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 Magnetic resonance imaging (MRI) has become a key medical imaging modality since 

its inception in the 1970s. An advantage of MRI over other modalities such as CT or 
PET is that the patient is not exposed to ionizing radiation. Additionally, the clinical 
success of MRI derives from its capacity to generate a large variety of contrasts be-
tween tissues. As such, MRI is currently an irreplaceable radiological tool for medical 
diagnosis, monitoring of diseases, and the planning of surgery. This chapter deals with 
some of the underlying physics of MRI and specifically the topics that are relevant for 
the rest of the thesis. 

Fundamentals of MRI 
MRI relies on the fact that atoms having unpaired protons or unpaired neutrons are 
magnetized when submerged in a strong magnetic field. In clinical practice, hydrogen 
nuclei are predominantly used, since hydrogen is abundantly present in the human 
body. Effectively, the magnetic moments of these hydrogen nuclei (commonly referred 
to as ‘spins’) tend to align with the main magnetic field of the MRI scanner. On a 
macroscopic scale, i.e. on the order of a mm3, a net magnetization pointing along the 
main magnetic field direction is thus generated. 

The spins in an external magnetic field also experience a torque that causes them to 
precess around the magnetic field: the so-called Larmor precession. The Larmor pre-
cession frequency 𝜔𝜔𝐿𝐿 is determined by the strength of the external magnetic field 𝐵𝐵0 
and the particle-specific gyromagnetic ratio 𝛾𝛾: 

𝜔𝜔𝐿𝐿 = 𝛾𝛾𝐵𝐵0 ( 1.1 ) 

which, for hydrogen, is 42.58 MHz/Tesla and thus 𝜔𝜔𝐿𝐿 lies in the radiofrequency (RF) 
range at the clinically used field strengths of 1.5 and 3 Tesla (T). 

Excitation is achieved by subjecting the net magnetic moment to a secondary, oscillat-
ing electromagnetic field 𝐵𝐵1 of the same frequency as the Larmor frequency and per-
pendicular to 𝐵𝐵0. As a result the magnetization vector will start to also rotate around 
the 𝐵𝐵1 field, see Figure 1.1. Effectively, the net magnetization vector is then tipped 
over by a certain angle: the flip angle (𝐹𝐹𝐹𝐹), which is determined by the time-integral 
of the amplitude of the RF-pulse. 

The transverse component of the precessing spins generates an oscillating electromag-
netic field that induces an alternating current in a receive coil placed at a small dis-
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tance. Thus, due to the application of RF-pulse, the net transverse magnetization be-
comes nonzero, and a signal can be detected. After spins have been excited by an RF-
pulse, however, they will gradually relax back to their equilibrium state. On a macro-
scopic scale, this causes the longitudinal component of the net magnetization to recov-
er to equilibrium in an exponential fashion. The relaxation time associated with this 
recovery is called the 𝑇𝑇1-time and is illustrated in Figure 1.2. 

Simultaneously, the spins also exchange energy among each other by a process called 

Figure 1.1. Combined effect of the static field magnetic field 𝐵𝐵0 and the oscillating magnetic field 𝐵𝐵1 on 
the net magnetization: the 𝐵𝐵0 field induces a precessional motion around its axis while the 𝐵𝐵1 field makes 
that the net magnetization is tilted towards the transverse plane. Image taken from Storey (2006). 

Figure 1.2. Illustration how the combined effect of the 𝐵𝐵0 field, 𝑇𝑇1 and 𝑇𝑇2 relaxation affect the signal 
after excitation. Image taken from Hazra (2016). 
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 spin-spin interaction. This causes the relative phase of individual nearby spins to dis-

perse, which results in the transverse component of the net magnetization decaying to 
zero. This is again an exponential process, characterized by the 𝑇𝑇2-relaxation time and 
illustrated in Figure 1.2. Additionally, spins may experience static fluctuations in 
magnetic field strength, due to global variation in the 𝐵𝐵0 field, and/or susceptibility 
effects. Similar to the spin-spin interaction, this causes the individual spins to dephase, 
again resulting in an exponential decay of the transverse magnetization, characterized 
by the relaxation time 𝑇𝑇2′. Since the 𝑇𝑇2 and 𝑇𝑇2′ effects both affect the transverse mag-
netization, they are often combined into one value known as 𝑇𝑇2∗ = 1/(1/𝑇𝑇2 + 1/𝑇𝑇2′ ). 

The excited spins by default generate a signal at the same frequency irrespective of lo-
cation, and are therefore indistinguishable. Hence, a mechanism is needed to spatially 
resolve the signal, i.e. to generate an image through spatial encoding. To facilitate spa-
tial localization of the signal a magnetic field gradient is applied while applying a 
band-limited RF-pulse. The magnetic field gradient causes the Larmor frequency to 
vary linearly in space, so that only in a (thin) slice of the object the spins precess with a 
Larmor frequency inside the bandwidth of the RF-pulse and only those will be tilted 
into the transverse plane. Similarly, magnetic field gradients are applied during signal 
measurement. This also causes spins at different locations to precess at different Lar-
mor frequencies. With clever control of the three magnetic field gradients (𝐺𝐺𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, 
𝐺𝐺𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎, 𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) in the MR system, it is possible to spatially encode each of the princi-
pal directions. A Fourier transform is applied to the acquired signal to reveal the en-
coded frequency components and implicitly resolves the spatial origin of its constitut-
ing components. 

The bulk behavior of the spins is, in addition to 𝑇𝑇1,𝑇𝑇2,𝑇𝑇2′ relaxation, also influenced 
by physical processes such as water diffusion, blood flow, and oxygen consumption. 
By varying acquisition settings, these different physical processes can be emphasized in 
the acquired MR signal from which an image is created by means of a reconstruction 
method. The manner in which an MRI acquisition manipulates the signal in order to 
arrive at a certain image contrast is captured in an MR pulse sequence. Figure 1.3 ex-
emplifies the versatility of acquisitions sequences for imaging the brain [1].  

In practice, the contrast in MR images results from a mixture of physical properties of 
both the tissues and the scanning system. Importantly, the variation in intensity with-
in an image, or between different images, is not directly linked to a single physical 
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process. For instance, the contrasts in Figure 1.3 are influenced by the magnetic field 
that has both spatial and temporal variation due to fluctuation in the system and the 
interplay with the scanned object (in particular its susceptibility). Consequently, re-
peating a scan on the same or a different system will yield variation in image intensity 
due to essentially irrelevant factors. This is not problematic for many medical applica-
tions that are often based on a structural, visual interpretation of the anatomy. How-

Figure 1.3. Example images of the brain using settings to emphasize (contrast due to) 𝑇𝑇1 relaxometry (A), 
proton density (B), 𝑇𝑇2 relaxometry (C), 𝑇𝑇2∗ relaxometry (D), flow (E-F), diffusion (G-I), and oxygen level 
(J). These images were acquired in the Rotterdam Scan Study (Ikram et al, 2015). 
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 ever, it is widely recognized that increasing the reproducibility of the measurements 

might improve detection of subtle changes in the body and thus improve clinical as-
sessments [2], [3]. 

Quantitative MRI 
Quantitative MRI (qMRI) methods aim to obtain more reproducible data by measur-
ing the separate physical processes that determine the MR signal. Changes in the pa-
rameters that represent these processes have been linked to various pathologies [2]. 
Furthermore, the physical basis of the measurements can help in the interpretation of 
changes. There are numerous methods for quantifying these physical parameters. This 
thesis concentrates on relaxometry methods that attempt to estimate the parameters 
that describe magnetic relaxation (𝑇𝑇1,𝑇𝑇2,𝑇𝑇2∗), whose accurate estimation often requires 
the estimation of the static (𝐵𝐵0) and RF transmit (𝐵𝐵1+) magnetic fields (see Figure 
1.4). 

Application of relaxometry methods is not commonly used for standard patient care in 
the clinic since traditionally these methods require long scan times. Furthermore, in-
accuracy and variation in reported relaxometry values for common tissues is a known 
issue, which can be caused by ignoring physical effects in order to simplify the parame-

Figure 1.4. Parameter maps related to relaxometry, proton density, and magnetic fields in the brain. 
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ter estimation.  

In recent years, the research interest in qMRI methods has increased, in particular due 
the introduction of efficient methods that are able to estimate multiple parameters in a 
short scan time [4]–[6]. Most notably, magnetic resonance fingerprinting (MRF) is a 
new paradigm for efficient parameter estimation that has received large interest in the 
MR research community [6].  

In order to detail some of the issues of qMRI and the solutions offered in this thesis, 
the following part of this introduction will briefly address some of the relevant back-
ground information. A more extensive discussion of fundamental MR physics is pro-
vided in Haacke et al. [7].  

Modelling the MR system: the Bloch equations 
An MRI system as shown in Figure 1.5 obtains a signal from the hydrogen in the body 
through the generation and manipulation of magnetic fields. These magnetic fields 
consist of three components: 

1. a strong homogeneous static magnetic field directed parallel to the bore in 
which the patient is lying. 

2. gradient fields that can linearly in- or decrease the static field in any direction. 

3. a radiofrequency (RF) field that is orthogonally directed to the static field. 

Figure 1.5. Overview MR scanner with special attention to the gradient, RF, and main magnetic field. 
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 In the following the bulk magnetic moment generated by the spins of a small volume 

element (voxel) at any time is represented by the vector 𝑀𝑀(𝑡𝑡). The behavior of this 
magnetization vector 𝑀𝑀(𝑡𝑡) in the presence of the external magnetic field 𝐵𝐵(𝑡𝑡) is de-
scribed by the Bloch equation: 

𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

= 𝛾𝛾𝛾𝛾(𝑡𝑡) × 𝐵𝐵(𝑡𝑡) +
1
𝑇𝑇1
�𝑀𝑀0 −𝑀𝑀𝑧𝑧(𝑡𝑡)� −

1
𝑇𝑇2
𝑀𝑀𝑥𝑥𝑥𝑥(𝑡𝑡), ( 1.2 ) 

where 𝛾𝛾 ∈ ℝ is the gyromagnetic ratio and 𝑀𝑀0 represents the magnetization in its 
equilibrium state that scales with the local proton density (𝑃𝑃𝑃𝑃). The vectors 𝑀𝑀𝑧𝑧 and 
𝑀𝑀𝑥𝑥𝑥𝑥 are respectively the projections of 𝑀𝑀 parallel and orthogonal to the main magnet-
ic field. 

In the Bloch equation, the first term on the right describes the precessional behavior of 
the 𝑀𝑀(𝑡𝑡) around the applied magnetic field 𝐵𝐵(𝑡𝑡), as illustrated in Figure 1.1. Here, 
𝐵𝐵(𝑡𝑡) is the sum of the constant 𝐵𝐵0 field, and the time-varying gradient 
(𝐺𝐺𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ,𝐺𝐺𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎,𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) and RF-transmit (𝐵𝐵1+) fields. The second and third term on 
the right describe respectively the 𝑇𝑇1 relaxation towards the main magnetic field (𝑧𝑧-
direction) and the 𝑇𝑇2 decay, as shown in Figure 1.2. While 𝐵𝐵(𝑡𝑡) varies continuously 
over time, for simulation purposes we will assume that it is constant on small time 
intervals Δ𝑡𝑡. By alternating the relaxation and rotation steps, a simulation of the Bloch 
equation gets an accuracy of 𝒪𝒪(Δ𝑡𝑡2), see [8].  

Unfortunately, there are spatial variations in the applied magnetic fields particularly 
due to imperfections of the main magnetic field and the magnetic susceptibility of the 
scanned object. Static field inhomogeneities Δ𝐵𝐵0 affect the frequency of the rotating 
spins and thus their resonance. In addition, the inhomogeneity in 𝐵𝐵1+ locally influ-
ences the ‘effectiveness’ of the RF pulses. Accounting for these magnetic field inhomo-
geneities is required for an accurate simulation of the MR signal. 

Quantitative methods: pulse sequences  
The Bloch equations reflect the dependence of the signal on the underlying physical 
parameters. Conversely, a physical parameter can be estimated from the evolution of 
the MR signal if a known sequence of timed excitation pulses is applied. Such a se-
quence is designed to separate the parameter(s) of interest from the confounding pa-
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rameters. We illustrate this with three examples of qMRI sequences that are often ap-
plied for physical parameter estimation.  

Figure 1.6 shows the pulse sequence of an inversion recovery method, which is used 
for 𝑇𝑇1 estimation. Initially, an inversion pulse (180°) is applied to reverse the magnet-
ization. Subsequently excitation (90°) and refocusing (180°) pulses are applied to 
sample the signal after some inversion time TI, during longitudinal recovery. Notably, 
the parameters 𝑇𝑇2, 𝑃𝑃𝑃𝑃 and variation in the 𝐵𝐵1+ field induce a constant scaling of the 
measured signal, while the effect of Δ𝐵𝐵0 and 𝑇𝑇2′ is cancelled due to the refocusing 
pulse. Eventually, the 𝑇𝑇1 parameter can be estimated by fitting a simple exponential 
increasing function to the signal sampled at different inversion times.  

Figure 1.7 shows the pulse sequence of a multiple-spin echo sequence, which is ap-

Figure 1.6. Diagram of inversion-recovery spin-echo (IRSE) sequence. Image taken from Pooley (2005). 
TI is the so-called inversion time, i.e. the time between the preceding 180o preparation pulse and the 90o 
pulse that is applied for imaging purposes. 

Figure 1.7. Diagram of multiple spin-echo (MSE) sequence. Image taken from Pooley (2005). 



16 | Chapter 1 

 

 
 

plied to estimate the 𝑇𝑇2 parameter. After an excitation pulse, a sequence of refocusing 
pulses at fixed intervals are used to compensate for 𝑇𝑇2′ effects. Subsequently, an expo-
nential decay function is fitted in order to derive the 𝑇𝑇2 relaxation constant. While 
doing so 𝑇𝑇1 influences are ignored and the 𝐵𝐵1+ field is assumed to be constant. 

Figure 1.8 shows the pulse sequence of a magnetic resonance fingerprinting (MRF) 
method, which was recently introduced to estimate multiple parameters in a single 
scan [6]. This method applies a sequence of RF pulses with pseudorandom flip angles 
and repetition times. Consequently, the measured signal does not follow a simple 
function of a single parameter, but requires solving the Bloch equation one time step 
at a time. The computational complexity of the Bloch equations makes parameter es-
timation through an iterative fitting procedure time-consuming. Therefore, the MRF 
method avoids repeated Bloch simulations by matching the measured signal to a pre-
computed signal look-up table, or dictionary.  

Research problems 
Although relaxometry methods improve the reproducibility and interpretability of 
data compared to conventional MRI, some issues have prevented the widespread ap-
plication of quantitative methods to the clinic. The golden standard relaxometry 
methods have prohibitively long scan times, while faster methods often have low preci-
sion and/or accuracy. Practical application requires combining short scan times for 
each parameter of interest, with high accuracy and precision.  

Magnetic Resonance Fingerprinting (MRF) is a promising method for estimating 
multiple parameters in a short scan time. However, parameter estimation through the 

Figure 1.8. Diagram of magnetic resonance fingerprinting (MRF) sequence that applies radiofrequency 
pulses with varying flip angles (FA) and repetition times (TR). Image taken from Ma (2013). 



Introduction | 17 

 

1  

2  

3  

4  

5  

  

R  

S  

A  

P  

CV  

 

 
 matching of measurements with a signal dictionary quickly becomes infeasible when 

increasing the number of estimated parameters due to high computational and 
memory costs. This limits the development of MRF methods with high precision for 
all relevant parameters. 

Alternatively, multiple parameters can be estimated in a single scan through a protocol 
combining conventional qMRI methods, such as the inversion-recovery spin-echo 
(IRSE) and multiple spin-echo (MSE) methods. However, this requires an increase in 
the accuracy and precision these methods obtain in a short scan time. The accuracy 
can improve by estimating all relevant parameters simultaneously and sharing infor-
mation between the separate qMRI methods. Higher precision might be obtained by 
carefully selecting which methods to include in the protocol and with which settings. 
But this requires a practical method for comparing the precisions of qMRI methods 
over a wide range of settings, which currently is unavailable. 

Research aim 
In this work we aim to facilitate quantitative, reproducible estimation of multiple 
physical MRI parameters. In order to do so, our research has focused on developing 
novel methods for: 

1) reducing the computational and memory requirements of the estimation of 
parameters with increased dimensionality. 

2) selecting the most appropriate qMRI method as well as its settings, i.e. the 
MRI method with the highest precision in the available scan time.  

3) designing scan protocols for the simultaneous estimation of multiple parame-
ters from the combination of qMRI methods with highest precision. 

Outline 
The current chapter described the aim of this thesis and the relevant background in-
formation. 

Chapter 2 presents an efficient method for the simultaneous estimation of multiple 
parameters from quantitative methods such as MRF. This is done by approximating 
the signal model over the parameter range though B-spline interpolation. Consequent-
ly, the parameter estimation obtains equal accuracy as the conventional dictionary 
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 matching, while reducing the computational and memory requirements with an order 

of magnitude per estimated parameter.  

Chapter 3 introduces a framework to assess the time efficiency as a quality measure 
for quantitative methods. Time efficiency equals the precision obtained in a unit of 
scan time. We validate the predicted time efficiency on the scanner over a wide range 
of different qMRI methods. 

Chapter 4 implements a framework for the design of a scan protocol for the estima-
tion of the relaxometry parameters (𝑇𝑇1,𝑇𝑇2,𝑇𝑇2′) with optimal time efficiency. We show 
that the optimized protocols can estimate multiple parameters simultaneously and 
with higher precision than most traditional quantitative methods with the same scan 
time. 

Chapter 5 discusses the strengths and weaknesses of the methods introduced in this 
thesis and gives an outlook for future developments.  
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 Contents of this chapter was published in IEEE Transactions on Medical Imaging as 

An Efficient Method for Multi-Parameter Mapping in 
Quantitative MRI using B-Spline Interpolation 

Willem van Valenberg, Stefan Klein, Frans M. Vos, Kirsten Koolstra, Lucas J. van 
Vliet, Dirk H.J. Poot 

  

Abstract 

 

Quantitative MRI methods that estimate multiple physical parameters simultane-
ously often require the fitting of a computational complex signal model defined 
through the Bloch equations. Repeated Bloch simulations can be avoided by 
matching the measured signal with a precomputed signal dictionary on a discrete 
parameter grid (i.e. lookup table) as used in MR Fingerprinting. However, accurate 
estimation requires discretizing each parameter with a high resolution and conse-
quently high computational and memory costs for dictionary generation, storage, 
and matching. 

Here, we reduce the required parameter resolution by approximating the signal be-
tween grid points through B-spline interpolation. The interpolant and its gradient 
are evaluated efficiently which enables a least-squares fitting method for parameter 
mapping. The resolution of each parameter was minimized while obtaining a user-
specified interpolation accuracy. The method was evaluated by phantom and in-
vivo experiments using fully-sampled and undersampled unbalanced (FISP) MR 
fingerprinting acquisitions. Bloch simulations incorporated relaxation effects 
(𝑇𝑇1,𝑇𝑇2), proton density (𝑃𝑃𝑃𝑃), receiver phase (𝜑𝜑0), transmit field inhomogeneity 
(𝐵𝐵1+), and slice profile. Parameter maps were compared with those obtained from 
dictionary matching, where the parameter resolution was chosen to obtain similar 
signal (interpolation) accuracy. For both the phantom and the in-vivo acquisition, 
the proposed method approximated the parameter maps obtained through diction-
ary matching while reducing the parameter resolution in each dimension 
(𝑇𝑇1,𝑇𝑇2,𝐵𝐵1+) by – on average – an order of magnitude. In effect, the applied diction-
ary was reduced from 1.47 GB to 464 KB. Furthermore, the proposed method was 
equally robust against undersampling artifacts as dictionary matching. Dictionary 
fitting with B-spline interpolation reduces the computational and memory costs of 
dictionary-based methods and is therefore a promising method for multi-parametric 
mapping. 

DOI: 10.1109/TMI.2019.2954751 

https://doi.org/10.1109/TMI.2019.2954751
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 Introduction 

Quantitative MRI (qMRI) methods measure the magnetic properties of tissues, de-
scribed by parameters such as relaxation times (𝑇𝑇1,𝑇𝑇2,𝑇𝑇2∗) and proton density (𝑃𝑃𝑃𝑃). 
Many of these methods require knowledge of inhomogeneities in the static (∆𝐵𝐵0) 
and/or transmit (𝐵𝐵1+) magnetic field in order to obtain accurate parameter maps. 
Changes in the magnetic properties of tissues have been linked to various pathologies 
[2]. 

Magnetic resonance fingerprinting (MRF) is a recently introduced paradigm to ac-
quire multiple parameters within a short scan time [6]. MRF methods use a pulse se-
quence with varying flip angles and repetition times to acquire images with many dif-
ferent contrasts. In each voxel, the signal’s time course is assumed to be specific to the 
parameter combination representing the underlying tissue. Usually, each contrast is 
undersampled, but by varying the k-space trajectory among the contrasts, under-
sampling artifacts are assumed separable from the true signal of a voxel. Parameter es-
timation is done by matching the acquired signal course in a voxel to a dictionary that 
contains the simulated signals, or atoms, for a grid of parameter combinations (e.g. 
𝑇𝑇1,𝑇𝑇2,𝑇𝑇2∗,∆𝐵𝐵0,𝐵𝐵1+). This matching avoids the fitting of an explicit signal model, 
which in MRF would require repeatedly solving Bloch equations, which is computa-
tionally expensive. Before MRF, dictionary matching was also applied in other qMRI 
methods in order to improve 𝑇𝑇1 estimation [9], [10], 𝑇𝑇2 estimation [11], and water/fat 
separation [12], [13]. 

The original MRF paper obtained 𝑇𝑇1,𝑇𝑇2,Δ𝐵𝐵0, and 𝑃𝑃𝐷𝐷 parameter maps with a pseu-
dorandom 2D inversion-recovery balanced steady state free-precession (IR-bSSFP) 
sequence with variable-density-spiral readout [6]. Subsequently, a modification to the 
original scheme was proposed by applying the fast-imaging with steady-state preces-
sion (FISP) sequence, which includes unbalanced gradients [14]. This reduced the 
influence of static field inhomogeneities at the cost of a lower signal-to-noise ratio 
(SNR). In recent years, these MRF methods have been extended to measure other 
properties of interest such as diffusion [15], perfusion [16], and chemical exchange 
[17]. Furthermore, including transmit field inhomogeneity (𝐵𝐵1+) and slice profile in 
the fitting has been shown to increase the accuracy of the resulting relaxometry maps 
[18], [19].  
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 However, dictionary matching becomes problematic when the number of estimated 

parameters is increased. The number of atoms increases exponentially with the num-
ber of parameters, and consequently also the computational and memory costs of gen-
erating, storing, and matching to the dictionary. This is especially prohibitive if the 
required precision for each parameter is high since this requires many steps along each 
dimension of the dictionary. 

Several clever strategies were introduced to reduce the computational and memory 
demands of large dictionaries. Smarter search strategies can significantly reduce the 
matching time [20], but the size of the dictionary is limited by the available memory. 
The atoms can be compressed with a singular value decomposition (SVD) to lower the 
computational and memory costs for matching and storing the dictionary [21]. How-
ever, using too few singular vectors degrades the results. More recent work proposed 
interpolating the signal with a polynomial hyperplane fitted on a sparsely sampled dic-
tionary [22]. However, this method was applied to a two-parameter case only (𝑇𝑇1 and 
𝑇𝑇2) and the accuracy of the parameter maps remained limited to an a priori defined 
refinement factor. 

We propose parameter estimation by fitting the acquired MR signal with a continuous 
signal model defined through B-spline interpolation of a sparse dictionary. The inter-
polation targets to maintain the estimation accuracy while reducing the resolution of 
each parameter and consequently the computational and memory costs of the diction-
ary. This would enable the estimation of an increased number of parameters simulta-
neously. B-spline interpolation is commonly used in image interpolation because it is a 
flexible and efficient technique that has minimal support for a desired interpolation 
error [23], [24]. In particular, the derivative of the interpolant can be calculated effi-
ciently [24] which allows a gradient-based optimization technique for fitting a meas-
ured signal to the dictionary. Additionally, we introduce a method to estimate the pa-
rameter resolution in the dictionary that is required to achieve a user-specified interpo-
lation accuracy. The proposed method is evaluated on simulated data and measure-
ments taken from phantom and in-vivo experiments. The efficiency of our dictionary 
fitting framework is compared to matching with a dictionary of equal accuracy. We 
hypothesize that the proposed method accurately estimates a comprehensive set of pa-
rameters based on a significantly smaller dictionary. 
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 Methods 

Parameter Estimation 
A general qMRI method measures the complex-valued signal 𝒎𝒎 of a voxel at 𝑀𝑀 time 
points. The signal is assumed to be a function of 𝑃𝑃 parameters 𝜽𝜽 = [𝜃𝜃1, … ,𝜃𝜃𝑃𝑃] ∈ Θ ⊆
ℝ𝑃𝑃, contaminated by Gaussian noise: 

𝒎𝒎 =  𝜌𝜌𝒔𝒔(𝜽𝜽) + 𝝈𝝈 ( 2.1 ) 

The signal model 𝒔𝒔(𝜽𝜽) ∈ ℂ𝑀𝑀 is the pulse sequence specific solution of the Bloch equa-
tions, and the scaling factor 𝜌𝜌 ∈ ℂ is dependent on the proton density and the receiver 
sensitivity. Note that we assume a single-compartment model in each voxel, so that 𝜌𝜌 
is a single complex number. The Gaussian noise 𝝈𝝈 ∈ ℂ𝑀𝑀 is considered identical and 
uncorrelated between measurements and receiver channels.  

Parameter estimation is often done by least-squares fitting: 

�𝜽𝜽�,𝝆𝝆�� = arg min
𝜽𝜽∈𝚯𝚯,𝜌𝜌∈ℂ

‖𝒎𝒎− 𝜌𝜌𝒔𝒔(𝜽𝜽)‖22 ( 2.2 ) 

However, the signal model 𝒔𝒔(𝜽𝜽) is computationally complex for MRF, since the signal 
at a given time point depends on the signal’s history during previous steps. As such, it 
requires solving the Bloch equations step-by-step. This makes conventional optimiza-
tion techniques for solving Eq. 2.2 expensive. 

Dictionary Matching 
MRF avoids repeated evaluation of 𝒔𝒔(𝜽𝜽) by matching the acquired signal to a pre-
computed dictionary, i.e. signals on a discrete grid of parameter values [6]. The dic-
tionary atom with index 𝒌𝒌 ∈ ℕ𝑃𝑃 corresponds to parameter values 𝜽𝜽 = 𝒇𝒇(𝒌𝒌), where 
the mapping 𝒇𝒇(𝒗𝒗) is defined for continuous grid position 𝒗𝒗 ∈ ℝ𝑃𝑃 in order to facilitate 
interpolation (see below). 

The dictionary matching step in MRF finds for a measured signal 𝒎𝒎 the grid point 𝒌𝒌� 
and consequently the associated parameter combination 𝜽𝜽� = 𝒇𝒇�𝒌𝒌�� by 

𝒌𝒌� = arg max
𝒌𝒌

�𝒎𝒎𝑯𝑯𝒔𝒔�𝒇𝒇(𝒌𝒌)�� �𝒔𝒔�𝒇𝒇(𝒌𝒌)��2�  . ( 2.3 ) 
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 The superscript 𝐻𝐻 indicates the Hermitian conjugate. The complex scaling factor 𝜌𝜌� is 

subsequently determined through the least-square solution: 

𝜌𝜌� = �𝒔𝒔�𝜽𝜽��𝑯𝑯𝒎𝒎� �𝒔𝒔�𝜽𝜽��𝑯𝑯𝒔𝒔�𝜽𝜽���� ∈ ℂ ( 2.4 ) 

The solution [𝒇𝒇�𝒌𝒌��,𝜌𝜌�] of Eqs. 2.3 and 2.4 is also the solution of Eq. 2.2 when cast as 
a discrete optimization problem over the parameter values 𝜽𝜽 = 𝒇𝒇(𝒌𝒌) (see Supplemen-
tary Materials A). 

The number of dictionary atoms increases linearly with the number of discretized val-
ues (𝐾𝐾𝑝𝑝) of each parameter and exponentially with the number of parameters (𝑃𝑃). 
Therefore, high-precision multi-parameter maps are computationally infeasible since 
the computational and memory cost for dictionary generation, storage, and matching 
scale linearly with the number of dictionary atoms. Singular value decomposition 
(SVD) can alleviate these effects by projecting both the measurement data 𝒎𝒎 and the 
dictionary atoms 𝒔𝒔�𝒇𝒇(𝒌𝒌)� to a lower dimensional space: 

𝒎𝒎𝐿𝐿 = 𝑽𝑽𝐿𝐿𝑇𝑇𝒎𝒎 ∈ ℂ𝐿𝐿

𝒔𝒔𝐿𝐿�𝒇𝒇(𝒌𝒌)� = 𝑽𝑽𝐿𝐿𝑇𝑇𝒔𝒔�𝒇𝒇(𝒌𝒌)� ∈ ℂ𝐿𝐿
  ( 2.5 ) 

where 𝑽𝑽𝐿𝐿𝑇𝑇 contains the singular vectors corresponding to the 𝐿𝐿 largest singular values. 
As a result, the memory costs of storing the dictionary and the cost of the dictionary-
matching step in Eq. 2.3 reduces by a factor 𝐿𝐿/𝑀𝑀 [14]. However, the results degrade 
when using too few singular vectors and multi-parameter mapping is still computa-
tionally demanding since the SVD only reduces the number of time points and not 
the number of atoms. 

Dictionary Fitting 
To enhance the precision of the parameter maps while limiting the number of grid 
points, we propose a dictionary fitting1 framework in which the signal is modelled on 
the whole, continuous parameter domain through interpolation of a sparsely sampled 
dictionary. We define the B-spline interpolated signal of order 𝑛𝑛 at grid position 
𝒗𝒗 ∈ ℝ𝑃𝑃 (without SVD) as [23]: 

                                                      
1We use the term dictionary matching for the discrete optimization in Eq. 2.3 and dictionary fitting for the continuous 
optimization in Eq. 2.8. 
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 𝒔𝒔�(𝒗𝒗) = � 𝒄𝒄(𝒌𝒌)𝜷𝜷𝑛𝑛(𝒗𝒗 − 𝒌𝒌)

𝒌𝒌∈ℕ𝑃𝑃
 ( 2.6 ) 

Here, 𝒄𝒄(𝒌𝒌) ∈ ℂ𝑀𝑀 indicates the B-spline coefficient for each dictionary atom and 
𝜷𝜷𝑛𝑛(𝒗𝒗) is the product of B-spline basis functions of order 𝑛𝑛 along each dimension: 

𝜷𝜷𝑛𝑛(𝒗𝒗) = �𝛽𝛽𝑛𝑛�𝑣𝑣𝑝𝑝�
𝑃𝑃

𝑝𝑝=1

 ( 2.7 ) 

For details on B-spline interpolation, including the exact definition of the B-spline 
basis functions 𝛽𝛽𝑛𝑛�𝑣𝑣𝑝𝑝� we refer to a general background paper [23]. Essentially, the 
𝑛𝑛th order B-spline basis function is a piecewise polynomial of degree 𝑛𝑛 with width of 
support 𝑛𝑛 + 1. The coefficients 𝒄𝒄(𝒌𝒌) can be obtained via a closed-form solution, such 
that 𝒔𝒔�(𝒌𝒌) = 𝒔𝒔�𝒇𝒇(𝒌𝒌)�. In effect, the interpolated function intersects the dictionary 
atoms exactly, while there is continuity up to the 𝑛𝑛th derivative. 

With SVD compression, the B-spline interpolated signal 𝒔𝒔�𝐿𝐿(𝒌𝒌) ∈ ℂ𝐿𝐿 and its coeffi-
cients 𝒄𝒄𝐿𝐿(𝒌𝒌) ∈ ℂ𝐿𝐿 are defined by replacing 𝒔𝒔�𝒇𝒇(𝒌𝒌)� ∈ ℂ𝑀𝑀 with 𝒔𝒔𝐿𝐿�𝒇𝒇(𝒌𝒌)� ∈ ℂ𝐿𝐿. 
Through recursive implementation of the spline interpolation [24], the computational 
cost of evaluating both 𝒔𝒔�𝐿𝐿(𝒗𝒗) and its gradient is only 𝒪𝒪(𝐿𝐿𝐿𝐿𝑃𝑃). The incorporation of 
B-spline interpolation and SVD compression in Eq. 2.2 yields: 

[𝒗𝒗�,𝜌𝜌�] = arg min
𝒗𝒗,𝜌𝜌 

‖𝒎𝒎𝐿𝐿 − 𝜌𝜌𝒔𝒔�𝐿𝐿(𝒗𝒗)‖2 ( 2.8 ) 

The optimization problem in Eq. 2.8 is solved using the fmincon routine from 
MATLAB (The Mathworks, Natick, MA) with the trust-region-

reflective algorithm. Dictionary matching determines the initial value and the 
optimization stops when the error reduction is below 10−5 in subsequent steps or af-
ter 100 iterations. Subsequently, we set 𝜽𝜽� = 𝑓𝑓(𝒗𝒗�), and the proton density (𝑃𝑃𝑃𝑃) and 
receiver phase (𝜑𝜑0) are determined by the modulus and phase of the complex scaling 
factor 𝜌𝜌�. The accuracy of the parameter estimates from Eq. 2.8 depends on the invert-
ibility of the forward model 𝒔𝒔(𝜽𝜽) (i.e the applied acquisition), and on the approxima-
tion errors due to the SVD projection (Eq. 2.5) and the B-spline interpolation (Eq. 
2.6) of which the latter is investigated in the following section. 
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 Parameter Resolution 

The interpolation error over the range Θ𝑝𝑝 of parameter 𝜃𝜃𝑝𝑝 decays as 𝒪𝒪�𝐾𝐾𝑝𝑝−𝑛𝑛−1 � for 
B-spline order 𝑛𝑛 and number of discretized values 𝐾𝐾𝑝𝑝 [23]. The interpolation error at 
a specific position 𝒗𝒗 ∈ ℝ𝑃𝑃 is defined by 

𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖(𝒗𝒗) ≔ �𝒔𝒔�(𝒗𝒗) − 𝒔𝒔�𝒇𝒇(𝒗𝒗)��2 . ( 2.9 ) 

To reduce the computation and memory costs of the dictionary, we aim to find for 
each spline order the smallest number of atoms such that 𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖(𝒗𝒗) is below a user-
specified threshold 𝛼𝛼 for all 𝒗𝒗 with 𝑓𝑓(𝒗𝒗) ∈ Θ. We set the parameter resolution of the 
dictionary based on the interpolation error on the boundary of Θ, where we assume 
the error is maximal. So the parameter resolution of the dictionary is determined un-
der the assumption that the interpolation error is maximal at the boundary of Θ. Con-
sequently, the number of atoms (𝐾𝐾𝑝𝑝) in parameter domain Θ𝑝𝑝 is estimated based on 
the interpolation error along 2𝑃𝑃−1 edges where the other parameters obtain their max-
imal/minimal value. On each edge, we define 𝒔𝒔�(𝒗𝒗) through interpolation of increasing 
number of atoms 𝐾𝐾𝑝𝑝 = 2𝑗𝑗−1 + 1 uniformly sampled on the grid, starting with 𝑗𝑗 = 1 
(i.e. the minimum and maximum of parameter 𝜃𝜃𝑝𝑝) until a user-specified maximum 𝐽𝐽. 
For each iteration 𝑗𝑗 and spline order 𝑛𝑛, we determine the overall interpolation error as 
the maximum of 𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖(𝒗𝒗) evaluated at the midpoints between atoms on each edge. We 
select the 𝐾𝐾𝑝𝑝 for which the overall interpolation error is below a chosen value 𝛼𝛼 for the 
given number and all further refinements. We include values 𝐾𝐾𝑝𝑝 ≠ 2𝑗𝑗 + 1 in this se-
lection by estimating the overall interpolation error between the 𝐽𝐽 iterations through 
linear interpolation.  

Dictionary Design 
The dictionary-fitting framework is tested with a FISP MRF pulse sequence [14]. The 
generated dictionary contains the simulated signals as a function of 𝑃𝑃 = 3 parameters: 
longitudinal relaxation time 𝑇𝑇1 ∈ [5, 6000] ms, transversal relaxation time 
𝑇𝑇2 ∈ [5, 2000] ms, and transmit field inhomogeneity 𝐵𝐵1+ ∈ [0.5, 1.5]. Thus 
𝜽𝜽 = (𝑇𝑇1,𝑇𝑇2,𝐵𝐵1+) ∈ ℝ3. We define 𝜽𝜽 = 𝒇𝒇(𝒗𝒗) = [𝑓𝑓1(𝑣𝑣1),𝑓𝑓2(𝑣𝑣2),𝑓𝑓3(𝑣𝑣3)], where 𝑓𝑓𝑝𝑝 
maps [1,𝐾𝐾𝑝𝑝] to Ω𝑝𝑝 logarithmically for 𝑇𝑇1 and 𝑇𝑇2, and linearly for 𝐵𝐵1+. This choice was 
made since the signal amplitude has a known exponential dependence on 𝑇𝑇1 and 𝑇𝑇2. 
For B-spline orders 𝑛𝑛 ≥ 2, we avoid interpolation issues near the boundary by extend-
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 ing the grid with one position outside of Θ and set the derivative of the interpolant 

equal the numerical derivative as boundary condition. 

The pulse sequence was modelled with an event-based approach with RF pulses, gra-
dient pulses, and signal readout at specified time points. Adiabatic inversion pulse and 
gradient pulses were modelled as instantaneous rotations. The slice profile was mod-
elled through 10,000 spins that were uniformly distributed over twice the slice width 
(FWHM). To reduce computational complexity, the true excitation pulse was re-
placed by a pulse consisting of 7 time steps with amplitude, phase, and duration of 
each step optimized to approximate the true response of a 90 degree pulse without 
relaxation. This approximation had a relative error below 1% (with 𝐿𝐿2 norm) and re-
duced the computational complexity by a factor of 14 compare to applying the full RF 
pulse. The simulated signal 𝒔𝒔(𝜽𝜽) has the maximal amplitude of 1 when all spins are 
coherent in the transverse plane.  

Experiments 
The proposed approach was evaluated on simulated, phantom, and in-vivo data. In 
each experiment, we used 1000 flip angles and repetition times as specified in the orig-
inal FISP MRF article [14]. Other settings were: inversion time 𝑇𝑇𝐼𝐼 = 40 ms, echo 
time 𝑇𝑇𝐸𝐸 = 2.5 ms, and delay 𝑇𝑇𝐷𝐷 = 5000 ms after each pulse train. Excitation pulses 
had a duration of 1 ms, a time-bandwidth product of 3, and a slice width of 5 mm. 

The code of the dictionary fitting framework and the experiments performed is pro-
vided for reference purposes at https://bitbucket.org/bigr_erasmusmc/
dictionary_fitting. All processing was done in MATLAB using a single 2.1 GHz core 
(AMD Opteron 6172). 

Dictionary Design and Generation 
The resolution of the parameters in the dictionary was estimated for each combination 
of pulse sequence and spline order (see “Parameter Resolution”). We set the interpola-
tion error threshold to 𝛼𝛼 = 5 ⋅ 10−4, which is below the noise level observed in our 
practical experiments, and the maximum number of iterations 𝐽𝐽 = 10, since higher 
number of atoms were computationally infeasible. The total dictionary size was calcu-
lated as the product of required number of atoms for each parameter to pass the target 
error. 

https://bitbucket.org/bigr_erasmusmc/dictionary_fitting
https://bitbucket.org/bigr_erasmusmc/dictionary_fitting
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 Two dictionaries were generated in order to evaluate the proposed method. Dictionary 

fitting (Eq. 2.8) used a sparse dictionary based on the parameter resolution prescribed 
for second (𝑛𝑛 = 2) order B-spline interpolation. As a reference, parameter estimation 
was done through dictionary matching (Eq. 2.3) using a dense dictionary with param-
eter resolution prescribed for zeroth (𝑛𝑛 = 0) order B-spline interpolation (i.e. nearest 
neighbor).  

Dictionary Evaluation 
We evaluate if the interpolation error in the interior is below the prescribed threshold 
𝛼𝛼 in the dense and sparse dictionary with respectively zeroth and second order B-
spline interpolation. The interpolation error was determined by Eq. 2.9 at a 1000 po-
sitions 𝒗𝒗, sampled uniformly between 1 and 𝐾𝐾𝑝𝑝 for each dimension 𝑝𝑝, with condition 
that 𝑓𝑓2(𝑣𝑣2) = 𝑇𝑇2 ≤ 𝑇𝑇1 = 𝑓𝑓1(𝑣𝑣1) to ensure physically realistic values. This validation 
of the interpolation accuracy was performed without SVD compression in order to 
separate different sources of error. 

Phantom and In-vivo Experiment 
Practically, we evaluated the dictionary-fitting framework on a 3T Ingenia scanner 
with a 32-channel head coil (Philips Healthcare, Best, The Netherlands) on a phan-
tom and a healthy volunteer. Data sampling was done using a spiral trajectory that was 
rotated 7.5 degrees between samples and required 48 interleaves to fully sample a 
128×128 matrix.  

Parameter maps were determined by dictionary fitting (Eq. 2.8) and matching (Eq. 
2.3) with respectively the sparse and dense dictionaries with SVD compression. The 
number of singular values 𝐿𝐿 was set to 30 which is in accordance with previous work 
[22]. The effect of the compression was evaluated on the parameter maps obtained 
from the fully-sampled in-vivo experiment.  

For the phantom experiment we used the NIST system phantom that contains con-
trast spheres with calibrated 𝑇𝑇1 and 𝑇𝑇2 values [25]. We reconstructed images based on 
an undersampled (1 interleave) and fully sampled (48 interleaves) acquisition. The 
total scan time was 18 and 871 seconds for the undersampled and fully sampled acqui-
sition, respectively. The accuracy of the methods was compared through the relative 
difference between the mean estimated 𝑇𝑇1 and 𝑇𝑇2 values in each contrast sphere for 
both the fully sampled and undersampled data. To quantify the efficiency of our 
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 method, we recorded the computation time and memory usage for the dictionary cal-

culation, storage and fitting. 

The in-vivo experiment concerned acquiring a 2D slice of the brain of a healthy vol-
unteer. The study was approved by the LUMC review board for Medical Ethics and 
the volunteer gave an informed consent. Initially, we compare the parameter maps 
obtained with dictionary matching and fitting from reconstructed images of the fully 
sampled (48 interleaves) acquisition. Subsequently, we retrospectively undersampled 
the k-spaces of the fully sampled acquisition by selecting 1, 2, 4, 6, 12, 24, and 48 
interleaves. Image reconstruction based on the selected interleaves was performed by a 
non-uniform Fourier transform with density compensation. For each number of inter-
leaves, we determined the 𝑇𝑇1 and 𝑇𝑇2 maps obtained through dictionary matching and 
fitting, and compared those with the maps from the fully sampled data. 

Results 
Dictionary Design and Generation 
Figure 2.1 shows the predicted interpolation error as a function of the number of at-
oms in each parameter dimension (𝐾𝐾𝑝𝑝) for spline orders 𝑛𝑛 = {0,1,2,3}. The interpola-
tion error was quantified by the maximum value of 𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖(𝒗𝒗) over the midpoints be-
tween sampled positions. The legend reports the minimum number of atoms required 
for 𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖(𝒗𝒗) < 5 ⋅ 10−4 (which excludes the boundary padding for 𝑛𝑛 ≥ 2). The 
method predicts for zeroth order B-spline interpolation that the target interpolation 
error is achieved using 7.05 ⋅ 106 atoms (i.e. 454 ⋅ 97 ⋅ 160). With second order 
spline, the total number of atoms including the boundary dropped to 2080 (i.e. 
13 ⋅ 8 ⋅ 20), a factor of 3.38 ⋅ 103 reduction. 
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Dictionaries with both these parameter resolutions were generated. To do so the aver-
age computation time of a single atom based on the Bloch simulation was 6.20 sec-
onds. SVD compression to 30 vectors reduced the memory cost of the dense diction-
ary from 48.0 GB to 1.47 GB, and of the sparse dictionary from 14.6 MB to 464 KB.  

Dictionary Evaluation 
Figure 2.2 shows the interpolation error 𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖(𝑣𝑣) of a 1000 positions in the interior 
for the dense and sparse dictionaries with respectively zeroth and second order B-
spline interpolation (without SVD). The interpolation errors are shown as function of 
𝑇𝑇1, 𝑇𝑇2, and 𝐵𝐵1+. Note that the constraint 𝑇𝑇1 ≥ 𝑇𝑇2 biased sampled positions to high 𝑇𝑇1 
and low 𝑇𝑇2 values. The root-mean-square value of all interpolation errors was 
4.1 ⋅ 10−4 and 2.8 ⋅ 10−4 for respectively the dense and sparse dictionary, with max-
ima of 31 ⋅ 10−4 and 16 ⋅ 10−4. The interpolation error was above the target error 
for 15.5% of the sampled positions with dictionary matching, and for 7.0% of the 

Figure 2.1. Interpolation error on the edge of parameter space as function of number of atoms in each 
dimension. Dashed line indicates target error and the legend shows for each parameter the minimum 
number of atoms required to obtain the target error. The number of atoms in each parameter dimension 
reduces approximately an order of magnitude between zeroth and higher order B-spline interpolation. 
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 same sampled positions with dictionary fitting. It can be observed that in particular 

the interpolation error with second-order B-splines was highest for test signals with 𝑇𝑇1 
and 𝑇𝑇2 values near the extremes of the parameter range (left and right sides of the 
graphs).  

A single evaluation of the spline interpolation function and its gradient took 1.4 ms 
without SVD compression. 

Figure 2.2. Interpolation error at 1000 uniformly sampled positions in the grid for the dictionary used 
with matching (left) and fitting (right). The dashed line indicates the target error applied for dictionary 
design. The parameter resolution of both dictionaries is sufficient to obtain the target error for most grid 
positions in the interior. 
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 Phantom Experiment  

Figure 2.3 shows that both for the prospective undersampled and fully sampled acqui-
sitions the parameter maps obtained with dictionary matching were closely approxi-
mated by the proposed dictionary fitting method. The 𝑇𝑇2, 𝐵𝐵1+, and 𝑃𝑃𝑃𝑃 maps from the 
undersampled data have some artefacts that are predominantly located in the back-
ground water.  

Figure 2.4 shows the mean estimated 𝑇𝑇1 and 𝑇𝑇2 values in each sphere of the phantom 
as a function of their calibrated values for undersampled and fully sampled acquisi-
tions and both estimation methods. The relative differences between mean estimated 
and calibrated 𝑇𝑇1 and 𝑇𝑇2 values were respectively below 1.0% and 10.2% for the un-

Figure 2.3. Estimated parameter maps in the phantom through dictionary matching and dictionary fit-
ting with both undersampled and fully sampled data. With both the undersampled data (top rows) as the 
fully sampled data (bottom rows), the dictionary matching maps are closely approximated by the pro-
posed dictionary fitting method while only using 0.03% of the atoms.  
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dersampled data, and below 0.7% and 3.1% for the fully sampled data. The root-
mean-square error in the 𝑇𝑇1 and 𝑇𝑇2 estimates was similar for dictionary fitting and 
dictionary matching (see Supplementary Materials B). 

The fitting time was 58 minutes for matching with the densely sampled dictionary 
while our proposed fitting method with the sparse dictionary took 6 minutes. These 
times did not include the loading of the dictionaries.  

In-vivo Experiment 
Figure 2.5 shows the parameter maps of the in-vivo experiment obtained from fully 
sampled data using both dictionary matching and dictionary fitting, as well as the dif-
ference between their maps. The parameter ranges of 𝑇𝑇1 and 𝑇𝑇2 are adjusted to high-
light the tissues of interest. Differences between the two maps are mostly noticeable 
around the CSF, and both methods contain some residual structure in the 𝐵𝐵1 map.  

Compared to maps obtained without SVD compression, dictionary matching had a 
mean absolute relative error of 0.06% in 𝑇𝑇1 and 1.32% in 𝑇𝑇2, while dictionary fitting 
had an error of 0.15% in 𝑇𝑇1 and 2.66% in 𝑇𝑇2. The error of dictionary fitting was 
somewhat higher than dictionary matching, we hypothesize that the continuous opti-
mization translates variation in the signal (due to the compression) directly to varia-
tion in the estimated parameters, while the discrete optimization requires significant 

Figure 2.4. Mean estimated value of 𝑇𝑇1 (top) and 𝑇𝑇2 (bottom) in each region-of-interest of the phantom 
as function of their calibrated value (log-log scale). Dictionary fitting obtains for both data sets and each 
parameter equal accuracy as dictionary matching while using 0.03% of the atoms. 
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variation in the signal before matching to another element of the dictionary and con-
sequently another discretized parameter value.  

The distribution of the error in the 𝑇𝑇1 and 𝑇𝑇2 maps as function of the number of sam-
pled spirals is shown for both estimation methods in Figure 2.6 (blue and red bars), 
where the error in each voxel is relative to the value obtained from the fully sampled 
data with the same estimation method. The proposed method has a smaller spread in 
error (indicated by the whiskers) than dictionary matching in most maps of each pa-
rameter except for the 𝑇𝑇2 maps obtained from 1 and 6 spirals. Note that from 6 spirals 
onwards the dictionary matching approach selected the same atom as the fully sam-
pled reference in the majority of voxels (boxes have zero width) and in most others one 
step in the dictionary away (whiskers), while the continuous estimate of the proposed 
fitting approach has a small but finite width. Furthermore, it can be noticed that the 
relative 𝑇𝑇1 error was below the relative 𝑇𝑇2 error. 

Figure 2.5. Parameter maps in the brain from the in-vivo experiment, estimated through dictionary 
matching (top) and dictionary fitting (middle), and their difference (bottom). Note that the parameter 
ranges of the difference maps have been adjusted to highlight the differences. 
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Discussion 
This chapter presented a novel method for quantitative parameter estimation based on 
the least-squares fitting of a signal model defined by B-spline interpolation of a sparse-
ly sampled dictionary. The FISP MRF sequence was chosen as the basis imaging se-
quence due to its ability to estimate multiple parameters simultaneously, though the 
precision of 𝑇𝑇1 appears to be superior to that of 𝑇𝑇2 for this sequence [14]. However, 
the proposed dictionary fitting framework is applicable for general acquisitions and 
parameters.  

The interpolation error was estimated as a function of the parameter resolution for 
different B-splines orders. With second or third order splines, the resolution of each 
parameter reduced by approximately an order of magnitude compared to nearest 
neighbor interpolation. Consequently, the total number of atoms in the dictionary 
could be reduced with three orders of magnitude, leading to an equal reduction in 
memory and computational costs while maintaining similar signal accuracy.  

The large reduction of resolution of each parameter makes it computationally feasible 
to estimate an increased number of parameters simultaneously. In Supplementary Ma-
terials C, we demonstrated this by constructing and fitting with a five-dimensional 
dictionary; additionally including intra-voxel dephasing 𝑇𝑇2′ and off-resonance frequen-
cy Δ𝜔𝜔0. This only increased the dictionary size by a factor 164 and fitting time by 
58.4%. Consequently, the reduced computational and memory costs of dictionary-

Figure 2.6. Box-and-whisker plots of relative difference in 𝑇𝑇1 (left) and 𝑇𝑇2 (right) parameter values in the 
brain as function of the number of spirals/interleaves generated by prospective undersampling k-space. 
Boxes represent 25-75 percentiles and whiskers indicate the 5-95 percentiles of the error values of all 
voxels in the brain. Both estimation methods have a similar error spread in 𝑇𝑇1 and 𝑇𝑇2 for each number of 
sampled spirals. 
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 based methods enables the development of acquisition schemes that estimate more 

parameters simultaneously. Furthermore, the accuracy of our model can be increased 
by extending the Bloch simulation while using similar computing resources for the 
dictionary generation. Finally, the smaller dictionary sizes benefit methods that require 
dictionary generation on-the-fly, e.g. to incorporate acquisition details such as move-
ment in the signal model [26]. 

The interpolation error of the simulated signals was found to be slightly higher than 
the predetermined threshold at some points near the boundary of the parameter do-
mains. We performed an additional experiment (not shown) with interior points that 
only require one-dimensional interpolation (i.e. restricting the other two dimensions 
to the grid), and found that the number of interpolation errors above the threshold 
reduced to less than 1%, with a maximum of 6.8 ⋅ 10−4. This shows that the error is 
predominantly caused by interpolating in multiple dimensions, while our parameter 
resolution was based on one-dimensional interpolation. A practical solution would be 
to set the actually applied threshold somewhat below the preferred accuracy (a factor 
two is appropriate for our three-dimensional dictionary). Furthermore, we assumed 
that the interpolation error is maximal near the boundary of the parameter range and 
Figure 2.2 showed that this was the case for 𝑇𝑇1 and 𝑇𝑇2. However, this may not be true 
for each pulse sequence and for every parameter. Therefore, an evaluation of the inter-
polation error in the interior of the dictionary is recommended for general application. 

The phantom and volunteer experiments showed that the proposed dictionary fitting 
method was able to estimate 𝑇𝑇1 and 𝑇𝑇2 with similar accuracy as dictionary matching 
while reducing the number of atoms three orders of magnitude. The in-vivo 𝐵𝐵1+ maps 
had residual structure near the CSF, which is probably due to correlation between the 
𝐵𝐵1+ and 𝑇𝑇2 parameters, which is known for MRF methods [18], [19]. 

In the presented results, we chose as error threshold 𝛼𝛼 = 5 ⋅ 10−4 and assumed that 
this was sufficiently accurate for errors in the parameters to be dominated by noise 
(and not e.g. by discretization errors). In Supplementary Materials D, we examined 
the quality of the in-vivo 𝑇𝑇1 and 𝑇𝑇2 maps when setting α a factor 10 higher and lower. 
This showed that the 𝑇𝑇1 maps were reasonably consistent for different 𝛼𝛼 and B-spline 
orders 𝑛𝑛 ∈ {0,1,2,3}. The 𝑇𝑇2 maps showed large variation with 𝛼𝛼 = 5 ⋅ 10−3, and 
small differences around the CSF for 𝛼𝛼 = 5 ⋅ 10−5. Thus, small improvements in 𝑇𝑇2 
estimation might be possible by lowering the threshold 𝛼𝛼. However, we chose not to 
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 do this since the computational and memory requirements of the reference method 

would be too high for our available resources.  

The proposed dictionary fitting method reduced the calculation time of the fit com-
pared to the matching with a dense dictionary. The calculation time of both estima-
tion techniques can be further reduced by parallelizing the fitting over multiple cores. 
Additionally, the dictionary matching can benefit from smarter search strategies [20], 
although application to higher dimensions is still limited due to the required diction-
ary size. The proposed dictionary fitting method used the trust-region-
reflective algorithm since it was recommended by the MATLAB documentation 
for constrained optimization with gradients. While we experienced that convergence 
was reasonably fast, often within 20 iterations, further improvements can likely be 
found when doing an in-depth analysis of the applied solver. An alternative parameter 
estimation method is directly fitting the data to the Bloch equations. However, this 
would require a strong simplification of our signal model as generating only a single 
atom currently already took 6.10 seconds. 

The proposed dictionary fitting method had similar accuracy as a dictionary matching 
strategy applying a dense dictionary, even when using data with undersampling arti-
facts. Hence, dictionary fitting is a beneficial substitute in many cases where dictionary 
matching is currently used. It can be directly inserted in iterative reconstruction meth-
ods with undersampled MRF data [26], by replacing the pattern matching with dic-
tionary fitting. Initialization of the fitting through dictionary matching with the sparse 
dictionary likely enhances the probability of starting the optimization close to the 
global optimum.  

The dictionary fitting framework was presented for a single MRF pulse sequences and 
associated model parameters, but is easily extendable to other qMRI methods as pre-
sented in [9]–[13].  

Conclusion 
The Bloch simulated signal is accurately and efficiently approximated through B-
spline interpolation of a sparsely sampled dictionary. Therefore, the proposed method 
enables estimating parameters by fitting a continuous B-spline signal model, which 
obtains the accuracy of dictionary matching while strongly reducing dictionary size. 
The required parameter resolution is efficiently determined on the boundary of the 
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 parameter range. The proposed methods were applied to a FISP MRF acquisition in 

this work, but can be used for any qMRI acquisition scheme.  
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 Supplementary Materials 

A. Equivalent optimization  
Here we show that solution 𝜽𝜽� = 𝒇𝒇�𝒌𝒌�� of the dictionary matching step in Eq. 2.3 with 

the condition 𝜌𝜌� = �𝒔𝒔�𝜽𝜽��𝐻𝐻𝒎𝒎� �𝒔𝒔�𝜽𝜽��𝐻𝐻𝒔𝒔�𝜽𝜽����  as given in Eq. 2.4, is also the solution 

of the optimization in Eq. 2.2 when restricting the search space Θ to the parameter 
combinations in the dictionary. Setting 𝜌𝜌 = 𝜌𝜌𝑅𝑅 + 𝑖𝑖𝜌𝜌𝐼𝐼, we can write the error term in 
Eq. 2.2 as function of 𝜌𝜌𝑅𝑅 ,𝜌𝜌𝐼𝐼 ∈ ℝ:  

‖𝒎𝒎− 𝜌𝜌𝒔𝒔(𝜽𝜽)‖22 = �𝒎𝒎 − 𝜌𝜌𝒔𝒔(𝜽𝜽)�𝐻𝐻 �𝒎𝒎− 𝜌𝜌𝒔𝒔(𝜽𝜽)�

= �𝒎𝒎� − 𝜌𝜌𝑅𝑅𝒔𝒔(𝜽𝜽)������ + 𝑖𝑖𝜌𝜌𝐼𝐼𝒔𝒔(𝜽𝜽)�������
𝑇𝑇

 �𝒎𝒎− 𝜌𝜌𝑅𝑅𝒔𝒔(𝜽𝜽) − 𝑖𝑖𝜌𝜌𝐼𝐼𝒔𝒔(𝜽𝜽)� 

The bars indicate complex conjugation. Setting the partial derivative with respect to 
𝜌𝜌𝑅𝑅 or 𝜌𝜌𝐼𝐼 to zero, gives for both cases Eq. 2.4 as necessary condition for the minimum. 
With the condition of Eq. 2.4, the error term in Eq. 2.2 can be written as:  

‖𝒎𝒎− 𝜌𝜌�𝒔𝒔(𝜽𝜽)‖22  =  ‖𝒎𝒎‖22 + |𝜌𝜌�|2‖𝒔𝒔(𝜽𝜽)‖22 −𝒎𝒎𝐻𝐻𝜌𝜌�𝒔𝒔(𝜽𝜽) − 𝜌𝜌�𝐻𝐻𝒔𝒔(𝜽𝜽)𝐻𝐻𝒎𝒎

= ‖𝒎𝒎‖22 +
|𝒔𝒔(𝜽𝜽)𝐻𝐻𝒎𝒎|2

‖𝒔𝒔(𝜽𝜽)‖22
− 2

𝒎𝒎𝐻𝐻𝒔𝒔(𝜽𝜽) ⋅ 𝒔𝒔(𝜽𝜽)𝐻𝐻𝒎𝒎
‖𝒔𝒔(𝜽𝜽)‖22

= ‖𝒎𝒎‖22 −
|𝒎𝒎𝐻𝐻𝒔𝒔(𝜽𝜽)|2

‖𝒔𝒔(𝜽𝜽)‖22
 

Since 𝒎𝒎 is fixed, the minimization in Eq. 2.2 is equal to the maximization in Eq. 2.3 
over the discrete parameter values 𝒇𝒇(𝒌𝒌). 

B. Error in 𝑻𝑻𝟏𝟏 and 𝑻𝑻𝟐𝟐 estimates from phantom experiment 
Table S2.1 shows the root-mean-square error (RMSE) in the estimated values of 𝑇𝑇1 
and 𝑇𝑇2 from the phantom experiment, relative to their calibrated values. For most cas-
es, the proposed dictionary fitting method reduced the error in the parameter values 
compared to the reference dictionary matching method. Exceptions were mostly 
found in the 𝑇𝑇2 estimation, where dictionary matching was more accurate than fitting 
in ROIs 1-3, and more precise in ROIs 7 and 8. The reduced accuracy of the pro-
posed method for high 𝑇𝑇2 values (ROIs 1-3) was possibly due to logarithmic spacing 
of the parameter in the dictionary, leading to large steps between high 𝑇𝑇2 values and 
consequently an inaccurate initialization of the fit. The higher precision of dictionary 
matching in ROIs 7 and 8 might be due to the matching of the voxels in each ROI to 
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 a discrete set of 𝑇𝑇2 values, which can lower the variance if (almost) all voxels are 

matched to the same parameter value. Overall, the approximation of the signal model 
through spline interpolation did not increase the error in the estimated 𝑇𝑇1 and 𝑇𝑇2 
compared to dictionary matching. 

Table S2.1. Root-mean-square error (RMSE) of the estimated 𝑇𝑇1 and 𝑇𝑇2 values in the voxels of each 
region-of-interest (ROI) of the phantom with respect to the calibrated value. The error is given as per-
centage of the calibrated value in each ROI.  

ROI 
𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 

𝑻𝑻𝟏𝟏 [𝐦𝐦𝐦𝐦] 

RMSE in 𝑇𝑇1 [%] 

𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 

𝑻𝑻𝟐𝟐 [𝐦𝐦𝐦𝐦] 

RMSE in 𝑇𝑇2 [%] 

undersampled fully sampled undersampled  fully sampled 

matching fitting matching fitting matching fitting matching fitting 

1 𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐 1.8 1.1 2.6 2.7 𝟓𝟓𝟓𝟓𝟓𝟓 31.4 40.8 12.6 15.4 

2 𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐 3.0 2.7 0.9 0.8 𝟒𝟒𝟒𝟒𝟒𝟒 42.7 42.7 14.1 15.9 

3 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 2.6 2.6 2.0 1.7 𝟐𝟐𝟐𝟐𝟐𝟐 17.4 22.3 13.9 15.6 

4 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 3.4 3.2 2.8 2.7 𝟏𝟏𝟏𝟏𝟏𝟏 34.0 31.2 13.2 12.7 

5 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 3.6 3.1 3.3 3.5 𝟏𝟏𝟏𝟏𝟏𝟏 52.2 49.9 9.4 7.3 

6 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 4.5 4.3 6.8 6.5 𝟗𝟗𝟗𝟗 32.1 30.8 13.7 14.5 

7 𝟖𝟖𝟖𝟖𝟖𝟖 5.1 5.0 6.6 6.4 𝟔𝟔𝟔𝟔 27.3 31.7 7.9 12.0 

8 𝟔𝟔𝟔𝟔𝟔𝟔 5.5 5.3 5.2 5.2 𝟒𝟒𝟒𝟒 60.2 59.4 9.0 19.1 

9 𝟒𝟒𝟒𝟒𝟒𝟒 7.0 6.7 4.9 4.7 𝟑𝟑𝟑𝟑 40.6 37.5 12.5 10.8 

10 𝟑𝟑𝟑𝟑𝟑𝟑 10.6 10.4 7.9 8.1 𝟐𝟐𝟐𝟐 55.3 51.9 22.6 20.7 

11 𝟐𝟐𝟐𝟐𝟐𝟐 16.6 16.1 9.5 9.3 𝟏𝟏𝟏𝟏 49.6 50.1 29.0 28.2 

12 𝟏𝟏𝟏𝟏𝟏𝟏 53.6 52.6 48.3 48.2 𝟏𝟏𝟏𝟏 395.3 418.0 393.2 396.7 

13 𝟏𝟏𝟏𝟏𝟏𝟏 22.1 22.1 14.2 15.1 𝟖𝟖 78.3 79.8 49.6 51.5 

14 𝟗𝟗𝟗𝟗 27.6 26.8 16.0 16.3 𝟔𝟔 147.7 156.0 65.8 64.2 
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 C. Higher dimensional parameter estimation 

Here we show that dictionary fitting enables the estimation of an increased number of 
parameters compared to dictionary matching. We added estimation of intra-voxel 
dephasing of spins 𝑇𝑇2′ and static field inhomogeneity Δ𝐵𝐵0 from the in-vivo scan, and 
consequently increased the dimensionality of our dictionary from three to five. The 
number of spins used in our model is increased by a factor 10 in order to accurately 
model the intra-voxel dephasing.  

Figure S2.1 shows the number of discretized values in each parameter dimension for 
B-spline orders 𝑛𝑛 = 0,1,2,3, as determined through the method described in Section 
“Parameter Resolution”. The interpolation error in the 𝑇𝑇2′ and Δω0 dimension con-
verged to a value just below the target error. We found (data not shown) that the min-
imal interpolation error in these dimensions scaled with the square root of the number 

Figure S2.1. Interpolation error on the edge of parameter space as function of number of atoms in each 
dimension. Dashed line indicates target error and the legend shows for each parameter the minimum 
number of atoms required to obtain the target error. Note that for B-spline order 𝑛𝑛 = 0, the target inter-
polation error is only obtained in the 𝑇𝑇2 dimension with less than 130 atoms. 
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 of spins used in the simulations. Dictionary fitting (Eq. 2.8) was done with B-spline 

order 𝑛𝑛 = 2, using a dictionary with 11, 6, 5, 24, and 16 parameter values in respec-
tively the ranges of 𝑇𝑇1,𝑇𝑇2,𝑇𝑇2′,Δω0, and 𝐵𝐵1+. Storage of this dictionary required 
2,34 GB without SVD and 74,1 MB when projected on the first 30 singular vectors, a 
factor 164 increase compared to the three-dimensional dictionary. Fitting the in-vivo 
maps with the SVD-projected dictionaries took 301 seconds which is 58,4% longer 
than the fitting time using the three-dimensional dictionary. 

Figure S2.2 shows the parameter maps obtained from fitting with a dictionary with 
five parameter dimensions. The 𝑇𝑇2′ parameter map obtained with the five-dimensional 
dictionary looks implausible, which is expected since the used acquisition is typically 
not used to estimate this parameter. The Δ𝜔𝜔0 map shows some off-resonance around 
the sinuses which is likely due to the air-tissue interface, even though the applied ac-
quisition is designed to be robust against off-resonance effects. The low signal region 

Figure S2.2. Parameter maps in the brain from dictionary fitting with B-spline order 𝑛𝑛 = 2 using a five-
dimensional dictionary. Although the 𝑇𝑇2′ and Δ𝜔𝜔0 maps have low quality, this example shows that the 
proposed method is computationally feasible for seven-dimensional parameter estimation. 
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 near the skull leads to the mapping of very low 𝑇𝑇2′ values which also led to implausible 

values of 𝑇𝑇2, Δ𝜔𝜔0, and 𝐵𝐵1+. 

Although for the evaluated FISP MRF acquisition the additional parameter maps were 
either implausible (𝑇𝑇2′) or typically irrelevant (Δ𝜔𝜔0), we have shown that the diction-
ary fitting method is able to estimate seven parameters simultaneously, using a five-
dimensional dictionary. If we suppose that for B-spline order 𝑛𝑛 = 0, the target inter-
polation error in Figure S2.1 is obtained using 129 atoms for 𝑇𝑇1,𝑇𝑇2′,𝜔𝜔0 and 𝐵𝐵1+, then 
matching with a dictionary that obtains the target interpolation error would require 
189 TB storage for the dictionary (without SVD), and 4.8⋅ 107 (= 100 ⋅ 1294 ⋅
6.2
3600

) computer hours to generate (with the used Bloch simulation that requires on 

average 6.2 s per atom). The proposed method enables the design of new quantitative 
acquisitions that can estimate an increased number of parameters simultaneously and 
consequently obtain more biomarkers (e.g. 𝑇𝑇1,𝑇𝑇2,𝑇𝑇2′,𝑃𝑃𝑃𝑃) with reduced bias due to 
the magnetic fields (Δ𝜔𝜔0,𝐵𝐵1+,𝜑𝜑0). 
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 D. Effect of B-spline Order and Interpolation Accuracy 

Here we present a qualitative comparison of the 𝑇𝑇1 and 𝑇𝑇2 parameter maps obtained 
through dictionary fitting with different combinations of B-spline order 𝑛𝑛 ∈ {0,1,2,3} 
and interpolation accuracy 𝛼𝛼 ∈ {5 ⋅ 10−3, 5 ⋅ 10−4, 5 ⋅ 10−5}. For each combination, 
we generated a dictionary with parameter resolution as predicted by the methods de-
scribed in Section “Parameter Resolution” (i.e. by shifting the threshold in each graph 
of Fig. 1). The resulting parameter resolutions are shown in Table S2.2. The combina-
tion 𝑛𝑛 = 0 with 𝛼𝛼 = 5 ⋅ 10−5 was excluded since it required more than the maximal 
number (512) of atoms in each parameter dimension. This would require more than a 
TB memory for dictionary storage, which is unfeasible for our available resources.  

Fig. S2.3 shows the 𝑇𝑇1 maps from dictionary fitting with each combination of B-spline 
order 𝑛𝑛 and interpolation threshold 𝛼𝛼. The different 𝑇𝑇1 maps appear reasonably con-
sistent, except for 𝑛𝑛 = 0 with 𝛼𝛼 = 5 ⋅ 10−3 where some quantization error is observa-
ble. Fig. S2.4 contains the 𝑇𝑇2 maps from the same combinations of 𝑛𝑛 and 𝛼𝛼. Here, the 
differences between the maps are larger. There is a large variation between the 𝑇𝑇2 maps 
with interpolation error 𝛼𝛼 = 5 ⋅ 10−3, which suggests that this error threshold is too 
high for reliably estimating this parameter. The maps with threshold 𝛼𝛼 = 5 ⋅ 10−4 
and 𝛼𝛼 = 5 ⋅ 10−5 are more consistent and only show some slight variation around the 
CSF. 

  

Table S2.2. Estimated number of atoms required in each parameter dimension to obtain a 
given interpolation accuracy 𝜶𝜶 using B-spline order 𝒏𝒏. These numbers were estimated as 
described in “Parameter Resolution” Section.  

 𝒏𝒏 = 𝟎𝟎 𝒏𝒏 = 𝟏𝟏 𝒏𝒏 = 𝟐𝟐 𝒏𝒏 = 𝟑𝟑 

𝑇𝑇1 𝑇𝑇2 𝐵𝐵1+ 𝑇𝑇1 𝑇𝑇2 𝐵𝐵1+ 𝑇𝑇1 𝑇𝑇2 𝐵𝐵1+ 𝑇𝑇1 𝑇𝑇2 𝐵𝐵1+ 

𝜶𝜶 = 𝟓𝟓 ⋅ 𝟏𝟏𝟏𝟏−𝟑𝟑 47 11 17 8 3 2 6 3 2 6 3 2 

𝜶𝜶 = 𝟓𝟓 ⋅ 𝟏𝟏𝟏𝟏−𝟒𝟒 454 97 160 25 10 17 11 6 18 10 6 18 

𝜶𝜶 = 𝟓𝟓 ⋅ 𝟏𝟏𝟏𝟏−𝟓𝟓 > 512 80 27 98 21 10 78 18 9 77 
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Determining the Time Efficiency of Quantitative MRI 
Methods through a General Framework based on Bloch 
Simulations 

Willem van Valenberg, Frans M. Vos, Stefan Klein, Lucas J. van Vliet, Dirk H.J. Poot 

  

Abstract 

 

This work aims to enable an objective comparison between quantitative MRI 
(qMRI) methods based on their time efficiency: the expected precision of each pa-
rameter estimate (e.g. 𝑇𝑇1,𝑇𝑇2) within a fixed scan time. The comparison can be 
made in-silico and consequently avoids costly evaluations of each method on the 
scanner.  

The expected precisions were determined from simulations of the MR signal 
through the Cramér-Rao lower bound theorem. The signal was modelled using the 
Bloch equations, which is applicable to any qMRI method and consequently ena-
bles the comparison of their precisions within a common framework. The frame-
work was applied to nine established qMRI methods for which we predicted the 
time efficiency values of seven parameters (𝑇𝑇1,𝑇𝑇2,𝑇𝑇2∗,𝑃𝑃𝑃𝑃,𝜑𝜑0,Δ𝐵𝐵0,𝐵𝐵1+). The pre-
dicted time efficiency values were compared for parameter values corresponding to 
white matter and muscle tissue. Finally, the framework was validated by comparing 
the predicted precisions to the measured standard deviations in the NIST system 
phantom. 

Each qMRI method had high time efficiency values for estimating the parameters it 
is conventionally associated with. The phantom experiment showed that the meas-
ured precision of each parameter was accurately predicted by our framework for 
most qMRI methods. Out of a 672 cases, the measured precision was lower than 
predicted in only 94 (12.4%) cases. In all other cases, high predicted precision was 
matched with high measured precision.  

The presented framework provides time efficiency values that closely match the 
precision per unit scan time, and as such enables an objective in-silico comparison 
of qMRI methods. 
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 Introduction 

Quantitative MRI (qMRI) methods estimate the physical parameters underlying the 
MR signal in order to increase the specificity and reproducibility of the acquired data 
compared to conventional MR imaging. These parameters can describe processes such 
as magnetization relaxation, water diffusion, blood perfusion, oxygen consumption, 
magnetization transfer, and others (see [27] for a comprehensive overview). Each pa-
rameter can often be estimated with multiple methods that differ in accuracy (i.e. bi-
as), precision (estimation variance), acquisition time, and other features such as mo-
tion sensitivity, gating capabilities and/or fat suppression. Consequently, selecting the 
best qMRI method for parameter estimation is problematic. While each feature is rel-
evant, we consider the precision to have the most direct link to the reproducibility of 
the parameter estimates. Therefore, we aim to facilitate method selection by compar-
ing the precision of qMRI methods. 

A number of practical requirements can be defined for measuring the precision of 
qMRI methods. First, the measure should account for differences in scan time, since 
every method becomes more precise by averaging over repeated measurements at the 
expense of increased scan time. Second, it should be based on the estimation of a con-
sistent set of parameters, since the fixation of any parameter can increase the precisions 
of the estimates at the cost of (potential) bias. Finally, the measure should avoid time-
consuming evaluation of each qMRI method on the scanner, which can be prohibi-
tively expensive when taking the full range of possible tissues and acquisition settings 
into account. Therefore we aim to define a measure of the precision that is 1) normal-
ized for the acquisition time, 2) based on a consistent set of parameters, and 3) evalu-
ated in-silico, in order to enable an objective comparison of qMRI methods. 

The precision of a qMRI method can be theoretically estimated from its signal model 
and the (estimated) noise level through the Cramér-Rao lower bound (CRLB) theo-
rem [28]. We define the time efficiency of a qMRI method as the CRLB-derived pre-
cision normalized by the acquisition time. As such, time efficiency is independent on 
the number of averages, and the qMRI method with the highest time efficiency ob-
tains the most precise parameter estimate in a given scan time.  

In-silico estimates of the precision (or SNR) normalized by scan time have previously 
been used to compare methods for 𝑇𝑇1-weighted imaging [29], and for 𝑇𝑇1 and 𝑇𝑇2 map-
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 ping [30], [31]. However, the methods in these comparisons are described by different 

signal models with varying underlying assumptions (e.g. homogeneous magnetic fields 
and complete signal spoiling). Consequently, the results depend on these assumptions 
and may be invalid when there are imperfections in the scanning system. An objective 
comparison of the time efficiency of qMRI methods requires the estimation of a 
common set of parameters through a shared signal model. 

In this paper, we present and validate a new framework for comparing the time effi-
ciency of qMRI methods. The framework determines the CRLB through Bloch simu-
lations of the MR signal, which are applicable to any pulse sequence and can describe 
most of the relevant physics. We evaluate the framework by determining the time effi-
ciency of methods that estimate seven parameters: proton density (𝑃𝑃𝑃𝑃), longitudinal 
relaxation time (𝑇𝑇1), transversal relaxation time (𝑇𝑇2), apparent transversal relaxation 
time (𝑇𝑇2∗), the off-resonance (Δ𝐵𝐵0) field, RF transmit (𝐵𝐵1+) field, and transmit-receive 
phase (𝜑𝜑0). Multiple methods are selected that are conventionally used in literature, 
and each is implemented using the TOPPE framework [32] to enable equal acquisi-
tion settings (e.g. resolution, field-of-view, slice width). We show that the CRLB-
predicted precision is matched by the precision obtained from measurements for most 
qMRI methods. This makes time efficiency a promising measure for the selection and 
optimization of qMRI methods. 

Theory 
The proposed time efficiency framework is presented for a general qMRI method that 
estimates 𝑃𝑃 parameters from 𝑀𝑀 measurements of the complex-valued MR signal 
𝒎𝒎 ∈ ℂ𝑀𝑀 in a voxel. The parameters 𝜽𝜽 ∈ ℝ𝑃𝑃 in each voxel are mapped to the signal 
through the model 𝒔𝒔(𝜽𝜽) ∈ ℂ𝑀𝑀. In the experiment section, our focus will be on 𝑃𝑃 = 7 
parameters �𝑇𝑇1,𝑇𝑇2,𝑇𝑇2∗,𝑃𝑃𝑃𝑃,𝜑𝜑0,Δ𝐵𝐵0,𝐵𝐵1+� for which a signal is modeled/generated 
based on Bloch simulations. However, the presented time efficiency framework is ap-
plicable to other combinations of parameters and/or signal models as well. 

Precision Estimation 
The measured MR signal 𝒎𝒎 ∈ ℂ𝑀𝑀 contains Gaussian noise and is therefore a noisy 
realization from a multivariate, normal probability distribution around the (assumed) 
true signal 𝒔𝒔(𝜽𝜽). Conversely, this multivariate distribution can be considered a likeli-
hood function of parameters 𝜽𝜽 for given samples 𝒎𝒎. The likelihood function is com-
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 monly used to quantify the amount of information the signal contains about 𝜽𝜽 

through the Fisher information matrix [28]. Assuming that the noise on the samples is 
uncorrelated and identically distributed with variance 𝜎𝜎2 ∈ ℝ, the Fisher information 
matrix equals: 

𝑰𝑰(𝜽𝜽) =
1
𝜎𝜎2

 �
𝜕𝜕𝒔𝒔(𝜽𝜽) 
𝜕𝜕𝜽𝜽

�
𝐻𝐻

�
𝜕𝜕𝒔𝒔(𝜽𝜽) 
𝜕𝜕𝜽𝜽

� ∈ ℝ𝑃𝑃×𝑃𝑃 . ( 3.1 ) 

Here, 𝐻𝐻 indicates the Hermitian conjugate. The determination of the derivative of 
𝒔𝒔(𝜽𝜽) will be detailed later (see Signal Model). 

The Cramér-Rao lower bound (CRLB) theorem states that 𝑰𝑰(𝜽𝜽)−1 is a lower bound 
on the covariance matrix of any set of unbiased estimators of 𝜽𝜽 [28]. Specifically, the 
diagonal elements of 𝑰𝑰(𝜽𝜽)−1 are lower bounds on the variance of estimates of the dif-
ferent parameters 𝜽𝜽. If we assume that there is an estimator that attains the CRLB, we 
can thus theoretically estimate the precision of a qMRI method based on the signal 
model 𝒔𝒔(𝜽𝜽) and the (expected) noise level 𝜎𝜎. Previous work applied the CRLB for the 
optimization of acquisition settings in a wide range of qMRI applications such as re-
laxometry [33]–[41], diffusion [42]–[44], kinetic modelling [45], magnetization trans-
fer [46], [47], water/fat-decomposition [48], and temperature measurement [49].  

Time Efficiency 
The CRLB has two issues when used as a tool to compare the precision of qMRI 
methods. First, the precision (i.e. the reciprocal of the variance) scales linearly with the 
number of averages/repeats of a method, and consequently with its scan time 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎. To 
compensate for this effect we define a preferred scan time 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟, constant for all meth-
ods, and scale the precision of each method by the (relative) number of averages 
𝑁𝑁𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟/𝑇𝑇𝑎𝑎𝑎𝑎𝑞𝑞. Second, the matrix inversion of 𝑰𝑰(𝜽𝜽) might be ill-conditioned or 
even degenerate when 𝒎𝒎 contains (almost) no information on a specific parameter. To 
ensure invertibility we add a positive definite matrix 𝑷𝑷 ∈ ℝ𝑃𝑃×𝑃𝑃 that can be interpreted 
as the inverse covariance matrix of an assumed Gaussian prior on 𝜽𝜽.  

Hence, we define a modified information matrix:  

𝑰𝑰�(𝜽𝜽) ≔ 𝑰𝑰(𝜽𝜽) 𝑁𝑁𝑎𝑎𝑎𝑎𝑎𝑎 + 𝑷𝑷 ( 3.2 ) 
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 By virtue of the CRLB, 𝑰𝑰�(𝜽𝜽)−1 is a lower bound on the variance that can be obtained 

in a scan time 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟. Next, we define the reciprocal of the diagonal elements of 𝑰𝑰�(𝜽𝜽)−1, 
i.e. the variances of the parameters, as time efficiency, 𝑬𝑬(𝜽𝜽) ∈ ℝ𝑃𝑃, of a qMRI meth-
od: 

𝐸𝐸𝑝𝑝(𝜽𝜽): =
1

(𝑰𝑰�(𝜽𝜽)−1)𝑝𝑝,𝑝𝑝
∈ ℝ, for 𝑝𝑝 ∈ {1,2, … ,𝑃𝑃} ( 3.3 ) 

Note that 𝐸𝐸𝑝𝑝(𝜽𝜽) ≤ 𝐼𝐼𝑝̅𝑝,𝑝𝑝(𝜽𝜽) for each parameter 𝜃𝜃𝑝𝑝, where equality is only attained if 
the information on parameter 𝜃𝜃𝑝𝑝 is orthogonal to the other parameters: 𝐼𝐼𝑝̅𝑝,𝑞𝑞(𝜽𝜽) = 0 if 
𝑝𝑝 ≠ 𝑞𝑞. Differences between 𝐼𝐼𝑝̅𝑝,𝑝𝑝(𝜽𝜽) and 𝐸𝐸𝑝𝑝(𝜽𝜽) are due to the influence of the other 
parameters (confounds) on the information in parameter 𝜃𝜃𝑝𝑝. The time efficiency 
𝑬𝑬(𝜽𝜽) of a given qMRI method depends on the noise level 𝜎𝜎 which varies between 
experiments. However, this dependence is almost linear (with the exception of the 
prior), so relative differences in time efficiency between qMRI methods should be con-
sistent between experiments.  

In order to compare the information 𝐼𝐼(̅𝜽𝜽)𝑝𝑝,𝑝𝑝 or time efficiency 𝐸𝐸𝑝𝑝(𝜽𝜽) of a qMRI 
method for different parameters, we define the signal-to-noise ratio of a parameter, 

relative to a reference value 𝜃𝜃𝑝𝑝
𝑟𝑟𝑟𝑟𝑟𝑟, as:  

𝑆𝑆𝑆𝑆𝑅𝑅𝑝𝑝𝐼𝐼  ≔  𝜃𝜃𝑝𝑝
𝑟𝑟𝑟𝑟𝑟𝑟 ⋅ �𝐼𝐼(̅𝜽𝜽)𝑝𝑝,𝑝𝑝

𝑆𝑆𝑆𝑆𝑅𝑅𝑝𝑝𝐸𝐸  ≔  𝜃𝜃𝑝𝑝
𝑟𝑟𝑟𝑟𝑟𝑟 ⋅ �𝐸𝐸𝑝𝑝(𝜽𝜽)

      for 𝑝𝑝 ∈ {1,2, … ,𝑃𝑃}, ( 3.4 ) 

where 𝑆𝑆𝑆𝑆𝑅𝑅𝑝𝑝𝐼𝐼  and 𝑆𝑆𝑆𝑆𝑅𝑅𝑝𝑝𝐸𝐸 can be conceived as the signal-to-noise ratio when the other 
parameters are assumed to be known and unknown respectively. Observe that 𝑆𝑆𝑆𝑆𝑅𝑅𝑝𝑝𝐼𝐼  
and 𝑆𝑆𝑆𝑆𝑅𝑅𝑝𝑝𝐸𝐸 are essentially reciprocal of the theoretical coefficients-of-variation. 

Methods 
The time efficiency 𝑬𝑬(𝜽𝜽) was designed to be informative for sequence selection and 
predictive of the parameter precision obtained in practice. We evaluated this by com-
paring and validating the time efficiency values of nine established qMRI methods for 
the estimation of 𝑃𝑃 = 7 parameters 𝜽𝜽 = �𝑇𝑇1,𝑇𝑇2,𝑇𝑇2∗,𝑃𝑃𝑃𝑃,𝜑𝜑0,Δ𝐵𝐵0,𝐵𝐵1+�. Table 3.1 
lists the nine qMRI methods used in our experiments with relevant acquisition settings 
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 that approximate literature references [11], [14], [50]–[55]. The shown scan times 

were based on the experimental settings (e.g. readout bandwidth, resolution) used in 
the validation experiment (see Phantom Study).  

Clearly, certain parameters cannot be reliably estimated with particular methods. 
While qMRI methods usually consider one or multiple of these parameters to be con-
stant, or assume that they have zero effect on the contrast differences, we included the 
effect of all parameters in a single signal model and push the solution of the parameter 
estimation to reasonable values by assuming some prior knowledge on the distribution 
of each parameter (see Parameter Estimation).  

Table 3.1. Overview of qMRI methods, related parameters, used settings, literature reference, and scan 
time (𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎). The methods are: Inversion-Recovery Look-Locker (IRLL), Inversion-Recovery Spin-Echo 
(IRSE), Variable Flip Angle SPGR (VFA), Bloch-Siegert (BS), Multiple Gradient-Echo (MGE), Spin-
echo (SE), Multiple Spin-Echo (MSE), and Magnetic Resonance Fingerprinting (MRF). Settings include 
flip angle (𝐹𝐹𝐹𝐹), number of measurements (𝑁𝑁), repetition time (𝑇𝑇𝑅𝑅), inversion time (𝑇𝑇𝐼𝐼), echo time (𝑇𝑇𝐸𝐸), 
and echo spacing (𝐸𝐸𝐸𝐸𝐸𝐸). The scan time 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎 is given for a 2D acquisition that samples 200 k-space lines 
and where each steady-state is measured with a minimal of 5 s preparation after a 5 s delay from the 
previous measurement. 

Method Parameter Settings Ref 𝑻𝑻𝒂𝒂𝒂𝒂𝒂𝒂 

(min:s) 

IRLL 𝑇𝑇1 
𝐹𝐹𝐹𝐹 = 20°,𝑁𝑁 = 16, 𝑇𝑇𝐼𝐼 = 10 ms, 𝐸𝐸𝐸𝐸𝐸𝐸 =  75 ms, 
𝑇𝑇𝐸𝐸 = 3.2 ms,𝑇𝑇𝑅𝑅 = 1220 ms, RF spoiling 

[50] 4:16 

IRSE 𝑇𝑇1 
𝑇𝑇𝐼𝐼 = [30, 530,1030,1530] ms, 𝑇𝑇𝑅𝑅 = 1600 ms, 
𝑇𝑇𝐸𝐸 = 15 ms, 

[51] 22:06 

VFA 𝑇𝑇1 
𝐹𝐹𝐹𝐹 = [5, 10, 15, 20, 25]°,𝑇𝑇𝑅𝑅 = 9 ms, 
𝑇𝑇𝐸𝐸 = 3.2 ms, RF spoiling 

[52] 1:00 

VFA + BS 𝑇𝑇1,𝐵𝐵1+ combination of the specified VFA and BS methods  2:00 

BS 𝐵𝐵1+ 
BS with settings: 𝐹𝐹𝐹𝐹 = 20°,𝑇𝑇𝑅𝑅 =  100 ms, 𝑇𝑇𝐸𝐸 =
20 ms, 10 ms Fermi pulse with ±4 kHz off-
resonance, RF spoiling 

[53] 1:00 

MGE 𝑇𝑇2∗ 𝑁𝑁 = 32,𝐸𝐸𝐸𝐸𝐸𝐸 = 5 ms,𝐹𝐹𝐹𝐹 = 30°,𝑇𝑇𝑅𝑅 = 700 ms  [54] 2:31 

SE 𝑇𝑇2 𝑇𝑇𝐸𝐸 = [15,30,60,120,240] ms,𝑇𝑇𝑅𝑅 − 𝑇𝑇𝐸𝐸 = 1500 ms [55] 27:29 

MSE 𝑇𝑇2 𝑁𝑁 = 16,𝐸𝐸𝐸𝐸𝐸𝐸 = 15 ms,𝑇𝑇𝑅𝑅 = 2500 ms  [11] 8:30 

MRF 𝑇𝑇1,𝑇𝑇2,𝐵𝐵1+ 
𝑁𝑁 = 1000,𝐹𝐹𝐹𝐹 ∈ [0, 70]°,𝐸𝐸𝐸𝐸𝐸𝐸 ∈ [11.5, 14.5] ms, 
𝑇𝑇𝐸𝐸 = 3.5 ms, 𝑇𝑇𝑅𝑅 = 13 s, gradient spoiling 

[14] 44:19 
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 Signal Model 

The signal function 𝒔𝒔(𝜽𝜽) of each qMRI method in Table 3.1 was constructed using 
an event-based Bloch simulator that combines the waveforms and signal readout times 
of each qMRI method into a single ordered sequence. The computational complexity 
of the simulation was reduced by modelling the radiofrequency pulses and gradient 
waveforms as a small number of hard (instantaneous) pulses and ignoring the k-space 
trajectory. As such the signal was simulated in a single voxel. Such single voxel simula-
tion enables to study the ‘pure’ efficiency of the qMRI methods and to exclude the 
influence of different k-space samplings. In order to accurately model the intra-voxel 
dephasing, we simulated and integrated over approximately 106 spins with off-

resonance frequencies that are Cauchy distributed around 𝛾𝛾Δ𝐵𝐵0 with scale 𝑇𝑇2′
−1 =

𝑇𝑇2∗
−1 − 𝑇𝑇2 −1. Furthermore, the spins were spatially distributed over twice the desired 

slice width (5 mm) to model the slice selective excitation and refocusing pulses. Due 
to the slice selective excitation, the maximal signal strength is 50% of 𝑃𝑃𝑃𝑃. Each simu-
lation was initialized by repeating the sequence for an acquisition time of at least 5 
seconds. This ensures approximation to the pseudo steady-state within 5% for a max-
imal 𝑇𝑇1 of 1669 ms. To construct 𝒔𝒔(𝜽𝜽) for combined methods (VFA+BS) the signal 
model 𝒔𝒔(𝜽𝜽) and measurements 𝒎𝒎 of the separate acquisitions were concatenated. 

The described Bloch simulations have a high computational complexity due to the 
large number of spins and discretized time steps. This makes conventional iterative 
optimization methods for parameter estimation infeasible due to the repeated evalua-
tion of the model. Therefore, we approximated 𝒔𝒔(𝜽𝜽) for 𝜽𝜽 ∈ Θ ⊂ ℝ7 by a signal 
model 𝒔𝒔�(𝜽𝜽) defined through a dictionary interpolation approach [56]. The dictionary 
contains the Bloch-simulated signals from a coarse, uniform grid of parameter combi-
nations, and was evaluated once for each qMRI method. Subsequently, the signal 
model 𝒔𝒔�(𝜽𝜽) was defined for 𝜽𝜽 ∈ Θ ⊂ ℝ7 through second-order B-spline interpolation 
between signals in the dictionary (i.e. by using the grid of parameter combinations as 
knot points). Both the interpolant 𝒔𝒔�(𝜽𝜽) as its derivative can be determined efficiently 
[24], which enabled the use of iterative methods for parameter estimation. Further-
more, we determined the Fischer Information in Eq. 3.1 using the derivative of 𝒔𝒔�(𝜽𝜽) 
in order to avoid the choice of step size for a numerical derivative of 𝒔𝒔(𝜽𝜽).  

Table 3.2 lists the domain of each parameter and the sampling strategy of the knot 
points (linearly or logarithmically). The parameter resolution (see Supporting Table 
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S3.1) was set to obtain a maximum of 10−3 interpolation error between the knot 
points, while adopting 𝑃𝑃𝑃𝑃 = 1. Note that the parameters 𝑃𝑃𝑃𝑃 and 𝜑𝜑0 were not discre-
tized since they are determined directly from the scale and phase difference between 
measurements and fitted model (see below). Furthermore, the value of 𝑇𝑇2∗ is not esti-

mated directly, but set to 𝑇𝑇2∗
−1 = 𝑇𝑇2−1 + 𝑇𝑇2′−1.  

Parameter Estimation 
Parameter estimation was initialized at the dictionary atom that maximized the norm 
of the inner product with the acquired signal over all atoms for which Δ𝐵𝐵0 = 0 and 
𝐵𝐵1+ = 1. Subsequently, we determined the maximum a posteriori estimate 𝜽𝜽� ∈ ℝ7 
from the measurements 𝒎𝒎, through the least squares fitting: 

𝜽𝜽� = arg min
𝜽𝜽∈Θ⊂ℝ7

‖𝒎𝒎−  𝒔𝒔�(𝜽𝜽)‖22

𝜎𝜎2
+ �𝜽𝜽 − 𝜽𝜽𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑�

𝑻𝑻𝑷𝑷�𝜽𝜽 − 𝜽𝜽𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑�  ( 3.5 ) 

in which 𝜎𝜎2 equals the (estimated) noise variance. Vector 𝜽𝜽𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 indicates the mean of 
the prior distribution and 𝑷𝑷−1 is its (diagonal) covariance matrix. Parameters 
𝑇𝑇1,𝑇𝑇2,𝑇𝑇2′,Δ𝐵𝐵0,𝐵𝐵1+ have their mean and variance of the prior specified in Table 3.2, 
and for 𝑃𝑃𝑃𝑃 and 𝜑𝜑0 we do not apply a prior (i.e. 𝑃𝑃𝑖𝑖,𝑖𝑖 = 0). Note that the prior applies 
to the log-time values of the relaxometry parameters, such that the standard deviation 
reflect two orders of magnitude difference from the mean values. The fitting was im-

Table 3.2. Discretized parameters in the applied dictionary with their domain, sampling strategy, and the 
mean and standard deviation (std) of the Gaussian prior used for parameter estimation. Note that 
𝑇𝑇2∗

−1 = 𝑇𝑇2−1 + 𝑇𝑇2′
−1. 

symbol 
 

name 
 

domain 
 

unit 
 

sampling 
strategy 

prior 

mean std 

𝑇𝑇1 longitudinal relaxation [5, 6000] ms log log(100) log(100) 

𝑇𝑇2 transversal relaxation [5, 2000] ms log log (50) log(100) 

𝑇𝑇2′ intravoxel dephasing [10, 1000] ms log log (50) log(100) 

Δ𝐵𝐵0 static field inhomogeneity [−2𝜋𝜋/10,
2𝜋𝜋/10] rad/ms linear 0 1 

𝐵𝐵1+ 
transmit field  

inhomogeneity [0.5, 1.5] a.u. linear 1 0.5 

 



56 | Chapter 3 

 

 
 plemented using the fmincon routine from MATLAB (The Mathworks, Natick, 

MA) with the trust-region-reflective algorithm which was stopped after 
500 iterations or when the relative improvement in subsequent steps was below 10−6.  

Simulation Study 
The time efficiency framework was first evaluated for the qMRI methods in Table 1 
with two example tissues: white matter (𝑇𝑇1/𝑇𝑇2 = 1084/69 ms) and muscle tissue 
(𝑇𝑇1/𝑇𝑇2 = 1412/50 ms). The 𝑇𝑇1 and 𝑇𝑇2 values were taken from [57]; for the other 
parameters in 𝜽𝜽 we chose: 𝑇𝑇2′ = 200 ms, 𝑃𝑃𝑃𝑃 = 1, 𝜑𝜑0 = 0 rad, ∆𝐵𝐵0 = 0 rad/ms, and 
𝐵𝐵1+ = 1. The noise level was set to obtain approximately the same 𝑃𝑃𝑃𝑃-to- 𝜎𝜎 ratio as 
obtained in the subsequent phantom study. For each estimated parameter of each 
qMRI method, 𝑆𝑆𝑆𝑆𝑆𝑆𝑝𝑝𝐼𝐼  and 𝑆𝑆𝑆𝑆𝑆𝑆𝑝𝑝𝐸𝐸 were determined through Eq. 3.4, with reference 

parameter 𝜃𝜃𝑝𝑝
𝑟𝑟𝑟𝑟𝑟𝑟 equal to 2𝜋𝜋/1000 rad

ms
= 1 Hz for Δ𝐵𝐵0, 1 rad for 𝜑𝜑0, and the previ-

ously defined input value 𝜃𝜃𝑝𝑝 for 𝑇𝑇1,𝑇𝑇2,𝑇𝑇2∗,𝐵𝐵1+ and 𝑃𝑃𝑃𝑃. 

Phantom Study 
The time efficiencies of the qMRI methods in Table 1 were experimentally assessed on 
a 3.0-T Discovery system (GE Healthcare) using the NIST system phantom [25]. 
With each qMRI method we acquired the same 2D slice that intersected 14 spheres 
with calibrated 𝑇𝑇1 and 𝑇𝑇2 values. This was done twice for each qMRI method such 
that the variance in each parameter could be estimated from the difference map. 
Common scan properties of the methods were: 200 × 200 Cartesian matrix, ±62.5 
kHz bandwidth, 1 × 1 mm2 FOV, and a slice thickness of 5 mm. To enable strict 
control over implementation and settings, we implemented each qMRI method using 
the TOPPE framework [32] (see Supporting Information for implementation details). 
We publicly provide the TOPPE sequence files on https://bitbucket.org/
bigr_erasmusmc/time-efficiency. 

A region-of-interest (ROI) was manually drawn inside each of the 14 spheres. In every 
ROI, we estimated the parameters 𝜽𝜽� ∈ ℝ7 in each voxel through Eq. 3.5 for both re-
peats of a qMRI method. Subsequently, we determined the difference of each estimat-
ed parameter 𝜃𝜃�𝑝𝑝 between repeats, and set the measured standard deviation 𝜎𝜎𝑝𝑝,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 
equal to the standard deviation of the difference across the voxels of the ROI divided 

by √2. Assuming that the estimated parameters are normally distributed, the 95% 
confidence interval of the true standard deviation of each parameter equals 

https://bitbucket.org/bigr_erasmusmc/time-efficiency
https://bitbucket.org/bigr_erasmusmc/time-efficiency
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 ��

𝑁𝑁𝑅𝑅𝑅𝑅𝑅𝑅−1
𝜒𝜒0.025
2   𝜎𝜎𝑝𝑝,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,�

𝑁𝑁𝑅𝑅𝑅𝑅𝑅𝑅−1
𝜒𝜒0.975
2   𝜎𝜎𝑝𝑝,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�, where 𝑁𝑁𝑅𝑅𝑅𝑅𝑅𝑅 is the number of voxels in a ROI 

and 𝜒𝜒𝛼𝛼2 is the 𝛼𝛼-th quantile of the chi-square distribution with 𝑁𝑁𝑅𝑅𝑅𝑅𝑅𝑅 − 1 degrees of 
freedom. 

The observed precision was compared to the theoretically expected standard deviation 

�1/𝐸𝐸𝑝𝑝(𝜽𝜽) with 𝑁𝑁𝑎𝑎𝑎𝑎𝑎𝑎 = 1 for each method, where 𝜽𝜽 contained the calibrated 𝑇𝑇1 and 
𝑇𝑇2 values, 𝑇𝑇2′ = 200 ms, 𝑃𝑃𝑃𝑃 = 1, 𝜑𝜑0 = 0 rad. For Δ𝐵𝐵0 and 𝐵𝐵1+ we used the values 
estimated by respectively the MGE and BS methods. 

Results 
Simulation Study 
Figure 3.1 shows the SNR predictions for all parameters per qMRI method for white 
matter and muscle tissues respectively. The white and colored bars denote respectively 

Figure 3.1. Results of the simulation study, where the SNR of the parameters was predicted for estimat-
ing white matter (top) and muscle (bottom) tissue with each qMRI method in 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟 = 10 min acquisition 
time. Colored bars indicate 𝑆𝑆𝑆𝑆𝑅𝑅𝑝𝑝𝐸𝐸, the SNR when the other parameters are unknown, and white bars 
indicate 𝑆𝑆𝑆𝑆𝑅𝑅𝑝𝑝𝐼𝐼 , the SNR when the other parameters are (assumed) known. 
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 𝑆𝑆𝑆𝑆𝑅𝑅𝑝𝑝𝐼𝐼 , the SNR when the other parameters are assumed to be known, and 𝑆𝑆𝑆𝑆𝑅𝑅𝑝𝑝𝐸𝐸, the 

SNR when the other parameters are unknown. Note that the additional uncertainty 
yields that 𝑆𝑆𝑆𝑆𝑅𝑅𝑝𝑝𝐸𝐸 ≤ 𝑆𝑆𝑆𝑆𝑅𝑅𝑝𝑝𝐼𝐼  for each parameter.  

It can be observed that the framework predicts for each qMRI methods a high 𝑆𝑆𝑆𝑆𝑅𝑅𝑝𝑝𝐸𝐸 
value for the parameters it is conventionally estimates. 

For instance, notice the high 𝑆𝑆𝑆𝑆𝑅𝑅𝑝𝑝𝐸𝐸 value of 𝑇𝑇1 for IRLL and IRSE. Simultaneously, a 
large difference between 𝑆𝑆𝑆𝑆𝑅𝑅𝑝𝑝𝐸𝐸 and 𝑆𝑆𝑆𝑆𝑅𝑅𝑝𝑝𝐼𝐼  indicates that precise estimation of the pa-
rameter requires knowledge of the other parameters. For example, the VFA method 
yields a low 𝑆𝑆𝑆𝑆𝑅𝑅𝑝𝑝𝐸𝐸 value for 𝑇𝑇1 estimation compared to the information 𝑆𝑆𝑆𝑆𝑅𝑅𝑝𝑝𝐼𝐼  on this 
parameter. Further inspection shows that if VFA is combined with the BS method, the 
𝑆𝑆𝑆𝑆𝑅𝑅𝑝𝑝𝐸𝐸 of 𝑇𝑇1 is markedly improved since the uncertainty in 𝐵𝐵1+ is resolved. As the BS 
method provides information on 𝐵𝐵1+, but hardly on 𝑇𝑇1, the combination has a slightly 
lower 𝑆𝑆𝑆𝑆𝑅𝑅𝑝𝑝𝐼𝐼  value 𝑇𝑇1 (as indicated by a slightly lower white bar), yet yields a substan-
tially higher 𝑆𝑆𝑆𝑆𝑅𝑅𝑝𝑝𝐸𝐸. 

Additionally, very low 𝑆𝑆𝑆𝑆𝑅𝑅𝑝𝑝𝐸𝐸 for estimating 𝑇𝑇1 can be observed for MGE, MSE and 
SE, and simultaneously a high 𝑆𝑆𝑆𝑆𝑅𝑅𝑝𝑝𝐸𝐸 for 𝑇𝑇2∗ and 𝑇𝑇2 is obtained for respectively MGE 
and SE/MSE. Also notice that MRF has high 𝑆𝑆𝑆𝑆𝑅𝑅𝑝𝑝𝐸𝐸 across all parameters, except 𝑇𝑇2∗ 
and Δ𝐵𝐵0. 
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 Phantom Study 

Figure 3.2 shows for different qMRI methods and all 14 ROI’s the correlation be-
tween the measured and predicted standard deviation for all parameters except 𝜑𝜑0, as 
it is of little practical interest. Here, we only include the qMRI methods that are rele-

Figure 3.2. Results of the phantom study. The scatter plot shows the correlation between predicted and 
measured standard deviation (std) of the estimated parameters 𝑇𝑇1, 𝑇𝑇2, 𝑇𝑇2∗, 𝑃𝑃𝑃𝑃, Δ𝐵𝐵0, and 𝐵𝐵1+ in each ROI 
of the NIST system phantom. For each parameter we only show the relevant qMRI acquisitions, indicat-
ed by the legend in each subfigure. 
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 vant for the mapping of a given parameter (see Supporting Figure S3.1 for a complete 

overview). One may observe that for methods that are known to be precise in estimat-
ing certain parameters the observed standard deviations of these parameters closely 
match the predicted ones. For instance, the predicted and observed standard devia-
tions for estimating 𝑇𝑇1 closely match for IRLL, IRSE and VFA+BS. This is also the 
case for the standard deviations of the 𝑇𝑇2∗ estimates of MGE and the 𝑇𝑇2 estimates of 
MSE and SE. Exceptions the 𝐵𝐵1+ estimates of MRF and BS, and the 𝑃𝑃𝑃𝑃 estimates of 
most methods. The qMRI methods that are not practically used for estimating a given 
parameter typically had a high predicted standard deviation while the measured stand-
ard deviation could be much lower (see Supporting Figure S3.1). This was especially 
the case for Δ𝐵𝐵0 and 𝐵𝐵1+. From the 9(𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑜𝑜𝑜𝑜𝑜𝑜) × 14(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅) × 6(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) =
672 predictions of the standard deviation, there were 94 (12.4%) values below the 
95% confidence interval, which predominantly concerned the MRF method that 
measured lower precision than predicted in 55 cases.  

The calibrated 𝑇𝑇1 values of the spheres were accurately estimated using the relevant 
methods (IRLL, IRSE, VFA, VFA+BS, MRF), and this was also the case for the 𝑇𝑇2 
values (SE, MSE, MRF) (see Supporting Figure S3.2). 

Discussion 
In this paper we proposed and validated a new framework for determining the time 
efficiency of qMRI methods. The precision was predicted though the CRLB and 
normalized by the acquisition time of a method. The CRLB evaluations were based on 
Bloch simulations of the MRI signals, which are applicable to any pulse sequence and 
allow the signal modelling under many relevant assumptions/conditions. Here, we 
determined the time efficiency of nine qMRI methods for estimating seven parameters 
(𝑇𝑇1,𝑇𝑇2,𝑇𝑇2∗,Δ𝐵𝐵0,𝐵𝐵1+,𝑃𝑃𝑃𝑃,𝜑𝜑0) simultaneously. However, the time efficiency framework 
is applicable to any combination of qMRI methods and estimated parameter sets that 
can be accurately modelled through Bloch simulations. 

The phantom study showed reasonable agreement between predicted and observed 
standard deviations over a wide range of precisions, demonstrating that the proposed 
framework provides meaningful predictions of precision. Especially in the cases with 
small predicted standard deviation, where it is most relevant, the results closely 
matched. The exception was MRF which had lower measured precision than predict-
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 ed. As this method has complicated spin dynamics, we hypothesize that slight differ-

ences between what is played out on the scanner and the simulation, as well as limita-
tions of the simulations (see below), increases the difference between the predicted and 
encountered standard deviations. Future work should further identify the reasons of 
this discrepancy. For some cases with very low predicted precision, the parameter 
maps had higher measured precision due to the constrained search domain used for 
parameter estimation (see Supporting Figure S3.1). However, these cases are not con-
sidered relevant for practical application. In particular, when high precision was pre-
dicted, the proposed framework showed close correspondence with the measured pre-
cision. 

As the framework evaluates the time efficiency entirely in simulation, it also facilitates 
optimizing the time efficiency of a sequence over its settings such as flip angles, inver-
sion times, echo times, etc. A limitation of the proposed time efficiency framework is 
that it does not explicitly consider the minimum scan time that is required to obtain 
an image. Hence, there is the implicit assumption that, possibly with parallel imaging 
and/or advanced image reconstruction methods, the reference scan time can be 
achieved. Depending on the available scan time, desired field of view, and the resolu-
tion, this might not be the case for every qMRI method. Also the effect of artifacts (for 
instance due to subject motion) is currently not considered by the proposed frame-
work. 

A further limitation is that the Bloch simulation used as signal model did not include 
diffusion, perfusion, flow, etc. Parameters related to these processes were not evaluated 
either. We did so to assess the ‘pure’ efficiency of the methods under study. However, 
when performing a more advanced Bloch(-Torrey) simulation that includes parame-
ters on these processes, the time efficiency of sequences with respect to those parame-
ters can also directly be evaluated with the proposed framework.  

The list of selected sequences is by no means exhaustive nor are all sequence settings 
optimal. The aim of the framework is to allow easy evaluation of any sequence. No 
time-consuming implementation and evaluation on the scanner is needed, only an in-
silico pulse sequence simulation. As such we particularly recommend to use the pro-
posed framework when searching for ‘the best’ sequence for estimating quantitative 
MRI parameters in a tissue of interest.  
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 Conclusion 

This work presented and validated a framework for estimating the precision of quanti-
tative MRI method. The framework enables an objective and in-silico comparison of 
different methods, and consequently selecting the best method without time-
consuming scan experiments.  

Supplementary Materials 
A. Pulse sequences in TOPPE 
The TOPPE frameworks consists of a number of modules with five channels (RF am-
plitude and angle, and the three gradient waveforms), and a text file specifying a timed 
sequence of these modules with scaling factors of the waveforms and wait time be-
tween them. 

Each qMRI acquisition was based on a sequence of the following modules: 

 signal readout, acquiring a single Cartesian line in k-space with balanced gra-
dients; 

 gradient pulse, providing a maximum of 40𝜋𝜋 rad/cm dephasing in each direc-
tion; 

 RF excitation, providing a maximum of 90° rotation, with 5 mm slice width, 
1.1 ms duration, a time-bandwidth product of 3, and balanced gradients; 

 RF inversion, adiabatic and non-selective inversion using a hyperbolic secant 
pulse of 10 ms; 

 RF refocusing, providing 180° rotation with 6 mm slice width, 4 ms dura-
tion, a time-bandwidth product of 4; 

 RF off-resonance pulse, a Fermi pulse of 10 ms, played at ±4 kHz off-
resonance. 

The excitation and refocusing RF pulses are designed using the Shinnar-Le Roux algo-
rithm from John Pauly’s RF toolbox. While the above mentioned design of the mod-
ules is easy to use and very flexible, the timing typically cannot be as strict as dedicated 
sequence implementations. The sequence files that we used are provided through 
https://bitbucket.org/bigr_erasmusmc/time-efficiency. 

https://bitbucket.org/bigr_erasmusmc/time-efficiency
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 B. Parameter Discretization 

 

Table S3.1 Parameter discretization in the signal dictionaries of each qMRI method. The knot points are 
sampled uniformly from the range shown for each parameter in Table 3.2. The number of knot points is 
chosen to obtain a maximal interpolation error of 10−3 along the given dimension with B-spline order 2. 
Note that the interpolation threshold is often obtained with a small number of knot points, since the 
solution of the Bloch equations mostly varies smoothly with the underlying parameters [56]. 

qMRI 
method 

number of knot points 

log(𝑇𝑇1) log(𝑇𝑇2) log(𝑇𝑇2′) Δ𝐵𝐵0 𝐵𝐵1+ 

IRLL  8 5 3 7 3 

IRSE  8 6 3 6 11 

VFA  5 4 3 7 7 
VFA +
 BS  5 4 3 16 3 

BS  6 6 4 24 4 

MGE  6 7 6 221 4 

SE  7 7 3 3 11 

MSE  8 6 4 3 25 

MRF  9 5 4 9 5 
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 C. Complete Time Efficiency Validation 

 

Figure S3.1. Results of the phantom study for all combinations of method and parameter. The scatter 
plot shows the correlation between predicted and measured standard deviation (std) of the estimated 
parameters 𝑇𝑇1, 𝑇𝑇2, 𝑇𝑇2∗, 𝑃𝑃𝑃𝑃, Δ𝐵𝐵0, and 𝐵𝐵1+ in each ROI of the NIST system phantom. Note that for some 
parameter (e.g. Δ𝐵𝐵0,𝐵𝐵1+) with high predicted standard deviation, the measured standard deviation is sub-
stantially lower since the parameters are estimated within a restricted domain.  
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 D. Relaxometry Estimation Accuracy 

 

Figure S3.2. Scatter plot that compares the mean estimated 𝑇𝑇1 and 𝑇𝑇2 values of each ROI of the NIST 
system phantom to their calibrated values for the relevant qMRI methods.  
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Simultaneous Estimation of Multiple Parameters from 
an Optimized Combination of Quantitative MRI 
Methods 

Willem van Valenberg, Frans M. Vos, Stefan Klein, Lucas J. van Vliet, Dirk H.J. Poot 

  

Abstract 

 

When multiple physical parameters are of interest, the estimation of each parameter 
with sufficient precision and accuracy in a short scan time is problematic. Quantita-
tive MRI (qMRI) methods with high accuracy and precision conventionally require 
long scan times, while shorter methods are susceptible to bias due to complex signal 
dynamics. We aim to increase the accuracy and precision obtained in a single scan 
by simultaneously estimating multiple parameters from an optimal combination of 
(short) qMRI methods. 

A scan protocol is defined from a set of 11 qMRI methods by selecting for each 
method the number of averages and method-specific settings (e.g. flip angles, echo 
times) that maximize the precisions of the estimated parameters in the available 
scan time. The precisions are predicted through the Cramér-Rao lower bound 
(CRLB) from Bloch simulations of the MR signal. We apply a block-wise optimiza-
tion scheme that alternates between optimizing the number of averages through a 
genetic algorithm, and optimizing the settings of each methods through a direct 
gradient-based algorithm. We balance precision and scan time by adjusting a regu-
larization parameter (𝜆𝜆) in the cost function. Here, we optimize to obtain maximal 
precision for relaxometry values (𝑇𝑇1,𝑇𝑇2,𝑇𝑇2′) while accounting for confounding pa-
rameters related to the proton density (𝑃𝑃𝑃𝑃) and magnetic fields (Δ𝐵𝐵0,𝐵𝐵1+,𝜑𝜑0). 

The optimized scan protocols were found to be reproducible and obtained higher 
precisions for most parameters than dedicated reference methods with the same 
scan time. The exception was the 𝑇𝑇2 estimation through the multiple spin echo 
method. While validation of the predicted precisions in a scan experiment is still 
required, the proposed optimization framework is promising for developing scan 
protocols with a short scan time that can estimate multiple parameters with accura-
cy and precision. 
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 Introduction 

Quantitative MRI methods measure the physical parameters that determine the MR 
signal such as the 𝑇𝑇1 and 𝑇𝑇2 relaxation constants. It is usually assumed that these pa-
rameters are more reproducible than the signal in a conventional MR image that de-
pends on the varying static (𝐵𝐵0) and transmit (𝐵𝐵1+) magnetic fields. Conventionally, 
parameter estimation relies on a number of dedicated methods such as the variable flip 
angle method for 𝑇𝑇1 mapping [52], the multiple spin-echo method for 𝑇𝑇2 mapping 
[11], or the Bloch-Siegert shift method for 𝐵𝐵1+ mapping [53]. 

Clearly, when multiple qMRI parameters are of interest, each parameter may be esti-
mated separately or in some cases sequentially. However, recent work showed that for 
𝑇𝑇1 and 𝑇𝑇2 mapping, the precision of the parameter estimates could be substantially 
improved by fitting a combined signal model of the two dedicated acquisitions (SPGR 
and SSFP) instead of performing sequential fits [40]. A further increase in precision 
was obtained by optimizing the acquisition settings (of SPGR and SSFP) through the 
Cramér-Rao lower bound, which was also applied for combinations of SPGR and 
DESS acquisitions [38]. 

These techniques are appropriate for the simultaneous estimation of parameters based 
on an a priori defined combination of qMRI methods. However, there is a large varie-
ty of methods and consequently the number of possible combinations that can be per-
formed in a fixed scan time is immense. In effect, an exhaustive search over all possible 
combinations is computationally infeasible, especially when acquisition settings also 
need to be optimized. Additionally, there are practical difficulties in the construction 
of combined signal models as often each signal model is derived under special assump-
tions and may ignore effects that do not confound the parameters of primary interest 
(e.g. modulation of the estimated proton density, 𝑃𝑃𝑃𝑃, by 𝑇𝑇1 in a 𝑇𝑇2 spin-echo experi-
ment, or conversely by 𝑇𝑇2 in a 𝑇𝑇1 inversion-recovery experiment). 

In this paper, we study a theoretical framework for the design of a protocol to estimate 
an arbitrary combination of quantitative parameters. We hypothesize that this enables 
development of such a protocol in a generalized way. The framework is demonstrated 
by optimizing the combination of qMRI methods for the estimation of relaxometry 
values (𝑇𝑇1,𝑇𝑇2,𝑇𝑇2′) while accounting for confounding effects due to the proton density 
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 (𝑃𝑃𝑃𝑃), RF transmit amplitude (𝐵𝐵1+) and receive phase (𝜑𝜑0), and static field inhomoge-

neities (Δ𝐵𝐵0).  

Methods 
Theoretic Precision 
We constructed a scan protocol from a set of 𝑄𝑄 quantitative methods for relaxometry, 
for example: multiple-gradient echo (MGE), inversion-recovery spin echo (IRSE), and 
MR Fingerprinting (MRF). Each method, indexed by 𝑞𝑞, had 𝐾𝐾𝑞𝑞 acquisitions settings 
(i.e. applied flip angles and repetition/echo/inversion times) which were combined in a 
vector 𝝓𝝓𝑞𝑞 ∈ ℝ𝐾𝐾𝑞𝑞 . With these settings, each method acquired 𝑀𝑀𝑞𝑞 contrast images: the 
different echoes for MGE, inversion-times for IRSE, or repetitions in MRF. Note that 
𝑀𝑀𝑞𝑞 was not considered one of the acquisitions settings but specific for the method (i.e. 
MGE with 16 or 32 echoes were considered different methods). Each method was 
assumed to sample a consistent acquisition matrix, leading to a scan time of 𝑡𝑡𝑞𝑞�𝝓𝝓𝑞𝑞� 
for a fully-sampled acquisition. 

After image reconstruction, each voxel had a signal time course 𝒎𝒎𝑞𝑞 ∈ ℂ𝑀𝑀𝑞𝑞 based on 𝑃𝑃 
voxel-dependent parameters 𝜽𝜽 = [𝜃𝜃1, … ,𝜃𝜃𝑃𝑃] ∈ Θ ⊆ ℝ𝑃𝑃, which described the relaxo-
metry (𝑇𝑇1,𝑇𝑇2,𝑇𝑇2′), proton density (𝑃𝑃𝑃𝑃), and the transmit (𝐵𝐵1+) and static (Δ𝐵𝐵0) mag-
netic field. The signal 𝒎𝒎𝑞𝑞 ∈ ℂ𝑀𝑀𝑞𝑞 can be modelled through the method-specific solu-
tion of the Bloch equations, 𝒔𝒔𝑞𝑞�𝜽𝜽,𝝓𝝓𝑞𝑞�, with a noise contamination 𝝈𝝈𝑞𝑞: 

𝒎𝒎𝑞𝑞 =  𝒔𝒔𝑞𝑞�𝜽𝜽,𝝓𝝓𝑞𝑞� + 𝝈𝝈𝑞𝑞 ∈ ℂ𝑀𝑀𝑞𝑞 ( 4.1 ) 

The noise 𝝈𝝈𝑞𝑞 was assumed to be uncorrelated between measurements and receiver 
channels and identically Gaussian distributed with variance 𝜎𝜎𝑞𝑞2 ∈ ℝ. In this case, the 
information a given method obtained on the parameters 𝜽𝜽 could be described by the 
Fisher information matrix [28]: 

𝑰𝑰𝑞𝑞�𝜽𝜽,𝝓𝝓𝑞𝑞� =
1
𝜎𝜎𝑞𝑞2

�
𝜕𝜕𝒔𝒔𝑞𝑞�𝜽𝜽,𝝓𝝓𝑞𝑞� 

𝜕𝜕𝜽𝜽 �
𝐻𝐻

�
𝜕𝜕𝒔𝒔𝑞𝑞�𝜽𝜽,𝝓𝝓𝑞𝑞� 

𝜕𝜕𝜽𝜽 � ∈ ℝ𝑃𝑃×𝑃𝑃 ( 4.2 ) 

The matrix 𝑰𝑰𝑞𝑞�𝜽𝜽,𝝓𝝓𝑞𝑞�
−1

 is a lower bound on the covariance matrix of unbiased esti-
mates of 𝜽𝜽 from the measured signal 𝒎𝒎𝑞𝑞 [28]. Therefore, the diagonal of 
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 𝑰𝑰𝑞𝑞�𝜽𝜽,𝝓𝝓𝑞𝑞�

−1
 contains the minimal variance (i.e. maximal precision) with which 𝜽𝜽 can 

be accurately estimated. 

To design a scan protocol, we aimed to combine the information from the separate 
qMRI methods in an optimal manner for a set of 𝑁𝑁𝜃𝜃 parameter values of interest 
{𝜽𝜽𝑖𝑖}1≤𝑖𝑖≤𝑁𝑁𝜽𝜽 . For each method we select the number of repeats 𝑛𝑛𝑞𝑞, and assume that the 
noise in each image has equal variance 𝜎𝜎𝑞𝑞2 = 𝜎𝜎2 for 1 ≤ 𝑞𝑞 ≤ 𝑄𝑄. In this case, the total 
information obtained through the protocol equals: 

𝑰𝑰(𝜽𝜽;𝒏𝒏,𝝓𝝓) = 𝑰𝑰𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + �𝑛𝑛𝑞𝑞𝑰𝑰𝑞𝑞�𝜽𝜽,𝝓𝝓𝑞𝑞�
𝑄𝑄

𝑞𝑞=1

∈ ℝ𝑃𝑃×𝑃𝑃 ( 4.3 ) 

Here, 𝑰𝑰𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 enabled the inclusion of prior information on the parameters in 𝜽𝜽, 𝐻𝐻 
indicates the Hermitian conjugate, and 𝝓𝝓 = �𝝓𝝓𝑞𝑞�1≤𝑞𝑞≤𝑄𝑄. The prior information pre-

vents the parameter estimation to obtain unrealistic parameter combinations. When 
averaging over 𝑛𝑛𝑞𝑞 repeats, the Gaussian noise in the images scales as 𝜎𝜎2/𝑛𝑛𝑞𝑞. While 
this is theoretically only true for discrete 𝑛𝑛𝑞𝑞, we allowed for 𝑛𝑛𝑞𝑞 to be fractional in the 
optimization to represent undersampling of images and consequently enable more 
practical scan times. The protocol defined by 𝒏𝒏 and 𝝓𝝓 was expected to estimate the 
parameters 𝜽𝜽 with a minimal variance of 𝑰𝑰(𝜽𝜽;𝒏𝒏,𝝓𝝓)−1.  

The minimal scan time of the protocol described by 𝒏𝒏 and 𝝓𝝓, not including prepara-
tion of each method, is given by: 

𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝒏𝒏,𝝓𝝓) ≔ �𝑛𝑛𝑞𝑞𝑡𝑡𝑞𝑞�𝝓𝝓𝑞𝑞�
𝑄𝑄

𝑞𝑞=1

 ( 4.4 ) 

Obviously, a protocol is desired that obtains the highest precision (i.e. lowest variance) 
of each parameter estimate with the smallest scan time.  

Protocol Optimization 
To determine the number of repeats 𝒏𝒏 and settings 𝝓𝝓 for each method that gives the 
protocol the highest precision in the shortest scan time for the 𝑁𝑁𝜃𝜃 parameter values of 
interest, {𝜽𝜽𝑖𝑖}1≤𝑖𝑖≤𝑁𝑁𝜽𝜽 , we defined the following cost function: 
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𝐶𝐶(𝒏𝒏,𝝓𝝓, 𝜆𝜆) = ���𝑾𝑾𝑖𝑖
𝑇𝑇diag(𝑰𝑰(𝜽𝜽𝑖𝑖;𝒏𝒏,𝝓𝝓)−1)�2

2
𝑁𝑁𝜃𝜃

𝑖𝑖=1

�

1
2

+ 𝜆𝜆 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝒏𝒏,𝝓𝝓) ( 4.5 ) 

Here, 𝑾𝑾𝑖𝑖 = diag(𝒘𝒘𝑖𝑖) ∈ ℝ𝑃𝑃×𝑃𝑃 weights the importance of the predicted variances of 
each parameter estimate on the diagonal of 𝑰𝑰(𝜽𝜽𝑖𝑖;𝒏𝒏,𝝓𝝓)−1. The value of 𝜆𝜆 ∈ ℝ>0 is 
user-specified and determines the relative weight of the scan time 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝒏𝒏,𝝓𝝓) on the 
cost. Note that we emphasize the maximization of the minimal precision by taking the 
2-norm over the expected variances of each parameter combination of interest. 

The goal is to find for a given 𝜆𝜆 the optimal number of repeats 𝒏𝒏𝑜𝑜𝑜𝑜𝑜𝑜 and settings 𝝓𝝓𝑜𝑜𝑜𝑜𝑜𝑜 
of each method: 

�𝒏𝒏𝑜𝑜𝑜𝑜𝑜𝑜,𝝓𝝓𝑜𝑜𝑜𝑜𝑜𝑜� = arg min
𝒏𝒏,𝝓𝝓

𝐶𝐶(𝒏𝒏,𝝓𝝓, 𝜆𝜆) ( 4.6 ) 

Observe that small 𝜆𝜆 in Eq. 4.5 will give high precision protocols with long scan time, 
and reversely high 𝜆𝜆 give short scan time and low precision. 

Unfortunately, the optimization of Eq. 4.6 is not trivial since evaluating the derivative 
with respect to 𝝓𝝓 has a high computational complexity due to the required Bloch 
simulations (details below). Therefore, we applied a block-wise coordinate descent 
method that alternatingly solved: 

1. arg min
𝒏𝒏 𝐶𝐶(𝒏𝒏,𝝓𝝓, 𝜆𝜆)  with 𝝓𝝓 fixed  

and subsequently for each 𝑞𝑞 : 

2. 
arg min
𝑛𝑛𝑞𝑞 ,𝝓𝝓𝑞𝑞

𝐶𝐶(𝝓𝝓,𝒃𝒃,𝒘𝒘)  with  𝑛𝑛𝑗𝑗,𝝓𝝓𝑗𝑗 fixed for 𝑗𝑗 ≠ 𝑞𝑞 

( 4.7 ) 

For the first step, we applied the genetic algorithm of MATLAB’s global optimization 
toolbox with a population size of 1500, and convergence is achieved if the cost reduc-
tion was below 10−5 in 500 steps. Here, the computational complex 𝑰𝑰𝑞𝑞�𝜽𝜽,𝝓𝝓𝑞𝑞� has to 
be evaluated only once for each 𝑞𝑞 since it does not depend on 𝒏𝒏. In the second step, 
we used the gradient descent method that was stopped when the relative cost reduc-
tion was below 10−3 in subsequent steps or after 500 iterations. Here, each method is 
optimized subsequently and requires only the re-evaluation of 𝑰𝑰𝑞𝑞�𝜽𝜽,𝝓𝝓𝑞𝑞� for the cur-
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 rent 𝑞𝑞. The full optimization procedure terminated if the relative change in cost was 

below 10−3 or after 100 iterations. 

Signal Simulation 
Finding the optimal protocol in Eq. 4.6 requires determining the information 
𝑰𝑰𝑞𝑞�𝜽𝜽,𝝓𝝓𝑞𝑞� in Eq. 4.7 though simulation of the signal 𝒔𝒔𝑞𝑞�𝜽𝜽,𝝓𝝓𝑞𝑞� of each method. The 
signal model was constructed using an event-based Bloch simulator that combined the 
waveforms and signal readout times of each qMRI method into a single ordered se-
quence. The computational complexity of the simulation was reduced by modelling 
the radiofrequency pulses and gradient waveforms as instantaneous pulses and ignor-
ing the k-space trajectory. Thus, the signal was simulated as though there was but a 
single voxel, which enabled to study the ‘pure’ estimation properties of the qMRI 
methods and to exclude the influence of differing k-space samplings. Each simulation 
was initialized by repeating the sequence for an acquisition time of at least 5 seconds. 
The derivative in Eq. 4.2 is numerically approximated with a central difference meth-
od with a step size of 1% of the parameter value.  

In this work, each method estimates seven voxel-dependent parameters: proton density 
(𝑃𝑃𝑃𝑃), longitudinal relaxation time (𝑇𝑇1), transversal relaxation time (𝑇𝑇2), apparent 
transversal relaxation time (𝑇𝑇2∗), the off-resonance (Δ𝐵𝐵0) field, RF transmit (𝐵𝐵1+) field, 
and transmit-receive phase (𝜑𝜑0). The 𝑇𝑇2∗ relaxation was simulated using 5000 spins 
with off-resonance frequencies that were Cauchy distributed around 𝛾𝛾Δ𝐵𝐵0 with scale 

𝑇𝑇2′
−1 = 𝑇𝑇2∗

−1 − 𝑇𝑇2 −1.  

Experiments 
The protocol optimization framework was applied to the simultaneous estimation of 
𝑃𝑃 = 7 parameters 𝜽𝜽 = �𝑇𝑇1,𝑇𝑇2,𝑇𝑇2′,𝑃𝑃𝑃𝑃,𝜑𝜑0,Δ𝐵𝐵0,𝐵𝐵1+�. Here, the relaxometry pa-
rameters (𝑇𝑇1,𝑇𝑇2,𝑇𝑇2∗) are of main interest, and the other parameters are included to 
increase the accuracy of the relaxometry parameters. We investigated 11 different 
quantitative methods for inclusion in the protocol: spoiled gradient-recalled echoes 
(SPGR), inversion-recovery Look-Locker (IRLL), inversion-recovery spin echoes 
(IRSE), spin echoes (SE), multiple spin echoes (MSE), steady state free precession 
(SSFP), double echo steady state (DESS), multiple gradient echoes (MGE), Bloch-
Siegert shift (BS), actual flip-angle imaging (AFI), and magnetic resonance fingerprint-



74 | Chapter 4 

 

 
 ing (MRF). Table 4.1 lists for each of these methods their initial settings, the bounds 

on the settings, and a literature reference.  

The precision of the relaxometry parameters was quantified by determining for each 
parameter combination {𝜽𝜽𝑖𝑖}1≤𝑖𝑖≤𝑁𝑁𝜽𝜽  the expected coefficient-of-variation (CoV):  

CoV𝑝𝑝(𝜽𝜽𝑖𝑖;𝒏𝒏,𝝓𝝓) ≔
�(𝐼𝐼(𝜽𝜽𝑖𝑖;𝒏𝒏,𝝓𝝓)−1)𝑝𝑝,𝑝𝑝

𝜃𝜃𝑖𝑖,𝑝𝑝
,    for  𝑇𝑇1,𝑇𝑇2,𝑇𝑇2

′  ( 4.8 ) 

The minimization of 𝐶𝐶(𝒏𝒏,𝝓𝝓, 𝜆𝜆) was done using 𝑤𝑤𝑖𝑖,𝑝𝑝 = 𝜃𝜃𝑖𝑖,𝑝𝑝 for 𝑇𝑇1,𝑇𝑇2,𝑇𝑇2′ (the param-
eters of interest) and 𝑤𝑤𝑖𝑖,𝑝𝑝 = 0 for 𝑃𝑃𝑃𝑃,𝜑𝜑0,Δ𝐵𝐵0,𝐵𝐵1+ (considered of indirect interest). 
The optimization was performed for tissue parameters corresponding to white matter 
(𝑇𝑇1/𝑇𝑇2 = 1084/69 ms) and grey matter (𝑇𝑇1/𝑇𝑇2 = 1412/50 ms). These 𝑇𝑇1 and 𝑇𝑇2 
values were taken from [57], while for the other parameters we chose: 𝑇𝑇2′ = 100 ms, 
𝑃𝑃𝑃𝑃 = 1, 𝜑𝜑0 = 0 rad. The protocol optimization was applied to the two tissues for 10 
combinations of 𝐵𝐵1+ and Δ𝐵𝐵0, sampled from respectively [0.85, 1.15] and 
[−100, 100] Hz, using a Halton search. This yielded 20 test parameter settings 𝜽𝜽𝑖𝑖 in 
Eq. 4.5 in total. Furthermore, we investigated the effect on scan time and the preci-
sions of varying 𝜆𝜆, by optimizing with ten values of 𝜆𝜆 logarithmically spaced between 
10−4 and 10−1.  

The genetic algorithm in the optimization includes a random initialization of the 
weights 𝒏𝒏. We restarted the optimization five times to investigate the reproducibility 
of the resulting protocol costs, precisions, durations, and compositions. Additionally, 
the theoretic precisions of the optimized protocols were compared to theoretic preci-
sions of standard qMRI methods, where both were determined through Eq. 4.8.  
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Table 4.1. Methods and settings included in the protocol optimization, with a literature reference for 
each method. Settings are specified by name, unit, range of potential values, and their initial value(s) of 
each of the number of versions included of a method (shown in parentheses below the method name). 
The settings are: flip angle (𝐹𝐹𝐹𝐹), repetition/inversion/echo/delay times (𝑇𝑇𝑅𝑅/𝑇𝑇𝐼𝐼/𝑇𝑇𝐸𝐸/𝑇𝑇𝐷𝐷), number of meas-
urements (𝑀𝑀𝑞𝑞), echo spacing (𝐸𝐸𝐸𝐸𝐸𝐸), Bloch-Siegert shift (𝜑𝜑𝐵𝐵𝐵𝐵), and RF phase shift between subsequent 
pulses (𝜓𝜓𝑅𝑅𝑅𝑅). 

method 
(#) 

settings (𝝓𝝓𝑞𝑞) literature 
reference 

name unit range initial value(s) 

SPGR 
(3) 

𝐹𝐹𝐹𝐹 
𝑇𝑇𝑅𝑅 

° 
ms 

[0,60] 
[10,∞) 

{9, 15, 30} 
{10, 10, 10} 

[52] 

IRLL  
(2) 

𝑀𝑀𝑞𝑞 
𝑇𝑇𝐼𝐼 
𝐹𝐹𝐹𝐹 
𝐸𝐸𝐸𝐸𝐸𝐸 
𝑇𝑇𝐷𝐷 

− 
ms 

° 
ms 
ms 

− 
[3.8,∞) 
[0,60] 

[10.1,∞) 
[13,∞) 

{16, 32} 
{10, 10} 
{15, 15} 
{15, 15} 

{100,100} 

[50] 

IRSE 
 (3) 

𝑇𝑇𝐼𝐼 
𝑇𝑇𝐸𝐸 
𝑇𝑇𝐷𝐷 

ms 
ms 
ms 

[3.8,∞) 
[13,∞) 
[16,∞) 

{30, 530, 1030} 
{15, 15, 15} 

{1600, 1600, 1600} 

[51] 

SE  
(4) 

𝑇𝑇𝐸𝐸 
𝑇𝑇𝐷𝐷 

ms 
ms 

[13,∞) 
[6,∞) 

{20, 40, 80, 160} 
{50, 50, 50, 50} 

[55] 

MSE 
(2) 

𝑀𝑀𝑞𝑞 
𝑇𝑇𝐷𝐷 
𝐸𝐸𝐸𝐸𝐸𝐸 

− 
ms 
ms 

− 
[5.3,∞) 

[14.2,∞) 

{8, 16} 
{50,50} 
{15,15} 

[11] 

MGE 
(3) 

𝑀𝑀𝑞𝑞 
𝐹𝐹𝐹𝐹 
𝑇𝑇𝐷𝐷 
𝐸𝐸𝐸𝐸𝐸𝐸 

− 
° 

ms 
ms 

− 
[0,90] 
[6,∞) 
[5,∞) 

{8, 16, 32} 
{20,20,20} 
{50,50,50} 

{5,5,5} 

[54] 

BS 
(2) 

𝐹𝐹𝐹𝐹 
𝜑𝜑𝐵𝐵𝐵𝐵 
𝑇𝑇𝐷𝐷 

° 
° 

ms 

[0,90] 
[22.2,−22.2] 

[6.3,∞) 

{20, 20} 
{22.2,−22.2} 

{10,10} 

[53] 

AFI 
(1) 

𝐹𝐹𝐹𝐹 
𝑇𝑇𝑅𝑅,1 
𝑇𝑇𝑅𝑅,2 
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 Results 

Figure 4.1 (A) shows the cost of the protocol (Eq. 4.5) that resulted from the optimi-
zation procedure as a function of the applied regularization weight (𝜆𝜆). Each group of 
five results reflect the outcomes after restarting the optimization five times while ap-
plying the same value for 𝜆𝜆. Observe that the cost at each value for 𝜆𝜆 shows little varia-
tion between repeats. Furthermore, the cost decreases with decreasing 𝜆𝜆. 

Figure 4.1 (B,C) depict the theoretic precision (Eq. 4.8) of the parameters of interest 
(𝑇𝑇1,𝑇𝑇2,𝑇𝑇2′) as a function of 𝜆𝜆 for white and grey matter respectively. The vertical bars 
represent the range of CoV𝑝𝑝 values for the optimized protocol across 10 sampled 𝐵𝐵1+ 
and Δ𝐵𝐵0 combinations. Furthermore, each horizontal line corresponds to the setting 
for which 𝐵𝐵1+ = 1, and Δ𝐵𝐵0 = 0. Both graphs confirm that indeed CoV𝑝𝑝 is improving 
with decreasing 𝜆𝜆. 

Finally, Figure 4.1 (D) shows the scan time of the optimized protocols as a function of 
𝜆𝜆. Moreover, the colors in the bars reflect the composition of the resulting protocols. 
It can be observed that there is again little variation both in composition and scan 
time across the repeated optimizations. The graph demonstrates that indeed the scan 
time increases with decreasing 𝜆𝜆.  

Figure 4.2 shows the theoretic precision of the parameters of interest as a function of 
the scan time while applying different protocols, for white and grey matter. Markers 
indicate precisions of the optimized protocols with 𝐵𝐵1+ = 1, and Δ𝐵𝐵0 = 0, while error 
bars represent the range in values across repeats. Lines represent the precisions (Eq. 
4.8) for reference methods when simultaneously estimating each parameter 
�𝑇𝑇1,𝑇𝑇2,𝑇𝑇2∗,𝑃𝑃𝑃𝑃,𝜑𝜑0,Δ𝐵𝐵0,𝐵𝐵1+�. Observe that the scan durations of both the opti-
mized and reference protocols varied through differing numbers of signal averages. 
The line styles reflect different levels of undersampling: acceleration factors of more 

than two are depicted with dashed lines. As expected, all curves follow a 1/√𝑡𝑡 profile. 
Furthermore, it can be observed that in general the precisions of the optimized proto-
col are improved (reflected by lower CoV values) compared to the standard qMRI 
methods. Only the dedicated MSE method gives slightly better outcome for quantifi-
cation of 𝑇𝑇2, while requiring high acceleration factors for scan times within 1 minute. 
Futhermore, the optimized protocol additionally has good precision for 𝑇𝑇1 and 𝑇𝑇2′. 
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Figure 4.1. Protocol optimization outcomes for varying regularization weight (𝜆𝜆); each group of five 
results represents the outcomes after restarting the procedure five times at the same value of 𝜆𝜆: (A) proto-
col cost after optimization; (B,C) ranges of theoretic precision, i.e. coefficient of variation (CoV) of the 
relaxometry parameters 𝑇𝑇1,𝑇𝑇2,𝑇𝑇2′ across different parameter settings 𝜽𝜽𝑖𝑖 for white matter and grey matter; 
(D) scan times and composition of protocols. 
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Discussion 
This chapter presented a framework for the design of quantitative protocols that sim-
ultaneously estimate multiple parameters (𝑇𝑇1,𝑇𝑇2,𝑇𝑇2′,𝑃𝑃𝑃𝑃,𝜑𝜑0,Δ𝐵𝐵0,𝐵𝐵1+) in a short 
scan time. The methods and their settings were optimized to obtain the highest ex-
pected precision in the available scan time through an unbiased estimator. The frame-
work applied a block-wise optimization method where the number of averages of each 
method was determined througoh a genetic algorithm and the settings through direct 
gradient-based optimization. The optimized protocols had a cost and composition of 
methods that were reasonably consistent over multiple restarts of the genetic algo-
rithm. Furthermore, protocols of increasing scan time, and consequently precision, 
were found by varying the regularization parameter (𝜆𝜆). With strong regularization, 
the framework was guided to short qMRI methods, while weaker regularization ena-
bled the inclusion of longer methods (e.g. IRLL). Surprisingly, the optimized protocol 
had higher precisions for most parameters than their dedicated reference methods with 
the same scan time, with the exception of 𝑇𝑇2 estimation trough MSE. While the preci-
sions of the reference methods can be improved by optimizing their settings, the op-
timized protocol seem to achieve comparable precision while estimating multiple pa-
rameters simultaneously. 

Figure 4.2. Theoretic precision (Eq. 4.8) of parameters of interest as a function of the scan time applying 
different protocols, for white and grey matter. Markers indicate the precision for optimized protocols with 
𝐵𝐵1+ = 1 and Δ𝐵𝐵0 = 0, while the bars reflect the range variation over repeats. Lines represent the precision 
obtained through reference methods for different levels of undersampling: acceleration factors of more 
than two are depicted by dashed lines.  
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 The precisions, as determined through the Cramér-Rao lower bound, are predictive of 

the maximal precisions that can be found in practice with an unbiased estimator. 
However, these predictions have not been validated for the optimized protocols. Mul-
tiple reference methods have had their CRLB-predicted precisions validated (see 
Chapter 3) for fully-sampled acquisitions. In this work, we specifically allowed for un-
dersampling of the data in the optimization framework under the assumption of pre-
dictive noise behavior. Finding k-space trajectories and reconstruction methods to ap-
proximate this desired behavior is not trivial, and an important extension of this work.  

The optimization framework can be extended through the inclusion of more qMRI 
methods and estimated parameters. Signal simulation is done through the Bloch equa-
tions which models most MR pulse sequences and can include additional physical ef-
fects (e.g. motion, diffusion, magnetization transfer). The modelling of additional ef-
fects and methods might require smart simulation strategies. However, as the compu-
tational complexity of the Fisher information (Eq. 4.3) practically increases linearly 
with the number of estimated parameters and included qMRI methods that is not ex-
pected to be a limiting factor. This work was focused on the estimation of relaxation 
times (𝑇𝑇1,𝑇𝑇2,𝑇𝑇2′) since the selection of an optimal protocol is difficult due to the wide 
range of possible methods for their estimation.  

The simultaneous estimation of parameters (𝑇𝑇1,𝑇𝑇2,𝑇𝑇2′,𝑃𝑃𝑃𝑃,𝜑𝜑0,Δ𝐵𝐵0,𝐵𝐵1+) through an 
optimized protocol increased the expected precisions compared to a combination of 
dedicated methods for each parameter. Consequently, this enables the accurate and 
precise estimation of multiple parameters in a short scan time. 
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 Quantitative MRI (qMRI) methods measure the physical parameters that determine 

the MR signal with the aim of improving the reproducibility and interpretability of 
MRI data. Although qMRI methods have been used for many years, widespread appli-
cation to the clinic has been limited. This is partly due to the long scan times that tra-
ditional methods require to obtain a parameter map with acceptable accuracy and pre-
cision. Faster quantitative methods can estimate parameters inaccurately by ignoring 
confounding physical effects in order to simplify the parameter estimation. This thesis 
introduced novel methods aiming to improve the efficiency of qMRI methods by sim-
ultaneously estimating more parameters from a single scan, with higher accuracy and 
precision. 

A computationally efficient method for multi-parameter mapping 
MR Fingerprinting methods estimate multiple physical parameters simultaneously by 
matching a measured signal to a so-called dictionary: the simulated signals for a fine 
grid of parameter combinations. However, accurate parameter estimation requires dis-
cretizing the parameters with a high resolution, which requires large computational 
and memory costs for dictionary generation, storage, and matching. 

In Chapter 2 of this thesis, a technique was introduced for enhancing the efficiency of 
the parameter mapping. The method was based on fitting a measured signal to a 
sparse signal dictionary that was interpolated using B-splines. This is especially benefi-
cial when estimating multiple (>3) parameters simultaneously, which is computation-
ally infeasible for alternative methods such as dictionary matching or a direct fit of the 
Bloch equations. As such, it facilitates that additional parameters can be included in 
the fitting to account for confounding factors such as magnetic field inhomogeneities. 
This technique was applied to a wide range of quantitative methods in Chapters 2 and 
3, such as inversion-recovery (quantifying 𝑇𝑇1), multiple gradient-echo (𝑇𝑇2∗), and 
Bloch-Siegert (𝐵𝐵1+). Application to this large diversity of methods illustrates the versa-
tility of the presented technique, making it a useful tool for future development of 
multi-parametric quantitative methods. In recent years, machine learning techniques 
have become an interesting alternative for the parameter estimation of qMRI methods. 
Machine learning is promising for estimating parameters with a short scan time, but 
the underlying factors that determine their outcome are still poorly understood. Essen-
tially, by using a dictionary generated using a general physical model, the method for 
multi-parametric mapping presented in Chapter 2 can bridge the gap between the 
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 computationally complex model-based estimation of parameters to the efficient data-

driven methods based on machine learning. 

A time efficiency measure for the comparison of qMRI methods 
The desire for more accurate and reproducible parameter estimation has led to many 
different measurement methods for each parameter of interest. These methods differ 
in accuracy (i.e. bias), precision (estimation variance), acquisition time, and features 
like motion sensitivity, gating capabilities and/or fat suppression. This makes deter-
mining the best method for parameter estimation problematic. In any case a measure 
for the precision of a qMRI method must account for differences in scan time, since 
every method becomes more precise by averaging over repeated measurements at the 
expense of increased scan time. 

In Chapter 3, we proposed a selection criterion, called time efficiency, that reflects the 
precision that can be achieved in the available scan time. The time efficiency measure 
is based the Cramér-Rao lower bound, which describes the minimal variance of an 
unbiased parameters estimate. We normalize the Cramér-Rao lower bound by the du-
ration of the scan to obtain the time efficiency measure that is invariant to the number 
of averages. Through time efficiency, selection of the best method as well as its settings 
can be performed in-silico, which avoids costly evaluations on the scanner. The pre-
dicted precisions were shown to be representative for a range of qMRI methods and 
estimated parameters. Practically, the choice of a method is often not solely based on 
precision, accuracy and scan time, but also on for instance the specific absorption rate 
(SAR) and system limitations. However, in every experiment there is likely some 
choice in the applied quantitative method and settings for which the proposed time 
efficiency measure provides a solution. 

Simultaneous estimation of multiple parameters by an optimal combi-
nation of qMRI methods  
Conventionally, each parameter has dedicated methods for its measurement. When 
multiple parameters are of interest, each parameter may be estimated separately or in 
some cases sequentially from each qMRI method. However, the precision of parameter 
estimates may be improved by fitting a combined signal model of the dedicated acqui-
sitions instead of performing sequential fits. 

Chapter 4 proposed a framework for the selection of a combination of quantitative 
methods as well as their settings to obtain maximal precision for a certain set of quan-
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 titative parameters. It was shown that an optimized combination can estimate multiple 

parameters with higher precision than most reference methods dedicated for a single 
parameter. Recent years saw the introduction of a number of methods that aimed to 
estimate multiple parameters in a short scan time (e.g. MRF, DESPOT, MAGIC). 
These methods can easily be included in our optimization framework, as shown for 
the MRF method, and can possibly be improved regarding their settings. 

Together, the three contributions of this thesis enabled estimating multiple parameters 
with high accuracy and precision in a short scan time. While in the work presented 
not all relevant physics effects are included (e.g. ignoring motion, flow, perfusion), 
including such effects only requires extending the Bloch simulations underlying the 
predicted signals. Such extensions are actively researched as well, but was not the topic 
of the current thesis.  

Outlook 
Methodology 
This thesis applied the Bloch equations to model the MR signal as a function of sever-
al physical parameters. The signal model was used for estimation of parameters (Chap-
ter 2), for determination of time efficiency (Chapters 3), and for optimization of com-
binations of qMRI techniques (Chapter 4). The simulations modeled the relaxometry 
(𝑇𝑇1,𝑇𝑇2,𝑇𝑇2∗), proton density (𝑃𝑃𝑃𝑃), and magnetic fields (Δ𝐵𝐵0,𝐵𝐵1+,𝜑𝜑0). However, several 
effects were ignored that could also be modelled through the Bloch equations such as 
magnetization transfer, diffusion, and flow. The inclusion in the model of parameters 
that describe these effects could enable their estimation through the method proposed 
in Chapter 2. Obtaining high precision estimates will become more challenging when 
further increasing the number of parameters, but the time efficiency measure proposed 
in Chapter 3 is a good design tool for this.  

Parameter estimation in this thesis was done in a voxel-wise fashion, but some ad-
vantages might be gained by taking more data into account (e.g. a neighborhood of 
voxels). Additionally, instead of parameter estimation from the reconstructed images, 
the fitting might be done on the k-space data. This could provide a mechanism to bet-
ter cope with undersampled k-space data and facilitate reduction of scan time.  
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 Applications 

The methodology of quantitative MR methods has advanced rapidly in recent years, 
and interest is moving to clinical applications. Here, we discuss some applications for 
quantitative protocols that estimate multiple parameters in a short scan time. Since 
conventional MR images are a projection of the underlying physical parameters, most 
of the clinically used non-quantitative images could be replaced by quantitative pa-
rameter maps. However, radiologists are far more experienced with interpreting con-
ventional images. Indeed, parameter maps look different regarding contrast and noise 
(derived from fitting processes). Synthetic MRI applies the obtained parameter maps 
to simulate MR images with different contrasts, but such images are still somewhat 
different than clinical images due to partial volume effects and the mentioned reduc-
tion of noise. Still, it might be worthwhile to study the potential of qMRI methods for 
diagnosis, as such images should be more reproducible on different MRI systems. 

Clearly, this advantage of improved reproducibility should be further studied in-
depth, for instance by comparison of parameter maps over time, between subjects, and 
between different scanners. Since the obtained parameters have a physical meaning, 
the values could be more easily interpreted in relation to pathological processes, just 
like temperature or blood pressure. This can potentially allow for early detection of 
subtle tissue changes, for instance related to Alzheimer’s disease. Finally, while small 
studies have been performed to determine typical 𝑇𝑇1,𝑇𝑇2, and 𝑇𝑇2∗ values in tissues, the 
application of such quantitative parameters in the clinic requires knowing their value 
and variability in a much wider population, e.g. to know how they vary across gender, 
age, and with specific diseases. Now that quantitative methods have matured facilitat-
ing improved accuracy and precision with shorter scan times, they could be applied in 
population studies in order to make the next step towards regular clinical use. The 
methods proposed in this thesis could add to these developments. 
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 Summary 

Magnetic resonance imaging (MRI) is 
the primary modality for the imaging of 
soft tissues (e.g. brain, muscle, liver). 
Therefore, it is an essential radiological 
tool for diagnosis and surgical planning. 
The contrast in MR images is due to 
tissues responding differently to the 
magnetic fields generated by the scan-
ning system. This response can be de-
scribed by the physical properties of the 
tissue (e.g. proton density, magnetic 
relaxation) and the magnetic fields. 
These physical properties are represent-
ed by multiple parameters that can be 
estimated through quantitative MRI 
(qMRI) methods. The parameters are 
considered more reproducible than con-
ventional MR images, which simplifies 
the comparison of MR data from differ-
ent subjects or scanning systems. Esti-
mating multiple parameters simultane-
ously is needed to reduce error from 
system imperfections and deliver accu-
rate estimates of the physical tissue pa-
rameters. 

Although qMRI methods have been 
available for many years, there are still 
few clinical applications. This is due to 
the long scan time required for measur-
ing multiple parameters with conven-
tional qMRI methods. Furthermore, the 
simultaneous estimation of multiple 
parameters is computationally challeng-
ing due to time and memory constraints. 

 Samenvatting 

Magnetische resonantie (MRI) is de be-
langrijkste methode voor de beeldvorming 
van zachte weefsels zoals hersenen, spieren, 
en lever. Daarom is het een essentieel ra-
diologisch middel voor medische diagnose 
en de planning van operaties. Contrast in 
MR-beelden ontstaat doordat weefsels ver-
schillend reageren op de magnetische vel-
den die door het MR-systeem worden ge-
genereerd. Deze reactie wordt bepaald door 
de fysische eigenschappen van zowel het 
weefsel (zoals de dichtheid van de protonen 
en de magnetische relaxatie) als de magne-
tische velden. De fysische eigenschappen 
zijn uit te drukken in verschillende parame-
ters die we kunnen schatten met kwantita-
tieve MRI (qMRI) methoden. Deze para-
meters worden als beter reproduceerbaar 
beschouwd dan normale MR-beelden, wat 
het vergelijken van scans tussen verschil-
lende mensen of MR-systemen vereenvou-
digt. Het gelijktijdig schatten van meerdere 
parameters is nodig om verstorende effec-
ten van systeem-imperfecties te verminde-
ren en om accurate schattingen van de fy-
sieke weefselparameters te leveren. 

Ondanks dat qMRI-methoden al vele jaren 
beschikbaar zijn, zijn er nog weinig klini-
sche toepassingen. Dit komt door de lange 
scantijd vereist voor het meten van meerde-
re parameters met conventionele qMRI-
methoden. Bovendien is de gelijktijdige 
schatting van meerdere parameters een 
uitdaging voor de computer vanwege tijd- 
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 This thesis presents a number of new 

techniques for the reproducible estima-
tion of multiple physical MRI parame-
ters, which increases the applicability of 
qMRI methods to the clinic. 

In Chapter 2, we simplified the simulta-
neous estimation of multiple parameters 
using an efficient interpolation method. 
This new method allows reducing the 
computational and memory costs of 
estimating the MRI parameters and thus 
improves the feasibility of accurate mul-
ti-parametric mapping. This chapter 
provided the basis for the methods of 
the Chapters 3 and 4.  

There is a large selection of qMRI 
methods that differ in accuracy (i.e. bi-
as), precision (estimation variance), ac-
quisition time, and features like motion 
sensitivity, gating capabilities and/or fat 
suppression. This makes determining 
the best method for parameter estima-
tion difficult. In Chapter 3, we pro-
posed a selection criterion, called time 
efficiency, that reflects the precision that 
can be achieved in the available scan 
time. The predicted time efficiencies are 
shown to be representative for a range of 
qMRI methods and estimated parame-
ters. Hence, with this proposed measure, 
selection of the best method as well as 
its settings can be performed in-silico, 
which avoids costly evaluations on the 
scanner. 

Conventionally, the quantification of 
the physical processes that determine the 

en geheugenbeperkingen. Dit proefschrift 
presenteert een aantal nieuwe technieken 
voor het reproduceerbare schatten van 
meerdere fysieke MRI-parameters. Dit 
moet de toepasbaarheid van qMRI-
methoden voor de kliniek verhogen. 

In hoofdstuk 2 vereenvoudigen we de ge-
lijktijdige schatting van meerdere parame-
ters met behulp van een efficiënte interpo-
latiemethode. Deze nieuwe methode maakt 
het mogelijk de reken- en geheugenkosten 
van het schatten van de parameters te ver-
lagen en maakt de nauwkeurige schatting 
van meerdere parameters mogelijk. Dit 
hoofdstuk vormde de basis voor de metho-
den van de hoofdstukken 3 en 4. 

Er is een grote selectie van qMRI-
methoden die verschillen in nauwkeurig-
heid, precisie, scantijd, en eigenschappen 
zoals de gevoeligheid voor beweging en de 
mogelijkheid om vet te onderdrukken. Dit 
maakt het bepalen van de beste methode 
voor het schatten van parameters lastig. In 
hoofdstuk 3 hebben we een selectiecriteri-
um voorgesteld, genaamd tijdsefficiëntie, 
dat de precisie beschrijft die kan worden 
bereikt in de beschikbare scantijd. De voor-
spelde en gemeten tijdsefficiënties komen 
overeen voor vele soorten qMRI-methoden 
en geschatte parameters. Daarom kan door 
middel van deze maat de selectie van de 
beste methode en instellingen worden be-
paald op de computer, waardoor kostbare 
evaluaties op de scanner worden vermeden. 

Gewoonlijk wordt de kwantificering van de 
fysieke processen die het MR-signaal bepa-
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 MR signal are done through a dedicated 

qMRI method for each parameter. 
When multiple qMRI parameters are of 
interest, each parameter may be estimat-
ed separately or in some cases sequen-
tially. In Chapter 4 we study the simul-
taneous estimation of multiple parame-
ters by combining several quantitative 
methods. We propose a framework to 
select the optimal combination of quan-
titative MRI methods as well as their 
settings to obtain maximal precision for 
a certain set of quantitative parameters. 
We found that an optimal combination 
of quantitative methods had higher (ex-
pected) precisions for the estimated pa-
rameters than most dedicated methods 
have for a single parameter, while re-
quiring similar scan time.  

This thesis shows that quantitative 
methods are rapidly maturing: obtaining 
more accurate and precise estimates in 
shorter scan times. Application of the 
proposed methods in clinical and popu-
lation studies are now required in order 
to make the next step towards regular 
clinical use. 

len, uitgevoerd via specifieke qMRI-
methodes voor elke parameter. Wanneer 
meerdere qMRI-parameters van belang 
zijn, kan elke parameter afzonderlijk of in 
sommige gevallen achtereenvolgens worden 
geschat. In hoofdstuk 4 bekijken we de 
gelijktijdige schatting van meerdere para-
meters door middel van het combineren 
van verschillende kwantitatieve methoden. 
We presenteren een manier om de optima-
le combinatie van kwantitatieve MRI-
methoden en hun instellingen te selecteren 
die de maximale nauwkeurigheid heeft 
voor een bepaalde set kwantitatieve para-
meters. We vonden dat een optimale com-
binatie van kwantitatieve methoden een 
hogere (verwachte) precisie had voor de 
geschatte parameters dan de meeste speci-
fieke methoden voor een enkele parameter 
hebben, terwijl ze dezelfde scantijd hebben. 

Dit proefschrift laat zien dat kwantitatieve 
methoden snel ontwikkelen: ze verkrijgen 
steeds nauwkeurigere en preciezere schat-
tingen in minder scantijd. Toepassing van 
de gepresenteerde methoden in klinische en 
populatiestudies is nu vereist om de vol-
gende stap te zetten naar breed klinisch 
gebruik. 
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