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MODELING OF ATOMIC LAYER DEPOSITION ON
NANOPARTICLE AGGLOMERATES





Propositions

accompanying the dissertation

MODELING OF ATOMIC LAYER DEPOSITION ON NANOPARTICLE
AGGLOMERATES

by

Wenjie JIN

1. The ALD saturation time of large nanoparticle agglomerates with fractal dimen-

sion D f scales with the number of particles N as N
D f −1

D f .

This thesis

2. The ALD saturation time of a nanoparticle agglomerate is governed by four differ-
ent time scales, the relative magnitudes of which depend on the agglomerate size
and its fractal dimension. This thesis

3. Due to the neglect of the diffusion time scale, Gordon’s model for ALD coating of
narrow pores exhibits incorrect asymptotic behavior for very low active surface site
concentrations. Chem. Vap. Deposition 9, 73 (2003)

4. The statement by Sorenson that any proper expression for the scaling of fractal ag-
gregate mobility with aggregate size N must exhibit correct N = 1 limit is incorrect.

Aerosol Sci. Technol. 45, 765 (2011)

5. The porosity of a fractal agglomerate cannot be defined.

6. Humans can learn creativity from artificial intelligence.

7. Open source is the most promising direction for operating system software devel-
opment.

8. A large population is an important driving force for the economy of a country.

9. The main challenge in future education is to bridge the growing gap between hu-
man knowledge and the knowledge of a new born baby.

10. Regular supply of pie and cake to a research group will boost its scientific produc-
tivity.

These propositions are regarded as opposable and defendable, and have been approved
as such by the promotors, prof. dr. ir. C. R. Kleijn and prof. dr. ir. J. R. van Ommen.



Stellingen

behorende bij het proefschrift

MODELING OF ATOMIC LAYER DEPOSITION ON NANOPARTICLE
AGGLOMERATES

door

Wenjie JIN

1. De ALD-verzadigingstijd van grote agglomeraten met fractale dimensie D f schaalt

met het aantal deeltjes N als N
D f −1

D f . Dit proefschrift

2. De ALD-verzadigingstijd van een agglomeraat van nanodeeltjes wordt bepaald door
vier verschillende tijdsschalen, waarvan de relatieve grootte afhankelijk is van de
afmetingen en de fractale dimensie van het agglomeraat. Dit proefschrift

3. Omdat in het model van Gordon de diffusie-tijdschaal is verwaarloosd, vertoont
dit model voor ALD coating van nauwe gaten incorrect asymptotisch gedrag in het
geval van zeer lage concentraties actieve oppervlaktesites.

Chem. Vap. Deposition 9, 73 (2003)

4. De stelling van Sorenson dat iedere regel voor de schaling van de mobiliteit van
een agglomeraat met de grootte N van dat agglomeraat de correcte N = 1 limiet
moet vertonen is incorrect. Aerosol Sci. Technol. 45, 765 (2011)

5. De porositeit van een fractaal agglomeraat kan niet worden gedefinieerd.

6. Mensen kunnen creatieve vaardigheden leren van artificiële intelligentie.

7. Open-source is de meest veelbelovende richting voor de ontwikkeling van bestu-
ringssystemen.

8. Een grote bevolking is een belangrijke drijvende kracht voor de economische ont-
wikkeling van een land.

9. De voornaamste uitdaging voor toekomstig onderwijs betreft het dichten van de
groeiende kloof tussen de menselijke kennis, en de kennis van een pasgeborene.

10. Een frequente aanvoer van cake en taart aan een onderzoeksgroep verhoogt de
wetenschappelijke productiviteit.

Deze stellingen worden opponeerbaar en verdedigbaar geacht en zijn als zodanig
goedgekeurd door de promotoren prof. dr. ir. C. R. Kleijn en prof. dr. ir. J. R. van Ommen.
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SUMMARY

Nanoparticles are increasingly applied in a range of fields, such as electronics, catalysis,
energy and medicine, due to their small sizes and consequent high surface-volume ratio.
In many applications, it is attractive to coat the nanoparticles with a layer of different
materials in order to gain new functionalities. For instance, a coated layer can modify the
chemical properties of the nanoparticles, protect the core material resulting in increased
stability, facilitate the biofunctionalization, etc.

Atomic layer deposition (ALD) is a gas-phase technique that can form an ultrathin
solid film on a range of substrates. It utilizes two self-limiting surface reactions applied
in an alternating sequence. By controlling the number of applied cycles, the thickness
of the coated layer can be controlled with nanometer precision. Several experimental
reports in literature have shown that applying ALD to nanoparticles using a fluidized bed
is a promising way of producing large quantities of coated nanoparticles. Fluidization
is a gas-phase technique that can process large quantities of particles by suspending
them in an upward gas stream. It provides good gas-solid mixing, scale-up potential,
and allows continuous processing.

However, due to the strong cohesive forces between particles, nanoparticles cluster
into large agglomerates when fluidized. These agglomerates have a complex, hierarchi-
cal structure, which has been commonly described as fractal for their self-similarity un-
der different length scales. During the ALD process, the precursors have to diffuse into
such structures to reach the surface of inner particles.

In this thesis we focus on the influence of nanoparticle agglomerate structures on
the ALD coating process. We use numerical simulations as the main tool to study the
ALD coating on different nanoparticle agglomerates, and we have developed theoreti-
cal models which predict the scaling of ALD coating time of nanoparticle agglomerates
based on the fractal characteristics of these agglomerates.

We first developed and implemented a new cut-cell method in conjunction with di-
rect simulation Monte Carlo (DSMC) method, which allows simulating rarefied gas flows
that physically and chemically interact with immersed nanoparticles. We have validated
this new method by computing the drag force on a (moving) sphere, and the results agree
very well with analytical solutions found in literature.

Using this new method, we have simulated ALD on fractal nanoparticle agglomer-

xi



xii SUMMARY

ates, consisting of up to 104 mono-sized nanoparticles. Our simulations account for a
self-limiting ALD half cycle reaction, gas diffusion in the gas rarefied regime, and fully
resolved fractal nanoparticle agglomerates. Based on these simulations, we studied the
influence of the gas pressure, agglomerate size and fractal dimension on the overall coat-
ing time.

We also developed a theoretical model for nanoparticle agglomerate ALD coating
times, by deriving a generalized form of an earlier model from literature, which was
originally proposed by Gordon and coworkers (2003) for ALD coating within a simple
cylindrical hole or trench. Our model predicts the ALD coating time within fractal ag-
glomerates, with two model constants. By comparing the model predictions with our
simulation results, we found good agreements in general, while some deviations are ob-
served for lower fractal dimensions.

Based on this model, we took a step further to develop a closed form theory, show-
ing the scaling of the coating time, due to the interplay between Knudsen diffusion and
self-limiting gas-surface reactions. This model takes three main features of a fractal ag-
glomerate as input, viz. its fractal dimension, its gyration radius and the diameter of
the constituting nanoparticles. We identified four main time scales that contribute to
the overall coating time, and came up with a regime map that teaches the scaling be-
havior of the coating time for different combinations of number of particle and fractal
dimensions. We again validated this model with our simulation results and found good
agreement for all the studied cases.

Finally, we conclude this thesis with a summary of our main findings and a discus-
sion of how our findings can be of use for the future research.



SAMENVATTING

Dankzij hun kleine formaat en grote oppervlakte-volume ratio zijn de toepassingsmo-
gelijkheden van nanodeeltjes groot en groeiende, in bijvoorbeeld elektronica, katalyse,
energie en farmaceutica. Het coaten van nanodeeltjes met een dunne laag van een an-
der materiaal biedt mogelijkheden om het palet aan functionaliteiten van nanodeeltjes
uit te breiden. Een voorbeeld hiervan is het aanbrengen van een coating die de che-
mische eigenschappen van de deeltjes verandert, om het kernmateriaal te beschermen,
de stabiliteit van het materiaal te vergroten, of afstoting door het menselijk lichaam te
voorkómen.

Atomic Layer Deposition (ALD) is een techniek om ultradunne lagen materiaal op
een substraat aan te brengen middels depositie van atomen of moleculen vanuit de gas-
fase. Door twee zelflimiterende oppervlaktereacties te alterneren kan de laagdikte met
nanometer-precisie worden geregeld. Een gefluïdiseerd bed is een reactortype waarin
een grote hoeveelheid deeltjes kan worden bewerkt door ze in de gasfase te suspende-
ren. Meerdere experimentele studies hebben reeds laten zien dat de toepassing van ALD
in een gefluïdiseerd bed een veelbelovende methode is om grote hoeveelheden gecoate
nanodeeltjes te produceren. Een dergelijke aanpak zorgt voor een uitstekende menging
van de vaste- en de gasfase, is relatief eenvoudig op te schalen, en is toepasbaar als con-
tinu proces.

De sterke cohesiekrachten tussen de nanodeeltjes zorgen echter in een gefluïdiseerde
reactor voor het clusteren van die deeltjes tot grote agglomeraten. Deze agglomeraten
hebben complexe hiërarchische structuren, die, vanwege hun zelfgelijkende structuren
op verschillende lengteschalen, typisch worden beschreven als fractalen. Gedurende het
coatingproces moeten ALD-precursormoleculen deze agglomeraten in diffunderen, om
de oppervlakten van de meest centrale deeltjes te kunnen bereiken.

In dit proefschrift bestuderen we de invloed van de geometrische structuur en de
grootte van een agglomeraat op de karakteristieke tijdschalen in het ALD-proces, dat wil
zeggen de tijdschaal die benodigd is om alle deeltjes in het agglomeraat van een coating
te voorzien. We gebruiken numerieke simulaties als de voornaamste methode om het
coatingproces voor verschillende agglomeraatstructuren in kaart te brengen. Op basis
hiervan zijn theoretische schalingsregels ontwikkeld die de coatingtijd van agglomeraten
voorspellen als functie van hun grootte en fractale structuur.

Allereerst hebben we een nieuwe cut-cell methode ontwikkeld die het mogelijk maakt
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om, wanneer gecombineerd met de Direct Simulation Monte-Carlo (DSMC) techniek, de
(chemische) interactie tussen ijle gassen en nanodeeltjes te simuleren. Deze methode is
met succes gevalideerd door het bepalen van de wrijvingskracht op een bewegend bol-
vormig deeltje.

Met deze nieuwe methode is vervolgens het ALD-proces voor fractale agglomera-
ten gesimuleerd. De bestudeerde agglomeraten bestonden uit maximaal 104 bolvormige
nanodeeltjes met gelijke diameter. Onze simulaties zijn gebaseerd op een volledige ge-
ometrische beschrijving van de agglomeraten, en modelleren een zelflimiterende ALD-
halfreactie in combinatie met ijle gasdiffusie. De simulaties zijn gebruikt om de invloed
van de gasdruk, het formaat en de fractale dimensie van agglomeraten op de coatingtijd
te bestuderen.

Verder hebben we, op basis van een gegeneraliseerde vorm van een eerder door Gor-
don et al. (2003) gepubliceerd model voor ALD coatingprocessen in een cilindrische po-
rie, een theoretisch model ontwikkeld om de ALD coatingtijd van fractale agglomeraten
van nanodeeltjes te voorspellen. Dit model bevat twee modelconstanten. We observe-
ren een goede overeenkomst tussen numerieke simulaties en modelvoorspellingen, al
zijn er afwijkingen te zien voor lage fractale dimensies.

Bovengenoemd model vormde de basis voor een verdere theoretische ontwikkeling
richting een volledig gesloten model, waarin de schaling van de coatingtijd wordt geba-
seerd op de wisselwerking tussen Knudsen-diffusie en zelflimiterende oppervlaktereac-
ties. Dit model neemt de drie voornaamste geometrische aspecten van een agglomeraat
als basis, d.w.z. de fractale dimensie en de omwentelingsstraal van het agglomeraat, en
de diameter van de nanodeeltjes waaruit het agglomeraat is opgebouwd. Vier relevante
tijdschalen die bijdragen aan de coatingtijd zijn geïdentificeerd op basis van dit model;
de verschillende schalingsregimes voor de coatingtijd konden hiermee in een regime-
map worden weergegeven. Deze regime-indeling is door middel van numerieke simula-
ties succesvol gevalideerd.

Tot slot presenteren we in dit proefschrift een samenvatting van de gevonden resul-
taten, tezamen met een discussie betreffende de implicaties van dit werk voor vervolg-
onderzoek.
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2 1. INTRODUCTION

1.1. NANOPARTICLES AND SURFACE MODIFICATION

Nanoparticles have, by definition, all three dimensions under 100 nm. Due to the special
properties arising from their small sizes, e.g. high surface to volume ratio, nanoparticles
are widely applied in many fields, such as catalysis, medicine, energy and electronics
[1–6]. The production of nanoparticles can generally fall into three categories: (i) con-
densation from vapor, (ii) synthesis by chemical reaction, and (iii) solid-state processes
such as milling [7]. After production, nanoparticles often require certain surface mod-
ifications to achieve additional functionalities required for particular end applications.
For instance, in biomedical applications the drug nanoparticles can be coated with a se-
lective material that exclusively attaches to specific cell surface, thus achieving targeted
drug delivery [8]. In electronics, coating ceramic nanoparticles with a thin polymer layer
increases the dielectric constant compared to the pure polymer [9, 10]. These two exam-
ples, among many others, show the importance of the surface modification on nanopar-
ticles.

1.2. ATOMIC LAYER DEPOSITION

Atomic layer deposition (ALD) is one such method that can modify the nanoparticle sur-
face by coating a thin film layer on the surface [12]. Figure 1.1 shows a TEM image of one
ALD coated nanoparticle [11]. ALD is a gas-phase coating technique originating from
the semi-conductor industry, and is well known for its high precision, conformality and
controllability. It utilizes two different precursors, A and B , that react with the substrate
surface in an alternating sequence. Both reactions are self-limiting, meaning that no
more reaction can take place when all the available surface sites have been occupied.
During an ALD process, precursor A is first introduced to the system, and reacts with the
substrate surface until it is fully saturated. Then the excess A is purged out with an inert

Figure 1.1: TEM image of a coated nanoparticle [11].
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Figure 1.2: Schematic representation of ALD A-B cycle.

gas such as nitrogen. After that, percursor B is introduced and reacts to the surface and
makes it again reactive to A. The final layer thickness can be precisely controlled by the
number of cycles applied in this process. Figure 1.2 illustrates this process with simple
schematics.

1.3. FLUIDIZATION

Fluidization is a widely applied technique for processing large quantities of particles
[13]. In a fluidized bed, particles are suspended in an upward gas stream and exhibit
a fluid-like behavior as the name fluidization implies. The dynamic movements of par-
ticles result in a good solid-gas mixing which is beneficial for many gas-phase processes
including ALD. However, not all particles can be fluidized and this has been summarized
in Geldart’s diagram which is based on the particle size and gas-solid density difference
[14]. As shown in Fig 1.3, this diagram suggests that nanoparitlces belong to the group
C and thus are impossible to fluidize. However, many experiments [15–17] have shown
that nanoparticles can be fluidized, with two different types: bubbling and homoge-
neous fluidization.

1.3.1. AGGLOMERATES

The main reason for this contradiction to Geldart’s diagram is that nanoparticles in a flu-
idized bed form large agglomerates, due to the strong cohesive interparticle forces such
as the van der Waals forces. Therefore, in a fluidized bed nanoparticles are suspended
as large agglomerates instead of single particles. Wang et al. [18] first presented TEM
and SEM images of agglomerates sampled from a fluidized bed. As shown in Fig 1.4, the
nanoparticles first form complex netlike structures, which then form simple agglomer-
ates of several tens of microns. Again, the simple agglomerates aggregate and form large
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4 1. INTRODUCTION

Figure 1.3: Gerdart’s classification of fluidization behavior of fine particles, adopted from [14]

Figure 1.4: Structure of agglomerates at different length scales [18].

agglomerates that are larger than 100 µm. This suggests that agglomerates in a fluidized
bed have hierarchical complex structures over a broad span of length scales.

After the introduction by Mandelbrot in 1975 [19], the concept of fractal geometry
has been widely used to study nanoparticle agglomerates [20–22]. By definition, a frac-
tal structure has self-similarity under different length scales, which is also called scale
invariance. This concept enables us to quantify an agglomerate structure as following:

N = k f
(Rg

a

)D f (1.1)

where N is the number of nanoparticles in an agglomerate, k f is an O(1) constant, Rg

is the gyration radius of the agglomerate, a is the primary particle radius, and D f is the
fractal dimension which indicates how the mass of an agglomerate scales against its size.
Note that real nanoparticle agglomerates do not exactly but statistically fulfill Eq. (1.1),
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and therefore they are often called fractal-like agglomerates.

Experimental studies on fluidization of nanoparticle agglomerates so far have mainly
focused on determining the agglomerate size and fractal dimension. There are ex-situ
measurements with sampled agglomerates [18, 23], as well as in-situ measurements based
on settling agglomerates [20, 24], splash zone recording [21, 25], X-ray micro-tomography
[26] and so on. However, there is relatively large scatter among the reported results due
to the different methods and operating conditions. Thus a consensus on the agglom-
erate size or structure has not been achieved. Even less is known about the detailed
mechanism of how the fluidization properties affect the agglomerate size and structure.

In order to apply ALD on large quantities of nanoparticles in a fluidized bed reactor,
it is important to study the influence of agglomerates on the mass transfer and precursor
utilization efficiency. The large agglomerates determine (1) how many nanoparticles are
directly exposed to the precursors and (2) the time required for the precursor molecules
to diffuse into the structures to meet the inner nanoparticles. Moreover, these agglom-
erates undergo a dynamic process of breakup and re-agglomeration, which makes the
problem more difficult to understand.

1.4. MODELING AND SIMULATIONS

Computational modeling and simulations are powerful tools for gaining new insights
in this problem. Different methods have been developed for simulating fluidized beds
[27]. The most important methods are categorized in Table 1.1, based on the different
approaches to the gas and solid phase. The Eulerian approach models the phase as con-
tinuum fluid despite the discrete nature of the particles (solid phase) or molecules (gas
phase). On the other hand, the Lagrangian approach explicitly tracks the trajectories of
the discrete particles, molecules or gas bubbles. By different combination of these two
approaches, each simulation method can resolve down to a certain length scale, beyond
which it requires a closure from smaller scale models that take into account detailed
gas-solid interactions. For instance, the two-fluid model treats both gas and solid as a
continuum fluid, and takes the drag exerted by particles with different volume fractions
as closure to the governing equations.

Name Gas phase Solid phase Scale
Discrete bubble model Lagrangian Eulerian Industrial (10 m)
Two-fluid model Eulerian Eulerian Engineering (1 m)
Discrete particle model Eulerian Lagrangian Laboratory (0.1 m)
Particle based method Lagrangian Lagrangian Mesoscopic (< 0.001 m)

Table 1.1: Summary of different simulation methods used for gas fluidization [27].

In the literature of nanoparticle fluidization, almost all the modeling and simula-
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tions are performed with the Eulerian–Lagrangian approach. However, they do not re-
solve down to the scale of individual nanopartilces, but rather model entire agglomer-
ates as perfect spheres with fixed diameter [28–31]. Therefore, the simulated systems
become essentially identical to that of micron sized particles. This is the main limitation
of the previous approaches, as they cannot take into account the detailed complex frac-
tal structures of individual agglomerates, despite that this information is crucial for the
ALD process as explained earlier.

1.4.1. GAS RAREFACTION

One important issue for simulations resolving down to the individual naoparticle, is the
gas rarefaction. A fluid is regarded as a continuous medium if the smallest significant
volume includes a sufficient number of molecules. Then macroscopic properties can
be obtained from the average of molecular properties at any location of the fluid [32].
The conservation of mass, momentum and energy together with constitutive equations
for shear, stress and heat flux, such as Navier-Stokes equations, yield a numerical so-
lution for the flow fields. However, immersed nanoparticles, with sizes less than 100
nm, introduce a length scale that is small enough to change this situation, as the mean
free path in a gas at atmospheric pressure and temperature is O(100) nm, and is even
larger at reduced pressures and elevated temperatures. More precisely, when the Knud-
sen number K n = λ

L > 0.1, where λ is the molecular mean free path and L is the relevant
length scale, the transport terms in Navier-Stokes equations fail and thus the gas phase
should be modeled as discrete molecules instead of a continuous medium. Therefore, a
Lagrangian-Lagrangian approach becomes necessary in this regime.

Direct simulation Monte Carlo (DSMC) [33] is one such method that simulates rar-
efied gas flow by tracking the movements of individual (quasi) molecules. It is a well-
developed and widely applied technique for simulating rarefied gas flows, such as in
outer atmosphere aerospace applications [34] and in microscale gas flow devices [35, 36].
Detailed description about this method and its implementation is provided in Chapter
2.

1.4.2. NUMERICALLY GENERATED AGGLOMERATES

By including many nanoparticles in a DSMC simulation of rarefied gas flow, account-
ing for correct inter-particle cohesive forces, it is possible to simulate the formation of
realistic agglomerates. However, to the best of our knowledge, such simulations are not
performed yet in literature, probably due to the high complexity and computational cost.

Alternatively, agglomerate formation can be mimicked by modeling the movement
of particles, in the absence of gas flow [37]. For instance, one can simulate the parti-
cles with diffusive or ballistic movements, and let the particles collide to form agglom-



1.5. RESEARCH OBJECTIVE

1

7

Figure 1.5: Agglomerates generated by different mechanism [37].

erates. Upon collision, a permanent bond is formed between the two particles with a
preset probability. Depending on this probability, these numerically generated agglom-
erates can be categorized into two classes: diffusion limited and reaction limited. Also, in
such simulations, agglomerates can be generated starting from either a single particle or
from a number of movable clustered particles, which are called the particle-cluster and
cluster-cluster classes respectively. Figure 1.5 shows the agglomerates generated from
various methods and their fractal dimension D f . Since all these agglomerates are gen-
erated based on certain assumptions, including the motion of the particles, how closely
they are related to the actual agglomerates in a fluidized bed still remains as a question.

Another way of generating agglomerates is the so-called tunable numerical genera-
tion method, which generates agglomerates with any prescribed D f and k f [38, 39]. In
contrast to the above mimicking method, this tunable algorithm assumes that the frac-
tal scaling law is exactly fulfilled for any size of the agglomerate and therefore directly
imposes the fractal scaling law [Eq. (1.1)] when aggregating particles. More details about
this tunable method are provided in Chapter 2.

1.5. RESEARCH OBJECTIVE

As discussed before, nanoparticle fluidization is feasible by virtue of the agglomeration
of the particles. The time required to completely coat an agglomerate by ALD strongly
depends on the agglomerate size and morphology due to the distribution of the reactive
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surfaces and the time required for the precursor molecules to diffuse into the agglom-
erate. The objective of this thesis is to understand by which factors and to which extent
the ALD coating time of nanoparticle agglomerates is determined.

We use numerical simulations as the main tool to study this problem. For this, the
DSMC method is chosen as it is the most flexible method capable of handling the afore-
mentioned gas rarefaction effect. Since currently no DSMC code is available that can
handle the presence of moving agglomerated nanoparticles immersed in the rarefied
gas, the first step in this work is to investigate new numerical algorithms within the
DSMC framework which enable such simulations. This leads to our first research ques-
tion:

1. Can we model the physical and chemical interaction between gas molecules and
arbitrarily shaped nanoparticles moving in a rarefied gas flow using a DSMC frame-
work?

Using the developed DSMC simulation framework, we will subsequently address the fol-
lowing two research questions:

2. How do the fractal structure (size and fractal dimension) and the operation regime
(pressure) influence the ALD coating time of an agglomerate?

3. Can we derive scaling relations for the ALD coating time of fractal nanoparticle
agglomerates as a function of their size and structural characteristics?

1.6. OUTLINE

This thesis consists of six chapters. Following this introduction chapter, Chapter 2 pro-
vides relevant details about the numerical methods, as these are only briefly recaptured
in the subsequent chapters. Chapter 3 addresses the first research question by demon-
strating the implementation of an immersed boundary method within a DSMC code,
allowing for the simulations of rarefied gas drag on an arbitrarily shaped moving object.
Chapter 4 addresses the second research question with a detailed parameter study on the
ALD coating time of static nanoparticle agglomerates. It also presents our first attempt
on quantitative prediction of the ALD coating time. Chapter 5 further improves the the-
oretical model proposed in Chapter 4 and validates it with extensive simulations with
various differently generated agglomerates, which addresses the third research question.
Finally, Chapter 6 gives our main conclusions and discusses the opportunities for future
research.
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2.1. DSMC METHOD

2.1.1. OVERVIEW

As described in Chapter 1, the gas rarefaction effect becomes important at small length
scales involved in the case of nanoparticle agglomerates. Direct Simulation Monte Carlo
(DSMC) [1] is the most commonly applied technique for simulating rarefied gas flows
where conventional continuum flow solvers are not applicable. Originated from the
kinetic theory of gases [2], it computes the flow by tracking a large number of simu-
lated parcels, including their inter-collisions, with each parcel representing a usually
very large number of real gas molecules. Therefore, a real flow of gas molecules is simu-
lated with a much smaller number (O(105 −108)) set of parcels which is still sufficiently
large to statistically capture the flow physics. One essential assumption of DSMC is the
decoupling between the molecular movement and molecular collision over a time in-
terval that is small compared to the molecular mean collision time. In each DSMC time
step, the computed parcels first undergo ballistic movement, and then exchange mo-
mentum and energy with nearby parcels. The computation of the parcel movement is
deterministic, based on the current velocity and position, whereas the collision step is
stochastic in both pair selection and momentum and energy exchange.

In DSMC, the computational domain is divided into a number of grid cells, wherein
the parcel collision partners are selected, collisions are computed, and flow properties
are sampled. More precisely, the collision pairs are selected among the parcels within
each cell and the flow properties are sampled over all the parcels in each cell. Although
in principle one can have two distinct sets of grid cells each serving the two purposes,
usually one set is sufficient and thus it determines the space resolution for both cases.

This descritiziation in time and space introduces errors since in reality both time
and space are continuous. In order to ensure that errors are within an acceptable range,
DSMC requires both time step ∆t and grid size ∆x to be sufficiently small. As a general
rule of thumb, ∆t and ∆x should fulfill ∆t < 1

8λ/cm and ∆x < 1
3λ, where λ is the gas

mean free path and cm is the molecular mean thermal velocity [3, 4]. Another source
of the error is introduced by the fact that a usually very large number of molecules in a
cell is represented by a small number of parcels. Since the entire spectrum of the molec-
ular states is represented by a few parcels, the high energy states may be completely
neglected due to their low probability of occurrence. Thus it has been suggested that
a cell should contain on average at least N = 10 parcels in order to achieve a well re-
solved DSMC simulation [4]. Finally, it has been proven that when, for ∆t → 0, ∆x → 0
and N →∞, these errors approach to 0, the solution of DSMC converges to that of the
Boltzmann equation [5].
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2.1.2. OPENFOAM DSMC

In this work, we have used the software package OpenFOAM. OpenFOAM is an open
source computational fluid dynamics (CFD) toolbox written in C++, and it provides a
DSMC solver called dsmcFoam which has been extensively validated against multiple
benchmark tests [6]. The main features that distinguish it from other available DSMC
codes are the arbitrary 3D geometry and the unlimited parallel processing capability. In
a parallel process, the computational domain is divided into a number of subdomains,
with each of them assigned to a different processor. At each time step, each processor
only takes care of the DSMC parcels that are contained in its subdomain, and hands over
the parcels that end up in another subdomain (after the streaming step) to the corre-
sponding processor with the standard Message Passing Interface (MPI). Therefore, hav-
ing subdomains with roughly the same number of parcels can help equally distribute
the total computational load, whereas the parallel efficiency depends on the number of
interchanged parcels between processors.

Detailed descriptions on each step of the DSMC procedure and its implementation
in OpenFOAM are provided next.

2.1.3. INITIALIZATION

Before running a DSMC simulation, the meshed computational domain needs to be pre-
filled with parcels with pre-specified positions and velocities. Since DSMC simulations
are inherently transient, a carefully chosen initialization can help shorten the total sim-
ulation time for reaching the steady state. In OpenFOAM, the required properties for
the initialization are gas molecule number density ρn , mass averaged velocity uma and
temperature T . The initialization utility loops over all the cells and computes the num-
ber of required parcels in each cell based on the cell volume and ρn . The parcels are
then initialized in random positions inside each cell and assigned with velocities that
are randomly sampled from a Maxwellian distribution f (u) as given below [7]

f (u) = ( m

2πkbT

) 3
2 exp

[−m(u−uma) · (u−uma)

2kbT

]
(2.1)

where m is the molecular mass and kb is the Boltzmann constant.

Note that the current implementation only supports a uniform initial parcel density
throughout the domain. However, a more advanced one that allows non-uniform par-
cel density (for instance, an increasing parcel density along one dimension) could be
beneficial for future applications.



2

16 2. NUMERICAL METHOD

2.1.4. PARCEL MOVEMENT

The computation of the parcel movement is rather straightforward. A parcel that starts
at position xt with velocity u will end up at location xt+∆t after a time step ∆t , as

xt+∆t = xt +u∆t (2.2)

However, due to this movement a parcel might go across a domain boundary, and in this
case, what happens to this parcel depends on the different types of boundaries.

OPEN BOUNDARY

An open boundary is the interface between the simulated flow domain and the outside
of the simulated flow domain. Gas molecules, and thus parcels, can freely move through
the open boundaries, and after escaping the computational domain via an open bound-
ary are simply being removed from the system. On the other hand, new parcels are in-
jected into the system from the open boundaries at every time step. The procedure for
generating new parcels are similar to the initialization step, but instead of initializing in-
side the cells, parcels are produced on the boundaries. An open boundary can be called
either an inlet or outlet, depending on the direction of the pre-specified mass averaged
velocity, but in either case, the parcels can freely penetrate from both sides.

The main idea behind an open inlet boundary is somewhat similar to that of the
Dirichlet boundary condition in continuum flow solvers. It directly imposes ρn , uma and
T (which are often the free stream properties) of parcels entering the domain through
the boundaries, implying that the flow outside the boundary is nearly unaffected by
what is happening inside the computational domain. The current implementation in
OpenFOAM does not allow setting different properties on inlet and outlet. For instance
a pressure driven flow between inlet and outlet is not supported. However, this can be
easily solved by implementing an additional utility that distinguishes the inlet and outlet
by the face ID from OpenFOAM mesh data, and manually specifying different properties
on each.

One thing worth mentioning here is the artifacts arising from this boundary condi-
tion. When new parcels are generated, they are injected from the same plane with differ-
ent velocities, which means that those with higher velocities would possibly skip the first
couple of cells and end up in cells that are further away from the boundary. Therefore,
the cells right next to the boundary might have a lower number density, and one should
avoid placing regions of interest right next to the open boundaries.

WALL BOUNDARY

When a solid surface is a part of the flow boundary, it is called a wall boundary. When a
parcel strike on a wall boundary, it will either be bounced back or attach to and remain
at the surface (e.g. physisorption or surface reaction).
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For a parcel bouncing back, the two most common models are specular reflection
and diffuse reflection, originally proposed by Maxwell [7]. In specular reflection, the
parcel velocity component that is normal to the surface is reversed after the collision
while the tangential component remain unchanged. This indicates a perfectly elastic
surface regarding the impinging molecules and its functionality is identical to a symme-
try plane. On the other hand, in diffuse reflection, the impinging parcels are re-emitted
with velocities randomly sampled from a Maxwellian distribution at the wall temper-
ature and directed away from the surface. In other words, the reflected parcel has no
memory about its initial velocity and has reached a complete thermal equilibrium with
the surface.

In reality, the reflection of a molecule is neither strictly specular nor strictly diffu-
sive, and the exact interaction with the surface highly depends on the nature of the gas
molecules and of the solid wall. While the extension and improvement of the simple
specular and diffusive wall models have been the topic of ongoing research for many
years [8–10], there is no single model that can quantitatively describe the gas-surface
interactions for a wide range of materials, as denoted in [1]. So apart from complex
models developed for a particular combination of gas and surface, perhaps the best ap-
proximation is a linear combination of specular and diffuse reflection, assuming a real
interaction can be approximated as an intermediate between them. This combination
utilizes an accommodation coefficient α (0 ≤ α ≤ 1), which is defined as the fraction of
molecules that reflect diffusively. So when a parcel collides with a surface, the code will
generate a random number R[0,1] in the range of [0,1], and if R[0,1] ≤α then diffuse reflec-
tion is selected, otherwise specular reflection is selected. In the limit of α= 1 and α= 0,
this algorithm recovers to pure diffuse and specular reflection, respectively.

Reactive Surface When the impinging molecules can react with the solid surface, the
most common approach for describing the reaction probability is by utilizing a single
sticking coefficient γ. Similar to the procedure with α, the code generates a random
number R[0,1], and if R[0,1] ≤ γ, the impinging parcel reacts on the surface and otherwise
it is (diffusively or specularly) reflected back to the flow.

While the simplicity of using a sticking coefficient γ greatly facilitates a wide range of
applications, it cannot adequately model ALD type surface reactions. The main problem
is the self-limiting behavior of ALD, meaning that the reaction probability also depends
on whether the reactive sites have already been occupied. In order to address this prob-
lem, we use a similar methodology as adopted in earlier publications [11–13] based on
the surface book-keeping approach. In this model, the surface is partitioned into a num-
ber of surface elements. If one DSMC parcel, which represents FN real molecules, has
reacted with a surface element, then the corresponding number of sites will be marked
as “reacted” and extracted from the list of available sites of the element. Thus, for a parcel
that hits a surface element, the probability Pr ct of it reacting with the element is

Pr ct = fi ·γ (2.3)
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where fi is the number fraction of unoccupied sites among the total number of sites
in the i th surface element. Therefore, when fi = 0, the surface element is completely
saturated and no more DSMC parcels can react with this element. We have implemented
this model in OpenFOAM version 2.3, and a validation case is shown later in this chapter.

It should be noted that realistic ALD surface chemistry is rather complex including
nonideal ALD behavior, such as the readsorption of gaseous products [14] and non-self-
limiting behavior due to the decomposition of the surface species [15]. However, as the
aim of this thesis is to study the influence of fractal structure of agglomerates and gas rar-
efaction on the overall ALD coating time, these complex phenomena are not considered
in our model.

2.1.5. PARCEL COLLISIONS

In the parcel collision step, collision pairs are randomly selected among all the parcels
within each cell. So if there are N parcels in a cell, then the total number of possible
collision pairs Npai r is,

Npai r = N (N −1)

2
(2.4)

and for each potential collision pair, the collision probability Pcol is computed as,

Pcol = FNσT cr∆t/Vc (2.5)

where FN is the number of real molecules that is represented by one parcel, σT is the
total collision cross-section, cr is the relative velocity between the two molecules and Vc

is the volume of the cell. So Pcol is basically the ratio of the swept volume caused by the
parcel relative movement to the total volume of the cell, and it does not take into account
whether the parcel trajectories are actually intersected. This is why the cells should be
kept small, and thus avoid nonphysical long range interaction between parcels.

With Eqs. (2.4) and (2.5), one may intuitively loop over all Npai r pairs and using Pcol

and a random number R[0,1] to decide whether a collision should happen. However, this
algorithm scales with N 2 and suffers from low computational efficiency. Because most of
the looped pairs would be rejected due to the usually very small Pcol , OpenFOAM instead
implements a method called No Time Counter (NTC) [16] to overcome this problem. In
NTC, the number of collision candidates in a cell is reduced to

Npai r = 1

2
N 2FN (σT cr )max∆t/Vc (2.6)

where (σT cr )max is the maximum value of all possible (σT cr ) combinations in the cell,
and updated at the beginning of each time step. On the other hand, the collision proba-
bility is increased to

Pcol =
σT cr

(σT cr )max
(2.7)
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so that the total product of (Ncol Pcol ) remains the same except for the fact that now
N (N −1) in Eq. (2.4) is replaced by N 2 in Eq. (2.6). This replacement can be explained
by taking into account the true physics. In reality, there are FN N molecules in a cell and
the number of collision pairs is FN N (FN N − 1). Since FN N is usually extremely large,
FN N (FN N −1) can be accurately approximated as FN

2N 2. So this scaling with N agrees
with Eq. (2.6). In fact, the term N (N −1) in Eq. (2.4) rises solely from the artifact that two
molecules cannot collide with each other if they are represented by one parcel.

When selecting Npai r collision pairs, OpenFOAM uses a sub-cell method which di-
vides a cell into 2 by 2 by 2 sub-cells, and gives priority to the pairs of which two parcels
are from the same sub-cell. This further ensures the short distance between colliding
parcels, and only when the total number of pairs in all sub-cells is lower than Npai r , it
starts to pair parcels from different sub-cells.

COLLISION MODEL

When two parcels collide, we need a collision model to redistribute the momentum and
energy between the parcels. Variable Hard Sphere (VHS) [17] and Variable Soft Sphere
(VSS) [18] are the two most commonly applied collision models. Both models describe
the molecular collisions based on the collision cross section area σT and the deflection
angle χ defined as the angle between the relative velocities before and after the collision.

For a gas, the viscosity µ can be expressed as a function of temperature T as,

µ

µr e f
= ( T

Tr e f

)ω (2.8)

with µ=µr e f at T = Tr e f , whereω is called the viscosity index, and µr e f and Tr e f are the
reference viscosity and temperature respectively.

In the VHS model, σT is a function of cr ,ω, Tr e f and µr e f (µr e f is included indirectly
through molecular reference diameter, which is not covered in this thesis), and cos(χ)
is randomly drawn from a uniform distribution between 0 and 1. By directly taking the
macroscopic properties (ω, Tr e f and µr e f ) as input, the VHS model tunes the molecular
collisions such that the first approximation to the viscosity from the Chapman-Enskog
theory [19] renders the correct µ as in Eq. (2.8). In comparison to VHS, VSS includes one
additional parameter α in the selection of cos(χ), which ensures accurate prediction of
the gas diffusivity. A detailed description and derivation of VHS and VSS models can be
found in [1].

2.1.6. VALIDATION OF ALD REACTION MODEL

In this section, we validate our implemented ALD reaction model by simulating 1D gas
flow reacting on a flat substrate, as shown in Fig. 2.1 (left). In OpenFOAM, the 1D prob-
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Figure 2.1: Left: schematic representation of the 1D gas flow reacting on a flat wall. Right: computational
domain with grid mesh.

lem is actually simulated on a 3D mesh, as shown in Fig 2.1 (right). In this case, two
species of gas, one with a low concentration being the reactive gas, and the other with a
high concentration being the inert carrier gas, are supplied from one side of the compu-
tational domain. This side is set as an open boundary so that the number density, and
thus the pressure, of the gas is fixed. The opposite side of the domain is set as a reactive
wall with diffuse reflection, and the rest of the boundaries are set as symmetry planes.

THEORY

In a stationary gas, if the molecular number density of a gas species ns at the surface is
known, then the number of molecules Js that strike on a unit surface area in a unit time
can be expressed as

Js = 1

4
ns cm (2.9)

If the molecules react to the surface with sticking coefficient γ, then the reaction rate
Rs , defined as the number of molecules that react with the wall in a unit time, can be
approximated as

Rs = Jsγ
1

1−γ/2

= 1

4
ns cmγ

1

1−γ/2
(2.10)

Here 1
1−γ/2 is a correction factor [20] that accounts for the fact that the gas is not station-

ary but has a non-zero velocity towards the surface. It is stated that Eq. (2.10) is only
accurate when either the number fraction of the reacting species is very small, or γ is
close to zero.

For an ALD surface reaction, if there are initially θ0 available sites in a unit area, and
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θ(t ) still available at time t , then using Eq. (2.3) the reaction rate Rs (t ) can be written as,

Rs (t ) = 1

4
ns cm

θ(t )

θ0
γ

1

1− 1
2
θ(t )
θ0
γ

(2.11)

Also, we have
dθ(t )

d t
=−Rs (t ) (2.12)

By combining Eqs. (2.11) and (2.12), we get

lnθ(t )− γ

2θ0
θ(t )+ 1

4
ns cm

γ

θ0
t +C = 0 (2.13)

where the constant C =− lnθ0+ 1
2γ stems from the initial condition that θ(t ) = θ0 at t = 0.

Therefore, θ(t ) can be computed for any given t by solving this nonlinear equation.

SIMULATIONS

For the sake of simplicity, O2 and N2 are chosen as the reactive and carrier gas respec-
tively, regardless of the real ALD chemistry. The VHS collision model is used in this sim-
ulation and the molecular properties of both species are taken from [1]. Figure 2.1 (right)
shows the domain mesh with 4 by 4 by 20 grid cells. In this case, the wall surface elements
coincide with the cell faces, i.e., the wall boundary is also divided into 4 by 4 surface el-
ements. For this particular problem, the number of surface elements does not matter
since the surface sites have equal probability of receiving a parcel. In other words, there
is no surface inhomogeneity that needs to be resolved by surface elements. The param-
eters for the computational setups are listed below:

1. domain length L: 20 mm

2. domain width W : 4 mm

3. cell size: 1 mm

4. temperature: 300 K

5. pressure at the open boundary: 1 Pa, corresponding to a molecular number den-
sity ntot al = 2.41×1020 m−3

6. number of molecules represented by one parcel: FN = 2.4×107

7. gas composition (number fraction): 1% O2 (reactive) and 99% N2

8. sticking coefficient γ= 0.6

9. computational time step ∆t : 4×10−7 s
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Figure 2.2: O2 number density nO2 , normalized by nb,O2
, at different streamwise locations. Different lines

denote the data at different time steps, as indicated in the plot.

The above settings result in about 10000 DSMC parcels (with 1% representing O2) in
each cell. The molecular number density of O2 at the open boundary nb,O2 is

nb,O2 = 1% ·ntot al = 2.41×1018 (2.14)

Fig. 2.2 shows O2 molecular number density nO2 , normalized by nb,O2 , at different
streamwise locations, with each data point being averaged over 100 different runs in
order to suppress statistical noise. As the simulation starts, nO2 quickly drops at the wall
due to the surface reaction, and at around t = 20∆t it reaches its minimum and starts to
increase again until all the reactive sites are occupied. This qualitatively agrees with the
expected dynamics at the wall. Note that the slightly lower number density near x = 0 is
due to the aforementioned open boundary artifact.

For a quantitative analysis, we compare the fraction of total reacted sites
(
θ0−θ(t )

)
/θ0

at different time t/∆t , with the analytical results from Eq. (2.13). Since ns,O2 varies inbe-
tween 80% and 100% of nb,O2 as shown in Fig. 2.2, we compute the analytical values of
Θ(t ) based on these two limits as reference. The comparison is shown in Fig. 2.3. The
results from DSMC simulations agree very well with the general trend predicted by Eq.
(2.13).
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Figure 2.3: Fraction of reacted sites
(
θ0 − θ(t )

)
/θ0 at different time steps. Blue triangles denote the DSMC

results, red dashed line and yellow solid line denote the theoretical results assuming ns,O2 = 100% and 80%
nb,O2, respectively.

2.2. TUNABLE ALGORITHMS FOR GENERATING FRACTAL AG-
GLOMERATES

In this section we discuss in detail the tunable algorithms, proposed by Filippov et al.
[21], that generate fractal agglomerates based on the prescribed k f , D f and N .

A fractal agglomerate with N particles can be characterized by the following scaling
law

N = k f
(Rg

a

)D f (2.15)

The gyration radius Rg in Eq. (2.15) is defined as

R2
g = 1

N

N∑
i=1

(ri − rc )2 (2.16)

where ri and rc are coordinates of the i th particle center and the agglomerate mass cen-
ter respectively.

A tunable algorithm constructs agglomerates using a bottom-up approach with mul-
tiple steps of adding new particle(s), and at each step the following three conditions are
fulfilled:

1. The newly generated agglomerate exactly satisfies Eq. (2.15).
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2. Particles do not overlap with each other.

3. Each particle is attached to at least one other particle.

Depending on how many particles are added at a time, tunable algorithms are clas-
sified into two categories: (1) sequential algorithm, and (2) cluster-cluster aggregation
algorithm.

2.2.1. SEQUENTIAL ALGORITHM

A sequential algorithm starts with a dimer, i.e. two particles attached to each other, and
adds one particle at a time. If an agglomerate with N −1 particles is already constructed,
then for the N th particle Eq. (2.15) leads to

(rN − rc,N−1)2 = N 2a2

N −1

( N

k f

) 2
D f − N a2

N −1
−N a2( N −1

k f

) 2
D f (2.17)

where rN and rc,N−1 are the coordinates of the N th particle center and the mass center
of the first N − 1 particles respectively. Thus Eq. (2.17) fixes the distance LN between
the N th particle center and the mass center of the first N −1 particles, which renders a
surface of a sphere with radius LN for all possible positions of the N th particle center.
We call this sphere surface SN .

The N th particle is then randomly placed on SN fulfilling the other two conditions,
i.e. touching with at least one of the first N −1 particles while not overlapping with any
of them. This can be achieved by first finding a set of particles which satisfy LN − a ≤
|ri − rc,N−1| ≤ LN + a from the first N − 1 particles [22]. This set of particles serve as
candidates for attaching the N th particle, since they are located within the range [−a, a]
from SN . Next, we randomly select a particle from the candidates and attach the N th
particle while keeping the center of the N th particle on SN . This renders a circle for
all the possible positions of the N th particle center. Now we discretize this circle with
around 20 points equally distributed along this circle, and then randomly loop over these
points to place the N th particle. After each placement, we check for the overlap. If there
is no overlap, then we stop and the current selected point becomes the position of the
N th particle. If an overlap is detected, then we continue until either a point with no
overlap is found or all the points have been checked. In the later case, we remove the
current selected particle from the candidate list and repeat the above procedure until we
find a position with no overlap for the N th particle.

Figure 2.4 shows an agglomerate generated from the sequential algorithm with k f =
1.3, D f = 1.8 and N = 1000. It shows a highly ramified agglomerate structure with long
branches starting near the center of the agglomerate. This structure does not resemble
the agglomerates found from natural processes, and thus Filippov et al. [21] discourage
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Figure 2.4: A numerically generated agglomerate using the sequential algorithm, with k f = 1.3, D f = 1.8 and
N = 1000.

the use of this sequential algorithm for any further analysis on agglomerates, despite
that they exactly fulfill the fractal scaling law.

2.2.2. CLUSTER-CLUSTER AGGREGATION ALGORITHM

The cluster-cluster aggregation algorithm combines two sub-agglomerates at each step,
instead of adding a single particle. The initial sub-agglomerates are small aggregates of
very few, typically 5-8, particles, generated with sequential algorithm or even dimers.
When combining any two sub-agglomerates containing N1 and N2 particles and having
gyration radius Rg ,1 and Rg ,2 respectively, Eq. (2.15) leads to

(N1 +N2)R2
g = N1R2

g ,1 +N2R2
g ,2 +

N1N2

N1 +N2
L2

1,2 (2.18)

where Rg is the gyration radius of the generated agglomerate and L1,2 is the distance
between the mass center of the two sub-agglomerates. We can derive from Eq. (2.18) a
necessary and sufficient condition for fulfilling the fractal scaling law as,

L2
1,2 =

a2(N1 +N2)

N1N2

( N1 +N2

k f

) 2
D f − N1 +N2

N2
R2

g ,1 −
N1 +N2

N1
R2

g ,2 (2.19)

Similar to Eq. (2.17), Eq. (2.19) fixes the distance between the mass centers of the
two sub-agglomerates. So if we set the coordinates on the mass center of one of the
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Figure 2.5: Numerically generated agglomerates using the cluster-cluster aggregation algorithm, with N =
1024, k f = 1.1, D f = 2.2 (a), 2.3 (b), 2.4 (c), and 2.5 (d).

sub-agglomerates, then finding the position for the other sub-agglomerate mass center
becomes very similar to finding position for the N th particle in the sequential algorithm,
except that we need to change the orientation of the second sub-agglomerate multiple
times when checking for the overlap.

Figure 2.5 shows agglomerates generated from the cluster-cluster aggregation algo-
rithm, with N = 1024, k f = 1.1 and D f = 2.2−2.5. Note that a higher fractal dimension
results in a more densely packed agglomerate. In contrast to the SA generated agglom-
erate, no central part or long branches can be noticed, and the generated agglomerates
look similar to the ones generated from "mimicking" algorithms described in Chapter 1.

2.2.3. INTRINSIC RANDOMNESS AND DISCONTINUITY AT SMALL N

It is important to note that the fractal scaling law [Eq. (2.15)] does not uniquely define
one single agglomerate. In fact, an infinite number of different agglomerates can be
generated with the same k f , D f , N and a. In a 3D Euclidean space one needs O(3N ) pa-
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rameters to fully determine the structure of an agglomerate for given N and a. However,
in this work, we set only three parameters for an agglomerate, namely k f , D f and Rg . Al-
though these three parameters should not be directly seen as three of the 3N parameters
due to fact that the fractal scaling is applied multiple times on different length scales, it
still leaves many unknown parameters for fully determining an agglomerate for N À 1.
The cluster-cluster aggregation algorithm takes these unknowns as purely random vari-
ables, as indicated by the stochastic procedures mentioned earlier. This randomness
in the numerical procedure also echoes the intrinsic randomness in agglomerates pro-
duced from natural process.

Another important issue is the discontinuity of the fractal scaling law, i.e. Eq. (2.15),
at N = 1 and 2.

When N = 1, Eq. (2.16) yields Rg = 0, and thus Eq. (2.15) does not hold, no matter
what k f and D f we choose. More fundamentally, the fractal dimension D f describes
the scaling of the number of particles against the agglomerate size which is a measure
of the distances between particles. For instance, we can intuitively consider D f as an
indication of how widely the particles are spread out in a Euclidian space. Therefore, it
is meaningless to discuss Eq. (2.15) for a single particle, as there is no second particle to
indicate how far they are separated from each other. As a result, any scaling analysis of
physical properties based on Eq. (2.15) should not aim at having a correct limit at N = 1.

When N = 2, Eq. (2.16) yields Rg = a for two particles that are attached together.
Thus, the only way to satisfy Eq. (2.15) is to set k f = 2, whereas any k f 6= 2 would result
in discontinuity at N = 2. One way to overcome this discontinuity is to remove the con-
dition that particles should be in contact with at least one other particle. This allows an
additional degree of freedom to adjust the distance between the two particles so that Eq.
(2.15) can be exactly satisfied for various prescribed k f and D f at N = 2. Chapter 5 uti-
lizes this approach to generate random agglomerates, and provides a detailed discussion
on the resulting simulated ALD coating times.
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3
A NEW CUT-CELL ALGORITHM FOR

DSMC SIMULATIONS OF RAREFIED

GAS FLOWS AROUND IMMERSED

MOVING OBJECTS

Direct Simulation Monte Carlo (DSMC) is a widely applied numerical technique to simu-
late rarefied gas flows. For flows around immersed moving objects, the use of body fitted
meshes is inefficient, whereas published methods using cut-cells in a fixed background
mesh have important limitations. We present a novel cut-cell algorithm, which allows
for accurate DSMC simulations around arbitrarily shaped moving objects. The molecule-
surface interaction occurs exactly at the instantaneous collision point on the moving body
surface, and accounts for its instantaneous velocity, thus precisely imposing the desired
boundary conditions. A simple algorithm to calculate the effective volume of cut cells
is presented and shown to converge linearly with grid refinement. The potential and effi-
ciency of method is demonstrated by calculating rarefied gas flow drag forces on steady and
moving immersed spheres. The obtained results are in excellent agreement with results
obtained with a body-fitted mesh, and with analytical approximations for high-Knudsen
number flows.

This chapter has been published as Computer Physics Communications 212, 146-151 (2017) [1].
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3.1. INTRODUCTION

The Direct Simulation Monte Carlo (DSMC) is a well-established, discrete particle based,
numerical method for the computation of rarefied gas flows [2]. It is widely applied in
fields such as aerospace engineering and Micro-Electro-Mechanical Systems (MEMS),
where the rarefaction is important due to low pressures and small dimensions, respec-
tively [3–5].

Compared to possible alternatives, such as Molecular Dynamics [6], multiple-particle
collision dynamics [7], dissipative particle dynamics [8] and Lattice Boltzmann [9], DSMC
has grown to be the most widely applied and validated method for simulating gas flows
in the rarefied regime, i.e. the transition regime between continuum flow and free molec-
ular flow.

In conventional DSMC simulations, the flow domain is discretized into a number of
fixed shape grid cells, wherein the simulated gas molecules can move freely. The grid
cells are used exclusively in process of randomly selecting pairs of gas molecules as col-
lision partners, and for calculating average flow properties. When the walls of solid ob-
jects contribute as part of the flow boundaries, boundary conditions at those walls are
imposed by prescribing appropriate molecule-wall collision laws. Here, the object walls
may (i) be approximated by staircases with local grid refinement [2, 10], (ii) coincide with
grid cell faces (requiring the use of non-Cartesian, body fitted meshes to accommodate
complexly shaped immersed bodies), or (iii) cut through grid cells.

The first approach can be seen as a special case of the coincided grid with an addi-
tional staircase approximation to the walls. The last approach has been called the cut-
cell method [11, 12]. It is somewhat similar to the so-called immersed boundary method
(IBM), proposed by Peskin [13] to impose boundary conditions on the walls of immersed
objects in continuum based flow simulations. However, whereas in IBM fictitious exter-
nal forces, localized near the boundary, have to be imposed to satisfy boundary condi-
tions, in DSMC cut-cell methods such fictitious forces are not needed, as the boundary
conditions are imposed explicitly and exactly through the molecule-wall collision laws.
On the other hand, the cell effective volume has to be computed for the cut cells in order
to achieve the correct molecular collision probabilities.

The cut-cell method is particularly advantageous over the use of body fitted meshes
when the immersed object moves with respect to the grid, e.g. when studying gas flows
in MEMS with oscillating parts, or Brownian aerosol particle movement in gas flows.
In such situations, the use of body fitted meshes would require body fitted grids to be
regenerated at each time step, which is computationally inefficient.

For simply shaped moving immersed objects, of which the surface is limited to flat
planes aligned with the cell faces, the cut-cell method has been demonstrated for ap-
plications with 1-D moving piston [14] and turbomolecular pumps [15]. The cut-cell



3.1. INTRODUCTION

3

33

method has also been demonstrated for applications with 2-D static immersed bodies
[16].

For complexly shaped 3-D immersed objects, two main approaches for cut-cell DSMC
simulations have been proposed [11, 12], which mainly differ by the way in which the im-
mersed solid object surfaces are represented numerically. Both approaches make use of
random markers to distinguish between the inside and outside of the immersed object.

The first approach [11, 12] represents the approximate shape of the immersed sur-
face by small contiguous triangular facets. Molecules interact with these facets during
the molecular streaming step in the DSMC algorithm. In this approach, the facet size
determines the accuracy by which the surface, and thus the location of the boundary, is
being represented, whereas the grid size determines the resolution of the flow field simu-
lations. The effective volume of cut cells, which is needed during the molecule-molecule
collision step of the algorithm, is computed either by polyhedral decomposition utilizing
the facets and the cell faces, or by Monte Carlo random markers. [17] have applied the
latter to a 3-D moving object, and simulated the Brownian motion of a spherical particle
immersed in a rarefied gas. It is stated that the random marker based approach is easy
to implement but computationally expensive.

The second approach [12] uses an analytical expression for the immersed surface
shape as an input. This shape is subsequently approximated by planar faces, which are
determined by finding the two smallest possible cuboids which respectively contain all
random points inside, and outside, of the immersed object. This method may result in
gaps between the faces, which become significant when the ratio of the surface curvature
radius to the cell size is small.

Summarizing the present state-of-art, there is a clear need for a computationally
efficient DSMC cut-cell algorithms that allow for an accurate, gap-free representation
of immersed surfaces and the cell effective volumes. In the present work, we present,
demonstrate and validate such an algorithm.

Compared to earlier cut-cell methods, (i) our algorithm utilizes an exact analytical
representation of the immersed surface for computing the DSMC particle streaming step
and thus the particle-surface interaction. Therefore, this step does not rely on a trian-
gulated surface representation and does not leave gaps between approximated surface
elements; (ii) in our algorithm both the flow resolution and the accuracy of the cut-cell
effective volume scale with cell size; (iii) the molecules collide and interact exactly at the
instantaneous location of the moving surface; (iv) our algorithm avoids the use of ex-
pensive Monte Carlo methods in calculating the effective volume of cut cells. Thus, like
IBM methods in continuum flow simulations, our method explicitly imposes the correct
boundary conditions exactly at the instantaneous location of the analytically expressed
moving surface. On the other hand, our method is limited to geometries of which the
surface can be expressed by analytical expressions. Also, the current implementation of
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Figure 3.1: An immersed sphere in a fixed grid (clipped).

our method does not take into account the possibility of the occurrence of split cells,
i.e. cells which are divided into multiple independent regions by the immersed object.
Rather, we only focus on objects of which the local curvature is larger than the local cell
size.

3.2. CUT-CELL ALGORITHM IN DSMC

For the sake of simplicity, a perfect sphere is selected as an immersed object for the il-
lustration of the algorithm. Later we will discuss more complex body shapes.

Figure 3.1 shows an immersed sphere in a fixed Cartesian grid. In DSMC, there are
two main steps for gas molecular dynamics: 1) the molecular streaming step and 2) the
molecular collision step, which are decoupled from each other at each time step as the
essential assumption of the method. For an immersed body with a pre-known and an-
alytically expressed shape, the interaction of the particles with the immersed boundary
is calculated exactly at the landing point of the particle on the analytically expressed
boundary, as shown later in section 3.4. On the other hand, the intermolecular collision
step requires computation of the cell volume for a correct collision probability between
two simulated molecules in a cell. Equation (3.1) [2] shows this probability P and the
empty volume of the occupied cell is required as the denominator:

P = FNσT cr∆t/Vc (3.1)

Here, FN is the number of real molecules that is represented by one simulated molecule,
σT is the total collision cross-section, cr is the relative velocity between the two molecules,
∆t is the time step and Vc is the empty volume of the cell.
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Figure 3.2: (a) A grid cell intersected by an immersed sphere and (b) polyhedra generated using intersecting
points. The latter is only used for effective volume calculation in determining particle-particle collisions, not
for surface reconstruction in calculating particle-surface interactions.

When an immersed boundary intersects the grid cells, the cut cells are partially over-
lapped by the immersed body and therefore the overlap volume should be subtracted
from the original cell volume to provide an effective empty volume Vc and thus correct
collision probability.

3.2.1. OVERLAP VOLUME COMPUTATION ALGORITHM

Figure 3.2 shows a grid cell that is intersected by an immersed sphere. In this example,
there are four intersected edges from the cell. Nevertheless, in other cases with differ-
ent number of intersected edges the computation of overlap volume follows the same
algorithm summarized below:

1. Find all the intersected edges of the cell and compute the coordinates of the inter-
secting points at each edge, namely A, B , C and D in Figure 3.2.

2. Generate polyhedra using A, B , C , D , V1, V2, V3 and V4 as vertices. Since A, B ,
C and D are not necessarily on the same plane, there are more than one possible
polyhedra from the configuration depending on either using AC or BD as one of
the edges of the polyhedron.

3. Each of the possible polyhedra is decomposed into a number of pyramids by con-
necting its faces with the center of volume. Then the volume of each pyramid is
computed and summed up to yield the volume of each initial polyhedron.

4. In this example, since a sphere is a convex body, the maximum volume from the
above possible polyhedra could serve as the best approximation for the overlap
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Figure 3.3: Immersed sphere (left) and red blood cell (right) reproduced from contours of 50% overlap. The
color map shows the overlap fraction of each grid cell.
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Figure 3.4: Relative error in the computed overlap volume against different grid resolutions for the sphere
(circles) and the red blood cell (squares).

volume. However, to be more general, we use an average over the maximum and
minimum as a good approximation, as shown later in this section.

In this example, the grid resolution is defined by N = d/∆x, where d is the sphere
diameter and ∆x is the cell size. Figure 3.3 (left) shows an immersed sphere reproduced
by the contour of 50% overlap using the average volume of the polyhedra at N = 16,
which renders an excellent spherical surface. The color map on the surface indicates
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Figure 3.5: Red blood cell shape expressed by Equation (3.3) (a quarter is clipped out).

how the boundary cells are intersected by the sphere surface.

Since it is the effective volume of the boundary cells that directly contributes to the
molecular collision probability, the relative error in the reconstructed sphere volume is
defined as,

εr el =
VI B − ∑

al l cel l s
Vover l ap∑

bound ar y cel l s
Vover l ap

(3.2)

Here, VI B is the actual volume of the immersed body, Vover l ap is the calculated overlap
volume of each cell including the ones that are completely enclosed by the sphere and
Vover l ap, bound ar y is the overlap volume of a partially overlapped boundary cell.

Figure 3.4 shows εr el for different grid resolutions. The relative error in the computed
overlap volume decreases linearly with increasing N .

In order to illustrate that the same algorithm works for any other arbitrary shape, a
red blood cell shaped body is chosen as a second example. The shape can be expressed
by Equation (3.3) [18] and is plotted in Figure 3.5.

z(r ) = 1/2

√
1− (

r

R
)2 (C0 +C2(

r

R
)2 +C4(

r

R
)4) (3.3)

Here, R is 3.91 µm, C0 is 0.81 µm, C2 is 7.83 µm and C4 is −4.31 µm. The major diameter
of the red blood cell is d = 2R and again the grid resolution is defined as N = d/∆x.

Figure 3.3 (right) shows a red blood cell reproduced by the contour of 50% overlap at
N = 16, which agrees well with the shape shown in Figure 3.5. εr el is again defined by
Equation (3.2). To study the sensitivity of the method to the alignment of the body with
the grid, the immersed red blood cell is tilted at different angles θ with respect to the
background grid, as shown in Figure 3.3 (right). Figure 3.4 shows εr el against different
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grid resolutions. The results for θ = 0◦,15◦ and 30◦ are very close to each other and they
all converge linearly in N . Since the resolution is defined based on the major diameter
d , the minor axis is relatively poorly resolved, which explains the higher relative errors
compared to that of the sphere.

Thus it is concluded that the presented algorithm works for any arbitrarily shaped
immersed objects and εr el converges with order 1 for the grid refinement N .

3.3. VALIDATION WITH DRAG COMPUTATION

The above overlap volume calculation algorithm has been implemented into an open
source DSMC solver "dsmcFoam" in OpenFOAM [19] and the drag exerted on an im-
mersed sphere in a creeping flow is computed for rarefied gas flows with Knudsen num-
ber larger than 0.2. The result is then validated by comparing with the drag computed
from the conventional DSMC with a body-fitted grid, and with the analytical approxima-
tions.

3.3.1. COMPUTATIONAL SETUP

For the following simulations, a sphere with diameter d is located at the center of a
(10d)3 cubic domain with free stream boundary conditions at two opposite planes, and
periodic boundary conditions at the rest of boundaries. The simulated gas is argon of
which the molecular properties are taken from [2] with the variable hard sphere (VHS)
collision model.

The direct input parameters are:

1. sphere diameter: d = 2R = 5.0 ·10−7 m

2. grid size: ∆x = d
N , 8 ≤ N ≤ 19

3. domain size: L = 10×d = 5.0 ·10−6 µm

4. number of cells: Ncel l s = 103 ·N 3

5. number of DSMC particles: Npar ti cles > 10 ·Ncel l s

6. temperature: T = 300 K

7. pressure: P = 3.13 ·103 ∼ 5.0 ·104 Pa

8. reference viscosity: µr e f = 2.12 ·10−5 kg m−1 s−1 at Tr e f = 273.15 K

9. viscosity index: ω= 0.81
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10. free stream gas velocity: u = 40 ∼ 1.25 m s−1

The derived parameters are:

1. mean thermal velocity: cm =
√

8kb T
πm = 398.75 m s−1

2. mean free path: λ= 2µ
cmρ

= 2µkb T
cm m · 1

P = 1.43 ·10−7 ∼ 2.29 ·10−6 m

3. viscosity: µ=µr e f ( T
Tr e f

)ω = 2.29 ·10−5 kg m−1 s−1

4. Knudsen number: K n = λ
R = 2µkb T

cm mR · 1
P = 0.28 ∼ 9.18

5. Reynolds number: Re = uρR
µ = Rm

µkb T · (u ·P ) = 0.022

where kb is the Boltzmann constant, m is the gas molecular mass and ρ is the gas density.
The mean free path is calculated in the same way as [20] in order to keep consistency.
In all the simulations we fulfill the common DSMC criteria, i.e. time step ∆t < 1

8λ/cm ,

∆x < 1
3λ and each cell contains on average at least 10 DSMC molecules to ensure a well

resolved simulation [21, 22]. The gas in the domain at time t = 0 is initialized with the
mass-averaged velocity of u.

A fully diffusive boundary condition has been employed at the sphere surface as it
is the most commonly used boundary condition in literature. The drag force is directly
computed at each time step from the momentum difference of the reflected molecules
before and after the reflection. The drag force Fd exerted on the sphere is normalized by
the Stokes drag as

F?
d = Fd

FStokes
= Fd

6πµRu
(3.4)

We verified that the calculated drag values at consecutive time steps in our simu-
lations are nearly uncorrelated, with the autocorrelation function dropping to values

below 10−2 at t = ∆t . We took the viscous diffusion time tµ = ( L
2 )2ρ

µ as an estimate for
the time needed for the flow to reach quasi-steady state. And the drag is computed by
averaging over 10,000 time steps, starting from t = 4× tµ.

3.3.2. KN DEPENDENCE

First, K n is varied by changing the pressure of the gas while keeping Re constant by
changing the free stream velocity accordingly.
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Figure 3.6: Drag force on a sphere as a function of Knudsen number, for the cut-cell DSMC simulations com-
pared to analytical approximations by [20] and [23]. The DSMC data with K n = 0.28 is averaged over 400,000
time steps; K n = 0.57 is averaged over 50,000 time steps; while the rest are averaged over 10,000 time steps.
Main panel: Forces are normalized by the corresponding analytical approximations from [20], plotted on a
log-lin scale. Inset: Forces are normalized by the Stokes drag and plotted on a log-log scale.

F?
d values for a sphere simulated with the cut-cell method at different K n are shown

in Figure 3.6, compared with the analytical approximations from [20] and [23]. All the
error bars in the figures of this paper indicate 95% confidence intervals based on the
standard deviation of mean. The drag force predicted by our DSMC simulation agrees
well with the analytical results for all the shown Knudsen numbers.

3.3.3. COMPARISON WITH BODY-FITTED MESH DSMC

In this section, F?
d calculated from the presented cut-cell method is compared to that

from DSMC with a conventional body-fitted mesh. A typical body-fitted grid is shown
in Figure 3.7. The sphere surface is meshed with triangular elements which are inflated
two layers outwards. The rest of flow domain is meshed with tetrahedron cells. For the
body-fitted mesh we define

N = d√
Atet ,sur f ace

(3.5)

where Atet ,sur f ace is the area of the surface triangular elements.
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Figure 3.7: Body-fitted mesh for conventional DSMC
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Figure 3.8: Normalized drag force computed from DSMC with the cut-cell method (red squares) and from the
body-fitted grid (black circles), for K n = 2.29.

A comparison between the body-fitted mesh results and the cut-cell method results
at K n = 2.29 is shown in Figure 3.8. Here, the total number of simulated molecules is
kept the same for different N , in order to render similar confidence intervals. F?

d values
from the cut-cell method show less grid dependency than that from the body-fitted grid,
probably due to the utilization of the exact analytic surface for the bounce back of the
molecules.
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3.3.4. STATIONARY AND MOVING SPHERE WITH IMMERSED BOUNDARIES

In this section, the presented cut-cell method is demonstrated with a fully three-dimensional
moving immersed object. A moving sphere with a predefined velocity ~u =−u · ~ex is sim-
ulated with the cut-cell method in a stationary gas, where ~ex is the unit vector in the
streamwise direction. The sphere velocity is constant during the simulation, assuming
that the sphere mass is infinitely large compared to that of the gas molecule. The com-
puted drag F?

d is compared with that from a steady sphere in a moving flow with velocity
+u · ~ex .

The computational domain is elongated in the stream-wise direction by u · ttot al to
allow the movement of the sphere, where ttot al is the total simulation time. The sphere
moves over a distance −u ·∆t at each time step and the incoming molecules need to
be reflected at the exact, analytically calculated, landing point Pcol l as shown in Figure
3.9. This is achieved by switching back and forth between the steady observer reference
frame and the reference frame of the moving sphere. First, the molecule streaming is cal-
culated in the moving sphere reference frame by adding a velocity −u to each molecule’s
thermal velocity ~cm . Since the sphere is steady in its own reference frame, the calculation
procedure of the post reflection molecular velocities and positions is exactly the same as
that for a steady sphere. Subsequently, the velocities and positions of the molecules are
transferred back to the steady observer frame of reference by taking into account the
movement of sphere during ∆t .

The simulations are conducted at K n = 2.29. Figure 3.10 shows the comparison of the

Figure 3.9: Transfer of the reference frame between the sphere and the flow domain.
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Figure 3.10: Normalized drag force computed from DSMC with the cut-cell method for a steady sphere (red
squares) and for a moving sphere (black diamonds), for K n = 2.29.

scaled drag force F?
d between the moving sphere and the steady sphere, both calculated

with the cut-cell method. The two results agree well with each other, illustrating that this
method works for a fully three-dimensional immersed moving body.

3.4. CONCLUSION

A new cut-cell algorithm has been implemented and demonstrated in conjunction with
DSMC for simulating rarefied gas flow around an immersed moving body. Based on the
presented study, the following conclusions are drawn:

1. An analytically expressed surface is used to accurately bounce back the molecules.
The cut cell effective volume is computed by representing the immersed boundary
with the Lagrangian intersecting points and thus reconstructing all the possible
polyhedra and take the mean average. It has been shown that for any arbitrary
immersed bodies, the relative error in the computed overlap volume decreases
linearly with the grid refinement.

2. The drag force on a sphere computed with the present cut-cell method converges
to the same value as that calculated with a conventional body-fitted grid, both in
good agreement with approximate analytical solutions. However, with the cut-cell
method grid-independent results are obtained for coarser grids as compared to
the body-fitted grid method.

3. The drag on a moving sphere in a stagnant gas computed with the cut-cell method
agrees well with that of a steady sphere in a flowing gas. Thus it is shown that the
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present method can apply to fully three-dimensional immersed moving bodies in
a rarefied gas flow.
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4
SIMULATION OF ATOMIC LAYER

DEPOSITION ON NANOPARTICLE

AGGLOMERATES

Coated nanoparticles have many potential applications; production of large quantities
is feasible by atomic layer deposition (ALD) on nanoparticles in a fluidized bed reactor.
However, due to the cohesive interparticle forces, nanoparticles form large agglomerates,
which influences the coating process. In order to study this influence, the authors have de-
veloped a novel computational modeling approach which incorporates (1) fully resolved
agglomerates; (2) a self-limiting ALD half cycle reaction; and (3) gas diffusion in the rar-
efied regime modeled by direct simulation Monte Carlo. In the computational model, a
preconstructed fractal agglomerate of up to 2048 spherical particles is exposed to precur-
sor molecules that are introduced from the boundaries of the computational domain and
react with the particle surfaces until these are fully saturated. With the computational
model, the overall coating time for the nanoparticle agglomerate has been studied as a
function of pressure, fractal dimension, and agglomerate size. Starting from the Gordon
model for ALD coating within a cylindrical hole or trench [Gordon et al., Chem. Vap.
Deposition 9, 73 (2003)], the authors also developed an analytic model for ALD coating
of nanoparticles in fractal agglomerates. The predicted coating times from this analytic
model agree well with the results from the computational model for D f = 2.5. The an-
alytic model predicts that realistic agglomerates of O(109) nanoparticles require coating
times that are 3–4 orders of magnitude larger than for a single particle.

This chapter has been published as Journal of Vacuum Science and Technology A 35, 01B116 (2017) [1].
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4.1. INTRODUCTION

Modifying the surface of nano and micron-sized particles results in new functionalities
that have applications in many diverse fields, such as catalysis, medicine and energy
conversion and storage [2–5]. Atomic layer deposition (ALD) is one such technique that
can tune the particle surface by depositing precisely controlled thin film layers. It relies
on two self-limiting surface reactions applied in an alternating sequence, which allows
for atomic control over the film thickness and composition [6]. ALD coating on nanopar-
ticles has been demonstrated in several experimental studies utilizing a fluidized bed
[7, 8]. In fluidized bed ALD, an amount of particles is suspended in an upward gas stream
containing the precursor molecules. It is a useful technique for large scale processing of
particles. However, when fluidizing nanoparticles, they form agglomerates with sizes
up to a few hundred microns due to the cohesive inter-particle forces. These agglomer-
ates are (highly) porous and their complex geometries have been commonly described
as fractal for their self-similarity under different length scales [9–11]. Typical fractal di-
mensions have been found to range from 1.8 to 2.7. When applying ALD to such agglom-
erates of nanoparticles, the precursor molecules need to be transported into the porous
agglomerates and then react with the particle surfaces. This introduces a time scale for
the gas transport which may influence the overall coating time. A good understanding
of this phenomenon is important for the optimization of the ALD process cycles and an
efficient utilization of the precursors [12].

Reaction–diffusion problems in porous media, such as catalyst particles, polymer
networks, and particle assemblies, have been studied for many decades following the
seminal work by Thiele [13]. There now exists an extensive body of literature [14–22] ad-
dressing reaction–diffusion in porous media for various types of reactions (e.g., homo-
geneous and heterogeneous reactions, first and nonfirst order reactions), various treat-
ments of the porous structure geometry (e.g., by treating the porous structure as a single
material with an effective diffusivity, or by explicitly taking into account the geometric
details of the pores) and various pore geometries (e.g., cylindrical pores, packed beds).
For gases, another distinction is that between the molecular diffusion regime (when the
typical length scale L of the pores is much larger than the mean free path λ of the gas
molecules, or the Knudsen number K n = λ

L ¿ 1 ), the free molecular regime (K n À 1)
and the transitional or the Knudsen diffusion regime (0.1 < K n < 10). For ALD coating of
nanoparticle agglomerates, depending on the operating pressure, it is generally neces-
sary to account for gas rarefaction as the mean free path can be comparable to or larger
than that of the particles and the pores (λ ∼ 10 - 100 nm for atmospheric pressure, and
λ∼ 10 - 100 µm for 1 mbar).

Reaction–diffusion problems in particle agglomerates have been studied for numeri-
cally generated agglomerates constructed from an assembly of particles with predefined
assembling rules [23–26]. However, some of these studies only focus on the molecular
diffusion regime (K n ¿ 1) [23–25], whereas others do not address self-limiting reactions
in fractal geometries [23–26]. On the other hand, self-limiting ALD reactions and rar-
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Figure 4.1: Numerically constructed fractal agglomerate with k f = 1.1, N = 1024 for D f = (a) 2.1, (b) 2.3, and
(c) 2.5.

efied gas diffusion have been studied inside very simple pore geometries such as narrow
trenches and cylindrical pores [27–29].

In the present paper, we develop and demonstrate a computational model for the
rarefied reaction–diffusion problem in ALD coating of agglomerated nanoparticles which,
in deviation from all previous studies, combines models for (1) a fully resolved fractal
agglomerate; (2) self-limiting half cycle ALD reactions; and (3) diffusion in the transi-
tion regime. Each of these aspects has been studied in literature, but to the best of our
knowledge, the combination of these three is novel. With our computational model, the
overall coating time is studied, focusing on the influence of pressure, agglomerate size,
and agglomerate fractal dimension. We also present an analytic model which predicts
the scaling of the coating time with agglomerate size, allowing for the extrapolation of
our results to realistically large agglomerates.

4.1.1. NUMERICAL CONSTRUCTION OF FRACTAL AGGLOMERATES

It is commonly agreed in literature [9, 30] that a fractal agglomerate can be characterized
by its size and fractal dimension as

N = k f
(Rg

a

)D f (4.1)

where N is the total number of particles in an agglomerate, k f is a constant prefactor, a
is the radius of the primary particle, and Rg the gyration radius of the agglomerate. Here,
Rg is computed as,

Rg
2 = 1

N

N∑
i=1

(ri − rc )2 (4.2)

where ri and rc are the coordinates of i th particle and the agglomerate mass center re-
spectively.
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Filippov et al. [31] proposed a tunable algorithm to numerically generate agglom-
erates for any given combination of N , k f and D f . This algorithm generates fractal ag-
glomerates by a series of steps combining two different fractal sub-agglomerates, until
the final agglomerate has the preset N number of particles. At each step, both the sub-
agglomerates and the generated new agglomerate exactly fulfill Eq. (4.1) with prescribed
k f and D f . Skorupski et al. [32] further improved this algorithm and developed a fast
computational implementation. In this work, we have implemented the improved algo-
rithm by following Skorupski et al. Figure 4.1 gives examples of the constructed fractal
agglomerate with different D f . Note that an increase in fractal dimension leads to a
more dense structure of the agglomerate.

4.1.2. DIRECT SIMULATION MONTE CARLO

Direct simulation Monte Carlo (DSMC) [33] is a well-developed and widely applied tech-
nique for simulating rarefied gas flows, such as in aerodynamics in aerospace applica-
tions [34] and in microscale devices [35, 36]. In DSMC, the gas molecules are represented
by so called DSMC parcels, with each parcel representing a usually very large number
Neq of real molecules. These parcels move and collide with each other in the simu-
lated physical space. One essential feature of DSMC is the decoupling between the par-
cel movement and parcel–parcel collisions over a sufficiently small time interval. Upon
collision, the parcels interchange momentum and energy according to a given collision
model. Earlier work has extensively shown that DSMC gives a good representation of
real rarefied gas flows [37]. For our model, we have chosen the variable soft sphere (VSS)
[33] collision model for its accuracy in reproducing both the viscosity and diffusivity for
the gas mixture.

4.1.3. MODELING ALD SURFACE REACTION

In reality, the ALD surface chemistry is rather complex, including nonideal ALD behav-
iors, such as the readsorption of gaseous products [38] and non-self-limiting behavior
due to the decomposition of the surface species [6]. However, the aim of this work is to
study the influence of fractal structure and gas rarefaction on the overall coating time.
Therefore, here we adopt the ideal self-limiting ALD model based on the widely used
concept of sticking coefficient. The sticking coefficient is defined as the reaction proba-
bility of a single precursor molecule with a reactive site on the surface. In order to mimic
the self-limiting behavior, we use a similar methodology as adopted in earlier publica-
tions [27–29], based on the surface book-keeping approach. In this approach, the sub-
strate surface is first divided into a number of surface elements. If one DSMC parcel,
which represents Neq number of real molecules, has reacted with a surface element,
then the corresponding number of sites will be marked as “reacted” and extracted from
the list of available sites of the element. Thus, for a parcel that hits a surface element, the
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Figure 4.2: Surface of the nanoparticle is divided into 16×10 surface elements, each having the same surface
area.

probability Pr ct of it reacting with the element is

Pr ct = fi ·γ (4.3)

where γ is the sticking coefficient and fi is the number fraction of unoccupied sites
among the total number of sites in the i th surface element. Therefore, when fi = 0,
the surface element is completely saturated and no more DSMC parcels can react with
the element. In the present study, the surface of the spherical particle is divided into 160
surface elements as shown in Fig. 4.2, such that each element has the same surface area
and thus the same number of sites.

4.2. COMPUTATIONAL SETUP

We have made the computational domain a cuboid box large just enough to contain the
constructed agglomerate. Our simulation results proved to be insensitive to the precise
size of the box, with coating times increasing by less than 2% for a 20% larger box size.
During the simulation, the precursor is released from the boundaries of the domain with
a fixed concentration and allowed to react with the agglomerate surface. The gas phase
in an ALD reactor is typically a mixture of different gas species, such as the precursors,
carrier gas, and gaseous products. Although it is possible to include all these different gas
species in a DSMC simulation, the aim of the present study is not to model one particular
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ALD process but rather to generically study the influence of fractal structure and gas
rarefaction on the coating time. Therefore, we model the following generalized ALD half
cycle reaction:

A+ site (free) → site (occupied) +B (4.4)

where A is the precursor which is transported with an inert carrier gas C , and B is the
gaseous product. We use identical molecular properties (those of Argon [33]) for all three
gas species A, B , and C for the sake of the simplicity. The computational domain is
initially filled with gas molecules of C , and as the simulation starts, A is introduced from
the domain boundaries with a constant number fraction of 10%. The number density of
surface sites is set to ρsi te = 1.132×1018 /m2. Precise values of sticking coefficients are
rarely found in literature, in spite of the wide use of the concept. Moreover, the sticking
coefficient strongly depends on the substrate material and the operating temperature,
which makes it even harder to obtain consistent data from literature. Rose et al. [39]
reported that the sticking coefficient of tetrakis(ethylmethylamino)hafnium on hydroxyl
groups depends exponentially on the substrate temperature, rendering 0.56 at 270 ◦C.
We adopt these values for the sticking coefficient and temperature in our modeling. For
such a high sticking coefficient, reaction is fast compared to diffusion for large N , and as
a result, coating times are rather insensitive to the precise value of γ. This was confirmed
in our study by increasing γ from 0.56 to 1.0, leading to small changes in coating time for
large N .

The simulated spherical nanoparticles have a diameter of 2a = 90 nm. With these
particles, a series of fractal agglomerates are constructed by varying N from 4 to 2048, D f

from 2.1 to 2.5, with k f = 1.1. For each combination of N and D f , one realization of the
agglomerate was studied. To check the sensitivity to geometrical differences between
different realizations, we studied three different realizations for N = 128 and D f = 2.5.
Once constructed, each agglomerate is embedded in one computational domain using
the DSMC cut-cell method [40, 41], which allows each and every single particle to be fully
resolved. In all the conducted simulations, we fulfil the common DSMC criteria [42, 43]
to ensure the accuracy of the results.

4.3. RESULTS AND DISCUSSIONS

4.3.1. INFLUENCE OF PRESSURE ON COATING TIME

ALD on particles can be carried out at low pressure [7] as well as at atmospheric pressure
[44]. The level of gas rarefaction, i.e., the ratio between the mean free path and pore size,
increases for decreasing pressure. Therefore, we first study the influence of pressure. For
a fixed agglomerate with k f = 1.1, N = 1024, and D f = 2.5, the pressure is varied from
0.22 to 2.0 bar (λ = 562 ∼ 61.8 nm). The overall coating time is non-dimensionalized
with the time t0 in which a surface element would be 99% coated when the precursor
concentration at the surface would be kept the same as that of the domain boundaries.
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This reference time t0 can be computed by solving the following differential equation of
f :

−ρsi te
d f

d t
= 1

4
ut C Aγ f (4.5)

where ρsi te is the number density of surface sites, f is the number fraction of active sites,
ut is the molecular thermal velocity, and C A is the precursor molecule number density.
Equation (4.5) leads to the following expression for t0:

t0 = ρsi te
1
4 ut C Aγ

ln(100) (4.6)

which is of the order of 100 ns for 0.1 bar partial pressure of species A.

The choice of the length scale L in the definition of the Knudsen number is not so
obvious: an agglomerate is a multi-scale structure with its smallest length scale being
of the order of the particle radius a, and largest length scale being of the order of the
overall agglomerate size Rg . To the best of our knowledge, it is not clear so far in literature
what is the proper choice for L for this particular problem. Therefore, we have simply
chosen the particle radius a as the reference length scale and the gas mean free path is
non-dimensionalized into a Knudsen number by a. The molecular mean free path λ is
computed from the variable soft sphere model as [33]

λ= α(5−2ω)(7−2ω)

5(α+1)(α+2)
ut
µ

P
= k

P
, k = 0.01236 (kg/s2) (4.7)

where α is the exponent in the VSS model determined by the molecular properties, ω is
the temperature exponent of viscosity, µ is the viscosity, and P is the pressure. As can be
seen, λ is inversely proportional to P , and for the given range of P , it varies from 1.37a
to 12.5a.

Figure 4.3 shows the surface coverage of each particle of an agglomerate at time
t = 0.65t0 for P = 0.22 bar. It shows that the surface is not coated uniformly through-
out the agglomerate. The outer particles are coated faster than the inner particles as can
be expected intuitively. Figure 4.4 shows the overall surface coverage φ against the time
t for different λ. As a reference case, a free molecular simulation is conducted by re-
moving the molecular collisions from DSMC, i.e., λ =∞. In general, when λ decreases,
the overall coating time, normalized by that of a single particle, increases. The deviation
from the free molecular results is only observable when λ is less than about 10a. This
suggests that for pressures below 0.1 bar, diffusion is well in the free molecular regime.
Figure 4.5 shows the 99% overall saturation time t99% against the different λ. It again
shows that the normalized coating time decreases with increasing λ, and for λ = 12.5a,
the saturation time is very close to that in the free molecular flow.
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Figure 4.3: Surface coverage of each particle of the agglomerate, at t = 0.65t0 for P = 0.22 bar. The cuboid
outline represents the computational domain.

Figure 4.4: Overall surface coverageφ of the agglomerate against time t normalized by t0. λ=∞ denotes a free
molecular simulation where the molecular collision is not taken into account.
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Figure 4.5: 99% saturation time t99% normalized by t0, against the particle radius a normalized by the gas
mean free path λ. The red dashed line represents the normalized t99% in the free molecular regime, i.e., λ=∞.

Figure 4.6: Overall surface coverage φ of the agglomerate against time t normalized by t0 for a single particle,
in comparison with the analytic expression in Eq. (4.5).

4.3.2. INFLUENCE OF AGGLOMERATE SIZE ON COATING TIME

In this section, the pressure is fixed at 1 bar (λ= 2.77a), and agglomerates with different
number of particles (1 ¿ N ¿ 2048) are simulated with k f = 1.1 and D f = 2.5.

Figure 4.6 shows the overall surface coverage φ against time t for agglomerates with
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different number of particles, in comparison with the analytic expression for ALD coat-
ing in the absence of diffusion limitations given in Eq. (4.5). The simulation results for
N = 1 match very well with those analytic results, which indicates that for a single parti-
cle the system is well in the reaction-limited regime and can be accurately described by
the analytic expression. As for the agglomerates, the overall coating time increases for
increasing number of particles.

In order to analyze our results, and considering the resemblance between the gas
diffusion in narrow holes and that in the pores of a porous agglomerate, we utilize the
Gordon model [45], which was developed to predict ALD coating times in narrow holes
and trenches.

The Gordon model analyzes a self-limiting ALD surface coating reaction in a long,
narrow, cylindrical hole or trench. As time progresses, the length of the coated part of the
hole wall increases from the hole mouth downward. The increment of time d t needed
for coating an additional length dl in the hole is computed from the balance between
the local flux and consumption by the hole side walls, i.e.,

F (l )A⊥(l ) ·d t = ρsi te av (l )A⊥(l ) ·dl (4.8)

Here, F (l ) is the molecular precursor net flux entering the hole at depth l , A⊥ is the cross
sectional area of the hole, ρsi te is the number of surface sites to be covered per unit area,
and av is the wall surface area to be coated per unit volume of the hole. Thus, the total
coating time T for the side walls of a hole of depth L is obtained as

T =
∫ T

0
d t = ρsi te

∫ L

0

1

F (l )
av (l )dl (4.9)

In the Gordon model for a cylindrical hole with radius rp , av is not a function of l and
equal to av = 2/rp , and the precursor flux F (l ) inside the hole is expressed as a function
of depth l as

F (l ) = F0

1+CC L
l

rp

(4.10)

with F0 = 1
4 ut C A the molecular flux at the mouth of the hole. The denominator in Eq.

(4.10) is called Clausing factor [46], and it indicates how much the flux is reduced at a
given depth l , compared to that at the entrance. The order 1 constant CC L equals 3/8 for
cylindrical holes, and varies for different hole cross sectional shapes [47].

For quasi-spherical fractal agglomerates with D f > 2 and radius of gyration Rg , we
now consider the above model in a spherical coordinate system, with its origin (r = 0)
defined at the center of mass of the agglomerate. Then, the coating penetration depth l
is replaced by (Rg − r ). In a fractal agglomerate, the amount of reactive surface per unit
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volume av (r ), as a function of radial position, is computed from

av (r ) = 4πa2d N

4πr 2dr

= 4πa2k f D f a−1
( r

a

)D f −1dr

4πr 2dr
= k f D f a2−D f r D f −3 (4.11)

This shows that in fractal agglomerates with D f < 3, av (r ) decreases with increasing r ,
as the agglomerate becomes less dense with increasing r .

The aspect ratio l
rp

of an agglomerate pore is estimated as

l

rp
= av

2
(Rg − r )

= 4πa2k f
( Rg

a

)D f

2 · 4
3πRg

3
(Rg − r )

= 3

2
k f a2−D f Rg

D f −3(Rg − r ) (4.12)

By substituting Eqs. (4.11) and (4.12) into Eq. (4.9), and integrating from 0 to Rg , we get

t =
∫ t

0
d t ′

= ρsi te

F0

∫ Rg

0

[
k f D f a2−D f r D f −3 + 3

2
CC Lk f

2D f a4−2D f Rg
D f −3r D f −3(Rg − r

)]
dr

= ρsi te k f D f

F0

( 1

D f −2

(Rg

a

)D f −2 + 3

2
CC L

k f

(D f −1)(D f −2)

(Rg

a

)2D f −4
)

(4.13)

with Eq. (4.1), this can be rewritten as

t = ρsi te

F0

[ D f

D f −2
k f

2
D f N

D f −2

D f + 3

2
CC L

D f

(D f −2)(D f −1)
k f

4
D f N

2D f −4

D f

]
= k1N

D f −2

D f +k2N
2D f −2

D f (4.14)

In the Gordon model for a hole, the coating time for the bottom wall is added to Eq. (4.9)
as a separate term, which gives the asymptotic value of t = t0 when l = 0, i.e., when the
hole depth is zero and deposition takes place on a flat surface. Similarly, in our model
for deposition on a fractal agglomerate, this asymptotic value of t = t0 should hold for
N = 1. Therefore, we add a similar additional term to Eq. (4.14) to fulfill this requirement
as

t/t0 = k1N
D f −2

D f +k2N
2D f −4

D f + (1−k1 −k2) (4.15)
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Figure 4.7: 99% saturation time t99% normalized by t0 against the number of particles N in an agglomerate. For
N = 128, the saturation times for three different realizations of the agglomerates are shown, which are virtually
identical. For all other N , only one realization is included. The red line represents a fitting according to Eq.
(4.15) with k1 = 0.1414 and k2 = 0.0655.

with

k1 = ρsi te

F0

1

D f −2
k f

2
D f D f

1

t0

= γ

ln(100)

D f

D f −2
k f

2
D f (4.16)

and

k2 = 3

2
CC L

ρsi te

F0

1

(D f −2)(D f −1)k f

4
D f D f

1
t0

= 3

2
CC L

γ

ln(100)

1

(D f −2)(D f −1)
k f

4
D f D f (4.17)

The ratio k1/k2 depends only on the geometrical properties of the fractal agglomerates,
as

k1

k2
= 2

3

1

CC L
(D f −1)k f

− 2
D f (4.18)

Our model predicts that for fractal agglomerates with 2 < D f < 3 and large N [when
the last term in Eq. (4.13) dominates] the coating time t scales less than quadratically
with the size of the agglomerate Rg (for example, for D f = 2.5, t scales linearly with Rg

). For nonfractal agglomerates (i.e., D f = 3) and large N , our model predicts that the
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coating time t scales quadratically with the size of the agglomerate Rg . This difference
is due to the fact that for fractal agglomerates with D f < 3 the void fraction increases
when moving away from the center, while for D f = 3 the void fraction is independent of
radial position. It should be noted that for D f = 3, our model is identical to the original
Gordon model for a hole, which predicts a coating time proportional to the square of the
hole depth.

For D f = 2.5, Eq. (4.15) predicts t/t0 = k1N 1/5 + k2N 2/5 + (1 − k1 − k2). We fitted
the constants k1 and k2 to simulated 99% saturation times t99% for agglomerates with
different number of particles (1 ≤ N ≤ 2048), k f = 1.1 and D f = 2.5, as shown in Fig. 4.7.
As can be seen, the fitted curve matches the simulation data very well. It indicates that
our generalized form of the Gordon model accurately predicts the scaling of the coating
time of fractal agglomerates with increasing particle number. From our fitting to the data
in Fig. 4.7, we find k1/k2 = 2.16, suggesting [with Eq. (4.18)] a value CC L = 0.43 in the
Clausing factor for D f = 2.5, which appears to be a very reasonable value for our highly
irregular pores.

With our above model, we can now estimate that for realistic fractal agglomerates
with N ∼ 109 and D f = 2.5, the coating time would exceed that of a single particle by
a factor of around 4000, as opposed to a factor 106 for a nonfractal agglomerate. This
estimate, obviously, is highly sensitive to the precise value of the exponent in the second
term on the rhs of Eq. (4.15), which we could not validate for very large N . Nevertheless,
it is clear that the coating time for fractal agglomerates is orders of magnitude smaller
than that of nonfractal agglomerates.

4.3.3. INFLUENCE OF FRACTAL DIMENSION ON COATING TIME

In this section, the pressure is fixed at 1 bar, with λ = 2.77a, and the fractal dimension
D f is varied from 2.1 to 2.5 with k f = 1.1 and N = 1024.

Figure 4.8 shows the overall surface coverage against time t for different fractal di-
mensions. In general, the coating time increases for increasing fractal dimension. We
compare the simulated 99% saturation time t99% with the analytic expression in Eq.
(4.15). For D f < 2.5, the values of k1 and k2 have been computed from the fitted values
of k1 and k2 for D f = 2.5, using Eqs. (4.16) and (4.17) in which CC L was kept constant
for all D f . This comparison is shown in Fig. 4.9. As can be seen, the simulation results
agree very well with our model for D f ≥ 2.3, while some deviations are observable for
D f < 2.3. This indicates that values of k1 and k2 obtained for large D f are inaccurate
for smaller D f , probably due to (1) changes in pore shape, leading to different CC L , (2)
break down of the assumption of a quasi-spherical agglomerate shape with an average
pore size depending on radial position only, rather than a fully three dimensional pore
size distribution.
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Figure 4.8: Overall surface coverageφ against time t normalized by t0 for agglomerates with k f = 1.1, N = 1024.

Figure 4.9: 99 % saturation time normalized by t0 against the fractal dimension D f , for k f = 1.1 and N = 1024.
The red line represents the expression in Eq. (4.15), with the fitted k1 and k2 from Fig. 4.7.

4.4. SUMMARY AND CONCLUSIONS

We have developed a computational model for simulating atomic layer deposition on
fractal nanoparticle agglomerates with fractal dimension 2 < D f < 3. This model ac-
counts for a self-limiting ALD half cycle reaction and gas diffusion in the gas rarefied
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regime within a fully resolved fractal agglomerate of spherical nanoparticles. We also
derived a generalized form of the Gordon model which was developed for ALD coating
within a cylindrical hole or trench. We extended this model to predict the ALD coating
time within fractal agglomerates. Based on the present study with our model, we draw
the following conclusions:

• The overall coating time of an agglomerate, normalized by that of a single parti-
cle, decreases for decreasing pressure, i.e., increasing gas mean free path λ, up to
λ ∼ 10a, whereas it becomes independent of the pressure for λ > 10a, with a the
nanoparticle radius. This indicates that a is the proper length scale for calculat-
ing the Knudsen number for this perticular problem. For pressures below 0.1 bar,
diffusion in the simulated agglomerates is well in the free molecular regime, and
further reduction of the pressure has a little influence on the normalized coating
time.

• The overall coating time increases as the number of particles of an agglomerate
increases. Our generalization of the Gordon model predicts the required coat-
ing time of a large agglomerate to scale with the number of particles to the power
(2D f −4)/D f , in excellent agreement with simulation results for agglomerates with
D f = 2.5. This model predicts that realistic agglomerates of O(109) nanoparticles
require coating times that are 3–4 orders of magnitude larger than for a single par-
ticle.

• The overall coating time increases for increasing fractal dimension D f in agree-
ment with our generalized Gordon model. The simulation results agree very well
with our model for D f ≥ 2.3, while some deviations are observable for D f < 2.3.
The two model constants in our model were found to slightly depend on the frac-
tal dimension.
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5
MOVING REACTION FRONTS IN

FRACTAL NANOPARTICLE

AGGLOMERATES

Self-limiting gas-surface reactions lead to reaction fronts that penetrate nanoporous ma-
terials with a finite speed. We present a closed form theoretical model, validated against
molecular simulations, that shows the influence of the fractal scaling law on the time
needed to fully penetrate fractal agglomerates of nanoparticles. For very large agglom-
erate sizes, this penetration time scales with the number of particles N in the agglomerate

as N
D f −1

D f . The penetration time for agglomerates with fractal dimensions D f < 3 may
therefore be orders of magnitude smaller than for non-fractal porous materials.

This chapter is under review in Physical Review E.
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5.1. INTRODUCTION

The interplay between gaseous diffusion inside nanoporous solids, and self-limiting re-
actions at pore wall sites (i.e. reactions that render these sites inactive after they have
been occupied by a reacted gas molecule) is of great relevance for applications in for
instance catalyst deactivation [1], CO2 storage [2] and conformal coating of agglomer-
ated nanoparticles [3–5]. In these applications, the time needed for the reacting gas to
fully penetrate the porous solid and saturate its surfaces is vital to the efficiency of the
material and the process.

The time required for gas molecules to be transported through straight narrow pores
with diameters that are small compared to the mean free path of the gas was first anal-
ysed in the seminal work by Knudsen [6], and extended to more complex pore networks
and wall surface morphologies in many later studies [7, 8]. When the gas molecules react
with the pore walls, a chemical reaction time scale is added to the problem [9, 10] and
the ratio between the two time scales, the so-called Thiele modulus [11], governs the ef-
fective reactivity of the pore in applications such as in porous catalysts [9], adsorption
[12] and separation [13] processes.

For self-limiting surface processes, however, the interaction between Knudsen dif-
fusion and surface reaction is of a different nature, as it now leads to a moving front
between reacted and unreacted wall surface. The time needed for this front to travel
through the material was analysed for simple straight pores, particularly because of its
relevance in micro electronics processing [14–17], but has not been studied for the com-
plex pore networks found in most natural or fabricated nanoporous materials [18].

In this paper, we focus on agglomerates of mono-sized spherical nanoparticles as an
important class of nanoporous materials. Unlike regularly structured nanoporous mate-
rials [19], such agglomerates posses intrinsic randomness in their microscopic geomet-
rical construction and do not exhibit closed pores [20], causing gas diffusion inside to
be normal. Also, such agglomerates have been found to possess a fractal nature [21, 22].
The number of particles N in the agglomerate scales with the size of the agglomerate
according to

N = k f
(Rg

a

)D f (5.1)

where k f is an O(1) constant, Rg is the agglomerate gyration radius, a is the radius of
the primary nanoparticles, and D f is the fractal dimension. It is important to note that
Eq. (5.1) does not uniquely define an agglomerate. In fact, O(3N ) particle center co-
ordinates are needed to fully define the microscopic arrangement of the N particles in
an agglomerate. As a result, many different agglomerates are characterized by the same
N , D f , k f and

(
Rg /a

)
. All these agglomerates will be different in respect to the detailed

arrangement of their constituent particles, and as a result will exhibit different micro-
scopic diffusion behavior at the particle and void scale. However, in this paper we will
demonstrate that for the prediction of the overall saturation time it is sufficient to char-
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acterize the agglomerate on a low-dimensional parameter space, since to first order the
saturation time is determined by the scale invariance D f and the agglomerate size N , in
addition to the parameters k f and

(
Rg /a

)
. We present a theoretical model showing this

dependence, validated by molecular simulations inside agglomerates, as well as regime
maps that teach how tag g scales with N and D f .

5.2. THEORY

We first derive a theoretical model for predicting the overall agglomerate saturation time
tag g , defined here as the time required to saturate 99% of all nanoparticle surface sites
within the agglomerate. For a single nanoparticle exposed to a fixed reactant concentra-
tion C0 at its surface, such a 99% surface coverage is reached in a time t0 = ρsi te

1
4 ut C0γ

ln(100)

(a detailed derivation is shown in section 4.2.1), where ρsi te is the number density of sur-
face sites, ut is the molecular mean thermal velocity and γ is the surface reaction sticking
coefficient.

For a multi-particle agglomerate, tag g increases from t0 due to the uneven exposure
of the particle surfaces. This is governed by the interplay between two independent time
scales namely 1) the time tM in which molecules, in the absence of reactions, diffuse
to the core of the agglomerate, and 2) the time tF in which the reaction front reaches
the core of the agglomerate, assuming that gas molecules travel infinitely fast. In the
following, we will derive expressions for both tF and tM , combined into a closed form
theoretical model for the agglomerate saturation time tag g .

Our model for tF is inspired by Gordon’s model [14] for simple straight pores and
trenches 1. For a narrow cylindrical pore with radius rp and length L, Gordon computes
tF based on a local mass balance between the gas molecule flux F (l ) and the consump-
tion of gas molecules at the pore walls, both taken at a depth l inside the pore, with
0 ≤ l ≤ L, as:

F (l )A⊥(l ) ·d t = ρsi te av (l )A⊥(l ) ·dl (5.2)

where A⊥(l ) is the cross sectional area of the hole and av (l ) is the wall surface area per
unit volume of the pore. Thus, tF for a pore is obtained as

tF = ρsi te

∫ L

0

1

F (l )
av (l )dl (5.3)

An approximate expression for F (l ) has been proposed by Clausing [23], and is reformu-
lated here in terms of the Knudsen diffusivity Dk as

F (l ) = F0

1+ ut l
4Dk

(5.4)

1It should be noted that, in Gordon’s model, it is implicitly assumed that tF À tM , and thus tF equals the total
saturation time.
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where F0 = 1
4 ut C0 is the flux at the entrance of the hole, and for a long cylindrical hole

Dk = 2
3 rp ut [6].

We now develop a model for computing tF inside fractal agglomerates, again starting
from the mass balance as in Eq. (5.2) that leads to Eq. (5.3). Thus, we need to compute
F (l ) and av (l ) for fractal agglomerates.

In ordr to compute F (l ) from Eq. (5.3), we first derive an approximate expression for
Dk , taking into account the high degree of randomness in naturally grown nanoparticle
agglomerates. For a system consisting of large number (N À 1) of randomly dispersed
hard spheres, it has been shown in literature [24, 25] that the diffusion is normal and Dk

can be expressed as,

Dk = 1

3
〈λ〉ut

( 〈λ2〉
2〈λ〉2 −β)

(5.5)

where λ is the chord length defined as the length of a segment that entirely lies in the
void space with two ends on particle surfaces, β is the angular factor which accounts
for the average angle between two consecutive molecular trajectories, and 〈...〉 denotes
average over the entire domain. For fully diffusive surfaces, it has been shown thatβ= 4

13
[24]. For randomly dispersed hard spheres, the distribution of λ is well expressed with
an exponential form [26, 27] which leads to

〈λ2〉
2〈λ〉2 = 1 (5.6)

and

〈λ〉 = 4a(1−φs )

φs
(5.7)

where φs is the solid volume fraction. For a homogeneous system, such as the randomly
dispersed spheres,φs is independent of the location and thus Dk is uniform everywhere.
Although, this may not strictly hold for a fractal agglomerate due to the constraint from
D f . We use Eqs. (5.5)-(5.7) using a global value of φs to compute a global Dk .

In order to compute the global φs , we evaluate the total space taken by the agglom-
erate as the volume of an equivalent sphere with radius R. Here, the choice of R is some-
what arbitrary due to the irregular shape of fractal agglomerates. Nevertheless, R is a
linear measure of the size of the agglomerate, much alike Rg , and thus we argue that
R =αRg , with α being an O(1) constant for fixed D f . This α is the only fitting parameter
in our model and the choice of α will be discussed later. Now we can compute φs as,

φs =
4
3πa3N

4
3πR3

(5.8)

We now consider the agglomerate in spherical coordinates with its origin (r = 0) at
the mass center of the agglomerate. We model this system as such that the propagation
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of reaction fronts start from r = R and ends at r = a. Then, using Eq. (5.4), F (r ) can be
computed as,

F (r ) = F0

1+ ut
4·3Dk

(R − r )
(5.9)

Here following [28], compared to Eq. 5.4, Dk is multiplied by a factor 3 to account for
the fact that diffusion takes place in 3 dimensions rather than along the radial direction
only.

The amount of reactive surface per unit void volume av (r ), as a function of the radial
position r , can be computed as

av (r ) = 4πa2d N

4πr 2dr − 4
3πa3d N

= 1

α
D f a

D f −2

k f D f
r 3−D f − 1

3 a
(5.10)

Now we can compute tF by substituting Eqs. (5.5)-(5.10) into Eq. (5.3),

tF =ρsi te

F0

∫ R

a

1

α
D f a

D f −2

k f D f
r 3−D f − 1

3 a
·

[
1+ 13

48

1

α
D f a

D f −2

k f
R3−D f −a

(R − r )
]

dr +TF (5.11)

where TF is calculated from the condition that tF = 0 at N = 1. This term addresses the
discontinuity in the fractal scaling law at small N , i.e. when N → 1, R 6= a.

For large agglomerates with N
3−D f

D f À k
3

D f

f α−3 and 2 < D f < 3, Eq. (5.11) can be

simplified to (see Appendix for detailed derivations),

tF = k1N
D f −2

D f +k2N
2D f −4

D f (5.12)

with constants k1 = ρsi te
F0

k f

2
D f

D f

D f −2α
−2 and k2 = 13

48
ρsi te

F0
k f

4
D f

D f

(D f −2)(D f −1)α
−4. Eq. (5.12)

clearly shows the scaling of tF with N for large fractal agglomerates.

For the computation of tM , the surface reactions are not taken into account. When
R is of the same order as λ, reactant molecules almost directly reach the central par-
ticles without colliding with other particles, thus tM = R−a

ut
, whereas when R À λ, the

molecules undergo pure diffusive paths and thus tM = 1
6

(R−a)2

Dk
. Therefore, for any given

R, tM is computed as,

tM = R −a

ut
+ 1

6

(R −a)2

Dk
+TM (5.13)
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Figure 5.1: Regime map for the scaling of the agglomerate saturation time tag g with the agglomerate size N .
The division lines between the four regimes have been calculated from the non-simplified model Eqs. (5.11),
(5.13) and (5.15), using α= 1.47 and a = 45 nm with k f = 1.1 (red lines) and k f = 0.57 (blue dashed lines).
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Figure 5.2: Main panel: Agglomerate saturation time tag g , normalized by t0, against N . Inset (a): illustration

of tag g ∼ N

D f −2

D f for small N . Inset (b): illustration of tag g ∼ N

D f −1

D f for large N . For all cases k f = 1.1, a = 45
nm; α= 1.47 for 2.0 ≤ D f ≤ 2.7 and α= 1.29 for D f = 3.0.

where TM is calculated from the condition that tM = 0 at N = 1. Again, for large ag-
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glomerates with N
3−D f

D f À k
3

D f

f α−3 and 2 < D f < 3, Eq. (5.13) can be simplified to (see

Appendix for detailed derivations),

tM = k3N
1

D f +k4N
D f −1

D f (5.14)

with k3 = k f
− 1

D f α a
ut

and k4 = 13
72 k f

1
D f α−1 a

ut

Now, following the classical approach in analyzing confined reaction-diffusion prob-
lem [29], we consider molecular diffusion in the absence of reactions, and reaction front
movement in the absence of diffusion limitations as two independent contributions to
the time scale for reaction front penetration. Thus we find tag g as

tag g =
√

tM
2 + tF

2 + t0 (5.15)

Eqs. (5.11), (5.13) and (5.15) constitute a closed form theoretical model for tag g as a func-
tion of k f , D f , a and N . The only unknown is the O(1) constantα. For non-fractal spher-
ical agglomerates with D f = 3, α can be exactly computed from that of a solid sphere as

α= R
Rg

=
√

5
3 ∼ 1.29. For stochastically generated fractal agglomerates based on cluster-

cluster aggregation [30] with 2.0 ≤ D f ≤ 2.7, we will show that α ∼ 1.47. For large ag-
glomerates with 2 < D f < 3, our model simplifies to Eqs. (5.12), (5.14) and (5.15). This
simplified model teaches that there are four different regimes for the scaling of the ag-
glomerate saturation time tag g with the agglomerate size N . These regimes are shown in

Fig. 5.1. For very large N and 2 < D ≤ 3, tag g scales as N
D f −1

D f , and consequently fractal
agglomerates are penetrated orders of magnitude faster than non-fractal agglomerates.
This is illustrated in Fig 5.2. This figure also shows, in line with the regime map of Fig.

5.1, that tag g scales with N
D f −1

D f for large N , and approximately with N
D f −2

D f for small N
(small deviations in the latter are due to the fact that scaling law Eqs. (5.12) and (5.14) do
not strictly hold for small N ).

Here it should be noted that realistic nanoparticle agglomerates may easily contain
over 1010 particles [31].

5.3. SIMULATIONS

We validated our theoretical model predictions by carrying out numerical simulations.
We generated agglomerates for various sets of k f , D f and N , using three different parti-
cle agglomerate generation algorithms adopted from literature [30, 32].

First, we used the algorithm by Filippov [30] to generate randomly structured fractal
agglomerates with prescribed k f and D f . Here an agglomerate is generated by repeating



5

74 5. MOVING REACTION FRONTS IN FRACTAL NANOPARTICLE AGGLOMERATES

N
10

2
10

3
10

4

R
g

10

20

30

40

50

60

70
80

Figure 5.3: Rg against N , averaged over 40 different realizations of DLA agglomerates. The error bars denote
95% confidence interval for Rg and the fitted dashed line represents k f = 0.37 and D f = 2.5.

Figure 5.4: (a)-(b): Single realization of stochastically generated fractal agglomerates with N = 1024, k f = 1.1
and D f = 2.3 (a), D f = 2.5 (b). (c): Single realization of a DLA agglomerate with N = 1024, k f = 0.37 and D f =
2.5. (d): Deterministically generated spherical agglomerate, with body-centered cubic particle arrangement,
for N = 1067, k f = 1.1 and D f = 3.

the process of combining two equally sized different sub-agglomerates until the desired
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N is reached, subject to only two constraints: (i) the new agglomerate, after each combi-
nation, should exactly fulfill the fractal scaling law, and (ii) particles do not overlap with
each other. All the other particle location parameters are chosen randomly. For each
set of k f , D f and N , three different realizations of the agglomerate were generated and
studied.

Secondly, we also generated agglomerates with a, more physically realistic, so called
Diffusion-Limited Aggregation (DLA) [33, 34] algorithm 2. This method starts with a seed
particle at the center of the domain, and injects Brownian particles into the domain one
by one. Each injected particle will then either hit and stick to the seed particle and be-
come part of the agglomerate, or escape the domain without hitting the seed particle(s).
This procedure is continued until the number of particles in the agglomerate reaches
pre-specified N . Unlike the random agglomerates, using DLA algorithm one cannot ex-
actly control k f and D f for each individual realization of agglomerate, but rather the re-
ported k f and D f are ensemble averages over many different realizations. In this work,
we have averaged over 40 different realizations of each N , which renders k f = 0.37 and
D f = 2.5, as shown in Fig 5.3.

Thirdly, we also deterministically constructed non-fractal (D f = 3) spherical agglom-
erates with body-centered cubic and simple cubic particle arrangements, for different

solid volume fractions φs = ( 3
5 )

3
2 k f .

Fig. 5.4 shows examples of constructed agglomerates with all three agglomerate gen-
eration algorithms described above and different D f .

Once generated, an agglomerate is placed in a cuboid domain which is large just
enough to contain it. We then perform free molecular simulations, using a direct sim-
ulation Monte Carlo (DSMC) code for rarefied gas flows with intermolecular collisions
switched off [35, 36]. Molecules are released from the domain boundaries and undergo
ballistic trajectories into the agglomerate until either sticking to a particle surface, or
escaping the domain. Upon collision with a particle, molecules have a probability γ

to react with the surface. For bookkeeping their surface site occupancy, the surface of
each nano-particle is partitioned into 160 equal sized elements. After reacting with one
simulated molecule, a surface element is occupied and will diffusively bounce back all
subsequent impinging molecules. Following the common DSMC philosophy, one sim-
ulated molecule represents a number NM of real molecules, with NM = O(102) in the
present study. When, correspondingly, one surface element represents NM surface sites,
our results do not depend on the value of NM . Fig. 5.5 shows an instantaneous overall
surface coverage fraction per particle for an agglomerate from one such simulation.

Now we compare our theoretical results (computed from Eqs. (5.11), (5.13) and (5.15))
with our numerical simulations. For this comparison, we have set a = 45 nm and γ = 1
(see Supplemental Material 2 for discussion on γ< 1).

2http://markjstock.org/dla-nd/
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Figure 5.5: Overall surface coverage per particle for k f = 1.1, D f = 2.5 and N = 1024, at t = t0, showing about
50% overall coverage. A movie showing the evolution of the surface coverage in time is provided in the Supple-
mental Material [30].
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Figure 5.6: Agglomerate saturation time tag g , normalized by t0, against N for D f = 3 deterministically gen-
erated spherical agglomerates. Solid lines denote the theoretical results for k f = 1.1 (red), k f = 0.57 (blue)
and k f = 0.22 (black); symbols denote the simulation data for body centered cubic (circles) and simple cubic
(squares), with different k f indicated by the corresponding colors.

Fig. 5.6 shows tag g /t0 obtained from numerical simulations with non-fractal ag-
glomerates (D f = 3.0), as a function of N . Our theoretical model, using the theoretically

derived α=
√

5
3 , accurately predicts the simulation results, including changes in scaling
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behavior from small to large N . For D f < 3, no theoretical value for α is available, but
we find good agreement between the theoretical model and numerical simulations with
random agglomerates when usingα= 1.47 for all cases, as shown in Fig. 5.7. For DLA ag-
glomerates, when using α= 1.47, we found that, although the predictions are not exact,
the theoretical results successfully capture the scaling law in tag g against N , as shown in
Fig. 5.8.

Figure 5.7: Agglomerate saturation time tag g , normalized by t0, against N for random agglomerates with
D f = 2.7 (a), D f = 2.5 (b), D f = 2.3 (c) and D f = 2.0 (d). Red lines (theoretical results) and symbols (simulation
data) denote k f = 1.1; blue lines and symbols denote k f = 0.57. For each combination of N , k f and D f , three
different realizations of the agglomerates are simulated, as indicated in the plots.

5.4. CONCLUSION

In summary, we have presented a closed form theory, validated against molecular simu-
lations, showing the scaling of the moving reaction front penetration time inside nanoporous
solids, due to the interplay between Knudsen diffusion and self-limiting gas-surface re-
actions. Complementary to classical theory [11] on non self-limiting reactions in porous
materials, the theory presented in this paper importantly increases our understanding
of gas diffusion with reaction processes inside porous materials. We focused on agglom-
erates of mono-sized nanoparticles as an important class of nanoporous materials, and



5

78 5. MOVING REACTION FRONTS IN FRACTAL NANOPARTICLE AGGLOMERATES

N
10

0
10

1
10

2
10

3
10

4

t a
g
g
/
t 0

10
0

2

4

8

Figure 5.8: Agglomerate saturation time tag g , normalized by t0, against N for DLA agglomerates with k f = 0.37
and D f = 2.5. The solid line denotes the theoretical result and symbols denote simulation results. For each N ,
three different realizations of the agglomerates are simulated, as indicated in the plots.

have shown that in such materials the penetration time is governed by four different
time scales each with its own scaling behaviour. The dominating time scale is dictated
by both the size and the fractal dimension of the agglomerate. For the large agglomerate
sizes frequently encountered in practice, the penetration time scales with the number

of particles N in the agglomerate as N
D f −1

D f . The penetration time for agglomerates with
fractal dimensions D f < 3, in which the surface-to-volume ratio decreases (the average
void fraction increases) with distance from the center of mass, thus may be orders of
magnitude smaller than for simple, i.e. constant void fraction, materials. Such a varying
void fraction fractal structure may be the result of natural processes in agglomeration
[22], but may also be purposely manufactured [37], and here our model allows for opti-
mal structure design. We believe that the presented approach may readily be extended
to other classes of nanoporous materials. This requires adaptation of our expressions for
the surface-to-volume ratio and the mean molecular travel distance in the porous mate-
rial. We have found indications that our model also holds for diffuse reaction fronts due
to smaller-than-one reaction probabilities, but this requires further study, as does the
extension of our model to situations in which the relevant length scale is not large com-
pared to the mean free path, such as in high pressure processes and in macroporous
materials.
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APPENDIX

5.A. SIMPLIFICATION OF EXPRESSIONS FOR tF AND tM

For large agglomerates with R À a, D f < 3 and k−1
f αD f aD f −2R3−D f À a, i.e.

N
3−D f

D f À k
3

D f

f α−3 (S1)

we neglect TF as well as the 1
3 a and a terms in the denominators in Eq. (5), which is thus

simplified to

tF =ρsi te

F0

∫ R

a
k f D f α

−D f a2−D f r D f −3·[
1+ 13

48
k f α

−D f a2−D f (RD f −2 −RD f −3r )
]

dr (S2)

When D f > 2, Eq. (S2) has an analytical solution as,

tF =ρsi te

F0

[k f D f α
−D f a2−D f

D f −2
r D f −2+

13

48

k2
f D f α

−2D f a4−2D f

(D f −1)(D f −2)
RD f −3(R · r D f −2 − r D f −1)]∣∣∣R

a

≈ρsi te

F0

[k f D f α
−D f a2−D f

D f −2
r D f −2+

13

48

k2
f D f α

−2D f a4−2D f

(D f −1)(D f −2)
RD f −3(R · r D f −2 − r D f −1)]∣∣∣R

0

=ρsi te

F0

(k f D f α
−D f a2−D f

D f −2
RD f −2+

13

48

k2
f D f α

−2D f a4−2D f

(D f −1)(D f −2)
R2D f −4

)
(S3)

By substituting R with N using Eq. (1), Eq. (S5.17) can be written as,

tF = k1N
D f −2

D f +k2N
2D f −4

D f (6)
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with constants k1 = ρsi te
F0

k f

2
D f

D f

D f −2α
−2 and k2 = 13

48
ρsi te

F0
k f

4
D f

D f

(D f −2)(D f −1)α
−4.

From Eq. (7), using

Dk = 12a(1−φs )ut

13φs
(S4)

and
φs = k f α

−D f a3−D f RD f −3 (S5)

we obtain,

tM = R −a

ut
+ 13

72

(R −a)2

(α
D f a

D f −2

k f
R3−D f −a)ut

+TM (S6)

Again, for large agglomerates with R À a, 2 < D f < 3 and k−1
f αD f aD f −2R3−D f À a, i.e.

N
3−D f

D f À k
3

D f

f α−3 (S7)

we neglect TM and thus obtain,

tM = 1

ut
R + 13

72
k f α

−D f a2−D f
1

ut
RD f −1 (S8)

By substituting R with N using Eq. (1), Eq. (S8) can be written as,

tM = k3N
1

D f +k4N
D f −1

D f (8)

with k3 = k f
− 1

D f α a
ut

and k4 = 13
72 k f

1
D f α−1 a

ut
.

5.B. INFLUENCE OF THE RELAXATION OF THE PARTICLE ATTACH-
MENT CRITERIA

We have generated additional sets of agglomerates for k f = 1.1 and D f = 2.5, imposing
an additional constraint that each particles touches at least one other particle. In order
to investigate the influence of this additional constraint on the total reaction time tag g ,
we have conducted the same simulations on these agglomerates. Fig. 5.B.1 shows the
results in comparison to those of agglomerates generated without this additional con-
straint. We conclude that this constraint has negligible influence on tag g for nanoparti-
cle agglomerates.

5.C. INFLUENCE OF THE STICKING COEFFICIENT

Our model describes the progression of a sharp saturation front, as it will occur for a high
sticking coefficient γ→ 1. For lower γ, the transition between saturated and unsaturated
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Figure 5.B.1: Total reaction time tag g , normalized by t0, against N for k f = 1.1 and D f = 2.5 agglomerates
generated with (red triangles) and without (black circles) the constraint that each particle in the agglomerate
should touch at least one other agglomerate. The dashed line denotes the results from our theoretical model.
For each N , three different realizations of the agglomerates are simulated, as indicated in the plot.
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Figure 5.C.1: Total reaction time tag g , normalized by t0, against N for agglomerates with k f = 1.1, D f = 2.5,
for γ = 0.1 (black triangles) and γ = 1 (red triangles). The lines (red for γ = 1 and black for γ = 0.1) denote
results from our theoretical model. For each N , three different realizations of the agglomerates are simulated,
as indicated in the plot.

areas will become less steep [16]. Here we investigate the influence of γ < 1 on the va-
lidity of our model and on the total coating time tag g . In order to do so, we conducted
simulations with γ = 0.1 for agglomerates with k f = 1.1 and D f = 2.5, and compared
to the results for γ = 1 as shown in Fig. 5.C.1. tag g for γ = 0.1 are, on average, slightly
overpredicted by our model, however, the differences are rather small. We conclude that
our theoretical model still holds, at least qualitatively, for non-sharp reaction fronts as
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obtained for 0.1 ≤ γ< 1.

5.D. EVOLUTION OF SURFACE COVERAGE IN TIME

Figure 5.D.1 shows the evolution of the surface coverage per particle in time.
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Figure 5.D.1: A series of snapshots showing the evolution of the surface coverage in time (normalized with∆t ).
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6.1. CONCLUSIONS

Agglomeration is an essential feature of nanoparticle fluidization. The complex mor-
phology of the agglomerates introduces new challenges in understanding ALD coating
processes of fluidized nanoparticles. This thesis presents new insights on this problem
through numerical simulations as well as theoretical modeling based on the fractal char-
acteristics of the agglomerates. Our main finding is how the ALD coating time scales with
the size and fractal dimension of the agglomerate.

We first developed and implemented a new cut-cell method in conjunction with Di-
rect Simulation Monte Carlo of rarefied gas flows (in Chapter 3). This is the foundation
of the subsequent studies in this thesis, as it allows simulating rarefied gas flows with
physical and chemical interactions with arbitrarily shaped immersed moving objects.
More specifically, this cut-cell algorithm utilizes analytically expressed 3D immersed
bodies, and thus accounts accurately for bounce back of the incident molecules. The
cut cell effective volume is computed by representing the immersed boundary with the
Lagrangian intersecting points and thus reconstructing all the possible polyhedra and
taking the mean average. It has been shown that for arbitrary immersed body, the rela-
tive error in the computed overlap volume decreases linearly with the grid refinement.
This new cut-cell method has been validated by computing the drag force on a (moving)
sphere; the results agree very well with analytical solutions found in literature.

Using this new cut-cell method, we have simulated atomic layer deposition on fractal
nanoparticle agglomerates with fractal dimension 2 < D f < 3 (in Chapter 4). In our sim-
ulations, we combine a self-limiting ALD half cycle reaction and gas diffusion in the gas
rarefied regime, together with a fully resolved fractal agglomerate of spherical nanopar-
ticles. We find that the overall coating time of an agglomerate, normalized by that of a
single particle, increases for increasing pressure, i.e., decreasing gas mean free path λ,
up to λ ∼ 10a, whereas it becomes independent of the pressure for λ > 10a, with a the
nanoparticle radius. This indicates that a is the proper length scale for calculating the
Knudsen number for this particular problem. For pressures below 0.1 bar, diffusion in
the simulated agglomerates is well in the free molecular regime, and further reduction
of the pressure has little influence on the normalized coating time.

In Chapter 4, we also made our first attempt to develop a theoretical model by de-
riving a generalized form of the Gordon model [1], which was originally proposed for
ALD coating within a simple cylindrical hole or trench. Our generalized Gordon model
predicts the ALD coating time within fractal agglomerates, with two model constants k1
and k2 derived from the analogy between a narrow hole and a fractal agglomerate. Ac-
cording to our model, the overall coating time increases for increasing fractal dimension
D f , in good agreement with our simulation results for D f ≥ 2.3, while some deviations
are observed for D f < 2.3.

Based on our generalized Gordon model, we took a step further to develop a closed
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form theory (in Chapter 5), showing the scaling of the coating time with agglomerate
size, due to the interplay between Knudsen diffusion and self-limiting gas-surface re-
actions. Complementary to classical theory [2] on non self-limiting reactions in porous
materials, the theory presented in this chapter importantly increases our understand-
ing of gas diffusion with self-limiting reaction processes inside porous materials. We
identified four main time scales that contribute to the overall coating time, and came up
with a regime map that shows the dominating time scales for different combinations of
number of particles N and D f . For the large agglomerate sizes frequently encountered

in practice, the coating time scales with N in the agglomerate as N
D f −1

D f . Thus, coating
times for large fractal (D f < 3) agglomerates may be orders of magnitudes smaller than
for non-fractal (D f = 3) agglomerates. The model predictions have been validated with
our simulation results, and we have found good agreement for all the studied cases.

We believe that the presented theory may readily be extended to other classes of
nanoporous materials. This requires adaptation of our expressions for the surface-to-
volume ratio and the mean molecular travel distance in the porous material. We have
found indications that our model also holds for diffuse reaction fronts as occurring for
smaller-than-one reaction probabilities. This, however, requires further study, as does
the extension of our model to situations in which the relevant length scale is not large
compared to the mean free path, such as in high pressure processes and in macroporous
materials.

6.2. OPPORTUNITIES FOR FUTURE RESEARCH

6.2.1. FIRST ORDER REACTION ON FRACTALS IN RAREFIED GAS REGIME

Throughout this thesis, we have discussed self-limiting surface reactions on fractal ag-
glomerates. However, when we remove the self-limiting nature, the studied problem
turns into the classic reaction-diffusion problem with its complexity arising from the
fractal morphology. In this case, the steady state overall reaction rate ψ, defined as the
total number of molecules that react on the agglomerate in a unit time, becomes the key
property of the system. Thisψ depends on the interplay between the gas phase transport
and the surface consumption.

In the continuum flow regime, the gas transport is purely diffusive regardless of the
problem length scale. In this regime, several researches in literature [3–6] have studied
the scaling behavior of ψ as a function of the agglomerate size Rg , its fractal dimension
D f , and the gas molecule sticking coefficient γ. According to these studies, ψ scales
differently in the reaction-limited and diffusion-limited regime:

ψ∼ γR
D f
g , reaction limited regime (6.1)
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ψ∼ γ
1

D f −1 R2
g , diffusion limited regime (6.2)

In the free molecular regime (the gas phase transport is fully ballistic), the scaling of
ψ has been theoretically studied as a function of Rg and D f , for γ= 1, leading to [7, 8]

ψ∼ R2
g , for D f ≥ 2 (6.3)

and
ψ∼ R

D f
g , for D f < 2 (6.4)

However, a detailed and systematic study on the scaling of ψ in the gas rarefaction
transition regime is still missing in literature, despite of its importance in bridging the
continuum and free molecular regimes. Filling in this gap could be of great interest for
applications such as nanoparticle catalysis. DSMC could be an excellent candidate for
studying this problem, and the numerical methods developed in this thesis are suitable
for simulating surface reactions on immersed fractal agglomerates as shown in Chapter
4 and 5. The well developed theories in the continuum flow regime [Eqs. (6.1) and (6.2)]
could be a good starting point. Thus one could perform DSMC simulations with first
order surface reactions on fractal nanoparticles and observe how ψ deviates from the
continuum case as a function of Knudsen number which could be varied by changing
the pressure of the gas.

6.2.2. AGGLOMERATE MOVEMENT IN A GAS FLOW

In this thesis we have focused on agglomerates that are static during the simulation time.
However, in a fluidized bed the agglomerates keep moving around and collide with each
other. In fact, even the movement of a single agglomerate in the gas flow is not fully
understood in literature. The key to the study of the agglomerate movement is the drag
force exerted on the agglomerate.

The most commonly used technique that measures the drag on agglomerates is the
differential mobility analyzer [9]. In this technique, agglomerates with one elementary
electrical charge are brought, along with the carrier gas, into a channel with an electri-
cal field which is perpendicular to the gas velocity. Therefore, agglomerates with one
specific drag force (mobility) can exit through a slit at the corresponding location in the
channel. In this measurement, it is assumed that different orientations of the agglomer-
ate are equally possible during the movement, and thus the measured drag is regarded
as the orientationally averaged drag.

Recently, Zhang et al. [10] reported that the orientationally averaged drag force on an
agglomerate in the transition regime can be computed with the same formula as that for
a spherical sphere. The drag force exerted on a single sphere at low Reynolds number in
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the continuum regime is expressed by the Stokes’ law as

Fcont = 6πµau, (6.5)

where a is the radius of the sphere, µ is fluid viscosity and u is the relative velocity be-
tween the fluid and sphere. For a sphere in a transition regime gas flow, the drag can be
expressed as

F = 6πµau

Cc (K n)
, (6.6)

where Cc (K n) is the Cunningham correction factor which is a function of Kundsen num-
ber.

Zhang et al. proposed the length scale l = Ap

πRs
for computing K n for an agglomerate,

where Ap is the orientationlly averaged projected area of the agglomerate and Rs is the
Smoluchowski radius [11]. With this newly defined Knudsen number, it was shown that
drag forces of all arbitrarily shaped agglomerates follow Eq. (6.6) for varying Knudsen
number.

Note that in all of the above discussions only the orientationally averaged drag was
considered for the agglomerates. However, Binder [12] has proven with experiments that
a decending agglomerate in oil has a strong preference in its orientation which mini-
mizes the drag force. Whether this is also the case for an agglomerate in a (rarefied)
gas flow still remains as a question. In general, the random kicks from the surrounding
gas molecules on an agglomerate result in two kinds of effects: (1) they act as random
driving force, which results in the Brownian motion of the agglomerate, and (2) they act
as friction force that damps out the velocity difference between the mean flow and the
agglomerate, and rotation of the agglomerate. The Brownian motion leads to arbitrary
orientation of the agglomerate, whereas the drag force sets a preferred orientation. Sim-
ulations can help gain new insights on this problem. One can simulate a relatively small
(∼O(103 −104) particles) agglomerate (as found in the fluidization of micron-sized par-
ticles [13]), immersed in a gas flow and driven by an external body force, much alike
our validation case with a moving sphere shown in Chapter 3. During the simulations
the orientation of the agglomerate can be monitored, and one can perform parameter
studies with different agglomerates. An interesting question to be answered here is: do
fractal agglomerates have preferred orientation during the movement?

6.2.3. DYNAMIC AGGLOMERATION

In a fluidized bed, the agglomerates undergo a dynamic process of breakdown and re-
agglomeration, which is not taken into account in this thesis. In order to study this phe-
nomenon, we need to remove the previously assumed permanent bonds between par-
ticles or clusters of particles, and replace them with correct inter-particle forces. There
have been continuous efforts in literature for measuring and modeling the inter-particle
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forces [14–17]. This section will discuss the possible simulations of agglomeration dy-
namics.

The simulation of nanoparticle agglomeration can follow the molecular dynamics
(MD) scheme. In this system a nanoparticle experiences three different forces, i.e. grav-
itational force, inter-particle force and the aerodynamic force. At each time step, the
inter-particle force can be computed from the relative positions of the particles, and the
aerodynamic force can be calculated from the momentum exchange with the bounced
gas molecules. Thus, a total force Fi can be computed for the i th particle and, by fol-
lowing the Newton’s second law, an incremental change is made to the particle velocity
as

ui ,t+∆t = ui ,t + Fi

m
∆t (6.7)

Note that here the inclusion of a repulsive inter-particle force at short distance is neces-
sary in order to avoid overlapping between particles. One can start the simulation with
many nanoparticles randomly distributed in a periodic box. Then with an upward mean
flow velocity, one can mimic the scenario inside the fluidized bed and thus dynamic ag-
glomeration behavior is expected. By monitoring the life time of the agglomerates and
analyzing the breakup scenarios, an important question to be answered here is: what is
the main mechanism behind the breakup and formation of the dynamic agglomerates?

6.2.4. POLYDISPERSE NANOPARTICLES

Throughout this thesis we have focused on monodisperse nanoparticles, whereas in re-
ality nanoparticles are more likely to be polydisperse following a certain distribution. In
this section we will discuss the influence of polydispersity on our numerical and theo-
retical models.

In the numerical simulations, the inclusion of polydisperse nanoparticles is rather
straightforward. When generating numerical agglomerates using the tunable algorithm,
the fixed particle radius should be replaced with one that is randomly drawn from the
distribution function, and the calculation of the rotation angles (described in Chapter 2)
should be altered according to the distance based on the two attaching particles. Sko-
rupski et al. [18] have demonstrated numerically generated polydisperse agglomerates,
as shown in Fig 6.1. The inclusion of the polydisperse nanoparticles in DSMC is identical
to that of monodisperse nanoparticles, except that now we need to provide the radius for
each particle.

A straightforward way to modify the theoretical model in Chapter 5 to account for
polydispersity is to simply replace the particle diameter, surface area and volume a, a2

and a3, by their respective average values < a >, < a2 > and < a3 >. Numerical simula-
tions can be used to examine the validity of such simple modifications.
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Figure 6.1: An agglomerate generated with disperse particles, with N = 25, k f = 1.5 and D f = 2.0. [18]
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