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GREEDY ALTERNATIVE FOR ROOM GEOMETRY ESTIMATION FROM 
ACOUSTIC ECHOES: A SUBSPACE-BASED METHOD 

Mario Coutino\ Martin Bo M011er2,3 , Jesper Kj<er Nielsen2,3 , Richard Heusdens1 

IDelft University of Technology, The Netherlands 
2Bang & Olufsen AIS, Denmark 

3 Aalborg University, Denmark 

Abstract-In this paper, we present a greedy subspace method for 
the acoustic echoes labeling problem, which occurs in applications such 
as source localization and room geometry estimation. The orthogonal 
projection into the null space of the microphones position matrix is 
used to filter and sort all possible combinations of echoes. A greedy 
strategy, based on the rank constraint of Euclidean distance matrices 
(EDMs), is used on the sorted subset of echo combinations to extract 
the feasible combinations. Numerical simulations using room impulse 
responses (RIRs) from shoe-box shaped rooms show that the method 
provides improvements in terms of computational complexity and the 
number of required measurements with respect to a recently published 
graph-based method. 

Index Terms-acoustic echoes, room geometry, sorting reflections, 
greedy algorithm, source localization 

I. INTRODUCTION 

In the past years there has been an increasing interest in mapping 
the shape of a room using acoustic echos [1]-[3]. Knowledge of the 
room shape can benefit a large number of applications. For example, 
in the creation of personal sound zones [4][5] one needs to know 
the room impulse response (RIR) in different locations, wh ich could 
be modeled if the geometry information of the room is available. In 
autonomous navigation, knowledge of the enclosure boundary aids 
collision avoidance. For speech enhancement, knowledge of walls 
reflections is desirable to compensate for reverberation. 

Echoes generated by sound reflected from the room walls carry 
information about the geometry of the enclosure. By modeling 
room reflections using virtual sources [6], it is possible to exploit 
the geometric duality of this representation to estimate the room 
boundaries. For this purpose, several methods have been proposed 
to estimate the room geometry with high accuracy. Most of these 
methods assurne knowledge of the RIRs. In [7], the shape in the 
2D case is estimated by a single RIR. Antonacci et al. [8] solve 
the 2D problem assuming multiple sources and microphones. 

In instances where multiple microphones, randomly placed in the 
room, are used to detect the acoustic echos in the RIRs, ambiguities 
arise at the moment of labeling the echoes according to the wall 
which produces them. This problem is iIIustrated in Fig. 1. In order 
to deal with this issue, Dokmanic et al. in [9] exploits the properties 
of EDMs to find the room geometry in the general 3D case. More 
recently, a newly proposed method [2] by Jager et al. has been 
shown to provide the same accuracy as DokmaniC's method but 
at a much lower computational complexity. This approach recasts 
the labeling problem of the acoustic echoes problem into a graph 
problem, which can be solved in reasonable time for instances with 
a small number of microphones. However, both [9] and [2] become 
intractable for an increasing number of microphones. 

In this paper, we aim to build on previous work to further 
improve the current state-of-the-art solution for the acoustic echo 
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Fig. 1: Ambiguity in the echoes labels due to different order of 
arrival of wall reflections 

labeling problem. We propose a subspace-based filtering to reduce 
the computational complexity of the graph-based approach of [2]. 
Furthermore, we devise a greedy strategy which attains comparable 
performance to the graph-based method at a reduced computational 
cost. In addition, the proposed method only requires measurements 
from a single source, in contrast to the current state-of-the-art 
method that requires more than one source. In this work, we restrict 
ourselves to shoe-box shaped rooms as they are commonly found 
in typical audio reproduction scenarios. However, the proposed 
method can be extended to other (convex) room geometries. 

II. DATA MODEL 

First, let us consider an arbitrary set M of M microphones 10-
cated at random positions. That is, M = {rm = [Xm,Ym,Zm]T E 
1R3};;;=1' These locations are assumed known up to a non­
singular transformation. Furthermore, consider the set S = {sn = 
[X n , Yn , Zn]T E 1R3};{=1 of N image sources. The squared 
distances D = {dm,n }V (m , n) E [1, . . . , M ] x [1, ... , N ] between 
the image sources Sand receivers M can be measured, Le., the 
time-of-arrival (TOA) of the reflections can be estimated at the 
microphones. Hence, the squared distance dm,n for the (m, n )-th 
pair can be written as 

This can be expressed as an inner product as [10] 

R;:'Sn = dm,n 

where the two vectors Rm and Sn are given by 

Rm = [r;:'rm - 2x m - 2Ym - 2zm I ]T E 1R5X1 , 

Sn = [1 X n Yn Zn S~Snf E 1R5 X 1 

(2) 

(3) 

(4) 

Collecting all the squared distances dm,n for the pairs (m , n) leads 
to the distance matrix D E IR M X N , and the model can be written 
in matrix form as 

(5) 
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where R = [R 1 , ... ,RM l and S = [SI, ... ,SN 1 are known micro­
phone and unknown image source position matrices, respectively. 
Even when the positions of the microphones are known up to 
an arbitrary non-singular matrix H E lR5 X5 , and the transformed 

microphones positions matrix NT = RTH is known instead of R, 
the model in (5) still holds as 

NT H - 1HS = D . (6) 

where S = H- 1S is the transformed matrix of sources positions. 

III. LABELING ACOUSTIC ECHOES 

From the model in (5) , the unknown matrix S with the position 
of the sources can be estimated by means of least squares given that 
rankeR) 2: 5 when the positions of the receivers and the distance 
matrix D are known. However, in most cases, the squared distances 
in D are not grouped according to the sources that originate them. 
That is, the subindex n from the elements in D is unknown to uso 
Therefore, an approach to generate D from the unlabeled set D is 
needed. 

In this work, we consider the projection into the null space of 
R, denoted by N(R), to filter and sort all possible combinations 
of echoes. This projection exploits the structure in the model (5) 
to estimate the matrix D from the unlabeled data D. The goal of 
this approach is to deli ver a complexity reduction similar to the 
one achieved in [2] allowing us to deal with larger instances of the 
problem generated either by a larger number of microphones and 
sources, or by uncertainties in the set D. 

When proper diversity in lR3 is assumed for the microphone 
positions, i.e., non co-located locations for the receivers , the only 
constraint needed in the method to ensure the rank-5 property of 
the distance matrix D is M 2: 5 [10][11]. 

A. Subspace Filtering 

Let the rank-5 economy-sized SVD of the known receivers 
position matrix R be given by 

(7) 

The orthogonal projection IIN(R) onto N(R) can then be computed 
from the SVD in (7) as 

IIN(R) = I M - yyT 

This projection can be shown to have the property 

IIN( R)RT = 0, 

hence from (5) it follows that 

IIN( R)RTS = IIN(R)D = 0 , 

(8) 

(9) 

(10) 

for D-matrices with the correct sorting. In this work (10) is used to 
estimate D from D. An interesting property of the complementary 
projection matrix is that 

which implies that there is no amplification of errors, i.e., 

II IIN(R)(Dc + n) 11 2 II IIN(R) (RTS c + n) 11 2 

II IIN(R)n I1 2 

::; II n l1 2 

(11) 

(12) 

(13) 

(14) 

where Dc is the e-th column of the matrix D. This makes the 
projection particularly useful in cases where the elements of D 
are perturbed with noise. 
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Fig. 2: Normalized functional (16) for the columns 0, in the noise 
free case, sorted in ascending order. In this example M = 9 and 
N = 5. 

In order to apply the projection given in (8), we first consider 
the matrix 0 defined as the distance matrix generated by all the 
possible combinations of the elements in D, e.g., 

r dL, 
d 1,2 dLN ] _ d2 ,1 d 2 ,1 

d 2;N E lR M X NM D = . (15) 

dM,l dM,2 dM,N 

In the ideal case, i.e., measurements without any kind of noise, the 
results are straightforward. By defining the functional 

(16) 

we can select the sub set of feasible columns as 

C = {e : f(e) = O} , (17) 

and provide an estimate of the feasible distance matrix given by 

0 = Oe E lR M X N (18) 

where Oe represents the trimmed distance matrix, which only re­
tains the columns specified by the set C. The functional is illustrated 
in Fig. 2 for a problem instance with M = 9 microphones and 
N = 5 (image) sources. 

However, in real applications there is no guarantee that the true 
distances D are measured perfectly, hence the set in (17) will , most 
likely, turn out empty. In order to deal with noisy measurements, 
we provide a column-dependent upper bound for the proposed 
functional which considers the effect of perturbations. 

Consider that the measured squared distance dm,n can be ex­
panded as 

- 6. ~ 2 ~ 2 
d m,n = (y dm ,n + Wm ,n ) = d m,n +2y d m,n wm ,n + W m ,n (19) 

where W m,n is the noise in the (m , n )-pair measurement with power 
O'~. After the projection is applied to a stacked version of (19), the 
following residual is obtained 

IIN(R)Oc = IIN(R) [2diag(wc)D~ ~ + diag(Wc)wc] E lRM X 1 

(20) 
where A op denotes the p-th Hadamard power of the matrix A and 
Wc is the measurement noise vector associated with the e-th column 
of D. Therefore, it is possible to provide a selection rule similar 
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to (17) by upper bounding the square norm of the expression in (20). 
An appropriate upper bound for the residual norm can be given by 

0 1. 2 
IIIIN(R) [diag(we)(2De 2 + we)ll1 2 (21) 

II IIN( R )II ~ ll diag(We ) II ~ 11 2D~ ! + Well ~(22) 
2 0 1. 2 

4max (we) II De 2 + 0.5we I1 2 (23) 

(24) 

where max(a) denotes the maximum absolute value of the vector a, 
and the fact that II IIN(R) 11 2 = 1 has been used. Using the derived 
upper bound, we can build the sub set of columns for the distance 
matrix as 

C = {e : f (e) ::; K e } (25) 

and estimate the distance matrix using expression (18). Although 
the bound always holds, Ke is not directly available from the 
measurements. As in practice, we deal with realizations of the 
measurement process, in order to use the bound in (24) we introduce 

(26) 

as a surrogate to provide a practical iterative threshold for the 
functional. The power of the noise a! can be assumed known 
as it is considered that the accuracy of the method employed for 
obtaining the TOA estimates is known. For simplicity, we consider 
that all columns are subject to the same noise level a!. This 
assumption affects the performance of the bound as sources located 
at different positions have different accuracy levels. However, this 
can be considered a reasonable assumption as the ordering of 
echoes is unknown. In simulations it has been observed that K~O) is 
sufficient for the method to deliver adequate results so our algorithm 
fixes K~ to K~. 

B. Avoiding the Graph Problem 

For real measurements, ICI » N. Therefore, furt her processing is 
required to only select feasible columns. For this step two possible 
strategies can be applied: (i) the recently proposed graph-based 
method from [2] , where the problem is recast as a maximum 
independent set problem, or (ii) a greedy approach that sequentially 
selects feasible combinations. In the following, we solely focus on 
(ii) as we want to avoid solving the NP-hard problem of listing all 
maximal independents sets. 

To avoid the graph-problem, we first make the observation that 
when using the functional f( e) for sorting the columns of D, the 
columns of the lowest normalized functional value, meeting the 
rank constraint for EDMs, most likely belong to the true distance 
matrix. For this, consider the matrix E E IRM x M as the EDM 
constructed from the relative distances between receivers. The 
matrix Ee denotes an augmented EDM built by adding the distances 
from the vector De. The rank of Ee is larger than five, if E is 
augmented with distances to different sources. As suggested in [2], 
the E-rank defined as [12] 

rank(Ee, E) = _ min rank(X) (27) 
II Ee - XI1 2::;< 

can be employed to sequentially exclude echoes combinations that, 
approximately, violate the rank constraint. As the threshold E is 
unknown apriori, an iterative approach is employed to obtain the 
suitable candidate for E. 

Secondly, as pointed out in [2], the columns in D are unlikely to 
share elements, so in addition to the sequential exclusion of columns 
by the E-rank constraint, columns sharing elements with already 
selected feasible columns are rejected. The sub-optimal algorithm 
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combining these two observations is presented in Algorithm 1. The 
TJ > 1 parameter controls the growth of the rank constraint. This 
allows the solution to only include the best ranked columns. 

Algorithm 1 Subspace-based Greedy Acoustic Echoes Sorting 

Input: D , IIN(R) , E, EO , N , aw 

Output: D 
Initialization: Generate D and ",(0) , D = {} , E = EO 

1: C = {e : f(e) ::; "'~O ) } 
2: Cs = sort(C, f(e)/ II Dell §, "ascending") 
3: D = Des 
4: while numCols(D) < N do 
5: for e = 1 to ICs I do 

- [E De] 6: Ee = D~ 0 

7: if rank(Ee, E) ::; 5 and De n D == 0 then 
8: D = [D, Del 
9: end if 

10: end for 
11: if numCols(D) < N then 
12: E = TJE 

13: end if 
14: end while 

Finally, after the matrix D is estimated by the greedy approach, 
the least squares solution for the estimates of the source locations, 
for M ;::: 5, can be directly obtained by 

(28) 

Contrary to (i), where more than one maximum independent set can 
be found in the graph, (ii) provides a unique solution. The unique 
solution allows the echoes to be sorted even when the constraint 
imposed by Polleyfey 's method [10] used in [2] is not met. 

Notice that if measurements from Q acoustic sources are avail­
able, i.e., 

A combination of Pollefeys' method, using the SVD of DTot , and 
Procrustes analysis can be performed to estimate the image source 
positions instead of using (28). This approach could lead to better 
reconstruction results for cases in which the pseudo-inverse of RT 

is not weil conditioned. 

IV. NUMERICAL SIMULATIONS 

In this section results from numerical simulations comparing 
the proposed greedy method and a modified version of [2] are 
presented. First, to evaluate the proposed method we generated a 
set of 500 Monte Carlo simulations for different uncertainties in 
the measured distances. The simulation illustrates the acoustic echo 
labeling problem from multiple room reflections, i.e., N = 6 for a 
3D shoe-box shaped room. The number of microphones considered 
is M = 9. The noise-free distances from the reflections of the walls 
are taken from the peaks in the simulated impulse responses (RIRs) 
generated by the acoustics simulation software [13]. As the graph­
based method requires multiple sources to provide an estimate of 
the source positions, aversion with an oracle is used instead, i.e., 
if more than one maximal independent set is found, the closest set 
(in the least square sense) with respect to the noisy distance matrix 
is considered as the solution of the method. To provide a speed up 
to the method, the subspace filtering step is added in this modified 
version. The addition of the subspace filtering to the method shows 
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Fig. 3: Estimation error comparison for M = 9 and N = 6. Error 
bars show results within one standard deviation. 

that it is possible to deliver a feasible implementation of the 
graph-based approach for a relatively large number of microphones, 
contrary to the intractability statement given in [14] . 

In Fig. 3 the estimation error of both methods is compared. 
The error is computed as the norm of the Euelidean distance 
between the true Sn and estimated position Sn of each source, 
i.e., II el12 = 11 [distE(Sl , Sl) , ... ,distE(SN, SN)]T 112, where the 
estimated positions are found by (28) assuming R known (up to a 
non-singular transform). Notice how the accuracy of the estimation 
decreases as the uncertainty in the distances increases. For low 
uncertainties, i.e., (J' < O.01m, the accuracy of both methods is 
identical. However, as the uncertainty increases, the results in Fig. 3 
show higher degradation of the greedy approach due to its sub­
optimality. 

A comparison of the relative running time of each method 
with respect the baseline case of M = 5 using the graph-based 
approach is shown in Fig. 4. For this comparison 500 Monte Carlo 
simulations were made using different number of microphones. 
The time consumed by the methods with subspace filtering is 
considerably lower than the graph-based approach. This result 
shows that it is possible to find tractable solutions for larger 
instances of the graph problem by adding subspace filtering. By pre-
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Fig. 4: Comparison of computation time between the graph-based 
methods and greedy approach for number of microphones. 
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Fig. 5: Average RMSE per vertex of the room for the proposed 
greedy strategy for different uncertainties in the locations of the 
microphones. Error bars show results within one standard deviation. 

filtering the combinations using the proposed functional , the number 
of computed SVDs reduces drastically. In addition, by removing 
combinations that might not be rejected by the rank constraint, 
the number of nodes in the graph, used to find the maximum 
independent sets, is reduced. Hence, the method gains an additional 
speed up. The reduction in time when the number of microphones 
increases from M = 5 to M = 6 for the methods with subspace 
filtering is explained by the selectivity of the kernel of R. As more 
combinations of echoes are rejected by the subspace filtering, less 
E-rank checks are performed to obtain a feasible distance matrix D. 

Finally, Fig. 5 illustrates the performance of the proposed method 
for different uncertainties in the locations of the microphones. 
For this experiment, 500 simulated measurements were produced 
from four different acoustic sources. The reconstruction of the 
image sources positions is done using the noisy locations of the 
microphones and Pollefey's method [10]. In this experiment, it 
is assumed that distances between each microphone-image source 
pair contain additive white Gaussian noise with standard deviation 
(J' RI R = lcm. Notice how even in the presence of noise, in both 
RIRs peaks and microphones locations, the method provides vertex 
estimates with average RMSE elose to 5cm. The high dependency 
on the accuracy of the positions of the microphones is seen in the 
increased standard deviation of the RMSE and its mean value. 

All numerical simulations were run on a Macbook Air (Mid 
2013) l.7 GHz Inter Core i7 using non-optimized MATLAB code. 

Y. CONCLUSIONS 

In this paper we proposed an alternative approach for the acoustic 
echoes labe1ing problem. Using a complementary orthogonal pro­
jection related to the receiver locations, it is possible to construct 
a filtering and sorting criteria for the columns of the distance 
matrix built from all possible combinations of available echoes. It 
is shown, that in the noise free case perfect identification of the true 
columns can be achieved. Furthermore, for the noisy case, a greedy 
alternative is proposed to avoid the solution of the NP-hard problem 
of listing all maximal independent sets in a graph. Numerical 
simulations show the applicability of the method and the benefits of 
applying the subspace filtering to the original graph-based method. 
In addition, effects of uncertainties in the distance measurements, 
not discussed in literature before, were shown through numerical 
experiments. 
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