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 A B S T R A C T

 Since traditional gaze-tracking methods rely on line-of-sight estimation, spatial attention modeling from neural 
activity offers an alternative perspective to gaze estimation. This paper presents a proof-of-concept study 
on attention-guided gaze estimation with Electroencephalography (EEG), investigating whether brain signals 
can be leveraged to estimate attentional focus within a controlled 3D environment. We first conducted a 
preliminary survey to gather public opinions, revealing a generally positive attitude towards EEG-driven gaze 
tracking. Building on this insight, we collected an EEG dataset in VR, where participants engaged with stimuli 
presented at predefined spatial locations. We introduce a deep learning model that estimates the relative 
saliency of candidate positions, enabling gaze estimation through optimization within the learned representa-
tion. Our results demonstrate that attentional focus was successfully mapped in a 3D coordinate space from 
5 participants, and low-frequency oscillations contributed more significantly to predictive performance. The 
model achieved robust accuracy in distinguishing gaze locations, highlighting the potential of EEG-based gaze 
estimation for attention tracking in 3D environments.
1. Introduction

Understanding human behavior [1–5] is crucial for human–
computer interaction (HCI), where gaze estimation [6–8] serves as 
a key modality, enabling applications in assistive technology, virtual 
reality, autonomous systems, and behavioral biometrics [9–14]. Tra-
ditional gaze estimation methods primarily rely on appearance-based 
approaches, which predict gaze direction by analyzing eye region im-
ages [15,16], or geometry-based models, which estimate gaze positions 
through eye pose and head orientation calibration [4,17–19]. While 
these methods have achieved high accuracy in 2D settings, they face 
limitations in ‘‘depth perception and robustness’’ in 3D environments.

In three-dimensional spaces, gaze estimation is further complicated 
by visual attention dynamics, where gaze direction alone does not 
always correspond to the point of cognitive focus. Eye-tracking meth-
ods infer gaze depth through vergence-based calculations [20,21] or 
scene geometry assumptions [17–19], which are effective in controlled 
environments but may not generalize well to more complex or real-
world scenarios [22–24]. Additionally, gaze estimation is influenced by 
physiological and demographic factors, including anatomical variations 

I The study protocol was approved by the PolyU Institutional Review Board for research involving human participants, under reference number 
HSEARS20220906006.
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that affect gaze calibration [25,26]. These challenges raise the question 
of whether alternative modalities beyond eye movement tracking could 
contribute to understanding gaze behavior in 3D space.

One possible direction is leveraging neural activity to infer gaze 
positions, as the brain encodes both overt and covert attention mech-
anisms (see Fig.  1). Neural-based approaches, such as EEG, have the 
potential to complement existing gaze tracking methods by offering 
insights into cognitive attention states that are not always reflected 
in eye movements. Additionally, previous research has shown that 
EEG oscillations are correlated with visuospatial attention [27,28], and 
neural responses vary with stimulus distance [29–31]. These findings 
suggest that EEG signals may carry useful information for estimating 
gaze locations, particularly in 3D settings where eye-tracking methods 
face limitations.

Recent advances in brain decoding research have demonstrated the 
potential of neural signals in visual cognition, particularly for object 
recognition [32–35] and stimulus reconstruction [36–39]. However, 
most existing studies focus on semantic decoding from 2D screen-based 
stimuli, with far less emphasis on spatial perception and depth-related 
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Fig. 1. Conceptual overview of our approach using brain–computer interface (BCI) 
technology for intuitive 3D gaze estimation, offering an alternative to eye-tracking 
methods by decoding visual attention directly from brain signals in a virtual environ-
ment.

attention mechanisms. While EEG-based methods have been applied to 
2D gaze classification, direct mapping from EEG to 3D gaze remains 
largely unexplored.

This work presents a proof-of-concept investigation into whether 
EEG signals can be used for attention-guided gaze estimation in 3D 
space. We propose a model that decodes visuospatial attention from 
neural activity, estimating the most salient point of regard (PoR) among 
a set of discrete, predefined spatial targets within a 3D environment. 
Although the model outputs lie in continuous space, the stimuli in this 
study were restricted to four fixed positions. This setting enables struc-
tured decoding of spatial attention and provides a basis for future work 
toward denser or continuous spatial layouts. Our model consists of an 
EEG encoder and a position-aware regression module. The Transformer-
based [40] EEG encoder captures global dependencies across unordered 
EEG channels, offering an advantage over conventional CNN-based 
feature extraction. Given the low spatial resolution of EEG, we avoid 
generative models that require dense training data and instead employ 
a lightweight MLP-based regressor to assign saliency scores to specific 
spatial locations. This approach prioritizes task-relevant neural features 
while maintaining computational efficiency. During inference, gaze 
predictions are refined iteratively by adjusting an initial candidate 
point based on the learned neural attention representation, allowing 
the model to converge toward the most likely PoR in the given spatial 
environment.

Since this task differs from traditional 2D gaze estimation, no es-
tablished datasets exist for direct benchmarking. To address this, we 
conducted a controlled EEG experiment in virtual reality, where par-
ticipants engaged with stereoscopic stimuli positioned at four spatial 
orientations.

The results demonstrate that our method successfully differentiate 
spatial locations based on EEG activity, achieving an average classifi-
cation accuracy of 80.1% on five participants, and a gaze localization 
within a 3D coordinate space. To further understand the neural basis 
of the models predictions, we also conducted a series of analyses to ex-
amine the spatial and temporal characteristics of EEG responses across 
gaze conditions, including ERP dynamics and channel-wise model attri-
bution. By leveraging neural signals for spatial attention decoding, our 
approach offers a complementary perspective on gaze estimation, with 
the potential to enhance multimodal integration with existing visual 
tracking systems or support alternative solutions for individuals with 
specific needs [41].

Based on this study, we highlight three key contributions:

1. We demonstrate the feasibility of EEG-based gaze localization in 
3D space, extending neural decoding beyond conventional 2D 
paradigms.
2 
2. We introduce a Transformer-based model with iterative refine-
ment to estimate the most salient point of regard (PoR) in 
predefined spatial locations.

3. We contribute a EEG dataset collected in a VR environment with 
stereoscopic stimuli, enabling future research on neural gaze 
decoding and attention modeling in immersive settings.

2. Related work

2.1. Exploration of stereo vision in BCIs

Estimating gaze in stereoscopic environments remains an open chal-
lenge, with most prior studies focusing on neural responses to depth 
perception rather than explicit gaze prediction. While neuroscience 
research has explored how the brain processes stereoscopic depth cues 
using EEG and fMRI, the application of deep learning to directly predict 
gaze within 3D space is largely unexplored.
Depth Representation in the Visual Cortex. Early fMRI studies pri-
marily modeled visual attention in the cortex using two-dimensional 
(2D) visual field mappings, such as population receptive field (pRF) 
estimations [42]. Subsequent studies have investigated how neural 
signals encode depth-related information. EEG and fMRI research has 
shown that the brain exhibits distinct responses to depth variations, 
with spatial attention modulating position selectivity in the visual 
cortex [43,44], and classification methods, such as SVM, have been 
employed to differentiate between depth levels in visual stimuli [31,
45].

EEG-based Analysis of 3D Stimuli. Beyond cortical mapping, re-
searchers have investigated how EEG signals respond to depth-rich 
stimuli. Research using 2D vs. 3D stimuli has shown that depth cues 
influence cognitive load and neural activity [29,30]. SSVEP-based EEG 
studies have further demonstrated that stimuli at different distances 
elicit distinguishable neural patterns, even when presented at the same 
visual angle [46]. More recently, VR-based studies have introduced 3D 
stimuli scattered across different positions to investigate anticipatory 
potentials related to target selection [47]. Instead of performing gaze 
estimation, these studies explored anticipatory potentials associated 
with target selection, providing insights into EEG-based interaction 
models for 3D environments.

2.2. EEG deep learning frameworks

Deep learning-based EEG signal decoding has garnered significant 
attention due to its ability to extract complex patterns from EEG 
signals. Among various approaches, convolutional neural networks 
(CNNs) have been widely used for their effectiveness in learning spatial 
features. EEGNet [48], a compact CNN-based model, demonstrates 
strong generalization across multiple BCI paradigms. Similarly, EEG-
Inception [49], built on the InceptionTime network, enhances temporal 
feature extraction for classification tasks. To address CNNs’ limita-
tion of learning only local features due to constrained convolutional 
kernel sizes, recurrent neural networks (RNNs) [50] have been intro-
duced as an alternative. Specifically, LSTM-based models have proven 
effective in capturing long-range dependencies in EEG signals, outper-
forming conventional CNNs in decoding performance [51–53]. More 
recently, transformer-based models, leveraging attention mechanisms, 
have gained traction in various domains [4,54–56]. Their ability to 
model global dependencies without recurrent structures makes them 
particularly effective for sequential data. Given these advantages, trans-
formers have been successfully applied to EEG decoding [57–59], 
yielding promising results.
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Fig. 2. Virtual environment(VE) and the presentation of stimuli. (a) Location 1: rear center, upper height. (b) Location 2: front center, lower height. (c) Location 3: center left, 
medium height. (d) Location 4: center right, medium height.
3. Preliminary survey

To assess public acceptance of BCI-based approach, we conducted 
a survey with 128 valid responses. The participants, aged 18 to 60, 
included 47 females and 81 males from 30 countries, all with at least 
a high school education.

Despite more than half of respondents being unfamiliar with BCI 
technology, the overall perception was positive, with 65% viewing BCIs 
as an advanced tool for understanding brain activity. About 57% found 
BCIs intuitive and straightforward, appreciating their ability to directly 
extract user intent from brain signals. When asked to compare BCIs 
and eye trackers, 71.1% considered BCIs more comfortable and user-
friendly, noting that having a camera directly in front of their face 
could be distracting. Furthermore, a majority of respondents believed 
that BCI technology could be used for gaze tracking, considering it 
either a complementary option (71.1%) or a potential replacement 
(64.1%) for eye trackers. On the other hand, 7% expressed concerns 
about the ethical implications of BCIs.

Regarding potential applications, we asked participants to select the 
three areas where they see the most promise for BCI-based gaze estima-
tion techniques. The top choices were ‘‘Game & Immersive Experience’’, 
‘‘Rehabilitation’’, and ‘‘Clinical Medicine’’, with about three-quarters of 
respondents voting for these fields. ‘‘Robotics & Automation’’ was also 
favored by 58% of the participants.

4. Experiments and data preprocessing

4.1. Experiment design

We employed virtual reality (VR) technology for stimulus presenta-
tion. The Oculus Quest 2 headset (Meta Platforms) was used to display 
3D stimuli at four predefined spatial coordinates: Location 1 (rear 
center, upper height), Location 2 (front center, lower height), Location 
3 (center left, medium height), and Location 4 (center right, medium 
height), as shown in Fig.  2. To ensure efficient neural response capture, 
we adopted the rapid serial visual presentation (RSVP) paradigm, a 
widely used approach in EEG-based visual tasks. RSVP enables rapid 
stimulus presentation while minimizing prolonged cognitive engage-
ment and emotional processing, making it particularly effective for 
capturing visual information within brief time frames [60–62]. As 
illustrated in Fig.  3, each session lasts 180 s and begins with a brief 0.5-
s period for participants to focus. Following this, stimuli are randomly 
presented at one of the four predefined locations for 1 s, followed by 
a 0.5-s blank interval (depicted as an empty virtual room) to mitigate 
residual visual effects. The stimulus onset interval is 1.5 s, ensuring 
equal presentation probability across all locations. Each participant 
completes 50 sessions, with 120 trials per session.

To enhance 3D perception within the virtual environment, we ap-
plied shading and texture principles as outlined in [63]. The stimulus 
consists of an orange cube, providing strong contrast against a gray 
cement room with subtle grid lines in the background. This design 
choice optimizes depth perception, aiding participants in discerning 
spatial relationships within the virtual environment.
3 
4.2. Subjects

Six participants were recruited for the study; however, data from 
one individual, identified as stereoblind or BCI blind, was excluded 
from the analysis. The final dataset consisted of five participants (two 
females, three males), aged 21 to 29 years, all of whom were right-
handed with either normal or corrected-to-normal vision. Participants 
were fully briefed on the study’s purpose and provided written in-
formed consent before the experiment. To ensure optimal cognitive per-
formance, all participants were required to be well-rested and mentally 
prepared prior to the session.

Each participant’s VR headset was carefully adjusted to optimize 
face-fitting position and interpupillary distance, ensuring both comfort 
and proper focus. During the experiment, participants were instructed 
to remain stationary, minimize body and head movements, and rely 
solely on eye movements to track the presented stimuli.

4.3. Data preprocessing

As shown in Fig.  4, participants were seated in a soundproof room, 
equipped with an EEG cap and VR headset. EEG signals were contin-
uously recorded using a 128-channel Quik-Cap at a 1 kHz sampling 
rate, following the international 10–20 electrode placement system. 
To ensure high-quality signal acquisition, electrode impedance was 
maintained below 10 kΩ, with most electrodes achieving impedance 
levels below 0.1 kΩ.

Epochs containing muscle artifacts or excessive noise were ex-
cluded, resulting in a final dataset of 27,960 EEG trials, each corre-
sponding to one of the four directional stimuli. The retained signals 
were band-pass filtered between 1–30 Hz, and average referencing 
was applied. To minimize signal loss, independent component anal-
ysis (ICA) was performed to remove eye movement artifacts, while 
extensive data cleaning was avoided to preserve neural activity. This 
process identified 18 to 35 ICA components, with ocular and cardiac 
artifacts removed based on empirical analysis and scalp topographies. 
An example of ICA-based artifact removal is shown in Fig.  5, where 
ICA000 was identified and removed.

To account for potential lingering effects in stereoscopic percep-
tion, decoding was performed across 1500 time points, spanning from 
stimulus onset (0 ms) to 1500 ms, covering both the stimulus dis-
play period and the subsequent break period. Ultimately, the interval 
[500,1500]ms was selected for training purposes. Details can be found 
in Section 6.4. Additionally, we conducted further analyses to identify 
peak neural activity during 3D perception and determine the EEG 
frequency bands most relevant to 3D cognitive processing, as discussed 
in Section 6.4.

5. Methodology

This section details the methods employed to model spatial atten-
tion distribution and estimate the PoR. The overview framework of the 
model is shown in Fig.  6.
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Fig. 3.  A schematic view of our experiment design.  The yellow dotted line is just for showing the location. It will not appear in the VE.
Fig. 4. The EEG collection environment. The EEG data was collected in a soundproof 
room. Subjects wore a cap fitted with 128 electrodes and put on a VR headset at the 
same time.

Fig. 5. 18 components ICA result of a sampled segmented EEG. The first component 
containing artifacts was removed in the preprocessing.

5.1. Encoder architecture

The EEG encoder transforms bioelectrical signals into a compact fea-
ture representation that encodes visual information. It consists of three 
key components: a temporal processing block, a spatial interaction 
block, and a Transformer-based feature extractor.

temporal block. Given the high temporal resolution of EEG, this block 
processes signals along the time axis, reducing dimensionality to 𝐿𝑡
through a sequence of fully connected layers.

Spatial Block. This block captures cross-channel dependencies while 
maintaining channel-wise integrity. we employ order-agnostic fully 
connected layers to learn interactions among EEG channels, preserving 
the original input dimensionality 𝐶.
4 
Transformer Feature Extractor. To enhance feature refinement, we 
leverage self-attention mechanisms from the Transformer architec-
ture [40]. The feature 𝑥 ∈ R𝐶×𝐿𝑡 , processed by the temporal and spatial 
blocks, is passed through two Transformer layers. In the attention layer, 
each channel 𝑋 = {𝑥𝑖 ∈ R1×𝐿𝑡

|𝑖 = 1,… , 𝐶} generates query 𝑞𝑖, key 𝑘𝑖, 
and a value 𝑣𝑖 using shared weight matrices: 

𝑞𝑖 = 𝑥𝑖𝑊
𝑞 , 𝑘𝑖 = 𝑥𝑖𝑊

𝑘, 𝑣𝑖 = 𝑥𝑖𝑊
𝑣 (1)

The attention weights are computed via scaled dot-product attention: 
�̂�𝑖,𝑗 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑞𝑖 ⋅ 𝑘𝑇𝑗 ∕

√

𝑑), (2)

where 𝑑 is the key dimension, and �̂�𝑖,𝑗 represents the attention score 
between EEG channels 𝑖 and 𝑗. The output is computed as a weighted 
sum of values: 

𝑏𝑖 =
𝑁
∑

𝑗=1
�̂�𝑖,𝑗 × 𝑣𝑗 . (3)

The multi-head attention mechanism captures diverse activation pat-
terns, and the outputs are concatenated before passing through a 
point-wise feed-forward network to apply independent transformations 
across all feature dimensions. This self-attention framework effectively 
models interchannel dependencies, crucial for extracting features from 
brain signals.

To establish that EEG signals encode visual spatial information, 
we first train the encoder with a classification objective, assessing its 
ability to distinguish between different stimuli locations. The trained 
encoder is then utilized as a pretrained feature extractor, facilitating a 
more efficient training process when integrated with the decoder.

5.2. EEG insights into 3D visual localization

Rather than directly regressing stimulus coordinates from EEG fea-
tures, we incorporate spatial priors during training to guide the model 
in learning attention distributions. The following sections detail this 
approach.

5.2.1. Definition of the space
The space S refers to the visual space experienced by the subject 

in VR. It is defined with dimensions of 30 × 23.82 × 60.5, where 
length, width, and height are given in arbitrary units, as absolute 
measurements hold no physical significance in the virtual environment. 
For spatial reference, we define the front of the space as the plane 
formed by the 𝑋- and 𝑌 -axes in Fig.  7, with the origin 𝑂 positioned 
at the left-front-bottom corner of the space. The user’s viewpoint is 
denoted by an eye icon, indicated with a yellow dashed line in the 
figure. The coordinates are transformed from Unity’s world coordinate 
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Fig. 6. The model architecture.  After EEG feature extraction in the encoder, the data is transformed into a latent space representation, denoted as latent z. In the decoder, Z 
is then fused with the positional encoding of points sampled from the space. Subsequently, the fused information is passed through an MLP to predict the attention strength at 
that point. The red line represents the test routine. In the test, the data with new randomly sampled points are sent to the well-trained model. The visual focus of the data was 
identified using gradient descent optimization.
Table 1
The detailed location information in our experiment. World coordinate is the coordinates in unity software during modeling, and converted 
coordinate is converted to a field space with 𝑂 as the origin, whose length, width, and height are 30, 23.82, and 60.5 respectively. Walls refer 
to 6 boundary surfaces in space. Location 1, 2, 3, and 4 correspond to the locations in Fig.  7.
 Stimulus location World coordinate Converted coordinate Distances to the walls
 Front Back Top Bottom Left Right 
 User Viewpoint (0, −1, −19.5) (15, 9.91, 0) 0 60.5 13.91 9.91 15 15  
 Location 1 (0, 10, 40) (15, 20.91, 59.5) 59.5 1 2.91 20.91 15 15  
 Location 2 (0, −4, −10) (15, 6.91, 9.5) 9.5 51 16.91 6.91 15 15  
 Location 3 (−10, 2, 10) (5, 12.91, 29.5) 29.5 31 10.91 12.91 5 25  
 Location 4 (10, 2, 10) (25, 12.91, 29.5) 29.5 31 10.91 12.91 25 5  
Fig. 7. The demonstration of the space.  The sphere indicates the relative positions of the four stimulus locations in space. Note that although the four positions are simply 
referred to as front, back, left, and right in the illustration, there are differences in height.
system to align with 𝑂 as the origin. The stimulus cube, which has 
a side length of 2, is simplified to a point representation, with its 
coordinates corresponding to its center in our model. The 3D positions 
and labels of all stimuli are summarized in Table  1.

5.2.2. Decoding 3D visual attention
To predict attention intensity, we incorporate positional encoding 

during decoding, embedding EEG features within a spatial context. 
Given an expanded feature with batch size 𝑥 ∈ R1×𝐶×𝐿𝑡 , we randomly 
sample 𝑛 points from the spatial domain 𝑆 to enhance spatial rep-
resentation. Since raw (𝑥, 𝑦, 𝑧) coordinates may not provide sufficient 
expressiveness for learning fine-grained spatial variations, we follow 
5 
the approach in [64], projecting these points into a higher-dimensional 
space using a set of sinusoidal functions: 
𝛾(𝑝) = (sin(20𝜋𝑝), cos(20𝜋𝑝),… , sin(2𝐿−1𝜋𝑝), cos(2𝐿−1𝜋𝑝)). (4)

We set 𝐿 = 10, encoding each coordinate as a 60-dimensional vector, 
which is concatenated with its original value, yielding a 63-dimensional 
representation per point. These positional encodings, akin to a queries, 
are then concatenated with the duplicated feature 𝑥𝑑 , which acts like 
keys, to form the position-encoded EEG feature �̂�𝑑 ∈ Rn×𝐶×𝐿𝑡

⨁

𝑐𝑜𝑑𝑒. 
This combination can be seen as setting up a call to the decoder, 
where the enriched feature representation allows the model to compute 
the attention for these points. This formulation enhances the model’s 
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ability to resolve spatial structure in EEG data, enabling denser spatial 
sampling to mitigate the constraints of limited EEG data collection.

We employ a 4-layer MLP decoder to predict attention intensity. 
Instead of generating a saliency map, we use a direct regression ap-
proach, mapping position-encoded EEG features to attention values. 
The attention intensity is defined as 𝐼 = (±𝑝𝑥,±𝑝𝑦,±𝑝𝑧), where each 
component represents the distance from the stimulus along the respec-
tive axis. The sign indicates direction, with positive values denoting 
greater displacement from the stimulus in that direction.

Given that EEG data was recorded under four distinct visual condi-
tions, where attention was directed to one of four stimulus locations, 
the resulting attention distributions vary across conditions. A single 
spatial point may exhibit different intensity values depending on the 
condition. We model attention as an isotropic field centered at the stim-
ulus, where intensity decays linearly with increasing distance. While 
this model does not directly mimic biological attention mechanisms, it 
captures the abstract dynamics of attention distribution.

5.3. Gaze point prediction

5.3.1. Test method regression
Following the training process, the model learns to represent a user’s 

spatial attention distribution from EEG data. At any point within 𝑆, the 
model predicts the relative intensity and direction of attention as in-
ferred from EEG signals. To determine the visual focus for each test EEG 
sample, the task is to identify the spatial coordinates with the highest 
saliency value. For each input EEG 𝑥, we initialize a randomly selected 
point 𝐺 with coordinates (𝑥′, 𝑦′, 𝑧′). With the model weights frozen, 
we iteratively refine 𝐺 through gradient descent to locate the point 
where relative attention displacement is minimized. The optimization 
objective is defined as: 

𝐺′ = argmin
𝐺

‖ℳ𝑓𝑟𝑜𝑧𝑒𝑛(𝑥,𝐺) − 𝐼𝑡𝑔𝑡‖2, (5)

where ℳ𝑓𝑟𝑜𝑧𝑒𝑛 denotes the trained model with fixed weights. Here, 
𝐼𝑡𝑔𝑡 = (±0,±0,±0) represents the reference point in the attention field, 
indicating no relative displacement from the stimulus location. Through 
iterative optimization, 𝐺 gradually moves toward the most likely visual 
focus, ultimately converging to 𝐺′, the predicted PoR. The full testing 
procedure is detailed in Algorithm 1.

5.3.2. Test method bruteforce
As an alternative to the regression-based approach, we also im-

plemented a brute-force testing method that directly predicts field 
strength for a large number of points, identifying the gaze point as the 
one closest to (±0,±0,±0). For each test instance, we sampled 10,000 
points within the 3D space and computed the attention predictions. We 
then analyzed the results by examining the top 0.2%, 1%, and 5% of 
points that were closest to the ground truth (GT). The proximity of 
these points to the GT serves as an indicator of the model’s ability 
to accurately capture the attention field. This method complements 
the regression-based testing, especially since regression may not al-
ways converge to the point of minimum loss and does not allow for 
visualization of the attention distribution.

6. Implementation and results

In this section, the environmental settings, predicted outcomes, 
analysis for feature classification, and evaluation of training are dis-
cussed sequentially.
6 
Algorithm 1 Estimating Predicted Stimulus Location from EEG
1: Freeze model weights for EEGEncoder and MLP.
2: 𝐟 ← EEGEncoder(eeg) ⊳ Extract EEG features
3: for each 𝐞 ∈ EEG signals do
4:  Randomly initialize 𝒢 = (𝑥′, 𝑦′, 𝑧′)
5:  𝐩 ← PositionalEncoding(𝒢)
6:  𝐜 ← Combine(𝐟 ,𝐩)
7:  for 𝑡 = 1 to 𝑇  do ⊳ Optimization iterations
8:  𝐼 ← MLP(𝐜) ⊳ Predict intensity
9:  ℒ← MSE(𝐼, (±0,±0,±0)) ⊳ Loss function
10:  Compute gradient:

𝜕ℒ
𝜕𝒢

=
⎡

⎢

⎢

⎣

▵ 𝑥′

▵ 𝑦′

▵ 𝑧′

⎤

⎥

⎥

⎦

11:  Update 𝒢
12:  end for
13: end for

6.1. Implementation details

The model was implemented in Python 3.8 using Anaconda, with 
training performed on 4 V100 GPUs. PyTorch 1.12 was used as the 
deep learning framework. For data preprocessing, we utilized EEGLAB 
in Matlab and the MNE Python package. Our dataset, consisting of 
over 27,600 shuffled samples, was split into 80% for training and 20% 
for testing, with standardization applied along the channels. The EEG 
encoder consists of a temporal block with 3 layers, a spatial block 
with 2 layers, and a Transformer module with 6 attention heads and 3 
Transformer blocks. We trained the model using a batch size of 2000. 
A dropout rate of 0.5 was applied in the fully connected layers, except 
for the final layer. Both the encoder and decoder were trained for up 
to 2000 epochs, with early stopping if the loss did not improve for 50 
epochs. The Adam optimizer was used with a learning rate of 0.0002, 
𝛽1 = 0.9, and 𝛽2 = 0.999.

6.2. Evaluation metric

To evaluate the accuracy of the predicted gaze points, we used the 
𝐿2 distance to measure the spatial error between the predicted and 
ground truth points. This metric effectively penalizes larger deviations, 
providing a clear assessment of prediction accuracy in 3D space. Addi-
tionally, we used the dispersion metric 𝜎𝑝 to evaluate the spread of the 
predicted gaze points. Both metrics are defined as: 

‖𝐿‖2 =

√

√

√

√

𝑛
∑

𝑖=1
(𝑃𝐺𝑇 𝑖

− 𝑃𝑝𝑟𝑒𝑑𝑖 )
2 and 𝜎𝑝 =

√

√

√

√

1
𝑛

𝑛
∑

𝑖=1
(𝑃𝑝𝑟𝑒𝑑𝑖 − 𝑃𝑝𝑟𝑒𝑑 )2 (6)

where 𝑃𝐺𝑇 𝑖 and 𝑃𝑝𝑟𝑒𝑑 𝑖 represent the coordinates of the ground truth 
and predicted gaze points, respectively, with all dimensions scaled to 
the range [−1, 1].

6.3. Results

6.3.1. Test method regression
Table  2 presents the average 𝐿2 distances for gaze point predictions 

across the four stimulus locations for each of the five subjects. We found 
that prediction errors at Location 1 were slightly higher, especially for 
subjects 4 and 5. Participant feedback suggests that this may be due to 
the stimulus at Location 1, positioned at the upper rear in the VR setup, 
appearing more distant with blurred edges, making intuitive position 
judgment more difficult. Conversely, the average errors at Locations 
3 and 4 were smaller, possibly because stimuli at Locations 1 and 2 
were directly in the line of sight, showing only two sides of the cube 
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Fig. 8. Visualization of the 3D gaze prediction results for subject 3. (a) Location 1. (b) Location 2. (c) Location 3. (d) Location 4. The gray dots are randomized points, the green 
dots represent the positions to which the randomized points moved after testing, and the red dots represent the ground truth stimulus locations.
Table 2
The error distances ‖𝐿‖2. The values are obtained by calculating the average of all predicted values for each location across individuals.
 Subject ID 𝐿2 Distance ↓ +𝜎𝑝

 Location 1 Location 2 Location 3 Location 4  
 (0, 10, 40) (0, −4, −10) (−10, 2, 10) (10, 2, 10) 
 Subject1 0.39+0.48 0.46+0.42 0.272+0.39 0.398+0.4  
 Subject2 0.474+0.45 0.448+0.4 0.366+0.41 0.264+0.37  
 Subject3 0.376+0.46 0.352+0.41 0.224+0.39 0.208+0.37  
 Subject4 0.6+0.39 0.484+0.4 0.372+0.38 0.268+0.28  
 Subject5 0.771+0.33 0.664+0.36 0.481+0.37 0.485+0.27  
 Avg. 0.520 0.485 0.343 0.325  
and complicating accurate position judgment. In addition to the 𝐿2
distances, the dispersion metric 𝜎𝑝 was also analyzed to evaluate the 
consistency of predictions. When 𝐿2 distances are smaller, a lower 𝜎𝑝
indicates precise predictions. On the other hand, small 𝜎𝑝 values with 
greater 𝐿2, as seen for subject 5, may indicate an overall shift from the 
ground truth.

Fig.  8 visualize the results from subject 3. Gray points, representing 
random pre-test positions, are initially scattered throughout the field. 
During testing, these points iteratively gravitate towards the actual 
stimulus locations (red points) and converge at the green points. Most 
points effectively moved to the GT or nearby regions, forming highly 
7 
concentrated clusters near the PoR. Meanwhile, there are notable in-
dividual differences. Fig.  9 shows additional results for other subjects. 
The first row presents subject 2, whose results, while not as precise as 
those of subject 3, with several points outside the GT area, still demon-
strate acceptable accuracy. The second row shows results for subject 5, 
who had the least favorable outcome, with points more dispersed after 
movement. This variability in model performance across subjects likely 
reflects individual brain functional connectivity differences, leading to 
unique neural signal patterns.

This method allows for the visualization of all test data results with 
the same GT on a single plot. Overall, for all subjects, the predictions 
are clearly concentrated near the GT. However, we observed some 
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Fig. 9. Visualization of the 3D gaze prediction results for more subjects. The first row presents the results for subject 2, while the second row shows those for subject 5, whose 
predictions exhibited the worst performance on our model. The figures arranged from left to right, correspond to Locations 1, 2, 3, and 4, respectively.
Table 3
The error distances ‖𝐿‖2 of top 0.2%, 1%, and 5% of points at the four stimulus locations under test method bruteforce. The values are obtained 
by calculating the average of all predicted values for each location across individuals.
 Subject ID 𝐿2 Distance ↓
 0.2% predicted closest points 1% predicted closest points 5% predicted closest points
 L1 L2 L3 L4 L1 L2 L3 L4 L1 L2 L3 L4  
 Subject1 0.227 0.235 0.217 0.212 0.305 0.293 0.284 0.276 0.484 0.419 0.413 0.407 
 Subject2 0.402 0.377 0.261 0.247 0.449 0.417 0.315 0.303 0.576 0.515 0.432 0.424 
 Subject3 0.298 0.251 0.186 0.171 0.357 0.304 0.249 0.234 0.511 0.427 0.379 0.367 
 Subject4 0.506 0.323 0.347 0.291 0.538 0.374 0.396 0.340 0.631 0.488 0.500 0.450 
 Subject5 0.708 0.534 0.453 0.483 0.732 0.568 0.487 0.510 0.794 0.652 0.567 0.583 
 Avg. 0.4282 0.344 0.293 0.281 0.476 0.391 0.346 0.333 0.599 0.500 0.458 0.446 
Fig. 10. The visualization of gaze localization using ‘‘Bruteforce’’. The green dots represent the top 20 points with the highest predicted intensity, closely surrounding the Ground 
Truth (GT). Points with predicted intensities in the ranges of 21–100 (yellow) and 101–500 (pink) also extend uniformly around the GT. The blue dots signify the 20 points with 
the lowest prediction intensity.
 
 

 
 

outliers forming a long tail. These outliers may be due to the model’s
prediction inaccuracies and insufficient movement of points that were
initially sampled too far from the GT.

6.3.2. Test method bruteforce
As discussed in Section 5.3, the ‘Bruteforce’ method serves as a sup-

plementary approach to the ‘Regression’ method. It predicts attention
intensity across a large number of points for each test sample, allowing
us to: (1) identify the point of highest intensity as the predicted gaze
 

8 
focus, and (2) evaluate the model’s representation of the attention 
distribution. For each test data, we sampled 10,000 points and analyzed 
the top 20, 100, and 500 points, corresponding to the top 0.2%, 1%, 
and 5% in terms of predicted intensity.

Table  3 shows the average 𝐿2 distance of these points from the 
ground truth (GT). The error of the top 20 points is roughly considered 
as the prediction error. The results align closely with those in Table 
2, showing similar and slightly lower errors for Locations 2, 3, and 4 
compared to Location 1, and poorer performance for subject 5. Notably, 
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Fig. 11. Time–frequency representation of EEG activity averaged across five subjects and all 122 channels. Morlet wavelet transform was applied using 28 frequencies from 3 to 
30 Hz and 25 from 50 to 90 Hz, with 1–5 and 1–3 cycles respectively. Power was z-scored within subject and then averaged across trials and subjects. No baseline correction 
was applied.
Table 4
Classification results on frequency bands.
 Band Frequency-Hz Accuracy 
 Delta, theta, alpha and beta 1–30 0.805  
 Low frequency gamma 30–50 0.318  
 High frequency gamma 50–100 0.303  
 Full gamma 30–100 0.286  
 All frequencies 1–100 0.763  

Table 5
Classification results on time blocks.
 Time block-ms Accuracy 
 0–250 0.423  
 0–500 0.581  
 250–750 0.642  
 500–750 0.647  
 500–1000 0.717  
 0–1000 0.729  
 750–1250 0.750  
 1000–1500 0.733  
 500–1500 0.805  

the average 𝐿2 distance for all locations in the ‘Bruteforce’ method is 
lower than in ‘Regression’, alleviating the issue of insufficient point 
movement distance.

Additionally, when analyzing the top 100 and 500 points, we ob-
served that the error increases as prediction intensity decreases, indicat-
ing that the model effectively learns the overall attention distribution. 
Fig.  10 visualizes the positions of these points for several examples. The 
top 20, 100, and 500 points form progressively larger clusters around 
the GT, enveloping it from the inside out. The figure also includes blue 
points representing the lowest 0.2% in intensity, which are dispersed 
at the farthest corners of the space.

6.4. Feature classification

To identify the most informative neural signals involved in stereo-
scopic vision, we conducted a series of classification experiments across 
different EEG frequency bands and temporal segments. Given the four-
category classification task, the chance level was 0.25.
Frequency bands. Since signals above 100 Hz rarely penetrate the 
skull, we evaluated classification rates across several frequency bands: 
Delta (1–4 Hz), Theta (4–8 Hz), Alpha (8–12 Hz), Beta (12–30 Hz), 
and Gamma (30–100 Hz), following guidelines from a previous study 
on visual decoding with EEG [65]. Frequencies at 50 Hz and 100 Hz 
9 
were filtered to remove power line noise. The results are presented in 
Table  4. We found the highest accuracy in the 1–30 Hz range, with 
diminished performance in the Gamma band. To further understand 
why the 1–30 Hz range yielded the highest score, we conducted a 
time–frequency analysis of neural activity during the first 1500 ms 
after stimulus onset in Fig.  11. Combining our results with existing 
literature, we observed distinct power modulations in the Delta, Theta, 
and Alpha bands, suggesting that multiple cognitive processes could 
be engaged in this task. Prior research has established strong links 
between these frequency bands and various perceptual and cogni-
tive operations [66–68]. Specifically, Delta and Theta oscillations are 
associated with working memory. Delta activity has been linked to 
sustained attention and the processing of perceptual cues [69], while 
Theta rhythms are widely implicated in spatial navigation and cognitive 
control [70,71]. Additionally, Alpha oscillations contribute to visu-
ospatial attention by modulating cortical excitability and suppressing 
task-irrelevant information [72–75]. In contrast, the 30–100 Hz Gamma 
band exhibited minimal power changes throughout the trial, which may 
explain its weaker classification performance. Gamma oscillations are 
typically associated with sustained cognitive engagement and higher-
order processing [76,77], which may be less prominent given the brief 
nature of our stimulus presentation. These findings provide further 
insight into the role of low-frequency oscillations in spatial perception.
Temporal segments. Temporal decoding was performed over 1500 
time points (0–1500 ms post-stimulus onset), encompassing both the 
stimulus presentation and the subsequent break period. The classifi-
cation results for different time intervals are presented in Table  5. 
Accuracy increased with longer time windows, rising from 250 ms to 
500 ms and further to 1000 ms, indicating progressive information 
accumulation over time. Lower accuracy in the 0–250 ms window 
suggests a weaker initial neural response to the stimulus, while a steady 
increase in classification performance — from 0.581 in the 0–500 ms 
range to a peak of 0.750 in the 750–1250 ms range — suggests 
enhanced cognitive processing that extends beyond the stimulus display 
period.

Quantitative evaluation. We compare our approach to the work by 
Montenegro and Argyriou [78] and Kastrati et al. [79], both of which 
focus on EEG-based gaze classification. The results are shown in Table 
6. All works significantly surpass chance levels, showcasing the effec-
tiveness of EEG-based gaze estimation. While our approach achieves a 
higher F1 score but lower accuracy, the difference in task objectives and 
contexts makes a direct numerical comparison only partially indicative 
of overall performance. Montenegro and Argyriou’s work highlights 9-
class 2D gaze decoding on a 2D planer, while Kastrati et al. emphasize 
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Table 6
EEG classification comparison with relevant works.
 Task Accuracy Precision Recall F1 Chance 
 
Montenegro and Argyriou [78]

qA_KNN

2D gaze classification
– 0.7901 0.7407 0.7400

1
9

 
 qA_RF – 0.7031 0.6790 0.6698  
 qB_SVM – 0.6821 0.6667 0.6474  
 qB_Adab – 0.5679 0.5556 0.5426  
 Kastrati et al. [79] 2D Left–Right classification 0.981 – – – 1

2
 

 Ours 3D gaze estimation 0.8052 0.8096 0.8070 0.8078 1
4

 

Table 7
Performance comparison of different models used as encoders. We evaluate each model on both EEG classification and gaze estimation tasks. 
GFLOPs and Params are computed based on the gaze prediction network.
 Encoder Classification Accuracy (%) Regression (𝐿2) GFLOPs Params  
 L1 L2 L3 L4  
 Logistic regression 66.3 – – –  
 SVM 76.5 – – –  
 Random Forest 76.1 – – –  
 EEGNet [48] 79.3 0.54 0.50 0.36 0.36 0.07 0.08 MB 
 EEGWaveNet [80] 74.6 0.82 0.76 0.50 0.49 0.01 0.14 MB 
 Ours-w/o transformer 77.2 0.67 0.60 0.46 0.47 0.09 4.71 MB 
 Ours 80.1 0.52 0.49 0.34 0.33 0.11 5.06 MB 
Table 8
Evaluation on different numbers of attention
heads. 
# Attention head → 2 4 6

Acc. 79.8 78.7 80.1

Table 9
Evaluation on different numbers of transformer
blocks.
# Transformer blocks → 1 3 5

Acc. 79.4 80.1 79.3

hardware optimization through electrode clustering and preprocessing 
techniques. In contrast, our goal is to guide the model in learning EEG 
representations through classification, tailored for spatial decoding in 
virtual environments.

6.5. Ablation studies

To evaluate the impact of different encoder architectures, we con-
ducted an ablation study by replacing our Transformer-based encoder 
with alternative models. The results, presented in Table  7, demonstrate 
the impact of different encoders on both classification and gaze estima-
tion performance. We first replace our encoder with EEGNet [48] and 
EEGWaveNet [80], two CNN-based architectures commonly used for 
EEG signal processing. EEGNet is a lightweight model optimized for 
efficient spatial and temporal feature extraction, while EEGWaveNet 
leverages dilated causal convolutions to capture hierarchical temporal 
dependencies. Despite its compact design, EEGNet achieves a classi-
fication accuracy comparable to our full model (79.3% vs. 80.1%), 
suggesting that a well-designed CNN can effectively extract meaningful 
EEG representations. However, our approach yields more consistent 
improvements across metrics.

To further analyze the contribution of our Transformer module, we 
remove it while retaining only the spatial and temporal components. 
This variant, denoted as Ours-w/o Transformer, results in a slight drop 
in classification accuracy and gaze estimation performance, reinforcing 
the importance of long-range dependency modeling. Sensitivity analysis 
on key Transformer hyperparameters shown in Tables  8 and 9 indi-
cates that a shallow Transformer architecture is sufficient to achieve 
strong classification performance. Additionally, we investigate three 
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traditional machine learning models: Logistic Regression, SVM, and 
Random Forest. While SVM and Random Forest demonstrate strong 
classification performance, their lack of hierarchical feature learning 
limits their applicability to more complex tasks such as gaze estimation.

6.6. Pattern analysis

Latent Feature Structure Visualization. In Fig.  12, we visualize 
the EEG feature representations learned by our full model using t-
distributed stochastic neighbor embedding (t-SNE). The unprocessed 
EEG data exhibits an unstructured distribution, whereas after training, 
the extracted features form well-separated clusters, indicating that the 
model effectively captures discriminative patterns in the EEG signals.
Location-Specific Neural Response Patterns. We examine whether 
distinct gaze positions elicit differentiable neural activity patterns by 
analyzing EEG responses from a representative subject (Subject 2). Fig. 
13 shows scalp ERP topographies across four gaze conditions (L1–L4) 
and four key time points. The time points 0.0 s and 1.0 s correspond to 
stimulus onset and offset, respectively. At 0.5 s and 1.0 s, widespread 
activation is present in posterior regions. Additionally, the L3 and L4 
conditions exhibit lateralized polarity pattern, which may relate to the 
brain’s response to spatially lateralized stimuli. To further illustrate 
the temporal evolution of these responses, Fig.  14 shows stimulus-
locked ERP waveforms (0–1500 ms) in Oz and POz channels. Each 
gaze position elicited a distinct temporal profile, including differences 
in early (0–500 ms) and late (>600 ms) components. Although the 
model was trained on data from 500 to 1500 ms, we present the 
full post-stimulus window here. Polarity differences across conditions 
were also apparent. These structured temporal variations likely serve as 
informative features for the model’s classification. While such patterns 
may also support extension to continuous-space decoding, doing so 
would likely require the model to generalize from discrete patterns to a 
continuous embedding of spatial attention. Such generalization would 
further require access to denser and more diverse spatial sampling for 
robust learning.
Model-Based Channel Attribution. To better understand the spatial 
contribution of EEG channels to the model performance, we performed 
a gradient-based saliency analysis on the trained classification models. 
Specifically, we computed the absolute gradient of the classification 
loss with respect to each input EEG channel and averaged it across 
the temporal dimension to derive a per-channel importance score. This 



D. Qin et al. Neurocomputing 648 (2025) 130577 
Fig. 12. t-SNE results from one subject. (a) Raw EEG features and (b) EEG features after training.
Fig. 13. Scalp topographic maps of event-related potentials (ERPs) for Subject 2 across four gaze conditions (L1–L4) and four time points (0.000 s, 0.500 s, 1.000 s, and 1.499 
s). Color values represent voltage (𝜇V) at each channel.
Fig. 14. Stimulus-locked ERP waveforms (0–1500 ms) for Subject 2 at occipital (Oz) and parietal (POz) electrodes, averaged across all trials per spatial condition.
procedure was performed on the three subjects with the highest classifi-
cation performance using individually trained models, and the resulting 
saliency maps were averaged to obtain a cross-subject topographic 
visualization (Fig.  15, left).

The resulting scalp distribution shows that both occipital and pari-
etal regions (e.g., POz, Pz, Oz) exhibited moderate to high saliency, 
suggesting a contribution from posterior visual areas to the decoding 
of 3D spatial attention. Meanwhile, several frontal-temporal electrodes 
(e.g., FT9, T10, FT8) — often associated with ocular activity — also 
11 
showed strong saliency. This likely reflects residual eye-movement sig-
nals despite ICA-based preprocessing, and highlights the susceptibility 
of EEG decoding models to non-neural influences. Our findings suggest 
that the model may be leveraging a combination of neural and non-
neural features. In real-world gaze estimation, components traditionally 
treated as artifacts could actually improve performance and robustness. 
Future work may benefit from explicitly comparing neural-only models 
with hybrid approaches that incorporate ocular signals (e.g., EOG) to 
enhance generalization and ecological validity.



D. Qin et al. Neurocomputing 648 (2025) 130577 
Fig. 15. Comparison between gradient-based saliency (left) and low-frequency (1–30 Hz) power distribution (right) across EEG channels, averaged across subjects 1, 2, and 3. 
Warmer colors in the saliency map indicate higher channel-level contributions to the model’s predictions. The right panel shows normalized power, revealing spatially localized 
spectral activity. The two maps show a spatial correlation (𝑟 = 0.24, 𝑝 = 0.0077), based on Pearson’s coefficient across channels.
In the right panel of Fig.  15, we visualized the topographic distri-
bution of low-frequency (1–30 Hz) power, which showed a positive 
Pearson correlation with the saliency map (𝑟 = 0.24, 𝑝 = 0.0077). 
Some regions with elevated power likely reflecting residual noise, did 
not align with high saliency, suggesting they did not drive the model’s 
predictions.

7. Discussion

In this paper, we present a novel approach for 3D gaze estima-
tion using BCI technology as an alternative to traditional eye-tracking 
methods. This section discusses the reflections and limitations of our 
approach, as well as potential directions for future research.

7.1. Reflections on the use of BCIs

Providing a More Natural User Experience: Feedback from 5 par-
ticipants indicated that our method felt more intuitive and provided 
a more natural user experience. They reported no noticeable mental 
burden throughout the experiment process and found it easy to judge 
the positions of the stimuli. Additionally, participants expressed a will-
ingness to adopt this technology in practical applications, particularly 
excited about its potential use in gaming. These reflections suggest 
that BCI-based gaze estimation could offer a more comfortable and 
less intrusive alternative to traditional eye-tracking methods, which 
sometimes involve discomfort or visual interference from cameras.
Multimodal Integration and Flexibility: BCI technology can be in-
tegrated with other visual methods to enhance the accuracy of gaze 
estimation in challenging environments. For example, BCI can be com-
bined with traditional visual sensors to improve the reliability of gaze 
point predictions where lighting or visual obstructions are present. This 
flexibility gives BCI technology broader potential for application across 
various scenarios.

7.2. Limitations

Limited Number and Position of Stimuli. The current experiment 
only used four stimuli at fixed positions. While effective for initial 
testing, this setup restricts the diversity of the gaze estimation in a more 
complex environment. Future research could benefit from increasing 
the number of stimuli and varying their positions more dynamically 
within the 3D space to better simulate real-world scenarios.
Small Sample Size and Individual Variability. The relatively small 
sample size of five participants limits the generalizability of our find-
ings. While small sample sizes are common in foundational neural 
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decoding studies, inter-individual variability in brain signals — such as 
differences in functional connectivity and neural response patterns — 
can introduce inconsistencies in model performance. These variations 
may lead to discrepancies in gaze prediction accuracy across partic-
ipants, highlighting the need for further investigation into subject-
specific adaptations. Future studies should aim to address these chal-
lenges by expanding the participant pool to include individuals with 
diverse demographics, cognitive profiles, and visual characteristics. 
Additionally, integrating personalized calibration techniques or adap-
tive neural representations may help mitigate individual variability, 
improving model robustness and generalizability.
Regression and Brute-Force Methods. The regression and brute-force 
methods currently used in this study can be computationally intensive 
and may require optimization for applications needing rapid, real-time 
processing. As the search space expands or becomes more complex, 
these methods may experience slower convergence rates. To enhance 
computational efficiency and scalability, future research could explore 
more optimization techniques, such as non-inversion methods or evo-
lutionary algorithms. Alternatively, integrating generative models that 
allow for multimodal prediction could provide a more flexible and ro-
bust framework, combining different data types and learning paradigms 
to better capture the complexities of real-world scenarios.
Practical Application. As an exploratory study, Our EEG data col-
lection involves extensive preparation, including gel-based electrodes, 
system calibration, and manual adjustments, making it impractical 
for real-time deployment. To facilitate practical adoption, future ef-
forts should focus on lightweight EEG headsets with fewer electrodes, 
particularly dry-electrode systems, which can improve wearability, re-
duce setup time, and enhance user comfort. Integrating portable and 
user-friendly EEG solutions will be essential to maintaining long-term 
usability while ensuring stable signal acquisition in diverse environ-
ments. Addressing these challenges will be critical for bridging the gap 
between research prototypes and real-world applications.
Data Ethics. The use of EEG for gaze estimation raises ethical con-
siderations. In our preliminary survey, 7% of respondents expressed 
concerns about ethical issues, highlighting the importance of addressing 
data security and transparency. EEG signals may contain unintended 
cognitive or emotional information, necessitating data anonymization, 
encryption, and secure storage to protect participant privacy. Addi-
tionally, participant consent should explicitly clarify how EEG data 
is collected, processed, and shared, ensuring transparency in research 
applications.

8. Conclusion

This study investigates the use of brain–computer interface (BCI) 
technology for 3D gaze estimation, offering a novel alternative to 
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traditional eye-tracking methods. Our approach leverages EEG signals 
to directly decode spatial attention. We collected an EEG dataset in a 
virtual reality setting, exposing participants to various 3D stimuli to 
train and evaluate our model. The results demonstrate that BCI-based 
gaze estimation can effectively map neural activity to visual atten-
tion, achieving reasonable PoR predictions. Additionally, the survey 
indicates positive public perception of BCI technology, suggesting its 
promise for future applications. While our results are promising for 
initial testing, further research is needed to refine the methodology, 
expand the variety of stimuli, and explore more dynamic environments 
to fully realize the potential of BCI-driven gaze estimation.
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