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Abstract

Wind turbine wakes cause significant reductions in power production and increased fatigue damage for
downwind turbines. Thus, they affect the wind levelized cost of energy. Computational Fluid Dynamics
(CFD) can be used to quantify the wake characteristics, whereby Reynolds-averaged Navier-Stokes (RANS)
has the most potential for industrial applications due to the relatively low computational costs. However,
RANS models all turbulence scales, usually done by the linear k-ε turbulence model, which has significant
shortcomings in accurately representing the turbulence characteristics in wind turbine wake applications.
This results in an underprediction of the wake deficit. Key reasons for these shortcomings are that the eddy
viscosity assumption is not valid in the near wake and that the anisotropic Reynolds stresses are not properly
modeled. Also, the direct effects of the turbine forcing is not incorporated in the transport equations.

To address for these shortcomings, machine learning can be used to enhance the turbulence model with
data-driven corrections. Recent developments showed for fundamental 2D flow cases that a novel algorithm
referred to as SpaRTA (Sparse Regression of Turbulent Stress Anisotropy) can be used to discover sparse alge-
braic turbulence model corrections. These corrections could lead to improved mean-flow fields when trained
on high-fidelity data. Disadvantages of SpaRTA are however that it can only cope with a limited input feature
set and that the models have difficulty generalizing towards multiple flow regions simultaneously (e.g. free-
stream and wake region).

To help resolve these disadvantages, mutual information, which is a measure from information theory
that quantifies the general dependency between variables, is used to a priori measure the importance of a
large number of features to the turbulence model corrections. As a result, the most important features can be
used for correction model construction. In addition to this, to improve the model predictions in the turbine’s
wake, only the data samples located in the wake regions are used for training, discarding the free-stream data.
Given that these data are discarded, it cannot be guaranteed that the correction models fit the trends in the
free-stream. The correction models must therefore be neutralized by a newly constructed sparse algebraic
logistic regression model, which distinguishes the wake from the free-stream region. The data used in this
research consists of three time-averaged LES (Large Eddy Simulation) cases with multiple turbines on wind
tunnel scale, under neutral conditions.

This thesis shows that mutual information can detect most of the essential features, which leads to a good
match between the model predictions and the corrections derived from high-fidelity data. Discarding the
free-stream samples during model training leads to a further reduction in error in the wake region, both in
mean-squared as maximum-squared error of the correction terms. By implementing the constructed alge-
braic models into CFD, significant improvements in mean-flow fields are obtained compared to the linear k-ε
turbulence model. Nevertheless, there remains room for improvement as well as further research. Although
the mean-flow fields match the high-fidelity data in the near wake closely, a discrepancy remains in the far
wake.
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1
Introduction

1.1. Background
The interaction between wind turbines in a wind farm appears crucial for the overall output of the farm.
Overall, this interaction can negatively affect the annual energy output to up to 20% [79]. Energy loss occurs
due to reduced incoming wind speed when turbines operate in the wake of another turbine. On top of that,
increased turbulence in the turbine wake results in increased fatigue damage, which eventually leads to a
decreased turbine lifetime. Hence, to realize the optimal performance of wind farms, it is crucial to estimate
the wake effects as accurately as possible. To do so, Computational Fluid Dynamics (CFD) appears an im-
portant approach. It can be applied to obtain insights on the physical characteristics of wind turbine wakes
[8]. It is superior to analytical methods often used in industry because it relies on fewer assumptions and can
additionally give information about wind turbine loads.

CFD can be divided into three disciplines listed in order of fidelity: Direct Numerical Simulation (DNS),
Large Eddy Simulation (LES) and Reynolds-Averaged Navier-Stokes (RANS). DNS resolves all turbulent length
scales and is currently computationally infeasible for wind turbine applications due to the large range of tur-
bulent scales. LES resolves only the largest, most influential turbulent scales and is therefore a reasonable
trade-off between computational requirements and accuracy compared to DNS. However, the computational
costs of LES remain today large and this limits its widespread use for wind farm applications. Finally, RANS
models all turbulent scales, making it a steady solver which also allows coarse grids, and is therefore roughly
two to three orders of magnitude cheaper computationally than LES [65]. This makes RANS a more attractive
option for industrial applications. The RANS equations are obtained by applying Reynolds decomposition
to the conventional Navier-Stokes equations, resulting in an unclosed system of equations. The system is
closed by introducing a turbulence model, specifically the k-ε turbulence model for wind turbine wake ap-
plications. The k-ε model is a linear eddy viscosity model. It models the deviatoric Reynolds stress, the

difference between the Reynolds stress u′
i u′

j and its isotropic part 2
3 kδi j , by a mean strain-rate tensor and an

eddy-viscosity νt .
Research has shown [64] that numerous k-ε model assumptions are breached in wind turbine wake ap-

plications, which result in wake deficits that are significantly underestimated and recover much faster than
in measurements and high-fidelity LES. Extensions to the standard k-ε turbulence model have been pro-
posed [80] that either limit the eddy viscosity in the wake or add source terms to the transport equations
[20]. Although the predictions of the wake deficit are improved, the turbulent kinetic energy and anisotropic
Reynolds stress remain inaccurate.

This thesis aims to contribute to the research on how to overcome the shortcomings of the standard tur-
bulence models. A means is to implement additional data-driven terms in the turbulence model representing
a turbulence anisotropy correction b∆ to the stress-strain relationship and a correction R to the turbulence
transport equations [69]. These model-form corrections can be obtained from high-fidelity LES data using
the k-corrective-frozen-RANS approach in which the turbulence model equations are solved passively with
frozen time-averaged LES variables. Subsequently, algebraic models can be learned for b∆ and R using the
novel machine learning algorithm SpaRTA (Sparse Regression of Turbulent Stress Anisotropy [69]) and im-
plemented in a RANS CFD solver to improve mean flow predictions. SpaRTA builds a library of non-linear
functions, constructed from pre-defined features, which is subjected to sparse regression to select the most
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influential functions. In this way, a simple, easy to interpret algebraic model is obtained. The disadvantage of
SpaRTA is that, for large data sets, it can only cope with a limited set of features as the number of non-linear
functions increases exponentially with the number of features. Also, the amount of non-linearity captured by
the model is limited, meaning it is not able to capture as many flow details as more complex machine learning
algorithms, such as neural networks [49] or random forests [37].

In trying to add further insights to the current body of literature and knowledge, this work starts with
defining the most important features, obtained from literature, to the correction terms using mutual informa-
tion [17]. Mutual information is a measure from information theory that quantifies the mutual dependence
between individual features and the correction terms based on the underlying probability density functions.

Earlier work focuses on constructing data-driven corrections trained on all domain samples, including
regions where it is assumed that the baseline turbulence model is sufficient. In this thesis, the correction
terms b∆ and R are solely trained on samples in regions where the baseline turbulence model is expected to
have a high uncertainty, which corresponds to the wake regions in wind turbine applications. This implies
that the learning algorithm only has to fit the data in the wake region. This can potentially lead to better
predictions in the wake region compared to when it is fitted to all domain samples. Although the predictions
inside the turbine wake will potentially improve, the learning algorithm will not fit the data outside the wake
because it has not been trained upon it. Therefore, an algebraic classification model will be constructed that
turns on the predictions inside the wake and off outside the wake by extending the SpaRTA algorithm such
that it is suitable for classification problems. The model predictions are further improved by proposing an
extension to the physical-form of the transport equation correction R. Schmelzer et al. [69] modeled R as
a turbulent production term. However, it is not guaranteed that the deficit in the transport equations is a
result of either over- or under-predictions of the turbulent production. To determine the outcome of the
analysis performed in this thesis, the improvements over the baseline k-ε turbulence model are assessed
by implementing the obtained algebraic corrections into the OpenFOAM CFD solver. The data used in this
research consists of three time-averaged LES cases with either two or three turbines on wind-tunnel scale,
under neutral conditions.

1.2. Research Objective and Questions
The main research objective of this thesis is:

"To reduce the k-ε turbulence model uncertainty in wind turbine wake applications by means of
algebraic data-driven corrections to the model equations that: 1) are specifically constructed for
the wind turbine wake region by coupling to an algebraic classification model and 2) are enhanced
using features that have the largest dependency with the correction terms, detected with mutual
information."

Based on the main research objective, sub-objectives (SO) can be formed:

SO1: Develop a framework based of mutual information to detect a priori the most relevant features
for the correction terms of the turbulence model equations.

SO2: Assess the potential improvements in data-driven corrections when training models only on sam-
ples located in wind turbine wakes.

SO3: Develop a sparse logistic regression framework to construct algebraic wake classification models
that are able to turn the data-driven correction on inside the turbine wake and off in the free-stream
region.

SO4: Expand physical-form of the correction term R.

SO5: Learn algebraic models using SpaRTA for the correction terms b∆ and R inside the wake region
using the most relevant features and assess performance.

SO6: Implement algebraic models in OpenFOAM and assess improvements in mean-flow conditions
over the baseline k-ε turbulence model.

Based on the thesis objectives, research questions (RQ) and their corresponding sub-questions can be
formalized. The answers of the sub-questions automatically lead to the answer of the main research question.
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RQ1: "In the context of data-driven turbulence modeling, what are the advantages and disadvan-
tages of using mutual information for feature selection?"

RQ1.1: What method is best suited to estimate mutual information when considering accuracy and
computational costs?

RQ1.2: What features are identified as having the largest dependency with the turbulence model cor-
rection terms?

RQ1.3: What are the limitations of using mutual information for feature selection?

RQ2: "Can an algebraic wake classification model be constructed such that the algebraic models for
b∆ and R are accurately turned off in regions where they were not trained on?"

RQ2.1: What features, using mutual information, are considered to have the largest dependency with
the classification label (wake or free-stream)?

RQ2.2: Using sparse logistic regression to construct algebraic classification models, what performance
can be reached in terms of accuracy when also considering model complexity?

RQ3: "By training algebraic models for the correction terms b∆ and R specifically for the wind tur-
bine wake region using the most relevant features and combining it with the algebraic wake clas-
sification model, what improvements in mean-flow fields can be achieved when compared to the
standard k-ε turbulence model?"

RQ3.1: Can the physical-form of the correction term R be extended such that more physics is incorpo-
rated and predictions are improved?

RQ3.2: What improvements are made in predicting R and b∆ when trained only on wake samples com-
pared to when trained on all domain samples?

RQ3.3: When implementing the algebraic models for R and b∆ in OpenFOAM, what improvements in
mean-flow fields are obtained when compared to the standard k-ε turbulence model?

1.3. Thesis Structure
The thesis is divided into three parts. The first part provides the required background information such as
relevant literature and the current state-of-the-art in wind energy and data-driven turbulence modeling. A
general introduction to wind energy and turbulence is provided in Chapter 2. Relevant information regarding
machine learning in turbulence modeling is subsequently detailed in Chapter 3.

The second part describes the applied methodology, data cases and features used. The methodology is
explained in Chapter 4. First, the model-form of the k-ε turbulence model is briefly described, obtained
with the k-corrective-frozen-RANS approach. This approach was already available and executed prior to
this research. Second, the concept of mutual information is explained including the used estimator. Third,
the sparse regression model SpaRTA, used to learn algebraic models for both correction terms b∆ and R is
described. Finally, SpaRTA is extended and made suitable for classification problems. The data cases, which
are on wind-tunnel scale, and features used in this thesis are discussed in Chapter 5.

The third part consists of the research results obtained by utilizing the described methodology to the
given data. The dependency analysis for the different features is discussed in Chapter 6 and the construction
of algebraic wake classification models is described in Chapter 7. In using the features with the highest de-
pendency, algebraic corrections for b∆ and R are learned by applying SpaRTA. The results for R and b∆ are
discussed in Chapter 8 and Chapter 9, respectively. The algebraic corrections are implemented in OpenFOAM
in Chapter 10. Finally, conclusions are drawn and recommendations for future research are presented in
Chapter 11.

The thesis lay-out is schematically visualized in Figure 1.1.



4 1. Introduction

Thesis lay-out
Features from literature (invariants, basis

tensors, physical flow features..)

High-fidelity LES data
and -corrective-frozen

RANS 

Mutual
Information

Wake samples

SpaRTA Sparse logistic
regression

Extending
physical-form 

Sparse algebraic
correction models

Input

Models

Ouput

Implement in
CFD

All samples

Figure 1.1: Master thesis lay-out.



2
Wind Turbines and Turbulence

Wind energy is seen as one of future’s most dominant renewable energy sources [9]. To increase the energy
production and lower the costs, wind turbines have grown bigger and bigger and wind farms have been con-
structed consisting of more than hundred turbines. Not only the physics of the turbine itself is important,
also the interaction between different turbines plays a significant role. When turbines are aligned with the
direction of the wind, upstream turbines negatively affect the incoming flow conditions of downstream tur-
bines. Due to the momentum extraction by the turbines, downstream turbines experience a lower incoming
wind speed, resulting in lower power production. On top of that, operating turbines increase the turbulent
kinetic energy in the flow, meaning downstream turbines experience more fluctuating wind conditions which
then causes more fatigue damage.

Research has been active for decades to get a better understanding of the physics of turbines and turbines
mutual interaction. A comprehensive summary is given to highlight the most important contributions. The
focus is towards the applications of Computational Fluid Dynamics, as this research area is most relevant to
this thesis.

2.1. Wind Turbines and wakes
As the wind in the atmosphere can be seen as a source of (kinetic) energy, wind turbines have been used for
many decades to generate electricity. Betz [7], Joukowsky [36] and Glauert [26] already established in the first
half of the twentieth century the basic principles of wind-turbine aerodynamics which are still used today in
rotor design optimization.

Two commonly used rotor characteristics are the non-dimensionalised power and thrust, the power and
thrust coefficient CP and CT , respectively. CP is proportional to the blade forces tangential to the rotor plane
and a measure of the turbine efficiency, which is limited by the Betz limit of 16

27 . CT is proportional to the
forces normal to the rotor plane and defines the change in momentum of the incoming wind.

A more detailed illustration of the force distribution on a wind turbine blade is depicted in Figure 2.1.
The rotational motion of the blade causes a velocity component Ωr tangential to the rotating plane. The
rotational velocity Ω is in rad/s and r is the local distance to the rotor center. Together with the velocity
component normal to the plane U (1− a), the relative velocity Vr es is defined. The induction factor a is a
measure to what extend the incoming wind speed decreases with respect to the free-stream velocity. The
incoming air causes a lift and drag force on the blade characterized by the airfoil shape of the rotor cross-
section. These forces decomposed tangentially and normally to the rotor plane then define the CP and CT

when non-dimensionalized.
To investigate the operations of wind turbines and get a physical understanding of the interaction of the

air flow with the turbine, specifically when the incoming conditions are influenced by other turbines, Com-
putational Fluid Dynamics (CFD) is often applied. CFD numerically solves the Navier-Stokes (NS) equations,
these equations describe fluid motions and are based on conservation of mass and momentum. The funda-
mentals of CFD will be elaborated in a later stage.

The presence of a wind turbine in CFD can be modeled in two ways, representing the blades as body forces
or discretizing the actual blades [65]. The latter is the most accurate and physically most sound method
but is computationally very expensive because it is required to simulate the boundary layer on the blades.

5
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Figure 2.1: Velocity triangle and force orientation on wind turbine blade cross-section, from Viré and Zaaijer [88].

Also compressibility effects have to be included at the blade tips while the rest of the domain is essential
incompressible.

The rotor can also be described using body forces by an actuator disk, line or surface to reduce compu-
tational costs. In the case of an actuator disk, a uniform loading determined by only the CT can be used or a
non-uniform loading which also requires lift and drag coefficients as function of radial position. The actuator
line model is applicable under unsteady applications in which the line forces are time dependent. It can take
into account tip vortices [75] but is computationally more expensive. This can be extended to representing
the blade by a surface instead of a line, requiring more accurate airfoil data such as pressure and skin-friction
distribution [72]. Actuator surface models are mainly applied to vertical axis wind turbines. For steady RANS,
actuator disk is the only suitable method as it is the only method applicable to steady simulations.

The forces exerted by the wind turbine blades affect the airflow both upwind as downwind of the rotor.
Due to conservation of mass, the wind speed will slow down in the region before the turbine, referred to as
the induction region, as depicted by Figure 2.2. After the wind has passed the rotor, it enters the rotor’s wake
where the flow properties are directly effected by the presence of the rotor. The wake is often subdivided in the
near-wake and far-wake [87]. The near-wake is directly influenced by the characteristics of the turbine, such
as blade profile, nacelle and hub geometry. Therefore, the near-wake is highly complex and heterogeneous.

In the near-wake, which has a length of around 2-4 rotor diameters, vortices are present from both the
blade tip and root, as from the turbine hub. The tip and root vortices are produced by pressure differences
between the suction and pressure side of the blades [2] and can reduce flow entrainment because they sepa-
rate the wake from the free-stream flow [47].

The far-wake is less influenced by the characteristics of the turbine but more by its global parameters
such as the power and thrust coefficients and inflow conditions. In the far-wake, the flow properties slowly
converge back to free-stream conditions. As most of the wind turbines are not located in the near, but in the
far-wake of other turbines, it is essential to understand the far-wake characteristics. The far-wake tends to
grow when moving further downstream as it entrains with the outer flow. The streamwise velocity increases
gradually until the wake is fully recovered far downstream. With uniform inflow conditions, the streamwise
wake velocity profiles have an axisymmetric Gaussian shape. However, due to the incoming shear and the
presence of the surface, the streamwise velocity profile loses its Gaussian shape. The velocity deficit, the
difference between free-stream and wake velocity, still retains the Gaussian distribution [11, 60].

In the far-wake, the streamwise turbulence intensity is high compared to the incoming flow. Turbulence
intensity I is defined as I = σu/U where σu is, in this case, the streamwise velocity standard deviation. Par-
ticularly, the upper part of the wake has an increased I while near the ground the turbulence is suppressed
by the turbine. The maximum of I occurs around two to four rotor diameters downstream and subsequently
converges back to free-stream values [60].

The turbulent momentum fluxes, u′
i u′

j (u′
i is the fluctuating velocity in i -direction, overline represents the

time-averaged mean) in turbulent wakes reflect the entrainment of fluid from the free-stream flow towards
the wake centre. Its magnitude is largest around the wake’s edges, especially near the upper edge.

When wind turbines are placed in series, they operate in the wake of the upstream turbines and only the
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Figure 2.2: Schematic overview showing instantaneous and time-averaged flow field around an operating wind turbine, from Porté-Agel
et al. [60].

most upstream wind turbine is unaffected. From measurements of a wind farm with small turbine spacing
[82], it was observed for the first wind turbine, because it operates in unaffected flow conditions, extracts a
relatively large amount of energy from the air compared to the other turbines. Because of this, the second
turbine is barely extracting power and the wake has a longer length to recover. Therefore, the third wind
turbine extracts more power then the second turbine. From the third wind turbine on wards, the extracted
power is approximately constant. This effect is depicted in Figure 2.3 in which measurement data is compared
to CFD simulations. The effects are largest for low I and occur only when the spacing between the turbines is
small.

Figure 2.3: Power deficit in Wieringermeer wind farm for wind direction 275° ±3°, from van der Laan et al. [82]. Comparison of different
turbulence models to measurements.

Wind turbine wakes were investigated in wind-tunnels by Hancock and Zhang [31] for a large wind tur-
bine in a weakly-convective atmospheric boundary layer (ABL) and stable ABL by Hancock and Pascheke
[32]. Convective conditions mean that the vertical potential temperature gradient is negative, while for stable
conditions it is positive. They found that the height and width of the wake grow more rapidly in convective
conditions than in stable conditions. Vertical heat flux measurements in convective conditions showed first
a significant reduction when the flow passed through the rotor, which was followed by an increase first in
the wake’s lower part and then in the upper part, before it recovered to the undisturbed level at x/D = 10.
The vertical heat flux in stable stratification behaved differently, where there was only a small effect when the
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flow passed through the rotor and it first increased in the upper part to a magnitude significant above the
undisturbed value.

Hancock and Farr [30] also performed wind-tunnel simulations of arrays of turbines in both neutral and
non-neutral conditions. They came to the same conclusion regarding the wake turbulent heat flux, namely
that it is initially small in the near-wake and large in far-wake for stable conditions and opposite for unstable.
They proposed that there are two effects of stratification, indirect and direct. Indirect effects are influenced
by the turbulence intensity in the ABL and are observed in the earlier part of the wake while direct effects,
introduced by buoyancy forces, are seen mainly more downstream.

2.1.1. Wake Modeling
For wind farm lay-out optimization, simple analytical models are deployed as their computational costs are
very low, making them suitable for running thousands of cases [60]. Jensen [35] and Frandsen et al. [24]
developed such models which show some fundamental insight in the physics of wakes, as their formulation
is based on conservation equations combined with empirical observations. These models however have a
high uncertainty and low accuracy due to their simplicity.

As mentioned earlier, to increase the reliability and accuracy, one can use CFD [65] by either time averaged
or spatial averaged Navier-Stokes equations. The first referred to as Reynolds-averaged Navier Stokes (RANS)
and the second Large Eddy Simulations (LES).

In RANS, the statistical properties of the flow are solved, such as the mean velocity, mean pressure gradi-
ent, turbulent kinetic energy and so on. Due to the closure problem that arises from Reynolds averaging, tur-
bulence models are required to quantify the Reynolds stresses. The k-ε turbulence model is one of the most
used turbulence models in wind applications [28]. It is defined by the Boussinesq approximation and is a lin-
ear eddy-viscosity model (LEVM). This model however, has some serious shortcomings [80] as it significantly
underpredicts the wake velocity deficit and overpredicts the turbulence intensity due to an overprediction of
the eddy viscosity. In the region surrounding the rotor, Réthoré [64] observed that the eddy viscosity increases
significantly, while it actually should be smaller than the atmospheric values. It was found that the Boussi-
nesq approximation, which relates the Reynolds stresses to the eddy viscosity and the local velocity gradients,
is not valid in wake regions where the velocity distribution is highly nonlinear and in regions where turbines
apply a pressure gradient to the flow. He also found that neglecting the pressure-velocity correlation in the
transport equations introduces significant errors. Due to this assumption, the modeled turbine was not able
to extract energy from the turbulence. This results in an overestimation of the wake’s turbulence.

These turbulence modeling problems have barely effect in LES, as in there the eddy viscosity is solely used
to model small-scale turbulence, which does not effect the results significantly.

Extensions to the standard k-ε model have been proposed, such as the k-ε- fp model by van der Laan
[80], which introduces a scalar function that limits the eddy viscosity in regions with high velocity gradients.
This scalar function is used to have a variable eddy viscosity coefficient Cµ to limit the eddy viscosity and
turbulence length scale in regions with large velocity gradients. This scalar function is described as

fP (σ/σ̃) = 2 f0

1+
√

1+4 f0( f0 −1)(σσ̃ )2
, f0 = CR

CR −1
(2.1)

to model non-equilibrium effects. CR is the Rotta constant, σσ̃ is the ratio of the shear parameter ( k
ε

√
(Ui , j )2)

to the shear parameter in the calibration flow ( k
ε | ∂U

∂z |), that quantifies how far the local flow deviates from
the logarithmic law in a simple shear flow. The prediction of the wake deficit is significantly improved as
shown in Figure 2.4, while the turbulence intensity remains inaccurate in the far wake. The k-ε- fp model is
compared to LES results and other extended k-ε models by Shih et al. [73] and Durbin [19] for wake recovery,
turbulence intensity and turbulent time and length scales [80]. For all models, the turbulent time scales are
comparable to LES while the turbulent length scales and intensity deviate significantly from LES because all
models recover towards the standard k-ε turbulence model. It was recommended to use either the k-ε- fP

model or the k-ε model of Shih as the k-ε model of Durbin is very sensitive to the atmospheric turbulence
levels. Another extension to the k-ε turbulence model was proposed by El Kasmi and Masson [20] in which
additional source terms were introduced to the transport equations. These source terms represent transfer of
energy from large-scale turbulence to small-scale turbulence. When compared to measurements, improve-
ments were made compared to the standard k-ε turbulence model, although the predictions in the far wake
remained inaccurate.
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All considered extensions are linear eddy viscosity models, as they are based on the Boussinesq approxi-
mation. This means that the anisotropic Reynolds stresses remain predicted inaccurately.

Figure 2.4: Normalized wind speed for different distances from rotor computed by standard k-ε, k-ε- fP and LES compared to
measurements, from van der Laan et al. [83].

Instead of modeling all turbulent scales in RANS, one could use LES to resolve parts of these scales, and
use only a sub-grid model to represent the smallest scales. LES therefore relies on spatial averaging (or fil-
tering) instead of time-averaging, meaning it is by definition unsteady. As advantage, it is able to resolve
the dominant anisotropic, unsteady turbulent structures and turbulent mixing but comes with significant
increases in computational costs [65]. Chivaee [15] investigated numerous sub-grid stress (SGS) models for
wind turbine wakes and found that the flow structures and loadings were not very sensitive to the choice of
SGS model. Réthoré [64] compared LES to RANS and found that the LES results are superior as they have a
more accurate prediction of mean velocity profiles and turbulence quantities. However, the computational
costs increased from hours for RANS to days for LES [65].

Lu and Porté-Agel [50] concluded from their work that LES results can give valuable insights in the high-
resolution three-dimensional velocity and temperature fields required for quantitative descriptions of wind
turbine wakes and the effects on turbulent heat and momentum fluxes. They found from simulations of a very
large wind farm that, due to the presence of the wind farm, the surface boundary layer height was increased
and that the surface moment and buoyancy flux decreased with more than 30% and 15%, respectively. Also
the wind farm had strong effects on vertical momentum and heat fluxes.

As the turbulent characteristics depend on its length and time scales, it was found that stable conditions
require more resolution compared to convective conditions to get reliable results. This is because the char-
acteristic eddies are much smaller in stable flows [6]. Tian et al. [77] compared LES in neutral and convective
conditions to experimental results and found good agreement. The results showed that stratification has a
significant effect on the wake shape, growth and the recovery. Chaudhari et al. [14] performed a numeri-
cal study on the effects of atmospheric stratification on wind turbine performance, they found that for an
infinitely long wind farm, the produced power by a wind turbine in stable stratification is reduced by 81%
compared to neutral conditions.

Although the effects of stratification on wind turbine wakes have been investigated using LES many times,
this is not the case for RANS. Stratified atmospheric boundary layers have been investigated using RANS but
did not include wind turbines [1, 8, 40, 41]. Prospathopoulos et al. [61] simulated wake effects of a single tur-
bine with k-ε and k-ω turbulence models. Predictions were improved by increasing the turbulent dissipation
rate near the turbine, but only the wake deficit and turbulence intensity were investigated in the near-wake.
Results were only compared to measurements of a test wind farm, not to LES.

2.2. Turbulence
A flow of a fluid can be regarded as either laminar or turbulent. Laminar flows are characterized by particles
moving in parallel layers without any or very little intermediate mixing. Laminar flows are dominated by
momentum diffusion with convection being less influential, and therefore occur at low Reynolds numbers.
The Reynolds number is defined by

Re = U L

ν
(2.2)

and is the ratio between inertial forces and viscous forces in the fluid. Parameters U and L are defined as the
characteristic velocity and length scales for the fluid and ν is the kinematic viscosity.
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If the Reynolds number exceeds a critical value ( Re ≈ 4000 for pipe-flows [59]), the flow transitions to tur-
bulent. Turbulence is characterized by chaotic changes in fluid velocity and pressure and behaves unsteady.
One of the most important characteristics of turbulence is the ability to mix and transport fluid much more
effectively than a laminar flow. In the atmospheric boundary layer, turbulence is very effective in mixing
momentum and scalars such as temperature.

Turbulent motions extract their energy from the mean flow and are full of unsteady vortices, often referred
to as eddies, of different sizes that are characterized by their own velocity and length scales. When turbulence
is created, it consists of large eddies produced by shear, rough walls and flow separation. These large eddies
are broken down into smaller and smaller eddies (from low to high wavenumbers). After a certain point, the
turbulence forgets the influence of the initial large-scale motions [55] and the turbulence behaves universal.
This range is called the inertial sub-range in which the turbulent kinetic energy is transferred from lower
to higher wavenumbers without any significant dissipation. At moderately high wavenumbers the inertial
subrange transitions into the viscous dissipation range, in which the small eddies are dominated by viscous
dissipation and its energy is converted into heat.

Kolmogorov [42] hypothesized that the scales of the smallest, dissipative eddies only depend on ν, the
kinematic viscosity, and ε, the dissipation rate. The corresponding velocity υ and length scale η are defined
as

υ= (νε)1/4 η=
(
ν3

ε

)1/4

(2.3)

often mentioned as the Kolmogorov scales. In the atmospheric boundary layer, the eddies range from roughly
1000 m to 1 mm [95].

2.2.1. Large Eddy Simulation
To obtain a numerical description of a turbulent fluid, all scales up to the Kolmogorov scales have to be re-
solved. This direct approach is called Direct Numerical Simulation (DNS), in which the Navier-Stokes equa-
tions are solved, numerically. The Navier-Stokes equations are depicted as

∂u

∂t
+u j

∂ui

∂x j
=− 1

ρ

∂p

∂xi
+ν ∂2ui

∂x j∂x j
(2.4)

from which a numerical solution can be obtained by including mass continuity. Numerically solving the
Navier-Stokes equations directly is only possible for low Reynolds number flows. For large Reynolds numbers,
the dissipative eddies are so small it is impractical to resolve them.

Instead of resolving all turbulent scales with DNS, one could choose to resolve only the largest, most
dominant eddies. This method is called Large Eddy Simulation (LES) which space-averages (or spatial filters)
(2.4). By splitting up a variable into a resolvable and subgrid-scale part, as in

f = f r + f s . (2.5)

By applying this filtering procedure to (2.4), the spatial-filtered Navier-Stokes equations are obtained

∂ur
i

∂t
+ ∂

∂x j

[
ur

i ur
j −τi j −ν

(
∂ur

i

∂x j
+
∂ur

j

∂xi

)]
=− 1

ρ

∂pr

∂xi
(2.6)

where τi j defines the subgrid-scale stresses τi j = ur
i ur

j − (ui u j )r .

Because LES resolves the most dominant eddies, it still gives a good representation of the instantaneous
turbulent fields. Although the subgrid-scale stress is much smaller than the advection term [95], it has to
be included because it is responsible for the extraction of turbulent kinetic energy from the resolved scales
in the energy cascade. An expression for the unresolved contribution can be found by, for example, using a
subgrid-scale model.

2.2.2. Reynolds-Averaged Navier-Stokes
To reduce the computational costs even further, one could model all the turbulent scales and resolve none.
By splitting up the Navier-Stokes equations into a mean and fluctuating part (Reynolds decomposition), and
taking the time-average, the Reynolds-Averaged Navier-Stokes (RANS) equations are obtained as
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∂Ui

∂t
+ ∂

∂x j

[
UiU j +u′

i u′
j −ν

(
∂Ui

∂x j
+ ∂U j

∂xi

)]
=− 1

ρ

∂P

∂xi
(2.7)

where the mean and fluctuating velocity are depicted as U and u′, respectively.

In RANS, temporal statistics like Ui , mean pressure (P ) and covariances (u′
i u′

j ) are computed, instead of

instantaneous fields like in DNS or LES. The effect of the turbulent fluctuations are now represented by the

Reynolds stress term u′
i u′

j , this however makes it impossible to solve the equations because there are ten

unknowns and only four equations, and therefore requires a model just as in LES. This is referred to as the
closure problem [55] and can be solved by introducing turbulence models.

2.2.3. k-ε turbulence model
The most commonly used turbulence model in the atmospheric boundary layer and in wind turbine appli-
cations is the k-ε turbulence model [65]. The k-ε model is a linear eddy viscosity model, which models the

deviatoric Reynolds stress, the difference between the Reynolds stress u′
i u′

j and its isotropic part 2
3 kδi j , by a

mean strain-rate tensor and an eddy-viscosity νt as

u′
i u′

j − 2
3 kδi j =−νt

(
∂Ui

∂x j
+ ∂U j

∂x j

)
. (2.8)

The eddy viscosity νt is defined by a constant eddy viscosity coefficient Cµ as

νt =Cµ
k2

ε
, (2.9)

and is therefore assumed to be isotropic, meaning the ratio of Reynolds stresses and strain rate is the same in
all flow directions.

The transport equations for turbulent kinetic energy k and dissipation rate ε are two differential equations
described as

∂k

∂t
+Ui

∂k

∂xi
=Pk −ε+

∂

∂x j

[(
ν+ νt

σk

)
∂k

∂x j

]
(2.10)

∂ε

∂t
+Ui

∂ε

∂xi
= [Cε1 (Pk )−Cε2ε] · ε

k
+ ∂

∂x j

[(
ν+ νt

σε

)
∂ε

∂x j

]
(2.11)

where Pk represents the turbulent kinetic energy production and is defined as

Pk =−u′
i u′

j

∂Ui

∂x j
. (2.12)

The coefficients σk and σε are the Schmidt numbers for k and ε, respectively. Cε,1 and Cε,2 are model co-
efficients. The k-equation originates from the trace of the Reynolds-stress transport equation. The Reynolds-
stress equation is described verbally [79] as

Du′
i u′

j

Dt
+ transport = production + pressure redistribution −dissipation. (2.13)

An approximation of the Reynolds-stress equation can be formed by modeling the transport and pressure
redistribution and assuming isotropic dissipation. Then the k-equation is obtained by taking the trace of the
Reynolds-stress equation approximation. The pressure redistribution term does no longer appear because
its trace is zero (divergence is zero). All external forcing terms are neglected. The k-equation is then

∂k

∂t
+Ui

∂k

∂xi
=Pk −ε+

∂

∂x j

[
ν
∂k

∂x j
− 1

2
u′
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j −
1

ρ
p ′u′

j

]
(2.14)

from which the form in (2.10) is obtained by approximating the turbulent transport and pressure diffusion by

− 1

2
u′

i u′
i u′

j −
1

ρ
p ′u′

j ≈
νt

σk

∂k

∂x j
. (2.15)
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The k-ε turbulence model is due its simplicity and robustness applicable to a diverse range of applica-
tions. While it can provide reasonable accuracy to simple cases, it gives quite inaccurate results for complex
flows. These inaccuracies originate from the Boussinesq hypothesis, in which the Reynolds-stress is not rep-
resented directly but modeled as function of k, ε, the strain-rate and the dissipation equation [59]. Besides
that, the k and ε equations are a simplified version of the actual transport equation, resulting in errors in the
modeled terms.

In wind turbine wake modeling using the k-ε turbulence model, the wake deficit is significantly underesti-
mated and recovers faster compared to measurements. Also upstream of the turbine, k and the eddy viscosity
νt build up unrealistically. Due to the underestimation of the wake deficit, the turbulent diffusion and so the
Reynolds stresses are overestimated. This implies an overprediction of the eddy viscosity νt . Réthoré [64]
found that the general eddy viscosity concept is not valid in the region surrounding the turbine which can
be explained by analyzing LES data just upstream of a rotor. It is observed that the axial velocity gradient

undergoes a steep increase but the normal Reynolds stress u′
1u′

1 decreases.
The k-εmodel also breaks down when, over distances smaller than the turbulence length scale, the mean-

velocity field changes [64]. This issue occurs often in wind turbine applications as the turbulence length
scales in the atmospheric boundary layer are relatively large in size. Schmitt [70] analysed the correlation
between the strain rate tensor and the Reynolds stress using LES and DNS and found that, in practise, the
Boussinesq approximation almost never holds. Yet it is universally used because of its simplicity and robust-
ness.

The Boussinesq approximation also assumes particles conserve their momentum between t1 and t2 where
t2 − t1 is long enough such that the fluctuation components between the two time stamps are uncorrelated.
However, in volumes with adverse pressure gradients, for example upstream and downstream of a turbine,
the momentum of particles is systematically reduced. Therefore this approximation is not valid in wind tur-
bine applications.

In wind turbine applications, the mean momentum equations contain body force and pressure-strain
terms to take into account the rotor forcing. The k- and ε-equations can be derived from the dot product
of the mean velocity field and mean momentum equation, in both the k- and ε-equations the force and
pressure-strain terms are neglected. Réthoré [64] found that the two terms in the k-equations can be up to
two orders of magnitude larger than the local dissipation rate, indicating they cannot be neglected. The terms
in the ε-equation are small compared to the ratio ε2/k, making the neglection in this equation acceptable.

2.2.4. Non-linear eddy viscosity models
To avoid some of the fundamental shortcomings of the linear eddy viscosity models, such as assuming the
eddy viscosity is isotropic, more complex models could be chosen by including non-linear terms. These
models are the so-called non-linear eddy viscosity models (NLEVMs). NLEVMs are also known as explicit
algebraic Reynolds stress models, which rely on the assumptions that the Reynolds stress transport can be
discarded, dissipation is isotropic and that the pressure-rate-of-strain relation is linear [79]. This makes the
Reynolds stress not only a function of the strain-rate but also the vorticity. For the derivation of NLEVMs, it is
convenient to work with normalized parameters, the anisotropic Reynolds stress, the strain-rate tensor and
vorticity tensor, respectively

b = bi j =
u′

i u′
j

k
− 2

3
δi j , S = Si j = 1

2

k

ε

(
∂Ui

∂x j
+ ∂U j

∂xi

)
, Ω=Ωi j = 1

2

k

ε

(
∂Ui

∂x j
− ∂U j

∂xi

)
. (2.16)

For 3D flows, Pope [58] derived the explicit solution for the anisotropic Reynolds stress b as a relation
between ten tensorially independent basis tensors T(n) and scalar functions α(n)(λi ) of the invariants λi . The
basis tensors are defined as

T(1) = S T(6) =Ω2S+SΩ2 − 2
3 {SΩ2}I

T(2) = SΩ−ΩS T(7) =ΩSΩ2 −Ω2SΩ

T(3) = S2 − 1
3 {S2}I T(8) = SΩS2 −S2ΩS (2.17)

T(4) =Ω2 − 1
3 {Ω2}I T(9) =Ω2S2 +S2Ω2 − 2

3 {Ω2S2}I

T(5) =ΩS2 −S2Ω T(10) =ΩS2Ω2 −Ω2S2Ω.



2.3. Visualization of Reynolds stress anisotropy 13

This relation is valid for high Reynolds numbers and nearly homogeneous flows, where local effects dom-
inate the transport effects. The formulation for b is then given as

b =
10∑

n=1
α(n)(λi )T(n)(S,Ω). (2.18)

There is only a finite number of linear independent basis tensors because other higher order tensors can
be formulated as a linear combination of T(n), employing the Cayley-Hamiltion theorem [59, 79]. Therefore,
the ten basis tensors are referred to as an integrity basis. There exist five linear independent invariants, the
braces indicate the trace

λ1 = {S2} λ2 = {Ω2} λ3 = {S3} λ4 = {SΩ2} λ5 = {S2Ω2}. (2.19)

Van der Laan et al. [81] used two NLEVMs to predict the wake of a single wind turbine and compared it
to field measurements. The predictions were improved compared to the standard k-ε turbulence model but
behaved numerically unstable for high turbulence levels.

2.3. Visualization of Reynolds stress anisotropy
To visualize quantitative numerical CFD results, profiles of velocity and turbulent kinetic energy are often
plotted at different positions in the domain. In many applications, it is crucial to also accurately predict the
type and amount of turbulence anisotropy. This can be quantified by different anisotropy invariant maps [51].
These maps make use of the eigenvalues of the Reynolds stress anisotropy b, which quantify the magnitude
of turbulence anisotropy [21].

Three eigenvalues can be derived from b, defined as λ1 ≥ λ2 ≥ λ3. The eigenvalues λi are related to the
eigenvalues of the Reynolds stress φi [37] through

λi = φi

2k
− 1

3
. (2.20)

The Reynolds stress τ is formed by the temporal average over n samples of the outer product of the tur-
bulent fluctuations u′

τ= u′
i u′

j =
1

n

∑
n

u′
i u′

j =
1

n

∑
n

u′⊗u′. (2.21)

The tensor obtained by taking the outer product with itself is positive semi-definite, which is when xT Ax ≥
0, where x is a column vector with non-zero real numbers. Because the Reynolds stress tensor is positive
semi-definite, its diagonal components and determinant are non-negative

ταα ≥ 0 ∀α ∈ 1,2,3, det(τ) ≥ 0, (2.22)

and the Cauchy-Schwarz inequality holds

τ2
αβ ≤ ταατββ ∀α 6=β. (2.23)

The eigenvalues of a positive semi-definite tensor are non-negative, meaning the lower limit of φi is zero.
Given that the trace of τ equals 2k, this acts as an upper limit for the eigenvalues φi .

Because the Reynolds stress eigenvalues φi are bounded to [0, 2k], the eigenvalues of the Reynolds stress
anisotropy λi are subsequently bounded to [− 1

3 , 2
3 ]. Given this, all realizable states of turbulence can be

visualized on a triangular eigenvalue map. Given that the eigenvalues λi are bounded, the componentality
(the relative strengths of the fluctuating components) is also bounded by three limiting states. These limiting
states can be described as [21]

• one-component: when λi =
[ 2

3 , − 1
3 , − 1

3

]T
, is characterized by turbulent fluctuations only along one

direction. One-component turbulence is often referred to as cigar-shaped or rod-like turbulence.

• two-component: when λi =
[ 1

6 , 1
6 , − 1

3

]T
, turbulent fluctuations occur along two directions with equal

magnitude. Two-component turbulence is often specified as pancake-like turbulence.

• isotropic: when λi = [0, 0, 0]T , often denoted as spherical turbulence.
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When connecting the three components, boundaries are formed of the invariant maps. These boundaries
also supplement further physical insight:

• axisymmetric expansion: by connecting one- and three-component turbulence. This occurs when 0 <
λ1 < 1

3 and − 1
6 <λ2 =λ3 < 0;

• axisymmetric contraction: by connecting two- and three-component turbulence. This occurs when
− 1

3 <λ1 < 0 and 0 <λ2 =λ3 < 1
6 ;

• two-component: by connecting one- and two-component turbulence. This occurs when λ1 +λ3 = 1
3

and λ2 =− 1
3 .

When at least one λi = 0, the turbulence reaches the state of plain-strain.
There are four commonly used anisotropy invariant maps, which are either constructed by linear or non-

linear combinations of λi . The Lumley triangle, proposed by Lumley and Newman [51], is a non-linear in-
variant map defined by the second and third invariant of b, defined as

I I = bi j b j i /2 =λ2
1 +λ1λ2 +λ2

2, (2.24)

I I I = bi j b j nbni /3 =−λ1λ2(λ1 +λ2) (2.25)

and depicted in Figure 2.5. One-, two- and isotropic component turbulence are depicted by x1c , x2c and x3c ,
respectively. Axisymmetric expansion is denoted by the black line, axisymmetric contraction by the blue line
and two-component turbulence by the red line.

To lay more emphasis on the region near the isotropic corner (x3c ) [21], the turbulence triangle can be
constructed as shown in Figure 2.5, in which the lower left quadrant is more stretched. The coordinates of the
turbulence triangle (ξ, η) are constructed as

ξ3 = I I I /2, η2 = I I /3. (2.26)
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Figure 2.5: Non-linear invariant maps. The limiting turbulence states are included where the grey line indicates the plain-strain state.

Besides the non-linear invariant maps based on the second and third invariant, linear invariant maps can
be constructed based on the eigenvalues of the Reynolds stress anisotropy. The eigenvalue map in Figure 2.6
uses the first two eigenvalues (λ2, λ1) to determine the coordinate system.

The final invariant map discussed is the barycentric map. All realizable states of turbulence are located
within an equilateral triangle such that all limiting states are weighted equally. The coordinates within the
barycentric map (xB ,yB ) are defined as

xB =C1c x1c +C2c x2c +C3c x3c =C1c +C3c
1

2
, (2.27)

yB =C1c y1c +C2c y2c +C3c y3c =C3c

p
3

2
, (2.28)
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with the weights as

C1c =λ1 −λ2, (2.29)

C2c = 2(λ2 −λ3), (2.30)

C3c = 3λ3 +1. (2.31)
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(a) Eigenvalue map

x3c

x2c x1c

(b) Barycentric map

Figure 2.6: Linear invariant maps. The limiting turbulence states are included where the grey line indicates the plain-strain state.

The sum of the weights Ci c = 1, meaning uniqueness is enforced within the barycentric map. The dif-
ference between the discussed invariant maps is that non-linear maps have a bias towards the axisymmet-
ric expansion limit, when compared to the linear maps. Also the linear and non-linear maps approach the
isotropic corner differently. The barycentric triangle is the only map that provides equal weights to all limiting
states, meaning the results are more easily interpretable.

There are two significant disadvantages of invariant maps [21]:
(1) loss of physical context, because the maps are solely a function of the turbulence anisotropy eigenvalues,
no information regarding the spatial domain is included. This problem could partially be solved by coloring
the samples according to, for example, their wall distance as done in Figure 2.7.
(2) difficult to properly represent large amounts of data, plotting all domain samples in an single invariant
map can result in loss of interpretability because nearly identical b will overlap in the invariant map, as can
be seen in Figure 2.7. To avoid this, usually only small subsets of the domain are plotted, typically one-
dimensional profiles.

Figure 2.7: Barycentric maps for different CFD data. Left: Channel flow data for a one-dimension vertical profile where the data points
are colored according to the wall distance y+. Right: Data points of the entire domain from a nozzle flow. Taken from Emory and

Iaccarino [21].
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To properly represent the information about turbulence anisotropy componentality in the physical do-
main, Emory and Iaccarino [21] proposed a color map constructed on the coordinates in the barycentric
map, as depicted in Figure 2.8. This map can act as a colormap when constructing contour plots of the tur-
bulence componentality in the physical domain. Using the red-green-blue (RGB) color system, the colors are
defined by

R
G
B

=C1c

1
0
0

+C2c

0
1
0

+C3c

0
0
1

 (2.32)

meaning one-component turbulence is visualized in red, two-component in green and isotropic turbulence
in blue. All other possible states of turbulence within the barycentric map can be depicted as a combination
of those three colors. An example is shown in Figure 2.9 for LES data on a 2D periodic hill.

x3c

x2c x1c

Figure 2.8: Barycentric map including turbulence anisotropy componentality contours.

Figure 2.9: Turbulence states (stress type) depicted by RBG color system. Data is from LES of a 2D period hill at Re = 10,595. Taken from
Kaandrop [38].



3
Machine Learning in Turbulence Modeling

Almost seventy years ago, Alan Turing wrote his famous essay "Computing machinery and intelligence" [78]
in which he asked how we can construct a machine that can do the same things a human can do. Instead of
building a computer program that acts like a human from scratch, Turing proposed to build a machine that,
initially, cannot do many things but which is able to learn from past experience.

The implementation of Turing’s idea is machine learning, algorithms that are initially of little use but can
be tuned using existing observations such that they create a predictive ability for future situations. If one
would define the extend that a model, on average, fails to predict future observations as the generalization er-
ror, then machine learning aims to minimize this generalization error [33]. In other words, machine learning
tries to find the optimal model (algorithm) and its corresponding parameters such that future observations
are predicted correctly as many times as possible.

Machine learning can be categorized into supervised and unsupervised learning. Supervised learning
is the task to predict a specific unseen quantity based on observed quantities. In regression this quantity is
continuous while in classification it is discrete. In unsupervised learning the quantity of interest is unknown.
The task is therefore to find previously unknown patterns in the data.

3.1. Machine learning in turbulence modeling
In recent years the availability of large and diverse numerical data sets has increased significantly. Researchers
in the field of turbulence started to explore methods that can learn from the available data in order to reduce
turbulence model uncertainties. Turbulence model uncertainties are caused by the introduction of many
model assumptions and simplifications by going from the Navier-Stokes equations to the RANS framework
with model closure.

Ling and Templeton [48] used different machine learning algorithms to predict regions of high uncertainty
in RANS. This uncertainty was based on violation of different RANS assumptions. Duraisamy et al. [18] listed
four stages of simplifications to construct a Reynolds-averaged turbulence model, described below.

– L1: The application of ensemble- or time-averaging operators which lead to a system of equations that
is undetermined. In the averaging process, information of the instantaneous realizations is lost which
is fundamentally irrecoverable.

– L2: Representing the Reynolds stress by a model to close the undetermined system of equations. Ex-
amples of such models are linear eddy viscosity models and algebraic stress models.

– L3: The specific functional form within a model. Physical processes or assumptions can be represented
by either algebraic or differential equations.

– L4: Specifications of model coefficients often obtained through empirical evidence.

When enhancing a turbulence model with a machine learning algorithm, the starting point are the L2
assumptions. This means the uncertainties introduced by time-averaging and model closure are still present.
Machine learning models can, however, be used to lower the L2 uncertainty by introducing non-linear terms
in a LEVM. A popular strategy is to include the generalized expansion of the Reynolds stress tensor [58] in

17
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the form of (2.18) assuming that the Reynolds stresses only depend on mean velocity gradients. The machine
learning algorithm is then used to learn the relation and values between the basis tensors and invariants.

Ling et al. [49] presented a method to train a model for the anisotropic part of the Reynolds stress tensor
from high-fidelity (DNS and well-resolved LES) data using deep neural networks. Neural networks consist of
connecting nodes (often called neurons), each node has an input x which is transformed to an output using
an activation function f . These activation functions also have node weights w and a bias b (often defined
as node weight w0) as inputs, which are tuned during the learning process of the algorithm. The activation
function is formed as

y = f (w · x +b) (3.1)

where f can be, for example, a sigmoid function.
In a neural network, hidden layers contain one or more nodes which are connected to all the nodes in the

next and previous hidden layer. The first hidden layer has as input the pre-defined input parameters which
are in the case of Ling et al. [49] the five invariants and ten basis tensors listed in (2.19) and (2.17), respec-
tively. The last hidden layer has as output the estimated parameter, in this case the normalized Reynolds
stress anisotropy tensor b. A conventional neural network consists of a single hidden layer while deep neural
networks are defined as having at least two hidden layers. A simple neural network is depicted in Figure 3.1
which consists of three input units, a single hidden layer with four hidden units and two output units.

Figure 3.1: Neural network with three input units, a single hidden layer containing four hidden units and two output units, from Herlau
et al. [33].

The numerous neural networks weights are optimized for the specific problem by training on available
data sets using back propagation with gradient descent. By iteratively adjusting the weights, the lowest mean
squared error can be obtained by following the direction of steepest slope in the cost function (a measure of
the difference between the output parameters and the true values). Ling et al. [49] used a tensor basis neural
network (TBNN) which, by enforcing the prediction to lie on a basis of isotropic tensors, embeds rotational
invariance. Rotational invariance is a physical principle that every tensor should obey to, as it means the
fluid physics are independent on the orientation of the coordinate frame. The TBNN has two input layers,
one containing the five invariants and the other the ten basis tensors. This ensures the predicted anisotropy
tensor has the form of (2.18). The TBNN showed to have significant improvements over the default LEVM
and quadratic eddy viscosity model (QEVM) while predicting the Reynolds stress anisotropy, a priori. Sub-
sequently, the predicted anisotropy tensor was implemented into a RANS solver in the momentum equation
and turbulent kinetic energy production term. The RANS solver first converged using the default LEVM be-
fore prescribing the TBNN predictions and to re-converge. The TBNN showed to be able to improve the
predictions of flow characteristics, such as corner vortices and flow separation when compared to the LEVM
model. However, there still remained a large discrepancy with the high-fidelity DNS data. A major drawback
of neural networks is the computational costs of the training phase. It took Ling et al. [49] 4000 CPU hours to
train their ensemble of 20 neural networks.
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Another promising framework is the novel expansion of Gene Expression Programming (GEP) to model
tensors, proposed by Weatheritt and Sandberg [91, 92]. This framework gives the algorithm the freedom
to produce a constraint-free model and therefore to come up with its own functional form. This results in
an algebraic equation than can easily be implemented into a CFD solver. For this, symbolic regression is
required, which searches the space of mathematical expressions with the goal to find a model that best fits
the given dataset. GEP [23] revolves around the philosophy of iteratively improving a population of candidate
solutions according to the principle of survival of the fittest. It relies, just as in biology, on random changes
and is therefore non-deterministic. The objective of GEP is to search for the function, from the space of all
functions, that best fits the data. This is done according to the fitness of the candidate function that defines
the relative distance of the candidate function outcome to the true value. To search the space of all functions,
functions are expressed in a compact notation related to the coding sequence of genes. The GEP algorithm is
depicted in Figure 3.2 which has analogies to an evolutionary process. At i = 0, a population P i of N candidate
solutions is created randomly from the allowed set of mathematical symbols. In the selection phase, P i is
filtered in the direction of more fit solutions via tournament selection. This results in the individual candidate
solutions with the highest fitness. In the reproduction and genetic operators phase, genetic diversification
is created by introducing modifications to allow for evolution in the long run. This is done according to, for
example, replication, recombination and mutation. In the next selection step, poor variants will subsequently
be filtered out. The algorithm is made suitable for tensor expressions by introducing multidimensional gene
expression programming (MGEP) which allows for co-evolution of two populations with one solely consisting
of tensor symbols and the other out of scalar symbols.

Figure 3.2: Flow chart of GEP algorithm, from Weatheritt and Sandberg [91].

Using the MGEP algorithm, a model for bx , the extra anisotropy with respect to the linear Boussinesq
approximation, is formed. Although the approach to symbolically regress turbulence model corrections is still
novel, good predictions of the streamwise velocity and shear stress on a backward facing step and periodic
hills flow were found. Weatheritt and Sandberg [92] noted that the test cases do not represent the same
amount of complexity as flows in industrial applications. Therefore, to test the potential of MGEP, further
research on more complex flow cases is needed.

In the GEP algorithm, each run discovers different models due to its non-deterministic nature. Schmelzer
et al. [67, 69] proposed a deterministic symbolic regression method which searches for sparse algebraic mod-
els using regression techniques that promote sparsity. The method is referred to as SpaRTA (Sparse Regression
of Turbulent Stress Anisotropy). From pre-defined features, a library of candidate functions is created based
on non-linear combinations of the features. Sparsity is promoted by using elastic net regularization with the
goal to improve the predictive performance and interpretability of the model. Elastic net regularization is
an extension to ordinary least squares regression to reduce the model variance while increasing the model
bias. This is enforced by reducing the magnitude of large coefficients (l2 regularization) and by setting lesser
important coefficients to zero (l1 regularization). This results in the following optimization

w = argmin
ŵ

[∥∥∥ŵ T x − y
∥∥∥2

2
+λρ

∥∥∥ŵ
∥∥∥

1
+0.5λ(1−ρ)

∥∥∥ŵ
∥∥∥2

2

]
(3.2)

in which w are the model coefficients, x the library of candidate functions and y the true values. The regu-
larization strength and mixing are defined by λ and ρ, respectively.

To construct such a deterministic model, the model-form error of the standard baseline turbulence model
(LEVM) is first determined. This error is represented by a turbulence anisotropy correction b∆ and a transport
equation deficit R in the transport equations. To obtain the model-form errors b∆ and R, the turbulence equa-
tions are solved using the time-averaged velocity field, turbulent kinetic energy and Reynolds stress, obtained
from LES or DNS simulations. Because the turbulence equations consist of three equations (two transport
equations and the Boussinesq hypothesis) and three unknowns (two correction terms and the dissipation
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rate ε or specific rate of dissipation ω), the system is closed. This procedure is referred to as k-corrective-
frozen RANS. Subsequently, SpaRTA is used to obtain algebraic expressions for both correction terms. It was
found that by using only the correction for R already improvements for the velocity field were obtained. The
advantage of symbolic regression is that simple explicit algebraic equations are obtained that can easily be
interpreted and implemented into a solver. The disadvantage is that, due to its simplicity, it is in a lesser
extent able to discover all flow details, when compared to more complex machine learning algorithms [69].
Similarly as to the work of Weatheritt and Sandberg [91, 92], a limited set of test cases was used. To show the
potential of SpaRTA for industrial purposes, a variety of (more complex) flow cases have to be tested.

Kaandorp and Dwight [37] presented a stochastic Tensor Based Random Forest (TBRF) algorithm for tur-
bulence modeling. A random forest is an ensemble of decision trees where each individual decision tree is
trained on a randomly selected subset of the data. A common decision tree algorithm is the Classification
and Regression Tree (CART) algorithm which binary splits the data at each of its nodes by making use of a
if-then paradigm [48]. This split is based on a threshold value coupled to a specific feature and are selected
to minimize the difference between the output and a constant approximation of the output in both splits
[37]. Based on the CART algorithm, a Tensor Based Decision Tree (TBDT) algorithm is constructed which,
instead of defining a constant approximation of the output in both splits, approximates a constant value for
every basis tensor coefficient α(n) in (2.18). This is done to minimize the difference between the high-fidelity
anisotropy tensor and the expression in (2.18). Specifically, the following is solved

min
j ,s

[
min

α(n)
L ∈R10

∑
xi∈RL ( j ,s)

∥∥∥∥∥ 10∑
n=1

T(n)
i α(n)
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∥∥∥∥∥
2

F

+ min
α(n)

R ∈R10

∑
xi∈RR ( j ,s)

∥∥∥∥∥ 10∑
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T(n)
i α(n)

R −bi

∥∥∥∥∥
2

F

]
(3.3)

where bi is the index i of the high-fidelity anisotropy tensor. Subscript L and R denote the left and right split,
respectively. The subscript F resembles the Frobenius norm. The split is specified by the feature index j and
value s. The tensor basis coefficients can be found by solving two least-squares problems.

The TBRF is a collection of multiple TBDTs in which the anisotropy tensor b is predicted using base-
line RANS mean-fields as input. Five two-dimensional flow cases were used for training and testing. After
the baseline RANS simulation has converged, the predicted anisotropy tensor is introduced in the momen-
tum equation. To improve the stability, a relaxation parameter is implemented and a modified k-equation is
solved simultaneously. The improvements over the k-ω turbulence model were similar as those of the TBNN
from Ling et al. [49]. Howwever, the TBRF has several advantages over the TBNN as it provides prediction
variance, is less sensitive to its hyperparameters and cheaply trained.

3.2. Feature Selection in Machine Learning
Feture selection (or reduction) is commonly applied in the field of machine learning to improve the predictive
performance of an algorithm. Feature selection can be applied for the following reasons

• Model simplification and interpretation

• Reduce training costs (time and storage requirements)

• Improve model accuracy

• Reduce overfitting.

By reducing the dimensionality of the feature set, features are eliminated that have little or no information
towards the target variable. Features can either be relevant, irrelevant or redundant [46]. Relevant features
have an influence on the target variable and should be kept in the set of features. Irrelevant features do not
have (or very little) influence on the target variable, meaning they mainly contribute as noise sources and
should be removed from the set of features. A redundant feature shares the same influence towards the target
variable as another feature (high dependency between features), indicating that it is unnecessary to include
the feature in the feature set.

Methods for feature selection can be decomposed into three classes

• Filter methods

• Wrapper methods
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• Embedded methods.

Filter methods are based on measures obtained from statistical tests or information theory. Examples are
the correlation coefficient to detect linear, monotonic relations between features and the target variable, and
mutual information to measure a more general dependency. Mutual Information (MI) measures the shared
information between two variables [17]. MI can be expressed as

M I (X ,Y ) = H(X )−H(X |Y ) (3.4)

where H(X ) is the marginal entropy and H(X |Y ) the conditional entropy. The marginal entropy H(X ) de-
fines the uncertainty in variable X , while the conditional entropy H(X |Y ) is a measure of the uncertainty
remaining when a different variable Y is known. Then, the mutual information M I (X ,Y ) is equivalent to the
amount of uncertainty in variable X which is removed by knowing variable Y . Mutual information can also
be expressed as

M I (X ;Y ) =
∫

y

∫
x

p(X ,Y )(x, y)log

(
p(X ,Y )(x, y)

pX (x)pY (y)

)
d xd y (3.5)

and is defined by the Kullback-Leibler divergence, which measures how different one probability distribution
is from another. If variables X and Y are independent, then p(X ,Y )(x, y) = pX (x)pY (y) and the divergence is
zero (so mutual information is zero when two variables are independent). The advantage of filter methods is
that the computational costs are low and therefore a large number of features can be evaluated in a relatively
short period of time.

Wrapper methods make use of a machine learning algorithm to score the considered features. They are
computationally more expensive than the filter methods (filter methods do not require a learning algorithm
to quantify the importance of features). Examples of wrapper methods are forward feature selection, back-
ward feature reduction and recursive feature elimination. The advantage of wrapper methods is that the
feature importance is directly derived from the algorithm performance.

In forward feature selection, from an empty feature set, the feature (one from all available features) is
added that gives the lowest test error (when tested using an external estimator e.g. learning algorithm) com-
pared to all other features. This means that if there are N features, N models are constructed that are all based
on a different feature. The feature that corresponds to the best performing model is added to the empty fea-
ture set. Subsequently, an additional feature (out of all remaining features) is added that decreases the error
as much as possible. This procedure goes on up to the point that the error stops diminishing or when a pre-
defined maximum number of features is reached. The main disadvantages are that it is not able to remove
any features that may have become obsolete after another feature has been added and that the computa-
tional costs are significant as

∑k
n=0(N −n) models have to be trained. The total number of features is N and

the number of steps in the selection process is k.
Backward elimination works in the opposite direction as forward selection. The algorithm starts with

the full set of features and sequentially removes the specific feature that results in largest decrease of the
error. This procedure is continued until the error stops decreasing. The main disadvantages of backward
elimination is that it is unable to add features that would have been of use after the removal of another feature.
Similarly to forward selection, the computational costs are high.

Recursive feature elimination also performs backward elimination. The algorithm first fits an external
estimator on all features, this external estimator provides a measure of feature importance either by coeffi-
cients (e.g. from a linear fit) or a feature ranking (e.g. random forest). Based on this feature ranking, the top n
ranked features are used to refit the model. The procedure is repeated recursively until a pre-defined number
of remaining features is obtained. The disadvantage of recursive feature elimination is that the procedure
starts with the entire dataset, which can be infeasible in particular applications where the number of initial
features is large. Weatheritt et al. [93] used this method to reduce the dimensionality and to determine the
most important features for their scalar flux model. They used a linear fit as the external estimator.

In embedded methods, the feature selection is incorporated in the learning algorithm. For example, re-
gression with l1 regularization forces coefficients of irrelevant features to go to zero. This results in that only
the important features remain to have non-zero coefficients. For tree algorithms, features are ranked on how
well they can split the data at each node. Ling and Templeton [48] used feature ranking based on the Gini
information of the Adaboost decision tree (DT) to rank the features. They also applied forward feature selec-
tion, which required training the algorithms hundreds of times, which is significantly slower than the feature
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ranking method. It was also found that the forward selection results were sensitive to the randomly sampled
training and test data, meaning the results were inconsistent.

3.3. Predictions of regions of high uncertainty
Machine learning can be utilized to identify regions of high uncertainty in RANS. This is of significant value
because RANS often produces inaccurate flow predictions. Ling and Templeton [48] evaluated three different
machine learning classifier algorithms to predict regions of high RANS uncertainty: support vector machines
(SVM), Adaboost decision trees, and random forests. The classifiers were trained to evaluate three different
basic RANS eddy viscosity assumptions: eddy viscosity isotropy, linearity of the Boussinesq hypothesis, and
the non-negativity of the eddy viscosity. The classifiers functioned as markers by either being switched on,
predicting high uncertainty or off, indicating low uncertainty. The random forest came forward as the best
performing classifier, this could be due to its resilience to noisy training data (statistical noise in high-fidelity
data). Part of the results are shown in Figure 3.3 for an inclined jet in crossflow. The regions with true positive
and false negative indicate where the RANS model assumption is violated, in this case the linearity assump-
tion. The regions with true negative and false positive is where the model assumption is valid.

Figure 3.3: Classifier predictions by (a) SVM, (b) decision tree and (c) random forest on an inclined jet in crossflow. Taken from Ling and
Templeton [48].

Gorlé et al. [27] argued that linear eddy viscosity models are only applicable when there is an alignment
between the anisotropy and Reynolds stress tensor. For example, this is valid in simple parallel shear flows
but not in complex three-dimensional flows. RANS models are generally calibrated on nearly parallel shear
flows and validated to be reasonable accurate for such flows as wakes, jets, boundary layers and mixing layers.
Based on this, they formulated a marker function which measures the deviation locally from a parallel shear
flow. This can be accomplished by examining the velocity gradient and the streamline, locally. By comparing
RANS with high-fidelity LES/DNS for varying cases, it was found that the marker predictions largely coincided
with regions where the divergence of the Reynolds stress tensor is inaccurate.

3.4. Machine learning in wind energy
Machine learning is also applied to enhance the modeling of wind turbine wakes. Iungo et al. [34] calibrated
a RANS mixing length turbulence model with high-fidelity LES data for different tip speed ratios. However,
they only compared the results between downstream locations x/D = 2 and x/D = 5 and did not compare
to any baseline turbulence model. King et al. [39] used a Gaussian process algorithm to predict the RANS
eddy viscosity based on mean flow field variables. By comparing the results to the baseline mixing length
turbulence model, significant improvements were made in modeling the velocity in a wind farm. However,
there also remained a discrepancy with the high-fidelity LES data. The RANS simulations were performed in
2D, meaning only the velocity fields at hub height are obtained.

Using machine learning, Ti et al. [76] developed a new wake model to improve the turbine wake predic-
tions. They constructed an artificial neural network (ANN) with turbulence intensity and wind speed ob-
tained from RANS (using the k-ε- fP turbulence model) as input. The output variables of the neural network
are the wake velocity deficit and added turbulent kinetic energy. For a standalone turbine case, the results
were compared to the analytical Jensen [35] and Gauss [4] models and showed great improvements with er-
rors less than 5% with respect to the RANS simulation.



4
Methodology

This chapter discusses the different methodologies used and developed in this thesis. First the model-form
errors of the k-ε turbulence model are discussed in Section 4.1, which were obtained through the k-corrective-
frozen-RANS approach prior to this thesis. Secondly, the mutual information metric and its estimator are
explained comprehensively in Section 4.2. Thirdly, the SpaRTA algorithm developed by Schmelzer et al. [69]
is described in Section 4.3 and finally the sparse logistic regression framework in Section 4.4.

4.1. Model-form error k-ε turbulence model
By introducing correction terms to the turbulence model, the goal is to improve the RANS predictions and
specifically mean flow fields such as velocity and turbulence kinetic energy. Schmelzer et al. [69] proposed
to add a correction to the Reynolds stress anisotropy, b∆, and a residual to the transport equations, R. The
corrections are incorporated in the k-ε turbulence model (and indicated in red) as

Dk

Dt
=Pk +R −ε+ ∂

∂x j

[(
ν+ νt

σk

)
∂k

∂x j

]
(4.1)

Dε
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)
∂ε

∂x j

]
(4.2)

Pk = 2kbi j
∂Ui

∂x j
, bi j =−νt

k
Si j +b∆i j . (4.3)

To extract both correction terms from LES data, the RANS turbulence equations are solved passively using
time-averaged LES fields for velocity, turbulent kinetic energy and Reynolds stresses, as described in [69].
These fields remain frozen during the procedure. The turbulence equations contain three unknowns, ε, R
and b∆i j (in this work denoted as b∆) and three equations, the two transport equations and the eddy viscosity

formulation. The unknown quantities can therefore be obtained through an iterative process. This procedure
is referred to as the k-corrective-frozen-RANS approach.

When the obtained values for b∆ and R are injected as a static/constant correction to the standard k-ε
turbulence model equations, the mean-flow conditions are significantly improved. The predictions of the
mean stream-wise velocity component and turbulent kinetic energy are depicted in Figure 4.1 for several
horizontal profiles in case A (cases described in Chapter 5). Case A consists of two turbines positioned in
series, where the second turbine is located 5D downstream of the first. The LES profiles are compared to
the profiles obtained by the baseline k-ε turbulence model and the k-ε turbulence model where the frozen
corrections are injected. Clearly, the baseline turbulence model underpredicts the velocity deficit when com-
pared to LES. When the k-ε turbulence model is injected with the frozen corrections, the velocity profiles are
significantly improved, matching LES accurately. Similarly, for the profiles of k, the baseline k-ε turbulence
model is inaccurate and overpredicts the amount of turbulent kinetic energy in the turbine wake while the
frozen correction results in a good match with LES.

It should be noted that to both the baseline turbulence model and the turbulence model with the frozen
corrections, free-stream corrections in the form of RF S and b∆F S are added such that the free-stream profiles
in RANS match the profiles in LES.

23
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Given that the frozen corrections result in a good match with the LES data, a machine learning model that
can accurately estimate the frozen corrections would then potentially also lead to a good match with LES.
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Figure 4.1: Mean stream-wise velocity and turbulent kinetic energy at hub-height normalized with free-stream values as function of
normalized span-wise position (y − yhub)/D . Location in x denoted in title.

4.2. Mutual Information
Mutual information is a tool for feature selection in machine learning applications. Feature selection is often
utilized to reduce computational resources, improve prediction performance and increase the interpretabil-
ity of the model [13]. A common approach for feature selection is to define the dependency between vari-
ables. The most important features are then considered to have a high dependency with the output variable
and low dependency with other chosen features. The correlation coefficient measures the statistical rela-
tion between variables but is limited to linear dependencies and monotonic functions [5]. A more general
measure of dependency, not limited to linearity and monotonicity, is mutual information (MI). Mutual infor-
mation quantifies the amount of information of a variable obtained through observing a different variable.
Mutual information is widely used for feature selection for both categorical and continuous variables ranging
in disciplines from statistics to machine learning and computational neuroscience [25].

For continuous random variables, the mutual information between variable X and Y can be computed
by

M I (X ;Y ) =
∫
Y

∫
X

p(X ,Y )(x, y)log
p(X ,Y )(x, y)

pX (x)pY (y)
d xd y, (4.4)

in which p(X ,Y )(x, y) is the joint probability density between the variables and pX (x) and pY (y) are marginal
distributions. When X and Y are independent, the joint distribution is the product of the marginal distribu-
tions and M I (X ;Y ) equals zero. Mutual information measures the difference between the joint distribution
compared to its marginal distributions.

The definition of mutual information is often denoted as the Kullback-Leibler divergence that measures
the distance between probability densities [17]. Some useful properties are that the divergence is always



4.2. Mutual Information 25

positive and invariant to parameter transformations.
In information theory, the concept of mutual information is closely related to that of entropy. Entropy

can be interpreted as the average level of uncertainty in the outcome of a random variable. Uncertainty is
equivalent to the average amount of information required to describe a random variable’s outcome. The
information is quantified in number of bits (when using log-base of 2) or nats (when using natural log-base)
to store the outcome’s information [57]. For discrete random variables it is defined as

H(X ) =−
n∑

i=1
pX (xi )logpX (xi ). (4.5)

When computing the entropy for continuous variables, the differential entropy has to be used instead

h(X ) =−
∫
X

pX (x)logpX (x)d x (4.6)

which is defined by an integral instead of a summation. The main difference between entropy H(X ) and
differential entropy h(x) is that h(x) can be negative [17]. (Differential) entropy can be interpreted as when
all possible events of X have a low probability, it is difficult to guess the outcome, resulting in a high entropy.
Contrary, if X consists of events with high probability, it is more easy to guess the outcome, leading to a small
entropy.

The concept of differential entropy can be extended to joint differential entropy of two variables X and
Y as h(X ,Y ), which measures the uncertainty associated with multiple variables. Similarly, conditional dif-
ferential entropy h(X |Y ) defines the uncertainty in a variable X , given Y is known. From these definitions,
mutual information can also be expressed as

M I (X ;Y ) = h(X )−h(X |Y ) = h(X )+h(Y )−h(X ,Y ). (4.7)

Thus, mutual information equals the difference between the differential entropy of random variable X
and the conditional differential entropy of X with respect to Y . Therefore, mutual information can be inter-
preted as the amount of uncertainty in X which is removed by knowing Y . Hence, when Y is independent
from X , then h(X |Y ) = h(X ) and M I (X ;Y ) = 0.

4.2.1. Mutual Information Estimation
For most continuous data sets, the underlying probability density functions are unknown, which obstructs
direct computations of mutual information. Different techniques exist to estimate either the probability
densities or the entropy of continuous random variables from samples. Entropy estimations can be made
from k-nearest neighbor distances [44, 63, 89] while kernel density estimators [45, 54, 89] or histogram-based
methods [84, 89] are often used to estimate the data’s underlying probability density functions.

Histogram-based methods discretize the continuous data into bins which, for example as used in [63], all
contain an equal amount of points n. It was shown that for small values of n, MI was overestimated while
when n was large, MI was underestimated as MI goes to zero when n goes to infinity. There is no simple way
to determine the best value of n to minimize this bias.

Kernel density estimation (KDE) is a non-parametric method that estimates the probability density func-
tion of a data set. Non-parametric means no assumption is made on the underlying distribution. In this work,
the focus is on the KDE and the k-nearest neighbor methods as these are frequently applied in literature and
give the most reliable results.

Kernel Density Estimation
Kernel density estimation (KDE) is a well-known method to estimate probability density functions from sam-
ples. In the context of mutual information, it is often used to define the joint and marginal density functions
in (4.4). KDE is superior to the histogram-based methods because it has a better rate of convergence to the
underlying density [54].

KDE computes an estimator p̂(x) based on N samples x i from an unknown density, by constructing a ker-
nel K at each data point together with a smoothing parameter (often referred to as the bandwidth parameter)
h as follows

p̂(x) = 1

N

N∑
i=1

K (x −x i ,h). (4.8)
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A kernel is a non-negative function, often a uniform or Gaussian probability density function. The band-
width h is a parameter that affects the smoothness of the resulting distribution. This parameter strongly
influences the KDE estimations, and has to be chosen carefully. Small h generally results in low bias and
high variance (overfitting), while large h leads to the opposite: high bias and low variance (underfitting). The
bandwidth value can quickly be estimated using assumptions about the data, for example using "rules of
thumbs" [71] based on data characteristics, such as number of samples and the scale of the data. However
because these are crude estimations, these methods give in practise not reliable results.

There exist automatic, empirical bandwidth selection techniques [22] that fit the KDE to part of the data
and then determines how well the KDE agrees with the remaining samples by computing the data log-likelihood.
Although this leads to a more trustworthy bandwidth parameter, the procedure is computationally inefficient
because a KDE has to be constructed for each potential bandwith value.

From the constructed density functions, the integral in (4.4) is efficiently solved by assuming the locations
of the data are convenient samples from the underlying density function

M I (X ;Y ) =
∫
Y

∫
X

p(X ,Y )(x, y)log
p(X ,Y )(x, y)

pX (x)pY (y)
d xd y ≈ 1

N

N∑
i=1

log
p(X ,Y )(xi , yi )

pX (xi )pY (yi )
. (4.9)

The performance of the estimator is examined for a test case for which the exact mutual information is
known. Given two variables X and Y , both Gaussian variables with zero mean, variance equal to unity and
covariance r , M Itrue(X ;Y ) is exact and defined as

M Itrue(X ;Y ) =−1

2
log(1− r 2). (4.10)

If r = 0, the variables are uncorrelated and the mutual information is 0, when the two variables are per-
fectly correlated, r =±1, the mutual information is infinite. For r = 0.6, the exact solution for the mutual infor-
mation between two Gaussian variables M Itr ue (X ;Y ) = 0.223. By constructing a KDE using a Gaussian ker-
nel and an empirically optimized bandwith parameter through cross-validation, the error ε= |M Itr ue (X ;Y )−
M IK DE (X ;Y )|/M Itr ue (X ;Y ) is obtained and depicted in Figure 4.2 where the vertical lines indicate the stan-
dard deviation of the error. The computation of M IK DE (X ;Y ) is repeated 50 times for each N to investigate
the variance in the estimation, each time a new set of samples is drawn from the Gaussian distribution. It is
chosen to only use 50 repetitions because for N = 2 ·104, each run takes around 15 seconds, and therefore it
is computationally not feasible to do much more repetitions.

The results are remarkable, because it was expected that the error would converge for increasing sample
size. It is observed that for a sample size of N = 100, the mean error is relatively small (6%) while for N = 500
it is large (30%). For N > 5000, the mean error remains roughly constant. The standard deviation does have
a downward trend for increasing sample size. Hanchuan et al. [29] stated that with a properly chosen band-
width and kernel, the estimate p̂(x) converges to the true underlying density for increasing N . This means
that either the kernel or bandwidth is causing the error to not converge. For each N , a new bandwidth is cho-
sen by means of cross-validation from a limited set of possible values. Because the kernel is kept constant, it
is expected that the difference between the chosen bandwidth and the optimal bandwidth differs for each N .
This explains why the error can be larger for larger N . This shows that the performance of the KDE method
depends significantly on its parameters and that increasing the sample size does not necessarily lead to more
accurate predictions if it is not guaranteed that the chosen parameter values are close enough to the optimal
values.

Besides that the results depend significantly on the chosen parameters, another drawback is the compu-
tational costs. It takes around 15 seconds for each estimation for N = 2·104, which excludes the computations
required for selecting the bandwidth. The costs scale with O(N 2). For each sample, the effects of N kernels
have to be included. Because the mutual information is estimated by the average over N samples, the costs
scale with N 2. The cost can be reduced by increasing the tolerances such that not all constructed kernels
are used while making estimations, however this does not result in major cost reductions and also makes the
estimation more inaccurate.

k Nearest Neighbor
Contrary to the KDE method, the k-nearest neighbor (kNN) approach is computationally more effective be-
cause, for every data point, it locally estimates the differential entropy. The performance of histogram-based,
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Figure 4.2: Relative error ε= |M Itr ue (X ;Y )−M IK DE (X ;Y )|/M Itr ue (X ;Y ) for sample size N . Vertical lines indicate standard deviation
in computed ε.

KDE and kNN methods were compared for time series from nonlinear dynamical systems, and kNN outper-
formed the other two [57] because it behaved most stable and was less affected by method-specific parame-
ters.

The methodology relies on non-parametric differential entropy estimations from k-nearest neighbor dis-
tances assuming the probability density within the distance to the kth neighbor remains constant [44]. As
mentioned earlier, mutual information is composed from differential entropy terms as

M I (X ;Y ) = h(X )+h(Y )−h(X ,Y ). (4.11)

The differential entropy can be estimated by averaging local contributions to the differential entropy in
the neighborhood of each data point. The differential entropy estimator is

ĥ(X ) =− 1

N

N∑
i=1

logp(xi ). (4.12)

Consider µi (ε) as the probability mass of a ball with radius ε(i )/2 (to the kth nearest neighbor) centered at
xi , then by assuming that the probability density p(xi ) inside the ball is constant, the p(xi ) can be estimated
by

pi (xi ) ≈µi (ε)/(cdε
d ) (4.13)

where d is the dimension of x and cd the volume of the d-dimensional unit ball. Kozachenko and Leonenko
[43] showed that the expectation of logµi (ε) can be computed as

E [logµi ] =ψ(k)−ψ(N ) (4.14)

where ψ is the digamma function, the logarithmic derivative of the gamma function ψ(x) = d
d x log((n −1)!).

By combining (4.13) and (4.14), one obtains an estimate for the logarithmic of the local density as

logp(xi ) ≈ψ(k)−ψ(N )−dE [logε]− logcd (4.15)

which then leads to the estimate of the differential entropy

ĥ(X ) =−ψ(k)+ψ(N )+ logcd + d

N

n∑
i=1

logε(i ) (4.16)

and is easily extended to joint differential entropy

ĥ(X ,Y ) =−ψ(k)+ψ(N )+ logcdX cdY + dX +dY

N

n∑
i=1

logε(i ). (4.17)

The estimate of mutual information can be obtained by inserting (4.16) and (4.17) into (4.11). However,
this will result in the use of different distance scales because the distance to the kth nearest neighbor in joint
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space is larger than in marginal space. To avoid this, k in (4.16) is replaced by nx (i ), the number of points in
X within xi ±ε(i )/2, then ε(i )/2 is the distance to the [nx (i )+1]st neighbor of xi .

Consider the points depicted in Figure 4.3 where k = 1 and where the maximum norm is used, ε(i )/2 is the
distance to the nearest neighbor. There are five points within distance x = xi ±ε/2 and three within = yi ±ε/2,
resulting in nx (i ) = 5 and ny (i ) = 3.

Figure 4.3: Nearest data points around point xi . Maximum norm distance to first neighbor equals ε(i )/2. Number of data points
between the two vertical dashed lines equals nx while number of points between the two horizontal dashed lines equals ny . From

Kraskov et al. [44].

The mutual information can then be estimated by [85]

M I (X ;Y ) =ψ(k)+ψ(N )− 1

N

N∑
i=1

(ψ(nx (i )+1)+ψ(ny +1)). (4.18)

The two assumptions made in this approach are that the entropy is estimated by N realizations through
(4.12) and that within distance ε(i )/2 around xi the probability density remains constant. By increasing the
number k, the bias introduced by the second assumption becomes more extant, although the estimator vari-
ance is reduced.

Just as for the KDE described in Section 4.2.1, the error with respect to the exact mutual information can
be computed for two Gaussian distributed variables with zero mean, unit variance and covariance r = 0.6.
The estimator consists of a single parameter namely the number of nearest neighbors considered, k. By
setting k to a large value, the variance in the estimate is reduced while a bias is introduced, small values of k
lead to high variance but low bias. Kraskov et al. [44] proposed to set k between 2-4, therefore k is set to 3.
The average relative error ε = |M Itr ue (X ;Y )−M IkNN(X ;Y )|/M Itr ue (X ;Y ) is depicted in Figure 4.4 for k = 3
and k = 5, where the vertical lines indicate the standard deviation based on 250 repeated runs for each N .
The difference in error for the two k values is that k = 3 results in (on average) more accurate results while it
has a slightly higher variance compared to k = 5. This matches the statements from Ver Steeg and Galstyan
[86]. Overall, there is a clear downward trend in the averaged error and standard deviation for increasing N .
For large N , the average error is around a few tenth of a percentage. The standard deviation in the error is
around 1%.

Estimating mutual information for N = 2 · 104 takes around 0.17 seconds, which is roughly two orders
of magnitude quicker than the KDE approach. However, the computational costs also scale with O(N 2) be-
cause for each sample the distance to all other samples has to be computed. Because the estimated mutual
information is the average over N samples, the computational costs scale with N 2. Besides the relatively low
computational costs, the kNN estimates are more accurate and show less variation compared to the KDE ap-
proach. Finally, setting the k parameter is more straightforward than defining the optimal bandwidth for the
KDE approach.

All together, the kNN method is found to be more suitable for further applications compared to the KDE
approach. In the remaining of this research, the features and correction terms are first standardized before
the mutual information is estimated. Standardization is applied because the estimator is sensitive to co-
ordinate transformations due to the probability density uniformity assumption [10]. Theoretically, mutual
information is invariant to coordinate transformations, since

p(x, y)d xd y = p(x ′, y ′)d x ′d y ′, (4.19)
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and then M I (X ,Y ) = M I (X ′,Y ′). However due to the uniformity assumption, this invariance does not hold
for mutual information estimators.
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Figure 4.4: Relative error ε= |M Itr ue (X ;Y )−M IkNN(X ;Y )|/M Itr ue (X ;Y ) for sample size N . Vertical lines indicate standard deviation
in computed ε.

4.2.2. Parameter dependency
The estimate of mutual information depends on the sample size and the number of nearest neighbors k used
in the estimator. To test the convergence of the mutual information estimation for increasing number of sam-
ples, the mutual information between the first invariant λ1 and correction term R (M I (λ1,R)) is computed
for increasing sample sizes which are drawn randomly from the complete data set. For each N , ten repeated
runs are performed using randomly picked samples. The estimates are shown in Figure 4.5 and after roughly
2 ·105 samples, the mean error has decreased to 0.1% and the standard deviation of the error to 1.0%.

The error depicted is the relative difference to the mutual information computed over the entire data set.
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Figure 4.5: Relative error between mutual information between first invariant λ1 and correction term R for increasing number of
samples used in the estimator. Exact mutual information is computed by using the entire data set.

To define the dependence of the estimator on the hyperparameter k, the estimate M I (λ1,R) is plotted for a
varying k in Figure 4.6. Clearly, the value of the amount of chosen nearest neighbors influences the mutual
information estimate. It indeed seems that for increasing k the bias increases. Kraskov et al. [44] advised to
use k between 2-4 to minimize the bias, therefore k is set to 3 in the remaining of this work.

4.2.3. Measure of General Dependence
The advantage of mutual information is that it does not rely on specific assumptions such as linearity or
monotonicity and can therefore detect general dependencies between variables. To investigate its abilities,
the mutual information is estimated between different functional relations and for different noise levels. In
Figure 4.7, four functional relations are depicted (linear, exponential, logarithmic and sine wave) with the
corresponding estimated mutual information. Clearly, this metric can observe the dependencies between
variable X and Y . It is not dependent on linearity as it can detect the logarithmic relation. On top of that,
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Figure 4.6: Mutual information between first invariant λ1 and correction term R for increasing number of nearest neighbors k used in
the estimator.

it is not dependent on monotonicity as it identifies the dependency between variables X and Y when the
functional relation is a sine wave.

Theoretically, mutual information goes to infinity for perfectly correlated variables. However the mutual
information estimate is based on two assumptions (entropy is estimated by N samples and within distance
ε(i )/2 around xi the local probability density remains uniform), making the estimate finite for Y = X . Gao
et al. [25] stated that very strong relationships between variables are more difficult to measure accurately,
as the local uniformity assumption is less valid. To compensate this, more samples are required to get an
accurate estimate. However, for perfectly correlated variables this means that N →∞.

Figure 4.7: Four functional relations between variables X and Y , the functional relation is denoted in the plot title and the estimated
mutual information is depicted in the plot label.

In Figure 4.8, the effects of a noise factor η on the mutual information estimate between two variables is
denoted, both variables are related through Y = f (X )+η. For an increasing noise level, the shared information
between the variables decreases and so also the mutual information.

4.2.4. Physics-informed feature selection
Behaviour of features can be quantified based on metrics such as mutual information, but also by gaining
knowledge about the physical conditions. For example, in simple shear flow [3] where the only non-zero
velocity gradient is ∂U

∂z , the set of ten basis tensors and five invariants, as listed in (2.17) and (2.19), respec-
tively, reduces to eight non-zero basis tensors and three non-zero invariants, which also have a high mutual
dependency [79].

By examining the dominant velocity gradients in the cases considered in this work, similar reasoning can
be applied. Outside of the turbine wake, the flow is dominated by the vertical shear ∂U

∂z in the boundary layer.

Inside the turbine’s wake, the ∂U
∂z remains the largest gradient, however also the stream-wise and transversely

gradients of the U -velocity component grow. Assuming the only non-zero velocity gradients are ∂U
∂z and ∂U

∂y ,
the definitions of the invariants and basis tensors can be simplified significantly. Although this assumption
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Figure 4.8: Mutual information between variables X and Y through the relation: Y = f (X )+η for increasing noise level η (on the
horizontal axis).

holds for the the larger part of the domain, including large portion of the turbine’s wake, there are regions
where it fails. These regions have to be localised in order to get an understanding whether the assumption is
applicable or not. Reasons for this assumption to fail are

• Shear gradient ∂U
∂z reduces due to turbulent mixing in the wake

• Gradient ∂U
∂x becomes large in near wake region

• Near turbine rotors, where gradients of V and W become large.

The identification of the regions where the assumption is invalid are discussed in Section 6.1. The as-
sumption is referred to as the velocity-gradient assumption.

In Figure 4.9, two box-plots are depicted that quantify the spread of the ratio of ∂U
∂z and ∂U

∂y to the other
seven gradients. The data is split in two partitions based on the velocity deficit Ud , the local streamwise
velocity minus the free-stream velocity

Ud (x, y, z) =Uloc (x, y, z)−U∞(z). (4.20)

If Ud is smaller than −0.05 or when Πb∆ > 0.025, it is part of the turbine wake. Πb∆ is the second invariant

of b∆ and is a quantitative measure of the turbulent anisotropy in the flow, elaborated in Chapter 5. The
box-plots represent the spread of the data, the median and mean are denoted by the orange and green line,
respectively. The first and third quartile are the upper and lower edges of the box and data that is outside the
percentile range of [5,95] is explicitly shown. The two partitions represent data located in the turbine wake
and data located outside the turbine wake (referred to as free-stream).

From analyzing the box-plots, it is clear that the velocity-gradient assumption is valid in large regions of
both the wake and free-stream as the boxes are located well above 1. It should be noted that not only for the
wake, but also for the free-stream the assumption tends to fail for a portion of the region as the ratio is less
than 4 for 5% of data. Further details will be given in Section 6.1.

4.3. Sparse Regression of Turbulent Stress Anisotropy
To enhance the turbulence models, data-driven expressions for R and b∆ are learned through the SpaRTA
algorithm, which was developed by Schmelzer et al. [67]. The main advantages of this approach are that a
sparse algebraic model representation is obtained that can easily be coupled to a CFD solver, which is nor-
mally not straightforward for other black-box algorithms. Besides that, because it is an algebraic expression,
the model is easily interpretable which can help in understanding why the model is formed the way it is.
Downsides are that it can incorporate only a limited set of features and pre-defined non-linear effects and
that due to its simplicity it is not able to capture all complex flow details [69].

4.3.1. Physical form b∆ and R
By applying the effective-viscosity hypothesis by Pope [58], the anisotropy correction b∆ can be represented
as
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∂z ) for data partitioned in wake region and free-stream region.

b∆ =
10∑

n=1
α(λ1, ...,λ5)T(n). (4.21)

This model-form is slightly extended such that it also incorporates other scalar features besides the in-
variants λi

b∆ =
10∑

n=1
α( f )T(n) (4.22)

where f consists of all scalar features discussed in this work. The correction to the transport equations R is
then formed as a turbulent production term

R = 2k
10∑

n=1
α( f )T(n)∂ jUi , (4.23)

as was proposed by Schmelzer et al. [69]. Although this is a valid model-form for the discrepancy of turbulent
production, it is not legitimate for turbulent dissipation.

In wind turbine applications, the discrepancy in the transport equations is mainly caused by the turbine-
flow interaction because the turbine interaction terms are neglected. Réthoré [64] stated the complete form
of the k-equation as

∂k

∂t
+U j

∂k

∂x j
=Pk −ε+Fk +Πk +ν∇2k − 1

2

∂u′
j u′

i u′
i

∂x j
(4.24)

in which Fk is the force-velocity term andΠk the pressure-strain term, which are affected by the turbine-flow
interaction. These two terms are neglected in the transport equations in the k-ε turbulence model although
wind turbines do have an effect on the turbulent kinetic energy in the flow. Réthoré [64] found that the two
terms combined represent a turbulence source/sink term and can be up to two orders of magnitude larger
than the local dissipation rate ε. This means the k-equation in the k-εmodel lacks a source/sink term caused
by the presence of the turbine because the pressure-strain and force-velocity terms are neglected. Sanz [66]
proposed to add a source/sink term to the transport equations proportional to k in the k-equation and ε in
the ε-equation to take into account the effect of wakes due to vegetation.

In this work it is proposed to represent the R correction as a combination of turbulent production RP and
an additional source/sink term Rε (modeled proportional to the local dissipation rate ε) which is incorporated
in the model equations as

Dk

Dt
=Pk +RP +Rε−ε+ ∂

∂x j

[(
ν+ νt

σk

)
∂k

∂x j

]
(4.25)
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Dε

Dt
= [

Cε1
(
Pk +RP +Rε

)−Cε2ε
] · ε

k
+ ∂

∂x j

[(
ν+ νt

σε

)
∂ε

∂x j

]
, (4.26)

where the R correction is modeled as

R = RP +Rε = 2k
10∑

n=1
α( f )T(n)∂ jUi +ε(α( f )). (4.27)

The objective of the data-driven approach is to define the functional form of both b∆ and R.

4.3.2. Constructing library of candidate functions
SpaRTA first builds a library of candidate functions x which is subsequently used to regress the data. The
candidates are non-linear combinations of pre-defined features and pre-defined exponents and constructed
through the following steps

1. Combine all pre-defined features (e.g. λ1, λ2) with all pre-defined exponents (e.g. 1.0): B1

2. Make interacting features: multiply features from B1 with other features B1: B2 (e.g. λ1λ2)

3. Multiply features from B1 with features B2: B3 (e.g. λ2
1λ2,λ1λ

2
2)

4. Library of non-linear features α( f ) =B1 +B2 +B3 + c (c is a constant and duplicates are removed)

5. Library of candidate functions x obtained by inserting α( f ) in (4.21) for b∆ and in (4.27) for R.

It should be noted that in step 2 not all possible interactions between the features fromB1 are constructed.
This is elaborated in Appendix A.

Given the data for b∆ or R as y , then the regression coefficients w can be found through

y = w T x . (4.28)

4.3.3. Model selection using elastic net regression
Because including all regression coefficients in the correction models would lead to overly complex models,
which are prone to overfitting and increase the numerical stiffness [67], regularization parameters are in-
cluded to reduce the magnitude and number of non-zero coefficients. The elastic net regularization is used
which searches the space of possible w by minimizing the following argument

w = argmin
ŵ

[∥∥∥ŵ T x − y
∥∥∥2

2
+λρ

∥∥∥ŵ
∥∥∥

1
+0.5λ(1−ρ)

∥∥∥ŵ
∥∥∥2

2

]
(4.29)

where λ is the regularization weight and ρ the mixing parameter defining the ratio between l1 and l2 regu-
larization. The second term on the right-hand side of (4.29) defines the l1 regularization, which allows only
a limited amount of non-zero coefficients while setting the others to zero. The third term on the right-hand
side promotes l2 regularization which penalties large coefficients. The first term tries to minimize the dis-
tance between the training output and regression fit, however the w that minimizes the sum of all three
terms is considered as most appropriate.

Regularization is applied in the context of machine learning to increase the model’s predictive perfor-
mance and to avoid overfitting. Overfitting occurs when a model has a high accuracy on the data upon which
it has been trained, while it has a low accuracy on unseen test data. This implies that the model tried to fit the
training data better than necessary with the downside that it looses its predictive capabilities. To avoid this,
the complexity and flexibility of the model can be reduced by introducing regularization parameters such
that the model only distinguishes the most obvious trends in the training data that probably will also occur in
unseen test data. Regularization is used to balance the variance and bias of the model. More regularization
reduces the model’s variance as the regression coefficients are shrunk, while simultaneously a bias is intro-
duced. By using a regularization parameter that is too large, the introduced bias will be so significant that
the model will underfit, meaning it is not able to recognize any important relation at all. To produce accurate
models, it is therefore important to test for a large range of values for (λi ,ρi ).

To test the predictive performance of the trained models, the cross-validation strategy is applied. In this
strategy, the models are trained upon a part of the data, while tested on a different part. In this work, the
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procedure of K -fold cross-validation is used, in which the total data set is split into K folds. The models
are trained on K −1 folds and tested on the remaining unused fold. Because the database consists of three
wind turbine cases (as will be elaborated in Chapter 5), 3-Fold cross-validation is applied where the model is
trained on two cases and tested on the third as depicted by Figure 4.10.

A large range of values is used for (λi ,ρi ), resulting in the discovery of many different regression models.
Only the models with unique non-zero coefficient entries are forwarded to the model inference phase, as the
specific coefficient values will be determined in the next phase.

Figure 4.10: 3-Fold Cross-Validation based on the three wind turbine LES cases. Red indicating test sets while blue indicates training
sets.

4.3.4. Model inference
The elastic net procedure described above is using standardized candidate functions to ensure that the mag-
nitude of all features is in a similar range. Standardized functions are used because functions with large
magnitude will generally attribute more to the model than functions with small magnitude, although this
does not mean these functions are more important.

To define models that are not built upon standardized functions but rather on functions with their original
magnitudes, an additional regression step is introduced in the model inference phase. For each model, only
the subset of non-zero candidate functions xu obtained from the previous regression is used, unstandardized.
The subscript u denotes that unstandardized functions are used. To improve the possibility of convergence
in a CFD solver, l2 regularization is introduced by the parameter λr

w u = argmin
ŵ nz

[∥∥∥(ŵ nz)T xu − y
∥∥∥2

2
+λr

∥∥∥ŵ nz

∥∥∥2

2

]
. (4.30)

The final model-form is obtained by the dot product between the resulting set of coefficients w u and the
candidate functions through

M = (w u)T xu . (4.31)

4.4. Sparse logistic regression
The advantage of the SpaRTA algorithm is that it is able to construct simple, algebraic model expressions for
the correction terms. Ideally, these expressions generalize to all regions in the domain, e.g. they fit the trends
in the correction terms in both the free-stream and wake region. However, in practice it is difficult to have
an algebraic model that fulfills these characteristics and likely gives inaccurate predictions inside the wake
region. By making the assumption that the baseline turbulence model is able to simulate the free-stream flow
accurately, correction models can be trained specifically for the wake region. As a consequence, the models
will not fit the trends in the free-stream flow (which are mostly close to zero).

To solve this problem, a classifier can be used that turns on the correction models in the turbine’s wake.
This gives the opportunity to construct correction models trained solely on the data in the wake region. On
top of that, the model does not have to fit the data in regions where the baseline is sufficient (free-stream),
because there the classifier will turn the correction model off, resulting in more flexibility of the model. An-
other advantage of using a classifier is that the data set for the correction model is significantly reduced. This
decreases the training costs of the model, meaning the library of candidate functions can be extended. The
classifier will be constructed such that it is turned on in the wake of the turbines and off in the remaining of
the domain. The wake is defined as the region where

Ud (x, y, z) =Uloc (x, y, z)−U∞(z) (4.32)
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is smaller than −0.05. Because it is found that there is a small portion of data outside the near-wake where
Πb∆ is large (for example, caused by speed-up effects at the wake edges), samples where Πb∆ > 0.025 are also
included in the wake definition.

The wake classifier is constructed by extending SpaRTA to classification problems. Instead of using stan-
dard regression, logistic regression is applied. Logistic regression is used to model the probability of a class,
either true or false, which in this case means that a sample is either in the turbine wake or in the free-stream.
Instead of the regular regression expression in (4.31), the sigmoid function σ is applied

y pred =σ(w T x + c) (4.33)

as an activation function, where c is a constant. The sigmoid function has a value between 0 and 1 and an
S-shaped transition in between, as depicted in Figure 4.11. This ensures a smooth and not discrete transition
between the class labels.

Figure 4.11: Sigmoid function.

The sigmoid function relates the input and output through

σ(x) = 1

1+exp(−x)
. (4.34)

The model coefficients are found by maximizing the log-likelihood

logL(x , w ,c, y true) =
N∑

i=1
li (4.35)

where li is defined as

li = yi ,true · log

(
1

1+exp(w T x i + c)

)
+ (1− yi ,true) · log

(
1

1+exp(w T x i + c)

)
=−log

(
exp(−yi ,true(w T x i + c)+1)

)
.

(4.36)
Both l1 and l2 regularization can be implemented, l1 shrinks lesser important coefficients to zero, while

l2 penalizes large coefficients.
The first step is model discovery in which the logistic regression coefficients are found by minimizing the

following cost function, which includes the regularization parameters

w ,c = argmin
w ,c

[
1−ρ

2
w T w +ρ∥∥w

∥∥
1 +C

n∑
i=1

log(exp(−yi (xT
i w + c))+1)

]
. (4.37)

The third term on the right-hand side is the negative log-likelihood (it is a minimization problem) and the
first two terms define the regularization. The parameter C is the inverse of the regularization strength, smaller
values imply adding more regularization. The mixing parameter ρ defines the ratio of l2 to l1 regularization.
If ρ = 1, only l1 regularization is applied while only l2 regularization is applied when ρ = 0. For 0 < ρ < 1, the
regularization is a combination of l1 and l2. By applying different values for (Ci ,ρi ), a large range of models
can be discovered.

The w and c obtained through (4.37) are based on standardized functions. To obtain models with unstan-
dardized functions, the remaining non-zero functions from (4.37) can be exposed to a second regression fit
with only l2 regularization through
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w u ,cu = argmin
w nz,c

[
w T

nzw nz +C
n∑

i=1
log(exp(−yi (xT

u,i w nz + c))+1)

]
(4.38)

where w nz are the non-zero coefficients from w in (4.37), w u and cu are the coefficients and intercept based
on the unstandardized functions xu , respectively. This final step is the model inference step.

4.4.1. Performance Evaluation
The performance of the classification model can be evaluated using different metrics, the ones discussed and
used in this research are the log (logarithmic) loss, accuracy, recall and complexity.

The log loss is a loss function based on the probabilistic predictions made by the model. It is defined as

Llog(Y ,P ) =− 1

N

N∑
i=1

(
yi logpi + (1− yi )log(1−pi ))

)
(4.39)

and grows when the estimates deviate from the true value. Its advantage is that it does not take into account
the discrete prediction from the model, but its probabilistic prediction. In this work it is desired that the
model returns either values close to 0.0 or 1.0, meaning predictions that deviate from these extremes should
be penalized more than usual.

The accuracy metric defines the fraction of correct predictions and can be computed by

accuracy = TP + TN

TP + TN + FP + FN
= 1

N

N∑
i=1

1(ypred,i = ytrue,i ) (4.40)

where true positive (TP) is the number of correct predictions in the turbine wake, true negative (TN) the num-
ber of correct predictions in the free-stream, false positive (FP) the incorrect prediction in the free-stream,
false negative (FN) the incorrect predictions in the wake. The accuracy is a concise number that depicts the
performance of the model, however can be misleading for imbalanced data. When combining the three data
sets, the wake represents 14% of all data points, meaning that a model that always predicts an outcome of 0
will have an accuracy of 86%.

The recall is a convenient metric to evaluate the ability of a model to identify all positive samples e.g. how
well it can predict if a sample is in the turbine wake. It is defined as

recall = TP

TP + FN
(4.41)

and returns the fraction of correctly predicted samples in the wake over the total number of samples in the
wake. The advantage is that, for imbalanced data, it gives a clear picture of the model’s ability in correctly
predicting the under-sampled class. The disadvantage is that it does not take into account the predictions
in the region outside the wake. This means that when a model always gives 1 as a prediction, the recall also
equals 1.

The final metric discussed is the model complexity, defined as the remaining number of non-zero coef-
ficients. The complexity is important and should preferably be minimized to increase the interpretability of
the model. On top of that, very complex models tend to increase the numerical stiffness in a CFD solver and
impede convergence [68].
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Data Cases and Features

This chapter starts with describing the different data sets used in this research, in Section 5.1. Subsequently,
the investigated features are outlined in Section 5.2.

5.1. Data Cases
In this research, three LES data sets on wind-tunnel scale are used, set up by Steiner et al. [74]. The datasets are
based on wind tunnel experiments from Chamorro and Porté-Agel [12] and the results are validated against
measurements from this particular experiment. The case parameters are denoted in Table 5.1 and are equal
for each dataset. In the simulations, the turbine rotational speed Ω is kept constant, this implies that the
thrust coefficient can vary and therefore the listed quantity is the time average of a turbine located in undis-
turbed conditions. The instantaneous quantities are time-averaged for further processing.

Table 5.1: LES case [74] parameters

Parameter

Reynolds number Re = 63,800

Diameter D = 0.15 m

Hub-height hhub = 0.125 m

Rotation speed Ω = 1190 rpm

Thrust coefficient CT = 0.51

Free-stream velocity Uhub = 2.2 m/s

Turbulence intensity σU /U (hhub) = 9%

Domain size 5.4 ×1.8×0.46 m3

Resolution 360 ×120×64

The turbine positioning in each simulation is depicted in Figure 5.1. Case A consists of two turbines in
series, while case B and C have two turbines parallel downstream of another turbine. All turbines are aligned
with the free-stream velocity, only for case C the upstream turbine has an yaw angle of 15°. The stream-wise
spacing between the upstream and downstream turbines is 0.75 m, which equals five rotor diameters.

For the simulations, OpenFOAM-6.0 was used together with the SOWFA-6 toolbox [16]. The solver is based
on the incompressible finite-volume formulation. To model the unresolved scales, the WALE (Wall-adapting
Local Eddy-viscosity) sub-grid scale model was used [62] to ensure correct wall-asymptotic scaling of the
eddy viscosity. To represent the forcing of the turbines, SOWFA’s actuator disk model is used.

The simulations mimic wind-tunnel experiments which do not fully represent the physical behaviour of
full-scale wind turbine applications. Wind-tunnels operate at a significantly lower Reynolds number and the
turbulent length scales are also noteworthy smaller than in the planetary atmospheric boundary layer. This
affects the turbulence properties and therefore also the wake characteristics [11]. However, the goal of this

37
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Figure 5.1: Wind turbine positioning for each LES case, turbine diameter is on scale. From Steiner et al. [74].

research is to investigate the ability to construct data-driven correction terms for turbulence models applied
to wind turbine applications. The approach of enhancing turbulence models with data-driven corrections is
still novel and most of the work performed in this field uses either 2D simulations [49, 67, 94] or low Reynolds
number cases [53, 92]. Therefore, starting with more elementary cases at wind-tunnel scale can lead to pre-
liminary conclusions about the potential of such enhanced turbulence models, which can act as a framework
for further research focused on more practical full-scale cases.

5.2. Features
The investigated features in this work can be divided into four categories

• Invariants based on S andΩ in (2.19) [59]

• Basis tensors in (2.17) [59]

• Invariants when including ∇k and ∇p [94]

• Physical flow features [48, 83, 90].

Because most features are scalars and b∆ is a second-order tensor, the scalar features are compared to
the second invariant of b∆: Πb∆ . The second invariant Πb∆ is a key scalar metric of b∆ because it quantifies

the degree of anisotropy [48]. Because b∆ is the anisotropy correction in the stress-strain relation, Πb∆ is a
convenient scalar target to use for comparison to the evaluated features. The second invariant of the tensor
b∆ can be computed by [21]

Πb∆ = b∆i j b∆j i /2 = γ2
1 +γ1γ2 +γ2

2 (5.1)

where γ is the vector of eigenvalues of b∆ in which γ1 ≥ γ2 ≥ γ3. While the second invariant of b, Πb , is
bounded to [0, 1

3 ] as can be seen in Section 2.3, this does not hold for Πb∆ because the eigenvalues of b∆

cannot be derived from the Reynolds stress eigenvalues φi because

γi 6= φi

2k
− 1

3
, (5.2)

implying thatΠb∆ , contrary toΠb , is not bounded to [0, 1
3 ].

The contours of both correction terms are plotted in Figure 5.2 at a slice at turbine location for case A.
There are similarities and differences between the two correction terms. Both are most dominant in the
upper part of the wake, while the magnitude of R starts to grow gradually downstream of the first turbine,
the magnitude of Πb∆ is most dominant around the first turbine. This is because large velocity gradients
significantly affect the anisotropy in the flow, which are mainly present in the region near the rotor. The
correction R grows for increasing turbulence intensity, which grows in magnitude in the near wake. While b∆

is dimensionless, as the turbulent anisotropy is normalized by the turbulent kinetic energy, the correction R
has units [m2/s3]. Both correction terms are close to zero outside of the turbine wake region.

It must be noted that for the analysis in this research (feature selection and construction of the correction
models) the samples with

p
kd/(50ν) < 10 are discarded. This corresponds to roughly the samples below
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(z − zhub)/D < −0.5. The samples in this region are discarded because near the wall the magnitude of the
correction models grows exponentially, which hinders the construction of accurate correction models for the
remaining of the domain. In the CFD solver, a blending factor is used to damp the correction models near the
wall. This is further elaborated in Section 10.1.
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Figure 5.2: Contour plot of R (top figure) andΠb∆ (bottom figure) at turbine location ((y − yhub )/D = 0) for case A. Turbines indicated
by black vertical lines.

5.2.1. Feature requirements
The features should obey three requirements, they must be non-dimensional, rotational invariant and Galilean
invariant. Non-dimensional implies that the features must be unitless, meaning the units of the obtained al-
gebraic models are consistent with the correction terms. Rotational invariant states that the features are
invariant to any arbitrary rotation of the coordinate frame [37, 94], which is hold for scalar features f when

f (S, v ,c) = f (QSQT ,Qv ,c) , ∀Q,S, v ,c (5.3)

and for tensor features h when

Qh(S, v ,c)QT = h(QSQT ,Qv ,c) , ∀Q,S, v ,c (5.4)

where S ∈ R3×3 is a tensor argument, v ∈ R3 a vector argument, c ∈ R a scalar argument and Q ∈ R3×3 an
arbitrary orthogonal transformation matrix. Rotational invariance can be enforced by using invariants as
features or taking the vector or matrix norm of either vector or tensor variables, respectively.

Galilean invariance implies that, in all frames with constant velocity, the laws of motion are identical.
For example, the velocity Ui is not Galilean invariant while its gradient ∂ jUi is, as it does not depend on
a reference value [94]. Although all features considered in this work are non-dimensional and rotational
invariant, five physical flow features are not Galilean invariant as they depend on the velocity Ui . It should
therefore be taken into account that these features are more prone to a loss of generalizability than the other
considered features.

The different features used in this work are described below.

5.2.2. Invariants
The invariants used in the effective-viscosity hypothesis proposed by Pope [59] were already listed in (2.19),
but are repeated here for convenience

λ1 = {S2} λ2 = {Ω2} λ3 = {S3} λ4 = {SΩ2} λ5 = {S2Ω2}. (5.5)
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5.2.3. Basis Tensors
Similarly the integrity basis, the ten non-linear basis tensors listed in (2.17) are also repeated for convenience

T(1) = S T(6) =Ω2S+SΩ2 − 2
3 {SΩ2}I

T(2) = SΩ−ΩS T(7) =ΩSΩ2 −Ω2SΩ

T(3) = S2 − 1
3 {S2}I T(8) = SΩS2 −S2ΩS (5.6)

T(4) =Ω2 − 1
3 {Ω2}I T(9) =Ω2S2 +S2Ω2 − 2

3 {Ω2S2}I

T(5) =ΩS2 −S2Ω T(10) =ΩS2Ω2 −Ω2S2Ω.

5.2.4. Additional Invariants
In the original non-linear eddy viscosity model [59], it is assumed that turbulence is only affected by the
strain-rate S and rotation-rate tensorΩ and that turbulence production is balanced by dissipation [94]. How-
ever, pressure gradients also influence turbulence because a favorable pressure gradient decreases the tur-
bulent kinetic energy and an adverse gradient increases it. On top of that, strong non-equilibrium effects can
exist, especially in turbine wake applications where the production of turbulence is not in equilibrium with
the dissipation rate. To take these invalid assumptions into account, the pressure gradient ∇p and turbulence
kinetic energy gradient ∇k are included in the form of invariants.

The gradients ∇p and ∇k are both Galilean invariant, but not rotational invariant. This can be achieved
by constructing invariants based on ∇p and ∇k , which satisfy the rotational invariant condition [94]. To use
the scalar gradients, they are normalized and transformed to anti-symmetric tensors

Ak =−I× (

p
k

ε
∇k) Ap =−I× (

1

ρ|DU /Dt |∇p) (5.7)

and subsequently used to construct a set of invariants as was done by Wu et al. [94] to ensure the rotational
invariance requirement. The invariants are depicted in Table 5.2. There is a finite number of invariants as
the listed invariants can represent any polynomial invariant. Such a finite number of invariants is referred
to as a minimal integrity basis. The invariants based on ∇p and ∇k are in this work referred to as additional
invariants to separate them from the invariants in Section 5.2.2.

Table 5.2: Invariant bases, number of symmetric and antisymmetric tensors for each invariant are indicated by ns and nA , respectively.
The invariant bases are the trace of the tensors listed. The asterisk on an invariant bases indicates that also the cyclic permutation of

the antisymmetric tensors are included.

(nS ,nA) Feature index Invariant bases

(0,1) 1-2 A2
p , A2

k

(1,1) 3-9 Ω2SΩS2

A2
p S, A2

p S2, A2
p SAp S2

A2
k S, A2

k S2 , A2
k SAk S2

(0,2) 10-12 ΩAp , Ap Ak ,ΩAk

(1,2) 13-36 ΩAp S,ΩAp S2,Ω2Ap S∗,Ω2Ap S2∗,Ω2SAp S2∗

ΩAk S,ΩAk S2,Ω2Ak S∗,Ω2Ak S2∗,Ω2SAk S2∗

Ap Ak S, Ap Ak S2, A2
p Ak S∗, A2

p Ak S2∗

(0,3) 37 ΩAp Ak

(1,3) 38-42 ΩAp Ak S,ΩAk Ap S,ΩAp Ak S2,ΩAk Ap S2,ΩAp SAk S2

5.2.5. Physical Flow Features
Besides the listed basis tensors and invariants, features can be included that are more physically interpretable,
listed in Table 5.3. All of the mentioned features comprise physical intuition to relate physical trends to the
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correcting terms. All of the listed features, excluding q6 and q7, are taken from Ling and Templeton [48] and
Wang et al. [90]. The shear parameter q7 is used by van der Laan et al. [83] to limit the eddy viscosity within
the wind turbine wake. The force coefficient q6 is included by the author himself to take into account the
forcing applied by the turbines.

Table 5.3: Physical flow features. For each feature qi the physical description is denoted including the raw feature with its

normalization. The features that are not Galilean invariant are marked with †. Reynolds stress u′
i u′

j is based only on Boussinesq eddy

viscosity assumption.

Feature Description Raw feature Normalization factor

q1 Wall-distance Reynolds number
p

kd
50ν -

q2 Turbulence intensity 1 k ν‖ ∂Ui
∂x j

‖
q†

3 Turbulence intensity 2 k 1
2UiUi

q4 Ratio of excess rotation rate to strain rate (Q criterion) 1
2 (||Ω||2 −||S||2) ||S||2

q†
5 Pressure gradient along streamline Uk

∂P
∂xk

√
∂P
∂x j

∂P
∂x j

UiUi

q†
6 Force coefficient |F | 0.001( 1

2 /R|Ui |2)

q7 Shear parameter || ∂Ui
∂x j

|| ε
k

q8 Viscosity ratio νt 100ν

q†
9 Nonorthogonality between velocity and its gradient |UiU j

∂Ui
∂x j

|
√

UlUlUi
∂Ui
∂x j

Uk
∂Uk
∂x j

q10 Ratio of total to normal Reynolds stresses ||u′
i u′

j || k

q†
11 Ratio of convection to production of TKE Ui

dk
d xi

|u′
j u′

k S j k |





6
Feature Selection

The performance of different features will be analyzed based on the data from case A using mutual informa-
tion. A broad range of features is considered which were listed in Section 5.2. First the invariants and basis
tensors in (2.19) and (2.17) are investigated, followed by the additional invariants based on ∇p and ∇k . Fi-
nally, the dependency of the correction terms to the physical flow features is discussed. The goal is to get a
better understanding of the relations between the correction terms (R andΠb∆ ) and the features. This ensures
that only the most relevant features are used in the remaining parts of this work, increasing the performance
of the constructed data-driven models.

6.1. Invariants
The mutual information estimates between the invariants and the correction terms are listed in Figures 6.1
and 6.2.
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Figure 6.1: Mutual information between invariants and R.
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Figure 6.2: Mutual information between invariants andΠb∆ .

Clearly, three invariants λ1, λ2 and λ5 have the largest dependency with both correction terms while
invariants λ3 and λ4 show a smaller dependency. This implies that from the set of five invariants, mainly λ1,
λ2 and λ5 show to be important to R and b∆.

While the first, second and fifth invariant show all a large dependency with the correction terms, it is not
clear yet if there is any redundancy among the invariants, indicating that the invariants have a high depen-
dency between themselves. In Figure 6.3, the mutual information between individual invariants is depicted
as a heatmap, relations with large mutual dependency are indicated in red and low in blue. It is clearly shown
that invariants λ1, λ2 and λ5 all have a high dependency between themselves, indicating that using all three
results in redundancy. The invariants λ3 and λ4, also have a high mutual dependency.

In Section 4.2.4, it was stated that when ∂U
∂z and ∂U

∂y are the most dominating gradients, the mathematical

forms of the invariants can be significantly simplified. By assuming that ∂U
∂z and ∂U

∂y are the only non-zero
velocity gradients, the mean rate of strain and rotation tensors reduce to their simplified forms

43
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Figure 6.3: Mutual information between individual invariants
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respectively. By using the reduced form of these tensors, the expression of the first invariant λ1 is simplified
to

{S2} = k

ε

[(
∂U

∂z

)2

+
(
∂U

∂y

)2]
. (6.1)

Clearly, λ1 is a positive scalar quantity and its magnitude grows for increasing gradients. By applying the
same procedure to the other invariants, the following relations between the invariants are obtained

λ2 =−λ1 λ3 =λ4 = 0 λ5 =−1

2
λ2

1. (6.2)

The second invariant λ2 is linearly related to the first invariant while the fifth invariant λ5 has a quadratic
relation to λ1. The third and fourth invariant are both equal to zero under the velocity gradient assumption.
This conclusion is consistent with the dependency analysis using mutual information.

To investigate if the above-described relations correspond to the data, a linear regression line is fit to
(λ2,−λ1) for the data partitioned in wake and free-stream region. The linear fit and the data are depicted in
Figure 6.4 with the wake left and free-stream on the right. Although visually the data seems to not fit the linear
line very well, the majority of the samples are densely located close to the linear fit resulting in a coefficient of
determination R2 that is close to unity. For the samples in the wake, the linear regression fits the data slightly
less than for the free-stream samples.

The coefficient R2 quantifies how strong the linear relationship is between two variables and equals 1.0
for a perfect fit and shrinks for increasing residuals between the data and the linear line. The coefficient R2 is
computed by

R2 = 1−
∑N

i=1(x(i )− f (i ))2∑N
i=1(x(i )− x̄)2

(6.3)

where x(i ) are the individual data points, x̄ the data mean and f (i ) the regression value. Because R2 is not
equal to unity, there are a number of samples that differ from the trend and so where the velocity-gradient
assumption does not hold, and it is therefore important to identify these regions of deviation.
From the velocity gradient assumption λ2 =−λ1. To detect the deviation from this assumption, a new feature
is introduced as λ1+2 = (|λ1 +λ2|) which should equal zero when the assumption is valid and deviates where
it fails. A Contour showing λ1+2 for a vertical slice at turbine location is depicted in Figure 6.5. There are par-
ticular regions where λ1+2 is non-zero: in the center of the near wake and near the rotor. It is also noteworthy
that λ1+2 is close to zero in wake regions not near the rotor axis and further downstream ((x − xT 1)/D > 7),
explaining why R2 in the wake (Figure 6.4) is still reasonable large.
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Figure 6.4: Linear fit between invariant (λ1,-λ2) for data partitioned in wake and free-stream, left: wake, right: free-stream. Samples are
indicated in blue.

The center of the wake, which is aligned with the rotor axis, experiences a small shear ∂U
∂z because the

gradient gradually switches from negative to positive. On top of that, the center of the wake encounters a
strong stream-wise gradient ∂U

∂x . Near the turbines, the flow is influenced by the forcing of the rotor which
significantly affects the velocity gradients.

The velocity-gradient assumption suggests that the set of five invariants can be reduced to a set of only
one, either λ1, λ2 or λ5. In Figure 6.7, the mutual information between the five invariants in the wake region
is listed. From this can be concluded that, on average, the dependencies between the individual invariants
remain strong and that the velocity-gradient assumption holds for the most part of the wake. However, the
assumption fails in the specific above-described regions of the flow, and therefore the full effects of the five
invariants cannot be accounted for by only one single invariant in these regions. This is confirmed by the
heatmap in Figure 6.6 where the mutual information between the five invariants conditioned on λ1+2 > 75 is
listed. Clearly, the strong relations as were observed in Figure 6.3 are not valid for this condition. Only the
dependency between λ2 and λ5 remains reasonably strong.

Consequently, selecting more than one invariant can lead to capturing more flow characteristics in the
domain near the turbines, often the first two invariants are chosen [69, 92]. Selecting the λ1 and λ2 is reason-
able as λ2 remains to have significant dependency with λ5.
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Figure 6.5: Contours of λ1+2 for vertical slice at turbine location.

Besides investigating the mutual dependency between invariants with respect to different regions in the
flow, it is also interesting to define the dependency of invariants to the correction terms for different flow
regions. In Figures 6.8 and 6.9, the mutual information is denoted between the five invariants with both
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Figure 6.6: Mutual information between individual invariants in
wake region.
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Figure 6.7: Mutual information between individual invariants
conditioned on λ1+2 > 75.
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Figure 6.8: Mutual information between invariants and R.
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Figure 6.9: Mutual information between invariants andΠb∆ .

correction terms for the wake and free-stream region. For the correction term R, the dependency with the
invariants is slightly larger inside the wake than in the free-stream. It is noteworthy that the dependencies for
both regions are smaller than for the whole domain. This is possible because the probability density functions
in (4.4) are significantly distant for different flow regions. In Appendix B.1 a theoretical example is provided
proving it is mathematically possible that two subsets have a smaller mutual information than the entire set.

For Πb∆ , the dependencies inside the wake are significantly larger than outside the wake. For both cor-
rections, λ1, λ2 and λ5 remain the most important invariants.

The relation between λ1 and the correction terms is visualized in Figure 6.10. The relation of λ1 with R
shows to be very noisy when compared to the relation with Πb∆ , which explains the difference in magnitude
between M I (λi ,R) and M I (λi ,Πb∆ ).

Figure 6.10: Correction terms R andΠb∆ as function of invariant λ1. Data is partitioned in wake and free-stream region.
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6.2. Basis tensors
Applying the same procedure to the basis tensors as was done to the invariants will lead to a reduction in
number of basis tensors by only selecting the ones which are most relevant to the correction terms. To com-
pare tensors to other tensors or to scalars, the second invariant can be compared to give an indication of
the tensor dependency. However, it is found that the second invariants of the basis tensors show very high
mutual dependency, meaning it is inadequate to use these as a representation of the basis tensors because
all basis tensors will have similar dependency with R andΠb∆ . For example, the second invariants of the first
four basis tensors are related through

−4Π2
T (1) =ΠT (2) = 1

12
ΠT (3) = 1

12
ΠT (4) (6.4)

based on the velocity gradient assumption.
Instead of comparing the second invariant of the basis tensors, individual tensor components can be

compared. In Figure 6.11, the mutual information between individual tensor components of the basis tensors
and b∆ are compared for the wake region in a heat map, bright colors correspond to strong relations. Both the
first and sixth basis tensor T(1), T(6) have a very large mutual information estimate with two of the diagonal
components (1,2) and (1,3). It is observed that basis tensors T(2), T(7) and T(8) have some dependency with
the components (1,1) and (2,3) and (3,3) while tensors T(3), T(4) and T(9) only with (1,1) and (2,3). None of
the basis tensor shows to have reasonable dependency with the (2,2) component.

Because many of the tensors show similar performance towards b∆, a broad range of tensors are chosen
for further analysis in Chapter 9. In Chapter 9, the effects of the chosen basis tensors on the model per-
formance will be investigated. Basis tensors T(1) and T(6) are chosen for their very strong relation with the
off-diagonal components, T(2) and T(8) because of their relation to (1,1), (2,3) and (3,3). Finally, T(3) and T(4)

are picked because of their dependency with (1,1) and (2,3) and because they are frequently used in literature.
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Figure 6.11: Mutual information heat map for basis tensor components with b∆ components.

The comparisons of the basis tensors components to b∆ for all samples and the free-stream region are
listed in Appendix B. The dependency inside the wake is significantly larger than in the free-stream.

To compute the dependency between the basis tensors and R, the correction term can be compared to
the double inner product between the velocity gradient tensor and the basis tensors. This is convenient as
this product is a scalar and because R is partly modeled as a turbulent production term in which the same
product is computed. Because this double inner product equals zero for basis tensors T(2), T(5) and T(7), they
are discarded from the analysis.

The dependencies are listed in Figure 6.12. Tensors T(1) and T(6) have the largest dependency with R,
while T(3), T(4) and T(9) score slightly better than T(8) and T(10). Also the dependencies conditioned on wake
or free-stream samples are listed. In both domains the T(1) and T(6) remain the most dominant basis tensors.

The mutual dependency between the basis tensors for the wake region is computed and depicted as a
heat map in Figure 6.13. There is clearly dependency between several basis tensors, especially between T(3)

and T(4). The dependency between T(3) and T(4) is strong because under the velocity-gradient assumption
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Figure 6.12: Mutual information between R and double inner dot product basis tensor and velocity gradients for different regions of the
domain.
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This explains the large value for the mutual information, but is only valid where the velocity-gradient
assumption holds. Also noteworthy is that there is dependency between T(1) and T(6), which is expected as
both tensors contributed mainly towards the same components of b∆. Also T(9) is related to T(3) and T(4),
explaining there similar contribution to R.

Because a lot of the basis tensors show to have similar performance, it is difficult to rule out most of them.
Therefore the basis tensors T(1), T(3), T(4), T(6) and T(9) are selected for further analysis in Chapter 8.

Figure 6.13: Heat map of mutual dependency between double inner product between basis tensors and velocity gradient for wake
samples. Measured by mutual information.

6.3. Additional invariants
The additional invariants were listed in Section 5.2.4. The mutual information between the three best scoring
additional invariants and R are listed in Figure 6.14 and Figure 6.15 for the entire domain and wake region,
respectively. Contrary to the invariants and basis tensors discussed earlier, the dependency of the additional
invariants depends significantly on the selected region as different additional invariants are designated with
the highest dependency for the two considered regions. Although the dependencies are relatively small, it
is observed that the invariants based on ∇k are considered to have a higher relation to the correction factor
than the invariants based on ∇p .

The mutual information between the three best scoring invariants and Πb∆ for the entire domain and
wake region are depicted in Figure 6.16 and Figure 6.17, respectively. Again, the dependencies are relatively
small when compared to the invariants in Section 6.1. For this correction term, the designated additional
invariants are also different for the wake region and the entire domain.

The mutual dependency between the best scoring invariants is depicted in Figure 6.18 for the wake re-
gion. Although the mathematical form of the invariants is very similar, they do not necessarily have a large
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Figure 6.14: Mutual information between invariants and R for
three best scoring invariants when considering all samples.
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Figure 6.15: Mutual information between invariants and R for
three best scoring invariants when considering wake samples.
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Figure 6.16: Mutual information between invariants andΠb∆ for
three best scoring invariants when considering all samples.
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Figure 6.17: Mutual information between invariants andΠb∆ for
three best scoring invariants when considering wake samples.

dependency. The additional invariants chosen for further analysis areΩ2Ak S2 andΩAk S for R andΩAk Ap S2

andΩAp Ak S2 for b∆.

Figure 6.18: Mutual information between individual invariants for wake samples. Invariants are the traces of the listed expressions.

6.4. Physical flow features
The physical flow features analysed were listed and described in Table 5.3. The estimated mutual information
between the physical flow features and the correction term R for samples from the entire domain, wake and
free-stream are listed in Figure 6.19. For the correction R, q8 (viscosity ratio), q1 (Wall-based Reynolds num-
ber), q10 (ratio of total to normal Reynolds stresses) and q7 (shear parameter) are found to have the largest
dependency in the wake region. Clearly, the mutual information estimates (and therefore the feature im-
portance) is dependent on the region selected. While for the entire domain, q3 (turbulence intensity 2) was
found to have the highest mutual information, its value for the wake region is significantly smaller.

In feature q10, the Reynolds stress is defined only by the Boussinesq hypothesis (deviatoric part is propor-
tional to strain-rate tensor and eddy viscosity), meaning q10 can be reformulated as
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q10 =
||u′

i u′
j ||

k
= ||−2νt ε

k Si j + 2
3 kδi j ||

k
= ||−2kCµSi j + 2

3 kδi j ||
k

= ||−2CµSi j + 2
3δi j || ≈ −2Cµ||S||∝ ||S||, (6.5)

showing its form is very similar to the first invariant λ1, but instead the l2-norm of the strain-rate tensor
is taken while λ1 is computed by the trace of the strain-rate tensor squared {S2}. Only the Reynolds stress
anisotropy part related to the eddy viscosity is taken for q10 because including b∆ could result in misleading
results when compared to Πb∆ , as the correction term is then part of the feature. The mutual information
between (λ1, q10) equals 9.96, meaning q10 is redundant when λ1 is already included.

Therefore, the set of best scoring features for further analysis is reduced to q1, q7 and q8.
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Figure 6.19: Mutual information between physical flow features and R for all samples, wake samples and free-stream samples. Features
are ordered by mutual information in wake region.

The same analysis is applied toΠb∆ , in Figure 6.20 barplots of the mutual information between the phys-
ical flow features and the second invariant are depicted for different flow regions. Again, the dependency de-
pends significantly on the select region, while q3 shows to have the largest dependency for the entire domain,
its value for the wake region is much smaller. It is found that q2 (turbulence intensity 1), q7 (shear parameter)
and q10 (ratio of total to normal Reynolds stresses) have the largest dependency with the correction term in
the wake region. Because the form of q10 is very similar to that of λ1, it is discarded.

ForΠb∆ , q2 and q7 are the features which will be used for further analysis Chapter 9.
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Figure 6.20: Mutual information between physical flow features andΠb∆ for all samples, wake samples and free-stream samples.
Features are ordered by mutual information in wake region.

The mutual dependencies between the selected physical flow features in the wake region are listed in
Figure 6.21. The dependencies are relatively small except for (q1, q8) as both the magnitude of the wall-based
Reynolds number and viscosity ratio depends significantly on k. Similarly, there is some dependency between
(q2, q7) because both depend on the k and the velocity gradient tensor.
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Figure 6.21: Mutual information between selected physical flow features for wake region.

6.5. Domain specific feature importance
Mutual information determines the general dependency between variables. The analysis has already been
narrowed to wake samples to determine which features are most influential to the correction terms in this
region. Still, if there are strong trends between the features and the correction terms in a small portion of the
wake region, while in the remainder of the wake the relation is mainly noise, the mutual information will be
small. This is because the probability distributions are based on all wake samples, meaning the strong trends
in a small portion of the wake samples will only be moderately represented in the probability distributions.
Two examples are given where this can lead to complications.

For the force coefficient q6, it is found that the mutual information can significantly increase when only
a portion of the samples is considered. For example, q6 is zero for most of the samples because the turbine
forcing only affects samples close to the turbine. However, there is a clear trend between (q6,R) when only
considering the samples that have q6 > 0, as can be observed in Figure 6.22.
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Figure 6.22: Correction R as function of force coefficient q6. Blue indicates wake samples where orange is wake samples including
specific condition in legend.

Secondly, the estimated mutual information for the additional invariants depends significantly on the
selected region. In Section 6.3, it was already found that different additional invariants were described as
most important for the entire domain and the wake region. Similarly, when considering only samples in the
upper part of the near-wake

(
(x − xT 2)/D < 5.5 and (z − zhub)/D > 0.1, referred to as near-wake samples

)
, A2

k
is found to be the most important additional invariant. The reason its mutual information estimate is very
region specific is because in the far-wake R contains a lot of noise. This noise affects the joint probability
distribution p(x, y) significantly and thus also the mutual information estimate. In Figure 6.23, a trend is
visible for the near-wake data. However, this trend is vanished when all wake samples are considered. This
effect is quantified by the mutual information for the two regions, where the mutual information for the
samples in the near-wake is much larger than for all wake samples. The far-wake noise present in R did not
have significant effect on the other considered features in this research.

Both q6 and A2
k are found to improve the predictions of R significantly (as will be discussed in Chapter 8),

however their importance can only be quantified with mutual information by considering small regions of the
flow. This is because for the whole wake domain, on average, their contribution is small. Although selecting
q6 and A2

k is rather ad-hoc, it is important to also show the shortcomings of a methodology so that these can
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Figure 6.23: Correction term R as function of A2
k for two flow regions (wake and near-wake).

be taken into account in future research. Based on the observations, it is chosen to define both q6 and A2
k as

important features for the correction term R. Using a similar analysis q6 is also found important toΠb∆ .

6.6. Conclusion
In this chapter, the importance of different features with respect to the correction terms R and Πb∆ was in-
vestigated using mutual information.

In research [49, 67, 91], often the invariants and basis tensors discussed in Section 6.1 and Section 6.2
are used as features. This is theoretically the most sound as these only depend on the local rate of strain
and rotation f (S,Ω) and are an inherent part of the effective-viscosity formulation proposed by Pope [58].
However, (as analysed for this specific turbine case) it seems that this gives only limited possibilities because
the sets can be reduced to only a smaller set that is actually relevant. By loosening the assumption that the
Reynolds stresses only depend on the local rate of strain and rotation, additional invariants and physical flow
features can be included. It is found that especially certain physical flow features have a large dependence
with the correction terms, implying that including these will potentially lead to improved model predictions.

Mutual information gives a clear quantitative picture of the dependencies between features and the cor-
rection terms. Similarly, mutual information is used to quantify the relation between different features to
detect redundancies. Given the mutual information results, it remains however to the user to make a choice
about which features to use for the construction of the correction models. This is not always easy, for ex-
ample, there are a number of basis tensors with equal dependency towards the correction terms, making it
difficult to rule out most of them. Also for the invariants, the mutual information between the invariants is
significant, indicating redundancy. However the level of redundancy is very region specific, making it difficult
to determine whether it is necessary to include more than one invariant.

Similarly, the mutual information estimate is significantly dependent on the selected region. As the
physics inside the wind turbine wake are very different compared to those in the free-stream, the relations
between the features and the correction terms are also affected by the chosen region. Because the wake re-
gion samples will be used to train the algebraic models later in this work, the derived dependencies inside the
turbine wake are leading when defining the most important features. However, this can still lead to missing
features that are important to more specific flow regions, such as the force coefficient q6.

Concluded from the analysis in this chapter, the features that will be used for further analysis are those
listed in Table 6.1. These will be used in Chapter 8 to improve the predictions of R and in Chapter 9 the
predictions of b∆. The total feature set has been reduced from 68 to 14 and 13 for R and b∆, respectively.
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Table 6.1: Features used for further investigation with respect to the correction terms R and b∆.

n Feature type Features R Features b∆

7 Basis tensors T(1), T(3), T(4), T(6), T(9) T(1), T(2), T(3), T(4), T(6), T(8)

2 Invariants λ1, λ2 λ1, λ2

5 Additional invariants Ω2Ak S2,ΩAk S, A2
k ΩAk Ap S2,ΩAp Ak S2

5 Physical features q1, q6, q7, q8 q2, q6, q7





7
Wake Classification

In this chapter, a classification model is constructed that distinguishes the turbine wake from the remaining
part of the domain. This wake classification model can be used in combination with an algebraic model for
R and b∆ that is specifically trained on the wake samples to enhance the predictions.

Correction terms trained specifically on the data inside the turbine wake can reach higher accuracy in this
region because they do not have to cope with the trends and noise in the correction terms in the free-stream
flow. This can lead to models that are simpler but can reach the same or even higher accuracy as more com-
plex models that are trained on the entire data set. Correction terms trained specifically on the data inside the
turbine wake are computationally less demanding, as the data set is significantly reduced. Therefore, the list
of candidate functions, used to train the model, can be extended. This improves the flexibility of the model
to fit the data.

Because the correction models are solely trained upon the samples inside the turbine wake, it is not guar-
anteed that it fits the free-stream data because this region is not used for training. Therefore, the classifica-
tion model is introduced that turns on the correction model in the turbine wake and off in the free-stream.
Because the correction models are turned off outside the turbine wake, the correction models are not con-
strained to fit the data outside the wake, meaning it can focus entirely on the data inside the turbine wake,
resulting in a better fit than when trained on the entire sample set. In this research, it is assumed that the
baseline k-ε turbulence model is able to simulate the free-stream flow accurately, meaning it is acceptable
that the correction terms are turned off in this region. This assumption is valid because a free-stream cor-
rection is applied to the baseline k-ε turbulence model such that the velocity and turbulent kinetic profiles
match those from LES.

For the classifier, the wake has as class label "1" or "True", while data in the free-stream is labeled with "0"
or "False". The wake classification model must meet a number of requirements:

1. classification model must be able to accurately predict the turbine wake region

2. classification model must predict a smooth transition at wake boundaries to avoid irregularities

3. classification model must preferably be a simple/sparse algebraic expression

The second requirement implies that the confidence of the classification model at the wake boundaries
should gradually decrease from close to 1.0 to close to 0.0 to avoid irregularities and non-smooth behavior in
the predictions of the correction terms R and b∆. The third requirement can be split up in two parts, sparsity
ensures the model is less prone to overfitting and that the numerical stiffness is reduced, which promotes
convergence when implemented into a CFD solver. The model should preferably be algebraic, resulting in
easy implementation in a solver and fast execution while it also offers better interpretability. By utilizing the
sparse logistic regression algorithm, an algebraic expression is guaranteed.

First the features that show a high mutual dependency with the wake label are discussed in Section 7.1.
Second, the results are discussed in Sections 7.2 to 7.4.
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7.1. Wake Dependency
The features that are best suited to distinguish whether samples are located in the turbine wake or not, can
be determined by computing the mutual information between individual features and the class labels [85].
The class label is 1 for samples in the wake and 0 for samples outside the wake, then the expected value of the
conditional differential entropy is

E [h(X |Y )] = p(y = 1) ·h(X |y = 1)+p(y = 0) ·h(X |y = 0) (7.1)

such that the mutual information is

M I (X ;Y ) = h(X )−h(X |Y ). (7.2)

The five physical flow features having the largest dependency with the class label are listed in Figure 7.1.
The mutual information estimations indicate that the features q3 and q8, the turbulence intensity 2 and vis-
cosity ratio respectively, are most important, which is reasonable as their magnitude grows significantly in
the majority of the turbine wake.
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Figure 7.1: Mutual information between physical flow features and wake classes.

It is noted that the above-listed features mainly correlate with wake samples downstream of the turbines
and are not able to identify all wake points near the turbines itself. Therefore, two more features are intro-
duced that are active near the turbines, the force coefficient q6 and non-orthogonality between velocity and
its gradient q9. It is also noted that, from the features listed in Figure 7.1, q3, q7 and q8 are most effective,
leading to the final feature set

[
q3, q6, q7, q8, q9

]
.

Sparse logistic regression is chosen as machine learning algorithm as the classification model should be
simple and algebraic. The advantage over ordinary logistic regression is that it can incorporate pre-defined
non-linear feature combinations, while ordinary regressions can only cope with linear relations. The number
of pre-defined non-linear combinations is although very limited, meaning sparse symbolic regression is not
able to capture as many detailed flow details as more complex machine learning classification models such
as neural networks and random forests.

The sparse logistic regression algorithm constructs a library of candidate functions, which are non-linear
combinations of the pre-defined set of features. The feature set B is

B =
[

q3, q6, q7, q8, q9

]
(7.3)

and the list of non-linear candidate functions is constructed by using the exponent 1.0, meaning the features
are multiplied by each other up to a maximum degree of 3. This results in the vector x

x =
[

q3, q3q7, q3q7q8, ..., q7q2
9

]T
. (7.4)

7.2. Model Discovery
In the model discovery phase, the library of candidate functions x in (7.4) is standardized and subjected to
the regression in (4.37) to discover the most important model coefficients. For the regularization parameters,
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a broad set of values are used to cover different regularization types. For the mixing parameter ρ and the
inverse regularization strength C , the following values are used

ρ = [0.01,0.1,0.2,0.5,0.7,0.9,0.95,0.99,1.0]T (7.5)

C = [10−7, ...,10−2]T , (7.6)

respectively to set up a grid of regularization parameters (C ,ρ). For C , 50 entries are used uniformly spaced on
log-scale between the limits depicted in (7.6), meaning in total 450 models are discovered. Because different
combinations of the regularization parameters (C ,ρ) can result in identical non-zero model coefficients, only
the unique sets of non-zero model coefficients are forwarded to the model inference phase. The models are
trained on the data from case B and C, such that it can later be used to test on case A.

In Figure 7.2, the percentage is depicted how often each candidate function is selected in the model dis-
covery phase. The features q3 and q8 are present in most of the functions that are selected most frequently,
which is consistent with the conclusion in Figure 7.1 that these two features are most important.
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Figure 7.2: Occurrence of candidate functions in model discovery phase expressed in percentages.

7.3. Model Inference using cross-validation
The unique sets of non-zero model coefficients obtained in the model discovery phase are undergoing an
additional regression using unstandardized functions, such that models with correct units are obtained. in
the model discovery phase, the model performance on the training data was irrelevant, as the intention was
to discover model coefficients for different regularization strengths.

In the model inference phase, the ultimate goal is to select regression models that have high predictive
capabilities. Therefore in the model inference phase, cross-validation is applied in which models are trained
and tested on separate data to assess the predictive performance. In this section, the models are trained on
case B and C and tested on case A.

The functions corresponding to the discovered non-zero coefficients in Section 7.2 are subjected to the re-
gression in (4.38) with l2 regularization through parameter C . For the regularization parameter, the following
values are used

C = [100, 101, 102]T . (7.7)

The performances of the obtained models are depicted in Figure 7.3 using the metrics discussed in Sec-
tion 4.4.1, The log loss, accuracy and recall are denoted as a function of complexity. Only the models with
complexity nC < 15 are depicted. On average, the model performance increases for increasing complexity
which is mainly visible in the log loss, although this is not always valid as more complex models are gen-
erally more prone to overfitting. Although the performance increases for more complex models, it is only
modest, meaning simple models do have almost the same predictive performance as more complex models.
This can be because only five features are considered, meaning adding more non-linear combinations of the
same features does not result in significant improvements. On top of that, complex models are more prone
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to overfitting, meaning increasing model complexity does not guarantee increased performance on unseen
test data.

Overall the performance of all models are good, as the accuracy and recall are both high. The final chosen
model is depicted by the green star, it is chosen because it has low complexity (only four non-zero terms) and
has good predictive performance as it has a high accuracy and recall and low log loss. The accuracy is 99%,
meaning 99 out of 100 samples are predicted correctly. The recall is 94%, meaning 94 out of 100 wake samples
are predicted correctly.
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Figure 7.3: Log loss (top), accuracy (middle) and recall (bottom) as function of complexity nc for all models analysed in the inference
phase. Final chosen model high-lighted with green star.

The model is formulated as

M=σ
[

w T
u xu +1.02

]
(7.8)

xu =
[

q3q9, q3q8, q3q2
7 , q8

]
(7.9)

w u =
[

1471, 248.8, 4.77, −6.51

]
. (7.10)

The same cross-validation procedure has been applied to case B and C as test sets (described in Ap-
pendix C), the results are denoted in Table 7.1.

Table 7.1: Performance classifier when tested on specific cases

case A case B case C

Log loss 0.07 0.12 0.09
Accuracy 0.99 0.96 0.97

Recall 0.94 0.80 0.89
Complexity 4 6 4
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7.4. Performance visualization
The performance of the model can be visualized using contour plots of slices of the domain. When tested on
case A, the vertical slice in the x − z plane at turbine location is depicted in Figure 7.4 showing the true wake
label and wake classifier confidence predictions. Overall the classifier gives good results, outside the wake the
prediction is close to zero while inside the wake close to one. There are a few regions where the classifier fails,
in the near-wake it fails in the lower part of the wake and at a small region in the wake center. Besides that,
the confidence is under-predicted in a small region upstream of the top part of the rotor and over-predicted
upstream of the lower part of the rotor.
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Figure 7.4: Wake classifier predictions compared to true label for case A on x − z plane at turbine location (y − yhub)/D = 0. Upper
figure: classifier predictions, lower figure: true label. Turbines indicated in black.

The performance of the classifier can also be expressed by its discrete predictions (when rounded to ei-
ther 0 or 1) and labeling samples to either true positive (TP), true negative (TN), false positive (FP) or false
negative (FN). The labels are depicted in Figure 7.5, showing indeed that the errors occur along the edges of
the wake, in front of the first turbine and in the lower part of the near-wake.
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Figure 7.5: Wake classifier discrete predictions compared to true discrete labels for case A. Upper figure: x − z plane at (y − yhub)/D = 0,
lower figure: x − y plane at (z − zhub)/D = 0. Turbines indicated in black.

The classifier predictions are compared to the contours of R and Πb∆ in Figure 7.6 for different slices in
the y − z plane. It can be clearly seen that close to the first turbine ((x − xT 1)/D = 3), the classifier fails to
identify the lower part of the wake. However, when comparing the classifier predictions to the contours of R
andΠb∆ , it is seen that both correction terms are close to zero in the lower part of the near-wake, meaning the
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shortcoming of the classifier in not able to identify this region does not result in the classifier being turned off
where the correction terms are large. One final observation is that in the free-stream, the prediction grows
when approaching the wall. This is due to the turbulence intensity q3 feature, which magnitude grows near
the wall.

The contourplots for case B and C are denoted and described in Appendix C.
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Figure 7.6: Comparison of classifier predictions to contours of R andΠb∆ for case A at different slices in the y − z plane, x-location
depicted in title upper row. Upper row: classifier predictions, middle row: R and lower row: Πb∆ .

7.5. Conclusion
In this chapter, a wake classification model is constructed using sparse logistic regression which can act as an
activation of the correction terms R and b∆.

First, the most important features were selected and used to construct a library of candidate functions.
Subsequently in the model discovery phase, the model coefficients were selected for different regularization
parameters. The final unstandardized models were constructed in the model inference phase and the pre-
dictive performance was tested using cross-validation.

It was said that the classification model should meet three requirements: accurately predict the turbine
wake, smooth transition at wake boundaries and low complexity. The complexity is definitely low, as the
model for case A only consists of four terms, making it easy to interpret and applicable for implementation in
a CFD solver.

The predictions at the wake boundaries does not always have the desired smoothness. For example, when
observing the prediction boundaries (where the predictions go from 1 to 0) in Figure 7.6, the classification
predictions quickly goes from 1 to 0. However, the magnitude of the correction terms R and Πb∆ at these
boundaries are already small, so no significant irregularities are expected. Because the predictions mainly
depend on the velocity (gradients), turbulent kinetic energy and the dissipation rate, whose magnitudes in-
crease abruptly at the wake edges, it is difficult to obtain a classification model that has a reasonable amount
of smoothness in this region.

The classification model can accurately predict most regions of the wake, although it fails in particular
regions such as the lower part of the near-wake. It is noted that both the magnitude of both R and b∆ are not
significant in these regions.
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Transport equation deficit R

The investigated features in Chapter 6 and the wake classification model predictions in Chapter 7 are used to
enhance the regression models for R. In addition, the modeling-form of R is extended using a source/sink
term proportional to the local dissipation rate to improve the predictions of the correction to the transport
equations.

First in Section 8.1 the features, derived from the mutual information analysis are denoted that will be
used in this chapter to improve the predictions of R. Secondly in Section 8.2, the coupling between the wake
classification results and the regression model is explained such that the regression results are mainly influ-
enced by the estimated wake samples. Subsequently, the specifications of the machine learning algorithm
are discussed in Section 8.3 and the regression results for different feature sets in Section 8.4. In Section 8.5,
a comparison is made of training the regression models either on the predicted wake samples or all samples.
Also the effects of applying the wake classification model is described.

The best-performing feature set is subsequently used for cross-validation in Section 8.6 to asses the model’s
predictive performance when trained and tested on different turbine cases. Finally, the chapter is ended with
a conclusion in Section 8.7.

8.1. Features
From the analysis in Chapter 6, the total list of available features was reduced to a smaller set using the mutual
information estimates. The remaining features are summarized in Table 8.1.

The entire feature set listed in Table 8.1 cannot be used all at once due to the computational limitations of
the machine learning algorithm. The algorithm constructs a library of non-linear candidate functions based
on the pre-defined features, this means that introducing new features results in an exponential growth of the
library of functions. Besides that, adding more features does not necessarily result in a reduction of the error
and can even cause an increase in error, this is further elaborated in Section 8.4.3. It is also interesting to
observe whether the features appointed by mutual information actually result in a prediction improvement
or not. In this way it can be validated if mutual information is a reliable tool for feature selection.

Therefore, the analysis will start with a feature set of moderate size (based on the minimal integrity basis
used by [68]) which will be iteratively extended and shrinked based on the performance of the specific con-
sidered set. In this way, it can be observed what the effects of different features are on the model performance.

Table 8.1: Features used for modeling correction term R.

n Feature type Features

5 Basis tensors T(1), T(3), T(4), T(6), T(9)

2 Invariants λ1, λ2

3 Additional invariants Ω2Ak S2,ΩAk S, A2
k

4 Physical features q1, q6, q7, q8
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8.2. Classification and regression coupling
The results of the classification model are incorporated into the regression algorithm such that the regression
model is mainly influenced by the samples predicted to be located in the turbine wake. The wake predic-
tion results p are coupled to their corresponding samples x . This coupling is incorporated by the following,
considering the residual of an ordinary least square problem as

r =
n∑

i=1

(
yi −w x i

)2 , (8.1)

in which the sample wake prediction pi can be introduced as a weight to the importance of the sample resid-
ual as

n∑
i=1

pi
(
yi −w T x i

)2
. (8.2)

This can be rewritten to

n∑
i=1

(p
pi yi −p

pi w T x i
)2

(8.3)

which implies the wake predictions can be incorporated in the regression algorithm by multiplying in ad-
vance the individual samples x i and correction term yi with the corresponding sample’s wake predictionp

pi . Preliminary, all samples with pi smaller than 0.30 are removed from the data set as it is expected that
their effect is only marginal on the regression outcome. In addition, the predictions of those samples are sig-
nificantly damped by the classification model. The samples for which pi > 0.30 holds are referred to as the
predicted wake samples. The wake predictions p are also included in the computation of the mean-squared
error, which measures the model performance, as

MSE = 1

N

N∑
i=1

pi
(
yi −w T x i

)2
. (8.4)

8.3. Sparse regression
The SpaRTA algorithm is applied as discussed in Section 4.3. The pre-defined features are combined with ex-
ponent 1.0 such that feature combinations up to cubic terms are constructed. In the model discovery phase,
the regularization mixing parameter ρ is assigned to the following values

ρ =
[

0.01,0.1,0.2,0.5,0.7,0.9,0.95,0.99,1.0
]T

(8.5)

such that a broad range of different regularization combinations is applied. For the regularization strength
αi , 20 entries are used uniformly spaced on a log-scale between α0 and αmax

α=
[
α0, ...,αmax

]T
, (8.6)

where α0 = 10−3 ·αmax and αmax = max(w T x)/(Kρ) where K is total number of samples. The regularization
strength αmax is defined such that any α>αmax results in all coefficients w to be set to zero.

In the model discovery and inference phases in Section 8.4, the predicted wake samples of the three tur-
bine cases are combined to one data set and randomly divided into a training and testing set, containing 75%
and 25% of the total data set, respectively. It is chosen to combine the three cases to one set to diminish the
effects of training and test set composition on the feature set performance. The model inference phase is
performed using ordinary least squares regression because the only goal is to compare the performance of
different feature sets.

For the model discovery and inference phases during cross-validation in Section 8.6, the models are
trained on the predicted wake samples of case B and C, and tested on those of case A. In the model infer-
ence phase, the models are subjected to an additional l2 regularisation using the regularization parameter
λr . When applying regularization to unstandardized data, candidate functions with small magnitudes (cou-
pled to a large coefficient) will be more affected by the regularization than candidate functions with large



8.4. Results 63

magnitude (coupled to a small coefficient), which affects the model performance. Generally, models ob-
tained through large values for λr have a larger likelihood to result in converged solutions when incorporated
into a CFD solver. For λr , the following values are used

λr =
[
0, 10−1, 1

]T
. (8.7)

8.4. Results
The features listed in Table 8.1 are used to learn sparse regression models for R. The procedure is started with
the reduced integrity basis consisting of the first four basis tensors and two invariants, as used by Schmelzer
et al. [68] and step-by-step expanded. The correction term is expanded with the source/sink term Rε in Sec-
tion 8.4.4. Only models with complexity nC ≤ 20 are used for the analysis to enhance the model performance
visualization and because overly complex models impede convergence and increase the numerical stiffness
in CFD [69].

8.4.1. Basis tensors
This section investigates the observations from Section 6.2 in which it was concluded that the basis tensors
with highest dependency to R are T(1) and T(6). Besides that, also T(3), T(4) and T(9) had an equal estimated
mutual information which was significantly smaller.

These observations are now tested by constructing sparse regression models using different feature sets.
They are then either validated or disproved by observing the mean-squared error as function of model com-
plexity. The considered feature sets are listed in Table 8.2.

Table 8.2: Features used for modeling correction term RP .

Feature set Features # functions

B(1)
RP

λ1, λ2, T(1), T(3), T(4) 18

B(2)
RP

λ1, λ2, T(1), T(3), T(6) 18

B(3)
RP

λ1, λ2, T(1), T(3) 12

B(4)
RP

λ1, λ2, T(1), T(3), T(9) 18

The mean-squared error as function of model complexity is depicted in Figure 8.1. Clearly,B(1)
RP

,B(3)
RP

andB(4)
RP

all have similar performance, meaning adding T(4) and T(9) does not yield any improvements. This is consis-
tent with the mutual information estimates, as there was a significant dependency measured between T(3)

and T(4) and to a lesser amount with T(9), the mutual information of these basis tensors with the correction
term R was also small.

Adding basis tensor T(6) results in improved model predictions for more complex models, which is also
consistent with the mutual information results as it was the second ranked tensor after T(1).
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Figure 8.1: Mean-squared error in R as function of model complexity nC for three different feature sets described in Table 8.2.
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8.4.2. Additional invariants
The best scoring feature set in Section 8.4.1, B(2)

RP
, is expanded with the additional invariants. The considered

combinations are listed in Table 8.3. The mean-squared error as function of complexity for the different fea-
ture combinations is depicted in Figure 8.2. The feature combinations are compared to the best performing
combination from Section 8.4.1. Clearly the introduction of the additional invariants gives a slight improve-
ment in the predictions and it is seen that the effect of invariant A2

k is most significant as B(6)
RP

and B(7)
RP

per-

form better than B(5)
RP

. It should be noted that A2
k was however not identified directly as an important feature

by mutual information.

Table 8.3: Features used for modeling correction term RP .

Feature set Features # functions

B(5)
RP

λ1, λ2,Ω2Ak S2,ΩAk S, T(1), T(3), T(6) 54

B(6)
RP

λ1, λ2,Ω2Ak S2, A2
k , T(1), T(3), T(6) 54

B(7)
RP

λ1, λ2, A2
k ,ΩAk S, T(1), T(3), T(6) 54
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Figure 8.2: Mean-squared error R as function of model complexity nC for feature sets described in Table 8.3.

8.4.3. Physical flow features
The feature sets in Section 8.4.2 are expanded using the physical flow features listed in Table 8.1. The exam-
ined features are q1 (Reynolds number), q6 (force coefficient), q7 (shear parameter) and q8 (viscosity ratio)
and the considered feature sets are listed in Table 8.4. It must be noted that invariants (λ2,ΩAk S) and basis
tensor T(6) are removed from the feature set to reduce the computational costs of the algorithm and because
they have become redundant with the addition of the physical flow features. The invariant λ2 is removed
because it has a significant dependency with λ1, only A2

k is used as additional invariant because it was found

that this invariant is responsible for the largest prediction improvements in Figure 8.2. Basis tensor T(6) is
removed because most of the selected terms in Figure 8.2 contain either T(1) or T(3).

The mean-squared error as function of complexity for the different feature sets is depicted in Figure 8.3
and it is obviously visible that the addition of physical flow features results in a significant error reduction.
This is also consistent with the mutual information estimates as these had the largest measured dependency
with R.

Clearly, the addition of the force coefficient q6 results in an error reduction as both B(8)
RP

and B(9)
RP

per-

form better than B(10)
RP

. The models constructed using the feature set B(8)
RP

performs slightly better than B(9)
RP

,
meaning that with the physical flow features q1, q6 and q7 the best performing RP prediction model can be
constructed.

Removing features
One could argue that removing features from the feature set results in decreased model performance. Instead,
one can use less data samples for model training to compensate the computational costs.
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Table 8.4: Features used for modeling correction term RP .

Feature set Features # functions

B(8)
RP

λ1, A2
k , q1, q6, q7, T(1), T(3) 68

B(9)
RP

λ1, A2
k , q6, q7, q8, T(1), T(3) 68

B(10)
RP

λ1, A2
k , q1, q7, q8, T(1), T(3) 68
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Figure 8.3: Mean-squared error R as function of model complexity nC for feature sets described in Table 8.4.

The performance of B(8)
RP

is compared to a feature set that includes, on top of the features used by B(8)
RP

, λ2,

ΩAk S and q8 and uses a third of the data for training compared to B(8)
RP

in the model discovery phase. Also,

the effects of including T(6) and excluding T(3) are investigated. The feature sets are listed in Table 8.5 and the
mean-squared error as function of model complexity is depicted in Figure 8.4.

First, it is found that the addition of features and reduction of data samples rather results in a decreased
model performance. Second, it is also observed that removing T(3) from the feature set does not result in an
increase in error, meaning that when a sufficient number of physical flow features and additional invariants
is used, the use of more basis tensors than T(1) becomes redundant. By using T(6) instead of T(3), the error is
slightly increased.

There are a couple of reasons why the prediction error can increase for a larger feature set, such as

• Reduced training set. The feature set with 256 functions in Table 8.5 uses a third of the training data
compared to the other feature sets in the model discovery phase. However, it is not expected that this
results in a significant difference.

• Training and test data. The training and test data are not identical, this means that specific chosen
functions can result in overfitting. However, this is not expected as the training and test data are very
similar given they both originate from the data set in which the three turbine cases are combined.

• Coordinate descent. The optimisation algorithm used is coordinate descent that finds the minimum
of a function by successively minimizing along the coordinate directions (candidate functions). The
coordinate descent algorithm is guaranteed to find the global optimum only when the function space
is strictly convex and differentiable [52]. This means that adding more features can result in the coor-
dinate descent algorithm converging to worse local optima.

• Standardized/unstandardized. The SpaRTA algorithm consists of two regression steps, model discov-
ery using standardized functions and model inference using unstandardized functions. It is possible
that certain candidate functions perform well when standardized while having worse performance un-
standardized.

It is not investigated what the exact reason is for the increase in prediction error. However, it is expected
that it is a combination of the above-described reasons.
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Table 8.5: Features used for modeling correction term RP .

Feature set Features # functions

feature set λ1, λ2, A2
k ,ΩAk S, q1, q6, q7, q8, T(1), T(3) 256

reduced feature set 1 (B(8)
RP

) λ1, A2
k , q1, q6, q7, T(1), T(3) 68

reduced feature set 2 λ1, A2
k , q1, q6, q7, T(1), T(6) 68

reduced feature set 3 λ1, A2
k , q1, q6, q7, T(1) 34
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Figure 8.4: Mean-squared error in R as function of model complexity for four different feature sets listed in Table 8.5.

8.4.4. Source/sink term
The correction model is expanded by the source/sink term Rε. The proposed feature set is listed in Table 8.6.
Two separate libraries of candidate functions are constructed, the first in the form of turbulent production
(RP ) and the second as the source/sink term (Rε). The listed feature set in Table 8.6 is found to result in the
lowest mean-squared error compared to other tested feature combinations.

The mean-squared error of B(11)
RP+Rε

as function of model complexity is shown in Figure 8.5. Clearly the
addition of the source/sink term Rε results in a further reduction in error compared to the feature set only
based on RP . Interestingly to indicate is that a model constructed using RP +Rε of complexity nC = 8 has
better performance as much more complex models constructed using only RP .

It must be noted that the physical flow features used for the RP part are slightly different than the ones
used in the best performing feature set in Table 8.4. When solely RP is used for modeling R, the physical flow
features q1, q6 and q7 result in the lowest error. However when R is modeled by both RP and Rε, using q6

and q8 for RP result in the lowest error for R. This means that introducing the Rε part affects the best set of
features for RP .

Secondly, for Rε the function q1.0
8 is added manually to the discovered models. It was observed that more

complex models had a significant smaller mean-squared error than simple models. This was because com-
plex models had the function q1.0

8 included while simple models did not. Subsequently, it was found that
including q1.0

8 manually also for simple models resulted in a reduction in mean-squared error for those sim-
ple models. The reason the algorithm did not pick this function itself for simple models could be because the
solver did not reach the optimal solution. It could also be that this function has a worse performance when
standardized, causing it to not be selected in the model discovery phase.

Table 8.6: Features used for modeling correction term R.

Feature set Features
(
RP

)
Features (Rε) # functions

B(11)
RP+Rε

λ1, q6, q8, T(1) A2
k , {ΩAk S}, q6, q7, q8 42
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Figure 8.5: Mean-squared error R as function of model complexity nC for feature sets described in Table 8.6.

8.5. Comparison training on predicted wake/all samples
By training the regression models for R only on the predicted wake samples, potential improvements in R
inside the wake can be made because the regression model does not have to cope with the free-stream data.
When there are trends in R in the free-stream, the regression model will try to fit both the trends inside and
outside the wake, resulting in diminished predictions inside the wake.

Two frameworks are considered, framework 1 trains the regression models for R on all samples of case B
and C and tests on the predicted wake samples of case A. Framework 2 trains on the predicted wake samples
of case B and C and tests on the predicted wake samples of case A.

The mean-squared and maximum-squared errors for both frameworks are depicted in Figures 8.6 and 8.7.
It can be seen that for simple models (nC < 13), framework 2 results in only very marginal improvements
compared to framework 1. For more complex models (nC > 12), the improvements are only in maximum-
squared error.

The reason that the prediction improvements are marginal is because R in the free-stream is mainly noise
without any significant trends. This means that the regression models, when R is trained on all samples, will
automatically also focus on the trends inside the wake region.
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Figure 8.6: Mean squared error as function of model complexity
for models trained on predicted wake samples and models

trained on all samples.
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Figure 8.7: Maximum squared error as function of model
complexity for models trained on predicted wake samples and

models trained on all samples.

By using the regression models obtained through framework 2, it is not guaranteed that the prediction
models will accurately fit the data in the free-stream (which fluctuates around zero) because only wake sam-
ples are used for training. To visualize this consequence, the predicted R by a model with nC = 9 trained on
the predicted wake samples only, is depicted in Figure 8.8 when multiplied with the classification model (’C’)
and when not multiplied with the classification model (’no C’).

As can be seen, both predictions are relatively small compared to the true values. This is because the can-
didate functions are multiplied either with 2k∂ jUi or ε (depending on the library), which magnitude shrinks
significantly in the free-stream flow. By using the classification model, the magnitude of the correction term
is damped, reducing the effects on the free-stream flow. However, because the magnitude is also small when
the classification model is not used, it is not expected that it is necessary to damp the R predictions in the
free-stream.
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Figure 8.8: Predictions in R (no C) and predictions in R multiplied with classification model (C) compared to true values as function of
domain height in the free-stream. Location in y : (y − yhub)/D =−3, location in x: (x −xT 2)/D = 10.

8.6. Cross-validation
The established feature set in Table 8.6 is trained on the wake predictions of case B and C and tested on the
wake predictions of case A to quantify the predictive capabilities on unseen data. Different sparse models of
varying complexity are obtained by applying the model discovery and model inference steps, as described in
Section 4.3. The regularization parameters in (8.7) are used in the inference phase.

The mean-squared error as function of model complexity is depicted in Figure 8.9, in which it becomes
clear that the model’s performance increases rapidly for low complexity but stagnates after nC > 9. The model
chosen for further inspection is depicted with an orange star, which is a good trade-off between complexity
and accuracy. In Figure 8.10 the maximum-squared error is shown, it is observed that, contrary to the mean-
squared error, it increases with model complexity. Although the increase is only moderate, it should be taken
into account that large maximum-squared errors could indicate that specific regions in the domain are not
well predicted.
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Figure 8.9: Mean squared error R as function of model
complexity. Model for further inspection indicated by orange

star.
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Figure 8.10: Maximum squared error R as function of model
complexity. Model for further inspection indicated by orange

star.

The model depicted with the orange star has the form

M(RP +Rε) = 2k∂ jUi
(
T(1) · [0.017q6 +0.003q8]

)+
ε
(−0.06q6q7q8 −7.19q6q8 +0.05q7 −2.0 ·10−5q7 A2

1 −0.36q8 +0.00011q8 A1 A2 +0.041A2
) (8.8)

where A1 = A2
k and A2 =ΩAk S.

The model predictions on case A are compared to the true values in Figure 8.11 for different one-dimensional
lines in the domain. It can be seen that the model predictions are able to capture most of the trends in the
correction term, although the trends in vertical direction are captured better than in transverse direction. In
Figure 8.12, contour-plots in the y −z plane of the true and predicted values of R are depicted for different x-
locations. Again, it is observed that most of the trends in the true values are also captured by the predictions.
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Figure 8.11: Case A. True (blue) and prediction (orange) of R as function of domain width (top row for (z − zhub)/D = 0) and height
(bottom row for (y − yhub)/D = 0). Relative locations in x with respect to turbines are denoted in title.
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Figure 8.12: True (top row) and prediction (bottom row) of R for y − z planes. Relative locations in x with respect to turbines are
denoted in title.
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8.7. Conclusion
In this chapter, the aim was to improve the predictions of R by introducing new features, training solely on the
predicted wake samples and expanding the modeling-form with Rε. It was concluded that training models
on the predicted wake samples does only yield a very slight improvement in the predictions inside the wake
when compared to models trained on all domain samples. This is because R does not contain any significant
trends in the free-stream as it is mainly noise. It is also found that R remains small in the free-stream even
when the classification model is not used. This indicates that, with respect to R, the use of the classification
model is not per se necessary.

The introduction of new features, that were identified by mutual information as having a high depen-
dency with the correction term, significantly affect the model performance. Especially the addition of physi-
cal flow features results in large improvements. It was chosen to iteratively introduce new features to be able
to compare the mutual information results to the corresponding model performance. It was found that when
a significant number of scalar features (additional invariants, physical flow features) is used, all basis ten-
sors except T(1) become redundant. On top of that, using more features does not necessarily result in better
predictions.

The addition of the Rε term resulted in further improvements, showing that expanding the modeling-form
gives possibilities for better predictions.

During cross-validation, the regression model was trained and tested on separate cases to investigate the
predictive performance. It was observed that most of the dominant trends in R were captured by the regres-
sion model using only a moderately complex model. It is therefore concluded that by introducing features
with high dependency with the correction term and by expanding the modeling-form, good results can be ac-
complished. It must be noted that this is not yet a guarantee that these models will lead to good predictions
when implemented in CFD.
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Anisotropy correction b∆

Similar to the analysis in Chapter 8, the predictions of b∆ will be enhanced using the features discussed in
Chapter 6 and improved by using only the predicted wake samples for training. The same algorithm spec-
ifications will be used as in Chapter 8 meaning the regularization parameters and training and testing sets
are identical. The threshold of p is set to 0.5 (instead of 0.3 for R) because it was found that this significantly
improved the predictions inside the wake.

In Section 9.1, the features are denoted that will be used in the subsequent analysis. Thereafter in Sec-
tion 9.2, the predictions for different feature sets will be analysed. The effect of using only the predicted wake
samples for training is discussed in Section 9.3. The best-performing features are used for cross-validation in
Section 9.4, to test the model performance when trained and tested on different cases. The chapter is finished
with a conclusion in Section 9.5.

9.1. Features
The analysed features are listed in Table 9.1. The physical flow features are q2 (turbulence intensity 1), q6

(force coefficient) and q7 (shear parameter). Both the turbulence intensity 1 and shear parameter depend
on the norm of the velocity gradient tensor (mathematical form listed in Table 5.3), which explains there
relevance to b∆ as Pope [58] hypothesized that the Reynolds stresses are related to the rates of strain. The
force coefficient q6 is included because it is expected that the magnitude of b∆ is dependent on the applied
forcing of the turbine.

Table 9.1: Features used for modeling correction term b∆.

n Feature type Features

6 Basis tensors T(1), T(2) T(3), T(4), T(6), T(8)

2 Invariants λ1, λ2

2 Additional invariants ΩAk Ap S2,ΩAp SAk S2

3 Physical features q2, q6, q7

9.2. Results
The features denoted in Table 9.1 will be used to learn sparse regression models for b∆. The procedure is
initiated with the reduced integrity basis consisting of the first four basis tensors and two invariants, as used
by Schmelzer et al. [68] and step-by-step expanded. For the construction of the candidate functions, only the
exponent 1.0 is used. Similar as in Section 8.4, the three turbine cases are combined of which 75% is used for
training and 25% for testing. The same regularization parameters are used.

71
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9.2.1. Basis tensors
The effects of using different basis tensors are analysed according to the feature sets in Table 9.2. The resulting
mean-squared error as function of complexity is depicted in Figure 9.1. Clearly, all feature sets have similar
performance, indicating that T(6) and T(8) are redundant. Similarly, discarding T(4) does not result in any
diminished predictions, meaning T(4) can be removed from the feature set safely. This is consistent with the
conclusion that T(3) and T(4) have a large mutual dependency, from the mutual information estimates.

Table 9.2: Features used for modeling correction term b∆.

Feature set Features # functions

B(1)
b∆

λ1, λ2, T(1), T(2), T(3), T(4) 24

B(2)
b∆

λ1, λ2, T(1), T(2), T(3), T(6) 24

B(3)
b∆

λ1, λ2, T(1), T(2), T(3) 18

B(4)
b∆

λ1, λ2, T(1), T(2), T(3), T(8) 24
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Figure 9.1: Mean-squared error of components b∆ as function of model complexity nC for feature sets described in Table 9.2.

It is noteworthy that T(6) does not result in any error reduction while the estimated mutual information
with the off-diagonal components of b∆ was even slightly larger than for T(1). Scatter plots of the off-diagonal
component (1,2) between T(1) and T(6) are depicted in Figures 9.2 and 9.3, respectively. Clearly, the relation
for T(1) is roughly linear while for T(6) it is more S-shaped. Because b∆ is built from a linear combination of
the basis tensors, it can be more difficult to incorporate the non-linear trends. Another reason can be that
T(6) results in a good fit with certain components of b∆, but in a weak fit to the other components. Meaning
that the average performance remains low.

Figure 9.2: Component b∆1,2 as function of T(1)
1,2. Figure 9.3: Component b∆1,2 as function of T(6)

1,2.
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9.2.2. Additional invariants
The two additional invariants in Table 9.1 are introduced and the subsequent feature sets are listed in Ta-
ble 9.3. The mean-squared error of the b∆ components as function of complexity is depicted in Figure 9.4.
The addition of the invariants does not result in a reduction in error, it is even observed that it can result in an
increase in error (due to the reasons listed in Section 8.4.3). It is not a surprise that the additional invariants
do not contribute to the predictions of b∆, as the estimated mutual information was low.

Table 9.3: Features used for modeling correction term b∆.

Feature set Features # functions

B(5)
b∆

λ1, λ2, {ΩAk Ap S2}, T(1), T(2), T(3) 42

B(6)
b∆

λ1, λ2, {ΩAp SAk S2}, T(1), T(2), T(3) 42
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Figure 9.4: Mean-squared error of b∆ components as function of model complexity for feature sets described in Table 9.3.

9.2.3. Physical flow features
The physical flow features used are q2 (turbulence intensity 1), q6 (force coefficient) and q7 (shear parame-
ter). The considered feature sets are listed in Table 9.4 and the mean-squared error of the b∆ components
as function of model complexity is depicted in Figure 9.5. It can be clearly seen that the introduction of q2

results in significant reduction of mean-squared error as both B(7)
b∆

and B(9)
b∆

have a smaller error compared to

the other feature sets. The shear parameter q7 does not result in similar improvements as when q2 is used.
This is because the mathematical definition of q7 is very similar to that of λ1 and λ2. While q7 is constructed
from the norm of the velocity gradient tensor, λ1 and λ2 are formed by the trace of the strain-rate tensor
squared and rotation-rate tensor squared, respectively. Both tensors added together equals the velocity gra-
dient tensor. Because λ1 and λ2 are already incorporated in the feature set, it is no surprise that the addition
of q2 results in more reduction of mean-squared error than q7.

Although feature sets B(7)
b∆

and B(9)
b∆

have similar values regarding the mean-squared error, B(7)
b∆

has signif-

icantly smaller maximum-squared error, as depicted in Figure 9.6. Feature set B(7)
b∆

includes the force coeffi-

cient q6, meaning it has improved predictions in the region near the turbine. This explains the reduction in
maximum-squared error, as the magnitude of b∆ near the turbine is significant. It is therefore decided that
the final feature set used is B(7)

b∆
.

It must be noted that the function q1.0
2 ·T(1) is added manually to the discovered models. This is done for

the same reason as why q1.0
8 was added manually to Rε.

9.3. Comparison training on predicted wake/all samples
Similarly as in Section 8.5, two frameworks are considered. Framework 1 trains the regression models for
b∆ on all samples of case B and C and tests on the predicted wake samples of case A. Framework 2 trains
on the predicted wake samples of case B and C and tests on the predicted wake samples of case A. The fea-
ture set used is B(7)

b∆
and the regularization parameters are described in Section 8.3. The mean-squared and
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Table 9.4: Features used for modeling correction term b∆.

Feature set Features

B(7)
b∆

λ1, λ2, q2, q6, T(1), T(2), T(3) 56

B(8)
b∆

λ1, λ2, q6, q7, T(1), T(2), T(3) 56

B(9)
b∆

λ1, λ2, q2, T(1), T(2), T(3) 38
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Figure 9.5: Mean squared error in b∆ as function of model
complexity.
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Figure 9.6: Maximum squared error in b∆ as function of model
complexity.

maximum-squared errors of b∆ as function of model complexity are depicted in Figures 9.7 and 9.8, respec-
tively.

It is observed that there is a significant difference in prediction error. While the mean-squared error of
framework 1 is high for simple models (nC < 10), framework 2 achieves already reasonable accuracy’s already
for simple models. It is interesting to note that a model from framework 2 with complexity nC = 7 has a lower
mean-squared error than very complex models trained of framework 1. In Figure 9.8, the maximum-squared
error in b∆ is depicted as function of model complexity. The maximum-squared error is significantly larger for
framework 1 compared to framework 2. This entails that, when the regression model is trained on all samples,
there remain regions in the turbine wake where the predictions deviate significantly from the true value. This
could not only lead to inaccurate predictions, but will also enhance model instability when implemented into
a CFD solver. It must be noted that, due to computational limitations, framework 1 uses a larger subsample
for training compared to framework 2. However it is not expected that this affects the results significantly.
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Figure 9.7: Mean-squared error b∆ as function of complexity
(number of non-zero components) for models trained on all

samples and models trained on wake samples.

0 5 10 15 20 25 30
nC [-]

0.05

0.10

0.15

0.20

0.25

m
ax

se
 [-

]

Framework 1
Framework 2

Figure 9.8: Maximum-squared error in b∆ as function of
complexity (number of non-zero components) for models

trained on all samples and models trained on wake samples.

The main effects of b∆ on the mean flow fields such as velocity Ui and turbulent kinetic energy k is
through the turbulent production term. The turbulent production is affected by b∆ through

P∆k =−2kb∆i j∂ jUi . (9.1)
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The mean-squared error and maximum-squared error in P∆k are depicted in Figures 9.9 and 9.10, respec-
tively. Again, it is observed that the regression models from framework 2 have a significantly smaller error
compared to the models of framework 1. The reductions in mean-squared error can build up to roughly
60% while the reduction of maximum-squared error can go up to more than 90%. Given that the maximum-
squared error in P∆k is very low indicates that the models from framework 2 are able to fit all predicted wake
samples to a reasonable level.
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Figure 9.9: Mean-squared error P∆k for models trained on all
samples and models trained on predicted wake samples.

0 5 10 15 20 25 30
nC [-]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

m
ax

se
  [

m
2 /s

3 ]

Framework 1
Framework 2

Figure 9.10: Maximum-squared error P∆k for models trained on
all samples and models trained on predicted wake samples.

9.4. Cross validation

The regression models are trained and tested on separate cases to quantify the predictive capabilities on
unseen data. The feature set utilized is B(7)

b∆
and used to build a library of candidate functions. This library is

built using both exponents 0.5 and 1.0. The exponent 0.5 is included because it is found that adding functions
containing square-roots lead to better predictions of b∆. Because only predicted wake samples are used, the
computational costs of the training phase are reduced, meaning there is this possibility to extend the library.

Different sparse models are obtained by applying the model discovery and model inference steps, as de-
scribed in Section 4.3. The training data consists of the predicted wake samples from case B and C, while
the predicted wake samples from case A are used for testing. The regularization parameters are identical to
the ones listed in Section 8.3. The mean-squared error in b∆ as function of model complexity is depicted in
Figure 9.11. For simple models, the mean-squared error drops significantly for increasing complexity while
it stagnates after roughly nC = 7. The maximum-squared error is shown in Figure 9.12 and behaves similar
as the mean-squared error and stagnates after roughly nC = 10. The model chosen for further analysis is
depicted by the orange star.
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Figure 9.11: Mean squared error b∆ as function of complexity.
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Figure 9.12: Max squared error b∆ as function of complexity.

The model-form is



76 9. Anisotropy correction b∆

M(b∆) = T(1) · [0.059−6.93 ·10−5λ0.5
1 −1.70 ·10−5λ0.5

1 q0.5
2 +2.12 ·10−8λ0.5

1 q2
2−

1.55 ·10−4q2 +6.76 ·10−6q1.5
2 q0.5

6

]+
T(2) · [2.34 ·10−10λ0.5

1 q2
2 +2.31 ·10−11λ1q2

2 −7.63 ·10−8q2
3 q6

] +
T(3) · [−5.03 ·10−5q1.5

2 q0.5
6

]
(9.2)

Because it is cumbersome to visually compare all b∆ tensor components individually, the turbulent pro-
duction scalar P∆k is depicted in Figure 9.13 as function of height and width. Clearly, the predictions fit the
true values accurately, although downstream of the second turbine, the turbulent production is slightly un-
derestimated.
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Figure 9.13: Case A. True (blue) and prediction (orange) of P∆k as function of height z (top row for (y − yhub)/D = 0) and y (bottom row
for (z − zhub)/D = 0). Relative locations in x with respect to most upstream turbine are denoted in title.

The turbulent production P∆k on multiple x−y planes is depicted in Figure 9.14. Again, it can be seen that
there are no significant discrepancies between the estimated and true values on the depicted planes.

The effect of multiplying the P∆k results with the classification model is shown in Figure 9.15 for a one-
dimensional line in the free-stream flow. Clearly, the true values are slightly positive and grow in magnitude
near the wall. The predictions behave similar, however the values are negative. It can be seen that the cou-
pling with the classification model damps this magnitude, although not fully near the wall. Similar to R, the
magnitude of P∆k remains small in the free-stream as it is multiplied with 2k∂ jUi .

9.5. Conclusion
The aim of this chapter was to obtain accurate predictions of b∆ using the features discussed in Chapter 6
and training it only on the predicted wake samples. The introduction of physical flow features caused a sig-
nificant improvement in the predictions, while the effect of the additional invariants was negligible. Mutual
information identified in Chapter 6 that a significant number of basis tensors have a dependency with the
components of b∆. However, it was found that many of these basis tensors do not contribute to the predic-
tions of b∆, which is probably because the basis tensors are incorporated linearly.
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Figure 9.14: True (top row) and prediction (bottom row) of P∆k for y − z plane. Relative locations in x with respect to turbines are
denoted in title.
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function of domain width. Location in y : (y − yhub)/D =−3, location in x: (x −xT2)/D = 10.
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By training the regression model solely on the predicted wake samples, compelling improvements were
made compared to when trained on all samples. Not only the mean-squared error was reduced, but also the
maximum-squared error was significantly reduced. This also enhances stability when incorporated into a
CFD solver.

When applying cross-validation by training and testing the regression models on different turbine cases,
already accurate models were obtained for low model complexity. Although the results look promising, this
is not yet a guarantee that the models will lead to good predictions when implemented in CFD.

By applying the wake classification model, the predictions in the free-stream are damped. Although the
predictions remain relatively small when the classification model is not used, it could cumulatively have an
effect on the mean-flow predictions.
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CFD Implementation

The constructed algebraic models for the wake classification, R and b∆ are implemented into the OpenFOAM
RANS CFD solver for wind turbine case A. First, a general description of the RANS setup is provided in Sec-
tion 10.1. Second, the algebraic models used are denoted in Section 10.2. The predictions are then first
injected as a static correction field to validate that the correction models can lead to improved mean-flow
predictions, described in Section 10.3. The final phase is to integrate and couple the algebraic models to the
turbulence model equations, described in Section 10.4.

10.1. CFD setup
The RANS simulations are initially setup by Steiner et al. [74] while the author of this thesis has implemented
the (in this work) derived data-driven algebraic models.

The physical lay-out of case A is depicted in Figure 10.1. The flow enters the domain at the western bound-
ary and leaves at the eastern. The case parameters are identical to the LES parameters listed in Table 5.1. This
also means the same grid for RANS is used as for LES, a uniform spaced grid with resolution of 360×120×64.
Normalized by the rotor diameter, the uniform grid spacing is 0.1D ×0.1D ×0.05D . Although RANS simula-
tions could be performed on coarser grids, it is chosen to use the same grid as in LES for simplicity and to
avoid interpolation errors. Due to time constraints, no grid refinement study is performed. However, a grid
refinement study is important to verify a RANS setup, as many NLEVMs are prone to instabilities for finer
grids. For example, van der Laan [79] tested numerous NLEVMs and found that all of them behaved unstable
for small grid spacing. The instability was dependent on the number of higher order terms in the stress-strain
relation. For future work it is therefore recommended to perform an extensive grid refinement study.

Figure 10.1: Lay out case A. Turbine’s are depicted in red. The boundaries are denoted by their cardinal direction. Inflow is from west.

The inflow and turbine characteristics correspond to the properties of the wind tunnel experiment from
Chamorro and Porté-Agel [12]. The inflow properties are extracted from the LES precursor. The turbine forces
are represented by an actuator disk model, which calculates the lift and drag forces for each cell to determine
the body force vector. The rotational speed of the turbines is remained constant.

The boundary conditions are listed in Table 10.1. For all RANS variables, the northern and southern
boundaries are coupled through the Cyclicboundary condition. The variables Ui , k and εhave aFixedValue
inflow at the western boundary, extracted from the LES precursor. For the outlet at the eastern boundary, ei-
ther a zero gradient condition is applied or the values are fixed to zero. For Ui , the inletOutlet boundary
condition is used, which is similar to the zero gradient condition but it additionally sets reversed flows to

79
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zero. For k, the kqRWallFunction boundary condition is implemented that sets the gradient to zero at the
wall while for the dissipation rate ε the epsilonWallFunction condition at the wall is used to compute ε
either from viscous or inertial sublayer assumptions. The turbulent viscosity νt at the wall is defined by the
log-law where the local friction velocity is related to the turbulent kinetic energy at the first cell height. This
is done through the nutkAtmRoughWallFunction boundary condition [56].

Table 10.1: Boundary conditions RANS solver.

Boundary Lower Upper West South East North

Ui 0 Slip FixedValue Cyclic inletOutlet Cyclic

prgh fixedFluxPressure fixedFluxPressure fixedFluxPressure cyclic ∂p
∂x = 0 Cyclic

k kqRWallFunction Slip FixedValue Cyclic ∂k
∂x = 0 Cyclic

ε epsilonWallFunction Slip FixedValue Cyclic ∂ε
∂x = 0 Cyclic

νt nutkAtmRoughWallFunction Slip ∂νt
∂x = 0 Cyclic ∂νt

∂x = 0 Cyclic

τi j 0 0 0 Cyclic 0 Cyclic

b∆i j 0 0 0 Cyclic 0 Cyclic

R 0 0 0 Cyclic 0 Cyclic

The numerical schemes used for the different mathematical operators are listed in Table 10.2. An elabo-
rate explaination of the schemes is described by OpenCFD [56].

Table 10.2: Numerical schemes RANS solver.

Operator Scheme Order

∂
∂t (time) steadyState

∇ (gradient) cellLimited Gauss linear 1.0 second

∇· (divergence) Ui : bounded Gauss linearUpwind grad(U) second

k, ε, τi j : bounded Gauss upwind first

remaining: Gauss linear second

∇2 (Laplacian) Gauss linear corrected second

Surface-normal gradient corrected second

The model coefficients of the transport equations in Section 2.2.3 are

Cµ = 0.055, Cε1 = 1.42, Cε2 = 1.92, σk = 1.0, σε = 1.3, κ= 0.4, (10.1)

where Cµ is defined by the wall friction and turbulent kinetic energy at the wall.

The correction terms b∆ and R are directly implemented in the transport equations. Because the algebraic
corrections will have an exponentially growing magnitude when approaching the wall, its values near the wall
are damped using a blending term F . The values of the correction terms will grow exponentially because they
dependent highly on ∂ jUi , k and ε, which magnitudes grow significantly near the wall. The blending term is
added for practical purposes to improve numerical stability. The blending term F is defined as

F =
tanh

[(
z

zlower

)α]
for z ≤ zmi d

tanh
[(

zmax−z
zmax−zupper

)α]
for z > zmi d

(10.2)

where α = 4 specifies how quick the term grows from 0 to 1, zmi d = 0.23 and zmax = 0.46 are obtained from
the domain dimensions while zl ower = 0.05 and zupper = 0.44 are the threshold parameters. The correction
terms are then blended through
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R̃ = F ·R (10.3)

b̃∆ = F ·b∆. (10.4)

Correction R is only blended near the lower wall (so only the upper criteria in (10.2) is applied) while b∆

is blended both near the wall and the top of the domain.
As was mentioned in Section 4.1, free-stream corrections are added to all RANS simulations such that

the free-stream profiles of velocity and turbulent kinetic energy match those from LES. These corrections are
incorporated into the transport equations as RF S and b∆F S and obtained from a LES precursor.

10.2. Algebraic models
The algebraic expression for the wake classification model is

Mwake =σ
[

1471q2q9 +248.8q2q8 +4.77q2q2
7 −6.51q8 +1.02

]
(10.5)

where σ(x) = 1/(1+exp(−x)) and is identical to the model discussed in Section 7.3.
Three combinations of models for R and b∆ are used, hand-picked based on performance and complexity.

The models are referred to as simple, medium and complex, based on their number of non-zero components.
The simple models for b∆ and R are

M(1)
b∆

= T(1) · [4.08 ·10−4λ0.5
1 +5.21 ·10−4λ0.5

1 q0.5
2 −1.52 ·10−6λ1q2 −

7.08 ·10−5q2 −1.70 ·10−5q2q0.5
6 +1.11 ·10−5q1.5

2 q0.5
6

]+
T(2) · [6.87 ·10−9λ0.5

1 q1.5
2

] (10.6)

and

M(1)
R = 2k∂ jUi

(
T(1) · [−0.018q6 +0.0031q8]

)+
ε
(−0.055q6q7q8 −6.87q6q8 +0.0055q7 −0.25q8 −3.17 ·10−4q8 A1 A2

)
,

(10.7)

both have 7 non-zero components.
The medium models are

M(2)
b∆

= T(1) · [0.059−6.93 ·10−5λ0.5
1 −1.70 ·10−5λ0.5

1 q0.5
2 +2.12 ·10−8λ0.5

1 q2
2−

1.55 ·10−4q2 +6.76 ·10−6q1.5
2 q0.5

6

]+
T(2) · [2.34 ·10−10λ0.5

1 q2
2 +2.31 ·10−11λ1q2

2 −7.63 ·10−8q2
3 q6

] +
T(3) · [−5.03 ·10−5q1.5

2 q0.5
6

]
(10.8)

and

M(2)
R = 2k∂ jUi

(
T(1) · [−0.017q6 +0.003q8]

)+
ε
(−0.06q6q7q8 −7.19q6q8 +0.049q7 −1.5 ·10−5q7 A2

1 −0.36q8 +1.05 ·10−4q8 A1 A2 +0.04A2
)

(10.9)

with complexity 10 and 9, respectively.
Finally, the complex models are

M(3)
b∆

= T(1) · [5.82 ·10−2 −1.38 ·10−4λ0.5
1 −7.80 ·10−6λ0.5

1 q0.5
2 +2.06 ·10−8λ0.5

1 q2
2 +

5.28 ·10−12λ1.5
1 λ2 −1.53 ·10−4q2 +7.0 ·10−6q1.5

2 q0.5
6

]+
T(2) · [1.14 ·10−7λ0.5

1 λ2 −2.71 ·10−10λ0.5
1 q2

2 −3.74 ·10−9λ1λ2 +1.01λ1q2
2 −8.10 ·10−8q2

2 q6
] +

T(3) · [−1.25 ·10−4 −3.81 ·10−7q1.5
2 q0.5

6

]
(10.10)
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and

M(3)
R = 2k∂ jUi

(
T(1) · [−1.47 ·10−8λ2

1q8 −0.007q6 +0.0056q8]
)+

ε
(
0.49−6.86q6 −0.37q6q7q8 +0.0013q6 A1 A2 −6.23 ·10−6q7 A2

1−
2.33 ·10−6q7 A2

2 +7.40 ·10−5q2
7 A1 −0.58q8 −4.33 ·10−5q8 A2

2 +0.022A2
) (10.11)

with complexity 14 and 13, respectively. The algebraic wake classification model and the algebraic models for
the correction terms are combined through

M(i )
R(w)/b∆(w)

=Mwake ·M(i )
R/b∆

(10.12)

such that the correction terms are turned on only inside the turbine’s wake.

10.3. Static correction
The static correction fields are obtained by inserting the time-averaged LES variables into the algebraic equa-
tions. This means that the corrections R and b∆ are fixed. The fields are then added to the turbulence model
equations without any coupling to the RANS variables. By using a relaxation factor, the correction fields
are incrementally introduced to the model equations to promote convergence. The fields are added to the
equations after 100 iterations. The relaxation factor then starts from zero and increases with 0.01 with each
iteration, meaning the static correction field is fully implemented after 200 iterations. For the wake classifi-
cation model, (10.5) is used while for R and b∆ the medium algebraic models in (10.9) and (10.8) are used,
respectively.

The results for the mean stream-wise velocity component U are depicted in Figure 10.2 as function of
domain width and height. It can be seen that the static correction gives a significant improvement over the
baseline k-ε turbulence model and matches the LES profiles closely. Only far downstream ((x − xT 2)/D = 6)
it is seen that the correction starts to deviate from LES, showing that the predictions in this region are not
accurate enough.

The turbulent kinetic energy as function of domain width and height is shown in Figure 10.3. Again signif-
icant improvements are made compared to the baseline turbulence model, however the predictions also have
a discrepancy with the LES profiles which grows in magnitude when moving downstream. Because k is over-
predicted with respect to LES, mixing is enhanced in the turbine wake. This can cause the small discrepancy
in the velocity profiles, observed in Figure 10.2.

10.4. Coupled correction
The obtained algebraic models are coupled to the k-ε turbulence model equations in OpenFOAM. For both R
and b∆, the three model types are implemented and the effects on mean-flow variables are assessed.

10.4.1. Performance
The performances of the three model sets are listed in Table 10.3 as normalized error of velocity and turbu-
lent kinetic energy. The normalized error is the mean-squared error of the coupled correction relative to the
mean-squared error of the baseline k-ε turbulence model. The mean-squared error is the mean of the differ-
ence squared to the LES variables. For all three model sets the error is reduced, especially for the medium and
complex sets the error is significantly smaller than the baseline turbulence model. This means the coupled
corrections are able to partly reproduce the model-form error of the k-ε turbulence model, although there
remains a portion of the error which also the corrections are not able to account for. While the simple models
lead to the smallest error reduction, the medium model performs slightly better than the complex model,
indicating that the complex model is numerically more stiff.

Although the error is significantly reduced, the wake deficit (especially more downstream) is still under-
predicted compared to LES, as can be seen in Figure 10.4 for the model with medium complexity. This is
partly because k remains over-predicted, as is shown in Figure 10.5, meaning the coupled correction models
do not drain enough turbulent kinetic energy from the flow.
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Figure 10.2: Comparison of baseline k-ε RANS, LES and static correction RANS via normalized streamwise velocity as function of
domain width and height for different downstream locations with respect to turbines.
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Figure 10.3: Comparison of baseline k-ε RANS, LES and static correction RANS via normalized turbulent kinetic energy as function of
domain width and height for different downstream locations with respect to turbines.
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Table 10.3: Performance coupled algebraic models on case A using normalized error for velocity and turbulent kinetic energy.

Model ε(U )/ε(U 0) ε(k)/ε(k0)

Simple (M(1)
b∆(w)

and M(1)
R(w)) 0.66 0.52

Medium (M(2)
b∆(w)

and M(2)
R(w)) 0.38 0.32

Complex (M(3)
b∆(w)

and M(3)
R(w)) 0.39 0.34
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Figure 10.4: Comparison of baseline k-ε RANS, LES and two coupled RANS corrections via normalized streamwise velocity as function
of domain width and height for different downstream locations with respect to turbines.
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Figure 10.5: Comparison of baseline k-ε RANS, LES and two coupled RANS corrections via normalized turbulent kinetic energy as
function of domain width and height for different downstream locations with respect to turbines.

Fixed and coupled correction comparison
The training process of the correction terms is performed using the LES variables. This means, when the cor-
rection terms are coupled to the RANS solver, the model outcome can be different because the RANS variables
are likely to be different than the LES variables. In the ideal case, the outcome of the coupled corrections will
converge to the outcome when subjected to the LES variables (fixed), however this cannot be guaranteed.

The robustness (how well the coupled corrections converge to the fixed corrections) of R when coupled
to the transport equations is assessed in Figure 10.6. The coupled predictions (predict RANS) are compared
to the fixed predictions (when subjected to LES variables) and the true values. Ideally the fixed and RANS
predictions would overlap. It is observed that in most regions both predictions are relatively close, although
far downstream ((x −xT 2)/D = 6) R is slightly underpredicted.

The robustness of P∆k is assessed in Figure 10.7. It is clear that the RANS predictions underestimate the

magnitude, especially in the horizontal profiles. On top of that, P∆k in RANS becomes positive far downstream
((x −xT 2)/D = 6) while it actually should be negative.

Although the corrections seem to be reasonable robust as the RANS predictions do not deviate signifi-
cantly from the fixed predictions, it is observed that the magnitude of P∆k is systematically underpredicted.
This can be one of the reasons why the velocity deficit remains to be underpredicted in the far wake.

Model constraint
As is observed in Figure 10.6, the R correction is actually positive in certain regions of the domain and there-
fore adds energy to the flow, counteracting the effects of P∆k . The turbulent production P∆k was found to
be almost entirely negative. However, further downstream it actually becomes positive, as can be seen in
Figure 10.7, while it should be negative.

Based on these observations, a fourth model set is constructed, M(2)∗, in which all positive model out-
comes for R and P∆k are constraint to zero, implying the correction models can only drain turbulent kinetic
energy from the flow and not add energy to it

M(2)∗ = min
(
0,M(2)) . (10.13)
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Figure 10.6: Comparison of true, fixed predictions (subjected to LES variables) and RANS predictions of R as function of domain width
and height for different downstream locations with respect to turbines.
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Figure 10.7: Comparison of true, fixed predictions (subjected to LES variables) and RANS predictions of P∆k as function of domain
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The normalized mean-squared error forM(2)∗ is included in Table 10.4. By limiting the correction models
to providing only negative values for R andP∆k results in a further reduction of the normalized error. Although
the results are improved, this approach is slightly ad-hoc, because in other turbine cases it could be that the
wake deficit is over-predicted, meaning it is desirable that the correction terms actually add energy to the
flow.

Table 10.4: Performance coupled algebraic models on case A using normalized error for velocity and turbulent kinetic energy.

Model ε(U )/ε(U 0) ε(k)/ε(k0)

Medium (M(2)
b∆(w)

and M(2)
R(w)) 0.38 0.32

Medium∗ (M(2)∗
b∆(w)

and M(2)∗
R(w)) 0.23 0.15

Medium† (M(2)
b∆(w)

and M(4)
R(w)) 0.45 0.50

Medium†† (M(2)
b∆(w)

and M(5)
R(w)) 0.34 0.25

Medium††† (M(4)
b∆(w)

and M(6)
R(w)) 0.28 0.26

Effect classifier
The algebraic classification model is coupled to the correction models to damp the predictions of R and b∆

in the free-stream flow. This is potentially necessary because the correction models are not trained on the
free-stream data, and therefore its behaviour in this region is unknown.

To investigate the additional value of the classification model, the medium models in (10.8) and (10.9)
are coupled to the transport equations without intervene from the classification model. This simulation did
however not sufficiently converge. Because the correction models are not damped outside the wake, they
affect the mean flow fields in the free-stream. This causes instabilities with the result that the simulation
does not properly converge. The velocity residuals of the simulations with and without classification model
are depicted in Figure 10.8 (sufficient convergence is obtained when residuals drop below 10−5). Clearly,
the simulation with classifier converges quickly while for the simulation without the classifier, the residuals
remain constant.

The effect of the classification model to the correction terms can be analysed by looking at the final time-
step of both simulations. In Figure 10.9, P∆k is depicted as function of domain height in the free-stream flow
((x−xT 2)/D = 10 and (y − yhub)/D =−3) for both simulations and compared to the values obtained from LES
(optimal). The optimal values are slightly positive while for both RANS simulations P∆k is negative. Using the

classification model, the values of P∆k are significantly damped, bringing them much closer to the optimal
values.
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Figure 10.8: Residuals as function of iteration for simulation with
classification model (C) and simulation without classification

model (no C).
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Figure 10.9: Correction P∆k in free-stream ((x −xT 2)/D = 10 and
(y − yhub )/D =−3) with classification (C ) and without

classification (no C) compared to true values.

The effect of using the classification model on the turbulent kinetic energy in the free-stream is visual-
ized in Figure 10.10. When no classification model is used, P∆k has a negative magnitude in the free-stream,
which affects the turbulent kinetic energy profile. The same observation is made for a horizontal profile in
Figure 10.11. While k is not affected by the wake classification model inside the wake, it can be seen that k is
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much smaller outside the wake when no classification model is used. The effects on the velocity profiles was
negligible.

An additional note must be made about convergence. It is well known about non-linear eddy viscosity
models that they are prone to instabilities and can easily diverge. However, all algebraic models used in this
work that are coupled together with the wake classification model converged, implying that damping the
correction models in the free-stream flow enhances the stability of the simulations.
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Figure 10.10: Turbulent kinetic energy in free-stream
((x −xT 2)/D = 10 and (y − yhub )/D =−3) with classification (C )

and without classification (no C) compared to baseline RANS
and LES.
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Figure 10.11: Turbulent kinetic energy at horizontal slice of the
domain ((x −xT 2)/D = 10 and (z − zhub )/D = 0) with

classification (C ) and without classification (no C) compared to
baseline RANS and LES.

Effect physical form R
In this research, it has been proposed to extend the physical form of R with an additional source/sink term
proportional to the local dissipation rate ε. To determine the additional value of this term, an algebraic model
M(4)

R for R is constructed that only consists of the production part using the feature set B(8)
RP

in Table 8.4. The
number of non-zero components equals 9, similar as the medium model for R in (10.9)

M(4)
R = 2k∂ jUi

(
T(1) · [−0.011−1.65 ·10−7λ1q2

7 +7.10 ·10−9λ2
1q7 +4.80 ·10−5q1q7 −

3.72 ·10−7q2
1 q7 −0.047q6 +1.16 ·10−4q7 A1 +1.44 ·10−4 A1

]+
T(3) · [−5.20 ·10−5λ1q2

6

])
.

(10.14)

The performance is listed in Table 10.4 (Medium†). Clearly, this model results in much less error reduction
than the medium model with the extended physical-form for R. This implies that extending the physical-form
of R with the source/sink term proportional to ε does improve the prediction results.

Similarly, an algebraic model for R is constructed, consisting only of the ε term and of equal complexity

M(5)
R = ε[−12.15q6 −0.603q6q7q8 +5.84q6q8 +0.180q7 −6.39 ·10−6q7 A2

1 −
0.601q8 −9.85 ·10−5q8 A2

2 +0.012A1 +0.018A2
]
.

(10.15)

The model performance is also listed in Table 10.4 (Medium††). By only using the source/sink term to
model R, the relative error in both U and k is further reduced.

Effect training data
The previous mentioned models were all obtained through cross-validation e.g. trained and tested on differ-
ent data sets. When training and testing the models on the same data, models are obtained that have a better
fit with the test data. When comparing the performance of such models to models obtained through cross-
validation, it can be quantified how well the cross-validated models can actually generalize to other cases.
For both correction terms, models with medium complexity are obtained that were trained on the predicted
wake samples from case A. The model-forms are
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M(4)
b∆

= T(1) · [1.37 ·10−6λ1q2 −2.50 ·10−9λ2
1q2 +2.81 ·10−10λ1q6 −

7.26 ·10−5λ2 −2.67 ·10−5q2 +4.28 ·10−2q6
]+

T(2) · [3.29 ·10−11λ1q2
2 +2.60 ·10−7q2 −1.08 ·10−3q6

] +
T(3) · [−1.33 ·10−6q2

]
(10.16)

and

M(6)
R = 2k∂ jUi

(
T(1) · [8.96 ·10−3 −1.45 ·10−6λ1q2

8 −3.74 ·10−3q6]
)+

ε
(−22.72q6 +0.92q6q7q8 +19.44q6q8 −1.35 ·10−5q7 A2

1 −0.31q8 +0.045A2
)

.
(10.17)

The performance of the models are listed in Table 10.4 ( Medium†††). Clearly and as expected, it performs
better than models obtained through cross-validation (Medium) as both the relative error in U and k have
decreased. This means there is clearly a loss in predictions due to training and testing on separate data,
however the loss is not significant. This either means the models generalize well or that the training and test
data are relatively similar.

The predictions of the best performing models (Medium∗) for U are depicted as contour plot in Fig-
ure 10.12. Clearly, the predictions in U are improved compared to the baseline k-ε turbulence model, al-
though in the far-wake the improvements are much less significant. Similarly, the contours of k are depicted
in Figure 10.13 showing that the use of the algebraic data-driven models results in better resemblance with
the high-fidelity LES data.
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Figure 10.12: Comparison of normalized streamwise velocity of LES, baseline k-ε model and coupled correction at hub-height.

10.4.2. Turbulent stress anisotropy
The turbulence anisotropy componentality is depicted in Figure 10.14 for a horizontal slice at hub-height. In
LES, the turbulence in the center of the wake is close to isotropic (blue, as in Figure 2.8) while at the wake
edges it is more a mixture of the different turbulence components.

When comparing the baseline k-ε and M(2) componentality to LES, it is observed that they both do not
agree very well. Although M(2) seems to resemble LES slightly better than the k-ε turbulence model, the
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Figure 10.13: Comparison of normalized turbulent kinetic energy of LES, baseline k-ε model and coupled correction at hub-height.

main trends are still not captured. This is a disadvantage of using SpARTA as machine learning algorithm as it
only identifies the most important trends in the b∆ components. This means the more complex flow details
are not captured well, which are necessary to correctly predict the turbulence anisotropy.
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Figure 10.14: Turbulence state depicted by RGB color system at hub height. Top: LES, middle: baseline k-ε turbulence model, bottom:
M(2).

10.5. Conclusion
The obtained algebraic models for the wake classification, R and b∆ are coupled to the transport equations
in OpenFOAM. First a static field has been injected showing that the constructed correction models perform
well when LES variables are implemented. Secondly, the algebraic models are coupled to the transport equa-
tions. Three model combinations for R and b∆ are chosen, based on model complexity. It is found that more
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complex models do not necessarily lead to better predictions in mean-flow quantities. This is because in-
creasing complexity can result in more numerically stiff models (less robust) that are less able to cope with
the changing input variables in a RANS simulation.

Although already significant improvements were obtained by the selected models, the turbulent kinetic
energy is still over-predicted and the velocity deficit remains under-predicted in the far-wake. By setting
the positive predictions of R and P∆k to zero, the predictions are further improved. Besides that, it has been
shown that the constructed correction models only lead to the required convergence when the algebraic wake
classification model is used. Also, the extension of the physical form of R with the source/sink term results in
improved predictions when compared to when only the turbulent production term is used.

It must be noted that the conclusions drawn in this chapter are preliminary, given only a limited number
of models have been tested. To get a better understanding of, for example, the effects of model complexity
and the physical modeling form on the model performance, a broader range of different models must be
tested. Similarly, other features can be considered to observe if they lead to more robust predictions of the
correction terms. However due to time constraints, this is out of the scope of the current research.





11
Conclusion and Recommendations

This work aimed to contribute to the enhancement of data-driven turbulence models for wind turbine wake
applications. The principle contribution lies in two aspects: (1) the application of mutual information to
measure feature importance and (2) the introduction of the wake classification model framework to specifi-
cally construct correction models for the turbine’s wake region.

Mutual information is used to measure the general dependency between various features and the cor-
rection terms R and b∆. By constructing a sparse logistic regression framework, which is an extension of
the SpaRTA algorithm by Schmelzer et al. [69], algebraic classification models are constructed that predicts
whether or not a sample location is inside the turbine’s wake. The selected features are used to discover sparse
algebraic models for both R and b∆ which are specifically trained on the predicted wake samples to improve
the predictions in this specific region. By coupling the algebraic wake classifier to the models for R and b∆,
it is enforced that the corrections are set to close to zero in the freestream flow, as the models are not trained
for this region.

All algebraic models are obtained through the cross-validation strategy, by training and testing on differ-
ent turbine cases. Thereby, the predictive performance of the models is assessed. Finally, the models are
implemented into the OpenFOAM CFD solver to assess the improvements in mean-flow data. Based on this
work’s results, conclusions are drawn in Section 11.1 and recommendations for future research are provided
in Section 11.2.

11.1. Conclusions
The conclusions follow the research questions described in Chapter 1. Therefore, the conclusions are drawn
in answering the main research questions and are discussed underneath.

RQ1: "In the context of data-driven turbulence modeling, what are the advantages and disadvan-
tages of using mutual information for feature selection?"

Mutual information is chosen as the measure for feature importance as it quantifies the general de-
pendency between two variables. There are multiple methods to rank features, but they all have their
limitations (linearity and monotonicity for the correlation coefficient) or are specific to a certain ma-
chine learning algorithm (feature ranking in random forests). Given that mutual information depends
on the probability distributions of variables, quantifying it exact for continuous variables is not possi-
ble. A kNN method is chosen as an estimator based on accuracy and efficiency and used to estimate
the dependencies between the features and the correction terms R and b∆. The kNN method relies on
two assumptions, that the entropy is estimated by N realizations and that within distance ε/2 around
the considered sample, the probability density remains constant.

A broad range of features is obtained from literature. Also, a feature is proposed by the author himself,
the force coefficient. Mutual information is used to measure the dependency between the features
and the correction terms, but also to measure the dependency between individual features to detect
redundancies. It was found that mutual information gives a clear quantitative picture of the importance
of the features, but depends largely on the selected region.

93
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From the effective viscosity hypothesis proposed by Pope [59], invariants λ1, λ2 and λ5 have the largest
dependence with both the correction terms. By quantifying the dependencies between the invariants
themselves, it was found that the invariants are strongly related to each other in the free-stream flow
and also in a large portion of the turbine’s wake. The dependencies diminish in regions where ∂U /∂z
and ∂U /∂y are not the only dominating velocity gradients. This occurs in particular in the regions
near the turbines. Similar analysis was performed to the basis tensors, concluding that a significant
number of basis tensors show dependency with the components of b∆. With respect to the correction
term R, basis tensors T(1) and T(6) were found to be most important. The importance of the additional
invariants based on ∇k and ∇p depends significantly on the selected region and is affected by the far-
wake noise present in R. The physical flow features shear parameter, turbulence intensity, viscosity
ratio and wall-based Reynolds number were identified by mutual information as important features
towards the correction terms. The measured dependency was significant, implying that introducing
them to the feature set leads to improved model predictions.

Although mutual information is a fast way to identify feature importance, it is based on the contribution
of all considered samples. It is therefore plausible that features are important in a small portion of
the domain while irrelevant in the remaining, resulting in a small mutual information estimate. The
choice was therefore made to focus on the wake region, thus waiving the effects of the samples in the
free-stream region. Still, the importance of certain features is missed such as of the force coefficient,
which remains zero in almost the entire domain except near the turbine, where the dependency is very
significant.

Given that mutual information measures the general dependency, which can be highly non-linear, it
is not guaranteed that the performance of a machine learning model is improved when a feature is
introduced that is highly non-linear. Especially in SpaRTA, only a very limited amount of non-linearity
can be included.

Although, there are some limitations to the mutual information methodology, it performs well in gen-
eral and can be used efficiently to define feature importance. Given the mutual information results, it
remains however to the user to make a choice about which features to use for further processing.

RQ2: "Can an algebraic wake classification model be constructed such that the algebraic models for
b∆ and R are accurately turned off in regions where they were not trained on?"

The predictions of b∆ inside the turbine wake are significantly improved when discarding the free-
stream samples in the training phase. Thereby it cannot be guaranteed that the predictions of R and b∆

are accurate in the free-stream and to prevent large discrepancies in this region, the prediction models
can be turned off using a wake classification model. The choice was made to develop a sparse logis-
tic regression framework because it can incorporate a limited amount of non-linearity and produces
a sparse algebraic classification model that is easy interpretable and can be straight-forwardly imple-
mented into a CFD solver.

From a limited feature set, non-linear functions are constructed, which are used to learn the algebraic
classification models. It was found that good performance, measured by the log loss, accuracy and
recall, can already be achieved for simple models. There are certain regions of the wake where the
predictions are false negative, meaning the classification model labels the samples to the free-stream
flow while they actually belong to the wake domain. However, it was observed that the magnitude of the
correction terms R and b∆ in these regions is small, meaning the misclassification has no severe effects.
Therefore, it is concluded that, although based on the limited data sets used in this work, sparse logistic
regression as a framework is suitable for classifying the turbine wake.

RQ3: "By learning algebraic models for the correction terms b∆ and R specifically for the wind tur-
bine wake region using the most relevant features and combining it with the algebraic wake classifi-
cation model, what improvements in mean-flow conditions can be achieved when compared to the
standard k-ε turbulence model?"

The feature set derived using the mutual information measure is used to build regression models for
both R and b∆ using SpaRTA. This is done iteratively using different feature combinations because the
sparse regression algorithm can only cope with a limited set of features. Also, this was done to observe
the importance of specific features and verify the mutual information results.
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It is found that for R the additional invariants result in prediction improvements, but the most signif-
icant improvements are made by using the physical flow features. By extending the physical-form of
R with a source/sink term proportional to ε, the predictions are further improved. For b∆, the predic-
tions are also improved using the physical flow features while it was found that the chosen additional
invariants do not improve the predictions.

It has been shown that significant improvements in predictions inside the turbine wake can be accom-
plished when the data is only trained on the predicted wake samples. Especially for P∆k , the turbulent

production due to b∆, the mean-squared error and maximum-squared error can reduce up to 60% and
90%, respectively. For correction R, the improvements are much less prominent.

When the predictions for R and b∆ are injected into a RANS simulation as static fields, compelling im-
provements in mean-flow data are made, up to very close to the high-fidelity LES data. It is observed
that the only region where the predictions show deviations from LES is the far-wake, indicating that
the models lack some predictive performance in this region. When the algebraic models for the wake
classifier, R and b∆ are coupled to the turbulence model equations, large improvements over the base-
line k-ε turbulence model are made, both in mean stream-wise velocity and turbulent kinetic energy.
Besides that, it has been shown that including the source/sink term in R results in better predictions
compared to when R is modeled only as a turbulent production term. Without the inclusion of the
wake classification model, the solver did not sufficiently converge. Because the correction terms are
not damped outside the wake, too much turbulent kinetic energy is removed from the flow, which af-
fects the turbulent kinetic energy profiles in the free-stream.

Although the discrepancy in mean velocity and turbulent kinetic energy with respect to the baseline k-ε
turbulence model is reduced, there remains enough room for improvements especially in the far-wake
predictions.

Finally, in wrapping up this thesis and returning to its main objective, it becomes clear that the k-ε tur-
bulence model uncertainty in wind turbine wake applications can indeed be reduced in applying the two
approaches analyzed. It thereby becomes clear that the model performance depends significantly on the fea-
tures used, meaning it is of importance to apply a methodology that quantifies feature importance. Second,
improvements are made in model performance when only trained on the predicted wake region samples.
This shows the potential of coupling the correction models to a wake classification model to improve mean-
flow predictions.

This research worked with time-averaged data from LES cases on wind-tunnel scale. The next step to
discover the potential of the considered approaches, is to extent the work to full-scale cases which resemble
more the physics of industrial operating turbines.

11.2. Recommendations
Based on the work performed in this thesis, recommendations can be made for future research.

Machine learning
In this thesis, mutual information is used to measure dependencies between variables. Although a thorough
investigation has been performed to detect the importance of the different researched features, the features
were then manually picked based on the estimated mutual information. A next step would be to develop an
approach that, based on the estimated mutual information between features and correction term and be-
tween features themselves, automatically chooses the set of suitable features. This would be more systematic
than the manual approach described in this work.

The developed sparse logistic regression framework showed to work well in predicting whether a sample
location belongs to either the turbine’s wake or the free-stream flow. It would be interesting to see if this
framework is also able to detect locations of high turbulence model uncertainty in completely different flow
cases. Data-driven turbulence modeling is applied in widespread applications, and this framework could also
potentially lead to improved predictions in these. For example, given standard turbulence models are not able
to capture well the separation zone of an aircraft wing in stall, it would be interesting to see whether sparse
logistic regression can capture this region such that, similar as done in this work, a data-driven correction
could be turned on to correct the baseline turbulence model.
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There exist numerous machine learning algorithms for classification problems. Sparse logistic regression
is chosen because an algebraic model expression is obtained that can easily be implemented into the nu-
merical solver. However, there are also downsides of sparse logistic regression, as only a limited amount of
non-linearity can be incorporated, which limits the model performance. To determine what improvements
could be made by using more complex classification algorithms, a comparison between different algorithms,
varying in complexity, can be made.

The current research focuses on turbines in neutral atmospheric conditions. Although in simulations, it is
often assumed that the conditions are neutral, in reality there are always buoyancy effects, which affect the
turbulence properties in the atmosphere and turbine wakes. Similarly as to the closure problem in the mo-
mentum equation, the temperature equation also requires a model for the heat flux. It would be relevant to
investigate the performance of SpaRTA to construct data-driven corrections for the heat flux term.

Computational Fluid Dynamics
Three different wind turbine cases have been used for training and testing of the data-driven corrections. The
only difference between the cases is the location and orientation of the turbines, meaning testing the gener-
alization of the constructed models is limited. Therefore, It would be of important value to include more
diverse cases, such as with different Reynolds number and turbulence intensity. Similarly, the cases are on
wind-tunnel scale. It would be interesting to see whether the same results could be obtained on cases where
the turbines operate in planetary atmospheric conditions.

During the last decade, numerous (not necessarily data-driven) corrections to the k-ε turbulence model have
been proposed for wind turbine wake applications. It would be valuable to compare the performance of dif-
ferent proposals and make an extensive overview of the advantages and disadvantages of the investigated
methods.

Finally, non-linear eddy viscosity models are prone to instabilities for finer grid sizes. To investigate whether
the constructed algebraic correction model still provide converged solutions for finer grids, a grid refinement
study must be performed. Due to limited amount of time, this has not been done in the current research.
However to numerically verify (showing that the convergence is not dependent on the grid size) the algebraic
models have to be tested for different (especially finer) grid sizes.
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A
SpaRTA

In Algorithm 1, the procedure to construct the candidate features is described. Feature interaction is first
introduced in B2. Due to the fact that the range indicated in red only goes up to k −1, not all possible fea-
ture interactions are constructed. It has been experimented to adjust this such that all feature interactions
are constructed, but this did not lead to any noteworthy model prediction improvements but rather only to
increased computational costs. It is therefore chosen to remain the algorithm as it is.

Algorithm 1 Algorithm for constructing library of candidate functions

Require: pre-defined features: f1, ... fn (e.g. λ1, λ2)
Require: chosen exponents: exp1, ...expm (e.g. 0.5, 1.0)
Ensure: Library of non-linear features of pre-defined features f
B1 = [ ]
for i = 1,...,n do

for j = 1,...,m do
fexp = eval( f [i ]exp[ j ])
B1.append(fexp)

end for
end for
B2 = [ ]
for k = 1,...,len(B1) do

bk = B1[k]
for l in range(k-1) do

bl = B1[l ]
fint = bk · bl
B2.append(fint)

end for
end for
B3 = [ ]
for p in range(len(B2)) do

bp = B2[p]
for q in range(len(B1)) do

bq = B1[q]
bint = bp · bq
B3.append(bint)

end for
end for
f =B1 +B2 +B3 + c
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B
Mutual Information

B.1. Theoretical Example
The mutual information definition for continuous variables is

M I (X ;Y ) =
∫
Y

∫
X

p(X ,Y )(x, y)log
p(X ,Y )(x, y)

pX (x)pY (y)
d xd y, (B.1)

where p(X ,Y )(x, y) is the joint probability density function and pX (x) and pY (y) are marginal probability den-
sity functions of variables X and Y , respectively. In the case of discrete variables, the mutual information
definition is calculated as a double sum

M I (X ;Y ) = ∑
y∈Y

∑
x∈X

p(x, y)log
p(x, y)

p(x)p(y)
. (B.2)

Consider two data sets, each consisting of three points depicted in Figure B.1. The mutual information of
the orange set equals

M I (X ;Y ) = 1

3
log

(
1/3

1/3 ·1

)
+ 1

3
log

(
1/3

1/3 ·1

)
+ 1

3
log

(
1/3

1/3 ·1

)
= 0, (B.3)

and for the blue set

M I (X ;Y ) = 1

3
log

(
1/3

1 ·1/3

)
+ 1

3
log

(
1/3

1 ·1/3

)
+ 1

3
log

(
1/3

1 ·1/3

)
= 0. (B.4)

When combining the blue and orange sets to one large set (consisting of six points), the mutual informa-
tion is

M I (X ;Y ) = 1

6
log

(
1/6

1/6 ·2/3

)
+ 1

6
log

(
1/6

1/6 ·2/3

)
+ 1

3
log

(
1/3

2/3 ·2/3

)
+ 1

6
log

(
1/6

2/3 ·1/6

)
++1

6
log

(
1/6

2/3 ·1/6

)
= 0.17.

(B.5)
Clearly the two sets separately lead to a mutual information of zero, indicating X and Y are independent.

However there is dependency when both sets are combined, leading to a non-zero mutual information. This
proves that it is possible that two subsets of a dataset can both have a lower mutual information than the
entire dataset.

B.2. Tensor basis
The mutual information between individual tensor basis components and b∆ for the entire domain and free-
stream region are listed in Figures B.2 and B.3. The mutual information estimates are significantly larger
inside the turbine wakes than outside. Only for component (2,3) the mutual information outside the wake is
larger than inside the wake.
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106 B. Mutual Information

Figure B.1: Two discrete data sets depicted in orange and blue.
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Figure B.2: Mutual information heat map for basis tensor components with b∆ components for entire domain.
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C
Wake Classification

Additional models for case A (obtained through cross-validation) are described in Appendix C.1. The model
discovery and inference with cross-validation described in Section 7.3 is applied to case B and case C as test
sets in Appendices C.2 and C.3, respectively.

C.1. Case A
A disadvantage of the wake classification model visualized in Section 7.4 is that the classifier predictions in
the free-stream grow when approaching the wall. Although the predictions are closer to zero than to one, it
would be more desirable when the predictions would remain closer to zero.

When selecting a different wake classification model, visualized in Figure C.1, the predictions remain
closer to zero when approaching the wall when compared to the classification predictions in Figure 7.6. On
the other hand, the recall will be smaller because more wake samples are identified incorrectly. This is there-
fore a trade-off that has to be made.
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Figure C.1: Comparison of classifier predictions to contours of R andΠb∆ for case A at different slices in the y − z plane, x-location
depicted in title upper row. Upper row: classifier predictions, middle row: R and lower row: Πb∆ .
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C.2. Case B
The model performance when trained on case A and C and subsequently tested on case B is shown in Fig-
ure C.2. The model for further visualization is depicted by the green star, this model has the form

M=σ
[

w T
u xu +1.01

]
(C.1)

xu =
[

q2, q2q9, q2q2
8 , q2q7, q8, q7

]
(C.2)

w u =
[

52.2, 1140, 495, −44.0, −13.5, 1.36

]
. (C.3)

The classifier predictions are compared to the contours of R and Πb∆ in Figure C.3. Clearly the regions
where the correction terms are significant are captured by the classification model. The wake classification
predictions are compared to the true wake values in Figure C.4. It can be seen that the model has difficulties
identifying the lower part of the wake. The discrete outcomes are shown in Figure C.5.
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Figure C.2: Case B: log loss (top), accuracy (middle) and recall (bottom) as function of complexity nc for all models analysed in the
inference phase. Final chosen model high-lighted by green star.

C.3. Case C
The model performance when trained on cases A and B and subsequently tested on the unseen case C is
depicted in Figure C.6.

The wake classification model tested on case C has the form:

M=σ
[

w T
u xu +0.20

]
(C.4)

xu =
[

q2q9, q2q2
8 , q2q2

7 , q8

]
(C.5)

w u =
[

1465, 274, 4.80, −6.29

]
. (C.6)
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Figure C.3: Comparison of classifier predictions to contours of R andΠb∆ for case B at different slices in the y − z plane, x-location
depicted in title upper row. Upper row: classifier predictions, middle row: R and lower row: Πb∆ .
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Figure C.4: Wake classifier predictions compared to true label for case B on x − z plane at turbine location (y − yhub)/D = 0. Upper
figure: classifier predictions, lower figure: true label.
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Figure C.5: Wake classifier discrete predictions compared to true discrete labels for case B. Upper figure: x − z plane at (y − yhub)/D = 0,
lower figure: x − y plane at (z − zhub)/D = 0.

The classifier predictions are compared to the contours of R and Πb∆ in Figure C.7. Clearly the regions
where the correction terms are significant are captured by the classification model. The wake classification
predictions are compared to the true wake values in Figure C.8. The discrete outcomes are shown in Fig-
ure C.9.
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Figure C.6: Case C: log loss (top), accuracy (middle) and recall (bottom) as function of complexity nc for all models analysed in the
inference phase. Final chosen model high-lighted with green star.
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Figure C.7: Comparison of classifier predictions to contours of R andΠb∆ for case C at different slices in the y − z plane, x-location
depicted in title upper row. Upper row: classifier predictions, middle row: R and lower row: Πb∆ .
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Figure C.8: Wake classifier predictions compared to true label for case C on x − z plane at turbine location (y − yhub)/D = 1.25. Upper
figure: classifier predictions, lower figure: true label.
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Figure C.9: Wake classifier discrete predictions compared to true discrete labels for case C. Upper figure: x − z plane at
(y − yhub)/D = 1.25, lower figure: x − y plane at (z − zhub)/D = 0.



D
CFD implementations

D.1. Coupled corrections
The stream-wise velocity component as function of domain width and height is depicted in Figure D.1 for
three models, varying in complexity. It is observed that the medium and complex model perform significantly
better than the simple model, which was already verified by the normalized mean-squared error in Table 10.3.
The same observation is made for the turbulent kinetic energy in Figure D.2.
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Figure D.1: Comparison of baseline k-ε RANS, LES and three coupled RANS corrections via normalized stream-wise velocity as function
of domain width and height for different downstream locations with respect to turbines.

D.2. Physical-form R
The turbulent kinetic energy as function of domain width for three coupled corrections is depicted in Fig-
ure D.3. The three coupled corrections differ in what the physical-form of R is. Clearly when R is only mod-
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Figure D.2: Comparison of baseline k-ε RANS, LES and three coupled RANS corrections via normalized turbulent kinetic energy as
function of domain width and height for different downstream locations with respect to turbines.

eled using the production part, k is more overestimated in the far-wake than when R is modeled only by the
source/sink term.
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Figure D.3: Comparison of baseline k-ε RANS, LES and three coupled RANS corrections via normalized turbulent kinetic energy as
function of domain width and height for different downstream locations with respect to turbines.
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