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Abstract

A wave-current-body problem is considered. The computer program MULDIF (Zhao and
Faltinsen [1989]), which calculates loads and responses on large-volume structures, is ex-
tended to include the effect of finite water depth.

A Green's function, satisfying a free surface condition with wave-current interaction
and the bottom condition, is developed. Two alternative expressions are established, with
satisfactory agreement in a broad range of parameter variations.

The present theory applies to arbitrary bodies. However, to verify our calculations only
a restricted, half-immersed sphere is considered. In that case it is possible to compare with
existing results (Grue and Biberg [1993]). The agreement is rather good.

To make programs like MULDIF more user-friendly, additional check-routines are nec-
essary. A new way of calculating horizontal wave exciting forces is implemented. When a
current is present, this is found to represent an improved check-routine, compared to ex-
isting routines which come from calculating wave exciting forces by a generalized Haskind
relation, or finding damping coefficients by conservation of energy.
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Nomenclature

Source point, =(a, b, c)

Amk Added mass coefficients

2rnk Damping coefficients
Wave drift damping coefficient in surge
Water line curve of 5c0

Cmk Restoring matrix
E(t) Time dependent total energy
factor Factor that relates lengths of elements, = factor

FFi Multiplication factors of an elements diagonal along the normal vector,
FFi = (FF1,FF2, FF3)

, i E {1...,6} Linearforcein six degrees of freedom, =

F,, i E {1, .., 6} Complex linear force amplitude in six degrees of freedom, see
, i e {1, .., 6} Drift force in six degrees of freedom

F,. Froude number, F,. = (here F,. =
C Wave/current Green's function, satisfying the bottom condition and

the free surface condition far from the body
GST Green's function for a steady problem, satisfying the zero-normal-flow

condition through both the mean free surface and bottom surface
g Acceleration of gravity
h Water depth

Imaginary unit, i =
{z} Imaginary part of z

K Wave number for incident waves, = Kg tanh Kh
L Characteristic length
e1omSc Horizontal length of elements on control surface

Correction terms, see eq. 2.16 and 2.17

Mmk Mass matrix
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vi NOMENCLATURE

MULDIF Computer program developed by Zhao et.al. [1988], and extended to
handle the present problem

Neff Number of elements on the whole wet body surface
Normal vector, pointing out of the fluid

p Pressure
R 1. Radius of cylinder or sphere

2. Horizontal radius from origo, x = Rcosv, y = Rsinv
r Horizontal radius from source point, x - a = r cos u, p - b = r sin u

Rc Horizontal radius from origo to control surface
{z} Real part of z

S Surface
S0 Bottom surface in domain I, see figure 2.3

SB Body surface
S- Mean body surface

Control surface, see figure 2.3

Sc0 Control surface up to mean free surface

SF Free surface between the control surface and body surface, see figure 2.3

Mean free surface between the control surface and body surface
T Draught of body
U Forward speed, current velocity

Current vector
u Angle, see r

YB Local body velocity
v Angle, see R

(X, Y, Z) Space fixed coordinates
(x,y,z) Translatory coordinates

z Complex number
Complex conjugate of
Current angle

fi Wave propagation angle
Euler's constant, -y = 0.577...
Small positive quantity
z-position of free surface

ca Amplitude of the incident wave
i, k E {1, .., 6} Body motions in six degrees of freedom:

surge, sway, heave, roll, pitch and yaw, see figure 2.2

A Wave length
p Density of water
a Source density
r Brard number, r =

The largest Brard number when upstream waves exist
Total velocity potential
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Complex diffraction potential
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Complex diffraction and radiation potential in outer domain
Total steady potential
Steady disturbance potential
Green's function for the inner problem, satisfying the bottom condition
Complex radiation potential for reversed current
Frequency of oscillation
Frequency for the incident wave
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Chapter 1

Introduction

Wave induced motions and loads on off-shore structures can be affected by current as well
as finite water depth effects. Some off-shore fields are so shallow that the water depth can
be of importance.

The analysis of large volume structures, like semi-submersible type platforms or tension
leg platforms are based on a perturbation scheme, where the wave slope is assumed to be
small. The lowest order (linear) approximation of an irregular sea is represented by a sum
of sinusoidal waves of different amplitudes, periods, phases and propagation directions.
Linear responses in irregular sea are obtained by simply adding responses for each wave
component. A second order analysis includes non-linear interaction effects between the
different frequency components in a linear analysis. This cause so-called sum and difference
frequency effects.

The type of motion we want to examine, decide to what order the calculations have
to be performed. The excited oscillations are usually divided into wave-frequency motion,
high frequency motion and slow-drift motion. In addition the waves induce mean drift
motions.

Wave-frequency motions are directly associated to the frequencies of the incident linear
waves. Such motions can be described by linear theory. Mean drift forces are obtained by
time-averaging body-forces correct to second order. Nevertheless, it turns out that we can
use the principle of superposition also for this second order effect.

If we consider the combination of two (or more) incident waves, the sum of their fre-
quencies will induce second order high-frequency motions. Similarly, the difference may
induce second order slow-drift motions. If we want to examine slow, horizontal oscillations
of moored structures, damping terms have to be calculated. The damping is due to both
viscous effects and waves, where the latter is known as wave-drift damping. This is differ-
ent from the so-called wave radiation damping that is included in a linear analysis. It is
a second order effect associated with a structure's ability to create waves. When calculat-
ing wave-drift damping the slowly varying velocity of the body is usually interpreted as a
quasi-steady speed. In the calculated mean horizontal forces the term proportional to this
speed is regarded as damping. So, high-frequency motion and slow-drift motion are both
second order quantities, and results in irregular sea include interaction effects.

1



2 CHAPTER 1. INTRODUCTION

Let us give some examples: Vertical motions are critical for drilling operations. When
designing platforms one therefore tries to keep the resonance period in heave, as well as
pitch and roll, far from the period of most waves in the sea. This has resulted in tension
leg platforms (TLPs) and semi-submersibles, having very small and very large resonance
periods in vertical motions, respectively. Thus, these marine structures are constructed
to avoid linear resonance effects. Second order motion may, however, occur. For the
TLP, sum-frequency resonance oscillations in heave, pitch and roll may be excited. This
phenomenon is known as springing and may lead to fatigue. Slowly-varying and mean
horizontal forces and yaw moments are important in design of mooring systems and thruster

systems for positioning.
We will here study the effect of incident regular waves with one frequency. As men-

tioned before, this is sufficient for calculating linear responses, mean forces and wave-drift

damping. By using the so-called Newman's relation [1974] we can also approximate slowly
varying forces. Although wind may be important in some cases, we will consider loads due

to water, only. Extensive discussions of all the above topics may be found in Faltinsen
[1990]. Readers searching for more details and thorough explanations are referred to this

book.
Even though regular harmonic waves are assumed we are still facing difficulties. The

most necessary simplification to be made is given by the assumption of potential flow. For
large-volume structures this usually gives good results. However, for bodies with sharp

corners which make the flow separate. potential theory may be a limitation. An example

of this is the slow-drift motion problem of moored structures. The damping due to viscous

effects may then for some structures and conditions be more important than damping
due to waves. There also occur important slow-drift viscous damping effects due to the

anchor-lines (Huse [1986]).
Application of perturbation analysis. with wave slope as a small parameter, gives the

next simplification. The zeroth order term in this series represents the steady flow field due

to the forward speed. The steady potential does of course not satisfy the body boundary
conditions at an oscillating body surface. Ogilvie and Tuck [1969] overcame this difficulty

by introducing correction terms in the next order of the series, the so called mi-terms.

Large-volume structures are more likely to be exposed to current than actually having
forward speed. However, these problems can be considered equal if we assume the current

to have constant direction and not to vary with depth.

Two important parameters appear in the wave-current-body problem: The Froude

number, F,, = and the non-dimensional frequency of oscillation, Here, U is

the steady current velocity, g the acceleration of gravity and L some characteristic length
of the body. The product of these parameters gives the Brard number r (r = ). This
number describes whether or not the problem may be solved as a small-speed problem.

In this work we limit ourselves to small speed. For infinite water depth it is theoretically
known that there are no unsteady wave systems upstream for r larger than 1/4. For finite
water depth this bound on the Brard number is even less, expressing more clearly the fact
that the Froude number should be a small quantity. Zhao and Faltinsen [1988] found in
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the two-dimensional, infinite depth case that terms of order U2 could be neglected in the
free surface condition if F,. was less than O.1. Physically, this corresponds to neglecting
the steady wave systems. A consequence of considering a small Froude number is also that
the steady flow problem can be solved as a double body flow problem.

One of the first works in the 3-D numerical boundary element method was carried out
by Faltinsen and Michelsen [1974]. Here the Froude number was zero, but water depth was
allowed to be finite. To obtain solutions they applied Green's second identity in the whole
fluid domain. The Green's function satisfied the free surface condition, bottom condition
and a radiation condition. Newman [1967] had earlier presented far field expressions for
mean horizontal drift forces and mean yaw moment in the infinite depth case. These
expressions were generalized to finite depth. However, only infinite water depth results
were published. It should be noted that the drift forces and moments may also be obtained
by integrating the pressure to second order over the body. However, this is often a difficult
task from a numerical point of view.

Huijsmans and Herman [1985] made, in the slender body case, an early attempt in
including the effect of a current. The Green's function was simplified by making a Taylor
expansion in r, and the waves did not interact with the near field steady flow.

For a submerged, 2-D body Grue and Palm [1985] included terms of order U2 in the
free surface condition, implying that their solution is valid for all speeds. The local steady
flow does not have to interact with the waves in the case of submerged bodies situated
sufficiently far from the free surface (Zhao [1994]).

A fully wave-current interaction solution was presented in Zhao and Faltinsen [1988].
A two-dimensional situation was considered. In the far field the velocity potential was
approximated by multipoles inside the body. In the near-field description the flow was
represented by Green's second identity and Rankine sources and dipoles. They gave the
following conclusions for a 2-D floating body in combined current and waves:

The waves should interact with the local steady flow around a 2-D surface piercing
body.

Current influences the wave excitation loads more than the added mass and damping
coefficients.

Current influences the mean wave-drift forces.

Wave-drift damping is important for slow-drift motions for a moored structure, how-
ever; viscous effects cannot be neglected for the slow-drift damping.

Later, Zhao et.al. [1988] extended the method to 3-D problems, finding the above conclu-
sions to hold also here. The 3-D solution was based on the same hybrid method. A vertical
control surface at some finite distance from the body separated an inner and outer domain.
In the outer domain the waves were superposed on the undisturbed current velocity, while
in the near field the waves were superposed on the local flow. With this method it was
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necessary to discretize three boundaries; the body surface, the control surface and the part
of the free surface lying in between. This gives a numerical disadvantage due to the larger
equation system of unknowns. However, the major part of the calculations was done with
Rankine singularities, representing a numerical advantage compared to applying Green's
functions that satisfy the far field boundary conditions. To verify their numerical results
Zhao et.al. [1988] made experimental studies, with satisfactory agreement.

A more detailed description of this method was given in Zhao and Faltinsen [1989].

Here, the numerical difficulties concerning the mi-terms were discussed, and a theoretical
way of getting stable results was presented. They also showed that a Taylor expansion in
i- of the Green's function could lead to large errors in the generated wave field far from the
body.

Nossen et.al. [1991] developed further the idea of Huijsmans and Herman [19851 with

power series expansion of r. They considered a 3-D, infinite fluid volume, with a Kelvin-
Havelock type of Green's function; only the body surface and the near field part of the free
surface needed to be discretized. The Green's function was not expanded in a Taylor series
in the far field. Results were published for the wave-drift damping and compared with Zhao
and Faltinsen [1989]. The agreement was generally good. Due to their Taylor expanded
Green's function an accurate picture of the wave field far from the body is difficult to
achieve.

The study of Nossen et.al. [1991] has been the framework of several extensions. Grue
and Palm [1993] developed the mean yaw moment correct to second order, and Grue and

Biberg [1993] included finite water depth.
Clark et.al. [1992] presented an expression for wave drift damping as function of the

drift force for zero current velocity. They considered a situation of one or several cylinders

at infinite water depth. The results agreed remarkable well with existing results when the
cylinders were restrained. However, it is interesting to note that they did not give a proof
for this expression, and they did not know it's limitations. Later, Grue and Biberg [1993]
also found excellent agreement for a restricted cylinder in finite water depth.

Eatock-Taylor and Teng [1993] studied, within potential theory, the effect of sharp
corners on a surface piercing, truncated cylinder in waves and current. Their approach was
based on Nossen et.al. [1991], but applied a higher order panel method. They discovered
that the first order forces, the diagonal terms of added mass and damping coefficients,
body motions and the mean drift forces and damping coefficients were rather insensitive to

corner radii. On the contrary, the off-diagonal terms of added mass and damping coefficient
changed significantly as the corner radius approached zero.

Recently, Prins [1995] attacked the wave-current problem by performing time-domain
calculations. His results agreed rather well with existing frequency domain results. How-

ever, he seemed to have a problem with the double body flow. This difficulty is also present

in our work.
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Figure 1.1: Sketch of the rriodel. which includes current and the incident, sinusoidal wave.

This work

The scope of this study is to extend the work described in Zhao et.al.[1988] and Zhao
and Faltinsen [1989] in order to include the effect of water depth. Two new, independent
parameters appear as the water depth becomes finite (see fig. 1.1): body draught-depth
ratio, T/h, and wave length-depth ratio, .\/h. The present problem (wave-current-body,
finite depth) has so far been studied by Grue and Biberg [1993]. The special case of no
current has interested several authors. They all agree on a general tendency that the
horizontal drift forces increase as the water depth decreases. For infinite depth the authors
find that the horizontal drift forces often increase, when waves and current propagate in
the same direction. Thus, it is not surprising that Grue and Biberg [1993] find that the
drift forces can increase considerably as the water depth decreases, and current is present.
When operating in water of finite depth it is therefore important to achieve prediction of
sea loads by finite depth calculations.

In Chapter 2 the exact boundary value problem within potential theory will be forinu-
lated. The only difference from the infinite water depth case (Zhao and Faltinsen [1989])
is captured in the claim of no flow through the sea floor. The perturbation process is
described and we show how to solve the problem by applying Green's second identity in a
finite fluid volume. Outside this volume the flow is approximated by multipoles inside the
body. The proof for this model is given in Appendix A. To apply this method the Brard
number has to be below its critical value; when upstream waves no longer exist. We will
here examine the effect water depth has on the critical Brard number

In this chapter we also study the steady potential, which represents an independent
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boundary value problem. We follow the procedure given by Hess and Smith [1962] with
Green's function by Newman [1991]. The Hess and Smith procedure implies that the mean
wetted body surface is approximated by plane quadrilateral elements and that quantities
like source density, dipole and velocity potential are constant over each element. The
Rankine sources will be integrated over an element based on Newman's [1986] expression.
The convergence (with respect to number of elements) for this method is investigated
by comparing the "added mass" coefficients of a sphere with results in Pettersen [1980].
Added mass here means zero frequency limit of the added mass coefficients for an unsteady
problem. It can be shown that this added mass value can be calculated in terms of the
steady potential. We are going to find that the convergence is slow, producing rather
large errors for a reasonable amount of elements on the body. However, the errors do not
increase considerably with decreasing water depth. The rn-terms and the derivatives on
the free surface will not be checked here, but we will get an indication of their accuracies
in Chapter 4.

In Chapter 3 the Green's function for a wave-current problem is studied. This function,
together with its derivatives, represent an approximation of the velocity potential at some
distance from the body. The Green's function is initially given as a double integral and the
goal is to simplify as much as possible. We may freely choose in what direction to integrate
first, and this opens for the opportunity of attacking the problem in two different ways.
The development of the Green's function chosen for our purpose is based on a general idea
of Knudsen [1992]. However, we first try another way around by developing a method
which involves Mittag-Leffiers theorem from complex analysis. This theorem is used in
order to increase speed of convergence. Although this method is not successful here, we
hope that it might be applicable to other cases.

Explicit expressions for limiting values are also established, and the derivatives are

calculated to sixth order. The details from the calculations in this chapter are put in
Appendix B.

Resulting sea loads in finite water depth are discussed in Chapter 4. We present the
expressions for wave exciting forces, added mass and damping coefficients, horizontal drift
forces and wave-drift damping. A floating sphere is our test example. Then the difficulties
concerning sharp corners are avoided. Besides, this was also one of the examples in Grue
and Biberg [1993], so we can compare some of the results. We try to achieve the results
in several ways, often by the aid of Green's theorem. In this way we both get a check of
the computer code, and a better understanding of which parameters that cause problems.
We will see that the m3-terms represent a large problem and that the diagonal damping
coefficients are too robust to be the only objects of check-routines for the program. A new
way of writing the horizontal wave exciting forces, whithout including derivatives on the
body surface, is implemented. In this way a check of the mi-terms is performed. Errors
due to m,-terms are not detected by applying the generalized Haskind relation, nor by

comparing damping terms for zero and non-zero speed.
Finally, we compare the formula of Clark et.al. [1992] with our wave-drift damping

results. Although we do not find full agreement this simple formula represents a good

estimate.



Chapter 2

The Boundary Value Problem

Consider a freely floating structure in horizontal, steady motion, exposed to incident waves.
A right handed, space fixed coordinate system, denoted (X,Y,Z), has the positive Z-
axis upwards, and origo at the mean free surface. The translatory coordinate system
(having speed U = (Us, Un)), with origo in the center of the structure, may then be
written (x, y, z) = (X + Ui, Y + U,t, Z). This is illustrated in figure 2.1.

A mathematically identical problem case arise from a structure located in waves and
exposed to a current, only the current direction is opposite the velocity direction of the
structure. For the present problem U = U(cos cxi + sin aj) is defined as the undisturbed
current vector. Here, cx is the angle between the current direction and the positive x-axis,
and i and j are the unit vectors along the x an y direction, respectively.

z

7

(2.1)

f f//f /// f//f f
Figure 2.1: Coordinate definitions.

For large volume structures the natural assumptions are those of irrotational flow and
incompressible fluid. Thus, a time dependent velocity potential, , exists, satisfying the
Laplace equation, V2 = 0.

The incident wave potential refers to the translating coordinate system and may be
written

= {oe} = J{9ç, coshK(z +
wo coshKh -
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The wave amplitude, (, the wave number K, and the circular frequency of oscillation, w0,
refer to the space fixed coordinate system, while the wave propagation angle, 3, is related
to the positive x-axis. The imaginary unit is denoted i and t is a time unit. means the
real part.

The wave number is related to the frequency of oscillation and water depth, h, by the
dispersion relation for linear gravity waves:

= KgtanhKh, (2.2)

and the frequency of encounter, w, is given by the equation

= W + UK cos(3 cr). (2.3)

Boundary conditions

By assuming a constant atmospheric pressure the combined kinematic and dynamic non-
linear free surface condition can be written as

82 a 1+ g + 2V + V(V . V) =0,

on the free surface, , given by

i/at 1
=

More details may for instance be found in Newman [1978].
At the instantaneous body surface the normal velocity of the body equals that of the

adjacent fluid. This is expressed as

= . (2.6)

where 11B is the local body velocity and a time dependent normal vector.
In addition, a zero flow condition through the sea floor must be imposed. For horizontal

sea bottom this is written as

ôz
0 for z = h. (2.7)

If the problem is solved in the time domain, initial conditions are needed. We are later
going to operate in the frequency domain. Then, radiation conditions are needed.

(2.4)

(2.5)
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-W2k + 2iwV . Vql, + iw I7;;i- + --) ct + g = 0az

z = 0. (2.11)

9

2.1 Panel method
The following method is an extension of Zhao and Faltinsens [1989] work. They ana'yzed
the combined current-wave interaction on large 3-D structures, floating in deep water.
Here, the water depth is allowed to be finite, only introducing the depth as an additional
parameter.

The body is restrained from drifting, but free to oscillate in six degrees of freedom.
The (x, y, z)-coordinate system refers to a body at rest. The amplitudes of the incident
wave and body motions are assumed small, relative to both body dimensions and wave
length of the incident waves. Also the current velocity, U, is small, so that both the Brard
number, r = , and the Froude number, F,. = , can be considered small. Here, L is
a characteristic length of the body.

Next, the potential flow solution will be written as a series expansion in wave amplitude:

= & + + 2
(2.8)

..()1 .(()2

Here ç represents the steady state disturbed current potential. Far from the body, & is
asymptotically given as

= U(xcosa+ysinc). (2.9)

The object of this work is to solve the problem correct to 0(U). A consequence of neglecting
terms of 0(U2), is that the steady wave system is neglected.

Correct to first order in current velocity, the steady potential then satisfies the rigid
wall condition, = 0, at the mean free surface. In addition, the steady potential satisfies
the zero flow condition through the mean body surface and - through the sea floor. This
particular boundary value problem is discussed in the next section.

The first order potential, , can be decomposed into potentials due to incident and
reflected waves and wave systems created by body motions,

6

= {oe' + 7e" + k7k}. (2.10)
k=1

The body motions, k, are defined in figure 2.2. We have now assumed steady state
solutions to the problem (we are in the frequency domain)

Writing the velocity potential as in 2.8 and 2.10, and keeping terms to first order both
in wave amplitude and current velocity, the free surface condition 2.4 gives the following
conditions for k, k E {1, .., 6} and (io + 7):
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Figure 2.2: Body motion definition

Details can be found by using expressions presented by Newman [19781, and neglecting

terms of order U2.
Next, the fluid is separated into two domains, as illustrated in figure 2.3. In the inner

domain, 4 should satisfy the free surface condition 2.11, while in the outer domain, where

the steady potential is assumed to be undisturbed by the body all c5k may satisfy the
simpler free surface condition

2 k . k k

k + 2zwU(cos a-a- + sin + = 0 z 0. (2.12)

Applied on the mean body surface, the linear body boundary conditions are written

ak f
zwnk +mk ,k E {1,..,6}

(2.13)

an

The mk-terms arise because the steady potential satisfies the zero normal flow condition

at the mean body surface, producing an error of order . The nk- and mk-components are
according to Ogilvie and Tuck [1969J defined by

(n1,n2,n3) = (2.14)

(n4,ns,n6) = (2.15)

(m1,m2,m3) = VV& (2.16)

(m4,m5,m6) = .VirxV, (2.17)

where = x+ y.+ zk.
Each component should also satisfy the zero-normal-flow condition through the sea

bottom;

/ 7/7 /7/7/7/



11

Figure 2.3: Surface and domain definition. The inner domain is enclosed b1, a control
surface, Sc, the body surface, SB, and the part of the free surface and bottom surface that
are inside the control surface, SF and The normal vector, , is pointing out of this
fluid volume.

= 0 for z = h. (2.18)

In order to get unique solutions, radiation conditions for the body-generated wave system
has to be imposed. This can mathematically be done by introducing a fictitious Rayleigh
viscosity (see Ogilvie and Tuck [1969]), which implies in our problem that there exists no
incident wave system generated by the body.

In the outer domain, k may be written as a sum of multipoles, with singularities inside
the body (see appendix A),

L M
= AjmG1(;m), k e {1,..,7} (2.19)

1=1 m=1

where G(i; m) is the Green's function evaluated in chapter 3. G'(; dm) denotes all possible
combinations of derivatives of l'th order with respect to the three source point coordinates,

= (a, b, c)m. Aim are constants and M denotes number of singularities inside the body.
th'k' satisfies the free surface condition 2.12, the bottom condition and a radiation condition.

A solution to the boundary va'ue problems can be found by applying Green's sec-
ond identity to q5 and a Green's function, b, to a fluid domain enclosed by the surface
S=SF U SB USc US0 (See fig. 2.3). To linear theory this looks like

[1 ô ôqk
4lrclk(xo, Po, z0) = (k- - th)ds, (2.20)

J JS--f-S-+Sc0 ön 5n

where S denotes the mean free surface between the mean body surface, S, and the
control surface. Sc0 is the control surface up to the mean free surface. The Green's
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function for the inner problem is chosen as L' = [(x - x0)2 + (y - yo)2 + (z - zo)2I_12 +
- x0)2 + (y - yo)2 + (2h + z + z0)2]hI'2. In this way, the integral over the sea floor, S0,

vanishes. In the numerical solution S, S and Sc0 are divided into plane quadrilateral
elements and the velocity potential and its normal derivative are assumed to be constant
over each element. Letting o in equation 2.20 approach the midpoint of every element on
the surfaces, a Fredholm integral equation is established. Matching the inner and outer
solution at the control surface, a sufficient number of equations are established for solving
the c5k-problem.

Having obtained k, we can find the wave exciting loads and the added mass and

and the first order potential is determined.
In the above equation 1jmk and Cmk is the mass matrix and the restoring matrix, respec-
tively. The restoring matrix follows from hydrostatic - and mass considerations. Expres-
sions for Mmk and Cmk may be found in Faltinsen and Michelsen [1974].

The parameter T = , which is the product of the non-dimensional frequency, wi/f,
and the Froude number, is a common parameter to use in the wave-current-body interaction
problems. For infinite water depth it is known that important changes occur at T

For r larger than there are no body-generated upstream wave systems. Our solution

procedure does not apply when T > because we have implicitly assumed body-generated
waves all around the body. For finite water depth the critical r-value is not as easy to give.

The following way of establishing crit for finite water depth was suggested by Børresen

[1984]:
coshk(z+h) ei[wt_k( os( )+YS1fl(+'))1 is assumed to represent body-generated waves far

from the body, propagating along the negative current axis. By linearizing the free surface
condition 2.4 to the mean free surface and keeping terms to first order in wave amplitude,

damping coefficients. The wave exciting forces are .7 = { F }, where Fm are given

by

mE{1,..,6}

and the added mass and damping coefficients are written

(2.21)

Arnk = {Fmk}/W2 (2.22)

Bmk = {Fmk}IW,

where

(2.23)

Frnk = p Jf (iwc1k + Vs Vk)flmdS. (2.24)

Finally, we find the first order motions by solving the equations of motion,

[(Mm + Amk)k + Bmkk + Cmkk] Fme, (2.25)
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Figure 2.4: Critical r-value for finite water depth.

The dependency of water depth for the critical r-value is shown in figure 2.4. The figures
are obtained by numerically increasing the current velocity and frequency, respectively,

13

we get a free surface condition valid for all current velocities. We insert the assumed
potential in order to decide the wave numbers k. This means there exist body-generated
waves upstream as long as

.w2 - 2kwU - U2k2 + gk tanh kh = 0 (2.26)

has real, positive solutions. The reason why they have to be real and positive lies in the
formulation of the assumed potential.
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until eq. 2.26 fails to give solution. We have ensured that the two wave numbers tend to
the same limit before vanishing, thus producing the same curves for TC,, and that the
two curves agree. We have also ensured, as pointed out by Børresen [1984], that the non-
dimensional magnitude of (taxih kh - (w + Uk)2) is close to zero at the point where
the wave numbers coincide.

2.2 Steady potential
The steady potential will be written as a sum of disturbed and undisturbed potential,

= U(xcosa + ysina) + Q55b
(2.27)

Here satisfies the Laplace equation, and correct to 0(U), also fulfills the following

boundary conditions:
The flow through the free surface and the sea floor is zero,

z=Oandz=h. (2.28)

there is no total velocity through the body surface,

= U(n1 cos + n2 sin a) = -U , (2.29)

and the disturbance potential should vanish far from the body

sb*O, asx2+y2*. (2.30)

The solution to this boundary value problem is found by distributing sources on the

body surface,

= Jf aGSTdS. (2.31)

Here, o is the source strength and GST is a Green's function satisfying the boundary
conditions, except at the body surface. Newman [19911 calculated the Green's function
according to

GST = L(r, z - z0) + L(r, z + zo) (2.32)

where r = J(x - x0)2 + (y - yo)2 and

1 1 ii
+L(r, z)

= r2+ z2
+ [2 + (2nh - z)2 r2 + (2nh + z)2

(2.33)



--
z = z - z
z = z + z

1 1

+ +
+ z2 + (z - 2h)2 Jrj + (z + 2h)2

(2.35)

and = /(x - x)2 + (y - y)2 where i3, = (Xj,yj,Zj) denotes the midpoint of element

In addition to the steady potential itself, it is important to achieve its derivatives up
to second order both on the free surface and on the body surface. At the free surface the
derivatives are obtained by applying potentials at adjacent elements. The second order
derivatives at the body surface are needed in the so called mi-terms. These terms are
known to be difficult to compute numerically (discussed in Zhao and Faltinsen [1989]).
Because the potential is constant over an element the tangential velocities are implicitly
said to be zero. Thus, the derivatives cannot be found directly at or in the vicinity of
the surfaces. In MULDIF, the mi-terms are calculated by first evaluating the potential at
three distinct points along the normal vector. To achieve second order derivatives here,
the steady potential is also evaluated at some small distances around these points. The
derivated values are then extrapolated back to the body surface (see fig. 2.5).

Figure 2.5: Explanation of rn3-calculation.
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Since the above infinite sum is known to converge slowly, he actually rewrote equation 2.33
in two alternative ways, procedures which are also used in this work.

In the numerical procedure the surface is divided into plane quadrilateral surfaces with
constant source strength over each element. The six first terms in the Green's function are
integrated exactly over an element (according to Newman [1986]), whereas for the remain-
ing part the mid point approximation has been applied. This means that the boundary
condition 2.29 is written

(ii i=1,N2, (2.34)

where NB is the number of elements on the body,
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To achieve reasonable results, the differentiation has to be carried out at approximately
twice the length of the element. We choose to differentiate at 2.0, 2.2 and 2.4 times the
element diagonal length, respectively (FFi = (2.0, 2.2,2.4)). For the part of the body
surface that is close to the sea floor, we therefore have to distribute small elements. This
is because the current varies rapidly here, and because we want to avoid differentiating far
below the sea floor. Examples of successful and unsuccessful m3-calculation are illustrated
in figure 2.6. We have tried to show that it might be all right to differentiate below the sea
floor in some cases, and that rapid variation of the derivatives implies larger sensitivity to

both FFi and length of elements.

c: *

P
Body

&omeot

cjoiated vOJ

0 °rI*od vk,e

Body

0 cIcIatod 3

*

S
0 1

2

Sea*Ioorz=.h

4:. In,o

a) Unsuccessful mi-calculation: b) Successful mi-calculation.

too large element or too large FFi.

Figure 2.6: Possible difficulties when calculating m3-terms. Note that the drawn mi-values

are only speculations.

Similar problems of course also appear in infinite water depth, for instance when two

cylinders are close to each other.
At sharp corners the m3-terms are singular. The difficulties associated with corners are

discussed in Zhao and Faltinsen [1989].
We will here do a check of the potential only, represented by the limit of the zero current

added mass coefficients for an unsteady problem as the frequency tends to zero. It can be

shown that this can be written in terms of the steady potential. Following Pettersen [1980]
these added mass coefficients are given as

= P7jfJ&b5. (2.36)

The convergence as a function of number of elements on the body is rather slow. This is
demonstrated in figure 2.7. Neff here means number of elements on the body surface (half

the sphere). We have investigated two different element distributions, one with small
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Figure 2.7: Convergence of surge added mass in finite water vs. effective elements on a
half-sphere. The thick lines (finite-depth results from Pettersen [1980] or the well known
infinite depth result) are not functions of elements.
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elements against the current and the other with small elements against the sea floor. In
both cases we have drawn the lines surrounding the elements with constant and equal
angular spacing, both horizontally and vertically. The angles are explained in figure 2.8.
These distributions give results tending to the same limit, but if the highest number of
tested elements is used (Neji = 1936) the error relative to the converged values by Pettersen
[1980] is up to 5%.

Figure 2.8: Angle definition.

Hess and Smith [1962] presented results for the velocity distribution on a sphere in deep

water. The agreement with analytical results seemed perfect for 2160 elements on the body
surface. They used "element distribution 1" (which causes faster convergence, see fig 2.7)

with the small elements against the current axis and they satisfied the body boundary
condition on the null point of each element (as opposed to our geometrical mid point). By
null point means the point on the quadrilateral element where the distribution of constant

sources induces zero tangential velocity. For practical purposes we cannot afford to apply
this amount of elements, and we will have to choose "element distribution 2" with smaller
elements against the sea floor. Thus, we expect inaccurate results caused by this routine.
It should also be noted that the error in calculating the mi-terms is likely to be larger than
in the calculation of the added mass.

In section 4.1.2 we are going to find the added mass coefficients for an unsteady problem
by applying Green's second identity. The results presented in figure 4.11 indicate that
distributing both sources and dipoles over the body surface may produce faster convergence

than just sources. We assume that the results from Pettersen [1980] and Mavrakos [1981]

represent correct values (the infinite depth result in fig. 2.7 is indeed correct). Then, for
1156 elements the errors in fig. 2.7 are approximately 2.5%, 4% and 6% for h/R =
1.2 and 1.03, respectively, while the error presented in fig. 4.11 is approximately 2% for
h/R = 1.5. Due to additional error sources in an unsteady problem we expected this added

mass coefficient to be less accurate. For the infinite depth results we have used a standard
routine, so the possibility for bugs in our computer code is small.
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Figure 2.9: Surge added mass in finite water for a half immersed sphere. 1936 effective
elements on the body. The solid line is due to Pettersen [1980] (N j = N = number of
elements on the wet body surface).

In figure 2.9 the same added mass coefficients are shown as function of water depth.
Compared to the results from Pettersen [1980] it seems like a systematic error occurs.

We may have to look for improved methods to calculate the steady potential. Hiren
[1995] has recently presented a higher order panel method that looks promising.
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Chapter 3

Wave-current Green's Function and
its Multipoles

The velocity potential of a harmonically pulsating source, traveling beneath the free surface

with speed V = U(cosi + sinj), may be written = {AG(,à*)et}. Here, A is a
constant, t a time unit, the frequency of pulsation and G the so called Green's function.
ä denotes the source point and the point of evaluation. For small speed, terms containing
U2 are neglected in all calculations.

Thus, G should satisfy
the Laplace equation outside the singular point,

V2G=O (x,y,z) (a,b,c), (3.1)

the free surface condition (z=O):

2 OG . . 8G . 0G 1
G - g--- 2zwU(cosa.--+smc) p zwG+ U(cosc--- +sina.)j 0 (3.2)

and
the bottom condition:

z=h. (3.3)

The radiation condition is here implemented in the free surface condition by introducing an
artificial viscosity, p (often called the Rayleigh viscosity). Now the complex conjugate of
the Green's function that we seek no longer satisfies the above equations. Having fulfilled

its mission p is set to zero. Equation 3.2 results from starting the development of the free

surface calculations from Eulers equation rather than from Bernoullis equation. In Eu-
lers equation an artificial pressure variation term is included, ppV[Ux cos a + Uy sin ay +

AG(, A proof for this device, in a steady case, is presented in Lamb {1945J. Al-

though widely used, other authors are not too thrilled about it, as expressed by Ogilvie
and Tuck {1969]: "This device is extremely convenient, which is about all that justifies its

use".
Now, writing G as

20
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1 1
+ +G1,

V/r2+(z_c)2 \/r2+(+c+2h)2
G1 is, after Fourier transforming the above equations, found to satisfy

1 oo e co5(9_ )e_IdIcoshk(z + h)coshk(c + h)[k(l+2TcosO)+v]dkdo1J Jo ksinhkh[v+2rcos0k-71i(u+rkcoso)lcoshkh
. (3.4)

Here xa = rcosu andy b= rsinu. The parameters r = and v = have been
introduced. 71 = is the non-dimensional Rayleigh viscosity.

3.1 Analytical evaluation of the Green's function
In this section the Green's function will be evaluated analytically in two different ways:
First we integrate eq. 3.4 in k-direction, leaving us with a 0-integral. Quite naturally, in
the second approach, we merely reverse the order of integration. Eventually the limiting
expressions are established.

3.1.1 Green's function - alternative 1
As a first alternative we will evaluate G1 by first integrating in k. A similar technique as
John [19501 used in the zero speed case will be applied. We write G1 (eq. 3.4) as

= IJ j[ec + 0)dkdo, (3.5)

where
coshk(z + h)[k(l + 2rcos9)+ ii]

p(k,0) = ksinhkh [z,+2rkcos0-71i(1 +rkcos0)]coshkh
We will regard k as a complex parameter. Then p(k, 0) has an infinite number of simple
poles, e, in the complex plane, all given by the equation

[v+2rcos0c 71i(1 +cos0c)]coshch =csinhch. (3.7)

Figure 3.1 shows the location of the poles for 0 = 0 and 0 = for a special case.
The real positive and negative pole is called c0+ and c0-, respectively. By applying the
Rayleigh viscosity, c0+ is found to tend to the real axis from below, and c0- from above

= lim_o(co+ - i) and c0- = lim...o(co- + it)). The complex poles are numbered
n = 1. 1,2, 2,... with n growing with larger IcI, and positive ii denotes the poles with
positive imaginary part.
From equation 3.7, c_, is found to be the complex conjugate of c, and c,, has the asymp-

totic behavior c ln [J + (see appendix B.1).
Now we rewrite p(k, 9) as the sum of its principal parts and an analytic function;

(3.6)



x [1/rn]

Figure 3.1: Zeros in the complex plane x + iy of [v + 2rcosOc.,]coshch csinhc,,h
(v = O.1, r = 0.1 and Ii = lOm).

p(k,8) = g(k,9) + k -
(3.8)

Here, g(k, 0) is the analytic function and the residues satisfy (for details see appendix B.2)

cecoshc(z + h)
2 2

(.)
ch+L'cosh ch

Since c is of order n, b is of order 1, and a thorough study of the infinite series is needed in

order to decide whether or not it converges. In appendix B.3 the series is found to converge

uniformly in all closed intervals on the real axis. It converges like E° which has

a very slow convergence. Nevertheless, we will take advantage of Mittag-Leffler's theorem

(for results in complex analysis see for instance Henrici [19741) concerning non-convergent

series in order to make our series converge faster.
Mittag-Leffler's theorem states that a meromorph function, f, can be written as

f(z) = [s,,(z) rm(z)] + g(z) (3.10)
m

when f has poles in z = z,,, Izol < Izil < z2.... Here 3m is the part of the Laurent
series about the m'th pole not representing an analytical function (in our case -). The
infinite sum m sm(z) does not exist. rm is a convergence generating polynomial and g is

some analytical function. This makes the series converge uniformly on all bounded regions
of the complex plane. with the exception of the poles. Assuming origo not being a pole,

rr,. is the Taylor expansion of 5m around 0 to a suitable degree.
It is difficult to determine the optimal number of terms to use in the Taylor expansion,

so we will start out by considering the first term only. Then,
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where

/c2+r2 J(2h+c)2+r2

1 2,r 00 2
1 1

00 t i

+ f + e" f dt dO, (3.14)
2ir o fl-00 ( Cn/.'z i,c,, t )

= c - ircos(9 - u + a)

= 2h+circos(0u+a).

The term fff dt is according to Abramowitz and Stegun [1970, eq. 5.1.1] equal to the
exponential integral Ei(i3c0) if Iarg(j9c,,) < ir. What does that imply in our case? It
is impossible to say from this expression. We have to go back to the exact formulation

limA...,00 j dk and substitute = (kc). So, we look at limA_00 e" 40)

& may be approximated by the series Inserting this in the integral we see
3(Ac,,) 1

that the first term in the series gives an ln-function, ji,, 7dt = [in t!+z arg(t)]_,, -

The in function is not defined at the negative real axis, and for complex arguments it is

23

p(k,0) =g1(k,0)+ kc,, + (3.11)

where gi(k, 0) is a new analytic function (since the sum converges: 91(k, 0) = g(k, 0)E ).
From equation 3.6 we see that p(k, 0) is finite in the whole complex plane away from

the poles. Furthermore, Liouvifle's theorem states that if an analytic function is bounded
in the whole complex plane. then it must be a constant. So, gi(k,O) is a constant, and by
comparing equation 3.6 and equation 3.11 for k = 0, we see that the constant equals -1.
Hence,

00

p(k,0)=-1+ '' . (3.12)
700 c,,( c)

The sum now converges as In fact, adding L terms in the Taylor series would imply a

convergence like - B(L). This series may converge faster or slower depending on
the magnitude of A and B. A closer study of the number of terms to add will be done
after the final expression has been established.

Remembering that co+ only tends to the real axis, the infinite sum converges uniformly

on 0 k < ,c, i f oc, and since f° f, this is sufficient. Uniform convergence
allows us to integrate term by term. Thus, writing G1 as

G1
1 j27 j[ekc + e_2h+c)]e cos(6+u_o) (_i +

(k ) dkdO, (3.13)

we find
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Figure 3.2: Integration path for J_ -1-dt

not unique. This is why the exponential integral jumps when crossing the negative real

axis.
Figure 3.2 shows two cases where j dt E1(/3c). That is if Q{c} <0 and

- c)} . {fic} <0 for k satisfying {(k - c,0)} = 0.
Since the real part of 3 is always larger than zero, these are the only cases where the
negative real axis is crossed.
We require all arguments to lie in the interval (ir, ir). In the first case {i arg(t)]" >
Hence we have to subtract 2iri. In the second case we have to add 2iri. Thus,

L).fl

Im{t)

-. ,ar.(-f3 Cfl)/
arg(3 (A-c0))

Re{t}-.Re(t}
arg( (A-c0))

(A-c0)

The derivatives of the integral parts of G1 (equation 3.14) , GIB, are

8MG 1
2(M rn!

12
ôaMlObM2&M3 _j > +e_"J __dt} (3.15)n i=1 '..mO

8M1 8M2 3Ms
X 8aM 8bM2

E1(-3c) - 2iri if {/3c,} <0 and
< 0 and

{c} < 0

P°°
I dt= Ei(i3c) + 27ri if R{-3c} <0 and

J/3c,-. t > 0 and

E1(-3c) else.

{c,} > 0



where M= M1+M2+M3.

We will rewrite equation 3.15 in order to speed up the convergence.
The asymptotic expansion of the exponential integral is given by Abramowitz and Stegun
[1970, eq. 5.1.51];

eZ 1 2! 3! 4!Ei(z)----(l--+--+...) (Iarg(z)<ir). (3.16)
z z z z3 z

Since we seek a function that is continuous crossing the negative real axis, the approxima-

tion

100 dt - ., 1!

t (ic)
(3.17)

is valid for all large II3c0I.
This is a series that does not converge. Hence it is important to know how many terms to
include; i.e. which L should be chosen.

Now we single out a part of equation 3.15 called T:

oo M

T = b0c
{ (C)m+l + e f_

_dt}.

For all > N(9) 8c0 is large enough to use the approximation in equation 3.17. Equa-

tion 3.18 then looks like

N(S) M

T = >2 bnc{>2
m!f00 dt

n=N(9) m=O (n) I3c, t

00 \ LM b (M + )'
>2 + >i: ) >2

fl=00 n=N(9)+1J j=1

We see from equation 3.12 that

8ip(k,9) 00 'b0

8ki Ik=o - - fl00

found from equation 3.6 (for instance S) 1 a2p(/c,9)

- k=O
IS k tk=O ' &1C2 k=O

2hz + 2h 4rcos9 ...) and we may write

N(S) M in! 00 )

T = >2 b0c I>2 + e f dt
L0=o

()m+1 t J

LM r / N(S)
b0

)
1 ap(k, 9) 1 (M + j)!

+
LL=G c1 j! öki Ik=o] j91+2+1
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(3.18)

(3.19)

(3.20)

(3.21)
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The total Green's function evaluated in this section is then

1 1 1 1

= + -- (3.22)

Jr2+(z_c)2 Jr2+(z+c+2h)2 /c2+r2 /(2h+c)2+r2

+--
f2 {

b, [
1

+ f dt]
7 0 n=N(8) CSc) c,. t

+ ( -\ iOp(k,9)
j=1 \n=N(9) +') - j! öki 1k0

The derivatives of the integral part are given in appendix B.5.
We would get the same result if we added more terms in the Taylor series applying

Mittag-Leffler's theorem (and of course withdraw them). Now, however, it is immediately

seen that the error done by ending the summation at N terms, may be related to the
accuracy of the approximation of the exponential integral:

where

00

=
z=
z =
z = 2.-n

dO.

00CCZ f dt ez J dt (L)
J.

(3.23)
smp

This shows that different number of terms are needed to get a constant error in 9 and that

L must not be chosen too large. Hopefully the series converges much faster than indicated

above, but with a convergence related to the magnitude of [ + i cos(9 + u -
We notice that the integrand becomes singular as the source point tends to the free

surface. However, unless the evaluation point is at the free surface as well, the integral
exists. To circumvent this problem an extra routine should be made, differentiating the
Green's function with respect to the vertical evaluation point. Since

ÔMG(r,Zi,Z2) 8MG(r,Zi,Z2) 324
az' z, = az1

z2= c z2=

we simply choose the routine where min(Iz, id) is to be included in p(k, 9).

3.1.2 Green's function - alternative 2
The second method, integrating first in 9, will be based on a general idea from Knudsen
[1992]. In this approach it is convenient to write terms in equation 3.4 not containing 0 as

just some functions of k;

G1 = A j2
B + C cos Oekrcoso_u+d9dk (3.25)

ir 0 0 D+EcosO



A = A(k) = cosh k(z + h) cosh Ic(c + h)e_!th

B = B(k) = k + ii

C = C(k) = 2rk

D = D(k) = ksinhkh - v(1 - ii)coshkh

E = E(k) = 2rkcoshkh(1 - i).

Now we will substitute t = &. Equation 3.25 then looks like

G1 =
- f A(k) f Q(k, t)et)dtdk,
in o 111=1 t

- )where -y = e and Q(lc,t) = D+E(t.14)
Assume for a moment that - 0. Then E 0 and Q(k, t) has two roots in the t-plane,

Pi _D_If_E2 and P2
-D+2-E2 Since P1P2 = 1, they are either both on the unit

circle, or one of them must be inside- and the other one outside the unit circle.
Denoting the root with the smallest absolute value p and the other one Pi, simple

calculations give (see also figure 3.3)

_f pi k<crj
jp2 k>a1,

where o and 02 (in the interval (ci3O) the roots are complex) are given by the equations

oi tanho1h = 2ra (3.27)

atanh o2h - v = 2ra.

There will always be one k that gives P11 P21 1. However, one point does not affect
the result as long as exactly that point is avoided as an integrand value in the following
numerical integration.

Now, as we know more about the roots, we make a partial fraction expansion of Q(k, t):

1 1
Q(k,t) = /c - 2ic1 + K1(i - " + 1-

p

CD-BE dwhere ,c1 = ici(k) = E(ptE+D) an ic = #c(k) + 'ci.
Q(k,t) may be further rewritten by applying j- = xl < 1;

Q(k,t) = k + i [()fl +
n1 Pt ]

The remaining expression in equation 3.26 may also be rewritten in powers in t (See
Whittaker and Watson [1950] page 358);

27

(3.26)

(3.28)

(3.29)
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Figure 3.3: Absolute value of the roots of Q(k,t) as a function of k (r=O.1, ii = 0.1k and
h = lOm). a) i = 0.0 b) Z = 0.01.
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yt+-) = (yiJ(kr)t'. (3.30)

Inserting the new expressions in equation 3.26 and integrating by the method of residues,
we are left with the integral

00

G1 2 / A(k)[,(k)Jo(kr) + Ki(k) (ip8)J(kr)( +
n1

or fully written:

,00
G1 = 2 / coshk(z+h)coshk(c+h)eJ(k)dk

Jo coshkh
00

2]f(lc)[Jo(kr) + 2 (ip31 )0J(kr) cos n(a - u)]dk
0

+2 f(k)[Jo(kr) + 2 (ip52 )0J(kr) cos n(a - u)]dk,

kcoshk(z + h)coshk(c+ h)
cosh2 khJ(k tanh kh - u)2 - 4r2k2

ktanhkh - ii + ./(ktanhkh - v)2 - 4r2k2
2r k

lctanhkh - v - ..J(ktanhkh - v)2 - 4r2k2
PS2 = 2r k

and J,. are Bessel functions of the first kind.
It seems hard to integrate further in k. The exception is the first integral in equa-

tion 3.32 which is not time consuming to evaluate numerically anyway since most expres-
sions involved are already calculated. However, we can not get too many ways of checking
the code.

So, we will look at the term

T
= r2 + (z - c)2

+
+ (z + c + 2h)2

(3.33)

[00 cosh k(z + h) cosh k(c + h)e
-JO coshkh

-kh
Jo(kr)dlc.

To simplify we follow the same method as in section 3.1.1, writing T as

T = _2fp(k)Jo(kr)dk (3.34)

(3.31)

(3.32)

where

f(lc) =

Ps,
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where

Icoshk(z+h)sinhkccoshkh if zI
p(k) = (3.35)

coshk(c+h)sinhkz f >
coshkh

C Z.

Regard k a complex parameter. Then p(k) has poles of order one in k where

ri is any integer, including 0. As in section 3.1.1 we write p(k) as a sum of the principal
parts and an analytical function;

2 00 ksin [(2m+1)1] sin [(2n+i)lrc]

p(k) = g(k) -
k2+

((21J)2
2 Ii (3.36)

Here terms of positive and negative poles are added and g(k) is the analytic function. We

see that the infinite sum converges. Then, applying Liouville's theorem and comparing
equation 3.35 and equation 3.36, g(k) is found to be zero.

By inserting the new p(k) in equation 3.34 and integrating (see Abramowitz and Stegun

[19701 eq.11.4.44) we get

f(2n+1)irc ((2n+1)irr\
h , 2 j sin

{
2 j Ko

2

Here K0 is a modified Bessel function of the second kind. We are later (section 3.1.3) going

to find that this term represents the infinite frequency Green's function.

If jz + ci is small, the integrals in equation 3.32 with infinite integration limit decay
slowly with increasing k. To avoid difficulties regarding when to stop integrating we follow

the same technique as Faltinsen and Michelsen [1974] used for zero Froude number That

is: integrate up to a certain k = 03, which for k > O satisfies 1 - tanh kh < . c should

also be chosen larger than The remaining integral may then be written

RIA
2ir 00 rcos(S_u+flk(1 +2TcosO)+vdkdg

2Jo L k(1-2rcosO)v

if we do not apply equation 3.37 and

1 2iroo 2k
RIn

= -f f k(+os(9_) dlcdO (3.39)
2ir o (1 2 cos ) v

if we do. The integration variables are now changed.
Integrating in k (for details, see appendix B.4) gives the total Green's function without

applying equation 3.37 as

(3.37)

G12(,) = 1 1
+

r2+(z_c)2 2+(z+c+2h)2

2 r3 cosh k(z + h) cosh k(c + h)e_ Jo(kr)dk
Jo coshkh

(3.38)

(3.40)



G12(, d) =

_2f f(k)[Jo(kr) + 2(ip3J(kr) cosn( - u)Idk
PCi

+2] f(k)[Jo(kr) + 2 (ip52)'J(kr)cosn(cx - u)]dk
m1

+ I2ir
[l1+2rcosO 1e° +

(1 - 2r cos 0)2
G[3 )] I do,

27rJ0 31 2cos9 1 2rcos9 j

and with equation 3.37:

2 00 l(2n+l)irz f(2n+1)7rcl f(2n+1)7rr'\
sinI 9

]sin[
2 hjK0 2n=o L

_2f f(k){Jo(kr) + 2 (ips1)0Jn(kr) cosn(a - u)]dk (3.41)
n= 1

P03 00

+2]f(k){J0(kr)
+2(ip33)J(kr)cosn(cr - u)]dk

Cl
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Here 3 {z+c+ircos(0+)] and G[fl(a 1_2cos9)] is i_icoeflEj{i3(o.3_

1_2cos9)]
E1 is the exponential integral. The derivatives of the integral parts of equa-

tion 3.40 are listed in appendix B.5

3.1.3 Limiting values for the Green's function
Infinite frequency limit

Let us go back to equation 3.32 and see what happens if ii = and r = tend to
infinity. We see that cr1 and a both tend to infinity and f(k) and Psi tend to zero. Thus,
the three last terms vanish, and the infinite frequency Green's function is

G00 1
+

1 (3.42)
r2+(z_c)2 r2+(z+c+2h)2

2
cosh k(z + h) cosh k(c + h)e Jo(kr)dk.

0 coshkh

Inserting z = 0 and recalling that J° e°Jo(bx)dx = T3+b2
(Abramowitz and Stegun

1970] eq. 11.4.39), we find that this G fulfills the free surface condition for infinite fre-
quency; G_00 = 0. For large r/h we use the expression given earlier

G_00
2. {(2n + 1)lrz]

sin
[(2n + 1)r c]

ito
((2n + 1)ir

(3.43)

1 f20

+21 303 f 1 2 1 + 27- COS 0
{l_2rcoso+(l_2rcoso)23

'
)Jl dO.1-2cos0 j



32 CHAPTER 3. WAVE-CURRENT GREEN'S FUNCTION AND ITS MULTIPOLES

r tends to zero

r = may tend to zero in two ways. Either by w - 0 or by U - 0.
We first look at the case U -+ 0. Then the well known solution by John [1950] gives

the limiting value;

G0 = 2i - 2 H1(ckr)coshck(z+ h)coshck(c+h),
k=O Ck ii +t'

where the ck's are given by

CkSiflhCkh - vcoshckh = 0.

The star denotes complex conjugate, and is due to the way he writes the velocity potential;

= {AGe}. while we chose = {AG&"'}. These two potentials represent incoming

and outgoing waves, the sign of the Rayleigh viscosity multiplied by the frequency, decides

which is which.
H01 is the Hankel function (or Bessel function of the third kind) and is related to the

modified Bessel function of the second kind, Ko(z), as (Abramowitz and Stegun eq. 9.6.4)

Ko(z) = 'H1(zei) if ir <argz
John [1950] also found the Green's function for the limit w -+ 0. Then the real part of

equation 3.44 tends to infinity while the imaginary part tends to {Gu0} = -. John
gave the Green's function for a steady problem as GSTEADY = 1im_0 (Gu0 + when

G0 is expressed as above.

Asymptotic formulation far from the source

To get an idea of how the Green's function behaves far from the source point we could make

an asymptotic expansion in r. However, for the proof in appendix A it is convenient to write

the Green's function as G(,) = f(Sg(d). Thus we introduce (x,y) = (Rcosv,Rsinv)
and make an asymptotic expansion in R. The simplest way to do this seems to go all the

way back to equation 3.4. From this point we will follow the same technique as Grue and

Biberg [1993] used for finite water depth, only they had current along the negative xaxis

only.
G may be written

G = 'f2 kRcos(8_v+)p(k, 9)dkdO (3.46)

where

14Chwshk(z +h)coshk(c+h)[k(1+2rcosO)+v]
p(k, 0) = k sinh k/i - [i + 2r cos Ok] cosh kh

+
2

x

-klz-cI +

(3.47)

(3.44)

(3.45)
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k

Figure 3.4: Path alternatives

Now we will integrate in the complex plane according to figure 3.4; substitute k = le"' and
choose so as to make the integral over arc 2 to vanish. The Green's function is then

1 r+v ,-
G = - I I7t Jc+v Jo

1 c+v cc

+ J + 2iriRes] dO, (3.48)
[f

where Res is the residue of the integrand at k = c0. By integration by parts, the integrals

in 1 are found to be of order Thus

-c+v c cosh co(z + h) cosh co(c + h) i[ac(8+c)+b(6+c)]=2i1
ch + ii cosh2 coh

xeio_v+dO +
where c0 = eo(0) is implicitly given by

c0 sinh c0h - [ii + 2 cos Oco] cosh c0h = 0. (3.50)

This integral is on the form I f' f(0)eiR2(0)dO. Hence, for large R the method of station-
ary phase may be applied. In that case the solution satisfies I

)I

(as given e.g. in Newman {1977fl if Oo is in the open range of integration and g"(9o) 0.

The sign ahead of is equal to the sign of g"(Oo). Here g(0) = cocos(O v + a) and the
equation for stationary phase is g'(0) = c cos(O - v + a) sin(O - v + a) = 0. Together
with therequirement O E (v+a,+va) this leads . .- . in:

2i- 4r2
sin(Oov+a) = F(co)

sin(va), cos(0ov+a) = 1
- F(co)2

sin2(v - a)(3.51)

where F(co) = tanh c0h + coshc0h
The two times derivative of g is given by

g (0)

(3.49)

=
Co {4rsin0ocos(0ov+a)

cos(0ov+a)} (3.52)

F(co)

+

2rcos00
8r2cohsin20o( +ch2tanhcoh) 1

F(Co)I2cosh coh[F(co) - 2r cos 9]2

33

Alt. I
Alt. II

1



34 CHAPTER 3. WAVE-CURRENT GREEN'S FUNCTION AND ITS MULTIPOLES

sin sin
where 9 may be eliminated by applying [°] = - v + ci) + (v - ci)] and equa-

tion 3.51. When Taylor expanding in r we see that g"(Oo) is positive, thus the asymptotic
Green's function reads

I 8r ccoshco(z + h)coshco(c+ h)
GR = cgh+vcosh2coh

ico(. /1
Xe V

1.2

1.0

0
C)

0.6
+

0.4

0.2

0.0

(3.54)

e4 + (3.53)

For the proof in appendix A an explicit expression of c as a function of ci is needed. Taylor

expanding equation 3.50 in r gives

2rK cos(v - ci)
Co K

tanh Kh + sKh
+ higher order of r

where K is the wave number for the incident wave given by the equation Kg tanh Kh
and c0 is assumed to be the wave number for the outgoing waves at large distance from

the source point.

0 1 4

Figure 3.5: Denominator of the second term in equation 3.54.

Equation 3.54 and figure 3.5 show how the wave number Co is affected by the sea floor

and the current.



3.2 Numerical evaluation of the Green's function
In this section we will look at the numerical evaluation of the Green's function as expressed
in section 3.1.1 and 3.1.2. Inputs and outputs are in single precision and the calculations
are in double precision. We will first look at some numerical aspects common for the
alternative Green's functions. Both methods need an integration routine for arrays of
complex integrands. Also a routine for evaluation of the exponential integral is needed in
both cases. Hoff [1990] did an extensive study of integration routines and of the exponential
integral in his work regarding the Green's function with arbitrary speed and infinite water
depth. He kindly gave us the computer code for the methods he found most efficient for
our type of Green's function. These methods are described in Hoff [1990]. Only a brief
description will be given here.

Integration scheme

In the QUADPACK-library Hoff found a scheme of the Gauss-Kronrod type (QNG). These
schemes are suitable for iterative algorithms. If the integral with n = in abscissae does
not satisfy the desired accuracy, then an n = 2m + 1 point formula, which includes the in
original integrand values, will be used. All the weights are changed, however.
Hoff modified the routine to cope with complex functions, and we modified to arrays of
complex functions.

The exponential integral
Daubisse [1981] gave a formula for approximation of the complex exponential integral by
a series of exponential functions. Writing for I arg zj <r

(
I

Jo i±i
ezE(z) = dt

I (fsdt)
(the star denotes complex conjugate), and approximating the term or by exponential
functions, the evaluation of the integral is quite straight forward. If the magnitude of z is
less than 1, the power series (Abramowitz and Stegun [1970] eq. 5.1.11)

Ei(z)=__lnz_ argzI <x (3.56)

gives better results. Hoff [1990] found this procedure to be significantly faster than other
formulas (such as local formulas). The accuracy is of 5-6 decimals.

Location of zeros

We want to solve the equation f(x) = 0 numerically. Hvie [1991] recommends Newton-
Raphsons method when analytic differentiation of f is possible: We assume Xkl to be

if lz > 0
if Rz 0 and z > 0

if lFz 0 and z < 0

35

(3.55)
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an approximate solution of 1(x) = 0, and let the next iteration be defined by Xk =

xk_1 + Xk_i. The two first terms in the Taylor series of 1(x) around Xk_j satisfy

f(xk) f(xk_1) + f'(xk_1)xk_1 = 0, (3.57)

producing the iteration scheme

f(xk_i)

f'(xk_1)

The iteration terminates when f(xk..1)I
and IXk_jI are both less than some .

Newton-Raphsons method has quadratic convergence and the scheme is applicable for

functions of real and complex arguments.

3.2.1 Alternative 1
The Green's function for infinite water depth, as expressed by Grekas [1981], contains one

evaluation of the exponential integral for each 0. In the original MULDIF program this

Green's function is used, with evaluation of the exponential integral by local formulas.

Here, for each 0, it is necessary to calculate 2 + 4 N(0) exponential integrals, find 2 + N(0)

poles numerically, and evaluate additional terms compared to Grekas' formulation. N(0)

denotes number of terms in the infinite series.

We demand the Green's function for finite water depth not to be considerable slower

than in the infinite depth case. But, since Hoff [1990] found the exponential integral

evaluated in terms of local formulas to be approximately eight times slower than by the

formula of Daubisse [1981], we will give this method a chance.

Location of the poles

We wish to find the solutions of equation 3.7 numerically. Here, we can save some computer

time, using the fact that c,(-0) = c(0 - ir) = c(0 + r) = c,(0), which means it is

sufficient to find the poles in an interval of length r/2. The poles will be found by Newton-
Raphsons method. hi order to ensure that the expected solution is the one we get, the

estimated value has to be close to the solution. The estimates for the real poles will be

separated into deep and shallow water estimates. If vh is large (See appendix B.6; Green's

function in terms of non-dimensional parameters) tanhc0±h may be approximated by ±1.
Thus the approximation of the real poles become

'I
C0-F 1 2i-cos&
c0- = .

(3.59)
1 +2rcos0

If ii h is small, the terms C0± h are small, and may be used as approximations of tanh co h.

We then get the estimates

co+ = max[r cos 0 ± /r2 cos 02 + hv]/h

= min[r cos 9 ± V'r2 cos 92 + hv]/h. (3.60)

Xk
(3.58)
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Equation 3.59 will be used if uh is less than 0.7, and equation 3.60 if zih is larger than 0.7.
Figure 3.1 indicates that the difficulty of finding the complex poles is very much con-

centrated to the first pole, c1. Since the real part seems to vary very little with n we
may apply the asymptotic solution as an estimate. The imaginary part lies in the interval
(, ). By empiric considerations we have reached the following estimates:

Ii+2rcos8l ir
= (a1,bi) = (kin

L' _2rcos9J
,(1 +e_03))

= (a,b) = (an_i,bn_i +

The iteration terminates when 10 decimal places are reached for both the real and
imaginary part.

Number of terms in the infinite series

The technique of applying convergence accelerating polynomials is very successful, as may
be viewed in table 3.1. We remember from section 3.1.1 that L represents extra convergence
accelerating terms. In order to determine the constant term we already added one term.
So, L = 0 represents a convergence of order , compared to the original

In table 3.1 and 3.2 we have set number of terms to be independent of 9. For nh = 1
this Green's function agrees with the second alternative method to five decimal places when
L = 3 and N = 2. There is a tendency for slower convergence and larger error when is

small, which is more visible for in table 3.2. For the higher order derivatives and
have to be large in order to give reasonable results. Examples of bad results are given in

table 3.4. Somewhat better results for increasing k are shown in table 3.5. We here notice
that too many terms in the infinite series causes inaccuracies.

We will try to explain this sensitivity to the different parameters. For each n we get
a contribution to the sum, dependent of n, the degree of derivative, M, the number of
convergence accelerating terms L - M and the parameter /3c (= zn). Let us say we
denote the n'th contribution Z(ri,z,M,L) and for simplicity write this as

' 1
(n,z,M,L) M eE (nz) + L-M+ A)

We know that the relative error of e''Ei(nz) may be as large as e, iO when calculated
as we do. z has double precision accuracy and the poles are found with an accuracy
of approximately 10 decimals. If we exclude other error sources and assume that A =
A(n, z, M, L) is found exactly, the calculated contribution may be written

= .(n,z,M,L) - CE, [nMenzE(nz)]

(3.63)

1 " (L+1)!1
L_M+1) ZL+1 j

{nMMenzE(nz) (L - M + 1)L!1
zL+1nL-M+1 j

(3.64)

(3.61)

(3.62)



38 CHAPTER 3. WAVE-CURRENT GREEN'S FUNCTION AND ITS MULTIPOLES

The total relative error then satisfies

i(n,z,M,L) - (n,z,M,L)caic nMeEi(nz)- E
z(n, z, M, L) z, M, L)

(A L]M+1) L)! nMMenzE(nz) Zn 365+Z A(n, z, M, L)
+ (n, z, M, L)

In words: If the argument is small and we have chosen too many convergence accelerating
terms we expect inaccurate results due to e and . On the other hand,if fewer terms are

chosen the sum converges slowly and we get bad results for the higher order derivative due

to E1
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Table 3.1: Green's function as function of number of terms in the infinite series, N, and
extra convergence accelerating terms, L. (w = is1, h = lOm, r = lOm, z = -5m,
u = c = 0 and U = lm/s). Alt.2 denotes G as calculated in section 3.1.2.

G 10 [1/rn] - = -1.0
L

N 0 1 2 3

1 -0.30542, -1.68096 -0.33631, -1.68757 -0.33582, -1.68785 -0.33659, -1.68737
2 -0.34338, -1.68920 -0.33611, -1.68751 -0.33616, -1.68726 -0.33611, -1.68729

3 -0.34250, -1.68856 -0.33613, -1.68725 -0.33615, -1.68727 -0.33611, -1.68729

4 -0.33335, -1.68665 -0.33612, -1.68725 -0.33611, -1.68730 -0.33612, -1.68729

5 -0.33353, -1.68678 -0.33611, -1.68730 -0.33611, -1.68730 -0.33612, -1.68729

6 -0.33756, -1.68710 -0.33612, -1.68731 -0.33612, -1.68729 -0.33612, -1.68729

Alt. 2 -0.33612, -1.68729

G 10 [1/rn] = -0.5
L

N 0 1 2 3

1 -0.33729, -1.93994 -0.36400, -1.94820 -0.36412, -1.94822 -0.36640, -1.94839

2 -0.37251, -1.95060 -0.36627, -1.94850 -0.36631, -1.94822 -0.36617, -1.94824

3 -0.37177, -1.94983 -0.36630, -1.94820 -0.36628, -1.94822 -0.36617, -1.94822

4 -0.36376, -1.94741 -0.36614, -1.94818 -0.36614, -1.94822 -0.36616, -1.94822

5 -0.36391, -1.94758 -0.36613, -1.94824 -0.36614, -1.94822 -0.36616, -1.94822

6 -0.36741, -1.94863 -0.36617, -1.94824 -0.36617, -1.94822 -0.36616, -1.94822

7 -0.36735, -1.94857 -0.36617, -1.94822 -0.36617, -1.94822 -0.36616, -1.94822

Alt. 2 -0.36616, -1.94822
G 10 [1/rn] = -0.1

L

N 0 1 2 3

1 -0.41996, -2.54286 -0.41996, -2.55289 -0.42106, -2.55300 -0.42210, -2.55384

2 -0.42737, -2.55700 -0.42461, -2.55444 -0.42462, -2.55436 -0.42455, -2.55432

3 -0.42711, -2.55431 -0.42469, -2.55431 -0.42461, -2.55432 -0.42455, -2.55429

4 -0.42347, -2.55424 -0.42453, -2.55424 -0.42452, -2.55426 -0.42452, -2.55428

5 -0.42352, -2.55346 -0.42451, -2.55426 -0.42452, -2.55426 -0.42452, -2.55428

6 -0.42510, -2.55475 -0.42454, -2.55428 -0.42454, -2.55427 -0.42452, -2.55428

7 -0.42507, -2.55470 -0.42455, -2.55427 -0.42454, -2.55427 -0.42452, -2.55428

8 -0.42507, -2.55398 -0.42454, -2.55427 -0.42454, -2.55427 -0.42452, -2.55428

9 -0.42520, -2.55400 -0.42453, -2.55427 -0.42454, -2.55427 -0.42452 ,-2.55428

10 -0.42521, -2.55446 -0.42453. -2.55427 -0.42454, -2.55427 -0.42452, -2.55428
11 -0.42577, -2.55444 -0.42454, -2.55427 -0.42454. -2.55427 -0.42452, -2.55428

Alt. 2 -0.42454, -2.55427
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Table 3.2: as function of number of terms in the infinite series, N, and extra conver-

gence accelerating terms, L - 1 (w 1s1, h lOm, r = lOrn, z = -5rn, u = = 0 and

U lm/s). Alt.2 denotes as calculated in section 3.1J2.

10 [1/rn2] -1.0
L-1

N 0 1 2 3

1 1.78366, -1.10025 1.73655, -1.10358 1.73874, -1.10400 1.74049, -1.10245

2 1.73091, -1.10350 1.74191. -1.10266 1.74180, -1.10226 1.74170, -1.10236

3 1.73225, -1.10295 1.74190, -1.10230 1.74179, -1.10232 1.74170, -1.10239

4 1.74584, -1.10202 1.74164, -1.10233 1.74166, -1.10240 1.74168, -1.10239

5 1.74555, -1.10215 1.74164, -1.10241 1.74166, -1.10240 1.74168, -1.10239

6 1.74395, -1.10257 1.74168, -1.10239 1.74168, -1.10241 1.74167, -1.10239

Alt. 2
-

1.74168, -1.10238
. 10 [1/rn2] = -0.5

L- 1
N 0 1 2 3

1 2.04313, -1.28106 1.99492, -1.28903 1.99548, -1.29103 1.98863, -1.29005

2 1.98034, -1.29200 1.99160, -1.28896 1.99150, -1.28898 1.99191, -1.28905

3 1.98171, -1.29075 1.99159, -1.28893 1.99157, -1.28998 1.99192, -1.28902

4 1.99625, -1.28805 1.99195, -1.28890 1.99197, -1.28902 1.99191, -1.28902

5 1.99597, -1.28832 1.99197, -1.28905 1.99197, -1.28903 1.99191, -1.28902

6 1.98966, -1.28961 1.99191, -1.28907 1.99190, -1.28903 1.99191, -1.28903

7 1.98976, -1.28941 1.99190, -1.28902 1.99190, -1.28903 1.99191, -1.28903

8 1.99327, -1.28874 1.99190, -1.28900 1.99191, -1.28902 1.99190, -1.28902

9 1.99323, -1.28879 1.99191, -1.28903 1.99191, -1.28902 1.99190, -1.28902

10 1.99099, -1.28922 1.99192, -1.28904 1.99191, -1.28903 1.99190, -1.28903

Alt. 2 1.99192, -1.28902
102 [1/rn2] = -0.1

L-1
N 0 1 2 3

1 2.56961, -1.66084 2.55296, -1.67846 2.54948, -1.67876 2.54408, -1.68220

2 2.52715, -1.68822 2.53310, -1.68374 2.53100, -1.68349 2.53137, -1.68326

3 2.52743, -1.68669 2.53085, -1.68321 2.53106, -1.68323 2.53138, -1.68306

4 2.53303, -1.68131 2.53154, -1.68292 2.53156, -1.68297 2.53154, -1.68299

5 2.53299, -1.68159 2.53160, -1.68299 2.53156, -1.68299 2.53155, -1.68300

6 2.53075, -1.68388 2.53153, -1.68306 2.53152, -1.68304 2.53157, -1.68302

7 2.53076, -1.68378 2.53150, -1.68304 2.53152, -1.68304 2.53157, -1.68302

8 2.53195, -1.68251 2.53148, -1.68301 2.53148, -1.68302 2.53151, -1.68301

9 2.53195, -1.68255 2.53149, -1.68302 2.53148, -1.68301 2.53152, -1.68301

10 2.53122, -1.68337 2.53154, -1.68303 2.53154, -1.68303 2.53158, -1.68302

11 2.53122, -1.68334 2.53153, -1.68302 2.53154, -1.68303 2.53158, -1.68302

Alt. 2 2.53152, -1.68302
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Table 3.3: for increasing depth. (TI = lm/s, r = lm, z = c = -5m, w = ls_1,
a = u = 0 and L- 1 = 3.) Alt.2 denotes as calculated in sec.3.1.2.

Table 3.4: as function of number of terms in the infinite series, N, and evtra con-
vergence accelerating terms, L - 4 (w = is_1, h = lOrn, r = 10m, z = -Sm, c = -im,
u = a = 0 and U = lin/s). Alt.2 denotes as calculated in section 9.1.2.

Table 3.5: for increasing distance from source point, r. (TI = lm/s, h = lOm,
c = -5m, w = is1 and a = u = 0. L -4 = 3.) Alt.2 den. as calc. in 5.1.2

({}, {}) 1O [1/m2]

h

N 5m 1Cm 2Cm 40m

1 3.40392, -3.52176 1.98863, -1.29005 1.71183, -0.84320 1.91974, -0.85487

2 3.40384, -3.52174 1.99191, -1.28905 1.73038, -0.83524 1.74150, -0.81451

3 3.40391, -3.52178 1.99192, -1.28902 1.73782, -0.83353 1.76384, -0.80439

4 3.40383, -3.52175 1.99191, -1.28901 1.73941, -0.83311 1.75480, -0.80083

5 3.40392. -3.52178 1.99191, -1.28902 1.73966, -0.83301 1.76466, -0.79929

Alt. 2 3.40390, -3.52176 1.99192, -1.28902 1.73966, -0.83299 1.76123, -0.79781

N

10 [1/rn5]

0

L-4
1 2 3

1 5.31529, -2.42884 3.92881, -3.43403 3.47366, -3.50473 0.92882, -4.32982

2 0.30358, -3.47754 0.62802, -3.22217 0.62072, -3.15927 0.77646, -3.10674

3 0.35729, -3.27478 0.64187, -3.07665 0.66949, -3.08052 0.80070, -3.04333

4 1.05689, -2.91166 0.93303, -3.00369 0.93495, -3.01525 0.91139, -3.02481

5 1.05742, -2.93513 0.94198, -3.01518 0.93607, -3.01286 0.91434, -3.02130

6 0.88523, -3.13084 0.94198, -3.08383 0.94889, -3.08003 0.95726, -3.07949

7 0.87345, -3.15517 0.93497, -3.11249 0.93694, -3.11369 0.94497, -3.11336

8 0.69812, -2.98418 0.65868, -3.01260 0.65907, -3.01427 0.65763, -3.01675

9 0.71954, -2.90751 0.68152, -2.93391 0.68056, -2.93323 0.67922, -2.93565

10 1.29814, -3.07582 1.13247, -3.05682 1.32434, -3.05595 1.13255, -3.05731

Alt. 2 0.87641, -3.04361

({},{}) [1/ms]
N 15m 5Cm lOOm 20Cm

0 0.58910, -0.43481 9.68294, -0.58609 2.59879, 6.86393 -4.97457, -1.74530

1 0.97403, -0.26405 9.68254, -0.58634 2.59893, 6.86404 -4.97450, -1.74527

2 1.03189, -0.25273 9.69015, -0.59282 2.60521, 6.86285 -4.97294, -1.74587

3 1.03214, -0.25350 9.69015, -0.60094 2.60432, 6.86012 -4.97314, -1.74659

Alt. 2 1.03797, -0.25236 9.68281, -0.58608 2.59870, 6.86400 -4.97461, -1.74527

x105 x106 x106 x106



= 1 + 2r

are good guesses. And if vh is small, the terms c2h are small, and may be used as
approximations for tanh o,2h. We then get the estimates

O1 = (,/r2 + vh - r)/h a2 = ('./r2 + vh + r)/h. (3.68)

Using equation 3.67 to find o and 2 for vh > 0.5 and zih > 1.0, respectively, and
equation 3.68 else, we find the solutions correct to 10 decimal places after at most 4-5

iterations.

Integration routine
The k-integral part of the Green's function, G, may be written

G = FI(k)dk + f F1(k)dk +
j3

F2(k)dk, (3.69)

where the integrand has square root singularities at a1 and a2. A method to circumvent
this problem is given in Press et. al. [1989]: If the integrand contains a square root
singularity in the lower end point, a, the identity

JF(k)dk = J 2tF(a + t2)dt (3.70)
a 0

is used, and

jF(k)dk = j 2F(b - (3.71)

=
1 - 2r

(3.67)
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3.2.2 Alternative 2
In this section the Green's function as expressed in equation 3.32 will be evaluated nu-
merically. We see that the integrand has square root singularities at k = o and O2. This
means the integration scheme needs to be modified. In addition oj and O2 have to be found
numerically. We will find the location of o (that is; when to change the integration vari-
ables), and decide how many terms are needed in the infinite series. The Bessel functions

are calculated in the NAG-library.

Location of singularities

By Newton-Raphsons method we will find the solutions to

ktanh kh - ii = ±2rk (3.66)

for k on the positive real axis. We will have the same kinds of estimates as in the previous

section: That is, if zih is large,
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for a singularity at the upper limit. For singularities at both endpoints the integral is
divided into two parts. Thus, we write

t2- ['F1(k)dk+j 2 F1(k)dk+j+Fi(k)dk1 Jo
r3

+ / F2(k)dk,
.1

which after change of variables gives

G = f 2Fi(cit2)dt+ I 2t[F1(o1+t2)+F1(o2t2)]dt (3.73)
Jo

+J 2tF2(o2+t2)dt.

There are still numerical problems (due to overflow) if the integration scheme includes the
endpoints. This is however not the case for the Gauss-Kronrod scheme.

Number of terms in the infinite series

There are two factors deciding the numbers of terms needed; the magnitude of kr and p5.

We know that 1 = J(kr) (eq.3.30 with 7t = i), and since J(kr) decreases for
larger kr, this indicates that the series converges slower for larger r. In an interval around
k = ii the absolute value of p is close to one and thus has no convergence generating effect,
and we conclude that the number of terms needed may be written N = f(rv) when N is
constant in k.

Table 3.6 shows number of terms vs. increasing rv. It seems like a good guess to set
N equal to f(rv) = 2 + 7 ln(l + ru). The derivatives need more terms to obtain the same
accuracy, this may be viewed in table 3.7. Approximately two extra terms for each degree
of derivative seems to be sufficient, giving N = 2(1 + M) + 7ln(1 + ru). However, there is
no harm done by adding too many terms.

Location of 03

To achieve good results for the c-derivatives of the Green's function we find that o3h >
50 and a > 2002. Since 1 - tanh 50 i0 this is most likely due to inaccurate
calculation of the last integral in equation 3.40, which includes the exponential integral.
We have integrated straight forward while Faltinsen and Michelsen [1974], who considered
a similar problem for zero speed, used some "mid-point-rule". Then, they could change
the integration variables already when kh = 4.5.

(3.72)
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Table 3.6: Greeen.'s function for increasing ru as functions of terms in the infinite

series (w = 1s1, h = lOm, z = c = -5m, u = a = 0 and U = lm/s).
The numbers in the boxes are due to the Green's function calculated by the first alternative,

with N = 4 and L = 3.

3.2.3 Verification of the Green's function calculations
In the previous sections we have evaluated the Green's function in two ways. The first,
GAIt1, is expected to give give good results for moderate and large nh-ratio. It's higher
order derivatives, however, need a large n/h-ratio in order to produce correct values. The
other one, GAIt2, and its multipoles are expected to be more accurate, except for very small

?. For i- = 0, GAU2 fails completely when written as we do.
Since we want to evaluate the Green's function and its derivatives on the control surface,

which represents a moderate ratio nh, we have no choice but to choose the Green's function
evaluated analytically in section 3.1.2 and numerically in 3.2.2; GAIt2.

The accuracy of the Green's function and its derivatives should be approximately of
the same order of magnitude as in the infinite depth case programmed by Zhao and used

in the original MULDIF program (Zhao and Faltinsen [19891). Since the relation

ÔMG(A, ; a)
8B

8MG(A,;a+ir)
- ÔA

B=ä

(x, y, z) =
a3 E (a,b,c)

(3.74)

N

({G}, {G})[1/m]

1. 4.

nil
16. 64.

1 -0.335750, -1.993804
2 -0.326534, -1.972564 0.110696, 1.028420
3 -0.327867, -1.972577 0.131969, 1.013368
4 -0.327845, -1.972575 0.132801, 1.016799
5 -0.327843, -1.972575 0.132377, 1.016717

6 -0.327843, -1.972575 0.132406, 1.016678 -0.963482, 5.091100

7 -0.327845, 1.972576 0.132409, 1.016683 -1.000300, 5.042377

8 x10 0.132408, 1.016682 -0.986222, 5.037272

9 0.132408, 1.016682 -0.986169, 5.040611 -2.695217, -0.474791

12 0.132417,1.016681 -0.986183, 5.040301 -3.150304, 0.702767

13 x 10_' -0.986722, 5.040301 -2.972010, -0.366580

14 -0.986722, 5.040301 -2.265113 , -0.136883

27 -0.986647,5.040299 -2.567074, 0.079640

28 x102 -2.567073, 0.079641

29
-2.567073, 0.079641
-2.566987,0.079674

x102



Table 3.7: for increasing rv as functions of terms in the infinite series (w = 1s',
h = lOin, z = c = -5m, u = = 0 and U = lm/s).

is valid, we may relate the accuracy to the Laplace equation and the free surface condition

given in the beginning of this chapter.
The free surface condition is valid in the two-dimensional plane z = 0, and we may

differentiate in x and y and still get a zero right hand side. In table 3.8 some of the
derivatives are listed for decreasing depth. We see that the accuracy is not dependent of
depth and comparable to infinite depth results.

As the source point tends to the free surface the results gets poorer. This is illustated
in table 3.9. But, since the accuracy of the multipoles still is comparable to those due to
infinite depth, we are satisfied. It shows, however, that the singularity points inside the
body (see Chapter 4) must not be situated too close to the free surface.

The Laplace equation is valid in the whole fluid domain, except from the source point.
We may therefore differentiate the equation with respect to the three evaluation point
coordinates. An example is given in table 3.10.

Figure 3.6 shows a contour plot' of the Green's function for various depth. At a water
depth of 50 meters and frequency equal one, the Green's function should approximately
agree with the infinite depth Green's function: The frequency and depth correspond to
a wave length of 62m. We know that the sea floor has little effect upon the wave if
the water depth exceeds half the wave length. Here .X/(2h) 0.6 and there should be

'We have used an UNIRAS plotting program
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N

({}, {-})[i/m]
1. 4.

in'
16. 64.

13 8.171931, 0.131364
14 8.183994, 0.131351 -6.259366, -6.472850
15 8.182447, 0.132384 -6.259366, -7.963828
16 8.182623, 0.132273 -5.310369, -7.963828
17 8.182611, 0.132292 -5.310369, -7.416958 0.006527, -6.876846
18 8.182612, 0.132291 -5.593000, -7.416958 0.012527, -6.876844

19 8.182612, 0.132291 -5.593000, -7.536915 0.012527, -6.303612

20 -5.593909, -7.536915 0.075354, -6.303616
21 x10' -5.593909, -7.536915 0.075355, -6.303614

23 0.075355, -6.303614 3.215049, -0.248420

24 x108 0.075355, -6.303614 3.213112, -0.246853

33 3.213111, -0.247818

34 x108 3.213110, -0.247818

35 3.213110, -0.247818

x108
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no visible difference due to the wave part of the Green's function, between infinite water
depth and a depth of 50m. A closer view of the difference along the current axis can be

seen in figure 3.7. The curves agree rather well, indicating that the plotting procedure may
be inaccurate. However, it illustrates the basic patterns: The wave lengths get shorter for

more shallow water, and is shortest upstream (left side).
As the current velocity tends to zero the errors in the Green's function increase. For

r = less than 0.000 1, the zero current Green's function is assumed to give better results.

This is illustrated in figure 3.8, where a comparison with the Green's function GAIt1 (which
has nearly a constant error as U varies), has been made. In our previous calculations it is

assumed that U is always positive. If anybody insists on a negative current value as input,

we take the absolute value and add ir to the current angle.
At last we check whether the Green's function satisfies the frequency limits given in

section 3.1.3. It may be seen from figure 3.9 that the results are reasonable . However, we

bear in mind that r = LL is a small quantity iii this context so that the high frequency
results are really unimportant when a current is present.

Table 3.8: Free surface equation for Green's function and some derivatives. Comparison of

present method and infinite depth Green's function in the original MULDIF program. The

expressions are non-dim ensionalized b
M,+M2) (

' &r'i5y2 - - 2ir(cosa + sina)) =

I

(i.'G - - 2iT(cosa + sina)) I 1'#M,+M21)l a(M1+M2+1)GI Ia(M1+M2+1)G
maX ( &vMl+18yM2

I

(U = lm/s, r = lOin, z = Om, c = 5m. w = 1s1, a - and u = 0).
)

h=oc h=lOOm h=lOm h=6m

(vG -, - 2ir(cosa + sina)) 3.5. iO 1.2 10 2.0. 10-8 6.5 10_8

- (uG - - 2iT(cosa +sina)) 1.4 iO 8.l i0 4.7.10_8 4.7. 10

- (iiG - - 2iT(cos + sin ar)) 4.8 . iO 5.4. 10-8 6.5 i0 8.2 10_8

2 1'

-s-- - 2ir(cosa + sina)) 6.2. iO 1.2 iO 1.1- i0 8.2- io
-- y' -
-- "uG - 2ir(cosa + sina)) 4.7- iO 2.5 . 10_8 4.2- 10_8 2.7. 10-8

r (vG__ - 2ir(cosa +sinc)) 2.0 106 1.3 1O 8.8. i0 11. lO

"uG 8G - 2ir(cos a + sin ai)) 2.3. 106 6.0 10_8 1.4- i0 1.2 i0

Fr (vG - - 2ir(cosa + sina)) 1.4- iO 8.3- i0 1.8- iO 3.0. i0



h = cc.

h = lOin.

Table 3.9: Free surface equation for Green's function and some derivatives for source point
close to the free surface. Comparison of present method and infinite depth Green's function
in the original MULDIF program. The expressions are non-dimensionalized in the same

way as in the previous table. (TI = lm/.s, r = lOin, z = Om, w = is', c = - and

u = 0).
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fl=0.2 II=O.l I=0.05 lI=0.0i

(ziG - - 2ir(cosa + sinc)) 1.1 . i0 5.8. iO 2.6- 10_6 4.1 i0'

(ziG - - 2ir(cos + s 1.3- l0 9.4 10 5.2- 10' 1.1 . 10_2

(ziG - - 2ir(cos + sin 1.3. 10-6 96 10_6 4.6- i0' 9.4- 1O-

&2 1uG - 2ir(cos a + sin 1.0- i0' 2.7- 10-' 1.3 iO 4.8 . 10

2 1G - - 2ir(cos + sinc4?))' 3.5 i0' 5.2- i0' 4.5- l0 8.9.10-1

.
(ziG - - 2ir(cos + sin 1.8. 10' 3.7- iO' 1.9- i0' 6.8. 10'

(ziG - - 2ir(cos + sin 8.0- i0' 1.3 . i0 9.2- 10_2 8.7. 10-'

'vG
3G - 2ir(coscz + sin 2.2- iO 1.4- 10' 1.1 1.1

II=0.2 I=0.1 Il=0.O5 II=O.01

(ziG - - 2ir(cosa + sinc)) 2.6 10_s 4.9. 10 5.9 10_8 6.4- i0

- (ziG - - 2ir(cos + sin 5.4. 108 1.4- i0 2.0- i0 4.8. 10_2

(ziG - - 2ir(cosa + sin 3.8- 10_8 1.1 . iO 1.7- i0 4.1 i0

2
yG 3G - 2ir(cosc +sinc))' 6.4- 10 8.2. i0 4.8- 10' 1.2

&2
(ziG - 2ir(cos a + sin 9.7- 10_8 2.6. i0 2.5- 10"' 9.5- 10'

(ziG - - 2iT(cos o!2 + sin 47 10_s 8.3- iO7 8.4- 10' 9.7- 10

5; TvG ; - 2ir(cos + sin 1.6- iO 4.3- 10' 6.1 . i0 5.0. 10-'

(ziG - - 2ir(cos + sin 1.0. 10-2 74 10_i 9.6 10_i 4.9- 10'
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Table 3.10: Laplace equation for Green's function and its derivatives. Comparison of

present method and infinite depth Green's function in the original MULD1F program.-
The Laplace equation and the derivatives are non-dimemsiono.lized by &.M18YM28ZM3 -

,'I (M14M2.I-M3+2) I 8(Ml+M2+M3+2)G (MI+M2+M3+2)G '

I a 1a2azM3 1/max (\Ia+Ml&YMZ&ZM3 &rMiay+2az3 i I
MiMzaZ2+M3 I)

(LI = lrn/s,

r=lOm, z=c=-5m,w=1s1,c=- andu=0).

h=cx h=1000. h=oo h=1000.

V.72G 3.4 iO 1.1. 10 V2G 1.4 1O 1.4 1O

&V2G 6.2. 10_s 4.1 10 83V2G 3.6 10_8 1.8.5y2&z

&V2G 1.8. 1O 1.6 10_8 V2G 3.8 1O 4.8. 10_8

3V2G 7.3 iO- 3.1 l0_8 a3V2G 2.1. iO 1.4 iO-

&2V2G 1.7 iO 2.4. 10-8 04V2G 1.6. 10_6 9.4 1O5y4

1.7 iO 5.8 1O V2G 3.6. 10_s 4.5 . iO

82V2G 4.0 10_s 4.6. 10_s 8V2G 1.5 10_6 9.4 1O

&2V2G 1.0 . 10_6 1.5 10
aV2G 2.0 iO 1.0 . iO'

V2Gw 3.6. 10_s 4.7 i0 &V2Gw 2.3 i07 1.0. 10

&2V2G 5.1 10-8 4.8. i0 av2G' 4.7 iO 2.2 10
axaz

2.9 i0 1.1 . iO
a4V2GS 4.4 iO-7 1.8 . 1O

83V2G 2.5 1O 1.1 . 10 &V2G 2.6. 10_6 3.8 iO
ay3

83V2G 1.4 1O 9.8 10_8 &V2G 99 lO 2.5 i0
8z3 8y38z

3.8. i0 6.0. 10 84V2G 1.3 i0 1.0. 10

1.8 i0 3.6 1O
84V2G io- 1.0. i0-

y29z

1.6. i0 6.1 . 10_8 84V2G 2.4. i07 8.4 10_8

83V2GS 1.7 10 5.8 . i0 aV2G 3.1 . iO 2.1 10



Real part of Green's function.

Imaginary part of Green's function.
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Figure 3.6: Green's function [1/rn] for various depth. The left side shows infinite water
depth in the lower half plane vs. h = 5Orn in the upper half plane. The right side shows
h = Gm in the upper half plane vs. h = 12m in the lower. x - a and y - b vary between
-80rn and 8Gm. (U = lm/s, z = Gm, c = 5m, = is and c = 0).
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Figure 3.7: Comparison of the Green's functzon for h = 50m and h = along the current

axis (U = lm/s, z = Om, c = 5m, w = 1s' and c = 0).
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b)

Figure 3.8: a) Difference between the Green's function evaluated in section 3.1.1 (G011)
and in section 3.1.2, (Ga112), for decreasing current velocity. b) Difference between the
Green's function evaluated in section 3.1.1 (G?tl) and the zero current Green's function
(G0) by John [1950] for decreasing current velocity (r = lOm, h = lOin, z = c = 5in
and a = u = 0).
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a) Real part.
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b) Imaginary part.

Figure 3.9: Green's function as function of frequency. The infinite frequency Green's func-

tion gives G_ = (O.04007,0)[1/m} and the zero frequency limit is given in section 3.1.3

as = (, ){1/rnJ (r = lOin, h = lOin, z = c = Sm and a = u = 0).
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Chapter 4

Hydrodynamic Forces

In this chapter we will look at quantities needed in calculating sea loads and wave induced
motions of marine structures. That is: wave exciting forces, added mass and damping
coefficient, mean drift forces and wave-drift damping. The analytic expressions will be
presented and the results from the computer program MULDIF, now extended to include
the effect of finite water depth, will be discussed. The basic method is described in Chap-

ter 2.
It is necessary to distribute elements on both the free surface and control surface, as

well as on the body surface. Figure 4.1 shows how the elements are obtained.

53

It'
NN3

Uc vsw

Figure 4.1: Definitions of number of elements for a floating sphere.

The lines surrounding the elements on the body surface have constant angular spacing,
both horizontally and vertically, with the smallest elements against the sea floor. The angle
definitions are given in figure 2.8 in chapter 2, and the element distribution on the body is
illustrated in figure 2.7 under the name "element distribution 1". If we were considering an
infinite water depth problem it would be natural to choose small elements close to the free
surface. This is due to stronger flow variation on this upper part of the body. If we had a
finite water depth case, where the steady potential was known analytically, it might also
be natural to pick smaller elements close to the free surface, and not worry too much about
the lower part of the body. The reason is that the m2-terms (as discussed in section 2.2)
are then known. In our case, however, the calculation of these terms, where we interpolate
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back from some distance from the body, gets critical. Thus, handling mi-terms give the
main reason for requiring distribution of small elements on the lower part of the body
surface. Of course, large flow variation on this lower part, is also a reason for choosing this

distribution.
At the free surface the elements are smallest near the body, and at the control surface

the elements are smallest close to the free surface. This is mathematically expressed as

= factor'1L1, 1 n < NN2 or 1 n NN4, where L is the length of an element.
NN2 and NN4 are explained in figure 4.1. L1 denotes the length of the element closest to

the body when we consider element distribution at the free surface. At the control surface,

L1 denotes the length of the element closest to the free surface. Experience with MULDIF
suggests that the factor's are chosen as fact OTSF 1.1 and fact ors = 1.25.

In most of the following examples the NNi-terms explained in figure 4.1 are set to

NN1 = 32, NN2 = 18 and NN3 = NN4=16.
In order to calculate the m3-terms the steady potential will be evaluated at distances 2.0,

2.2 and 2.4 times the diagonal of an element, along the normal vector. Why this procedure

is necessary is explained in the discussion starting on page 15. With the preceding values

for NN1 and NN3. these distances imply that the minimal z-value where derivatives of

the steady potential are evaluated, is z 1.23R. The symbol R still denotes the radius

of the hemisphere. We are going to choose water depths that are more shallow than 1.23R.

This may or may not cause errors, as discussed on page 15 and illustrated in figure 2.6.

Zhao and Faltinsen [1989j investigated the radius of the control surface, Rc, in the

deep water case. They reported less than 2% difference in results for a floating cylinder if

the control surface was moved between R = 3R and R = 5R. We therefore choose the

control surface at four times the radius.
The velocity potential in the outer domain is approximated by multipoles inside the

body. The locations of these multipoles are called singularity points. Our model is based

on a Taylor series expansion, implying that quite few multipoles and singularity points

are needed if the control surface is located far from the body. Likewise, more multipoles

and singularity points are needed if the control surface and body surface are close. All

details about this expansion procedure are given in Appendix A. For the sphere we first

use only one singularity, situated on the z-axis at minus half the radius. The number of

multipoles is set to 10. These choices are not wild guesses, they equal those of Zhao and

Faltinsen [1989]. These authors found, again for a floating cylinder in deep water, that the

results changed less than 1% when number of singularity points increased from one to two.

Moreover, if number of multipoles increased from 10 to 16, their values varied less than

0.2%.
One should note that the infinite water depth results presented in this section are due

to standard routines for the Green's functions, both in the steady and unsteady case. For

finite water depth the control surface fills the gap between the sea floor and free surface,

while for infinite water depth the control surface ends one wave length down in the fluid.

In the deep water case it is all right to use such a short control surface when considering

linear problems and mean forces, as we do. The flow then decays rapidly with respect to

z. However, if we had solved the second order sum frequency problem, part of the solution



would decay like z'. and a deeper control surface would be necessary.

4.1 Linear forces
Here, we will look at the wave exciting forces and the added mass- and damping- coeffi-
cients.

4.1.1 Wave exciting forces
The linear wave exciting forces and moments, j = F{Fietwt}, j e {1, .., 6}, are obtained
by integrating the pressure due to incident and diffracted waves over the body surface.
Within linear theory this may be written

= _pff [iwn - m](o + 7)ds, j E {1,..,6}. (4.1)

Here a theorem by Ogilvie and Tuck [1969], valid for wall-sided structures, has been applied

to rewrite equation 2.21 in section 2.1.
Nossen et.al. [1991] presented the 3-D generalized Haskind relation, also valid for wall

sided structures. The derivation was based on an idea of Zhao and Faltinsen [1988] (2-D
case). They introduced a reversed flow, but let the frequency of encounter for the reversed

flow equal that of the physical flow. An alternative way of writing the wave exciting forces,
without solving the diffraction problem, was then established. In our setting their method

gives

ff0

[O_J] ds+2irpf bcos(v)d1, jE {1,..,6}, (4.2)

where o,'j is the radiation potential due to a reversed current, and v denotes the coordinate

angle from the positive x-axis.
A less sophisticated way of checking the accuracy in the calculations of the forces, is

given by applying Green's second identity to j and (o + 7), resulting in

Here,

= _2pff iwn(o+
s

jlf(j,7+o)If o+7)
anJ S0

2iw+-ff [V .v(0+th7) - V .V(o+7).]ds
g S7

By the same approach we also obtain

F =2pJf
S7
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j e {1..,6}. (4.3)

(4.4)

j E {1,..,6}. (4.5)
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So, we get a check on the relation between the diffraction potential and j, j E {1, .., 6}

without having to run the program twice.
The above expressions all include mi-terms, either directly or implicitly through or

l'j (j E {1, .., 6}). If the intention is to examine what effect the m2-terms have upon the
forces we should compare with the original expression (eq. 2.21). On the other hand, if we

do not want to include derivatives at the body surface at all, we should apply

8ô(0+7)F = -fJ zm(o + c7)ds - ff - ds, j e {1,2}, (4.6)
5FCo

which comes from applying Green's second identity to (o + d) and for j E {1, 2). A

smilar procedure also leads to a simple way of writing the yaw moment, without including
mi-terms. In heave, pitch and roll, however, this approach implies non-zero contributions

from the sea floor surface (S0) if water depth is regarded finite.

Discussion of results

In figure 4.2 through 4.6 the different methods are compared for four water depths.

The figures might need some explanation: The solid lines denote F1 and F3 as calculated

with equation 4.1 (Original Fi), the dotted lines are due to the two alternative methods
stated in equation 4.3 and 4.5 (Alt. with mi), and the dashed lines denote horizontal

wave exciting forces due to equation 4.6 (Alt. without mj). The generalized Haskind

relation (Gen. Haskind), written in equation 4.2, is presented in figure 4.4 and figure 4.5,

only. Forces calculated by the different methods should of course agree.

In figure 4.2 through 4.5 a current has been included (Froude number F,. = = 0.04).

Incident waves and current propagate in opposite or same direction. The results for h/R =

1.2 and h/R = : are compared with Grue and Biberg [1993] with satisfying agreement.

The only exception is the horizontal force in the case of long waves (KR < 0.5), with m-

terms included and h/R = 1.2. For h/R = 1.1 the results differ more than 20% depending

on whether or not m3-terms have been included. We notice that all methods that involve

m2-terms give approximately the same results.
We will convince ourselves that this difference is due to errors in our calculations of the

mi-terms. That means, the dashed lines (Alt. without m3), which represent results not
involving the errors associated with calculations of rn3-terms, are most accurate whenever

large differences occur.
By increasing NN3 from 16 to 22 the mi-terms are calculated within the fluid in the

case of h/R = 1.2. However, the results change very little. Next, we look at the dependency

of the factors deciding how far out along the normal vector the differentiation is executed
(FFi). This is shown in figure 4.7 and 4.8 for frequency coefficient wR/g = 0.0917 and

R/g = 0.5, respectively. The horizontal wave exciting force is most sensitive to FFi for

low frequencies, where the results change about 10% by varying between FFi=(0.8,1.0,1.2)

and FFi=(2.0,2.2,2.4). For the vertical forces in both cases, and for the horizontal forces

with frequency coefficient wR/g = 0.5, the difference is less than 2%. It seems like we

should have chosen FFi=(1.2,1.4,1.6) for h/R = 1.2.
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The same investigation ought to be performed for h/R = 1.1 to decide whether the
vertical forces are correct when a current is present (we now conlude that the horizontal
forces are inaccurate, unless written as in equation 4.6). The vertical forces are likely to also

be more sensitive to FFz as the depth decreases. However, since such investigations are
rather time-consuming we just say that they may be very inaccurate. That the alternative
methods agree (also the generalized Haskind relation) gives no verification on good results

at all.
The steady potential is not to blame for all inaccuracies in the results. For large wave

numbers we notice a disagreement in the alternative methods of calculating the horizontal

force (fig. 4.2, 4.4 and 4.6). This is independent of water depth, and the gap is also
present when a current is not included. It seems like the error depends on the frequency
of oscillation, and thereby the length of the diffracted waves. It is natural to suspect
insufficient number of elements on part of the surfaces.

So, we look at the wave exciting forces at large wave number, deep water and head

sea. For deep water the steady potential is easily expressed analytically, a procedure that
is used in this part of the discussion.

First a convergence study is made, where NN1 varies between 20 and 40 (NN2 =
1.1 . NN3 and NN3 = NN4 = Li). But, the results change less than one per cent.
Next, we try to increase the number of singularity points from one to three. Again, the
results change less than one per cent. Eventually, when the control surface is put at
three times the radius -instead of four- something happens: A gap of 10% between the
methods calculating the horizontal force is reduced to less than one per cent. At the

same time, for the method of pressure integration on the body surface, the results increase
approximately 1%. However, the gap between the alternative ways of calculating vertical

wave exciting force increases from 0.5% to 5%, while for the pressure integration method

the result changes 2%. When the control surface is put at 31? we choose NN1 = 26 and

NN2 = NN3 = NN4 =
We can explain the lack of sensitivity to number of elements as follows: The factor,

fact orsF, that relates the radial length of the elements on the free surface is chosen as
factorsF = 1.1. This means for Rc = 4R that the smallest radial length of an element is

0.051? when NN2 = 22, and 0.19R when NN2 = 11. The corresponding largest length is
0.41R and 0.53R, respectively. If R = 3R and NN2 = 13, the largest length is reduced

to 0.37R. The largest examined wave number (KR = 1.25) corresponds to a wave length

of ) = 5R for the incident wave. The upstream waves are even shorter. To describe

these waves properly, and to evaluate derivatives by applying the potential at adjacent
elements, small elements are needed also at some distance from the body. We should try

to decrease factorsF when NN2 is large. By the same argument also factors should be

reduced during convergence studies. The horizontal length of the elements on the control

surface seems from the above to be less important. For Rc = 41? and NN1 equal to 20

and 40, leemcO.63R and leiemcO.3lR, respectively. When the control surface is moved

to 1?c = 3R, leiemcO.36R.
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GruefBiberg[1993], h/R=1.2
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Alt with m (eq. 4.3 and 4.5)
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Figure 4.2: Horizontal wave exciting forces for a half immersed sphere when current and

incident wave propagate in opposite directions (c = 0, fi = r). Froude number: F = 0.04.

(NN1 = 32,NN2 = 18,NN3 = NN4 = 16. 1 singularity in (0,0,R/2). Control surface

at 4R. 10 rnultipoles. FFi = (2.0,2.2,2.4). factorsF = 1.1 and fact ors 1.25.)
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Figure 4.3: Vertical wave exciting forces for a half immersed sphere when current and

incident wave propagate in opposite directions (c = 0, fi = 7r). Froude number: F,. = 0.04.
Note that the results for h/R =1.1 may be inaccurate. (NN1 = 32,NN2 = 18,NN3 =
NN4 = 16. 1 singularity in (O,OR/2). Control surface at 4R. 10 multipoles. FFi =
(2.0,2.2,2.4). factorsF = 1.1 and fact ors = 1.25.)
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Figure 4.4: Horizontal wave excitzng forces for a half immersed sphere when current and

waves propagate in the same direction (a = 08 0). Froude number: F,. = 0.04.

(NN1 = 32,NN2 18,NN3 NN4 = 16. 1 singularity in (0,0,R/2). Control surface

at 4R. 10 m'altipoles. FFi = (2.0,2.2, 2.4). fact orsF = 1.1 and factors = 1.25.)
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0.0 0.2 0.4 0.6 0.8 1.0 1.2
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Figure 4.5: Vertical wave exciting forces for a half immersed sphere when current and waves

propagate in the same direction (a = 0, = 0). Froude number: F = 0.04. Note that the
results for h/R =1.1 may be inaccurate. (NN1 = 32,NN2 = 18,NN3 = NN4 = 16. 1

singularity in (0,0, R/2). Control surface at 4R. JO multipoles. FFi = (2.0, 2.2, 2.4).

factorsF = 1.1 and factors = 1.25.)
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Figure 4.6: Wave exciting forces for a half immersed sphere for zero current velocity,

F = 0.0 (NN1 = 32,NN2 = 18,NN3 = NN4 = 16. 1 singularity in (0,0,R/2).
Control surface at 4R. 10 multipoles. factors,. = 1.1 and factors = 1.25.)
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Vertical wave exciting force.

Figure 4.7: Wave exciting force as function of FFi = (FF1,FF1 + 0.2,FF1 + 0.4).
wR/g = 0.0917. h/R = 1.2 (NN1 = 32,NN2 = 18,NN3 = NN4 = 16. 1 singularity in
(0,0,R/2). Control surface at 4R. 10 multipoles. F = 0.04. c = /3 = 0. fatorsF = 1.1
and factors = 1.25.)
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Figure 4.8: Wave exciting force as function of FFi = (FF1,FF1 + 0.2,FF1 + 0.4).
= 0.5. h/R = 1.2 (NN1 = 32,NN2 = 18,NN3 = NN4 = 16. 1 singularity in

(0,0. R/2). Control surface at 4R. 10 multipoles. F = 0.04. a = = 0. factor5 1.1

and factors = 1.25.)

0.8 1.0 1.2 1.4
FF1

1.6 1.8 2.0



4.1.2 Added mass and damping coefficients
The added mass and damping coefficients are given by the equation

Fkm = AkmW2 - = -ff (iwnk - mk)çbmds.

Nossen et. al [1991J presented the generalized Tirnman-Newman relation for small current
velocities; Fkm(U,W) = Fmk(U,W). They pointed out one important consequence of this
symmetry relation: The diagonal terms, Fkk, do not depend on U as long as U is small,
other than through the frequency of encounter. The same assumptions on the reversed
flow as in section 4.1.1 were made.

Again, we want to check the relations between Fkm and Fmk without introducing the
reversed flow. Applying Green's second identity to qk and m, the following alternative
expressions for added mass and damping are established:

Aicm Amk 4 {.g(q, m)} (4.8)

Bkrn = Bmk + {g(qk, m)},

where g can be chosen among one of the following:

f 2iw ffs-[flkrn - flink]dS + f(k, cbm)
g(, m) - 2 ff[mk - nk]ds - f(k, m)

and f(ç, qlm) is given by equation 4.4.
Conservation of energy gives a test on the diagonal damping coefficients. The following

consideration has already been taken into account in MULDIF. Zhao and Faltinsen [1989]
did not describe their procedure, however, so we take the opportunity to do it here:

The total energy, E, in a fluid volume, , consists of both potential- and kinetic energy,

written

E(t) =p [[f(jv2gz)dr,
JJJc2 2

and its time derivative says

dE(t)
= Jj (PPo

+ )
u] ds (4.12)

as given e.g in Newman [1977, page 260]. Here p is the total pressure, po the atmospheric
pressure and U,. is the normal velocity of the surface, S, enclosing the fluid volume. The
time derivative of the energy averaged over a period is zero when no energy is removed

from the system. That is, if the structure is restrained or freely floating but restrained
from drifting. We choose as fluid volume the one enclosed by the surfaces in figure 2.3.

Then S = SF + 5B + S + S0 and equation 4.12 becomes, at least after time-averaging

(denoted by overline).

(4.11)
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(4.7)

(4.9)

(4.10)
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II (p_po)Udspff aa (4.13)

Next, force the body to oscillate in one specific direction and assume a situation with

no incident waves. Then = + {jc5,}, {1,..,6}. Following Faltinsen [1990, page
45] (zero current velocity) the diagonal terms of the damping coefficients are found from

the above equation as

= J }ds - L. (4.14)

where the star denotes complex conjugation and C is the water line curve of Sc0.

Discussion of results

The off-diagonal coefficients are zero for a floating sphere when no current is present,
and small otherwise. These terms are here evaluated in the infinite water depth case,
both for numerical and analytical calculation of the steady potential. The difference is
remarkable. For analytical q53-calculation the results agree rather well with Nossen et.al.

[1991], while for numerical -calculation our values increase almost 100%. There is no

significant variation between the three different methods used to calculate each of the two

cases. For finite water depth we know that the error in the steady potential increases (see

figure 2.9 in section 2.2), and that the m3-terms are more difficult to evaluate. Thus, we

expect even larger differences as the water depth decreases.
Although the wave exciting forces seem to be almost not at all influenced by FFi for

infinite water depth, we ought to do a sensitivity analysis for the off-diagonal coefficients.
However, the off-diagonal terms are not important in the further calculations, so we do

not bother too much about it. The fact that the off-diagonal terms are sensitive is also

expressed by Eatock-Taylor and Teng [1993]. They studied the effect of corner radius of

a truncated cylinder, and found the off-diagonal added mass and damping terms to be

affected by a small corner radius while the diagonal terms, the wave exciting forces and

the drift forces were rather insensitive.
The diagonal damping coefficients are presented in figure 4.9. The agreement between

the zero and non-zero current results is good. Because fewer multipoles are needed and the

control surface may be situated closer to the body for U = 0 (see Appendix A), it indicates
that our model works well with this respect. Besides, different expressions for the wave-

current Green's function are applied in the two cases and we get a check of their relation.
Also the results achieved by conservation of energy agree well. However, when comparing

with Mavrakos [1981] for h/R = 1.5 we discover a maximum difference of approximately

4%.
In figure 4.10 the diagonal added mass and damping coefficients for zero current veloc-

ity are again compared with Mavrakos [1981]. Here, however, the number of multipoles

is reduced to three without affecting the results. This agrees with the calculations in

Appendix A.
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In section 2.2 the "added mass"-coefficients for a steady problem was studied. The
convergence, as a function of number of elements on the body surface, was found to be
slow. In the steady case sources were distributed over the body surface. In order to indicate
the convergence if both sources and dipoles were distributed for a steady problem, we look
at the added mass coefficient for an unsteady case, and apply a small wave number. This
is illustrated in figure 4.11. The convergence seems somewhat improved, relative to the
results in section 2.2.

The same parameters as for the forces presented in subsection 4.1.1 have been used to
find the coefficients in figure 4.9. Results like those in figure 4.6 show that not everything is
satisfactory. Thus, due to the good agreement for the diagonal damping coefficients, both
for zero and non-zero value of the rn,-terms, we conclude that the check-routine which
comes from conserving the energy is not sufficient in this case.

Other check-routines are necessary to make MULDIF a more user-friendly tool. As
pointed out in section 4.1.1: the horizontal wave exciting force has to be compared with
the expression not containing m3-terms in order to detect errors concerning these terms.
Alternative expressions for the wave forces also detect probable inaccuracies due to panel
distribution.
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Figure 4.9: Damping coefficients B1 = and B3 = calculated by direct body

integration and by conservation of energy in the case of a half immersed sphere (NN1 =
32,NN2 = 18,NN3 = .LVN4 = 16. 1 singularity in (0,0,R/2). Control surface at 4R.
10 multipoles. FFi = (2.0, 2.2,2.4). fact orsF = 1.1 and factors = 1.25.)
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Figure 4.10: Surge added mass and damping coefficient for a half immersed sphere compared
to the results of Mavrakos[1981J. Zero current velocity. 1 points at h/R = 1.5 and 4
points at h/R = 10. The solid lines denote added mass- and the dashed lines denote
damping coefficients (NN1 = 34 and NN2 = NN3 = NN4 = 17. Number of multipoles: 3.
Number of points inside the body: 2, in (O,O,-O.1R) and (O,O,-O.5R). The control surface
is here situated at 3R. factorsF = 1.1 and fact ors = 1.25.)
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Figure 4.11: Convergence test for surge added mass with the same properties as in the
above figure. R = 0.0917. (The result of Mavrakos[1981j is not function of number of
elements)
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4.2 Mean second order potential
The drift forces are second order quantities. When evaluating these forces we have to keep

terms to second order, writing 4 - & + i + 2. For zero current velocity 2 does not
enter in the equations for the mean drift forces. This is no longer the case when a current
is present, where it appears multiplied by &. We will therefore look at the mean second
order potential, by following a method given in Grue and Biberg [19931.

The mean second order potential fulfills the Laplace equation, and the free surface
condition can be written

ô2 105
-- = ------- for z = 0. (4.15)

We may directly apply the body boundary condition given by Ogilvie [19831 for zero speed:

= - [(+ (ax ) . V}V1 +( x [(+ (ax ) - V1]. (4.16)

Here= (1,2,3) and &=(i,qs,i).
A solution to this boundary value problem_can be found through applying Green's

second identity in the whole fluid domain to 2 and the Green's function used in the

steady problem, GST:

ci 8GST--GST - '2ds = 4ir42. (4.17)
'Foo+SB+SCoo+SO 9fl ö72

GST satisfies both the bottom condition and the zero normal flow condition at the mean

free surface.
To be consistent with the method used in MTJLDIF we should apply 4 as calculated

earlier although 2 only appears multiplied by . However, this leads to a more difficult

task than if I was calculated purely for U 0. We will show why:
The free surface condition for the mean second order potential (eq. 4.15) may be written

= 25(1a2) (4.18)

where = Now write as the sum of the complex incident wave potential

and the complex radiation and diffraction potential, = + We will look at the

free surface equation at large distances from the body. Then C where G is the
asymptotic Green's function from chapter 3 having wave number c0. Thus,

(K - - '{D}R{o}) +

where ç5jw = + O(1). We see that this term dies out like O(). If a current is not
present, the Green's function says (equation 3.49 slightly rewritten)

(4.19)



2iriK2coshK(z + h)coshK(c+ h) Jo(Kr) +G0 ucosh2Kh+K2h

Here, the free surface condition for the mean second order potential dies out like
The integral over SF in the Fredhoim equationIf ôGST.d + ff --GSTdS = (4.21)

8 an an SF ôn

is therefore simpler to evaluate if 2 is found for zero Froude number. Numerical calcula-
tions will, however, not be performed here.

4.3 Drift forces
The drift forces are obtained by time-averaging the forces, correct to second order, over a
period. They may be found in two different ways; either by conservation of momentum in
the fluid domain, as given by Newman [1967] (zero speed), or by direct pressure integration.

Zhao and Faltinsen [1989] gave the horizontal drift forces by the method of conservation

of momentum as

rn
2I a

pc + vs. v1) n dl + Jf IViI2m ds
Sc0

-off l. ds -Sc0 ôX an
---C---- dl, z E {1,2},

and by direct pressure integration as

-off 4jVil2nj + (+ 5 x V( + V .

+ (5 x + V& . V1) + V& . V2n} ds

1+pg [2 2C(o3 + 1/174 - xis)]n, dl, i e {1,2}.
2 Jc2

Here C denotes the free surface elevation. The expressions are valid for arbitrary depth.
We notice that equation 4.23 consists of first order quantities, only. The last term in

the first integral in equation 4.24 contains the second order potential and will be rewritten:
We consider the relation given by Ogilvie and Tuck [1969] for wall-sided structures and

use the fact that 0 on the free surface. Thenaz

fJV& V2nds = - ff 2n Vds, (4.24)
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(4.20)

8z

(4.22)

(4.23)
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and Greens second identity, Jf - ds = 0, over the closed surface S =ana
S+S+ Sc0 +So gives

ff vc . V2nds
IfS+S-y4-Sc0

öçb

s 0x, 0nds. (4.25)

At the body surface and at the free surface is rewritten according to equation 4.15
and 4.16, and at the control surface we apply Green's theorem, giving

(f
Ucoscffg5_ds

J S0 9x i9ri U sin o ff5. -ds if i = 2.

Thus,

ä&b ô2ff V V2nds = ffJS

and the horizontal drift forces obtained by the method of direct pressure integration are

now written in terms of the linear potential. Grue and Palm [1993] studied the term, which

in their setting corresponded to equation 4.27 for infinite water depth. They found this

term to be negligible in all their examples.
Grue and Biberg [1993] developed the mean yaw moment for finite water depth without

solving the mean second order potential. Their way is easily modified to the present
method. To achieve results for mean force/moments in heave, roll and pitch it seems to be

necessary to solve the mean second order potential. That was also the conclusion of Grue

and Palm [19931.

Wave-drift damping

The drift force may for small current velocities be written

= + F (4.28)

where denotes the wave-drift damping . In the numerical solution T is found by

numerically differentiating the results for the drift forces.
Clark et.al [1992] have given a simple formula for the wave-drift damping, which only

includes zero-current terms. This formula is not properly explained, but there has been
shown excellent agreement with existing results for a restricted cylinder in both deep and
finite water depth. It would of course be a tremendous simplification if the drift forces, as

a function of current, may be evaluated the way suggested by Clark et.al [1992].

(4.26)

(4.27)
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Discussion of results

The drift forces for a restrained, half-immersed sphere are presented in figure 4.12, 4.13
and 4.14, again for four different water depths. We notice that the drift forces increase
almost 100% if we simultaneously impose a current and decrease the depth from infinity

to h/R = 1.1. Current then propagate in the same direction as the incident waves and the

Froude number is 0.04.
When inspecting equation 4.23 and 4.24 we realize that a larger accuracy is needed

in evaluation of the drift forces, than of the linear forces. Because the drift forces found
by the method of direct pressure integration are more difficult to evaluate numerically
than by conservation of momentum, we will not compare these methods here. Instead we
compare drift forces for h/R = 1.2 and h/R = , with results by Grue and Biberg [1993].
Figure 4.12 and 4.14 show results with a current present. The current and incident waves

propagate in the same and opposite direction, respectively. The agreement is satisfactory.
The point where a convergence test is performed is chosen when the wave number is

KR = 0.5, the water depth infinite and incident waves and current propagate in the same
direction. In figure 4.16 the situation is illustrated when the drift force is written as function

of horizontal length of the elements on the control surface. This was to better compare
the results for two locations of the control surface. Results due to both analytical and
numerical q-calculation are shown. The maximum difference resulting from evaluating

the steady potential analytically and numerically, respectively, is approximately 6%. The
difference which comes from putting the control surface at 3R and 4R, respectively, is less

than 3% if the steady potential is evaluated analytically in both cases. The same situation

was investigated for KR 1.23. Also there the difference was approximately 3%. In

neither of the cases the factors that relates lengths of adjacent elements (fact orsF and

f actors) are adjusted while increasing number of elements.
The wave-drift damping for four water depths are shown is figure 4.15. These results

are compared with Grue and Biberg [1993] for h/R 1.2 and h/R = . In figure 4.17 a

comparison with Clark et.al [1992] is presented. Their formula involves a term w/g which
for finite depth here, with success, is replaced by the wave number K. The agreement is
not excellent, opposite to the case for restricted cylinders presented in Grue and Biberg
[1993]. However, we have previously seen rather large errors in the calculations. Besides,
in real life viscous and higher order effects matter. A disagreement of maximum 10% is

therefore acceptable.
For a structure restrained from oscillating the m7-terms are not involved. So, here this

error source is not present. If the structure is free to respond to waves this is no longer
the case. Therefore, before proceeding to oscillating structures we should develop a more

robust way of evaluating rn3-terms.
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Figure 4.12: Mean drift force for a restricted, half immersed sphere. Waves and current
propagate in the same direction (8 = 0, a = 0). Froude number: F,. = 0.04.(NN1 =

32,NN2 = 18,NN3 NN4 = 16. 1 singularity in (0,0,-R/2). Control surface at 4R.

10 multipoles. fact orsF = 1.1 and factors = 1.25.)
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Figure 4.13: Mean drift force for a restricted, half immersed sphere. Froude number:

F,. = 0.0. (NN1 32,NN2 = 18,NN3 = NN4 = 16. 1 singularity in (0,0,-R/2).
Control surface at 4R. 10 multipoles. factorsF = 1.1 and fact ors = 1.25.)
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Figure 4.14: Mean drift force for a restricted, half immersed sphere. Waves and current

propagate in opposite directions (j9 = a = 0). Froude number: F = 0.04. (NN1 =
32,NN2 = 18,NN3 = NN4 = 16. 1 singularity in (0,0,-R/2). Control surface at 4R.

10 multipoles. factorsF = 1.1 and fact ors = 1.25.)
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Figure 4.15: Wave-drift damping coefficient for a restricted, half-immersed sphere (NN1 =
32,NN2 = 18,NN3 = NN4 = 16. 1 singularity in (0,0,-R/2). Control surface at 4R.
10 multipoles. factorsF = 1.1 and fact ors 1.25.)
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Figure 4.16: Convergence test for drift force on a restrained half-immersed sphere.
(F_-0.04, Infinite water depth, wR/g - 0.5, 1 singularity in (0,0,-R/2). 10 multi-
poles. a = 0, = r. NN2 = NNS = NN4 = NN1/2 when control surface is situated at

3R. NN2 = NN4 = NN1/2 and NN2 = 1.1 NN3 when control surface is situated at

4R. factors,, 1.1 and fact ors = 1.25.)
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b) h/R = oc.

Figure 4.17: Comparison of wave-drift damping coefficient for a restrained half-zmmersed
sphere with the simple formula of Clark et.al [1992] (NN1 = 32, NN2 18, NN3 =
NN4 = 16. 1 singularity in (0,0, R/2). Control surface at 4R. 10 rnultipoles. factorsF =
1.1 and factors 1.25.)
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Chapter 5

Concluding Remarks

In the previous chapters we have considered a floating large-volume structure in combined

waves and current. Focus has been on the effect of finite water depth. Finite water depth

represents the main difference from the work of Zhao et.al. [1988] and Zhao and Faltinsen

[1989].
The steady flow problem was solved by distributing sources over the body surface. A

Green's function was modified to satisfy the sea floor condition, by applying existing theory

(Newman [1991]).
In the unsteady case the far-field potential due to a body was written as a sum of mul-

tipoles inside the body. The wave-current Green's function, which satisfies the free surface

condition with wave-current interaction and the bottom condition, is initially given as a

double integral. Two alternative expressions were established when analytically simplify-

ing this integral. Both methods included expansion into infinite series before integrating.

A way to increase speed of convergence of certain series was introduced. Good agree-
ment was achieved for the two Green's functions in a broad range of parameter variations.
Their higher order derivdtives, however, were found to differ significantly when realistic

parameters for the present problem were used. The multipoles for the chosen method were
verified by applying the free surface condition. By letting parameters tend to limiting val-

ues and then comparing with calculated limiting Green's functions additional verification
were performed.

A half-immersed sphere, restrained from oscillating, has been our test example. More-

over, the numerical calculations have been restricted to head and following sea. The results
for wave exciting forces, added mass and damping coefficients, drift forces and wave-drift

damping, have been compared with existing results. As Grue and Biberg [1993] we found

that the drift forces may increase considerable when a current is present and water depth
becomes shallow. The wave-drift damping, as given by Clark [1992], was found to represent

a reasonable estimate compared to our results.
Although satisfactory results were achieved in most cases, some limitations for the

computer program (MTJLDIF) were pointed out. The steady potential has slow convergence

with respect to number of elements on the body surface. A new method should be applied,

for instance the one given by Hiren [1995]. Due to the higher order element method he

-
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also has the possibility of calculating mi-terms directly at the surfaces.
Here, the m3-terms were evaluated out in the fluid, and then extrapolated back to the

body surface. This procedure was found to be more difficult as the water depth decreased.
More generally: problems appear if two rigid surfaces are close.

Additional check-routines of the program have been implemented. This was done to get
a better understanding of what parameters that caused problems. A new way of writing
the horizontal linear wave exciting forces was found to be necessary in order to detect
errors due to mi-terms. In this way derivatives of the potentials at the body surface were
avoided. The generalized Haskind relation, and also an alternative way of writing the
diagonal damping coefficients, were in our case both found to be insufficient as objects of

check-routines.
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Appendix A

Approximating the outer potential
by a sum of multipoles inside the
body

First, we would like to convince ourselves about the claim that 4j. actually can be found
by distributing sources and dipoles over the body surface and the body near part of the
free surface. This is already proven by Nossen et.al. [199fl for infinite water depth and
found to be valid also for arbitrary depth by Grue and Biberg [19931.

We look at Green's second identity in the whole fluid domain on q5 (Ic E {1, .., 7}) and

the Green's function from chapter 3 having current angle a + 7r:

4k(o) = ff (G(o;a +
)k(X)

k(X)
+ )) ds(&)(A.1)

S+SR+SF \ 8n(x) On(x)

The surfaces Sc, SB and SF0 are shown in figure A.1. Since both G and k satisfies
the bottom condition the integral over the sea floor vanish. The normal vector, i, is still
pointing out of the fluid.

The integral over the infinite free surface may be written (we apply equation 2.11 and
equation 2.12 in section 2.1)

ôk 8Ga+ \

IISFJ - Jds = _2i7J cos(av)kG'11
2iw

+ II k (v2 ' + V2& VD)G) ds (A.2)
2 JJS,

ifkE{1,..,6} and

11
8G\

I d.s = 2ii- cos(a - v)rG0dl
872 ön ) fc

2iw rr
+ J I - G)o) + G V)&b(7 qo)] dA.3)

9 JSF
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fL

SF.
SF

Sc
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Figure A.1: Surface and domain definitions.

Here C is the line intersecting the mean infinite free surface, SF, and the infinite con-

trol surface, We have used the short form G1 for G(,o;a + 7r) and (x,y) =
(Rcosv, Rsinv, z). The results are valid for structures that are wall-sided at the free

surface.
The far field Green's function may be written (from page 34)

G(x,a;)
B(,v) cosh{(a)(z + (A.4)

thus we may write the far field velocity potential as

A(v) sin2(v_a) (A.5)k(X) '-. - cosh[co(cx)(z + h)e

We insert the far field approximations in the integral over the infinite control surface, giving

for Ic E {1,..,7}

k 8G" ds =
Sn 572

4,242
i [1 G[i - F[co(+)]2s (v_0( + ) - 1

-I

4r241.2= i / G4l + ) - l F[72()]2S2(V_)(a)I
J coc

r° cosh[co(c + ir)(z + h)] cosh[co()(z + h)J dzdlxIJh cosh[co(& + ir)(h)I cosh[co()(h)]

= if k{l - F[co(+1.)]2 s2(v) CO - F[co()12 sin2(v)co(a)}41.2
( + ir)

41.2

co
tanh[co( + ir)h]co( + ir) - tanh[ c0( cx) h] c0( cx) dlx

= 2ir I cos(cx - v)kG"dl + 0(r2). (A.6)
Jc

From the third to the fourth step a Taylor expansion in T has been used. This term cancels

the first term in equation A.2 and equation A.3 to first order in r. Thus, ç5 may be written

47rk(2) = If - SC
Pk ds

JJSE Sn Sn

Sct.

(A.7)

Scint
(xo,yo,zo) Sc

domain II
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+ J ffs k (1jGv,)&b + Vb V(W)G) ds jfk E {1,..,6}

ffs sb(7w o) + G)&b(7 o)ds if k = 7.

If Fo is far from the body we may make a Taylor expansion in S to any point àm inside
the body (according to Newman [1977, page 143] who considered a steady problem) . The
Green's function is then

M

G(S,So;a+x) =
m1

+ ((S V)2 G(S, x0; a + r)i=rm +... (A.8)

and the normal derivative satisfies

0G(S,&o;a + ir) =
On(S)

+ ((S - am) V5) V1G(S,xo; + )is=r +H (A.9)

We apply

x0; a + x)irm = VG(So, am; a) (A.1O)

and the velocity potential in the outer domain, q5 k E {1,..,6}, can be written as

II(5) _ _J_ 2iw

11SF,
G(50, am; a)

[JJsB 0n g
1

ds+-

+111 (i(x_am)_akn1) 2iw rr 1
&(

&,bsb 1 OG(So,ama)ds+jJ 5kV xam)+---dsj
g s2 Ox Oam

1.
./SB k 9fl

2iw '1 (lD)Sb(lIfl)+ds] aGo,am;)
+1 ((_bm)_2)

g sF2ds+-jj c5kV
ObmSB \ On

+.... (A.11)

By the same method 44 is found, and we reach equation 2.19 in section 2.1:

L M
= A1mG1(S;dm), fork E {1,..,7}. (A.12)

1=1 m1

The preceding calculations indicates that the control surface, Sc, has to be placed
further away from the body in the presence of a current. Alternatively we have to include
more terms in the Taylor series.



Appendix B

Details from Chapter 3

B.1 Location of the poles far from origo

(ref. pg. 21)
We want to find the asymptotic solutions to

c,-sinhch = (i+2rc,cosO)coshch. (B.1)

That is find the ca's for ni large. Since the ca's are isolated, cnI tends to infinity. Hence

the magnitude of the real part of c,, the imaginary part of c,, or both, tend to infinity as

n tends to infinity.
Writing c as c, = a + ida, equation B.1 is

(a {u+(a +i&)2rcos9J (B.2)

x{coshah cos dh - i sinhahsin dh].

By simple considerations we find that cos dh = 0 is not a solution if n is large. Thus we

may divide by coshahcos dh. The real part then equals

atanhah dtandh = v + a2rcosO +d2rcosOtanhahtandh (B.3)

and the imaginary part looks like

The poles are plotted for the first n's. It seems reasonable to assume that idj >> ai
for ni large. However, all cases will be examined:

a, bounded

The real part gives

a tanh ah - - a2r cos 0
dtandh = 2rcos0tanhah + 1

86



As IdI grows. tan dh - 0, or - Assuming [atanhah - ii - a,2i-cosO]
having a constant sign in n

if [atanhah - ii - a,2rcos&] <0
= (+1)r

h
if {a tanhah - - a2r cos 6J> 0

Inserting tan dh = 0 in equation B.4, we find

tanhah = 2rcosO

which gives the real part of asymptotic poles:

1 rl+2rcosela = ln _2Tcos&j'

and in turn

nir (B.9)

a1 unbounded

When Ia tends to infinity, i' is negligible in the calculations and tanh aIh tends to

1. If a>0we have

a - d tan dh = a2r cos 0 + d2 cos 9 tan dh
d + a tan dh = a2r cos 9 tan dh + d2r cos 9,

and if a <0

a - d tan dh = a2T cos 6 - d2r cos 9 tan d,h

d + a tandh = a2r cos 6 tan dh + d2r cos 9.

1 I1+2rcos9l fir
1n

_2TcosOj +Zh
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(B.1O)

(B.11)

In both cases this gives

a = d, (B.14)

and since we seek real solutions, we conclude that there are no poles for al large.

Thus, all asymptotic poles are represented by

n large. (B.15)
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B.2 Residues
(ref. pg. 22)
We will find the residues in k c, for

(k 0) coshk(z+h){k(1+2rcos0)+v]
p - ksinhkh {i'+2i-cos0k}coshkh

The residue in c, of the function p(k, 0) = is b = r(c, 0)/1SIk. Thus,

b
coshc(z+h){c(1+2rcos0)+u]

-
We remove the cos 6 terms by applying 2r cos 6 = tanh c,h -

b
coshc(z+h)c(1+tanhch)

- sinhch + chcoshc,h - h(tanhc,h - )coshch

Multiplying by c,. cosh ch in numerator and denominator gives

cecoshc(z+h)
2ch+vcosh ch

B.3 Convergence of the infinite series
(ref. pg. 22)
Approximating the function p(z) by the sum pn(Z), the sum converges uniformly in

a region if

Ip(z) - PN(Z)l <
(B.20)

for all z in that region and all n > N().
Here we have

lp(k,0) PN(k,O)l = (B.21)2{}
Choosing N large, we approximate c, with c,2 = a + ¶. Thus,

nit

jp(k,0) - PN(k,O)I = 2 (B.22)

n=N+1 (k - a)2 +
()2

We have

cecI cosh c,(z + h) (B.23)
' 2 2ch+ucosh ch



b,, - 1

2h(1 2rcosO)2
I11+2rcos1 nrz n7rz

x
1L1-2TcoJ

(1+2rcos0)[cos---+isin---J

I1-2rcos6l nlrz nirz
+

Li + 2Tcos9j
(1 2rcosO)[cos -- - isin---] .
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It is immediately seen that b,. is of order 1 in n. Thus, we have to make a closer study of
b,, for large n.

Inserting the limiting value of a,-, we get

(B.24)

where G denotes the largest 1k - al in the region.
The second term represents a series which is not absolutely convergent. We will then

use the fact that a series is convergent if it is the sum of two convergent series.
sin nira is the Fourier series of the odd expansion of f(a) = - a) with half period

1, and thus converges. Hence,

00 ai ar 00 nlrzgsin h h +
gsin--- h

,s±i (k_a)2+()2 L.1

and by the same argument as above this series converges.
So far we have neglected the fact that c,, never really reaches a + . Since the conver-

gence is slow and there is no such thing as intuition when it comes to infinite series, it is
necessary to check the effect this will have upon the convergence. We will concentrate onthe
term which is not absolutely convergent. Writing b,. as b,, = csh] ëh cosh c(z+

we see that this term is

Writing c,, = a + + i + this gives

gsin(ka)2
m=N+1 (k - a)2 + ()

(B.27)

(B.28)

Writing b f cos ¶ + ig and inserting this in equation B.22, we get

00 Ii. ,irznir
COS h - a) gsin ----

Ip(k,O) PN(k,O)I = 2 (B.25)
n=N-fl (k - a)2 +

()2
(k - a)2

()2

Uniform convergence of the first term is shown by applying Weierstrass' M-test:

00 (ka)cos 00 1kal 00

(B.26)f 2 <Ifi <If jG-- 2 2
- 2

n=N+1 (k - a)2 + (r) ,=N+1 nN+1

9 00 {e0h cosh c,-(z + h)}{c}
h n=N+1 (k - lR{c})2 + (c}2
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where
fl7TZ d1f(z) = e()z LSm -- COS f,z + COS Sin zj

We will need an estimate for the errors and . For small errors the approximations
tanh(a + )h 2icosa+h and tan( + )h = may be used in the equations B.3 and

1+2rcos9h
B.4 in section B.1. This produces two simple equations with two unknowns with solutions

[v2r cos 9 + in [1+2rcos8l (1 + 4r2 cos2 0)] 11-2rcs9j
- (1 + 4y2 cos2 9)2

+ higher order of (B.31)

=
ii 1

+ higher order of1. (B.32)
(1+4T2cos20)rhn

Using the above,we are convinced that the series converges uniformly in Ic, in

every interval [0, A] with the exception of the poles.

B.4 Integration of the remaining integral

(ref. pg. 30)
We want to simplify the double integral

RIA
1 j21r

e
k(l + 2r cos 0) + "dkd9

2ir o o k(l-2rcos9)z'
where /3 = [z + c-I- Zr cos(0 u + cr)]. It is noticed that

k(1+2rcos0)+i' 1+2rcosO 2z

k(l-2rcos0)vl-2rcosO (1-2rcos0)2k 12os9

Inserting this in the integral above, we get

RIA
1 fir 1 + 2r cos 0 jco

eIThdkdO +
2ir o 1-2rcos0

1 r2ir 2v °° e

2io (1 2TcosO)2 L3 k
dkd0. (B.35)

1 2r cos S

Evaluation of the first integral in k is straight forward. The second results in, when

substituting t = /3(k 1_2Tcos9)'

pOO

I dk = e 1_2,co8 / dt.
J3 k 1-2rcosS

J3(c3 1-2,co9)

(B.29)

(B.30)

(B.36)

1 [f(z) + f(z + 2h)] ( +
h nN+1 (k_a_)2+(9+)2



=

8
OaMl

ObM2

8cM3
8M3

2

8cM3

L [7 N(S)
b 1 8p(k,O) 1 j! 1

dO
I I r) - , jj =i L \n=N(S)

The derivatives of G1 are

8MG1 1
2 r N(S) ( M e

OaMlObM2OcM3 = Jo I (8jC)m+e J d1
=1 Ln=-N m0 )

LM r / N(S)
b 1 8p(k,O)

1
(M + j)!1+

( i j! Oki k=0 8M+j+1
j1 L \n=_N(5) fl ) J i I

0M38 8M23 8M
X OaMI ObM2 OcM3

dO,

where M = M1 + M2 + M3 and the derivatives of /3 are:

5Mifi2
[i cos(O +- 8aM3 -

8M213
{isin(O +- 8bM2 -

(1)M3

= 1.
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Since 03 is chosen larger than 2, and 02 = t 22cOSS > I-2,cosS' the real part of
(3 - icose) is larger than zero, and the integral represent an exponential integral.

Thus,

1

2rcosOj ed0,(B.37)

where Gj8(a3 - 12cS)I = e31-29Ei[(c3 1_2cosS)I and E1 is the exponential
integral.

B.5 Derivatives
(ref. pg. 26 and 31)
We look at the integral part of Gj; G1B given by

2 2 N(S)

10 b { + e dt}

RIA -
1

f2lr

Jo

111 + 2r cos 0 2u
+

12
L

1 - 2rcos9 (1 2rcOsO)23 -
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For the second alternative method we look at the integral parts of G2:
- kh

G1 = 2 f°3 C(°)(k) cosh k(z + h)e (0,0)

coshkh 2o (k)dk

where

2 / C°(k)F(k)[g°'°(k)
Jo

t03 (0,0)
+2 I C(0)(k)F(k)g0 (k)

JO1

1 2ir j 1+2rcos& 2v V+ / P3
2 I 1 2rcosO (1 2TCoso)2G3 1 2rcos0j dO

The derivatives satisfy

O(Ml+M2+M3)Gi fol C(M3)(k) cosh k(z + h)e (M= 2 I g0 1M2)(k)dk (B.39)
OaMl 8bM20M3 (M1+M2) cosh kh

oi k(M1+M2+M3)
C(M3) (k)F(k) (M1 ,M2) (k) +21

r k(M1 +M2+M3) (M3) (k)F(k)[gM1M2) (k) ++2 /
01

1
p2ir

O3{

2v M

2 o (1 2rcosO)2 2rcos9)
G[( 1 2rcos9

M Mrn1+21cos9MiE 03+ 1-2i-cosO m+1m0

{c + z + ir cos(O + u cs)1

kcoshk(z + h)

00

cosh2 khJ(k tanh kh - v)2 4r2k2

+ 2
1= 1
00

+ 2
n=1

ktanhkh - u + /(ktanhkh 4r2k2

2i-k

ktanhkh v - J(ktanhkh v)2 4r2k2

= 2rk

I coshk(c+h) if M3=O,2,4,6
CM3(k) =

I. sinhk(c+h) ifM3l,3,5

2 (ip31 )fl9(Mi ,M2) (k)]dk

n=1
00

$2 g0 (k)]dk2 (ip )fl (M1,M2)

n1

M \YnM(03 (1-1)!
+ (1 in)! (u3(1 _2rcosO))]m1 l=m

(M
7)!} [icos(O + a)M1[isiri(G + )]M2(_l)M3dO

(B.38)

F(k) =

Psi



and introducing the short forms

gco(ri, in) = Jn+m(kT) cos[na - (n + m)u]
gsi(n, m) = Jn+m(ki') sin[ricx - (n + rn)u],

we find

g7cl.0) (k)

g(2O) (k)

g(°'2)(k)

g'°(k)
gZl) (k)

g12(k)
gJ3) (k)

g4O) (k)

(so) (k)

g'1(k)

g3'2)(k)

g23) (k)

g(L4)(k)

(Os) (k)

g6O) ( k)

gco(n, 0)

gco(n, -1) - gco(n, 1)
gsi(n, -1) - gsi(n, 1)
gco(ri, -2) - 2gco(n, 0) + gco(ri, 2)
gsi(n, -2) - gsz(ri,2)
-gco(n, -2) - 2gco(n, 0) - gco(ri, 2)
gco(ri, -3) - 3gco(ri, -1) + 3gco(n, 1) + gco(n, 3)
gsi(n, -3) - .gsi(n, -1) + gsi(n, 1) + qsi(n, 3)
-gco(n, -3) - gco(n, -1) + gco(ri, 1) + gco(n, 3)
-gsi(n, -3) - 3gsi(n, -1) - 3gsi(ri, 1) - gsi(n, 3)
-gco(n, -4) - 4gco(n, -2) + 6gco(n 0) - 4gco(ri, 2)
+gco(n, 4)
gsi(n, -4) - 2gsi(n, -2) + 2gi(ri, 2) - gsi(n, 4)
-gco(n, -4) + 2gco(n, 0) - gco(n, 4)
-gsi(ri, -4) - 2g.si(n, -2) + gsi(n, 2) + gsi(n, 4)
gco(ri, -4) + 4gco(n, -2) + 6gco(n, 0) + 4gco(n, 2)

+.gco(ri, 4)

gco(n, -5) - Sgco(n, -3) + lOgco(n, -1) - l0gco(ri, 1)
+5gco(n, 3) - gco(n, 5)

= gsi(n, -5) - 3g.si(n, -3) + 2gsi(n, -1) + 2gsi(n, 1)

-3gsi(n, 3) + g.si(n, 5)
= -gco(n,-5) +gco(ri,-3) +2gco(n,-1) - 2gco(n,1)

-gco(n. 3) + .qco(n, 5)
-gsi(n, -5) - gsi(n, -3) + 2gsi(n, -1) + 2gsi(n, 1)
-gsi(m, 3) - .gsi(n, 5)

= gco(n, -5) + 3gco(n, -3) + 2gco(ri. -1) - 2gco(ri, 1)

-3gco(ri3) - gco(n,5)
gsi(n, -5) - 5gsi(n, -3) + l0gsi(n, -1) - l0gsi(n, 1)
+Sgsi(n,3) - gsi(n,5)
gco(n, -6) - 6gco(n, -4) + lsgco(n, -2) - 2Ogco(m, 0)
+l5gco(n,2) -6gco(n,4) +gco(n,6)
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g(S1)(k)

9L (k)
g24)

( k)

B.6 Green's function in terms of non dimensional
parameters

(ref.pg. 36)
To better see what parameters are important in the numerical evaluation, we express the

Green's function in terms of non-dimensional parameters:

G1 jf eiK05(9+)eKH cosh K(Z + H) cosh K(C + H) (B.40)

[K(1+2TcosO)+1] dKdO
K sinh KH - [1 + 2r cos OK - (1 + 'rK cos 0)] cosh KH

and the new non-dimensional parameters are:

K = k/ti Z = zv C = cv
R=ru H=hu i=

The integral part of GAIt.2 is then

gsi(n, 6) - 4gsi(n, 4) + 5gsi(n, 2) - 5gsi (n, 2)
+4gsi(n,4) - g.si(n,6)
,gco(ri, 6) + 2.qco(n, 4) + gco(n, 2) - 4gco(n, 0)
+gco(n, 2) + 2gco(n, 4) - gco(n, 6)
gsi(n, 6) + 3g3i(ri, 2) - 3gsi(n, 2) + gsi(n, 6)
gco(n, 6) + gco(n, 4) + gco(n, 2) - 4gco(n, 0)
gco(n, 2) + gco(n, 4) + gco(n, 6)
gsi(ri, 6) + 4gsi(n, 4) + 5.qsi(n, 2) - 5gsi(n, 2)
4gsi(n, 4) - gsi(n, 6)
gco(n, 6) - 6gco(ri, 4) - l5gco(n, 2) - 2Ogco(n, 0)
l5gco(n,2) - 6gco(n,4) gco(n,6).

a cosh K(Z + H)cosh K(C + H)eF
J0(KR)dK

cosh KH

2v j F(K)[J0(KR) +2 (iF3, )J(KR) cos n(a - u)}dK

+2vJ F(K){J0(KR) + 2E(iF32)" Jn(KR) cosri(a - u)]dK
n=1

(B.41)

, r2" Iii + 2-i cos 0 2 1 1

2o [Bi _2rcosOe +e(1 _2-iCOsO)2GE3 1 2rcos0j dO,

G1 = 2z.'



where B = [Z+C+iRcos(9u+c)] and G[B(E3-1 2 )] is e[E3 1-2o9)lEi[/3(E3_
I '

1-21-cosO)J' and

F(K) =

r , =

"52 =

KcoshK(Z + H) coshK(C + H)
cosh2 KHJ(K tanh KH - 1)2 - 4T2J2

K tanh KH - 1 + 1J(K tanh KH - 1)2 - 4r2K2
2rK

and E1 and E2 are given by the equations

E1tanhE1H 1 = 2T1
E2tanh2h 1 = 2rE2.

The integral part of GAIt.1 may be written

where

G1= I) II

/C2 + R2 /(2H + C)2 + R2

+ j2 Res
{ CB1

+ e_Bc _dt} dO
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(B.42)

B1 = C - iRcos(O - u + a)

B2 = 2H + C - iRcos(O - u + a)

B
Ce'coshC(Z+H)

CH+cosh2CH

and the Ca's are given by

[1 + 2r cos OC - i(1 + r cos OCR)] cosh CH = C sinh CH. (B.43)

KtanhKH 1 J(KtanhKH_ 1)2 - 4r2K2
2rK
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