section II-C discussed a variety
of settings in the dataset configuration, such as the observed
WS, the SF, the scaling technique, the signals used, the usage
of overlap, and the required size of the training dataset. The
four-step approach adopted here to establish a well-performing
dataset configuration is illustrated in Fig. 5.

A. Step 1: Window Sizes and Sampling Frequencies

Changing the WS affects the temporal information provided
to the network, while the SF determines the number of samples
in the window. An optimized WS and SF can be crucial for the
classifier and also affect its potential for online application. In
this step, effects on performance are investigated for a range of
WS (0.2–50 s) and SF (100, 50, and 25 Hz) settings. In Step 1,
only the signals e and u are used as input features.

B. Step 2: Scalers and Input Feature Combinations

The four scaling methods of Section II-C3 are tested in this
step. Time derivatives ė and u̇ are computed to test their ability
to add information. To demonstrate the importance of the input
features used, all the possible (univariate and multivariate) com-
binations are tested. To ensure robustness across experiments,
100% of the dataset from Experiment 2 is used as the validation
dataset. The dataset of Experiment 2 is equally transformed as
Experiment 1, depending on the considered dataset configura-
tion.

C. Step 3: Overlap and Required Training Dataset Size

To test the amount of HC data required for accurate classifier
training, reducing data and using overlap are tested. Overlap is
expected to increase network performance and stability, espe-
cially when only a small dataset is available for training [43].
The minimum amount of data required is tested by reducing the
number of subjects, runs, and tracking run length included in
the training data. Subjects are randomly eliminated during each
repetition. Then, the number of runs is reduced by removing the
last run per subject. Finally, the length per tracking run is reduced
either “sequentially,” “reversed sequentially,” or “randomly”
(see Fig. 6).

Authorized licensed use limited to: TU Delft Library. Downloaded on February 13,2024 at 11:44:47 UTC from IEEE Xplore.  Restrictions apply. 



VERSTEEG et al.: CLASSIFYING HUMAN MANUAL CONTROL BEHAVIOR USING LSTM RECURRENT NEURAL NETWORKS 93

Fig. 5. Flowchart of the four-step approach to determine an adequately performing dataset configuration.

Fig. 6. Three methods used to reduce the tracking run length.

Experiment 2 is used as the validation dataset, without over-
lap, and is according to the outcome of Step 2. The validation
dataset is identical during this step for all tested variations,
which allows for a direct comparison of performance between
the networks.

D. Step 4: Application on Time-Varying CE Data

The optimized LSTM network obtained in Steps 1–3 is tested
on the data of Experiment 3 to apply it for classification on data
not used for training and validation, and where the CE dynamics
may change over time. Also, the Experiment 3 CE dynamics
do not exactly match the pure SI and pure DI used for model
training (see Table I). Although the network is expected to have
an overall poorer classification performance, it is still expected
to detect the HC behavior adaptations.

E. Accuracy and Model Selection

Since the number of samples of SI and DI CE dynamics
is distributed 50/50, the performance results of Steps 1–3 are
measured and compared using the accuracy metric

Accuracy =
Number of correct predictions
Total number of predictions

× 100% (3)

where the “Number of correct predictions” is calculated as the
sum of all “true positive” SI and DI classifications. It should
be noted that for the binary classification problem considered

here, this is identical to the classical definition of accuracy,
which sums all “true positive” and “true negative” results for
the numerator term.

In Steps 1–3, the LSTM network is trained for a total of 30
repetitions, due to the stochastic nature of the training process
(see the Appendix). Each repetition has 20 training epochs. In
Step 3, the complete Experiment 1 dataset is used for training; in
Steps 1 and 2, the Experiment 1 dataset is uniquely shuffled and
split in a 80/20 ratio training/validation dataset for each of the 30
repetitions. LSTM networks are prone to overfitting, resulting
in varying classification accuracy after each training epoch. The
epoch with the highest mean accuracy on the validation set is
selected for each repetition as the final model.

IV. RESULTS

A. Step 1: Window Sizes and Sampling Frequencies

Following the approach of Fig. 5, we first optimize the WS
and SF settings using the signal combination e+u and nonscaled
data from Experiment 1 to train the LSTM network.

Fig. 7 shows the accuracy on the validation dataset from
Experiment 1 for the full range of considered WS values, i.e.,
0.2–50 s. All WSs are tested with three SF settings: 100, 50,
and 25 Hz. A very small WS (<0.8 s) results in an up to 10%
decrease in accuracy. A larger WS (>2 s) results in reduced
consistency between the different training repetitions (increased
spread). The increasing accuracy for (very) large WS might be
caused by the neural network learning particular characteristics
of Experiment 1, such as the (shape of the) ft signal.

Lower accuracy and less consistent results are found for
SF = 100 Hz, suggesting that higher SFs increase the amount
of irrelevant information (i.e., HC remnant). Zooming-in on the
right inset of Fig. 7 (WS 1.2–2 s), it can be seen that for four
different combinations of SF and WS, the median classification
accuracy on the validation dataset is equal to 100%: SF = 50 Hz
and WS = 1.6 s, as well as SF = 25 Hz with a WS of 1.6,
1.8, or 2 s. For the further analysis in Step 2, the combination
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Fig. 7. Validation accuracy on Experiment 1 for varying observed WS (columns) and three SFs (colors). Settings: training data = 80% of Experiment 1 and
validation data = 20% of Experiment 1.

Fig. 8. Validation accuracy on Experiment 1 for varying combinations of input variables e, ė, u, and u̇ (columns) and four scalers (colors). Settings: training data
= 80% of Experiment 1, validation data = 20% of Experiment 1, SF = 50 Hz, and WS = 1.6 s.

of the smallest WS and highest SF (highest resolution in each
window)—i.e., SF = 50 Hz, and WS = 1.6 s—was selected.

It should be emphasized that this high performance applies
to the validation dataset and only describes the generalization
capability of the LSTM network to recognize HC behavior on
unseen examples that match the training dataset (Experiment 1).

B. Step 2: Scalers and Input Feature Combinations

Scaling techniques (see Section II-C3) and the (univariate
and multivariate) HC input–output signal combinations used as
LSTM input features (i.e., e, ė, u, and u̇) are tested in Step 2.
Data of both Experiments 1 and 2 are used to validate the LSTM
performance.

Fig. 8 shows the classification accuracy on the Experiment 1
validation dataset for varying input feature combinations and
the four scaling methods as well as the nonscaled dataset. Poor
generalization and low consistency is obtained for univariate
use of e, ė, u, or u̇ and multivariate use of “same signal”
combinations, i.e., e + ė and u + u̇. The inability to generalize
on univariate use of ė is likely caused by its low amplitude
(±10−2) and the minor difference in ė between SI and DI.

Scaling removes this issue and increases accuracy from 50% to
90%. Generalization approximates 100% on the Experiment 1
validation dataset when multivariate combinations of e + ė and
u + u̇ are used, revealing their importance for HC behavior
classification.

Fig. 9 shows the classification accuracy on the validation
dataset from Experiment 2 for the same combinations of in-
put features and scaling variations. Training the network on
nonscaled data results in poor generalization on this validation
dataset, as expected. In fact, when no scaling is used, all data
are consistently classified as SI, indicating undesired abstraction
on lower level features, such as signal amplitudes. Again, poor
generalization ranging from 55% to 80% accuracy and increased
inconsistency are observed for univariate use of e, ė, u, or u̇ and
multivariate use of e+ ė andu+ u̇. Accuracy increases up to 96%
using multivariate combinations of e and ė together with u and
u̇. Note that only a small drop to 95% accuracy is obtained when
window-wise normalized scaling is used, the preferred method
for online applications.

Solely using the error signal (e and ė) yields better general-
ization than using only the HC output (u and u̇). Apparently, e
contains crucial information for classifying HC behavior when
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Fig. 9. Validation accuracy on Experiment 2 for varying combinations of variables e, ė, u, and u̇ and four scalers. Settings: training data = 80% of
Experiment 1, validation data = 100% of Experiment 2, SF = 50 Hz, and WS = 1.6 s.

Fig. 10. Validation accuracy on Experiment 2 for reducing number of subjects
with and without overlap on the training dataset Settings: training data= variable
percentage of Experiment 1, validation data = 100% of Experiment 2, SF =
50 Hz, WS = 1.6 s, scaler = standardized, and input variables = e + ė + u.

controlling SI or DI CE dynamics. Using these signals together
with their time derivatives increases accuracy with around 3%,
a modest yet consistent benefit. The best average performance
of 96% classification accuracy is obtained with standardization
of the entire time series and the combination e + ė + u (see the
inset in Fig. 9). This configuration is used in Step 3.

C. Step 3: Overlap and Required Training Dataset Size

Three training dataset reducing methods are tested to de-
termine the minimum amount of tracking data required. First,
subjects in the Experiment 1 dataset are randomly dropped from
the training data until only one subject remains. This is done for
both nonoverlapping and overlapping observed windows. The
randomly dropped subjects during each repetition are stored and
reused in reducing the tracking runs and tracking length.

1) Reducing Subjects and Testing Overlap: Fig. 10 shows
the effect of reducing the number of subjects and using different
overlap settings. Reducing the training data to five subjects re-
sults in a minor decrease of 0.5% in accuracy. Further reduction
leads to reduced consistency between repetitions and decreases
accuracy by 3%.

Overlap increases accuracy when using one subject by 4%,
when using five subjects by 2%, and when using ten subjects by
1%. It also increases consistency by providing more examples.
The slight increase of 1% in accuracy between 50% overlap
and 90% overlap is a poor benefit, however, compared to the
fivefold increase in training time because of using five times
more training data.

Using a single subject results in a relatively high accuracy of
90%. This high accuracy for using only a single subject can be
explained by the facts that the subjects are highly trained (the
training data are not included in the datasets) and that the SI
and DI tracking tasks are markedly different. Overall, subjects
must respond in a similar fashion to either of these tracking
tasks, which may cause the strong prediction capabilities on
other subjects.

Based on Fig. 10, data from five subjects with 90% overlap
are selected as optimized settings.

2) Reducing Tracking Runs: Reducing the number of track-
ing runs used for each subject from five to three has no effect on
classification accuracy (not shown); reducing it further decreases
accuracy only by around 0.5%. A more pronounced decrease
in accuracy only occurs when further reducing the number of
subjects. As a result, three tracking runs per subject are used in
the training dataset.

3) Reducing Tracking Length: The run length is reduced
using the three techniques of Fig. 6. Effects on the validation
accuracy are shown in Fig. 11, where all techniques are seen
to lead to a decrease in accuracy. Sequentially reducing the
run length shows the largest accuracy decrease of around 5%;
it also leads to higher inconsistency. Reversed sequentially
reducing run length leads to less degradation in performance.
This indicates that data from the last 40% of the tracking
run contain more valuable information for generalization to
Experiment 2.

This difference may be caused by excluding a, apparently
valuable, part of the forcing function ft. Indeed, when inspecting
ft a spike was observed at t = 107 s (not shown). This spike
is only included when going from 80 to 90 tracking percentage
used in sequentially reduced, and going from 10 to 20 tracking
percentage data used in reversed sequentially reduced. This
may have caused the increase of classification accuracy at these
percentages (see Fig. 11).
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Fig. 11. Validation accuracy on Experiment 2 for reducing the length of
the tracking runs Settings: training data = variable percentage of Experiment
1 (overlap = 90%, subjects = 5, runs = 3), validation data = 100% of
Experiment 2, SF = 50 Hz, WS = 1.6 s, scaler = standardized, and input
variables = e + ė + u.

Randomly reducing the run length decreases classification
accuracy less. This can be explained by the fact that with
random data reduction, the network receives a more diverse set
of samples for training, as compared to the sequentially reduced
methods. The model benefits the most from the entire tracking
length, though, which is selected for the final step.

D. Step 4: Testing on Time-Varying CE Data

With a well-performing configuration defined in Steps 1–3,
in Step 4, the performance of the trained and optimized LSTM
network in classifying SI or DI HC behavior is tested on data
from Experiment 3. Recall that the simulated CE dynamics
Hce,1 (SI-like) and Hce,2 (DI-like) were not pure SI and DI (see
Table I). In the time-varying runs, the CE dynamics transition
fromHc,1 toHc,2 halfway the run, either gradually (within 30 s)
or instantly [16], as illustrated in the top rows of Fig. 12(a)
and (b), respectively. In these two figures, the rectangles in
the following eight rows show the summation of the number
of samples classified as SI (dark blue) or DI (light blue), as
a function of the time sample (horizontal axis) for all eight
subjects. Recall that each subject performed nine tracking runs,
and a perfect classification at the beginning of the first half of
the run would mean nine dark blue SI classifications. A perfect
classification at the end of the second half of the run would
mean nine light blue DI classifications. In the last row called
“total,” the SI and DI classifications are added for all subjects,
again as a function of time sample, where a perfect classifier at
the first half of the run would score 72 SI classifications. In the
following, classifier performance is expressed as the percentage
of “correct” SI and DI classifications. Note that because the CE
dynamics were neither SI nor DI in Experiment 3, this definition
of correct/incorrect is not completely fair.

For the time-invariant CE data of [16], the percentages of
correct classification were 76.3% (Hce,1, SI-like) and 95.7%
(Hce,2, DI-like). These results can be explained by the fact that
all CE dynamics in Experiment 3 had a nonzero lag component
(see (1) and Table I), which could lead subjects to always exert
a small lead equalization. This can explain the bias toward

Fig. 12. Classifications for gradual (top) and instant (bottom) changing CE
dynamics, as a function of time (all subjects, Experiment 3). (a) Gradual change.
(b) Instant change.

classifying HC behavior as “DI,” as no pure SI dynamics were
simulated for which the classifier was trained and validated.
Nonetheless, its performance when dealing with new experiment
data which it has never encountered before, for classifying HC
behavior for CE dynamics which are not the same as those for
which it was trained, is promising.

Fig. 12 shows classification performance as a function of time,
using the WS of 1.6 s, for the gradual [see Fig. 12(a)] and instant
[see Fig. 12(b)] change in CE dynamics. In each subfigure, the
top row shows the varying CE dynamics parameters of Table I;
the bottom row shows the total number of SI (dark blue) and
DI (light blue) classifications; intermediate rows show the SI/DI
classifications for all eight subjects. Classifications vary during
the entire tracking run, due the different CE dynamics, the time-
varying CE, and time variations in HC behavior. Differences
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between subjects exist: the classifier is successful for Subjects
1 and 8, but varies for Subjects 2, 3, and 6. As explained,
the classifier leans toward DI classification: DI behavior is
classified mostly correctly in the second part of the run, but
often incorrectly classifies HC behavior as “DI” behavior in the
first part.

The reader should note the extremely rapid adaptation of the
HC in the instantly changing CE dynamics runs [see Fig. 12(b)]
and the classifier’s ability to immediately capture that change.
This shows the great potential of these classifiers, detecting
rapid changes in HC behavior using short WSs of only 1.6 s.
This is much faster than the approximately 10-s detection delay
obtained on the same data with a “classical” time-varying HC
modeling method [16].

V. DISCUSSION

The goal of this study was to test the capability of an LSTM re-
current neural network to classify HC behavior when controlling
either SI or DI CE dynamics. Different dataset configurations
were used to train an LSTM network on data of Experiment 1,
e.g., varying the WS, the SF, the scaling technique, the signals
selected as input features, overlap, and the size of the training
dataset (see Fig. 5). The performance of the classifier was
validated on data of Experiment 2. The resulting optimized
LSTM network was successfully tested for classifying the adapt-
ing HC behavior when controlling time-varying CE dynamics
(Experiment 3 data).

The stepwise dataset configuration technique (see Fig. 5)
arguably results in a suboptimal outcome. Quoting Snoek
et al. [44]: “...tuning is often a “black art” requiring expert expe-
rience, rules of thumb, or sometimes bruteforce search,” indicat-
ing the difficulty of obtaining an overall optimal configuration
when using a black box modeling technique. A formal optimiza-
tion technique was not considered for finding the fully optimized
dataset configuration and LSTM hyperparameter settings, to
reduce the risk of testing irrelevant dataset configurations and
wasting computational resources. Instead, a heuristic approach
was used, tailored by a priori knowledge in cybernetics, which
yielded excellent performance of 100% classification accuracy
on the Experiment 1 validation dataset and 96% classification
accuracy on the Experiment 2 validation dataset.

To further improve on this result, a (computationally expen-
sive) complete single-step analysis of all hyperparameters’ main
effects, and their potential interactions, on classifier performance
is important future work. Apart from model structure improve-
ments, the LSTM network hyperparameters could, for instance,
be optimized using a Bayesian optimization method to increase
performance [44]. The role of the forcing functions, their power
and shape, needs to be further investigated as local parts of these
signals may impact the training of the classifier.

The lower accuracy for large WSs agrees with the work of
Levison et al. [36], who report that long-term dependencies
become inaccessible to the LSTM network for sequences of
more than 1000 points. This may be overcome by using a
different network structure, such as proposed in [45], although
here shorter sequences are preferred to allow for online appli-
cations. The increased performance by reducing the SF is in
line with the findings in [46]. Reducing the SF from 100 to

50 Hz apparently increases the capability to abstract details of
higher importance. This finding may be tracking-task dependent;
however, as when the task contains more fast or slow control
responses, for instance, as the result of using target signals ft
with different bandwidths ωi, it might be essential to increase
or reduce the SF, respectively.

Scaling was found to have a major impact on classifier perfor-
mance across multiple experiments, increasing accuracy from
50% up to 96%. Without scaling, the LSTM network consis-
tently classifies HC behavior as controlling an SI CE, indicating
abstraction on low-level features such as signal amplitude. The
amplitudes of tracking task signals can be affected by many fac-
tors, such as the used units, the manipulator hardware/software,
and the CE’s properties. Fig. 9 shows that when not accounted for
in data preprocessing, generalization toward different datasets
and signal amplitudes is poor. Extreme care should be taken how
experimental data are used in this application of time-series clas-
sification, requiring insight into how classifiers actually work,
but also knowledge on experimental equipment and human
behavior. Although the use of scalers benefited this study, it may
also reduce performance, for instance, when the main difference
between classes is a change in HC gain [Kp in (2)].

Given that the best accuracy was achieved with standardized
data, one could argue that the LSTM network requires scaling
performed on the entire tracking run, forcing the implementation
of the model to offline usage only. Several techniques exist,
however, to still enable online application. An initializing phase
can be used to compute the standardization parameters, such
as the standard deviation σ. The sample-wise normalization
method decreased classification accuracy only by 1% (see Fig. 9)
and can be implemented online.

The time-varying CE dynamics application of our classifier
(Step 4) showed a larger bias of≈ 23% toward DI classifications
during SI-like CE control, compared to only ≈ 5% SI classifi-
cations for the DI-like CE. These biases are not unexpected, as
even when the SI dynamics have a high break frequency ωce, the
HC may still compensate for this lag by applying lead [1], [32].
The LSTM network is trained for classifying HC behavior with
pure SI and DI dynamics, and apparently small amounts of lead
equalization are detected by the LSTM. Between-subject differ-
ences in classification accuracy in Fig. 12 may originate from
the fact that some subjects performed better than others by, for
example, applying larger lead time constants [TL in (2)]. For the
“one-size-fits-all” classifier trained in this article, the expected
accuracy depends on how well a certain HC’s data match the
(majority of) participants in the training data. Between-subject
differences in classification accuracy may be amended by ensur-
ing uniformly distributed training data or through personalizing
the classifier to recognize individual participants.

In the application to the time-varying CE data in Step 4, the
trained LSTM network shows increased variability in classifying
SI and DI CE dynamics. One approach to amend this would be
to increase the number of CE dynamics that the LSTM network
can distinguish. The Experiment 1 dataset [32] contains three
more tested CE dynamics (break frequencies ωce of 3, 2, and
1 rad/s). Including samples of these conditions, with subtler dif-
ferences between dynamics compared to the clear-cut SI versus
DI dynamics as used here, may extend the applicability of the
classifier and is a valuable next step. When reliable separation of
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different classes of HC behavior proves difficult, convolutional
layers can be stacked on top of the LSTM layers, as used in [31]
and [47]. These layers extract the most significant features of
a time series by applying multiple local filters and generating
invariant local features.

Although the detection performance in Step 4 was lower, the
accuracy is still impressive, given that the classifier dealt with
data it never encountered before, obtained in an experiment per-
formed with different subjects, in a different simulator, with dif-
ferent control axis (pitch versus roll), control manipulators, CE
dynamics and forcing function settings. The proposed method
shows promising capabilities for online (and time-varying) HC
behavior detection. It outperforms state-of-the-art techniques,
such as recursive ARX-models [16], enabling HC adaptation
detection well within 10 s achieved in [16]. With our current
settings, the LSTM method can classify control behavior every
1.6 s, yielding a six times faster detection. With overlapping win-
dows, the detection delay can be further reduced, i.e., by shifting
the data window with steps of 0.1 s, yielding near-continuous
detection capabilities.

Other promising time-series classification methods can be
considered for HC behavior classification. These methods rely
more on statistical feature engineering (see, e.g., [24] and [25]).
Future research will need to assess their potential and compare it
to the LSTM approach adopted here. Furthermore, more insights
could be obtained by visualizing the internal decision structure
of the LSTM network, as performed in [48].

This study focused on compensatory tracking, in a first at-
tempt to test the capability of a black box pattern recognizer to
classify human control behavior. Results are promising, but the
feasibility of the approach should be investigated in other more
relevant tasks, such as control with pursuit and preview dis-
plays [5], [11], in biodynamic studies [49], and in multichannel
tasks [9] such as vehicular control. These all include more signals
presented to the HC, visual preview, and physical motion, which
require renewed considerations on the use of scalers and input
features. However, above all, it means the method will be tested
in situations where we do not know what the human input(s)
are exactly, what loops are closed, scratching the surface of the
great unknown: how is the observable human control output
synthesized? Answering this question will facilitate the design
of the human control behavior monitoring component required
for safe, truly cooperative, shared human–automation teaming
systems.

VI. CONCLUSION

An LSTM neural network is tuned and applied to classify
(adaptation of) human control behavior in compensatory track-
ing tasks. To optimize the network for HC time-series classi-
fication, key input feature data configurations and settings are
optimized. Effects of varying WS, input feature combinations,
scaling, and data reduction techniques are presented. A clas-
sification accuracy of 96%, determining HC behavior every
1.6 s, is achieved for validation on HC data from a different
experiment than used for classifier training. For an accurate and
generalizable result across our three experimental validation and
test datasets, input feature scaling and use of both the error e
and HC output u signals as features were found to be essential

to achieve reliable classification accuracy. Reducing the number
of subjects, tracking runs, and tracking run length included in the
training dataset affected accuracy only slightly. The LSTM time-
series classification approach shows promise for online detection
of HC adaptations, in HC monitoring and support applications.

APPENDIX

LSTM structure: The network has two stacked LSTM lay-
ers [50], each containing 100 LSTM cells, to create a deep
recurrent neural network [29]. These settings are a good rule
of thumb [51]. This structure results in 122 202 trainable pa-
rameters for the LSTM network. A dropout layer is applied
after each LSTM layer to decrease overfitting and increase
performance [52]. The dropout value is set at 0.2.

Implementation: Networks are set up in Python (version
3.6.8) using Keras (version 2.2.4) [53], and Tensorflow (version
1.12.0) [54]. Standard values of the tunable hyperparameters are
used; these are fixed during the entire study.

Training: Neural networks learn the most from unexpected
samples [38]. Training samples are shuffled after each epoch,
i.e., each time the model has seen the entire dataset. Datasets
are shuffled prior to splitting into a training and validation
dataset, to prevent the network of learning: a) control patterns of
individual subjects or b) time-varying HC behavior (even with
fixed CE dynamics). This study focused on comparing effects of
dataset configuration on classification performance rather than
optimizing a single LSTM network, so a mini-batch size of 100
is used. This decreases computational time with a slight cost of
training stability and generalization performance [55]. Keras’
standard learning rate, η = 0.001 [53], is used.

Optimizer: The Adam optimizer is used, with default settings
proposed in [56] and [57]: β1 = 0.9, β2 = 0.999, and ε = 10−8

(used to avoid division by zero). Adam is a stochastic opti-
mizer, with shuffling and dropout, producing varying results
each training session. To objectively compare different dataset
configurations, 30 repetitions of the LSTM network are created
for each data configuration. This number is assumed to be
sufficient to account for the stochastic outcomes.
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