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Chapter 1

Introduction

The phenomenon of turbulent flow is rarely absent from most cases of relevance for aerospace
engineering. It is normally characterized by complex three-dimensional, time dependent
events which influence the overall behavior of a flow in far from trivial ways. The capa-
bilities of modern computers have made accurate approximations of PDE-governed physical
problems cost and time effective. In particular, turbulent flow can be described by the Navier-
Stokes equations (NSE). Nevertheless, currently available resources come very short of the
ones required for a full computation of all the flow structures involved in turbulence.

Resolving every turbulent structure in the flow is known as Direct Numerical Solution (DNS).
Today this is a viable answer for flows of low Reynolds numbers. However, the Re of aerospace
engineering relevance are commonly orders of magnitude above those of DNS feasible cases,
presenting interactions in space and time between sub-millimetre and meters-long scales.
Cost inhibits the use of smallest-scale capturing grids, and creates the need for alternate
approaches, capable of approximating the effects of these smallest scales without truly solving
for them.

Among the most popular methods for modelling such structures, are Reynolds Averaged
Navier-Stokes (RANS) computations, and Large-Eddy Simulation (LES). Both of these em-
ploy a separation of the quantities in the NSE. While the former splits them into mean
and fluctuating components, the latter performs a filtering operation (normally involving the
scale size as a parameter), thus obtaining large (resolved) and small (unresolved) scales [Pope
(2000)]. These separations however introduce what is known as a closure problem in the new
forms of the NSE. Additional equations are now required; normally referred to as turbulence
models, for RANS, and Sub-grid Scale (SGS) models for LES. Many of these models have
been developed over decades.

Even though these methods provide feasible alternatives for turbulence computation, their
scenario-dependent accuracy and viability makes them suitable only for specific circumstances
or applications. Specifically, while RANS requires relatively low computational effort, its sta-
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2 Introduction

tistical nature renders it unfit for calculating regions with large fluctuations, such as massively
separated flows. On the other hand, the grid requirements for an accurate computation of
high Reynolds near-wall flows using LES, generate costs which scale similarly to those of DNS
(a quasi-DNS) [Nikitin et al. (2000)]. More often than not, a single case will present a mixture
of regions which no individual method can fully cover. The currently available solution to
this difficulty is to use a Hybrid method.

Hybrid methods

The attempt at tackling the individual shortcomings of both methods was proposed by Spalart
et al. (1997) in a formulation known as Detached Eddy Simulation (DES). In it, the most
energetic scales away from the walls are solved by LES, while the energy dissipating structures
close to the walls are modeled by an inexpensive RANS method. While in theory this approach
poses a simple solution, and being this the essential idea behind most modern Hybrid methods,
the reality is that this coupling is far from trivial, leading to consistency issues stemming from
the arbitrary nature of this combination.

A DES approach focuses only on solving turbulent fluctuations away from the walls, while
performing the boundary layer (BL) calculations through statistical methods. As Menter
et al. (2012) point out, this approach can be set apart from other hybrids in the sense that
it computes the complete boundary layer in a RANS mode. On the other hand, more recent
methods employ RANS for the innermost part of the BL, switching to LES as soon as the
characteristic lengths allow for it. Such methods have come to be called Wall-modelled LES
(WMLES). Finally, in some cases we are concerned with turbulent structures only in specific
regions of an otherwise stable flow; for which a RANS computation of the majority of the
domain can be made, employing LES only in the regions of expected instabilities. What is
known as an embedded LES is obtained in this manner. Whichever is the situation, there
is still a question concerning the actual coupling methods, for which two major categories
can be established. The methods themselves commonly present complex formulations and
procedures, which impedes placing them in either category unambiguously. Based Froehlich
and von Terzi (2008), a quick overview is provided now.

Segregated modeling. Also known as zonal approach in other literature; the segregated
approach performs nearly independent LES and RANS calculations in the different zones.
The methods are coupled by transferring information between the zones, in the form of
boundary conditions, which makes the solved quantities (such as pressure or velocities) no
longer continuous at the interface. For this to be a truly hybrid method, such interfaces must
allow a bidirectional transfer of information.

Unified modeling. Also known as blended, global or non-zonal approaches; these make use
of the structural similarity between the filtered LES equations and the RANS. Generalizing
the momentum equation for both methods, we obtain:
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ρ
∂ui
∂t

+ ρ
∂ui uj
∂xj

= − ∂p

∂xi
+ µ

∂2ui
∂xj2

+
∂

∂xj
τmodelij

Where the τmodelij represents the stress tensor as described by the particular method and

turbulence model. The focus of unified modelling is to create a τmodelij as a function of a
RANS and an LES turbulence models. A combination of the form:

τmodelij = fLESτLESij + fRANSτRANSij

can be made, where fLES and fRANS are local blending coefficients and functions of the
particular approach parameters. If such coefficients become binary, an absolute local switch
of models is achieved with a clear boundary between the LES and RANS regions, which is
called an interfaced approach. Yet, this boundary can still adapt according to the solution
state, for which a soft interface is said to exist. The one which remains static throughout
time is consequently called a hard interface.

However, when employing the turbulence model as a methods switch, as pointed out by Xiao
and Jenny (2012), a fundamental inconsistency is introduced, granted that the structural
similarity in the transport equations does not account for the composition of the τ terms.
While the solution separation in LES is done by (normally spatial) filtering, RANS employs
statistical methods i.e. quantity averaging. Even though many SGS models for LES are based
on turbulence models for RANS [Froehlich and von Terzi (2008)], in blending the models the
inconsistency manifests as non-physical behaviors in the flow.

General issues

The most important problem is observed when at the interface, the model switching takes
place. The eddy viscosity (EV) of the RANS model is reduced while the turbulent structures
on the LES side have not yet developed, given the relatively steady boundary conditions
originating from the RANS region. Since the turbulent fluctuations in the resolved side
develop relatively slowly, not enough turbulent stress is generated to compensate for the
previously mentioned reduction in EV. The end result of these events is what is known as
a log-law shift, or Log-Layer Mismatch (LLM). Initial attempts to attack these issues have
been pursued by Baggett (1998); Hamba (2002); Piomelli et al. (2002). These have a variety
of approaches, including changes in the velocity gradients, methods order inversion, grid
refinements, and interface-wall proximity alterations. The conclusion, however, is that there
is a level of resilience in the LLM [Piomelli et al. (2003); Larsson et al. (2007)].

A number of solutions to this problem have been proposed since. These span a variety of
approaches, making a precise classification difficult. However, in a general sense, they can be
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separated into three categories i.e. model blending functions, stochastic forcing and consis-
tent approaches. Model blending functions combat the LLM issue by modifying the equations
which mix the turbulence models. In an attempt to achieve a smoother transition, and allow
the models appropriate eddy development lengths in the Scale-Resolving Simulation (SRS)
mode [Menter and Egorov (2010)], some researchers have introduced formulations that range
from length scale redefinitions, to adaptive blending functions. Regarding stochastic forcing,
artificially exciting the fluctuations at the interfaces has proven to be an effective solution
to the LLM. This can be achieved either by the introduction of stochastic functions, or by
mapping pre-computed databases. Furthermore, the former variant of the technique can be
categorized in the nature of the forcing functions (random signals, Fourier modes, etc.), while
the latter can introduce databases from different methods (LES or DNS mainly). While
the previously mentioned approaches try to solve the LLM issue through an improvement
of the coupling conditions, a dynamic adaptation of the models, or ad hoc introduction of
turbulence-triggering-fluctuations, none addresses the root cause; which relies in the funda-
mentally inconsistent coupling of the transport equations or regions.

A recent solution attacking the issue at its core is proposed by Xiao and Jenny (2012). A
basic difference with respect to other methods, is that both RANS and LES are employed
simultaneously in the entire domain, rather than on localized regions. The LES is computed
in a mesh which does not allow recovering a QDNS solution in the near-wall, meaning that the
boundary layer is not properly modeled and even less properly solved in its small-scale region.
However, the LES structure-capturing capabilities are exploited in the core flow, where the
turbulent fluctuations present characteristic lengths which go in accordance with the grid
spacing, and thus with the computational capabilities. In a different, yet overlapping mesh, a
RANS solution is obtained, which at first glance might seem redundant, given that portions
of it will be “discarded and replaced” by the results of the LES. The near-wall region in
this grid receives special attention regarding the “y refinement”, to properly capture the wall
behavior under the statistical frame of a RANS method. The clear observation then is that
both methods employ their own optimized grids. Once this is made, the essential proposition
of this method comes in place. The momentum equations are now “coupled” through an
additional force term called the Drift Term, instead of through the turbulence/SGS model.

Scope of this thesis

With these concepts in mind, the aim of this research is to propose a consistent hybrid frame-
work based on a Variational Multiscale Method (VMM) formulation of the NSE for turbulence
computation; where a residual-based algebraic expression for an SGS model will be employed
as a coupling term. While, the final solution will be obtained under an LES scheme, the
SGS model will contain information drawn from reference data from an overlapping domain
as in Xiao and Jenny (2012). Since the VMM results in an SGS model which depends on
the large-scale residual, the coupling will effectively vanish within sufficiently resolved re-
gions without the need of additional controlling terms. The expected result is therefore to
demonstrate that reference-data-enriched LES is possible with a solid understanding of the
behavior of the proposed SGS models as a basis for future work. Such work might be the
use of Goal-Oriented optimization or Artificial Neural Network techniques to adjust the SGS
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model and thus reproduce the statistics of RANS. This work will investigate the potential of
such methods by considering the design of residual based SGS models with locally adjustable
behavior and determining their ability to influence the statistics of the flow.

The objectives to achieve this aim, and thus the structure of this thesis can be stated as
follows: As a proof of concept, the scheme will initially be constructed for the simulation of
nonlinear dynamics in a unidimensional domain under the Burgers equation (BE). The rela-
tively low computational cost of solving this problem will allow to verify that the formulation
has been appropriately posed, as well as initially investigating the effects of manipulating the
stabilization parameters. After obtaining initial results and an understanding of the behavior
of the formulation, a similar set-up is proposed for the VMM version of the NSE. The test case
in this three-dimensional context is the channel flow. Although in a broad sense, the adapta-
tion from BE to NSE will involve a notoriously more complex mathematical formulation, the
essential ideas remain unmodified.

MSc. Thesis Luis Carlos Navarro Hernández
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Chapter 2

The Variational Multiscale Method applied
to the Burgers equation

Traditional LES relies on a filtering operator for scale separation. Even though in concept
this filter can hav an arbitrary length scale, in practice the grid size is normally employed to
determine which turbulent scales are to be resolved, and which are to be modeled. A rather
different framework based on the Variational Multiscale Method (VMM) was proposed for
LES by Hughes et al. (2000), for which scale separation is invoked ab initio. Initial VMM
approaches to account for the effects of the unresolved scales in the flow were oriented to
EV models given the accumulated experience with them. Later VMM developed SGS models
using approximations of their dynamic equations. The latter will be considered here. This
chapter will present this methodology in the context of the Burgers equation along with initial
tests to demonstrate its applicability. The concepts and derivations introduced here will set
the base framework for this work.

2.1 The Burgers equation

Formulated by the Dutch scientist Jan Martinus Burgers and introduced in Burgers (1948),
the nonlinear advection-diffusion equation can be regarded as a simplification of the NSE. It
results from the neglection of the pressure term, and is today more commonly known as the
Burgers equation. An analytic method of solution was developed by Burgers (1954) based on
a Hopf-Cole transformation, and has wave-like solutions. However, its real relevance to the
field of aerodynamics is that “it contains essential ingredients of turbulent flow” [Nieuwstadt
and Steketee (2012)]. It possesses a forward energy cascade deriving from its nonlinear term,
and high dissipation in regions of high gradients, where its viscous term becomes large.

While in essence, this equation retains important features of real turbulent flow behavior,
it still lacks a crucial characteristic, which is its chaotic response to variations in the initial
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8 The Variational Multiscale Method applied to the Burgers equation

conditions. Given this, its application regarding the understanding of the SGS models and
their behavior is limited but nonetheless useful. This equation and its relevance to this
research will be exposed in the remainder of this chapter.

2.1.1 The problem in strong form

Let Ω be an open, connected, bounded subset of Rd, with boundary Γ, and in which, for the
Burgers equation, d = 1, representing a spatial domain [0, X] [Hughes et al. (2000, 2004)]. A
space-time domain Q for a time interval ]0, T [ in Ω is given by Q = Ω×]0, T [. In this domain,
for the space and time variables 0 ≤ x ≤ X, and 0 ≤ t ≤ T respectively, the strong form of
the Burgers equation is given by:

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
+ f(x, t) (2.1)

Or in simplified notation, with the derivatives expressed as subindices:

ut + uux − νuxx = f(x, t) (2.2)

Where ν = 1/Re stands for the (positive and constant) kinematic viscosity, and f represents
a body force (per unit length) vector. Introducing the Burgers differential operator:

L =
∂

∂t
+ u

∂

∂x
− ν ∂

2

∂x2
(2.3)

The problem can finally be expressed as:

Find u : Q 7→ R such that:

Lu = f(x, t) in Ω (2.4)

u = g(x, t) on Γ (2.5)

2.1.2 The problem in weak form

Now let us consider the trial solution and testing function spaces:

u ∈ S ⊂ H1(Ω) (2.6)

w ∈ V ⊂ H1(Ω) (2.7)

Where H1 represents a Sobolev space of square integrable functions given by:

H1 = {h|h ∈ L2, hx ∈ L2} (2.8)

L2 = {h|
∫

Ω
(h)2dΩ <∞} (2.9)
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2.1 The Burgers equation 9

Following a standard Galerkin method, the strong form of the Burgers equation (2.1) is
multiplied by the test function w and integrated over the (spatial) domain yielding:∫

Ω
w(ut + uux − νuxx − f)dx = 0 (2.10)

Which when employing a standard bilinear form notation (·, ·)Ω for the L2(Ω) inner product,
and the Burgers differential operator (2.3); can now expressed in compact notation as:

(w,Lu)Ω = (w, f)Ω (2.11)

After integration by parts, the form:

(w, ut)Ω + w
u2

2

∣∣∣∣
Ω

−
(
wx,

u2

2

)
Ω

− wνux
∣∣∣∣
Ω

+ (wx, νux)Ω = (w, f)Ω (2.12)

is obtained, which when assuming S and V fulfill:

u = g on Γ ∀u ∈ S (2.13)

w = 0 on Γ ∀w ∈ V (2.14)

and for simplicity purposes, henceforth omitting the Ω subindex in the standard bilinear form
notation; becomes:

(w, ut)−
(
wx,

u2

2

)
+ (wx, νux) = (w, f) (2.15)

It is now possible to define the weak Burgers operator as:

B(w, u) = (w, ut)−
(
wx,

u2

2

)
+ (wx, νux) (2.16)

With which the weak form of the problem finally reads as:

Find u ∈ S ∀w ∈ V such that:

B(w, u) = (w, f) (2.17)

2.1.3 The Variational Multiscale problem

Up to this point, it can only be spoken of a variational method, where the solution to the
PDE’s can be approximated in terms of the choice of trial functions. In order to obtain a
multiscale model, a separation of the quantity u as shown in figure 2.1 must be considered.
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10 The Variational Multiscale Method applied to the Burgers equation

Figure 2.1: Scales separation Hughes et al. (2000)

Here, a signal is split into its large (u) and small (u′) components (low and high signal
frequencies respectively), such that:

u = u+ u′ (2.18)

When decomposing the trial solutions u ∈ S and weighting functions w ∈ V according to
(2.18), their spaces take the forms: S = S ⊕ S ′ and V = V ⊕ V ′ respectively. After a
substitution of the separated quantities in (2.17), this variational equation now reads:

B(w + w′, u+ u′) = (w + w′, f) (2.19)

Noting the linear independence of w and w′, assuming sufficient smoothness, and with:

u = g on Γ ∀u ∈ S (2.20)

u′ = 0 on Γ ∀u′ ∈ S ′ (2.21)

w = 0 on Γ ∀w ∈ V (2.22)

w′ = 0 on Γ ∀w′ ∈ V ′ (2.23)

Equation (2.19) can now be split into separate problems for the large and small scales, given
by:

B(w, u+ u′) = (w, f) (2.24)

B(w′, u+ u′) = (w′, f) (2.25)

In general, the small-scales equation (2.25) will not be solved. Instead, a model will be
developed to represent the u′ in the large-scales equation (2.24), which will account for the
effects of the small scales in the flow. Therefore, focus will now be turned almost exclusively to
such large-scales equation. Expanding (2.24) and, for simplicity purposes, hereafter employing
w to denote w yields:

B(w, u) +B(w, u′)− (wx, uu
′) = (w, f) (2.26)
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2.2 A brief DNS exploration 11

Now denoting as subindices the variables in which the Burgers differential operator (2.3) is
expressed; the expansion (2.26) can be re-expressed in terms of such operators as:

(w,Luu) + (w,Lu′u′)− (wx, uu
′) = (w, f) (2.27)

From this form, successive integration by parts of the second term, until no derivatives of the
small scales exist, gives:

(w,Luu) + (L∗u′w, u′)− (wx, uu
′) = (w, f) (2.28)

Where L∗u′ represents the adjunct operator given by:

L∗u′ = − ∂

∂t
− u′

2

∂

∂x
− ν ∂

2

∂x2
(2.29)

Two important assumptions will now be made. First, that the small scales respond instan-
taneously to changes in the large scales motions, i.e. quasi-static behavior of u′ is assumed.
Work by Codina et al. (2007) has incorporated the use of ODE’s to achieve a dynamic rep-
resentation of such scales, however, this framework will not be incorporated at this stage of
this research. Second, that the testing functions will be piecewise linears thus having a zero
second derivative. These assumptions allow neglecting the fist, and last terms of (2.29). In
this way, the variational multiscale version of the problem is finally given by:

Find u ∈ S ∀w ∈ V such that:

B(w, u)−

(
wx,

u′2

2

)
− (wx, uu

′) = (w, f) (2.30)

2.2 A brief DNS exploration

Given the relative simplicity of this equation, performing DNS computations which will cap-
ture the behavior of the boundary layer is possible. In this situation, the effects of the small
scales u′ can be neglected under the assumption that the whole range of motion scales is
captured by u. This section presents a quick exploration of the Burgers equation in terms of
DNS computations, same which will later be employed as reference data for the SGS models
design.

2.2.1 Theoretical and computational verifications

Initially, a quick verification of the theoretical formulation and code implementation, is made
through an order of accuracy test, which verifies the O(∆x2,∆t2) convergence of the computed
solutions towards the exact solution. While such exact solution might not always be available
from reference data, the method of manufactured solutions (MMS) can be employed for this
purpose, same which will be briefly explained now.
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12 The Variational Multiscale Method applied to the Burgers equation

The Method of Manufactured Solutions

The MMS [Roache (2002); Roy (2005)] provides a way to generate reference exact solutions
to a PDE in a predetermined domain. Instead of computing a solution to the model equation,
one assumes a “target” solution and designs a source term which should bring the model to
generate such solution. For the case of the Burgers equation, this is done as follows:

Starting from:

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
+ f(x, t) (2.31)

In the domain Ω = [0, π], a target (manufactured) solution um = sin(x)cos(t) is assumed.
Substitution of um in (2.31) allows finding a forcing term f(x, t) which satisfies the equation.
For this particular case, it results in:

f(x, t) = −sin(x)sin(t) + sin(x)cos(x)cos2(t) + νsin(x)cos(t) (2.32)

With a set of boundary and initial conditions matching the manufactured solution such as:

u(0, t) = u(π, t) = 0

u(x, 0) = sin(x)

The numerical method can now be employed to verify that indeed, the solution of (2.31)
converges with the appropriate order of accuracy to um.

The order of accuracy test

For this part of the verification, it is necessary to compute a form of total error in the solution,
same which for this case will be the L2 norm of the nodal error:

ε = L2(u) =

√√√√NX∑
i=1

(ui − urefi )2 (2.33)

Where NX stands for the number of grid points, and uref represents the reference solution; in
this case, the manufactured solution um. With the number of time steps given by NT , a sweep
forNT = [2, 100000] andNX = [8, 4096] reveals the order of accuracy of the numerical method.
As it can be appreciated in figure 2.2, the test displays a good O(∆x2,∆t2) convergence within
reasonable ranges. These tests were conducted for a fixed ∆x = 1/1024 in the case of the
time refinement test, and a fixed ∆t = 0.01 for the grid refinement sweep. It can be seen
that at the lowest ranges of refinement for both tests, the minimum error achieved is dictated
by the fixed values of the alternate variable, as the curves flatten to an asymptotic value of
ε. With this reasonable indication of the effectiveness of the numerical method and coding
implementation, the DNS tests can be conducted.
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2.2 A brief DNS exploration 13

(a) ∆t order of accuracy test (b) ∆x order of accuracy test

Figure 2.2: log-log plots of ε vs ∆(t, x) for convergence studies

2.2.2 The DNS results

Without unresolved scales, given the resolution of the grid, the problem takes the form of
(2.17), for which the domain of computation will (unless otherwise specified) henceforth be:
Ω = [0, 1]. An initial run is done for a grid of NDNS = 4096 nodes and a total time of
TDNS = 10s where:

Re = 100, f = 1.0, ∆t = 0.01s

u(0, t) = u(1, t) = 1.0

u(x, 0) = 1.0

A transient solution is shown in figure 2.3, which evidences a phenomenon of “wave steepen-
ing”, along with a clear boundary layer development, characterized by high gradients in the
solution in the proximity of x = 1.0.

The relatively quick transition of the solution to a steady state is evidenced by the practical
overlap of the u(x, 1.0) and u(x, 10.0) solutions. A quick analysis of the bulk velocity in the
domain as a function of time, reveals the transient range, which will be important to determine
the appropriate initial solutions for statistics computations in later studies. Figure 2.4, shows
that uBulk achieves a 99.9% of its maximum value at t = 0.77s.

Having verified the general behavior and implementation of this formulation, the next step is
to consider coarsened grids. As previously described, the focus of this research is the study
of SGS in the context of realizable LES computations. The following chapter will explore the
use of this methodology (VMM) in the presence of unresolved scales, introducing the essential
forms of the SGS models and setting the benchmarks for the proposed modifications.
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14 The Variational Multiscale Method applied to the Burgers equation

Figure 2.3: Transient DNS solution for Burgers equation

Figure 2.4: Bulk velocity

Luis Carlos Navarro Hernández M.Sc. Thesis



Chapter 3

The initial SGS approximations

As described before, an important feature of the Burgers equation is its nonlinear term. This
term is responsible for the “wave steepening” behavior of this equation, which is absent in the
linear advection-diffusion model. While these features do not represent a problem in a fully
resolved flow, a coarsened grid provides a framework for unresolved scales to be present and
exhibit their influence in the solution. The use of SGS models is important in this context to
account for their effects and therefore, this chapter will provide an initial understanding of
baseline models behavior and serve as a starting point for alternative formulations.

3.1 Solutions with u′ = 0

Providing no approximation for the small scales is by itself not a problem, so long as the grid
size allows capturing the smallest scales of motion. This scenario is a function of both the
mesh spacing, and the Reynolds number. At low Re, the turbulent flow structures do not
break down to very small characteristic lengths before dissipating their energy, and a coarse
mesh is able to capture the smallest ranges of motion in the flow. In the context of the BE,
this is analogously observed as a lack of severe wave steepening. In these scenarios, there is
no need to employ u′ approximations, provided that the subset of large scales solutions spans
the complete solution space such that: S = S. However, when some scales of motion (high
gradients for the BE) cannot be captured by the grid anymore, the effects of the missing small
scales become important and, within this framework, even appreciable in the behavior of the
numerical method.
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16 The initial SGS approximations

3.1.1 First LES attempts and results

A u′ = 0 sweep for Re was simulated, given by table 3.1, where the nodal error with respect
to the DNS solution is computed at steady state by (2.33) with uref = uDNS . The nodal
exactness at machine precision for Re = 0.2 quickly degrades with increasing Re, which is
partially shown in figure 3.1. At high Re, not only the error in the solution increases, but
also unphysical oscillations appear. This effect can alternatively be appreciated for a fixed
Re, where a mesh coarsening produces similar effects.

Re ε

0.2 0.0

1 0.00005

2 0.00034943

10 0.0077199

20 0.02323

100 0.31949

200 0.61663

Table 3.1: LES nodal error with Re for NX = 32

Figure 3.1: DNS vs LES solution for different Re

Table 3.2 shows the results of a similar procedure for a sweep in grid spacing. The coars-
ening grid quickly increases the nodal error, until eventually instabilities appear, as shown
in figure 3.2. This low exactitude of the coarse-grid, high-Reynolds solutions under a u′ = 0
approximation is therefore the motivation for SGS models which can address these issues. A
representation of the small scales u′ in (2.30) will serve this purpose, and a brief explanation
of some basic formulations is provided now.
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3.1 Solutions with u′ = 0 17

NX ε

512 0.0038734

256 0.011267

128 0.034082

64 0.11481

32 0.31949

16 0.61289

8 1.1768

Table 3.2: LES nodal error with NX for Re = 100

Figure 3.2: DNS vs LES solution for different NX

3.1.2 Modeling the small scales

While (2.30) represents a problem which takes into account the effect of the small scales, these
still exist explicitly in the equation. An approximation for them is required, provided that
their computation is not possible in terms of reasonable resources. As proposed by Hughes
(1995), such scales can be represented in terms of their element-local Green’s function:

u′(x) =

∫
Ω
G′e(x, y)R(y)dy (3.1)

However, such local Green’s function can only be derived for linearized cases. In the presence
of nonlinear behavior, as observed for the Burgers equation, an approximation can be made,
making (3.1) take the form:

u′ ≈ −τR(u) (3.2)
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18 The initial SGS approximations

Where τ can be interpreted as an element-averaged Green’s function, and R will be given by
the residual of the large scales found through the strong form of the Burgers equation (2.1)
as:

R(u) = Lu− f (3.3)

The relevance of having a residual-based formulation becomes evident in the regions where
the large scales can describe the dynamics of the local flow. This means for example that for
a wall-bounded flow, within regions of high y+ where the turbulent structures can be (gen-
erally) expected to have large characteristic lengths, the residual of the large scales tends to
zero. This means consequently that the small-scale approximation vanishes locally, therefore
“automatically deactivating” the SGS away from the walls or in intermittent laminar regions,
where it is not needed.

An important element in this framework is that the small-scales model in the large-scales
equation will serve two purposes. As said before, the first is to incorporate the effects of the
unresolved scales into the behavior of the large scales. However, as a second feature, these
small-scale terms, along with their corresponding models, will serve as stabilization terms for
the large-scales equation numerical solution. Previous formulations for the approximation τ
have been made for example by Shakib and Hughes (1991), which in basic form reads:

τ = τ(a, h, ν) (3.4)

Where h represents the mesh size, and a the (constant) element local large-scale convection
velocity. With (3.3), and (3.4), now the small scales in (2.30) can be replaced by (3.2), and
the variational multiscale problem becomes an exclusive function of the large scales which
can now be written as:

Find u ∈ S ∀w ∈ V such that:

B(w, u)−
(
wx,

(τR)2

2

)
+ (wx, uτR) = (w, f) (3.5)

From here to be noted that the trial solution space has been reduced to the large scales sub-
space, provided that the u′ has now been modeled. It is therefore in approximations like (3.4)
where the quality of the small scales reconstruction resides. A “perfect” τ would provide a
nodally exact reconstruction, regardless of the mesh coarseness, and such formulation would
be the ideal goal of this research. However, a realistic approach aims to improve the currently
available SGS models, while at the same time feeding them with reference data in an attempt
to obtain a formulation which can serve as a coupling term for a hybrid method. A base-
line approximation is now presented, which will serve as starting line for the later proposed
modifications.
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3.2 Shakib’s stabilization formulation 19

3.2 Shakib’s stabilization formulation

Based on Hughes et al. (1986), Shakib and Hughes (1991) developed a definition for τ for a one-
dimensional linear scalar advection-diffusion model problem. It is based on an approximation
of the exact volume averaged Green’s function for the linear problem. This stabilization
term can be applied to model the small scales in the Burgers equation keeping in mind the
influence of the nonlinearity in its effectiveness. This section will provide a quick review of
this formulation and a quick analysis of its effectiveness in modeling the subgrid scales within
the LES environment in the Burgers equation.

3.2.1 The τ formulation

The time-dependent problem for linear advection-diffusion is given in short notation by:

ut + aux = νuxx, for x ∈ Ω, t > 0 (3.6)

Where a stands for the advective speed, and ν for a coefficient of diffusivity, which for our
purposes will henceforth be treated as the kinematic viscosity. A stabilization term for the
small scales of the time-dependent problem is given by:

τ =

[(
2

∆t

)2

+

(
2a

∆x

)2

+ 9

(
4ν

∆x2

)2
]−1/2

(3.7)

Which can easily be converted for the steady-state of (3.6) taking the limit as ∆t→∞, thus
becoming:

τ =

[(
2a

∆x

)2

+ 9

(
4ν

∆x2

)2
]−1/2

(3.8)

The use of this simple form of τ in (3.2) provides some insight as to which path will be
followed in attempts to obtain more effective approximations, and an understanding of its
potential usefulness to couple the RANS/LES methods. The next subsection provides a
quick exploration in the context of the Burgers equation problem.

3.2.2 Initial tests on the Burgers equation

A test case for Shakib’s τ formulation is set up for the Burgers equation problem as given by
(3.5), (3.2), and (3.8) in an Ω = [0, 1] domain. Employing the parmeters:

Re = 1000, NXDNS = 2048, NXLES = 8

u(0, t) = u(1, t) = 1.0

u(x, 0) = 1.0
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20 The initial SGS approximations

A sweep for the forcing term was done according to table 3.3. The increasing nonlinearity
introduced by a growing forcing term provides an insight of the limitations of Shakib’s for-
mulation, which as said before, has been designed using linear advection-diffusion problems.
An estimation of the normalized steady-state nodal error is given by:

ε =
1

(uDNSmax − 1.0)

√√√√NXLES∑
i=1

(ui − uDNSi) (3.9)

While the formulation is able to stabilize the numerical method, its ability to reproduce the
small scales in the proximity of the boundary layer, and therefore its near-wall effectiveness
decreases with increasing nonlinearity. As shown in figures 3.3 and 3.4 the growth of the error
of the sweep is mostly originated in the proximity of the x = 1.0 wall, where the boundary
layer induces large gradients.

f(x, t) ε

0.01 0.0081054

0.1 0.012347

1.0 0.033054

2.0 0.042497

5.0 0.055114

Table 3.3: LES nodal error with f(x, t) for Re = 1000

Figure 3.3: DNS vs LES solution for f(x, t) = 0.01

Luis Carlos Navarro Hernández M.Sc. Thesis



3.3 Comments 21

Figure 3.4: DNS vs LES solution for f(x, t) = 5.0

3.3 Comments

This chapter has evidenced the capabilities of a basic existing SGS model. With an awareness
of its limitations, a variety of approaches will be now addressed in an attempt to improve its
capabilities. At the same time, such approaches will be based on the use of reference data
which as will be explained later, is employed to obtain more exact solutions. The advantage
of employing such reference data is that this makes the model intrinsically responsive to the
statistical behavior of the flow. In this way, an effective coupling of RANS and LES methods
can be made through the modified SGS model. Additionally, attention will be also focused on
the adjustability of the small-scales approximations, and consequently, on the authority that
they will exert on the overall behavior of the flow. This, provided that it becomes unpractical
to model all the unresolved scales behaviors in the NSE case.
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Chapter 4

Improved SGS approximations

While it has been shown that a formulation by Shakib et al. (1991) provides a good small-scales
approximation to some extent, it has also been shown that its limitations become evident in
the presence of increasing nonlinarity. This chapter will provide alternative formulations to
the u′ in an attempt to obtain improvement in dealing with the nonlinear part of the problem.
A first approach is to modify the original Shakib formulation for τ such that it better resembles
the upwind functions of nonlinear problems. This is done by generating better approximations
to the local Green’s function from where they are derived. A second approach, introduces
an additional term for u′, such that the linear and nonlinear components of the flow can be
handled separately. We employ a response surface approach to investigate the influence of
their parameters. These also give an indication of the viability of Goal-Oriented or Artificial
Neural Networks approaches for improving the representations of unresolved scales using the
mean flow reference data.

4.1 The local Green’s function approach

4.1.1 The local Green’s function

Starting from the small scales equation (2.25), a model for u′ can be derived in the following
way. Rewriting this equation as:

B(w′, u) +B(w′, u′)− (w′x, uu
′) = (w′, f) (4.1)

and noting that under appropriate boundary conditions (2.21, 2.23), the equivalence for ar-
bitrary variables a and b:

B(a, b) = (a,Lb) (4.2)
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can be assumed to hold for the strong and weak Burgers operators given by (2.3), and (2.16)
respectively. The small-scales equation can be written as:

B(w′, u′)− (w′x, uu
′) = −(w′,Lu− f) (4.3)

Which for a linearization of the Burgers operator (2.3) around u, here denoted as Lu, becomes:

(w′,Luu′) = −(w′,R) (4.4)

Where R stands for the residual of the large scales. This implies:

Luu′ = −R (4.5)

By setting up a Green’s function problem, the small scales can be found as a response to
the large-scales residual and the initial conditions. As shown by Edeling (2011), an analytic
solution for the element-local Green’s function G′e can be obtained for a given u under a steady
Burgers case as:

G′e(x, y) =

−C1(y)
(
γ
√
π

Re

)
βi−1(x)exp

[
γ2h−2(∆ux+ ui−1h)2

]
0 ≤ x < y

−C2(y)
(
γ
√
π

Re

)
βi(x)exp

[
γ2h−2(∆ux+ ui−1h)2

]
y ≤ x ≤ h

(4.6)

Where C1, and C2 are given by:

C1(y) =
−Reβi(y)

erf(γui)− erf(γui−1)

C2(y) =
−Reβi−1(y)

erf(γui)− erf(γui−1)

And βi, βi−1 by:

βi−1(x) = erf(γui−1 − erf(h−1γ(∆ux+ ui−1h))

βi(x) = erf(γui − erf(h−1γ(∆ux+ ui−1h))

Where erf(·) sands for the error function, ∆u = ui − ui−1, and γ is defined as:

γ =

(
−hRe
2∆u

) 1
2

With (4.6), the element-averaged value τ is computed as:

τ =
1

h

∫
Ωe

∫
Ωe

G′e(x, y)dxdy, x, y ∈ Ωe (4.7)

Luis Carlos Navarro Hernández M.Sc. Thesis
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Figure 4.1: Comparison of different τ formulations by Edeling (2011)

Which can be substituted in (3.2) to obtain the approximation of the small scales for the
large-scales problem. A comparison of this formulation and Shakib’s approximation of τ
given by (3.8) is also done by Edeling (2011) and shown in figure 4.1 for a forcing term
f = 1.0; displaying the differences in the outcome of the τ function.

Ideally, the formulation of τ should approach the element-averaged analytic solutions of G′e.
In an attempt to achieve this, a free coefficient formulation of (3.8) is introduced, which when
optimized, allows such solutions to be resembled, as will be explained now.

4.1.2 Optimization of the local Green’s function

An initial approach to an improvement of the stabilization model is based on its steady
state response to variations in its coefficients. A related approach was initially explored
by Albrecht (2013) through a Goal-Oriented optimization; attempting the minimization of a
goal functional while employing a trust-region based conjugate gradient method by Steihaug
(1983) to make the LES model match available RANS data. However, some distinctions must
be pointed out to justify this approach:

• The formulation considered an SGS approximated by a SUPG operator rather than a
VMM approach.

• While the CG method procedure allows finding the optimized coefficients, it provides
little or no information about the solution space where they reside. For the purposes of
this thesis, the shape of the solution space is important to understand the behavior of
the small-scales approximation, and its future modifications.

MSc. Thesis Luis Carlos Navarro Hernández



26 Improved SGS approximations

With these distinctions pointed out, an attempt of improvement was based on a simple
modification of the original Shakib formulation (3.8). Introducing a free-coefficient form
given by:

τ =

[
γ1

( a

∆x

)2
+ γ2

( ν

∆x2

)2
]−1/2

(4.8)

Where it is worth noting that the coefficients for a and ν inside the square terms have now
been incorporated to γ1 and γ2 respectively. This approach is also considered by Chen et al.
(2015) to adjust the u′ approximation for a POD basis. Under this representation, the original
coefficients in Shakib’s formulation take the values of: γ1 = 4.0 and γ2 = 144.0. As said before,
the investigated method relies on reference data, for which the benchmark case will be given
by:

Re = 100, f = 1.0, NXDNS = 1024, NXLES = 8

u(0, t) = u(1, t) = 1.0

u(x, 0) = 1.0

After a run for both the DNS and LES resolution, figure 4.2 shows the stabilized LES solution
with the original Shakib coefficients. The error between both solutions as computed by (3.9)
is ε = 0.044827, which once again, derives mainly from the LES node in the nearest proximity
of the boundary layer.

Figure 4.2: DNS vs LES solution for γ1 = 4.0 and γ2 = 144.0

The optimization procedure

From the DNS data provided by the baseline run, the next step was to extract the nodal data
corresponding to the LES grid. Making the assumption:

u = uLES (4.9)
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From where R can be estimated and substituted along with u into (3.5). For a given f , the
residual of the weak form Rw can be computed for any given τ , allowing to measure an error
given by the time averaged L2 norm of Rw, hereafter called the Training norm, such that:

εtr =
1

NT

NT∑
j=1

√√√√NX∑
i=1

R2
wi (4.10)

This training norm is advantageous in that it can be done without performing a simulation
[Durieux (2015)]. Under this conditions, any new form of τ can be evaluated so that εtr =
εtr(τ) or more specifically under (4.8), εtr = ε(γ1, γ2). A response surface shown in figure 4.3
is obtained for a sweep in the values of γ1 and γ2 in an attempt to find a combination of these
which minimizes the outcome of (4.10). Such sweep is given then by:

Re = 100, f = 1.0, NXDNS = 1024, NXLES = 8

u(0, t) = u(1, t) = 1.0

u(x, 0) = 1.0

γ1 = [0.0, 6.0], γ2 = [0.0, 1000.0]

Figure 4.3: Training norm response surface for γ1, γ2

The minimum value for the training norm (4.10) in this case is found to be εtr = 1.1733 at
γ1 = 4.32, and γ2 = 325.1. While the surface seems to have a “corridor” of minimum values,
seen as a diagonal from top-left to bottom-right in figure 4.3, it is worth noting that there is
a variation of εtr along this line. Provided that it is very small compared to the variation in
other directions the visual results seem to suggest an optimal line which in reality, is indeed
a point for this sweep.
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4.1.3 Results

Once the optimal values for the free coefficients have been established, a simple re-evaluation
of the LES solution under the improved stabilization formulation can be made. Figures 4.4,
and 4.5 show a comparison of the results under the standard and optimized formulations of
(4.8).

Figure 4.4: DNS vs LES solutions for standard and optimized Shakib formulations of τ

Figure 4.5: DNS vs LES solutions for standard and optimized Shakib formulations of τ (detail)

A notable improvement can be seen in the proximity of the boundary layer for the LES
solution. As said before, this derives from the adjustment of the local Green’s function
approximation under the given conditions. While the adaptations found for γ1 and γ2 make
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the model capable to deal with the case-specific non-linearities, it is worth remembering that
the original Shakib formulation (3.8) was designed for linear advection-diffusion. This means
that by itself, it is capable of providing unresolved scales modeling for the linear “aspects” of
the flow. Rather than case-specifically adapting it, an alternate approach is the introduction
of a second term capable of handling such non-linearities. The following section provides a
second approach to achieve improvements in the SGS models while preserving the original
form of Shakib’s τ formulation.

4.2 The asymptotic expansion approach

4.2.1 Scovazzi’s fine-scale approximation

An alternate approach to the representation of the small-scales by Scovazzi (2004), is to
consider u′ as given by the asymptotic expansion:

u′ = εu′1 + ε2u′2 + ε3u′3 + ... =

∞∑
n=1

εnu′n (4.11)

Where ε = ||R||. Now, consider a redefinition of the weak Burgers operator (2.16) to be given
as:

B(w, u) = B1(w, u) +B2(w, u, u) (4.12)

Where the bilinear and trilinear forms B1(·, ·), and B2(·, ·, ·) are given by:

B1(w, u) = (w, ut) + (wx, νux) (4.13)

B2(w, u, v) = −
(
wx,

uv

2

)
(4.14)

Furthermore, assume a linearization of the weak burgers operator (2.16) around u which
redefines it as:

Bu(w, u) = B1(w, u) +B2(w, u, u) +B2(w, u, u) (4.15)

It can be seen that the small-scales equation (4.3) can easily be re-expressed for this operators
as:

Bu(w′, u′) +B2(w′, u′, u′) = (w′,R) (4.16)

A substitution of the asymptotic expansion (4.11) into this form of the small-scales equation
yields:

∞∑
n=1

εnBu(w′, u′n) +

∞∑
n=2

εn
n−1∑
j=1

B2(w′, u′j , u
′
n−j) = (w′,R) (4.17)
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Which produces the system of equations given by:

Bu(w′, u′1) =

(
w′,
R
ε

)
, when n = 1 (4.18)

Bu(w′, u′n) = −
n−1∑
j=1

B2(w′, u′j , u
′
n−j), when n ≥ 2 (4.19)

Now Bu can be inverted through a Green’s function as detailed in section 4.1. While this
representation is intended to progressively solve the terms of the expansion in finer embed-
ded grids, eventually this will resemble a QDNS formulation, which as explained before, is
to be avoided. Instead, the asymptotic expansion form is employed now to introduce addi-
tional terms, capable of dealing with the nonlinearities in ways in which the Green’s function
approximation falls short.

4.2.2 Optimization of an expression for u′

Following this logic, the approximation of the unresolved scales will now incorporate a second
term, such that:

u′ ≈ u′1 + u′2 = −τR+ ηϕR2 (4.20)

Where η is a function which enforces dimensional consistency based on the local grid spacing
h and a reference velocity Uref , thus given by:

η =
h2

U3
ref

(4.21)

The formulation of η was designed keeping in mind that there is a relationship between the
solution gradients ux and the localR2 terms. This means that, for example, an η design which
could incorporate ux in its denominator, would cause a difficulty for the action of u′2. This
last originates from the fact that in regions of high gradients, η would attempt to minimize
u′2, while R2 would attempt to increase its effect, thus mutually interfering. For the tested
cases, where the grid spacing h is constant, η was observed to become a constant scaling
parameter. A large advantage of this formulation is that it naturally reverts to a u′ ≈ −τR
approximation in regions of weak nonlinearity, where R is small. Shakib’s τ is known to work
well for weak nonlinearities so it is used to define the τ in (4.20).

Additionally ϕ = ϕ(x) represents a distribution function intended to further localize the
effects of u′2, to areas of strong non-linearity. A natural choice for a distribution function
ϕ(x) would be one which can focus the effects of the u′2 term to those areas which are
expected to require additional modeling. For this case, this is particularly important in the
boundary layer, where as seen in figure 4.2, a u′1 approximation based on Shakib’s τ (3.8) is
not enough to handle the non-linearities in the proximity of x = 1.0. Given that the form for
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the second term this expansion is based on simple assumptions, it is necessary to localize it to
its regions of validity. Given that the mid channel region is already reasonably approximated
by the LES under the exclusive stabilization of u′1, it is also of interest to keep those areas
of the domain unaffected. Two mechanisms ensure this purpose is being served, first, and
as here explained, the distribution function will keep u′2 inactive in the center channel. But
additionally, the low gradients of this region make the solution u ≈ u, meaning that the LES
is almost nodally exact and therefore the residual of the large-scales R remains small. Having
this value squared in the formulation of u′2 naturally handles the vanishing of the second
therm in the asymptotic expansion within regions where the flow is well resolved, i.e. away
from the boundary layer.

In the context of a model optimization it is natural to introduce free parameters which will
be able to modify ϕ(x), such that case-specific flexibility is introduced. With this in mind, a
proposed formulation for this case is the curve given by:

ϕ(x) = γ3(1.0− x)xγ4 (4.22)

For which a variation of γ4 provides a concentration of the function towards the boundary
layer, as shown in figure 4.6. As it can be seen, under this formulation, the amplitude of the
distribution function decreases with increasing γ4. To maintain a uniform “height” of ϕ(x),
a normalization parameter based on the height of the curve is introduced.

Figure 4.6: u′2 Distribution function for different γ4

With the derivative of the distribution function equated to 0, the coordinate of maximum
ϕ(x) is given by:

dϕ(x)

dx
= γ3[γ4x

γ4−1 − (γ4 + 1)xγ4 ] = 0 (4.23)
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Which yields:

ϕ(x)max = ϕ(x)

∣∣∣∣( γ4
1+γ4

) (4.24)

Therefore, the normalized version of ϕ(x) for a base height of 1, becomes:

ϕ(x) =
γ3(1.0− x)xγ4(

γ4
1+γ4

)γ4
−
(

γ4
1+γ4

)γ4+1 (4.25)

Now, as shown in figure 4.7, the amplitude of the curve is constant for any given γ4 and its
scaling is linearly dependent on γ3.

Figure 4.7: u′2 Normalized distribution function for different γ4

4.2.3 Results

An optimization procedure similar to the one described in 4.1.2 allows pinpointing the com-
bination of parameters γ3, and γ4 which will minimize the training norm as described by
(4.10). Given that Shakib’s formulation of τ allows for a proper handling of the stabilization
in regions of linear behavior, its original form as given by (3.8) is employed for u′1, which
prevents the optimization procedure from becoming a four dimensional problem.

Recalling the logic of the benchmark case, an optimization run was done for a sweep of γ3,
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and γ4 with a problem defined by:

Re = 100, f = 1.0, NXDNS = 1024, NXLES = 8

u(0, t) = u(1, t) = 1.0

u(x, 0) = 1.0

γ1 = 4.0, γ2 = 144.0

γ3 = [−50.0, 50.0], γ4 = [1.0, 600.0]

A response surface shown in figure 4.8 can be obtained for the training norm. The values
returned from the minimum norm evaluation are given by γ3 = −25.0, and γ4 = 238.0. A
comparison of solutions is shown in figures 4.9, 4.9 for an unresolved scale approximation
given by a γ3, γ4 optimized u′. It is evident that the optimized coefficients plugged into (4.20)
provide an improved representation of the boundary layer phenomena.

Figure 4.8: Training norm response surface for γ3, γ4
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Figure 4.9: Comparison of unoptimized and optimized LES solutions.

Figure 4.10: Comparison of unoptimized and optimized LES solutions. (detail)
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Figure 4.12 additionally plots the distribution function as given by (4.25) under the resulting
optimized values of γ3, γ4. The term +1.7 has been employed for visualization purposes, but
is otherwise inexistent in the formulation. It provides a clear picture of the region of influence
of the u′2 term, which is almost exclusively the boundary layer. As said before, the purpose
of localizing this term to regions of elevated nonlinear behavior is to provide the additional
model only where it is appropriate, in this case, the high gradients of the near wall region
require the corrections provided by u′2.

Figure 4.11: Training norm response surface for γ3, γ4

4.3 A brief comparison of results

While both stabilization optimization methods yield enhanced unresolved scale representa-
tions, it is worth making a brief comparison of the end results under different testing condi-
tions. Based on the benchmark case, a series of optimization runs were made for a sweep of
forcing terms for:

Re = 100, NXDNS = 1024, NXLES = 8

u(0, t) = u(1, t) = 1.0

u(x, 0) = 1.0

f = [0.01, 5.0]

The results of these runs are shown in table 4.1 and a few remarks can be made about them:

• As expected, low values of the forcing term introduce small non-linearities which in a

MSc. Thesis Luis Carlos Navarro Hernández



36 Improved SGS approximations

general sense can be well handled by Shakib’s formulation. However, nodal exactness
at machine precision is achieved by the optimized formulations for a f = 0.01 term.

• An asymptotic expansion representation of the unresolved scales u′ shows a consistent
superiority even above an optimized formulation of Shakib’s τ . This is explained by the
presence of the distribution function and detailed below.

ε x 10−3 Improvement Coefficients

f US SS OS OE SS to OS OS to OE γ1 γ2 γ3 γ4

5.0 5933 136.97 7.95 7.83 94% 2% 5.45 19 -50 325

2.0 2347 61.44 1.93 1.72 97% 11% 4.9 211 -62 301

1.0 1177 31.71 0.5 0.4 98% 16% 4.32 325.1 -25 238

0.1 118.5 3.04 0.21 0 93% 100% 2.2 583 -148 232

0.01 11.85 0.3 0 0 100% 0% 3.4 357 -188 139

Table 4.1: Comparison of LES nodal errors vs reference DNS data for: unstabilized - US; standard
Shakib - SS; optimized Shakib - OS; optimized expansion - OE; and coefficient values for the
optimized formulations.

The importance of the distribution function

A highly zoomed detail of the nodal behavior in the near wall region is shown by figure 4.12.
While both formulations perform very well, a slight superiority of the asymptotic expansion is
appreciable. A wider inspection reveals a similar tend in nodes far from the wall, as shown in
figure 4.13, where for the center channel, a consistent improved performance can be seen. This
behavior stems from the fact that while the u′ expansion is able to act more locally, due to
its distribution function and R2 factor, while the optimized Green’s function approach affects
every node in the domain. Thus, while in the latter case, a good nodal exactness is achieved
in the near-wall region, it comes at a cost for the free shear flow regions. Appreciable also in
figure 4.13, this fact manifests as a loss of exactness from the unoptimized Shakib formulation
to the optimized Shakib formulation for the x = 0.5 node. On the other hand, the use of
the distribution function and R2 allow the expansion to have negligible effects in this region,
where very low non-linearity is present. In this case, the original Shakib stabilization behavior
is recovered away from the wall, and therefore, an overall improved performance is achieved.
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Figure 4.12: Comparison of stabilization methods for the near wall region f = 1.0.

Figure 4.13: Comparison of stabilization methods for the mid-channel region f = 1.0.
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Chapter 5

The Variational Multiscale Method applied
to the Navier-Stokes equations

The necessity for three dimensions in turbulent flow stems essentially from the facts that in
one dimension (Burgers) there is no chaotic response of the PDE to the initial conditions,
and in two dimensions, the turbulent structures tend to merge, rather than break down to
the energy dissipating scales, resulting in an inverse energy cascade. Additionally and more
importantly, the truly useful applications of turbulent flow study for aerospace engineering
will normally be found in the context of three dimensional problems. While the previously
presented modeling approaches have been demonstrated as proofs of concept for the Burgers
equation, it is now necessary to migrate them to the Navier-Stokes equations to show their real
usefulness to aerospace applications. This chapter will attempt to demonstrate and extend
some the previously treated approaches for a three dimensional case.

5.1 The weak formulation

Let us now begin from the incompressible form of the Navier-Stokes equations for Newtonian
fluids; given in strong form by:

∂u

∂t
+∇ · (u⊗ u) +∇p−∇ · 2ν∇su = f (5.1)

∇u = 0 (5.2)

Where u represents the velocity vector u = [u v w]T , p stands for the pressure, and ν
for the kinematic viscosity, which will be assumed constant and positive. Furthermore, ∇su
stands for the symmetric velocity gradient, which makes the momentum equation rotationally
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invariant, and ⊗ denotes the dyadic product, these two given as:

∇su =
1

2
(∇u+∇uT ) (5.3)

u⊗ u ≡ u uT (5.4)

Following a standard Galerkin method, just as detailed in subsection 2.1.2; the strong form
of the NSE is multiplied by the test functions w, q, and integrated over the domain. This
allows defining the weak operators given by:

B(w, q;u, p) =

(
w,

∂u

∂t

)
− (∇w,u⊗ u) + (q,∇ · u)− (∇ ·w, p) + (∇sw, 2ν∇su)

F (w, q) = (w,f)

(5.5)

Where f represents a source vector term. The trial solution, and testing function spaces are
given by:

u ∈ S ⊂ H1(Ω) (5.6)

p ∈ P ⊂ L2(Ω) (5.7)

w ∈ W ⊂ H1(Ω) (5.8)

q ∈ Q ⊂ L2(Ω) (5.9)

With H1, and L2 once again defined as:

H1 = {h|h ∈ L2, hx ∈ L2} (5.10)

L2 = {h|
∫

Ω
(h)2dΩ <∞} (5.11)

Now, assuming the boundary conditions fulfill:

u = 0 on Γ ∀u ∈ S (5.12)

w = 0 on Γ ∀w ∈ W (5.13)

From where it is to be noted that a u = 0 condition is only met for specific boundaries, as
the test case description will later explain. And additionally assuming that the pressure has
a zero mean condition given by:∫

Ω
p dΩ = 0 ∀t ∈]0, T [ (5.14)

The variational version of the NSE problem can be expressed as:

Find {u, p} ∈ [S]3 × P such that ∀{w, q} ∈ [W]3 ×Q:

B(w, q;u, p) = F (w, q) (5.15)
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5.2 Weak boundary conditions

In Navier-Stokes problems it has been observed that strongly imposed no-slip conditions in
the walls for insufficiently fine near-wall meshes leads to inaccurate mean velocity solutions
[Bazilevs et al. (2007b)]. With sharp boundary layers present, it can be advantageous to
treat Dirichlet boundary conditions weakly. This allows for improved coarse-mesh solution
interpolations, as well as the possibility of introducing wall-stress models for LES/RANS as
shown by Hulshoff et al. (2011). In the present context, it invokes the addition of a jump-term
and an adjoint consistency term while relaxing the assumption that w = 0 on Γ. As pointed
out by Bazilevs et al. (2007b), in the limit of vanishing mesh size in wall-normal direction, this
formulation acts like a strong Dirichlet boundary condition. Given the level of refinement and
structure of the employed mesh (which will be later explained), the use of the formulation by
Hulshoff et al. (2011) aided in the improvement of the results over the use of strongly imposed
Dirichlet B.Cs. and will hereafter be referred to as the g - method.

5.3 The Variational Multiscale problem

Once again, up to this point only a Variational formulation of the NSE has been derived. A
Multiscale problem requires the decomposition of quantities into different scales. For this,
the trial solutions and test functions in the NSE will be split into large and small scales, such
that:

u = u+ u′ (5.16)

p = p+ p′ (5.17)

w = w +w′ (5.18)

q = q + q′ (5.19)

Where ·, and ·′ represent the large and small scales respectively. The trial solution and testing
function spaces are now accordingly separated as:

S = S ⊕ S ′

P = P ⊕ P ′

W =W ⊕W ′

Q = Q⊕Q′

Now employing (5.16) through (5.19), the large-scales equation is given as:(
w,

∂u

∂t

)
− (∇w,u⊗ u) + (q,∇ · u)− (∇ ·w, p) + (∇sw, 2ν∇su)

+

(
w,

∂u′

∂t

)
− (∇w,u′ ⊗ u′) + (q,∇ · u′)− (∇ ·w, p′) + (∇sw, 2ν∇su′)

− (∇w,u⊗ u′)− (∇w,u′ ⊗ u) = (w,f)

(5.20)
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Where once again, the assumption of quasi-steady small-scales allows neglecting the
(
w, ∂u

′

∂t

)
term. The large scales variational problem can therefore be expressed as:

Find {u, p} ∈ [S]3 × P such that ∀{w, q} ∈ [W]3 ×Q:

B(w, q;u+ u′, p+ p′) = F (w, q) (5.21)

5.4 Modeling the small scales

Following the logic of section 3.1.2, the effects of the unresolved scales {u′, p′} in (5.21) can
be approximated through a stabilization term which now for the 3D case of the NSE, takes
the form of a vector which reads:

u′ ≈ −τR (5.22)

Where now R is the residual of the large scales as given by:

R =

[
rM (u, p)
rC(u)

]
(5.23)

Same which has its components computed from the strong form of the momentum and con-
tinuity equations, and given by:

rM (u, p) =
∂u

∂t
+ u · ∇u+∇p− ν∆u− f (5.24)

rc(u) = ∇u (5.25)

Additionally, the formulation of τ is chosen to be a diagonal 4×4 matrix which is a nonlinear
extension of the classical stabilization for the incompressible NSE [Franca and Frey (1992)]
and given as:

τ =


τM 0 0 0
0 τM 0 0
0 0 τM 0
0 0 0 τC

 (5.26)

Following the process detailed in Akkerman (2009), a reconstruction for the unresolved scales
can be started from the Euler-Langrange equations of the small-scales part of the problem,
given by:

∂u′

∂t
+∇(u⊗ u′ + u′ ⊗ u+ u′ ⊗ u′) +∇p′ −∇s2ν∇su′ = −rM (u, p) (5.27)

∇u′ = −rc(u) (5.28)
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Now, employing a discrete approximation of the gradient/divergence operator denoted by g;
and a 3 × 3 matrix τ−1

M to represent algebraic approximations for the differential operators,
(5.27), and (5.28) can be expressed as:

τ−1
M u′ − gp′ = −rM (u, p) (5.29)

g · u′ = −rc(u) (5.30)

Multiplying the approximation of the small-scales momentum equation (5.29) by g · τM gives:

g · u′ − g · τMgp′ = −g · τMrM (u, p) (5.31)

Where the substitution of (5.30) yields:

g · τMgp′ = g · τMrM (u, p)− rC(u) (5.32)

By neglecting τMrM (u, p), it is possible to arrive to a diagonal τ , resulting in:

p′ = −(g · τMg)−1rc(u) (5.33)

Yielding finally an expression for τC given by:

τC = −(g · τMg)−1 (5.34)

With these descriptions of τ , and R, once again the quality of the estimation of the unresolved
scales effects relies in the form given to τ , or more specifically, to τM . Previous research has
defined some formulations for this term, for example, following the theory of of stabilized
methods for linear advection-diffusion systems as in Hughes and Mallet (1986), and Shakib
et al. (1991), a definition for τM can be:

τM =

[
4

∆t2
+ u ·Gu+ 3ν2G : G

]−1/2

(5.35)

Where · : · stands for the double contraction.

For the case of the Burgers equations, the optimizations to the models were made from DNS
data. Provided that the test case for the NSE (channel flow) has been extensively studied,
DNS data is also available and will be employed for the computations. However, it is worth
once again pointing out that the intention of this research is to explore the feasibility of
coupling RANS and LES methods through the SGS model. Having said this, the expected
reference data for future applications of this method would normally not come from time-
averaged DNS, but instead from less expensive RANS runs. The following chapters will
describe the formulations and results of the method applied to the NSE.
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Chapter 6

Channel flow test case and baseline coarse
mesh results

In this chapter, a brief inspection of the baseline SGS models will be presented. The intention
of this is to obtain benchmark performance data as a reference for the evaluation of the
proposed improvements. A description of the test case will be provided now, followed by the
initial results.

6.1 Description of the test cases

Based on the work of Kim et al. (1987) and later Moser et al. (1999), the use of a turbulent
channel flow allows for the demonstration of the existing SGS models, and provides a “simple”
framework for improvements and testing. Regarding the spanwise and streamwise directions,
a particular choice of boundary conditions is made in order to ease the computations and
measurements. While say for example a uniform inlet in a wall bounded channel would require
enough spatial and temporal lengths for the turbulent structures to fully develop; the use of
periodic B.Cs. allows for reduced computation domains. By feeding the information from one
boundary to its opposite as shown in figure 6.1, the turbulent structures are homogeneous
in said directions, limiting the wall-bounded characteristics to the normal direction. The
boundary layer will develop only in such direction, and given the symmetry of the case, a
half-channel observation will allow drawing conclusions from the computed data. Additionally,
the channel dimensions are chosen such that “the two-point correlations in streamwise and
spanwise directions would be essentially zero at maximum separation”.

As observed by Moser et al. (1999), the initial work of Kim et al. (1987) employed a Reτ = 180,
for which the existence of a log layer might be questionable. However, as explained later, this
cases are still of interest for the purposes here pursued. Additionally, some initial conditions
and reference statistics are obtained from DNS runs by Hoyas and Jiménez (2008), del Álamo
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Figure 6.1: Boundary conditions in channel flow

and Jiménez (2003). While Moser et al. (1999) employed a dynamic pressure gradient to
maintain a constant mass flow, the tests for this work used a uniform forcing term given by
the vector:

f =

1.0
0.0
0.0

 (6.1)

to drive the channel. A stabilization parameter as given by (5.35) based on the work
of Bazilevs et al. (2007a) will serve as a benchmark or start point, just as Shakib’s τ employed
for the previously described Burgers stabilization.

6.1.1 The reference spectra

From the data provided by Moser et al. (1999), the spectra for Reτ = 180 is plotted and
shown in figure 6.2. Although turbulent, this case is not optimum in that it contains low-Re
effects and no substantial inertial range. It is however effective for preliminary studies as
its mesh refinement requirements are low. The location of the start of the inertial range is
ambiguous in this case, but based on the spacing reported by Moser et al. (1999), meshes of
at least 163 to 243 elements are required to resolve part of the inertial range.
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(a) x spectra (b) z spectra

Figure 6.2: Spectra for Reτ = 180 channel flow by Moser et al. (1999)

6.2 Initial Runs

The initial runs set a benchmark for the improvement which will be obtained by optimizing
the SGS models. Based on the previously mentioned reference data, a solution projection of
DNS resolution is made unto the desired LES mesh, which initializes the fluctuations in the
flow field for the appropriate modes to be further driven by f .

6.2.1 The 83 grid

We begin by considering a very coarse case of 83 elements, where the resolution is insufficient
for resolving any of the inertial range. At such low resolutions, approximations like (5.35)
cannot be expected to provide realistic results. However, such resolutions are interesting for
examining the control authority of the model in regions for which the only goal is to match
mean flow statistics. With this in mind, the first test cases are made in this 8 × 8 × 8 grid,
where the test parameters are defined as:

Reτ = 180, ∆t = 6.25× 10−3s, T = 300s, Nx,y,z = [8 8 8]

Figure 6.3 shows the bulk velocity measurements with respect to time for this test case.
While the reference data indicates a bulk velocity of uBulk = 15.68 m/s, and furthermore,
the test case is initialized to such data, an initial transient state can be seen. The steady
state conditions for the collection of data and thus for the computation of flow statistics are
considered to start at t = 100s, which as can be seen in again in figure 6.3 is a suitable point
in time to consider the transient phenomena as faded. This transient state derives from the
fact that the new mesh (LES grid) reduces the accuracy of the computations, and evidently
a considerable amount of data is lost in the projection of the initial conditions.
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Figure 6.3: Bulk velocity for benchmark channel flow

From here that the statistics of the baseline flow predictably exhibit a mismatch with the
reference data. Similarly to the Burgers cases, the base stabilization term as given by (5.26)
with τM as given by (5.35), and hereafter denoted τBaz; is enough to allow the convergence
of the numerical method, and to some extent, provide an approximation of the small scales.
The shortcomings of this formulation become evident in the mismatches between the LES
solutions and the DNS reference profiles as shown in figure 6.4.

For purposes which will later be explained, graphs of τM and τC are shown in figure 6.5. Note
should be taken on the fairly uniform distribution of both parameters in the wall normal
direction. Such behavior stems from the magnitude of the terms in the τM formulation as
given by (5.35). Denoting the terms in τM as:

A =
4

∆t2
(6.2)

B = u ·Gu (6.3)

C = 3ν2G : G (6.4)

Plots of their magnitude throughout the domain can be made, same which are shown in
figure 6.6. As it can be seen, the magnitude of A is is considerably higher that that of B,
and several orders of magnitude above C. The distribution of τBaz as shown in figure 6.5 can
therefore be thought of as dominated by A, which is an important observation for the coming
work.
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(a) u Mean (b) u RMS

(c) v RMS (d) w RMS

Figure 6.4: Statistics profiles for initial NSE runs
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(a) τM (b) τC

Figure 6.5: τM and τC distriburtion for initial NSE runs
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(a) Term A (b) Term B

(c) Term C

Figure 6.6: Distribution of the τM components in wall normal direction
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6.2.2 Increased spatial refinement

Providing realistic boundary conditions for the full LES regions requires resolving more
physics than can be represented with an 83 mesh. With this in mind, runs were made in
refined meshes of 163, 323 and 483 elements. A comparison of results with the baseline case is
shown in figure 6.7, for which the expected trends are followed, exhibiting increased accuracy
with reduced grid spacing.

(a) u Mean (b) u RMS

(c) v RMS (d) w RMS

Figure 6.7: Statistics profiles for grid refinement runs
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6.2.3 Weakly imposed boundary conditions

The final set of benchmark runs involves a comparison of the boundary conditions enforcement
method. As discussed in section 5.2, it is possible to obtain closer matches of the mean profiles
by relaxing the no-slip conditions at the walls. A comparison of the B.Cs. enforcement was
therefore made for a 163 mesh. The results shown in figures 6.8, evidence that the g-method
provides improved results when matching the means, while creating only minor deviations
in the fluctuations profiles. When using VMM models on coarse meshes, it appears negative
velocities are required to achieve a realistic energy balance. This does not occur when eddy
viscosity models are used as shown in Hulshoff et al. (2011).

(a) u Mean (b) u RMS

(c) v RMS (d) w RMS

Figure 6.8: Statistics profiles for different enforcements of boundary conditions Reτ = 180

Having established the baseline behavior under different conditions, the optimization methods
and runs are discussed in the following chapter.
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Chapter 7

Improvements to SGS models

Following an adapted, however in essence similar logic to that in sections 4.1, and 4.2, modified
formulations for τBaz and expanded approximations for u′ were elaborated and tested to
improve the LES results. Once again, these optimizations are driven by reference data,
and while the methodology remains fundamentally equivalent to the previously used, the
computations are predictably more complex. While the training norm introduced in 4.1.2
proved effective and inexpensive in the context of Burgers, it is replaced here by a more
expensive method, given the unsteady and three dimensional nature of these computations.
This will therefore limit the exploratory capabilities of the optimizations, however these still
prove able to return useful data.

7.1 Green’s function optimization

Migrating the ideas demonstrated for the Burgers equation in section 4.1, an attempt of
improvement is made by a modification of the local Green’s function employed to model the
small-scales. For this SGS model, the inclusion of free coefficients as described by:

τM =

[
γ0

1

∆t2
+ γ1 u ·Gu+ γ2 ν

2G : G

]−1/2

(7.1)

will serve a starting point to the optimizations. The free coefficients γ0,1,2 will provide some
control to τBaz such that an improvement on the baseline results can be made. The error in
the bulk velocity for a Reτ = 180 case, is given by:

εuBulk =
1

NT

NT∑
i=0

|uBulki − 15.68| (7.2)

Where NT represents the total number of time steps. Alternatively, the error in the mean
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velocity profile, is given by:

εuMean =
1

NT

NT∑
i=0

√√√√NX∑
j=0

∆ uMeanj (7.3)

∆ uMeanj = uMeanLESj − uMeanDNSj (7.4)

These definitions will be used forth to construct the response surfaces and henceforth referred
to as the simulation norms.

7.1.1 Initial sweep

As mentioned in section 6.2.1, on an 83 mesh at Reτ = 180 it is not expected that an
SGS model based on linearized theory will be capable of reproducing the small scales very
accurately. It is interesting however to explore which is the overall control effect on coarse
meshes where u′ is large, with the current objective of matching the statistics rather than a
detailed turbulence analysis. With this in mind, the optimization runs were made employing
the same parameters defined for the baseline case and given as:

Reτ = 180, ∆t = 6.25× 10−3s, T = 300s

A simulation norms evaluation was made for γ1 = [1 2 3 4 5], and γ2 = [3 20 36 52 69], while
maintaining an unmodified γ0 = 4.0. From here to be noted that the test matrix has only
25 combinations, unlike the 40,000 values for the Burgers tests, evidencing the previously
mentioned cost issue. As said before, this derives from the fact that this error calculations
are done by comparing LES solutions to the DNS reference data, and not from a weak form
residual; therefore, requiring a full LES simulation for each coefficient combination. The
reason for which a training norm cannot be used in this context is that the reference data is
not a full space-time data set, instead only the statistics are available. Figure 7.1 shows the
response surfaces for the errors as obtained through (7.2), and (7.3).

A minimum point is now obtained from the response surfaces, which is common for both
error measurements and located at γ1 = 1.0, γ2 = 52.0. A comparison of the “optimized” and
standard profiles can now be made, and is shown in figure 7.2. Except for the fluctuations in
u, the profiles can be seen to have very slight changes after the error minimization study.

As shown in figure 7.4, despite the 5-fold change in γ1, and higher than an order of mag-
nitude shift in γ2, the τBaz distribution and magnitudes are barely affected, confirming the
observations indicated in the previous chapter. While a large variation in γ2 produces a large
shifting in term C as shown in figure 7.5, it can barely generate a change in the profiles, given
its relative magnitude. This can be better visualized by a surface plot of the response surfaces
in figure 7.3, which shows that the variations in the simulation norm are not significant with
respect to changes in γ1,2. Having these observations, a second test is made, now for a γ0,1
sweep, which will allow to increase the effectiveness of modifications to terms A and B, while
analyzing the response to an invariant term C.
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(a) u Bulk (b) u Mean

Figure 7.1: Response surfaces for optimization runs
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(a) u Mean (b) u RMS

(c) v RMS (d) w RMS

Figure 7.2: Statistics profiles for initial optimization runs
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(a) u Bulk (b) u Mean

Figure 7.3: Alternate representation of the response surfaces for optimization runs

(a) τM (b) τC

Figure 7.4: τM and τC distribution for initial optimizations
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(a) Term B (b) Term C

Figure 7.5: Distribution of the τM components in wall normal direction
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7.1.2 Adapting the unsteady term

An adaptation of the unsteady term A aims to understand its dominance in the formu-
lation, for this, a new sweep was made for γ0,1, leaving a fixed γ2 = 3.0. This is done
with the objective of improving the authority over the response, and thus, obtain closer
matches in the profiles. Figure 7.6, displays the response surfaces of a sweep performed for
γ0 = [0.01 0.05 0.1 0.5 1 2], and γ1 = [0.1 1 5 10 20 100]. It can clearly be seen that the
response amplitude has increased for a less dominant term A.

(c) u Bulk (d) u Mean

Figure 7.6: Response surfaces for optimization runs

A following run under the optimized coefficients yields set of improved profiles, same which
is displayed in figure 7.7. It is evidenced here that the control exerted on the formulation has
increased by reducing the influence of its time dependent parameter. While a closer match
of the mean velocities and v fluctuations is obtained, a disagreement of this behavior is seen
in the u and w fluctuation profiles, a trend which will later be elaborated on.
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(a) u Mean (b) u RMS

(c) v RMS (d) w RMS

Figure 7.7: Statistics profiles for initial optimization runs. p0, baseline run (purple); p1, optimized
run (green)
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It can additionally be seen from figure 7.8 that the τBaz distribution has been localized
given the reduced influence of the constant and previously dominating term A. This is further
verified by figure 7.9, which not only evidences drastic reduction of term A, but now also
a more responsive term B. For this purposes, term C is not shown given that as discussed
before, its influence is negligible, and in this test case invariant between the baseline and
optimized cases.

(a) τM (b) τC

Figure 7.8: τM and τC distribution for optimizations. p0, baseline run (purple); p1, optimized
run (green)

This section has shown that a level of control can be exerted on the flow profiles by modi-
fying the approximation of the local Green’s function. The sensitivity of the formulation to
coefficient combinations outside the shown regions often yields unstable results, for which at
this point it will be assumed that this is the maximum level of control that can be achieved
with this approach. The next section shows an alternative formulation and its effects in an
attempt to obtain improved results.
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(a) Term A (b) Term B

Figure 7.9: Distribution of the τM components in wall normal direction. p0, baseline run (purple);
p1, optimized run (green)

7.2 The asymptotic expansion approach

From a test of an asymptotic expansion form to model the small scales for the Burgers
equation, as seen in section 4.2; a similar approach was implemented in the context of the
NSE in an attempt to improve the results of a LES simulation. Following the previously
explained logic, the stabilization term for the small-scales was modified. Starting from (5.22)
and expanding, a second term (dependent of the square of the residual of the large scales) is
introduced such that:

u′ = u′
1 + u′

2 = −τBazR + ηϕR2 (7.5)

Where η once again represents a dimensional consistency function, ϕ = ϕ(y) is the distribution
function, and R2 is a column vector resulting of a term-wise squaring of R such that:

R2
i = Ri ∗Ri (7.6)

Given the form of the curve employed in the distribution function, the definition of ϕ(y)
results in:

ϕ(y) =

{
γ3
C y(y − 1.0)γ4 0 ≤ y < 1
γ3
C (2.0− y)(y − 1.0)γ4 1 ≤ y ≤ 2

(7.7)

Where C represents a normalization parameter similar to the one described in section 4.2.
Figure 7.10 shows an example of the distribution function in wall normal direction for γ3,4 =
20, where once again, the effects of u′

2 are concentrated on the boundary layers.
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Figure 7.10: Distribution function in wall normal direction for the channel flow case

While the assumed form for the additional term in the asymptotic expansion was sufficient
for the Burgers equation, it turned out to be insufficient for this much more complicated NSE
cases, where instabilities were encountered for all but the smallest values of γ3, thus resulting
in negligible improvements. A more detailed design procedures for the form of this term,
possibly incorporating an energy stability analysis is required. This could not be attempted
here due to time constrains.

7.3 Green’s function optimization with a distribution function

As observed and explained in subsection 4.2, a large component of the improvements obtained
by the asymptotic expansion formulation for the Burgers equation, derived from the use of
a distribution function. While such asymptotic expansion proved to be significantly more
complex to implement in the context of the NSE, an alternate approach was employed to
further improve the results. A distribution function was incorporated to the SGS model such
that it becomes:

τM = ϕ(y)

[
γ0

1

∆t2
+ γ1 u ·Gu+ γ2 ν

2G : G

]−1/2

(7.8)

Where the distribution function ϕ(y) is given as:

ϕ(y) =

{
1.0− γ5(y)(y − 1.0)γ6 0 ≤ y < 1

1.0 + γ5(2.0− y)(y − 1.0)γ6 1 ≤ y ≤ 2
(7.9)

Starting from an initial optimization of (7.1), i.e. γ0 = 0.01 and γ1 = 5.0, an additional
improvement was attempted by localizing the effects of τBaz through the use of (7.9). Know-
ing the location of the integration points in the proximity of the boundary layers, the free
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parameter γ6 was fixed for a value of γ6 = 10. A single-dimensional optimization run for γ5

was made, in the range γ5 = [−40, 40], for which the distribution function takes the form
shown in figure 7.11. To be noticed from here that the “base” value of such function is 1.0,
same which maintains an unmodified formulation of τBaz in the center channel. The sweep
of γ5 delivers the response curves shown in figure 7.12, which have a minor disagreement in
the value of the optimal value of γ5 and do not show values for γ5 > 25 provided that no
convergence was achieved for them. It is thus important to point out that this sweep has
been made with increments given as ∆γ5 = 5 for which the real optimum value might exist
somewhere in between the ones obtained.

Figure 7.11: Distribution function in wall normal direction for the channel flow case

An LES run with the obtained values of γ0,1 ,5 is now done and its results shown in figure 7.13.
Once again, to be seen from here that a further control has been obtained over the profiles.
However, the simulation norm is based on the reference values of uBulk and uMean, therefore
the fluctuations are not considered in the modifications to the γi coefficients. Consequently
this results in a consistent improvement for the match of the mean velocities, but only in
some cases for the fluctuations profiles, as previously explained, the combination of low grid
resolution and low-Re effects originate this behaviors.
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(a) u Bulk (b) u Mean

Figure 7.12: Response surfaces for optimization runs

MSc. Thesis Luis Carlos Navarro Hernández



68 Improvements to SGS models

(a) u Mean (b) u RMS

(c) v RMS (d) w RMS

Figure 7.13: Statistics profiles for optimization runs. p0, baseline run (purple); p1, γ0,1 optimized
run (green), p2, γ5 optimized run (blue)
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7.4 Spatial refinements and boundary conditions treatment

With this in mind, a test was made for an optimization of γ0,1 in a 163 mesh for Reτ = 180.
The results displayed in figure 7.14, show that in obtaining a closer match of the mean veloc-
ities as dictated by the simulation norm, a parallel trend is seen for the fluctuations profiles.
Additionally, these runs were performed for a weak imposition of boundary conditions, for
which in general, the g-method provided the best results. It is important to point out that
these results were subject to more “conservative” coefficients, given that their computation
cost is significantly more elevated and thus, their stability region more expensive to determine.
However, it is also necessary to say that since a larger part of the solution is now resolved,
thus easing the load on the u′ approximations, a reduced the authority of the optimizations
is now observed given that the influence of u′ is smaller.

(a) u Mean (b) u RMS

(c) v RMS (d) w RMS

Figure 7.14: Statistics profiles for optimization runs in 163, Reτ = 180
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This same loss of authority is further evidenced in tests for a 243 mesh. As seen in figure 7.15,
especially the means profile seems almost insensitive to modifications in the γ0 parameter.
The employed boundary condition enforcement method was the weak imposition, and as
discussed in 5.2, a magnitude reduction of the negative wall velocities is appreciated, as the
increased grid refinement drives the method to resemble Dirichlet B.Cs.

(a) u Mean (b) u RMS

(c) v RMS (d) w RMS

Figure 7.15: Statistics profiles for optimization runs in 243, Reτ = 180, g-method
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Chapter 8

Conclusions

The use of modified VMM SGS models has been explored with aims to establish the feasibility
of employing them as coupling terms for hybrid methods. Through relatively simple modi-
fications to existing formulations, improved results have been obtained for LES simulations
while employing statistical data to feed the models. The obtained profiles are indicative of
the potential of this method. While this work is intended to set the base knowledge for a more
complex methodology, it has demonstrated that a certain level of control can be achieved over
the results.

A response surface technique was used for the proposed improvements. While this method is
expensive in the context of unsteady three dimensional computations, it was employed with
the objective of understanding the solution spaces. Some of the results have demonstrated
to loose exactness in the fluctuations profiles while obtaining closes matches in the bulk and
mean velocities. This issue might derive from the fact that the optimization solutions spaces
are complex. A low resolution exploration of these might be overlooking alternate solutions.
The use of the Bazilevs τ approximation in the NSE case appears to be limiting. Although
appropriate in well resolved regions, a formulation with a much higher solution dependence
appears to be necessary to improve control authority in coarse regions.

As pointed out by Nicoud et al. (2011), a match of both the mean and fluctuations profiles is
essentially no easy task when attempting to reproduce the logarithmic law of the wall with
suboptimal controls using a wall stress model. The approach described here is different in
that we also consider SGS model adaptations. In the future, this issue is expected to be
addressed through the use of “automatic” optimization methods such as Artificial Neural
Networks, variational Germano techniques, or Goal-Oriented optimization operating both on
the wall boundary condition and in the interior.

Another source of error might lie in the assumption of quasi-static subscales. As demonstrated,
this assumption provides a considerable relaxation of the formulations complexity, however
this might be introducing a large cost in the sense of the results quality. Work by Codina
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et al. (2007) has indicated that this is not an assumption of negligible consequences; which
seems to be true here, given that the unresolved structures in an 83 mesh might be expected
to be quite large, and thus an assumption of instantaneous responses to the resolved scales
could be bold assumption.

8.1 Recommendations

For future work, some additional considerations are now suggested.

A redefinition of the proposed norms could improve the results if these include the statistical
data of the fluctuations. Being the ultimate goal of this research to couple RANS and LES
methods, considering information of the Reynolds stresses might provide improved paths to
matching the results.

The use of dynamic subscales could also be considered. While this introduces an ODE formu-
lation for the otherwise “simple” small-scales approximations, potentially adding complexity
to the interpretation of future results, they might account for a large amount of effects in the
overall flow.

The ideas of weak B.Cs. and g method were slightly explored in this framework, however
the obtained improvements suggest that further exploration of these methods could provide
a better match of the profiles.

In the context of the NSE, the implementation of an asymptotic expansion form for u′ yielded
what appear to be ineffective results. It is important to point out that the assumptions for this
formulation suggested simple forms. In the future, the use of space-time training norms could
be used to evaluate alternate candidate forms, which within itself poses another optimization
exercise. The energy evolution in the flow can also be tested to ensure the resulting models
are stable.

Additionally, the possibility of obtaining an increased control over the fluctuation profiles can
be explored through the use of a modified matrix for τ . While recalling that the one employed
in this work is a diagonal 4× 4 matrix of the from:

τ =


τM 0 0 0
0 τM 0 0
0 0 τM 0
0 0 0 τC



an alternate (non-diagonal) form might aid in an attempt to improve the simultaneous match-
ing of the fluctuations profiles while minimizing the simulation norm. Given the explored
ideas, this matrix itself can be subject to optimization methods if a series of γiτM are intro-
duced in its off-diagonal terms.
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