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ABSTRACT

An increase in carbon emission which mostly caused by the transportation sector and electric power gen-
eration has been a hot topic nowadays in most countries in the world. To tackle this problem, the share of
renewable energy use has been increased by up to 14% in the Netherlands. Moreover, the number of electric
vehicles (EVs) on the road also reaches a total of 120,000 EVs in 2018. However, the high penetration of re-
newable energy sources (RESs) such as solar & wind power and the EVs charging in the distribution network
could result in a severe problem. One of the solutions to avoid this problem is that switching the uncontrolled
charging of EVs into a controlled charging or called as smart charging. Further, an integration between the
EVs, RESs and the distribution grid could potentially lead to technical and economic benefits.

The focus of this thesis is to develop an optimal power management system (PMS) between the EVs, PV sys-
tem, and the distribution network. The goal of the power management system is to obtain the minimum op-
erational cost while also considering the technical grid constraints, which subsequently could avoid the grid
violation. The proposed power management system will be modeled in a mixed integer non-linear program-
ming (MINLP) optimization problem and executed in General Algebraic Modelling System (GAMS) software.
To evaluate the performance of the proposed power management system, a comparison between the with-
grid and the no-grid constraints case will be performed through several case studies. This study shows that
by implementing the proposed power management system of EVs charging from PV system considering the
grid constraints, it could decrease the total operational cost remarkably by 18.16% - 214.08% when compared
to the uncontrolled charging scheme. Besides, the grid problem caused by the uncontrolled charging pro-
cess such as exceeding the allowable voltage deviation and the transformer rated power could be prevented.
However, in comparison to the smart charging without considering the grid constraints, the operational cost
is increased by 1.43% - 113.20%.
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1
INTRODUCTION

1.1. ELECTRIC VEHICLES IN THE NETHERLANDS

The cutback of global warming effects and CO2 emission has become one of the most primary concerns of
lots of countries in the world. Fossil fuels are the most dominant energy sources for the transportation sector
and electrical power generation. This huge problem is a call to find the alternative energy sources. Evolving
the internal combustion engine (ICE) vehicle to the electric vehicle (EV) is one of the solutions that is being
employed to decrease the carbon footprint in the transport sector. To achieve the 2020 European Union (EU)
goals, The Netherlands have to reach a 14% renewable energy use [17]. This target has shown that at the end
of 2017, approximately 2.2% of all passenger cars in The Netherlands were EVs [1].

The Netherlands Enterprise Agency (in Dutch: Rijksdienst voor Ondernemend Nederland, RVO), in its last
report on January 2018, stated that at the end of 2017, the total number of Battery Electric Vehicles (BEV) and
Plugin Hybrid Electric Vehicles (PHEV) steeply increased by 316% in comparison to the end of 2013 and 7%
in contrast to the end of 2016 as depicted in Fig. 1.1.

Figure 1.1: The number of BEV and PHEV in The Netherlands from 2010 to 2017 [1]

Different manufacturers of EVs are taking parts in market share of The Netherlands. Fig. 1.2a and 1.2b il-
lustrate that in 2017, Tesla Model S is leading the market share in the BEV sector, while Mitsubishi Outlander is
surpassing the PHEV sector which equals to 44% and 38%, respectively. [1]. Additionally, every manufacturer
has its specific battery capacity which is shown in Table 1.1.

1
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(a) BEV models (b) PHEV models

Figure 1.2: Top BEV and PHEV sold models in The Netherlands. Data is retrieved from [1]

Table 1.1: Battery capacity of top sold EVs in The Netherlands [15]

Types of EV Battery capacity [kWh]

BMW i3 18.8
Nissan Leaf 24
Renault Zoe 22

Tesla Model X 90
Tesla Model S 60

In the Netherlands, based on the data from Centraal Bureau van Statistiek and depicted in Fig. 1.3, there
are around 120,000 EVs in total. This vast number has shown a high possibility to reduce carbon emissions
in the future. Furthermore, as can be seen in Fig. 1.4, the Netherlands has the highest number of PHEVs and
FEVs sold in the EU.

Figure 1.3: Total number of PHEVs and FEVs in the Netherlands per 1 January 2018 [2]
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Figure 1.4: New sales of EVs in the EU [2]

1.2. PHOTOVOLTAIC POWER GENERATION
Carbon footprint has been being a hot issue during the last decade in most countries of the world. Moving
towards into a greener energy by increasing the use of large-scale RES is one of the solutions to tackle this
problem. As seen in Fig. 1.5, more than 104 GW of solar PV power has been installed in Europe in 2016 [3].

Figure 1.5: European total solar PV installed capacity 2000 - 2016 [3]

From Fig. 1.5, we may see that the penetration of PV in every country in the European Union (EU) is in-
creasing slightly year by year. This increase shows that PV power generation has given a promising solution
for the future. Solar PV panel has lots of benefits, for instance, ease of installation, long lifespan, low mainte-
nance, etc. Thus, every citizen can also take part to help the governments to reach their target to boost up the
shares of renewable energy use by putting PV on the rooftop. The citizen could receive money as they pro-
duce PV power to the grid, the so-called Feed-in Tariff subsidies. To keep promoting this, the governments of
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EU countries have already set their target until 2020 as depicted in Fig. 1.6.

Figure 1.6: Target of the share of renewable energy use in the EU countries in 2020 [4]

In 2016, the Dutch Central Office for Statistics in its report states that renewable energy sources share
around 5.9% of the total Dutch energy consumption. This amount of number was slightly the same in 2015
as illustrated in Fig. 1.7. From Fig. 1.6 and 1.7, we may conclude that the shares of RES in the Netherlands
are still very low compared to other EU countries. In addition, based on National Energy Report (in Dutch:
Nationale Energieverkenning 2017 - NEV ) which was published by Dutch research institute Energieonderzoek
Centrum Nederland (ECN) in cooperation with CBS, the Netherlands has installed approximately 2 GW of PV
power and might be increasing to 20 GW by 2035 as shown in Fig. 1.7 [6].

Figure 1.7: Renewable energy consumption by source in the Netherlands during 2015-2016 [5]

1.3. THE DUTCH POWER GRID
The Dutch electricity grid is well-known as immensely robust and reliable. The Dutch transmission system
is strongly connected to the surrounding countries power grid such as Belgium, Germany, Norway (through
HVDC connection) and Great Britain. The transmission system is operated by the government-owned limited
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Figure 1.8: Development of installed capacity in the Netherlands in the period 2017-2035 [6]

liability company called TenneT B.V. The transmission system operator (TSO) manages and operates at the
110 kV voltage level and above. Also, the Dutch distribution grid is built over 325,000 kilometers long by
almost all underground cables [18]. Currently, there are eight distribution system operators (DSOs) in the
Netherlands with the three biggest DSOs are Liander, Enexis, and Stedin.

Based on the Tarievencode Elektriciteit 2009 by Energiekamer, the classification of transmission and dis-
tribution network is shown in Table 1.2. Besides, this thesis will mainly focus on the distribution network
since the EV, and local residential loads are connected to a 0.4 kV of the voltage level.

Table 1.2: The definition of transmission and distribution network in the Netherlands [16]

Voltage level name Voltage level range Definition of network
EHV Extra High Voltage (extra hoogspanning) 380 / 220 kV

Transmission
HV High Voltage (hoogspanning) 150 / 110 kV
IMV Intermediate Voltage (tussenspanning) 50 / 25 kV

DistributionMV Medium Voltage (middenspanning) 1 - 20 kV
LV Low Voltage (laagspanning) 0.4 kV

1.4. PV AND EV INTEGRATION

The total installed capacity of PV power generation in the Netherlands, as previously stated in Section 1.2
has been increasing over year-by-year and hence will affect the penetration of renewable energy sources into
the power system. The power generation from the PV system is intermittent which is depending on diurnal
and seasonal time span. To store the excess of energy, its power is usually delivered to a stationary energy
storage system. However, this solution has a high initial investment cost and therefore can increase the total
investment cost. Therefore, to solve this issue, both PHEVs and BEVs can play a role as a dynamic energy
storage system that will store the surplus energy from the PV system. The EVs can also deliver power to the
grid during low power generation via vehicle to grid (V2G) concept. Assuming that an EV fleet parking area
has its PV system, the integration of PV system and EVs can also help to reduce the total operational cost since
the energy price of PV system is lower than the grid.
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1.5. THESIS OBJECTIVES
Based on the explanations mentioned in the previous section, the following research objectives are listed
below.

1. Developing an optimization model to find out an optimal power management system (PMS) of EVs
charging from PV system in a low voltage distribution network considering the grid constraints

2. Investigating the economic analysis to find the reduction of the total operational cost in a one-day
operation

1.6. RESEARCH QUESTIONS
To achieve the previously mentioned thesis objectives, several research (sub)questions are defined which will
act as a guideline throughout the thesis project as explained below.

1. How to formulate the optimal power management system of EVs charging from PV system in a low
voltage distribution network considering the grid constraints?

(a) What are the EV constraints taken into considerations?

(b) What are the PV system constraints taken into considerations?

(c) What are the grid constraints taken into considerations?

(d) What is the objective function of the proposed power management system?

2. What is the impact of considering the grid constraints on the proposed power management system for
the identified case studies?

(a) To what extent does the grid constraints affect the total operational cost for the identified case
studies?

(b) To what extent does the grid constraints avoid the grid violations for the identified case studies?

(c) To what extent does the grid constraints increase the PV power allocated for EVs charging for the
identified case studies?

1.7. THESIS OUTLINE
This thesis project comprises of six chapters as mentioned below.

• Chapter 1: Introduction
A brief explanation of the research background and motivation is discussed in this chapter as well as
the research objectives and questions.

• Chapter 2: Literature Study
This chapter reviews the previously existing literature on optimization technique, EV smart charging,
integration of renewable energy sources (RES) and Vehicle-to-Grid (V2G) concept. The contribution
of this thesis project in the field of EV smart charging from renewable energy sources considering the
distribution grid is discussed.

• Chapter 3: Problem Formulation
In this chapter, the optimization model used in this study is defined. The mathematical formulation
including the constraints for EV, PV system, and the grid is explained to solve the optimization problem.

• Chapter 4: Data Characteristics and Case Studies
To evaluate the performance of the proposed power management system, several real-life input pa-
rameters need to be defined. Therefore, how these parameters data acquired is extensively described
in this chapter. Additionally, several case studies are analyzed in this chapter to assess the technical
and economic performances based on different parameters.

• Chapter 5: Simulation Results and Analysis
Interfacing between GAMS and MATLAB software to simulate the model formulation in different case
studies are done in this chapter. Also, the simulations are accomplished as a test and validation to prove
the concept of the model formulation.
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• Chapter 6: Conclusions and Future Works
This is the last chapter of this thesis which compiles the main results of this study. The research ques-
tioned which are previously mentioned are answered as well. Several recommendations of future works
for the improvement of the model are also presented.





2
LITERATURE STUDY

This chapter aims at outlining the literature review of the thesis. A comprehensive literature study has been
accomplished to provide the state of the art of this thesis project. Then, the structure of this chapter is ex-
plained as follows.

In section 2.1, the interaction between EV charging and distribution network is described. The challenges
of integrating EV into power grid are also defined. Section 2.2 presents the cost-aware integration between
renewable energy sources (RESs) and EVs charging. Section 2.3 conducts the technical aspect of integrating
grid, RESs and EVs charging in a distribution system. These both sections are regarded as the main topic of
this thesis. Lastly, section 2.4 points out several optimization techniques that will be selected to solve the
problem of this thesis.

2.1. EV CHARGING AND DISTRIBUTION GRID INTERACTION
EVs can potentially become integral parts of a distribution network because they have capabilities to provide
beneficial services to the grid other than just drawing power from the grid. EVs can also play an essential role
as it could become dynamic energy storage to balance the intermittent RESs such as solar and wind power.
On the distribution system level, the massive penetration of EVs charging turns into a new challenge to the
Distribution System Operator (DSO) as it may affect the stability of the distribution grid [19]. Furthermore,
the DSO always want to have the minimum power losses and acceptable power quality such as voltage profile,
harmonics, etc [20]. One of the solutions to mitigate this problem is to shift the uncontrolled into controlled
charging scheme or called as smart charging and will be discussed in the following sections.

2.1.1. EV SMART CHARGING
An uncoordinated charging happens when EVs start charging shortly after being connected to the charger
until their battery is fully charged. Otherwise, controlled charging scheme provides the EVs fleet operator and
the DSO to implement an EV charging profile scheduling and power control by programming an optimization
technique to reach specific objectives, for instance minimizing charging cost and reducing power losses of the
lines. The authors of [20] stated that the coordination of EV charging would be executed by smart metering
and by transmitting signals to each EV in the parking area. Smart metering could make the EVs as controllable
loads to perform the V2G concept and integrate with local RESs power generation.

In [21], the authors showed that to reduce the voltage drop due to large penetration of EVs, the voltage
profile could be regulated by scheduling the reactive power or controlling the load demand. Additionally, a
third-party entity known as the aggregator is responsible for coordinating and managing the EVs charging
profile in the specific area. The function of this entity is to mediate between the EV owners, the electricity
market, DSO and TSO [22, 23]. An aggregator has to offer the regulation in so-called desired scale. In reality,
it prepares a contract with each EV owner. Then, the aggregator makes another contract with local DSO
based on the amount of the EV owners. Furthermore, a power management system, put at the DSO operator,
has to be worked optimally. So, in this case, the importance of the aggregator is obvious. The aggregator
would optimize the coordinated charging by taking several EV users data such as historical data on arrival &
departure time and the EVs SOC. Local RESs generation, the grid and energy prices from the market are also
taken into considerations. The study conducted in [7] showed that the EVs smart charging could increase the

9
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PV self-consumption as depicted in Fig. 2.1.

Figure 2.1: Power profile of EV smart charging [7]

2.1.2. EV WITH V2G TECHNOLOGY

EVs can act as loads or as distributed energy and power resources in a concept known as vehicle-to-grid (V2G)
process [24]. V2G is capable to offer reactive power support, active power regulation, load balancing, and
current harmonic filtering. The V2G concept can also enable several ancillary services to support the grid, for
instance, frequency regulation, voltage control, and peak shaving which has been demonstrated in [25, 26].
Therefore, the concept of V2G has attracted attention from the grid operators (especially the DSO) and the
EV owners as the end-users. Additionally, with V2G, an EV can take a role in most energy markets, from
bulk energy to frequency control and spinning reserves [27]. In addition, several literature have discussed
the concept of V2G in combination with renewable energy sources (RES), such as wind and solar energy [28–
32]. This V2G system which is constructed via bidirectional Electric Vehicle Supply Equipment (EVSE) or EV
charger is shown in Fig. 2.2.

Figure 2.2: V2G technology concept [8]

The study was done in [33] observed that by managing the EV as a dynamic load and energy storage (via
V2G technology), it could cut down the total operational cost by 26.5%. Moreover, the accomplishment of
the V2G technology implementation depends on several aspects, for example, charging infrastructure, the
technology of the battery, and smart charging technology [24]. One of the most significant challenges to
the V2G concept is the technology of battery and the high initial investment costs if it is compared to internal
combustion engine (ICE) vehicles. The detail explanation of how economically viable and technically feasible
will be discussed later in the following sections.

2.2. ECONOMIC CONSIDERATION OF GRID, RESS AND EVS INTEGRATION

Providing EVs smart charging in a distribution system may result in financial profit both to the EV owners and
the distribution system operator. In [34], the authors have proven in their results that by applying a coordi-
nated charging scheme can minimize the total cost as well as decreasing the dependency on the distribution
grid and improving PV self-consumption. The total cost was reduced by 118.44% and the profit was gained
by 427.45%. The following sections will explain extensively how beneficial implementing EVs smart charging
is for both the EV owners and the aggregator as an EV fleet operator.
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2.2.1. MINIMIZING OPERATIONAL COST AND MAXIMIZING PROFIT
The aggregator is in charge of controlling the system operational cost of EVs fleet since they want to achieve
maximum profits by coordinating the EVs charging. To give a better insight into the operational cost, Fig.
2.3 is illustrated. However, the scope of this thesis is only the integration between the distribution grid, PV
system and the EVs fleet. Moreover, the research conducted in [35] performed that the scheduling from the

Figure 2.3: Integration between Grid, RESs and EVs [9]

aggregator could minimize the total operational cost. It was done by charging the EV batteries when the
power generation from renewable energy sources (solar and wind power) is surplus, while discharging the
EVs via V2G schemes in the low power generation condition.

The findings in [36] showed that by enabling a coordinated charging scheme with RESs in a smart grid
way through a particle swarm optimization (PSO) could reduce the total cost by 0.9% as well as emission by
4.3% per day. In [37], the authors came up with energy management system for EVs charging in a smart grid
infrastructure which intended to minimize operating costs and carbon emissions and result in decreasing the
operational cost by 15% and carbon emissions by 8%. Additionally, the authors in [38] found that a coordi-
nated EVs charging for a realistic case study with 50 EVs in one parking space can achieve a net cost reduction
by 1% to 15%. These prior research added up the proof that by controlling the integration between grid, RESs
and EVs may lead to economic benefits.

In addition, the operator of the aggregated EVs also has a target to achieve maximum profits for serv-
ing the EV owners to charge their cars. The interaction between EVs and RESs could help on reaching this
target. Let say the PV system is installed to support the EVs charging, it can be done by increasing the PV
self-consumption. As mentioned previously, the aggregator will not only accomplish in minimizing the op-
erational cost but also maximizing the economic revenue.

2.2.2. MINIMIZING CHARGING COST
In this section, the economic aspect from the EV owners perspective will be discussed. The EV owners as the
end-users always want to pay a low charging cost. To achieve this goal, researchers have employed several
optimization techniques such as mixed-integer linear programming (MILP), quadratic programming (QP),
stochastic programming, particle swarm optimization (PSO), etc. According to [39], the authors mentioned
that the aggregator or the EV fleet operator controlled and managed the market participation to optimize the
charging cost. The aggregator regulated the day-ahead market operation which would give beneficial impacts
for the aggregated EVs in one specific area.

The study conducted in [40] also found that the EVs management could positively influence the charging
cost. The aggregated EVs operator can join the electricity market share by regulating the dynamic loads of
EVs via charging and discharging of the EVs batteries. Taking considerations of the previously mentioned
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explanation, this thesis would indicate reducing the charging cost seen from the perspective of the EV owners
as the objective function of the optimization problem.

2.3. TECHNICAL CONSIDERATION OF GRID, RESS AND EVS INTEGRATION
In the previous section, it has been discussed that applying smart charging may lead to obtaining minimum
net operational costs and maximizing profits for the EV fleet operator. The integration of EVs in the distri-
bution grid with RESs penetration can also help the DSO providing valuable services in terms of technical
aspects. According to [41], with the modified IEEE 23 kV distribution system, the uncontrolled charging strat-
egy in high (63%) or low (16%) penetration of the EVs produces serious voltage deviations up to 0.83 p.u.
which is below allowable 0.9 p.u. based on European EN50160 standard, high power losses and high cost in
the generation. On the contrary, with a controlled charging scheme, the voltage profile is increased up to 0.9
p.u. which is still in the range of acceptable voltage deviation. Furthermore, the increase of both BEVs and
PHEVs penetration in the power grid contributes to a significant rise in power losses in the lines. This issue is
substantial for the DSO point of view. It may produce lousy power quality for the other customers. In [20], the
study on IEEE 34-node test proved that by implementing smart charging of PHEVs can reduce power losses
up to 9%. This result was achieved with quadratic programming (QP) in minimizing the I 2R losses as the
objective function. Moreover, the authors in [10] showed in their results that by applying a controlled charg-
ing for EVs, it leads to a more stable voltage profile as depicted in Fig. 2.4. This study was done in an IEEE
34-node residential test feeder.

Figure 2.4: The EV penetration impact with controlled (left side) and uncontrolled (right side) charging on a distribution grid [10]

The authors in [42] showed in their findings that by implying such EV charging strategies using Monte
Carlo technique could decrease the congestion problems due to the large penetration of EVs in the industrial
grid. The charging strategy is done by cutting the peak power in an EVs parking space during the day. More-
over, the peak consumption was reduced by up to 55%. In [43], it is found that stimulating the integration
between the RESs, EVs and the network may result in mitigating the grid violation. The study was done in
a 33-bus distribution network with V2G operation by implementing a Mixed Integer Non-Linear Program-
ming (MINLP) to obtain the minimum operational cost considering the distribution network constraints of
the grid, such as voltage magnitude & angle and the transformer loading limit.

2.4. OPTIMIZATION TECHNIQUE
Optimization is a process of finding the best possible solution for a specific situation under a group of con-
straints which are required to be satisfied. In the application of power system, the optimization technique
is generally used to obtain the most efficient operation between the three main parts: generation, transmis-
sion, and distribution [44]. There are several techniques of optimization to solve many different problems in
the power system, but the most applicable ones are, i.e. Linear Programming (LP), Nonlinear Programming
(NLP), Mixed Integer Linear Programming (MILP), and Mixed Integer Nonlinear Programming (MINLP) [44].
Table 2.1 shows the most used optimization model in the scope of the electrical power system. Additionally,
each of the optimization problem mentioned below will be discussed further in the following sections.
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Table 2.1: Types of optimization technique

Optimization Technique Objective Function Constraints
Decision Variables

Continuous Discrete
LP Linear Linear X -

NLP Non-Linear Non-Linear X -
MILP Linear Linear X X

MINLP Non-Linear Non-Linear X X

2.4.1. LINEAR PROGRAMMING (LP)
Linear Programming (LP) can be described as an optimization problem to maximize or minimize the linear
objective function which subject to linear equality or inequality constraints. The mathematical formulation
is written in eqs. 2.1 as follows.

minimize f (x)

subject to Ax ≤ b

lb ≤ x ≤ ub

(2.1)

where f (x) is a linear function and x is a linear constraint. The l b and ub are the lower and upper bound of the
variable x, respectively, in which give a limitation to the function. The linear constraints could be equalities
or inequalities where the feasible region is found.

2.4.2. NON-LINEAR PROGRAMMING (NLP)
Non-linear programming is an mathematical process of obtaining the optimal non-linear function within
a set of non-linear constraints. To define a satisfactory mathematical formulation, an MLP model usually
follow several rules, such as setting a logical initial value & variable limit, and scaling variables and equations.
Moreover, the NLP problem typically takes longer time to solve than the LP. The mathematical formulation is
basically the same as the LP, but using the non-linear objective and constraints.

2.4.3. MIXED INTEGER LINEAR PROGRAMMING (MILP)
MILP is mathematically similar as the previously discussed LP optimization technique. However, when deal-
ing with an MILP model, any decision variables should be constrained as integer values. Besides, the decision
variables could be discrete where the binary variables are introduced in this optimization problem.

2.4.4. MIXED INTEGER NON-LINEAR PROGRAMMING (MINLP)
MINLP is a mathematical optimization programming with discrete and continuous variables and nonlinear-
ities in the set of constraints and/or objective functions. MINLP is a combination between mixed integer
programming and non-linear programming. To understand how MINLP solve the non-linear problem, the
mathematical formulation in eqs. 2.2 is written as follows.

minimize f (x, y)

subject to g (x, y) ≤ 0

x ∈ X , y ∈ Y integer

(2.2)

where f (x, y) is a nonlinear objective function and g (x, y) is a nonlinear constraint function. The x and y
are the decision variables. The functions f (x, y) and g (x, y) are assumed to be convex and bounded over X
and linear in y . The constraints may contain equality and inequality equations which bound the feasible
solution. Therefore, the optimal solution of the optimization problem will be found in this boundary of the
feasible region.

2.5. CONCLUSION
A large penetration of uncontrolled EVs charging in the distribution grid could lead to several serious prob-
lems, such as severe undervoltage, large power losses, etc. This situation can be prevented by scheduling the
EVs charging, so that the EVs will not start charging shortly after being connected to the charger, or called as
smart charging. Moreover, the EVs can also act not only as loads, but they can also become dynamic storage
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in the distribution grid. This concept is known as a vehicle-to-grid (V2G) concept. V2G operation has several
benefits, for instance active power regulation, load balancing, storing RESs excess energy, etc.

Changing the strategy of EVs charging from the uncontrolled way into a smart charging scheme would
give both the technical and economic benefits for several parties. The authors in [34] showed in their findings
that by applying a smart charging process, the charging cost was decreased by 118.44%. Besides, enabling a
coordinated charging scheme could also avoid such a large voltage deviations in the distribution grid.

Furthermore, the previous related studies in [14] and [45] have shown that by implying the smart charging
scheme, it could provide an economic and technical benefits, respectively. The study in [14] found that the
total operating cost of EVs charging could be reduced by around 153.35%. Also, the author [45] proved in her
study that by implying a smart charging strategy in a distribution network could mitigate the grid violations,
such as the voltage deviations and the distribution transformer power limit. To provide a scientific contribu-
tion, this thesis project would combine two previous related studies which have been done in [14] and [45].
Therefore, both of the technical and economic aspect will be discussed further in this thesis. From the tech-
nical aspect, this thesis will include the grid constraints which is aimed to mitigate the grid violations. Also,
an economic analysis regarding the calculation of the total operational cost will be also included in this thesis
project.

By the end of this chapter, several optimization techniques have been discussed. One of the aforemen-
tioned optimization problem will be implemented in this thesis to achieve its objective. In addition, to select
which optimization model is suitable to solve the problem, the mathematical formulations needs to be first
defined. Therefore, the selection of the optimization model will later be chosen in the following chapter.



3
PROBLEM FORMULATION

NOMENCLATURE

INDEXES AND SETS

n Nodes, running from 1 to N

c Electric vehicles, running from 1 to C

t Time, running from 1 to T minutes

PARAMETERS

EV PARAMETERS

EC max
c,n

Maximum energy that can be stored in the cth EV at the nth node
for all time periods t [kWh]

P+,max
EV c,n

Maximum charging power of the eth EV at the cth bus and the nth node [kW]

P−,max
EV c,n

Maximum discharging (V2G) power from the cth EV at the nth node to the grid [kW]

EC ar r i val c,n Energy stored in the cth EV at the nth node at arrival time [kWh]

EC depar tur ec,n
Energy stored in the cth EV at the nth node at departure time [kWh]

∆PEV Maximum EV (dis)charging rate of change in power (ramp rate) per time step t [kW]

tar r i valc,n Arrival time of the cth EV at the nth node [minute]

tdepar tur ec,n Departure time of the cth EV at the nth node [minute]

ηEV EV (dis)charging efficiency [-]

15
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PV SYSTEM PARAMETERS

P max
PVn,t

Maximum DC power generated by PV system at the nth node during time period t [kW]

ηi nv Solar inverter efficiency [-]

DISTRIBUTION GRID PARAMETERS

P+,max
g r i dc,n

Maximum power drawn from the grid to each cth EV at the nth node [kW]

P−,max
g r i dc,n

Maximum power fed to the grid from each cth EV at the nth node [kW]

P nom
tr Nominal power of the distribution grid transformer [kW]

Pl oadn,t Local residential load power at the nth node during time period t [kW]

V nom
n Nominal voltage magnitude at each node [V]

Zn Cable impedance of a line that connects two neighboring nodes [Ω]

Gn,m Real part of the element in Ybus at the n row and m column [f]

Bn,m Imaginary part of the element in Ybus at the n row and m column [f]

λdeg EV’s battery degradation costs [e/kWh]

λPV t Marginal energy buying price from the PV system during time period t [e/kWh]

λG2V t Marginal energy buying price from the grid during time period t [e/kWh]

λF I T t Marginal energy selling price to the grid during time period t [e/kWh]

VARIABLES

ELECTRIC VEHICLE VARIABLES

EC c,n,t Energy stored in the cth EV at the nth node during time period t [kWh]

PEV c,n,t Total power exchange of the cth EV at the nth node during time period t [kW]

P+
EVc,n,t

Charging power of the cth EV at the nth node during time period t [kW]

P−
EVc,n,t

Discharging power of the cth EV at the nth node to the grid during time period t [kW]

PV SYSTEM VARIABLES

PPV −EVc,n,t

Power delivered from the PV system to the cth EV at the nth node
during time period t [kW]

PPV −g r i dn,t Power delivered from the PV system at the nth node to the grid during time period t [kW]
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DISTRIBUTION GRID VARIABLES

P+
g r i dn,t

Power drawn from the grid to the all aggregated EVs at the nth node during time period t [kW]

P−
g r i dn,t

Power fed to the grid from the all aggregated EVs at the nth node during time period t [kW]

Vn,t Voltage magnitude at the nth node during time period t [V]

θn,t Voltage angle at the nth node during time period t [rad]

Cch Charging costs from the grid and PV system [e]

Rdi s Revenues from discharging by V2G application and PV-to-Grid power [e]

TC Total operational costs (Cch −Rdi s ) [e]

BINARY VARIABLES

uc,n,t
Binary variable which determines whether the cth EV at the nth node
during time period t is available for charging (1) or not (0) [-]

vc,n,t
Binary variable which determines whether the cth EV at the nth node
during time period t is available for discharging (1) or not (0) [-]
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3.1. INTRODUCTION
In this chapter, the mathematical formulation of the optimization problem will be defined. Section 3.2
presents the constraints of EV, PV system and the distribution grid which are set to solve the optimization
problem. Then, the objective function of the optimization model will be formulated into mathematical equa-
tions. Lastly, the optimization technique will be selected based on the mathematical formulations of the
objective function and constraints.

3.2. MATHEMATICAL FORMULATION

3.2.1. ELECTRIC VEHICLE CONSTRAINTS

All modeled EVs contain Lithium-ion batteries. It is assumed that the EVs do not need to be fully charged
upon departure time. Moreover, the battery capacity during the departure time is also set from the beginning.
A single EV cannot be charged and discharged at the same time period t . It is only possible to charge single
EV at one specific charging station.

Eqs. 3.1 will make sure that the charging power P+
EV c,n,t and the discharging power for the V2G concept

P−
EV c,n,t are still within their respective bounds. The EV power is separated into two variables because the

discharging power for the V2G operation P−
EV c,n,t will affect the calculation of the operational cost which

includes the battery degradation costs.

0 ≤ P+
EV c,n,t ≤ uc,n,t ·P+,max

EV c,n
∀c,n, t

0 ≤ P−
EV c,n,t ≤ vc,n,t ·P−,max

EV c,n
∀c,n, t

(3.1)

Eq. 3.2 is constrained to avoid simultaneous charging and discharging of single EV at a certain charging
station.

uc,n,t + vc,n,t ≤ 1 ∀c, t (3.2)

To ensure the safety of operation, there will not be any charging or discharging process before the arrival of the
EV (tar r i valc,n ) or after the departure of the EV (tdepar tur ec,n ), hence, Eqs. 3.3 will be imposed on the model.
The connection of the EV is checked by analyzing if the present time is between the arrival and departure
time, so that the EV is available to either charge or discharge as shown in Fig. 3.1.

uc,n,t = 0 if t < tar r i valc,n or t > tdepar tur ec,n ∀c,n

vc,n,t = 0 if t < tar r i valc,n or t > tdepar tur ec,n ∀c,n
(3.3)

Figure 3.1: Checking the EV connection
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POWER BALANCE

The total power exchange of the EV is constrained as follows.

PEVc,n,t = ηEV ·P+
EVc,n,t

− 1

ηEV
·P−

EVc,n,t
∀c,n, t (3.4)

Subject to:
P+

EVc,n,t
≥ 0 ∀c,n, t

P−
EVc,n,t

≥ 0 ∀c,n, t

where ηEV is the (dis)charging efficiency of the EV. The efficiency of charging and discharging are assumed
constant in any different value of power. The authors in [46] showed that a semi-fast 22 kW charger (or called
as Electic Vehicle Supply Equipment, EVSE) has an efficiency of 92% for charging and V2G application. Hence,
this value is taken into consideration as the efficiency of (dis)charging of the EV.

To avoid a large variation in the EV charging rate (both charging and discharging) at each timestep which
is unwanted, a rate of change is contrained as follows [47].

P+
EVc,n,t+1

−P+
EVc,n,t

≤∆PEV ∀c,n, t

P−
EVc,n,t+1

−P−
EVc,n,t

≤∆PEV ∀c,n, t

P+
EVc,n,t

−P+
EVc,n,t−1

≥−∆PEV ∀c,n, t

P−
EVc,n,t

−P−
EVc,n,t−1

≥−∆PEV ∀c,n, t

(3.5)

where∆P is a defined limit, in [kW], by which the charging rate can vary, compared to the charging rate at the
previous timestep. The (dis)charging ramp rate is limited only by the EV charger maximum power which is
22 kW [48]. However, due to a security reason, the ramp rate limit is decreased by 10% which amounts to 20
kW.

ENERGY STORED IN THE EV BATTERY

To calculate the SOC of the EV’s battery during time period t , the previous SOC at time period t − 1 has to
be added. Therefore, the energy content of the cth EV at the nth node during time period t is constrained as
follows.

EC c,n,t = EC c,n,t−1 +PEV c,n,t ·∆t for tar r i valc,n < t < tdepar tur ec,n ∀c,n

EC c,n,t = EC depar tur ee,c,n for t > tdepar tur ec,n ∀c,n

EC c,n,t = 0 for t < tar r i valc,n ∀c,n

(3.6)

where ∆t = timestep (1 minute). The EV’s battery should not be charged over its maximum energy rating to
protect the battery from overcharging nor discharged below 20% of its maximum energy rating [49]. There-
fore, the energy content for each EV is constrained as follows.

0.2 ·E max
e,c,n ≤ Ee,c,n,t ≤ E max

e,c,n ∀c,n, t (3.7)

EC c,n,t = EC ar r i val c,n if t = tar r i valc,n ∀c,n

EC c,n,t = Edepar tur ec,n
if t = tdepar tur ec,n ∀c,n
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3.2.2. PV SYSTEM CONSTRAINTS

In the distribution network, a 32 kWp PV system is installed at every node. The PV power can both supply the
EVs at the same node and feed its energy back to the distribution network. A solar inverter is equipped to the
output of PV system. It is assumed that the PV system is using SMA Sunny Tripower 30000TL-US which has
an efficiency of 98% [50]. Therefore, the PV power balance can be written as follows.

1

ηi nv
·
{

C∑
c=1

(
PPV −EV c,n,t

)+PPV −g r i d n,t

}
≤ P max

PV n,t
∀t (3.8)

Subject to:

PPV −EVc,n,t ≥ 0 if tar r i valc,n < t < tdepar tur ec,n ∀c,n

PPV −EVc,n,t = 0 if t < tar r i valc,n or t > tar r i valc,n ∀c,n

PPV −g r i dn,t ≥ 0 ∀c,n, t

where PPV −EVc,n,t and PPV −g r i dn,t are the PV power used to charge the cth EV and fed to the distribution grid
at the nth node during time period t , respectively.

3.2.3. DISTRIBUTION GRID NETWORK CONSTRAINTS

The typical Dutch Low Voltage (LV) distribution grid with the voltage level of 230/400 V (50 Hz) will be im-
plied for the optimization model of EVs charging in an EV-PV-Grid system. The model incorporates a 400
kVA, 10/0.4 kV step-down transformer. Separate power converters are implemented to integrate the EVs, PV
system and the grid which are connected to a node. The PV system is connected to a solar inverter which con-
vert DC to AC power which contains maximum power point tracking (MPPT). The EV is linked to a semi-fast
AC charger for EVs. Furthermore, the model structure is based on CIGRE benchmark low voltage distribution
network including all of its characteristics and specifications [11]. Moreover, the model implements a radial
layout.

GRID MONITORING

The distribution network includes the PV system, local residential load and EVs. To ensure that the trans-
former will not be overloaded, the power which is fed to and drawn from the grid is constrained as follows.

0 ≤
N∑

n=1

(
P+

g r i d n,t
+Pl oadn,t

)
≤ P nom

tr ∀n, t

0 ≤
N∑

n=1

(
P−

g r i d n,t
+PPV −g r i dn,t

)
≤ P nom

tr ∀n, t

(3.9)

It is assumed that the local residential load at each node are supplied only by the grid as it is the DSO’s re-
sponsibility to fulfill the base load consumption as it can be clearly seen in Eq. 3.9. Moreover, the PV system
at each node only produces active power and no reactive power as well as the local load which only consume
active power (p.f. = 1). As previously stated in Eq. 3.8, the PV system will feed its power to the distribution grid
only when it has excess power for charging the aggregated EVs at one node. Furthermore, the nominal power
of the grid transformer, P nom

tr , is 400 kVA which is based on the CIGRE benchmark on low voltage microgrid
network [11].

Based on mandatory European standard EN50160 [51], the voltage deviation which is allowed, is 10%
above or under the nominal voltage and constrained as follows.

0.9 ·V nom
n ≤Vn,t ≤ 1.1 ·V nom

n ∀n, t (3.10)

where the nominal voltage, V nom
n , is set at 400 V for the low voltage distribution system.
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Figure 3.2: Schematic of implemented model

POWER FLOW BALANCE
For the grid used in the model shown in Fig. 3.2, the Kirchoff’s current law (KCL) equations are:

Ig r i d = V1 −V2

Z1

V1 −V2

Z1
= V2 −V3

Z2
+ Iload1

V2 −V3

Z2
= V3 −V4

Z3
+ Iload2

V3 −V4

Z3
= Il oad3

(3.11)

Eq. 3.11 can be rewritten in matrix notation as follows.
Ig r i d

Iload1

Iload2

Iload3

=


1

Z1
− 1

Z1
0 0

1
Z1

− 1
Z1

− 1
Z2

1
Z2

0

0 1
Z2

− 1
Z2

− 1
Z3

1
Z3

0 0 1
Z3

− 1
Z3




V1

V2

V3

V4

 (3.12)

which equals to 
Ig r i d

Iload1

Iload2

Iload3

=


Y11 Y12 Y13 Y14

Y21 Y22 Y23 Y24

Y31 Y32 Y33 Y34

Y41 Y42 Y43 Y44




V1

V2

V3

V4

 (3.13)

where Y11 =G11 + j B11 and it can be rewritten as follows.

Yn,m =Gn,m + j Bn,m (3.14)

where Gn,m and Bn,m are the real and imaginary part of the element in Ybus at the n row and m column,
respectively.

An AC model power flow in the distribution grid is implemented in optimization model. Then, the total
active power at the node nth can be calculated below.

∑
Pdr awnn,t −

∑
P f ed n,t

=
N∑

m=1
Vn,t ×Vm,t

(
Gn,m cos

(
θn,t −θm,t

)+Bn,m sin
(
θn,t −θm,t

)) ∀t ;m 6= n (3.15)

where
∑

Pdr awnn,t and
∑

P f ed n,t
are the total active power which is drawn from and fed to the grid, respec-

tively. Therefore, Eq. 3.15 is expanded and written as follows.(
P+

g r i d n,t
+Pload n,t

)
−

(
P−

g r i d n,t
+PPV −g r i d n,t

)
=

N∑
m=1

Vn,t ×Vm,t
(
Gn,m cos

(
θn,t −θm,t

)+Bn,m sin
(
θn,t −θm,t

)) ∀t ;m 6= n

Subsequently, the power balance of the overall system can be derived by using equations mentioned pre-
viously.

N∑
n=1

C∑
c=1

(
PPV −EV c,n,t

)+ N∑
n=1

(
P+

g r i d n,t
−P−

g r i d n,t

)
=

N∑
n=1

C∑
c=1

(
P+

EV c,n,t −P−
EV c,n,t

)
∀t (3.16)
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3.2.4. OBJECTIVE FUNCTION
As all of the constraints have been discussed previously, finally the objective function of the optimization
model is presented in this section. The goal of this thesis is to find the most possible minimum operational
cost of the EVs charging from PV system in a low voltage distribution network. Furthermore, the obtained ob-
jective function may differ for each different identified case studies. Therefore, the mathematical formulation
of the objective function is explained below.

MINIMIZE THE TOTAL OPERATIONAL COST
In this thesis, the energy price that is being implied to the optimization model is dynamic which is changing
every one hour based on APX SPOT Power NL Day Ahead according to the related previous study [3]. The
optimization will tend to charge the EVs from the grid when the buying price is low and apply the V2G concept
when the selling price is high. However, the authors in [52] showed in their results that the utilization of V2G
technology may result to a battery degradation. Therefore, a battery degradation cost will be introduced in the
optimization model with a constant value of $0.042/kWh or approximately e0.038/kWh [52]. The other way
to charge the EVs can also be done by drawing the PV power which has a low constant price [53]. The detailed
explanation on the energy price will be further discussed in 4.1.5. In addition, to add up more revenues in a
one day operation, the PV power feed its energy back to the grid when the energy selling price is high. Then,
the charging costs and revenues made by selling the PV power to grid or by utilizing V2G is written as follows
in Eqs. 3.17 and 3.18.

CHARGING COSTS FROM GRID AND PV POWER

Cch =
T∑

t=1

N∑
n=1

λG2V t ·P+
g r i d n,t

·∆t +
T∑

t=1

N∑
n=1

C∑
c=1

λPV t ·PPV −EV c,n,t ·∆t (3.17)

REVENUES FROM V2G AND SELLING PV POWER TO GRID

Rdi s =
T∑

t=1

N∑
n=1

(
λF I T t −λdeg

) ·P−
g r i d n,t

·∆t + (
λF I T t −λPV t

) ·PPV −g r i d n,t
·∆t (3.18)

TOTAL OPERATIONAL COSTS

min TC =Cch −Rdi s (3.19)

min T C =
T∑

t=1

N∑
n=1

λG2V t ·P+
g r i d n,t

·∆t +
T∑

t=1

N∑
n=1

C∑
c=1

λPV t ·PPV −EV c,n,t ·∆t

−
T∑

t=1

N∑
n=1

(
λF I T t −λdeg

) ·P−
g r i d n,t

·∆t −
T∑

t=1

N∑
n=1

(
λF I T t −λPV t

) ·PPV −g r i d n,t
·∆t

(3.20)

3.3. CONCLUSION
This chapter is considered as the main focus of this thesis work. The mathematical equations including the
decision variables, the system constraints, and the objective function need to be defined as realistic as pos-
sible. This formulation represents the real-life condition based on its technical assumption. Moreover, after
determining the aforementioned objective function of the proposed model, it is required to choose which
optimization model is suitable to solve the problem. Therefore, an MINLP optimization technique, in which
a combination between MILP and NLP, is selected in this thesis. The MINLP is mainly employed in schedul-
ing and controlling the EVs charging under a set of technical constraints such as the bus voltage magnitude
& angle boundaries and the grid transformer power limit. The distribution networks used in this thesis are
constrained to determine the AC model power flow in the grid. The main reason of choosing the MINLP is
due to the use of binary variables and the non-linear constraints as seen on Eqs. 3.2 and 3.15, respectively.
Finally, to understand the process on how the proposed power management system is implemented to solve
the optimization problem, Fig. 3.3 is depicted.
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Figure 3.3: Flowchart of the proposed power management system





4
DATA CHARACTERISTICS AND CASE

STUDIES

In this study, to check the performance of the proposed power management system, several parameters need
to be taken into consideration based on various real-life case studies. Accordingly, the optimization model
can be evaluated realistically. Section 4.1 discusses about how input parameters data are used in this the-
sis. Then, section 4.2 presents all identified case studies which will be used to evaluate the behavior of the
proposed model. Moreover, this study will consider four different PV profiles and varied EV penetrations.

4.1. PARAMETERS DATA
Before performing the simulation of the optimization model, several input parameters data need to be ob-
tained. The following sections will describe in detail how the input parameters get acquired.

4.1.1. DISTRIBUTION GRID CHARACTERISTICS
The distribution network that is applied to the optimization model is based on the CIGRE benchmark of
low voltage distribution network [11]. The characteristics of the grid are modeled as real as possible. The
grid configuration is a radial architecture. At each node, several semi-fast EV chargers with 22 kW maximum
(dis)charging power can be connected. These chargers are generally known and installed on the road in
The Netherlands [54–56]. Each node of the distribution network also consists of the distributed generation
which is PV power generation and the residential load as base load. To make into a more real-life situation,
cable impedance between neighboring nodes are taken into account as seen in Table 4.1. Moreover, the grid
architecture is depicted in Fig. 4.1.

4.1.2. RESIDENTIAL LOAD DATA
The local load data which is located at each node is based on the CIGRE low voltage microgrid network bench-
mark [11]. The authors in [12] observed that typically the transformer in a distribution network is half-loaded.
Hence, the load scale is based on the average number of households connected to the typical Dutch distri-
bution network which is 50-100 households [12]. A total number of 60 households is selected for this thesis
which is divided into 20 houses per node. Furthermore, the average peak load of each typical Dutch house is
1.1 kVA. Hence, the daily residential load profile per node is illustrated in Fig. 4.2.

Table 4.1: Line characteristics based on CIGRE benchmark [11]

Line type Distance [km] Impedance [Ω]

Slack Node - Node 1 (Z01) 0.8 0.2187

Node 1 - Node 2 (Z12)
Underground Line

(3x15 mm2 Al + 5 mm2 Cu)
0.6 0.164

Node 2 - Node 3 (Z23) 0.7 0.1912

25
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Figure 4.1: The implemented model of distribution network based on CIGRE benchmark [11]

Figure 4.2: Dutch daily residential load profile per node (consisting of 20 houses) [12]

4.1.3. EV CHARACTERISTICS

The proposed power management system of EVs charging in this thesis require several EV input data such as
arrival & departure time and the battery’s SOC during arrival & departure time. Hence, several literature are
taken into consideration to make these parameters as realistic as possible.
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Figure 4.3: Charging behavior of the Dutch semi-public charging stations [13]

Table 4.2: Top Sold EVs’ technical specification

EV types
Tesla Model S Nissan Leaf Renault ZOE

Battery capacity [kWh] 90 30 22
Maximum charging power [kW] 120 5 43
Amount registered up to June 2018 [57] 9,661 3,351 2,993

CHARGING BEHAVIOR

The author in [13] found in his result that in 1198 semi-public charging points in the Netherlands, the EVs
charging happen mostly in the morning at 08.20 AM and ends at 06.20 PM as seen in Fig. 4.3. Semi-public
charging station is an EV charging point where is located in office area, but can also be used for public. There-
fore, these parameters is considered to be used in this study.

BATTERY CAPACITY

There are so many different types of EVs in the Netherlands, but the top-three sold EVs are chosen as the
input parameters for this study which is shown in Table 4.2. It is assumed in this study that every EV is not
guaranteed to have a maximum battery capacity upon leaving the charging station as previously stated in
section 3.2.1.

4.1.4. PV SYSTEM PROFILE

At every node of the distribution network, a PV system is installed to enhance the integration of EVs charging
from the grid. The installation of the PV system can improve the revenue of the system which may lead to de-
creasing the total operational cost. Therefore, the PV system need to be sized adequately. To make the model
as realistic as possible, the PV generation profile used in this thesis is based on [58] with the irradiance data
taken from Royal Dutch Meteorological Institute (in Dutch: Koninklijk Nederlands Meteorologisch Instituut,
KNMI) [59] with 1 minute time resolution. For the Summer, Winter, Spring and Autumn profile is taken in the
first week of June, January, March and September, respectively. The study conducted in [58] simulated a 10
kW PV system and found a maximum annual energy yield which is 10,890 kWh over three years in 2011-2013.

To be implemented in this study, the PV system need to be scaled realistically. In the Netherlands, the four
different season have variations in global irradiation. This variation may affect the local residential profile for
the PV penetration [12]. Taking into account that there there are 20 households at every node as previously
mentioned in section 4.1.2 and based on data from [12], it is found that every household with terraced house
type has rated peak power 1.60 kWp. Then, assuming that every house has installed their own PV array, there-
fore the total amount of installed PV power generation at every node is 20×1.6 kWp ≈ 32kWp. Consequently,
the PV system is scaled to 32 kWp of rated peak power per node of the distribution network. To sum up, Fig.
4.4 illustrates the different PV generation profile in the different season of 30 kWp installed at every node of
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Figure 4.4: PV profiles at each node for different season

the distribution network.

4.1.5. ENERGY PRICE
Nowadays, many households in the Netherlands pay the same electricity cost during the entire day by per
kWh of energy they consume. The Dutch electricity tariff amounts to approximately e0.16/kWh. Further-
more, the consumer of the electricity can also become a producer to receive money by selling back its energy
from the RESs, for instance rooftop PV on households. However, the Netherlands does not make use of such
a Feed-in Tariff, but rather s net-metering. Net-metering is a method that the electricity consumer can feed
its generated renewable energy back to the grid where it can decrease the total consumption at the end of the
month.

In addition, this thesis will imply a dynamic tariff to make a deeper understanding how the optimization
model can work during fluctuating price during the whole day. Because this strategy is not yet carried out in
the Netherlands, the data will be acquired from the scaled day-ahead hourly energy prices from APX Power
NL. The author of [14] in a related previous study has already scaled the hourly energy price based on the data
from APX Power as shown in Fig. 4.5. To apply such a financial stimulus, 90% of the dynamic energy price is
selected to be applied for this study. Besides, the marginal costs of the PV generation needs to be considered
as well. The authors of [53] showed in their findings that the marginal costs would bee0.097/kWh for rooftop
PV system in the Netherlands. Therefore, this cost will be included in this study as depicted in Fig. 4.5.

4.2. CASE STUDIES
To assess the performance of the proposed power management system of EVs charging, several case studies
based on previously mentioned data characteristics are simulated. First, four different season are examined
to see the impact of the PV penetration to the grid. Then, the various number of EVs per node is considered
in order to check when the optimization model results result in an infeasible solution. Then, a comparison
between including and excluding the grid constraints is simulated which aims to study the impact on the
total operational cost. For the no-grid constraints case, Eqs. 3.9 and 3.10 are removed from the optimization
model. Besides, the EVs arrival & departure time and the initial & final SOC of each EV are first randomly cho-
sen and then keep them at a fixed value to analyze the simulation results in a feature-for-feature comparison.
Finally, the case studies simulated in this thesis is shown in Table 4.3.

4.3. CONCLUSION
The input parameters which are required to evaluate the performance of the proposed power management
system were thoroughly discussed in this chapter. The parameters were acquired from the realistic data under
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Figure 4.5: Energy price for one day based on APX Power NL data, reproduced from [14]

Table 4.3: Overview of case studies

Case Study PV System Profile Number of EVs per node Grid Constraints

1A

Summer

2
X
-

1B 5
X
-

1C 7
X
-

1D 10
X
-

2A

Winter

2
X
-

2B 5
X
-

2C 7
X
-

2D 10
X
-

3A

Spring

2
X
-

3B 5
X
-

3C 7
X
-

3D 10
X
-

4A

Autumn

2
X
-

4B 5
X
-

4C 7
X
-

4D 10
X
-
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several fundamental assumptions. The following explanations concludes the main remarks regarding the
input parameters.

Firstly, the distribution network employed in this thesis is based on the CIGRE benchmark on the low
voltage distribution grid. The distribution transformer is rated at 400 kVA with three buses connected to a
single line. A line impedance between two neighboring nodes is also taken into consideration. Moreover,
a 32 kW PV system, the residential loads and several EVs are connected to each node of the distribution
line. Second, the residential load data is also taken from the CIGRE benchmark. Typically, 50-100 Dutch
households with an average peak load of 1.1 kVA are supplied from the 400 kVA distribution grid. Then, 60
households which is divided proportionally at every node, is selected to be implied in the model. Thirdly,
the charging behavior of the Dutch EV owners is taken from the study in [13]. It is found that the EVs mainly
charge in the morning at around 08.20 AM and stop at 06.20 PM in the evening. In addition, the top sold EVs
in the Netherlands, i.e. Tesla Model S, Nissan Lead, and Renault Zoe are selected to be used in this study.
Fourthly, the PV system installed at each node needs to be sized and scaled sufficiently. The irradiance data
of the whole year is taken from Royal Dutch Meteorological Institute. Lastly, a dynamic price is used in this
thesis. The price is based on APX Power Hourly NL. It is assumed that every season uses the same price profile.

Furthermore, to combine all of the previously mentioned input parameters data. Several case studies are
designed to test the performance of the proposed power management system of EVs charging from PV system
in a low voltage distribution network. Hence, a total of 32 case studies are presented in Table 4.3.



5
SIMULATION RESULTS AND ANALYSIS

In this chapter, the simulation results from all identified case studies are presented. All mathematical formu-
lation discussed in section 3.2 are simulated by using General Algebraic Modelling System (GAMS) version
24.9.2 software and then plotted in MATLAB. Every case study discussed in this chapter consists of two differ-
ent studied case which are the with-grid and no-grid constraints cases. Furthermore, a Discrete and Contin-
uous Optimizer (DICOPT) solver is used to solve the MINLP model. The simulation results for case studies
1A-1D, 2A-2D, 3A-3D and 4A-4D which has been discussed previously are presented in section 5.1, 5.2, 5.3
and 5.4, respectively. The optimal solution which is obtained for all identified case studies are reached with a
relative gap of 0.1%. Moreover, all plots of the results will not be shown here, but they can be found further in
Appendix A.

5.1. SUMMER PV PROFILE
This section will evaluate the performance of the proposed power management system in a one-day opera-
tion during summer. The summer PV profile is considered as the best case study as it is more profitable to
increase the operational revenues by selling the excess PV energy to the distribution grid. Besides, the total
energy yield of PV production during summer case study is 654.45 kWh.

5.1.1. RESULTS OF CASE STUDY 1A (SUMMER, 2 EVS PER NODE)
This section presents the result of case study 1A which employs 2 EVs per node. Fig. 5.1 and 5.2 illustrates
the one-day operation of EVs charging with-grid and no-grid constraints, respectively. It is clearly seen that
in the morning between 08.30 AM and 09.00 AM, when the EVs arrive at the charging station, they started to
discharge their battery as the energy selling price is very high. The same reason comes also to the PV power
allocation where it tends to sell its energy back to the grid rather than feeding its energy to charge the EVs
as depicted in Fig. A.2. On the other hand, at the end of the day starting from 02.00 PM, when the energy
price is low, the PV power is preferable to feed its power to charge the EVs where λPV t is always lower than
λG2V t . It can be said that the PMS decided to delay the charging of EVs when the energy price is low. During
investigation, both graphs of Fig. 5.1 and 5.2 looks similar, the fact that it is supported by the simulation
results shown in Table A.1. Besides, the PV power used for charging the EVs in the with-grid constraints case
is the same as the no-grid constraints which amounts to 25.41%. As a result, the total operational cost of both
scenarios are the same, in whiche-64.82 that means the aggregator as the EVs fleet operator earn money for a
one-day operation. This result has shown that an integration between EVs, PV system and grid is a promising
potential to be employed in real life.

Fig. 5.3 displays the aggregated of all EVs power at all nodes and the aggregated EVs connected to each
node. It is observed that the EVs charging behavior is closely similar at every node. This decision could hap-
pen due to the low penetration of EVs that still alleviate the distribution network constraints. As previously
mentioned, the EVs are postponed to be charged during the peak price to reduce the charging costs. In the
morning, it is more profitable to discharge via V2G technology when the energy price is significantly high.

As seen on Fig. 5.4, having a high penetration of PV generation may cause the voltage to rise. The end
of the feeder seems to have the most severe impact. However, installing more PV system in the distribution
network can bring benefits in which more number of EVs can be connected without arising the grid violations.

31
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Figure 5.1: Power of overall system for case study 1A (With-Grid Constraints)

Figure 5.2: Power of overall system for case study 1A (No-Grid Constraints)
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Figure 5.3: Aggregated EV power at all nodes for case study 1A (With-Grid Constraints)

This positive effect is proven in case study 1D that even connecting 10 EVs per node, in total of 30 EVs, the
MINLP model can still come to a feasible and optimal solution. Moreover, as illustrated in Fig. 5.4, when the
EVs are being charged starting at 02.00 PM, the voltage of each node starts to drop. As a result, node 3 has the
worst impact due to the existence of line impedance between the neighboring nodes.

5.1.2. RESULTS OF CASE STUDY 1B (SUMMER, 5 EVS PER NODE)

This section presents the result of case study 1B which employs 5 EVs per node. Fig. 5.5 and 5.6 shows the
operation in one-day of EVs charging with-grid and no-grid constraints, respectively. To drastically reduce the
total operational costs, the power management system determines to discharge all of the EVs in the morning
when the marginal cost of grid energy is high. Then, the EVs are postponed to charge starting from 12.00 PM
when the energy price is inexpensive. During this range of time, all of the PV production are used to charge the
EVs. The power from the grid is also drawn in combination with the PV power to charge the EVs represented
by the red line in Fig. 5.5. Also, the PV power allocated for the EVs is similar for both with-grid constraints
and no-grid constraints studied case that equals 48.72%. To have a more extending understanding on the
PV power allocation, Fig. A.6 is depicted. In addition, considering the distribution network constraints may
add up the total operational cost by 1.43% compared to no distribution network constraints. This result is
supported on Table A.1.

Fig. 5.7 shows the aggregated of all EVs power at all nodes and the aggregated EVs connected to each
node. Every node of the distribution grid seems to have a typical charging power behavior where the power
of each node is around 22 kW, in total up to 66 kW. As previously mentioned, it can also be seen that the PMS
procrastinates the EVs charging until the energy price is lower than in the morning. Typically, the model with
no-grid constraints studied case has the same charging power manner as seen in Fig. A.5.

Fig. 5.8 shows the voltage profile at each node. During observing the graph, it is seen that at 12.00 PM,
the voltage at node 3 which is at the end of the feeder has the worst voltage drop. However, it still lay within
the limit of the allowable voltage deviation. The power drawn from the grid to charge the EVs at each node
has a different time range. At node 1, 2 and 3, the PMS starts to draw more grid power at 03.00 PM, 02.00 PM
and 12.00 PM, respectively. Therefore, it can be said that the PMS decides to take the grid power at different
nodes alternately due to avoiding the grid violations. In addition, the voltage at node 3 is always staying at
the border of the lower limit because of the longer distribution line to reach node 3. On the contrary, while
without considering the distribution network constraints, the PMS allows the EVs to draws the same amount
of power from the grid at each node as depicted in figureA.5, but it will lead to unwanted behavior.
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Figure 5.4: Voltage magnitude at all nodes for case study 1A (With-Grid Constraints)

Figure 5.5: Power of overall system for case study 1B (With-Grid Constraints)
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Figure 5.6: Power of overall system for case study 1B (No-Grid Constraints)

Figure 5.7: Aggregated EV power at all nodes for case study 1B (With-Grid Constraints)
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Figure 5.8: Voltage magnitude at all nodes for case study 1B (With-Grid Constraints)

5.1.3. RESULTS OF CASE STUDY 1C (SUMMER, 7 EVS PER NODE)
The current section outlines the result of case study 1C which employs 7 EVs per node, in a total of 21 EVs.
Fig. 5.9 and 5.10 shows the entire day operation of EVs charging considering the grid and no-grid constraints,
respectively. For the same reason as previous case study 1C, the PMS allows the EVs to discharge its bat-
tery during the morning and charge during the afternoon when the price is low. It is found that considering
the grid constraints may result in increasing the operational cost by 22.12% when compared to no-grid con-
straints as shown on table A.1. Moreover, the PV power apportioned to the EVs equals 49.94% which is slightly
higher than without considering grid constraints by 2.50%. Fig. A.10 and A.11 are depicted to have a deeper
observation of the PV power allocation.

The aggregated all EVs power at all and each node are illustrated in Fig. 5.11. It is observed that at node
3, the end of the feeder, the PMS reduces the amount of charging power of the aggregated EVs. In addition,
postponing the EVs charging until the low energy price is decided to have minimum charging costs. As seen
in Fig. 5.11, at node 2 and 3, there is no discharging behavior. This phenomenon happens because if the EVs
at node 2 and 3 are discharged via V2G, then the EVs need to draw lots of grid power during the valley period,
so that it may lead to a severe undervoltage especially at the end of the feeder. Having the same argument
as the previous case study 1B, the EVs charging power at each node for the no-grid constraints case is similar
because it does not consider the voltage drop due to line impedance as shown in Fig. A.9.

Fig. 5.12 shows the voltage profile at each node over one-day operation. At node 1, the PMS allows the
EVs to charge from the grid with higher power than at node 2 and 3 because the voltage drop will not be
very much. Differently, at the end of the feeder, the EVs have to stop drawing power from the grid; hence it
is preferable to charge by using the PV generation in order to prevent the stress on the distribution line as
depicted further in Fig. A.10.

5.1.4. RESULTS OF CASE STUDY 1D (SUMMER, 10 EVS PER NODE)
This section presents the result of case study 1D which employs 10 EVs per node, in a total of 30 EVs. Fig. 5.13
and 5.14 show the one-day operation of EVs charging considering the grid and no-grid constraints, respec-
tively. Upon observing the graph, there is no V2G appeared in a condition where the system is considering
the distribution network constraints. Furthermore, the total operational cost is increased by 113.20% com-
pared to no-grid constraints studied case. The PV self-consumption in the with-grid constraints case which
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Figure 5.9: Power of overall system for case study 1C (With-Grid Constraints)

Figure 5.10: Power of overall system for case study 1C (No-Grid Constraints)
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Figure 5.11: Aggregated EV power at all nodes for case study 1C (With-Grid Constraints)

Figure 5.12: Voltage magnitude at all nodes for case study 1C (With-Grid Constraints)
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Figure 5.13: Power of overall system for case study 1D (With-Grid Constraints)

amounts to 62.22% is higher than the no-grid constraints case. Otherwise, in the no-grid constraints case for
a different case study, the PMS always allows to discharge the EVs in the morning and re-charge its battery in
the afternoon. It can be concluded that by having the same PV generation profile, the higher EV penetration
is, the less viability to utilize the V2G operation.

The charging manner of all EVs at each node is depicted in Fig. 5.15. The charging power of all aggregated
EVs is gradually increasing by the time. The peak power which amounts approximately 85 kW reaches during
the noon when the energy price is low. To alleviate stress on the grid, the PMS decide to draw more power
firstly at the first node, then the third node and last the first node.

The voltage profile at each node is illustrated in Fig. 5.16. As shown in the graph, in the morning around
10.00 AM, the EVs at the third node starts charging by using PV power. This strategy could bring a positive
effect on the grid where the overvoltage affected by the PV penetration can be reduced since some of its power
is being used to charge the EVs. Another important observation is found at 12.00 PM where the second node
starts drawing more power than the other nodes. In addition, the voltage at node 3 is laying over the allowable
lower boundary for the whole day which amounts to 90% of the nominal voltage.

5.2. WINTER PV PROFILE
The current section will assess how the proposed power management system behave in a one-day operation
during winter. The winter PV profile is regarded as the worst case study as it comes to an infeasible solution
even before implying a high EV penetration to the distribution grid. In addition, during winter with a low
level of irradiation, the total energy yield of PV production over the entire day amounts to 28.40 kWh.

5.2.1. RESULTS OF CASE STUDY 2A ( WINTER, 2 EVS PER NODE)
This section will discuss the results of case study 2A, in which employing 2 EVs at each node on the distribu-
tion network. Fig. 5.17 and 5.18 depicts a one-day operation of EVs charging considering the grid and no-grid
constraints, respectively. Likewise as during summer profile, the power management system delays to draw
power from the distribution network until the afternoon when the energy price is getting low. There is no V2G
operation happen in the with-grid constraints case, while V2G always takes place in the no-grid constraints
case when the price of grid energy is in the peak value as obviously illustrated in Fig. 5.18. Moreover, the PV
self-consumption is significantly high which equals 71.96%. Finally, the total operational cost of the with-grid
constraints studied case increases by 20.38% when compared to the no-grid constraints case as presented on
table A.1.

Fig. 5.19 illustrates the aggregated EVs charging power at each node. During the day, all aggregated EVs
draw power from the grid around 15 kW. The peak power happens at 03.00 PM which amounts to approxi-
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Figure 5.14: Power of overall system for case study 1D (No-Grid Constraints)

Figure 5.15: Aggregated EV power at all nodes for case study 1D (With-Grid Constraints)
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Figure 5.16: Voltage magnitude at all nodes for case study 1D (With-Grid Constraints)

Figure 5.17: Power of overall system for case study 2A (With-Grid Constraints)
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Figure 5.18: Power of overall system for case study 2A (No-Grid Constraints)

mately 25 kW. Then, as seen on the behavior of EVs charging, the PMS decide to draws more power the grid
for each node in sequence, firstly at node 3, then node 2, and lastly node 1.

The voltage profile at each node is presented in Fig. 5.20. During winter, a serious overvoltage condition
due to the PV penetration would never happen because the PV system only produces small amounts of en-
ergy. As seen in Fig. 5.20, the PMS decides to draw power from the grid at each node consecutively. Firstly,
the third node draws more power, followed by the second and first node. In short, the worst voltage devia-
tion still happens at the third node which is the end of the feeder as it has the longest line distance from the
distribution transformer.

5.2.2. RESULTS OF CASE STUDY 2B ( WINTER, 5 EVS PER NODE)
This section describes the results of case study 2B, which connects 5 EVs at each node on the distribution
grid. The results are presented in Fig. 5.21, A.21 and A.22. In this case study, the MINLP problem leads to an
infeasible solution. Therefore, only the no-grid constraints case simulation results are shown. However, the
author tried to find a way how to solve the MINLP model so that it may come to an optimal solution. Once
the author changes the lower limit of the allowable voltage deviation to 87%, the model could result in an
optimal solution. Also, this result is not included in this thesis results as it already changed the previously
defined parameters and system constraints. Then, to identify at what number of EVs per node could result in
an infeasible solution, the author did a trial & error method. Furthermore, the author tested the simulation
with 3 EVs per node, and the MINLP model leads to an optimal solution, in which the total operational cost is
e30.00 as depicted in Fig. 5.47. This additional test is intended to find more data on the total operational cost
which finally defines the operational cost comparison between the with-grid and no-grid constraints studied
cases. Besides, it is found that by connecting 4 EVs per node, it has already come to an infeasible solution.
In short, the following case study 2C and 2D which employs 7 EVs and 10 EVs per node, respectively for the
with-grid constraints case will not reach an optimal solution, while for the no-grid constraints studied case,
it always comes to an optimal solution.

As shown in Fig. 5.21, the behavior is completely similar to during summer, the PMS allows the EVs to
operate V2G in the morning when the energy price at its highest value. Then, it postpones charging the EVs
until in the afternoon when the price is the lowest during the day. Furthermore, the PV self-consumption
equals 38.42% where it is more profitable to sell more PV energy back to the grid.

5.2.3. RESULTS OF CASE STUDY 2C ( WINTER, 7 EVS PER NODE)
As previously discussed in the case study 2B, the MINLP model comes to an infeasible solution; hence only
the no-grid constraints case is analyzed here. Fig. 5.22, A.24, and A.25 are presented. The overall system
behavior is the same as the previous case study 2B. In addition, the PV power used for EVs charging is also
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Figure 5.19: Aggregated EV power at all nodes for case study 2A (With-Grid Constraints)

Figure 5.20: Voltage magnitude at all nodes for case study 2A (With-Grid Constraints)
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Figure 5.21: Power of overall system for case study 2B (No-Grid Constraints)

similar to the case study 2B, in which 38.42%.

5.2.4. RESULTS OF CASE STUDY 2D ( WINTER, 10 EVS PER NODE)
Similarly, as the previous case study 2C, the MINLP problem cannot find the optimal solution; therefore only
the no-grid constraints studied case result is presented in this section. The result is illustrated in Fig. 5.23,
A.27, and A.28. It is shown that the higher a number of EVs connected per node is, the higher power fed to the
grid for the V2G operation in the morning when the EVs arrive at the charging points. The graphs in Fig. 5.23
also shows that it has the same manner as the previously discussed case study. Also, the PV self-consumption
has the same amount with the previous case study which is 38.42%.

5.3. SPRING PV PROFILE
This section is aimed to evaluate the accomplishment of the proposed power management system in a one-
day operation during spring. Further, the total energy yield of PV production during spring case study equals
282.24 kWh.

5.3.1. RESULTS OF CASE STUDY 3A (SPRING, 2 EVS PER NODE)
This section presents the result of case study 3A which employs 2 EVs at each node. Fig. 5.24 and 5.25 shows
the one-day operation of EVs charging for the with-grid and the no-grid constraints studied case, respec-
tively. It is observed that the EVs charging closely follow the PV generation so that less power drawn from
the distribution grid. In the morning, the V2G operation takes place when the energy cost is high. As a re-
sult, the PMS decide to delay recharging the EVs during the afternoon where it draws power from the grid
in combination with the PV generation. Additionally, at the beginning of the day, feeding PV power to the
grid is more economically beneficial in which the PV self-consumption amounts to 53.66% as referred to Fig.
A.31. Comparing the total operational cost for both with-grid and no-grid constraints case, they are the same
as similarly found in case study 1A. The total operational cost is e-16.93, so that means the EVs charging
operator receives money for the one-day operation.

Fig. 5.26 illustrates the EVs charging manner during the whole day. During observing the result, the
author found that every node of the distribution network has a typical charging behavior which occurs in
the afternoon. The peak power of each node is equal to nearly 18 kW, results in the total of 54 kW. The other
interesting point is that the aggregated EVs at each node utilizes a V2G process in the morning when the cost
of grid energy is undoubtedly high.

The results presented in Fig. 5.27 is the voltage profile at each node for one-day operation. In the morning,
when the operation of V2G takes place, the voltage at every node starts to rise until close to the upper limit.
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Figure 5.22: Power of overall system for case study 2C (No-Grid Constraints)

Figure 5.23: Power of overall system for case study 2D (No-Grid Constraints)
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Figure 5.24: Power of overall system for case study 3A (With-Grid Constraints)

Figure 5.25: Power of overall system for case study 3A (No-Grid Constraints)
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Figure 5.26: Aggregated EV power at all nodes for case study 3A (With-Grid Constraints)

Also, feeding the PV power back to the grid, starting from 09.00 AM to 12.00 PM, cause an overvoltage slightly
above the nominal voltage.

5.3.2. RESULTS OF CASE STUDY 3B (SPRING, 5 EVS PER NODE)
This section presents the result of case study 3B which employs 5 EVs at each node. Fig. 5.28 and 5.29 shows
the one-day operation of EVs charging with-grid and no-grid constraints, respectively. From Fig. 5.28, some
interesting points can be observed. The PMS allows the V2G operation to take place in the morning once the
EVs arrive. Similarly, as the previous case study 3A, the EVs charging follows the PV generation during the
day in combination with the grid power when the grid price is in its valley period. Moreover, the operational
cost is increased by 60.48% when compared to the no-grid constraints case. Also, the PV self-consumption is
added up by 21.25%. To have a deeper understanding of the PV power allocation, Fig. A.35 is depicted.

Fig. 5.30 is illustrated to show the EVs charging manner at each node of the distribution grid. It is observed
that the PMS selects postponing the EVs charging until the low grid price in order to have minimum charging
costs. As seen in Fig. 5.30, at the second and third node, the V2G operation does not occur. This occurrence
happens because if the EVs at node 2 and 3 are discharged via V2G technology, then the EVs need to draw
much grid power to recharge the EVs battery during the valley stage, so that it may cause a harsh voltage drop
especially at the end of the feeder.

Fig. A.35 shows the voltage profile at each node over a one-day operation. In the early morning, the PV
power is penetrated to the grid so that it leads the voltage to rise around 6% above its nominal value. Another
interesting detail is that the PMS manages to draw more grid power at each node sequentially. This strategy
appoints to prevent the grid violations especially at the third node, the end of the feeder. During the day, even
though the voltage at the third node is always at the border of the lower allowable voltage value, it never goes
beyond its limit over a one-day operation.

5.3.3. RESULTS OF CASE STUDY 3C (SPRING, 7 EVS PER NODE)
This section outlines the result of case study 3C which employs 7 EVs per node. The results are presented
in Fig. 5.32, 5.33, 5.34 and 5.35. One interesting point is that there is no V2G process occurred for the entire
day. On the contrary, for the no-grid constraints case, as previously discussed, the PMS always allows the EVs
to utilize a V2G operation when the energy cost is at its peak value and recharge the EVs battery in the early
evening when the price is low. Moreover, the PMS starts drawing power from the grid, which is represented
by the red line, in combination with PV generation even though in the morning when the energy price is not
that low. Compared to the previous case study 3B, the PMS draws the grid power earlier in the morning since,
within the same time span, it needs more power to charge more EVs penetration. Moreover, for the with-grid
constraints case, the PV self-consumption amounts to 75.19% which is increased by 38.40 when compared to



48 5. SIMULATION RESULTS AND ANALYSIS

Figure 5.27: Voltage magnitude at all nodes for case study 3A (With-Grid Constraints)

Figure 5.28: Power of overall system for case study 3B (With-Grid Constraints)
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Figure 5.29: Power of overall system for case study 3B (No-Grid Constraints)

Figure 5.30: Aggregated EV power at all nodes for case study 3B (With-Grid Constraints)
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Figure 5.31: Voltage magnitude at all nodes for case study 3B (With-Grid Constraints)

the no-grid constraints case. The reason for the increment is when considering the grid constraints, it is more
preferable to charge the EVs from the PV system in order to mitigate the stress on the grid especially at the
end of the feeder. As a result, it is shown on table A.1 that the total operational cost is increased by 39.31%.

Fig. 5.34 depicts the charging power of aggregated EVs at each node of the distribution grid. The charging
power of all aggregated EVs is slowly increasing from morning to afternoon. The peak power which equals
approximately 70 kW reaches during the noon when the cost of grid energy is at its lowest value. To mitigate
stress on the distribution network, the PMS allows to draw more power firstly at the third node, then the
second node and last the first node.

Fig. 5.35 shows the voltage profile per node for the entire day. In the morning, the PMS allows drawing
power from the grid amounts to around 20 kW in combination with the PV generation as clearly seen in Fig.
A.39. At the third node, almost all of the PV production is used to charge EVs due to preventing the voltage
goes down beyond 90% of its nominal value. Then, the second node starts to draw more grid power followed
by the first node. It is obvious that during the day when the EVs charging starts processing, the third node
which is the end of the feeder is having the most unfavorable condition of undervoltage.

5.3.4. RESULTS OF CASE STUDY 3D (SPRING, 10 EVS PER NODE)
This section describes the results of case study 3D, which connects 10 EVs per node. The author found that
the MINLP model cannot solve the optimization problem and leads to an infeasible solution. However, for
the no-grid constraints studied case, it comes to a global optimum solution by running a MILP model; hence
the results are presented in Fig. 5.36. A.42 and A.43. By using the same trial & error method as discussed pre-
viously in case study 2B, it is found that by connecting 8 EVs per node, the MINLP can still obtain an optimal
solution as shown in Fig. 5.47. Once employing 9 EVs per node, the optimization model starts resulting in an
infeasible solution, therefore connecting more than 9 EVs per node will always lead to an infeasible result.

5.4. AUTUMN PV PROFILE
The current section is intended to assess the performance of the proposed power management system for an
entire day during autumn. Additionally, the total energy yield of PV production during autumn profile equals
238.39 kWh.
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Figure 5.32: Power of overall system for case study 3C (With-Grid Constraints)

Figure 5.33: Power of overall system for case study 3C (No-Grid Constraints)
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Figure 5.34: Aggregated EV power at all nodes for case study 3C (With-Grid Constraints)

Figure 5.35: Voltage magnitude at all nodes for case study 3C (With-Grid Constraints)
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Figure 5.36: Power of overall system for case study 3D (No-Grid Constraints)

5.4.1. RESULTS OF CASE STUDY 4A (AUTUMN, 2 EVS PER NODE)
This section presents the result of case study 4A which employs 2 EVs at each node during autumn. Fig. 5.37
and 5.38 shows the one-day operation of EVs charging with-grid and no-grid constraints, respectively. In the
morning, the EVs start discharging their battery when the energy price is high. Then, at 12.00 PM when the
grid energy cost is decreasing, the PMS initiates re-charging the EVs from PV system since PV generation cost
is always lower than the grid energy price (λPV t < λG2V t ), hence it is more profitable. After the energy price
is reaching its lowest value (from 03.00 PM - 04.00 PM), the PMS begins to draw as much power as possible.
Observing the results of with-grid and no-grid constraints case from Fig. 5.37 and 5.38, the EVs charging
behavior seems typically the same for the entire day. Additionally, the total operational cost of the with-grid
constraints case is 0.43% higher than no-grid constraints case. Furthermore, the PV power fed to charge the
EVs is the same which amounts to 54.34%.

The EVs charging behavior for the whole day is depicted in Fig. 5.39. Typically, every node has the same
the charging manner where in the morning the aggregated EVs at each node exploit V2G operation and begin
re-charging exactly at noon. The total peak power over the day equals around 45 kW. Also, the EVs charging
power still follows the PV generation and simultaneously draws power from the grid to supplement the PV
power.

The voltage profile for every node is presented in Fig. 5.40. In the morning, the V2G operation of the
aggregated EVs results in a severe overvoltage at all nodes. Also, the PV penetration into the distribution
network is making the overvoltage worse. However, the voltage still lay within the allowable voltage deviation
which is between 90% and 110% of its nominal voltage. At around 12.00 PM until 02.00 PM, the reason of
voltage deviation is the existence the residential load because, during this time span, the PMS charge all of
aggregated EVs by using PV power as supported in Fig. A.46. Also, at each node, the PMS draws more power
from the grid to support the PV generation in a sequence way, i.e., firstly the third node followed by the first
and second node.

5.4.2. RESULTS OF CASE STUDY 4B (AUTUMN, 5 EVS PER NODE)
This section presents the result of case study 4B which employs 5 EVs per node, in a total of 15 EVs. The
results are shown in Fig. 5.41, 5.42, 5.43 and 5.44. It is obviously seen in Fig. 5.41 that V2G process does not
take place for the whole day. Otherwise, for the no-grid constraints case, the PMS always allows the EVs to
perform a V2G utilization when the grid price is at its peak value and recharge the EVs battery in the early
evening when the price is low. When compared to the result of the case study 4A, the PMS begins drawing the
grid power earlier even though when the energy price is not at the valley period. This evidence is noticeable
because, within the same time period, it is required to draw more power to charge more EVs. Moreover, the
total cost of the with-grid constraints case is drastically increased by 42.12% when compared to the no-grid
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Figure 5.37: Power of overall system for case study 4A (With-Grid Constraints)

Figure 5.38: Power of overall system for case study 4A (No-Grid Constraints)
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Figure 5.39: Aggregated EV power at all nodes for case study 4A (With-Grid Constraints)

Figure 5.40: Voltage magnitude at all nodes for case study 4A (With-Grid Constraints)
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Figure 5.41: Power of overall system for case study 4B (With-Grid Constraints)

constraints case as presented in Table A.1.
Fig. 5.43 shows the EVs charging behavior at each node of the grid. Equally, as in case study 3C, the

charging power of all aggregated EVs is evenly escalating by the time. The peak power which equals around
45 kW is reached during the valley period concerning the energy price. To avoid stress on the grid, the PMS
determines to draw more power firstly at the third node, then the second node and last the first node.

The voltage profile at each node is depicted in Fig. 5.44. As previously mentioned above, the PMS draw
more power from the grid in sequence regarding the node as represented by the black line on the graphs. The
other interesting point that can be noticed is starting from 10.00 AM the PV generation at the third node is
used to charge the EVs. This strategy is aimed to avoid an undervoltage if drawing power from the grid. In
addition, the third node has the worst voltage deviation during the day because the longer distance of the
load from the generation source, the higher voltage drop is.

5.4.3. RESULTS OF CASE STUDY 4C (AUTUMN, 7 EVS PER NODE)
This section presents the results of case study 4C, which employs 7 EVs per node during autumn. It is found
that the MINLP model cannot solve the optimization problem and results in an infeasible solution. However,
for the no-grid constraints studied case, it still comes to a global optimum solution by using a MILP model;
hence the results are presented in Fig. 5.45, A.53, A.54, and A.55. By using the same trial & error method
as discussed previously in case study 2B, it is found that by connecting 6 EVs per node, the MINLP can still
acquire an optimal solution as shown in Fig. 5.47. Once employing 7 EVs per node, the optimization model
starts leading to an infeasible solution, therefore connecting more than 7 EVs per node will always lead to an
infeasible result.

5.4.4. RESULTS OF CASE STUDY 4D (AUTUMN, 10 EVS PER NODE)
Similarly, as the case study 4C, the MINLP model cannot find the optimal solution. Therefore only the no-grid
constraints studied case result is presented in this section. The result is illustrated in Fig. 5.46, A.56, A.57, and
A.58. It is shown that the higher a number of EVs connected per node is, the higher power fed to the grid for
the V2G operation in the morning when the EVs just arrive at the charging points. The graphs in Fig. 5.46 also
shows that it has the same manner as the previous case study 4C.
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Figure 5.42: Power of overall system for case study 4B (No-Grid Constraints)

Figure 5.43: Aggregated EV power at all nodes for case study 4B (With-Grid Constraints)
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Figure 5.44: Voltage magnitude at all nodes for case study 4B (With-Grid Constraints)

Figure 5.45: Power of overall system for case study 4C (No-Grid Constraints)
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Figure 5.46: Power of overall system for case study 4D (No-Grid Constraints)

5.5. OVERVIEW OF RESULTS AND DISCUSSION
The main evaluation of the simulation results from all case studies are presented in this section. In the pre-
vious sections, it has been shown that the proposed power management system could optimally charge the
EVs from PV system with minimum operational cost while considering the distribution network constraints.
Therefore, to compare the performance of the proposed PMS of all case studies, several evaluated parameters
are discussed in the following sections.

5.5.1. TOTAL OPERATIONAL COST
Fig. 5.47 illustrates the total operational cost comparison between the with-grid and no-grid constraints
studied case. During summer, it is apparently seen that its total operational cost is the lowest among the
other season. The proposed PMS could achieve a negative value which means the EVs fleet operator or called
as the aggregator earn profits from the one-day operation. It can be concluded that a higher PV generation
would result in a more profitable EVs charging operation. To calculate the increment in the percentage of the
total operational cost between the with-grid and the no-grid constraints case, Eq. 5.1 is written as follows.

ITC = TC wi th−g r i d −T C no−g r i d

T C no−g r i d
×100 (5.1)

where ITC is the increase of the total operational cost, in [%]. TC wi th−g r i d and TC no−g r i d are the total op-
erational cost of the with-grid and the no-grid constraints studied case, respectively. Besides, the total oper-
ational cost of the with-grid constraints case, represented by the solid line, is evidently increased by 1.43% -
113.20% when compared to the no-grid constraints case, represented by the dashed line. This phenomenon
happens because, in the with-grid constraints case, it has less flexibility to draw/feed power from/to the grid;
hence the PMS decides to draw/feed power from/to the grid power as few as possible. This lack of flexibility
means that when drawing power from or feeding power to the grid at a specific node, it will lead to a nega-
tive impact (under- or overvoltage) not only at that node, but the neighboring node will also get affected as
supported by the above-mentioned results as shown in the voltage profile at each node, for instance in Fig.
5.44. Moreover, by only feeding small amounts of power to the grid, it leads to a low revenues via V2G opera-
tion and selling PV energy back to the grid. Therefore, it contributes to a higher total operational cost when
compared to the no-grid constraints case.

Additionally, by implementing the proposed power management system for EVs charging considering the
grid constraints, it may reduce the total operational cost drastically by 18.16% - 214.08% when compared to
the uncontrolled charging as illustrated in Fig. 5.47. Taking the grid constraints into consideration is also
technically beneficial especially from the Distribution System Operator perspective because the proposed
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PMS could avoid the grid violations. These results mentioned above has proved that applying the proposed
PMS could lead to technical and economic benefit.

Figure 5.47: Total operational cost in different season profile

5.5.2. MAXIMUM AMOUNTS OF EVS

The maximum amount of EVs which can be integrated into the distribution grid based on different PV profile
is depicted in Fig. 5.48. It is found that up to 36 EVs can be integrated during summer. Fig. 5.48 describes
that the higher the PV penetration is, the higher the number of integrated EVs are, and vice versa. The least
integrated EVs take place during winter since it has very low irradiation so that the EVs need to draw power
mostly from the grid. As previously discussed, the EVs cannot draw much power from the grid because draw-
ing power at a certain node will affect the neighboring node to have a large voltage drop due to the line
impedance. This circumstance is already shown in Fig. 5.20 where almost during the day, the voltage at the
end of the feeder is always at the allowable lower limit. In short, it is shown that the increase of the EVs pen-
etration into the EVs fleet could arise a serious problem to the distribution grid, in this case, the local DSO
side.

Figure 5.48: Maximum number of integrated EVs before resulting in an infeasible solution based on different PV profile
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5.5.3. PV POWER ALLOCATION
To evaluate how the proposed power management system could trigger the synergy between PV generation
and integrated EVs, then the PV power used for EVs charging needs to be calculated as depicted in Fig. 5.49.
It is found that the highest PV power used to charge the EVs is achieved in the case study 3C which equals
75.19%. It is observed that for the with-grid constraints case, the PV power allocated for the EVs is always
increasing with respect to the increase of integrated EVs in the distribution network. As a result, maximizing
the PV power allocation to EVs may lead to minimizing the total operational cost.

Figure 5.49: PV power used for EVs charging for all case studies

5.5.4. TRANSFORMER PEAK POWER
Fig. 5.50 shows the transformer peak power of each case study. It is seen that in the case study 1D (no-
grid constraints), the peak power goes beyond the allowable limit of the transformer rated power. This phe-
nomenon happens because in the no-grid constraints case, there is no limitation for the distribution trans-
former power as Eq. 3.9 was removed from the MINLP model.

Figure 5.50: Transformer peak power for all case studies

5.5.5. DURATION OF VOLTAGE LIMIT VIOLATION
This section evaluates how the proposed PMS could avoid the voltage limit violation for all case studies as
depicted in Fig. 5.51, 5.52, and 5.53. The duration of violation is calculated by computing how long the bus
voltage at each node amounts to lower and higher than the allowable voltage deviation, in which 10% above
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and under the nominal voltage. It means that when the bus voltage is lower than 90% or higher than 110%
of the nominal voltage, it is considered a grid violation. It is observed that for all the with-grid constraints
studied case, the bus voltage at all nodes never goes beyond the allowable voltage deviation as the voltage
constraints are taken into account written in Eq. 3.10. Moreover, the longest duration of the voltage violation
at node 1, node 2, and node 3 happens in the case study 4D which employs 10 EVs per node during autumn.
As a result, the average duration of voltage limit violation for the no-grid constraints studied case at node 1,
node 2, and node 3 are 124, 132, and 145 minutes for the entire day, respectively.

5.5.6. MAXIMUM AND MINIMUM VOLTAGE
Figs. 5.54, 5.55, 5.56, 5.57, 5.58, and 5.59 shows the maximum and minimum voltage at the first, the second
and the third node, respectively. During observing the results of all case studies, it is found that the maximum
and minimum voltage for the with-grid constraints case is 440 V and 360 V, respectively. In the with-grid
constraints case, the maximum and minimum voltage that can be reached is always 440 V and 360 V since
Eq. 3.10 is included in the MINLP model. Besides, the highest value of the maximum voltage is reached in the
case study 1D (no-grid constraints) which could reach up to around 550 V, 630 V, and 670 V at node 1, node 2,
and node 3, respectively. These results as mentioned above show that by implementing the smart charging,
it may lead to preventing the distribution grid violation; hence the DSO will not receive any negative impact
due to the large penetration of EVs in the network.

5.5.7. V2G OPERATION
Table 5.1 shows in which case study the V2G operation takes place. For the no-grid constraints case, the V2G
scheme always perform in all case studies. Besides, for the with-grid constraints case, 6 out of 10 feasible case
studies operate the V2G process. This result has shown that the V2G scheme could help reducing the total
operational cost.

Table 5.1: V2G occurrence for all case studies

Case Study With-Grid Constraints No-Grid Constraints

1A X X
1B X X
1C X X
1D - X
2A - X
2B - X
2C - X
2D - X
3A X X
3B X X
3C - X
3D - X
4A X X
4B - X
4C - X
4D - X

5.5.8. SIMULATION TIME
This section presents how long the MINLP executes the optimization problem to obtain the optimal solution.
As previously mentioned, the MINLP was simulated by using General Algebraic Modelling System (GAMS)
version 24.9.2 software with DICOPT solver. Fig. 5.60 shows the simulation time for all case studies. The most
extended duration happens in the case study 1D (with-grid constraints), in which employing 10 EVs per node
during summer. As seen in the bar diagram, the higher the EV penetration, the longer the simulation takes
time to find the optimal solution. This long duration of execution is due to the use of the binary variables
which force the MINLP to find the possible integer value either 0 or 1. Furthermore, the optimal solution
found in the feasible case studies are obtained with a MINLP relative gap of 0.1%.
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Figure 5.51: Duration of voltage limit violation at node 1 for all case studies

Figure 5.52: Duration of voltage limit violation at node 2 for all case studies

Figure 5.53: Duration of voltage limit violation at node 3 for all case studies
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Figure 5.54: Maximum voltage at node 1 for all case studies

Figure 5.55: Maximum voltage at node 2 for all case studies

Figure 5.56: Maximum voltage at node 3 for all case studies
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Figure 5.57: Minimum voltage at node 1 for all case studies

Figure 5.58: Minimum voltage at node 2 for all case studies

Figure 5.59: Minimum voltage at node 3 for all case studies
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Figure 5.60: Total simulation time for all case studies



6
CONCLUSIONS AND FUTURE WORKS

This chapter presents the conclusions of all results obtained in this thesis. To conclude all of the results
acquired in this study, the research questions as previously stated in Chapter 1 will again be presented and
answered. Further, several recommendations for the future research in the scope of EVs smart charging are
also outlined in this final chapter.

6.1. CONCLUSIONS
This section will discuss the main conclusions of the research study of optimal power management system of
EVs charging by answering the research questions based on the previously explained results.

1. How to formulate the optimal power management system of EVs charging from PV system in a low
voltage distribution network considering the grid constraints?
⇒ To formulate the proposed power management system, it is required first to define a set of con-
straints and the objective function so that it can be modeled into a real-life situation. The first step of
modelling the proposed PMS was to construct the mathematical equations. Therefore, the following
sub-research questions will be answered so that it clearly defines how the proposed power manage-
ment system would optimally charge the EVs from PV system in a low voltage distribution network
while considering the grid constraints.

(a) What are the EV constraints taken into considerations?
⇒ The EV constraints implemented in the optimization model are based on several technical as-
pects as clearly stated in the equalities and inequalities in Eqs. 3.1 - 3.6. Firstly, the (dis)charging
power is limited to the maximum rated power of the charger. Then, it is constrained that the EVs
cannot charge and discharge via the V2G scheme simultaneously. Moreover, the proposed PMS
always check whether the EVs are connected to the charger or not. Finally, a charging rate is re-
stricted to avoid a large variation in the (dis)charging power at each timestep.

(b) What are the PV system constraints taken into considerations?
⇒ A 32 kWp PV system is installed at each node of the implemented distribution network. The PV
can feed its energy production into the EVs or back to the grid. As a result, the PV system at each
node is constrained as written in Eq. 3.8.

(c) What are the grid constraints taken into considerations?
⇒ The distribution grid with the voltage level of 230/400 V and its characteristics implied in this
study is based on the CIGRE benchmark on low voltage network. It is constrained that to ensure
the voltage magnitude at every node is always within the allowable voltage deviation based on
the European standard EN50160 [51]. Furthermore, a set of constraints regarding the distribution
grid is previously mentioned in Eqs. 3.9 - 3.16.

(d) What is the objective function of the proposed power management system?
⇒ The objective function of the proposed power management system is to minimize the total op-
erational cost of EVs charging integrated in a low voltage distribution grid. To find the objective
function, it is required to select which optimization technique is suitable to solve the problem. It is

67
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found that a mixed integer non-linear programming (MINLP) problem with Discrete and Contin-
uous Optimizer (DICOPT) solver is selected and then executed in the General Algebraic Modelling
System (GAMS) version 24.9.2 software.

2. What is the impact of considering the grid constraints on the proposed power management system
for the identified case studies?
⇒ The impact of implementing the grid constraints on the proposed PMS has been analyzed thor-
oughly in section 5.5. It is concluded that considering the grid constraints could affect the total op-
erational cost, the mitigation of grid violation, and the PV self-consumption. Therefore, the following
sub-research questions will be answered and explained to what extent the grid constraints affect these
technical and economic aspects.

(a) To what extent does the grid constraints affect the total operational cost for the identified case
studies?

• Summer PV profile During summer, the total operational cost of the with-grid constraints
case has been increased by 1.43% - 113.20% when compared to the no-grid constraints case.

• Winter PV profile During a day in winter, the PMS has shown an increase in the total opera-
tional cost between 20.38% - 29.59% in comparison to the no-grid constraints case.

• Spring PV profile During spring, the operational cost of EVs charging is added up by 39.31%
- 60.48% when compared to the no-grid cosntraints case.

• Autumn PV profile For a one-day operation of EVs charging during autumn, the total cost is
gained by 0.43% - 42.12% compared to the no-grid constraints studied case.

(b) To what extent does the grid constraints avoid the grid violations for the identified case studies?

• With-Grid Constraints For all case studies which consider the grid constraints, the PMS has
accomplished avoiding the grid violation. The defined grid violation is the transformer peak
power limit and the allowable voltage deviation. It has been shown that for all case studies
the transformer peak power never goes beyond 400 kW and the voltage magnitude at every
node is always within the allowable deviation, i.e., between 360 V and 440 V.

• No-Grid Constraints It is found in the case study 1D that it violates the transformer peak
power limitation. The peak power of the distribution transformer could reach more than 400
kW. Moreover, the longest duration of the voltage violation at the first, second, and third node
takes place in the case study 4D. In addition, the average period of voltage limit violation at
node 1, node 2, and node 3 are 124, 132, and 145 minutes over one day of operation, respec-
tively.

(c) To what extent does the grid constraints increase the PV power allocated for EVs charging for
the identified case studies?

• Summer PV profile During the one-day operation of EVs charging during summer, the PMS
achieved an increment in the PV power used for EVs charging between 2.50% - 27.69% when
compared to the no-grid constraints case.

• Winter PV profile During winter, the results show that by implementing the proposed power
management system could escalate the PV power allocated for EVs charging by 87.33% in
comparison to the no-grid constraints case.

• Spring PV profile In one day of spring season, implementing the PMS for EVs charging results
in increasing the PV power used for EVs charging by 21.25% - 38.40% compared to the no-grid
constraints studied case.

• Autumn PV profile During autumn, the PMS has achieved in increasing the PV power allo-
cated for EVs charging by 0.21% - 28.36% when compared to the no-grid constraints case.
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6.2. RECOMMENDATION FOR FUTURE WORKS
In this section, several recommendations for future study in the scope of EVs smart charging in a low voltage
distribution network are described as follows.

• The objective function of minimizing the power losses in the distribution lines can also be done by
using the same model as explained extensively in this study.

• In further work, to validate the proposed model, the existing typical Dutch distribution network, for
instance, the data from the local DSOs can be implemented.

• The proposed optimal power management system can be further used in the related studies, such as
IEEE test feeder.

• To achieve the target for both the DSO and the aggregator perspective, a multi-objective function is
considerably feasible to be done in future work.

• A multiplexing technique where multiple EVs can be charged by using the same charger is potentially
profitable to be installed in the EV charger. This technology would reduce the initial investment cost
for the charging infrastructure.

• In future research, adjusting the resistance and the inductance of the line can be added up to the input
parameters to perform more sensitivity analysis.
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A.2. SUMMER PV PROFILE

A.2.1. RESULTS OF CASE STUDY 1A (SUMMER, 2 EVS PER NODE)

Figure A.1: Aggregated EV power at all nodes for case study 1A (No-Grid Constraints)

Figure A.2: PV power allocation at all nodes for case study 1A (With-Grid Constraints)
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Figure A.4: Voltage magnitude at all nodes for case study 1A (No-Grid Constraints)

Figure A.3: PV power allocation at all nodes for case study 1A (No-Grid Constraints)
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A.2.2. RESULTS OF CASE STUDY 1B (SUMMER, 5 EVS PER NODE)

Figure A.5: Aggregated EV power at all nodes for case study 1B (No-Grid Constraints)

Figure A.6: PV power allocation at all nodes for case study 1B (With-Grid Constraints)
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Figure A.8: Voltage magnitude at all nodes for case study 1B (No-Grid Constraints)

Figure A.7: PV power allocation at all nodes for case study 1B (No-Grid Constraints)
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A.2.3. RESULTS OF CASE STUDY 1C (SUMMER, 7 EVS PER NODE)

Figure A.9: Aggregated EV power at all nodes for case study 1C (No-Grid Constraints)

Figure A.10: PV power allocation at all nodes for case study 1C (With-Grid Constraints)
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Figure A.12: Voltage magnitude at all nodes for case study 1C (No-Grid Constraints)

Figure A.11: PV power allocation at all nodes for case study 1C (No-Grid Constraints)
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A.2.4. RESULTS OF CASE STUDY 1D (SUMMER, 10 EVS PER NODE)

Figure A.13: Aggregated EV power at all nodes for case study 1D (No-Grid Constraints)

Figure A.14: PV power allocation at all nodes for case study 1D (With-Grid Constraints)
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Figure A.16: Voltage magnitude at all nodes for case study 1D (No-Grid Constraints)

Figure A.15: PV power allocation at all nodes for case study 1D (No-Grid Constraints)
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A.3. WINTER PV PROFILE

A.3.1. RESULTS OF CASE STUDY 2A ( WINTER, 2 EVS PER NODE)

Figure A.17: Aggregated EV power at all nodes for case study 2A (No-Grid Constraints)

Figure A.18: PV power allocation at all nodes for case study 2A (With-Grid Constraints)
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Figure A.20: Voltage magnitude at all nodes for case study 2A (No-Grid Constraints)

Figure A.19: PV power allocation at all nodes for case study 2A (No-Grid Constraints)
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A.3.2. RESULTS OF CASE STUDY 2B ( WINTER, 5 EVS PER NODE)

Figure A.21: Aggregated EV power at all nodes for case study 2B (No-Grid Constraints)

Figure A.22: PV power allocation at all nodes for case study 2B (No-Grid Constraints)
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Figure A.23: Voltage magnitude at all nodes for case study 2B (No-Grid Constraints)

A.3.3. RESULTS OF CASE STUDY 2C ( WINTER, 7 EVS PER NODE)

Figure A.24: Aggregated EV power at all nodes for case study 2C (No-Grid Constraints)
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Figure A.26: Voltage magnitude at all nodes for case study 2C (No-Grid Constraints)

Figure A.25: PV power allocation at all nodes for case study 2C (No-Grid Constraints)
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A.3.4. RESULTS OF CASE STUDY 2D ( WINTER, 10 EVS PER NODE)

Figure A.27: Aggregated EV power at all nodes for case study 2D (No-Grid Constraints)

Figure A.28: PV power allocation at all nodes for case study 2D (No-Grid Constraints)
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Figure A.29: Voltage magnitude at all nodes for case study 2D (No-Grid Constraints)

A.4. SPRING PV PROFILE

A.4.1. RESULTS OF CASE STUDY 3A (SPRING, 2 EVS PER NODE)

Figure A.30: Aggregated EV power at all nodes for case study 3A (No-Grid Constraints)
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Figure A.31: PV power allocation at all nodes for case study 3A (With-Grid Constraints)

Figure A.32: PV power allocation at all nodes for case study 3A (No-Grid Constraints)
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Figure A.33: Voltage magnitude at all nodes for case study 3A (No-Grid Constraints)

A.4.2. RESULTS OF CASE STUDY 3B (SPRING, 5 EVS PER NODE)

Figure A.34: Aggregated EV power at all nodes for case study 3B (No-Grid Constraints)
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Figure A.35: PV power allocation at all nodes for case study 3B (With-Grid Constraints)

Figure A.36: PV power allocation at all nodes for case study 3B (No-Grid Constraints)
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Figure A.37: Voltage magnitude at all nodes for case study 3B (No-Grid Constraints)

A.4.3. RESULTS OF CASE STUDY 3C (SPRING, 7 EVS PER NODE)

Figure A.38: Aggregated EV power at all nodes for case study 3C (No-Grid Constraints)
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Figure A.39: PV power allocation at all nodes for case study 3C (With-Grid Constraints)

Figure A.40: PV power allocation at all nodes for case study 3C (No-Grid Constraints)
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Figure A.41: Voltage magnitude at all nodes for case study 3C (No-Grid Constraints)

A.4.4. RESULTS OF CASE STUDY 3D (SPRING, 10 EVS PER NODE)

Figure A.42: Aggregated EV power at all nodes for case study 3D (No-Grid Constraints)
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Figure A.44: Voltage magnitude at all nodes for case study 3D (No-Grid Constraints)

Figure A.43: PV power allocation at all nodes for case study 3D (No-Grid Constraints)
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A.5. AUTUMN PV PROFILE

A.5.1. RESULTS OF CASE STUDY 4A (AUTUMN, 2 EVS PER NODE)

Figure A.45: Aggregated EV power at all nodes for case study 4A (No-Grid Constraints)

Figure A.46: PV power allocation at all nodes for case study 4A (With-Grid Constraints)
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Figure A.48: Voltage magnitude at all nodes for case study 4A (No-Grid Constraints)

Figure A.47: PV power allocation at all nodes for case study 4A (No-Grid Constraints)
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A.5.2. RESULTS OF CASE STUDY 4B (AUTUMN, 5 EVS PER NODE)

Figure A.49: Aggregated EV power at all nodes for case study 4B (No-Grid Constraints)

Figure A.50: PV power allocation at all nodes for case study 4B (With-Grid Constraints)
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Figure A.52: Voltage magnitude at all nodes for case study 4B (No-Grid Constraints)

Figure A.51: PV power allocation at all nodes for case study 4B (No-Grid Constraints)
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A.5.3. RESULTS OF CASE STUDY 4C (AUTUMN, 7 EVS PER NODE)

Figure A.53: Aggregated EV power at all nodes for case study 4C (No-Grid Constraints)

Figure A.54: PV power allocation at all nodes for case study 4C (No-Grid Constraints)



100 APPENDIX

Figure A.55: Voltage magnitude at all nodes for case study 4C (No-Grid Constraints)

A.5.4. RESULTS OF CASE STUDY 4D (AUTUMN, 10 EVS PER NODE)

Figure A.56: Aggregated EV power at all nodes for case study 4D (No-Grid Constraints)
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Figure A.58: Voltage magnitude at all nodes for case study 4D (No-Grid Constraints)

Figure A.57: PV power allocation at all nodes for case study 4D (No-Grid Constraints)
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