

Delft University of Technology

Using C language extensions for developing embedded software
A case study
Völter, M; Van Deursen, Arie; Kolb, Bernd; Eberle, Stephan

DOI
10.1145/2814270.2814276
Publication date
2015
Document Version
Accepted author manuscript
Published in
OOPSLA 2015 - Proceedings of the 2015 ACM SIGPLAN International Conference on Object-Oriented
Programming Systems, Languages, and Applications

Citation (APA)
Völter, M., Van Deursen, A., Kolb, B., & Eberle, S. (2015). Using C language extensions for developing
embedded software: A case study. In OOPSLA 2015 - Proceedings of the 2015 ACM SIGPLAN
International Conference on Object-Oriented Programming Systems, Languages, and Applications (pp. 655-
674). Association for Computing Machinery (ACM). https://doi.org/10.1145/2814270.2814276
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1145/2814270.2814276
https://doi.org/10.1145/2814270.2814276

Delft University of Technology
Software Engineering Research Group

Technical Report Series

Using C Language Extensions for
Developing Embedded Software:

A Case Study

Markus Voelter, Arie van Deursen,
Bernd Kolb and Stephan Eberle

Report TUD-SERG-2015-010

SERG

TUD-SERG-2015-010

Published, produced and distributed by:

Software Engineering Research Group
Department of Software Technology
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology
Mekelweg 4
2628 CD Delft
The Netherlands

ISSN 1872-5392

Software Engineering Research Group Technical Reports:
http://www.se.ewi.tudelft.nl/techreports/

For more information about the Software Engineering Research Group:
http://www.se.ewi.tudelft.nl/

Note: To appear in Proceedings of the 30th Annual ACM SIGPLAN Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications, OOPSLA 2015, part of SPLASH 2015

Copyright c©ACM. Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed for profit or commer-
cial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.

Using C Language Extensions for
Developing Embedded Software: A Case Study

Markus Voelter
independent/itemis, Germany

voelter@acm.org

Arie van Deursen
Delft University of Technology, The

Netherlands
Arie.vanDeursen@tudelft.nl

Bernd Kolb, Stephan Eberle
itemis AG, Germany

{kolb|eberle}@itemis.de

Abstract
We report on an industrial case study on developing the
embedded software for a smart meter using the C program-
ming language and domain-specific extensions of C such as
components, physical units, state machines, registers and in-
terrupts. We find that the extensions help significantly with
managing the complexity of the software. They improve
testability mainly by supporting hardware-independent test-
ing, as illustrated by low integration efforts. The extensions
also do not incur significant overhead regarding memory
consumption and performance. Our case study relies on
mbeddr, an extensible version of C. mbeddr, in turn, builds
on the MPS language workbench which supports modular
extension of languages and IDEs.

Categories and Subject Descriptors D.3.2 [Extensible
languages]; D.3.4 [Code Generation]; D.2.3 [Program
Editors]; C.3 [Real-time and embedded systems]

Keywords Embedded Software, Language Engineering,
Language Extension, Domain-Specific Language, Case Study

1. Introduction
According to Ebert and Jones [12], 80% of embedded sys-
tems companies implement embedded software in C. C is
good at low-level algorithms and produces efficient binaries,
but it provides only limited support for defining custom ab-
stractions. This can result in code that is hard to understand,
maintain and extend. On the other hand, high-level modeling
tools make it hard to effectively address the low-level aspects
important for embedded software. To address this apparent
contradiction, a team at itemis and fortiss has built mbeddr,

an extensible version of C that comes with extensions rele-
vant to embedded software development. At the same time,
C’s native constructs are available to write efficient low-level
code if needed. For details on mbeddr see Section 2.
Contribution To provide empirical evidence to what extent
the kinds of language extensions supported by mbeddr are
useful, we report on a case study on the development of
a smart meter (SMT). Our contribution is to analyze, in a
real-life project, how the extensions affect the complexity,
testability, and runtime overhead of embedded software, as
well as the effort for its development.
Audience We target language engineering researchers (in-
terested in empirical data justifying their work or looking to
understand problems they may be able to solve) as well as
embedded systems developers (seeking to understand how
language extensions can help them in practice).
Structure We organize the paper according to the struc-
ture for case studies proposed by Runeson et al. [41] and
Yin [60]. We begin by outlining the background on embed-
ded software, language engineering, MPS and mbeddr in
Section 2. In Section 3 we introduce the research questions
and the collected data. Section 4 then describes the relevant
context of the case study (as suggested by Dyba et al. [11])
including the hardware and software architecture, the initial
artifacts and the development timeline. Section 5 provides
an overview over the mbeddr-based implementation of SMT
and illustrates the use of the extensions. We answer the re-
search questions in Section 6, complemented with a critical
discussion in Section 7. We wrap up the paper with related
work and conclusions in Sections 8 and 9, respectively.

2. Background
2.1 Embedded Software Engineering
Embedded software controls hardware devices, often under
time and memory constraints. It can be simple (lighting
controls running on an 8-bit microprocessor with a few KB
of RAM) or sophisticated (airplanes, missiles and process
control). The amount of software embedded in devices is
growing and its value for businesses is increasing rapidly [9].

SERG Using C Language Extensions for Developing Embedded Software: A Case Study

TUD-SERG-2015-010 1

According to our own experience, as well as experiences
of others [5, 26, 28, 29, 48], developing embedded soft-
ware poses challenges. These include meaningful abstrac-
tion while incurring little runtime overhead (because unit
pricing often prohibits an increase in resources), addressing
the safety and security issues incurred by C (because many
embedded systems are also safety-critical), integration with
various metadata (for analysis, deployment or parametriza-
tion), support for testing and monitoring (because updat-
ing deployed faulty systems is often expensive), and adher-
ing to development processes and standards regarding re-
quirements tracing or documentation. Together with the need
for shorter time-to-market and product-line variability this
makes for a challenging field.

2.2 Language Engineering with MPS
Language engineering refers to building, extending and
composing general-purpose and domain-specific languages
(DSLs) [54]. Language workbenches [13, 14] are tools for
efficiently implementing languages and their integrated de-
velopment environments (IDEs). The JetBrains Meta Pro-
gramming System (MPS)1 is an open-source language work-
bench with comprehensive support for specifying structure,
syntax, type systems, transformations and generation, de-
buggers and IDE support (see Figure 2). MPS relies on a
projectional editor. Projectional editors avoid parsing the
concrete syntax of a language to construct the abstract syn-
tax tree (AST); instead, editing gestures directly change the
AST, and the concrete syntax is rendered (“projected”) from
the changing AST.2 This means that, in addition to text,
languages can also use non-parsable notations such as math-
ematical symbols, tables and diagrams [52]. Since projec-
tional editors never encounter grammar ambiguities, they
can support language composition [50]. Traditionally, pro-
jectional editors were tedious to use and were hardly adopted
in practice. With MPS, in contrast, editing textual syntax is
quite close to “normal text editing”. It also supports diff-
merge on the level of the projected concrete syntax. The
study in [57] shows that users are willing and able to work
with the editor after getting used to it.

2.3 C Extensions and mbeddr
mbeddr [55] applies projectional editing to embedded soft-
ware engineering. Built on MPS, it provides an extensible
version of C plus a set of predefined extensions such as phys-
ical units, interfaces and components, state machines and
unit testing. Since extensions are embedded in C programs,
users can mix higher-level abstractions with low-level C
code. Developers are not forced to use the extensions; they
may use them only when they consider them appropriate.
mbeddr also supports product line variability, requirements

1 http://jetbrains.com/mps
2 Watch this video https://www.youtube.com/watch?v=iN2PflvXUqQ
to gain a better understanding of projectional editing.

traces and documentation as well as formal verification [34].
mbeddr is open-source under the Eclipse Public License and
is available from http://mbeddr.com. Several commercial
systems have been developed with mbeddr. It forms the basis
for a controls engineering tool by Siemens PLM Software.

Thanks to MPS, each mbeddr extension is modular: no in-
vasive changes to C are required to add a new extension, and
multiple extensions can be seamlessly combined in a par-
ticular program. Extensions provide concrete syntax, a type
system, execution semantics and IDE support. AST transfor-
mations reduce extensions to C, possibly in multiple steps.
Eventually, textual C code is generated which is compiled
with existing (possibly platform-specific) compilers. Users
are encouraged to use MPS’ facilities to define their own
domain-specific C extensions. Details on building languages
and language extensions are provided in [54] and [51].

3. Case Study Setup
The goal of this research is to find out the degree to which C
language extensions (as implemented in mbeddr) are useful
for developing embedded software. We adopt the case study
method to investigate the use of mbeddr in an actual com-
mercial project because we believe that the true risks and
benefits of language extensions can be observed only in such
projects. Focussing on a single case allows us to provide sig-
nificant details about that case. To provide insight beyond
this single case, we generalize analytically in section 7.4.

To structure the case study, we introduce four specific re-
search question in Section 3.1. They are aligned with the
general challenges for embedded software discussed in Sec-
tion 2.1 as well as with the key non-functional requirements
of the SMT case at hand. The data we collected to evaluate
these research questions is introduced in Section 3.2.

The case study is not explicitly comparative. However,
the implicit comparison is to the state of the practice in em-
bedded systems development, which is the use of plain C
(we briefly mention other, and in particular, model-based ap-
proaches in Section 8, Related Work). The comparison is not
with an actually built alternative plain C implementation be-
cause it would be too expensive to build a production-quality
second implementation. An example smart meter implemen-
tation that was available to the team was not production-
ready for the reasons discussed in Section 4.4, so it would
not have been a useful and fair comparison. Instead, the com-
parison is analytical, based on the substantial experience of
several of the authors in creating embedded systems in C.

Finally, this paper does not consider the development of
mbeddr itself (as an example of language engineering). We
refer the reader to Chapter 10 of [51].

3.1 Research Questions

C makes it hard to create abstractions for efficiently man-
aging the complexities associated with embedded systems.
However, to ensure quality, long-term maintainability and

Using C Language Extensions for Developing Embedded Software: A Case Study SERG

2 TUD-SERG-2015-010

the opportunity for reuse, such abstractions are necessary.
The first research question is thus:
RQ-Complexity: Are the abstractions provided by
mbeddr beneficial for mastering the complexity encoun-
tered in a real-world embedded system? Which addi-
tional abstractions would be needed or useful?
Testing embedded software is challenging because of hard-
ware dependencies, restrictions on on-device debugging and
subtle timing and resource constraints. Embedded software
often has few or no automated unit tests, which is a problem
for quality, productivity and evolvability. Additionally, be-
cause of hardware dependencies, some problems are found
only during commissioning (the process of getting the code
to run on the target device). Hence, our second question is:
RQ-Testing: Can the mbeddr extensions help with test-
ing the system? In particular, is hardware-independent
testing possible to support automated, continuous inte-
gration and build? Is incremental integration and com-
missioning supported?
Most embedded software is constrained regarding available
memory, processor performance or as a consequence of ex-
ternal timing requirements. In a trade-off between efficiency
and maintainability, efficiency usually wins because of unit
price constraints. Abstractions thus must not come with too
much overhead (the exact magnitude of too much depends
on the context). We capture this in question three:
RQ-Overhead: Is the low-level C code generated from
the mbeddr extensions efficient enough for it to be de-
ployable onto a real-world embedded device?
Independent of how useful an approach is in terms of the
first three research questions, it must not require significant
additional effort in the various phases of development, or it
will not be adopted. This leads to research question four:
RQ-Effort: How much effort is required for developing
embedded software with mbeddr?

3.2 Data Collected
Below we list the data collected to answer the research
questions, taking into account that this is a real, revenue-
generating industry project, and some desired data may not
be available (cf. Section 7.5 on Reliability).
RQ-Complexity We look at the mbeddr extensions used in
SMT as well as those developed specifically for the project
and those identified as still missing. We qualitatively asses
their impact on the complexity of the implementation.
RQ-Testing We investigate test coverage of the SMT im-
plementation and discuss the test-specific SMT code. We re-
port on the experience with commissioning the system as
well as the expected effort for certification by the customer.
RQ-Overhead We measure the size of the system and com-
pare it with the resources of the target hardware. We analyze
the achieved performance. We also analyze the runtime over-
head incurred by some of mbeddr’s generators.

RQ-Effort We measure and discuss the effort required for
developing SMT, distinguishing implementation, testing and
commissioning of the system as well as the development of
custom language extensions.

4. Case Study Context
4.1 What is a Smart Meter?
An electricity smart meter continuously senses the instan-
taneous voltage and current on a mains line using analog
front ends and analog-to-digital converters. From the mea-
sured raw values, it computes various energy consumption
data in physical quantities over time, most importantly RMS
(root mean square) voltage and current, active, reactive, and
apparent power, power factor, as well as active and reactive
energy. The resulting data is displayed on an LCD display,
recorded in histories, and analyzed and evaluated with regard
to maximum loads, times of use, and billing periods. In ad-
dition, a smart meter communicates this data to the outside
world over networks. It may also accept commands via the
network. The primary success criterion for a smart meter is
that it achieves a specified accuracy, verified through a cer-
tification process: a prerequisite for this is the real-time per-
formance of the underlying computations (RQ-Overhead).
In order to be a viable business, the smart meter has to be
reliable, low cost, able to evolve (over time and across vari-
ants) and must be developed with an effort at or below indus-
try average; this is reflected in RQ-Complexity, RQ-Testing
and RQ-Effort. The specification for the particular smart me-
ter developed in this project can be found in [44].

4.2 Hardware Architecture
The SMT target hardware consists of two MSP430 proces-
sors3 clocked at 25 MHz. One variant of the system uses
the MSP430F67791 with 256 KB Flash ROM and 32 KB
RAM, the other variant uses the smaller MSP430F6736 with
128 KB Flash ROM and 8 KB RAM. One processor per-
forms the real-time metrology, the other performs higher-
level application logic and communication; the separation
ensures undisturbed execution of the real-time functional-
ity. The two processors communicate using a lightweight
implementation of MQTT4 over UARTs5. The application
processor communicates with the outside world via RS485
and IrDA interfaces and an industry-specific communica-
tion protocol called DLMS/COSEM.6 The system has a 7-
segment LCD to show system status and measurements. The
hardware was determined irrespective of the software devel-
opment approach, so the implementation must cope with this
hardware in terms of available resources (RQ-Overhead).

3 http://ti.com/ww/en/launchpad/launchpads-msp430.html
4 A lightweight communication protocol, see http://mqtt.org
5 Universal Asynchronous Receiver/Transmitter, used in serial comm.
6 Industry-specific data exchange messages, see http://dlms.com/

SERG Using C Language Extensions for Developing Embedded Software: A Case Study

TUD-SERG-2015-010 3

4.3 Software Architecture
The software functionality can be split into two major parts,
corresponding to the two processors: low-level measurement
and higher-level application functions. Figure 1 shows a
more detailed breakdown. Note that the SMT-specific func-
tionality of each of the boxes is not relevant for this paper.

No real-time operating system is used on the processors
and the system is fundamentally interrupt-driven: interrupt-
triggered background tasks preempt foreground tasks, which
are in turn activated cyclically from the main function. This
approach is known as one-threaded programming [40].

The interrupt-triggered tasks include reading the raw
measurements (triggered by the ADC interrupt7) as well han-
dling recalibration requests (triggered by UART-Receive).
Interrupt-triggered tasks preempt the foreground tasks and
always run to completion, which makes them time-sensitive.
This is why the measurement task only performs simple cal-
culations and then uses message passing to hand the data
off to a foreground task that performs more sophisticated
calculations involving expensive division and square roots.
Other foreground tasks include calibrations as well as the
UART-MQTT-based inter-processor communication.

In terms of performance, the challenge is to ensure that
the background tasks finish within less than a 1

4,096 of a
second to maintain the required 4,096 Hz sample rate, and
to leave enough time for the foreground processes to finish
their tasks within their own time budgets (one second for the
calculations mentioned above).

4.4 Smart Meter Example Code
The SMT development team had access to an existing ex-
ample smart meter implementation for the MSP430, made
available by the processor vendor.8 The purpose of this ex-
ample smart meter code (ESC) is to serve as a realistic, but
incomplete implementation of a smart meter on the MSP430.
The ESC comprised only a subset of the functionality needed
for SMT and required significant extension (for example, to
run it on two processors and to support more flexible com-
munication stacks; see Section 6.4), so a thorough under-
standing of the code was necessary. A document describing
the high-level structure of the ESC was also available.

The SMT team decided that the code quality (understand-
ability, modularity, maintainability, testability and test cov-
erage) of the ESC was unacceptable for sustained SMT de-
velopment; they decided to build a completely new imple-
mentation of SMT using mbeddr. Only the core algorithms
were taken from the ESC; SMT is otherwise new software.

4.5 Development Timeline and Process
Development started in July 2012. As of February 2015,
most of the required functionality is implemented, but de-
velopment and certification are ongoing. The project used

7 ADC is short for Analog-Digital Converter
8 http://www.ti.com/tool/msp430-energy-library

Criterion Common Metro App Total

of Files 134 101 105 340

Total LOC 8,209 10,447 10,908 29,564
Code LOC 4,397 5,900 5,510 15,807
Comment LOC 950 2,402 2,620 5,972
Whitespace LOC 2,852 2,145 2,778 7,775

Table 1. Size of SMT. Common code runs on both proces-
sors, Metro runs on the metrology processor and App runs
on the application/communication processor.

an iterative process based on a specification [44] that is up-
dated approximately once per year. Integration with the tar-
get hardware started in February 2014 and was spread over
2 months. So far, 300 person days (PD) were spent, spread
over 31 months, a 50% developer utilization. Fulltime work
was not feasible because of constraints in project funding,
decision gateways and requirements elicitation.

4.6 Tools
In addition to mbeddr, SMT used gcc and gdb (for compil-
ing and debugging on the PC) and the IAR Embedded Work-
bench9 and associated hardware-specific compilers.

5. The mbeddr SMT Implementation
5.1 Overall Structure
Figure 1 shows the structure of SMT. Each of the small
boxes represents one or more mbeddr components in the
source code. SMT consists of a hardware-dependent Hard-
ware Abstraction Layer (HAL) as well as hardware-indepen-
dent communication stacks (COMM), utilities (UTIL) and
functionalities for the actual measurement (METROLOGY)
and higher level computations and external communication
(APPLICATION). The separation into hardware-dependent
and hardware-independent layers is a prerequisite for testing
of components on the PC (RQ-Testing).

5.2 Size of the System
The SMT implementation consists of code that is deployed
onto the target as well as code that is used only for testing.
Table 1 shows the size of the deployed code in terms of
generated C; it is ca. 22,000 non-empty lines of code (LOC).
The additional test code is roughly similar in size, resulting
in 44,000 LOC in total. While this is small compared to
automotive, aerospace or defense systems, its size is typical
for software found in industrial sensors, AUTOSAR basic
software or Internet-of-Things devices.

Table 2 shows the number of instances of important lan-
guage concepts. Because projectional editing can use non-
textual notations, counting lines is not easily possible and
we use a conversion factor similar to the one in [53] to calcu-
late the LOC for language constructs; this leads to ca. 42,000
non-empty LOC total, a size roughly similar to the generated

9 http://www.iar.com/Products/IAR-Embedded-Workbench/

Using C Language Extensions for Developing Embedded Software: A Case Study SERG

4 TUD-SERG-2015-010

Figure 1. Layers, subsystems and components in SMT. The
dashed-border components are optional. Only the HAL sub-
system (below dotted line) is hardware-dependent.

C code. This demonstrates that mbeddr’s extensions do not
lead to a significant reduction in code size: they trade boil-
erplate in some places for well-structuredness, readability,
analyzability and maintainability in others.

5.3 Use of mbeddr’s Built-in Extensions
Table 2 shows that SMT makes use of all major mbeddr
C extensions, indicating their relevance for embedded soft-
ware, as well as their composability. The rest of this subsec-
tion introduces mbeddr’s extension in some detail. The code
examples in this subsection are kept simple for reasons of
space and do not show all features of the respective exten-
sion; more details on and bigger examples of the extensions
can be found in [55] and [51]. Figure 2 shows a screenshot of
the mbeddr IDE with some of the languages and notations.
Chunks mbeddr structures code into chunks; a chunk can
be seen as (and is often generated into) a single file. There
are chunks for units and conversion rules, chunks for re-
quirements, chunks for feature models, and chunks for (ex-
tended) C code called implementation modules (generated
to a .c and a .h file each). Chunks also act as namespaces and
are the primary means for structuring mbeddr code. SMT
has 382 implementation modules and 46 other chunks.
C Constructs mbeddr supports almost all C language con-
structs (the few exceptions are discussed in [53]). 310 func-
tions, 144 structs, 334 global variables and 8,500 constants

Category Concept Count

Chunks Implementation Modules 382
(≈ Files) Other (Req, Units, etc.) 46

C Constructs Functions 310
Structs / Members 144 / 270
Enums / Literals 150 / 1,211
Global Variables 334
Constants 8,500

Components Interfaces / Operations 80 / 197
Atomic Components 140
Ports / Runnables 630 / 640
Parameters / Values 84 / 324
Composite Components 27
Component Config Code 1,222

State Machines 2
Machines States/Transitions/Actions 14 / 17 / 23

Physical Unit Declarations 122
Units Conversion Rules 181

Types / Literals with Units 593 / 1,294

Product Line Feature Models / Features 4 / 18
Variability Configuration Models 10

Presence Condition 117

Custom Register Definition 387
Extensions Interrupt Definitions 21

Protocol Messages 42

Statements Statements total 16,840
Statements in components 6,812
Statements in test cases 5,802
Statements in functions 3,636

Testing Test Cases / Suites 107 / 35
Test-Specific Components 56
Stub / Mock Components 9 / 8
assert Statements 2,408

Table 2. Number of instances of language concepts in the
mbeddr SMT sources (before generation to C text).

are used in SMT, the large number of constants being typi-
cal for embedded software. As discussed below, most of the
SMT implementation is factored into components; however,
3,636 statements (ca. 22%) remain in functions. These are
mostly mathematical utilities and filters, conversions, safe
access to memory, and test helper functions.
Components Components form the backbone of the SMT
implementation (and most other mbeddr-based systems).
Components are modularized units of behavior, specified
via interfaces. Interfaces either define operations (callable
through required ports and implemented via provided ports)
or data items (received and sent through provided and re-
quired ports). Here is an interface that defines one operation:

// ADC is the analog-digital converter
interface IADC {
int16 read(uint8 addr)

}

SERG Using C Language Extensions for Developing Embedded Software: A Case Study

TUD-SERG-2015-010 5

Figure 2. The screenshot shows various parts of the SMT implementation: a part of the protocol parser state machine (top
left), unit declarations (top right) and component wiring for a test case (bottom). It also illustrates how mbeddr provides IDE
support for C and its extensions, including syntax highlighting, code completion, error markup, refactorings, quick fixes and
tooltips. The screenshot also showcases the support for mixed notations (text, tables, diagrams).

Components provide and require ports. Each port is asso-
ciated with an interface. Components implement the oper-
ations of the interfaces associated with provided ports in
runnables, essentially C functions inside components. SMT
has 80 interfaces, 167 components and 640 runnables. Here
is a component ADCDriver that provides the IADC interface:

component ADCDriver {
provides IADC adc
int16 adc_read(uint8 addr) <= op adc.read {

int16 val = // low level code to read from addr
return val;

} }

A client component can now declare a required port that uses
the IADC interface. Implementation code in runnables can
call operations on this required port:

component CurrentMeasurer {
requires IADC currentADC
internal void measureCurrent() {

int16 current = currentADC.read(CURR_SENSOR_ADDR);
// do something with the measured current value

} }

Components must be instantiated to be used, and their re-
quired ports connected to interface-compatible provided
ports of other instances. This can be edited graphically (in-
line in a “C editor”), as shown in the bottom pane of Figure 2.

mbeddr also supports composite components, enabling
hierarchical decomposition of systems (they contain their
own set of instances). Of the 167 components, 27 are com-
posite components. The code that instantiates, parametrizes
and connects ports of components instances comprises 1,222
LOC (for deployment and multiple test setups).

The majority of SMT behavior resides in components:
of the 16,840 total statements, 40% live in component
runnables, 22% are in regular C functions (discussed above)
and 34% are in test cases; the remaining 4% reside in state
machines and a few other places. On average, each runnable
consists of 11.5 LOC. The cyclomatic complexity of each
runnable is low; the average is 1.98.
State Machines State machines encode state-based behav-
ior, and they live inside implementation modules, alongside
C code or components. Textual, graphical and tabular syntax
is available for any given state machine via multiple pro-
jections. SMT is not primarily a state-based system, so the
use of state machines is limited to two examples. One im-
plements the communication protocol and message parsing,
a typical use case for state machines. The other one drives
the display: since the display has limited real estate, its con-
tents change based on various parameters, events and system
states. The state machine tracks these changes and updates
the display. Here is a very much simplified example of the
state machine used for message parsing:

statemachine FrameParser initial = idle {
var uint8 idx = 0
in event dataReceived(uint8 data)
state idle {

entry { idx = 0; }
on dataReceived [data == LEADING_BYTE] -> wakeup

}
state wakeup {

on dataReceived [data == START_FLAG]
-> receivingFrame { idx++; }

}
state receivingFrame { .. }

}

Using C Language Extensions for Developing Embedded Software: A Case Study SERG

6 TUD-SERG-2015-010

State machines can be used as types in C. For example, the
code below shows a local variable of type FrameParser.
Built-in operators are available to interact with them:

// create and initialize state machine
FrameParser parser;
parser.init;
// trigger dataReceived event for each byte
for (int i=0; i<data_size; i++) {
parser.trigger(dataReceived|data[i]);

}

Physical Units C types and literals can be annotated with
physical units. New units can be declared based on existing
units and conversion rules between different units can be
defined. The type system then performs unit computations
and checks. Figure 3 shows an example.

In SMT, which measures and samples real-world quanti-
ties and uses other quantities for calibration, units provide
an additional level of checks that cannot be provided by just
data types. Based on the 7 SI units available by default, SMT
has 122 unit declarations and 181 conversion rules (units
with different magnitudes such as km or mm count as differ-
ent units in mbeddr). 593 types are annotated with a unit (in
local or global variables, constants or arguments) and 1,294
numeric literals in the code have a unit associated with them.
Testing mbeddr has first-class support for assertions, unit
tests, and test suites. Below is an example that contains
test cases for the FrameParser state machine plus a test
expression (which represents test suites):

testcase testFrameParser1 {
FrameParser p;
assert(0) p.isInState(idle);
// invalid byte; stay in idle
parser.trigger(dataReceived|42);
assert(0) p.isInState(idle);
// LEADING_BYTE, go to awakening
parser.trigger(dataReceived|LEADING_BYTE);
assert(0) p.isInState(awakening);

}

testcase testFrameParser2 { ... }
testcase testFrameParser3 { ... }

int32 main(int32 argc, char* argv) {
return test[testFrameParser1,

testFrameParser2,
testFrameParser3];

}

Figure 3. Example of physical units in SMT. Assigning a
value with unit A

V to the return type with unit Ω results in an
error in the IDE. Note also the use of mathematical syntax.

mbeddr also supports constructs for efficiently writing tests
for some of the other extensions. The most important one are
mock components, which use special syntax for specifying
expected behavior as part of a test case. The mocks can then
be validated in a test case. Below is an example of a mock
component for a protocol handler that specifies operation
sequencing, assertions over parameters and also remembers
the handle argument so it can be closed later:

mock component USCIReceiveHandlerMock {
provides ISerialReceiveHandler handler
Handle* hnd;
sequence {

step 0: handler.open { } do { hnd = handle; }
step 0: handler.dataReceived {

assert 0: parameter data: data == 1 }
step 1: handler.dataReceived {

assert 1: parameter data: data == 2 }
step 2: handler.dataReceived { .. }
step 3: handler.dataReceived { .. }
step 4: handler.finsihed { } do { close(hnd); }

} }

SMT has 107 test cases in 35 test suites, with over 2,400
assert statements. 56 of the 167 components are specific
to tests. Of those, 8 are mocks and 9 are stubs. As discussed
in Section 5.4, two of the three custom extensions were
developed to simplify testing.
Variability Feature models are an established formalism
for expressing product line variability [3]. A feature model
consists of a tree of features with constraints between them.
Constraints include mandatory (feature must be in any valid
system), optional (feature may not be in a system), or
(one or more from a group of features may be in a system)
and xor (exactly one of a group of features must be in a
system). A feature may have attributes, and additional cross-
tree constraints may be specified. The code below is one
of the feature models from SMT, expressed in mbeddr’s
textual notation for feature models. It handles the variability
associated with different LCD displays and configurations.

feature model SMTFeatures
root opt

Data_LEDs opt
DataReadLED
DataWriteLED [DigitalIOPortPin pin]

DISPLAY xor
DISPLAY_V10
DISPLAY_V22

WRITABLE_FLASH_MEMORIES

The features (and hence, the variability expressed) in a
feature model can be connected to implementation code
through presence conditions. A presence condition is a
Boolean condition over the features from a feature model
attached to a part of a program; only if the condition eval-
uates to true for the selected product configuration will the
corresponding code fragment be included in the program.
Presence conditions are roughly similar to C’s #ifdef, but
they are more structured, because they operate on MPS’
syntax tree: they cannot lead to syntactically invalid code.
Figure 4 shows an example of a presence condition used on
component ports.

SERG Using C Language Extensions for Developing Embedded Software: A Case Study

TUD-SERG-2015-010 7

In SMT, mbeddr’s variability support was used to imple-
ment 4 different feature models (metrology, platform, dis-
play variability, LED variability) with 18 features in total.
10 different configurations were defined for deployment and
test setups. 117 presence conditions are used throughout
the code. SMT also used the built-in consistency analysis
which ensures that no variant contains dangling references:
it checks that for every reference in the code (e.g., a refer-
ence to a variable), the referenced node (e.g., the variable) is
part of (at least) all configurations that contain the reference.

Figure 4. A part of a composite component where two of
its provided ports have presence conditions (the gray area
marked with question marks). The ports are only part of the
system if the respective features are selected.

5.4 Custom Extensions
mbeddr encourages user-defined, project-specific extensions
to grow the language towards a domain [46]. For SMT, three
extensions have been developed; below we introduce the
extensions and the specific rationales for developing them.
Registers The MSP430 processor has special-purpose reg-
isters: when a value is written to such a register, a hardware-
implemented computation is automatically triggered based
on the value supplied by the programmer. The result of the
computation is then stored in the register. The reason for de-
veloping a custom extension is testability. In particular, run-
ning code that works with these registers on the PC for test-
ing purposes leads to two problems: first, the header files that
define the addresses of the registers are not valid for the PC’s
processor. Second, there are no special-purpose registers on
the PC, so no automatic computations are triggered. SMT
solves this problem with a language extension that supports
the definition of registers as first-class entities and allows
read/write access from C code (see code below). The exten-
sion also supports specifying an expression that performs the
computation. When the code is translated for the real device,
the real registers are accessed based on the addresses de-
fined in the processor header files. In the emulated case used
in testing, generated structs are used to hold the register
data; the expressions are inserted into the code that updates
the struct, simulating the hardware-based computation.

exported register8 ADC10CTL0 compute as val * 1000

void calculateAndStore(int8 value) {
int8 result = // some calculation with value
ADC10CTL0 = result; // stores result * 1000 in reg.

}

Interrupts As explained in Section 4.3, SMT is driven
by interrupts. To integrate the component-based architec-

ture used in SMT with interrupts, it is necessary to be able
to trigger component runnables via an interrupt. Similar to
registers, the primary driver was testability: interrupts must
be emulated for testing on the PC. A language extension
allows the declaration of interrupts. In addition, the ex-
tension provides runnable triggers that connect the execu-
tion of the runnable to the occurence of an interrupt. The
example below declares two interrupts, and the runnable
interruptHandler is marked as triggered by an interrupt:

module USCIProcessor {
exported interrupt USCI_A1
exported interrupt RTC

exported component RTCImpl {
void interruptHandler() <- interrupt {
hw->pRTCPS1CTL &= ~RT1PSIFG;

} } }

Note that this code does not specify which interrupt triggers
the runnable, because, for reasons of deployment flexibility,
this is done as part of component instantiation, as shown
below. Instantiation also checks that each interrupt-triggered
runnable is bound to at least one interrupt. In addition, for
testing purposes on the PC, there are language constructs
that simulate the occurrence of an interrupt: test cases then
simulate triggering of interrupts based on a test-specified
schedule, and assert that the system reacts correctly.

instances usciSubsystem {
instance RTCImpl rtc;
bind RTC -> rtc.interruptHandler
connect ... // ports

}

Messages External communication of the SMT device
takes place via DLMS/COSEM messages. The low level
protocol definition involves arrays pointing into other arrays,
linked lists, multi-byte identifiers, fields that contain the
size or number of other fields as well as other fine-grained,
low-level details. Below is an example (DLMS/COSEM is
even more complex, but the example below illustrates the
challenges). SMT contains hundreds of message definitions.

// a field representing a timestamp for 10:20:00
uint8[6] f_time = {0x00A, // field type identifier

UNIT_TIME24, // unit used: time
3, // 3 payload bytes follow
10, 20, 00 // the time itself
};

// a field representing a measured value
uint8[4] f_value = {0x04D, // field type identifier

UNIT_QDOT, // unit used: mass flow
1, // 1 payload byte follows
&dataField // addr of variable

};

// a message that uses the two fields
uint8[5] message = {0xAEE, // message type idenfier

ID, // unique running message ID
2, // two fields folllowing
f_time, // embed the time field
f_value// embed the value field

};

It is tedious and error prone to set up these structures man-
ually, so the primary driver for this extension is robust-

Using C Language Extensions for Developing Embedded Software: A Case Study SERG

8 TUD-SERG-2015-010

ness and mainainability. The extension supports a higher-
level syntax for defining messages, plus a code generator
that generates the low-level details. Each message has a
name (CurrentMeasuredValue), a unique numeric iden-
tifier (42) and a number of fields:

message CurrentMeasuredValue:42 {
int32 timestamp; // time of measurement
uint16/A/ value; // measured value in Amps
uint16 accuracy; // accuracy in 1/100 %

}
message ... { ... }
...

In terms of interactions, the SMT is passive; it is queried by
external systems. Consequently, there are no send message
statements in the SMT code that supply values for the mes-
sage fields. Similarly, the set of messages supported by SMT
depends on the configuration. The configuration, in turn, is
determined by the set of deployed components. This is why
we associate the code that provides data for the messages
with components. We have extended the component lan-
guage to support message data specifiers in addition to the
existing component contents (such as runnables and fields).
They are generated to callback functions. The example be-
low illustrates that message values can either be constants
(100), pointers to variables (&lastValue) or function ref-
erences (:currentTime), mbeddr’s cleaned up version of
function pointers.

atomic component CoreMeasurer {
field uint16/A/ lastValue = 0;
message data 42 {:currentTime, &lastValue, 100};
void measure() {

lastValue = // perform actual measurement
} }

6. mbeddr Evaluation
From Table 2 we see that the extensions are used extensively
to address the challenges in SMT. In this section we investi-
gate this in more detail by evaluating the research questions
introduced earlier relative to mbeddr’s use in SMT.

6.1 RQ-Complexity
Improved Structure using Components Components
have been used extensively, as illustrated by Table 2 and
Section 5.3, Components. All the small boxes in Figure 1
have been implemented as components. This helps break
down the system into smaller units, which in turn helps un-
derstanding and reasoning over each component in isolation.
Interfaces provide a contract between the provider and con-
sumer of the service specified by the interface. Composite
components support a hierarchical breakdown and incre-
mental composition. This helps with understandability and
enables a structured approach to variability, which in turn
facilitates a platform-based architecture.
Platform and Variability A platform-based approach re-
lies on reusable modules from which similar (but not iden-
tical) systems are developed. Custom code is typically com-

posed with the reusable modules – implemented as compo-
nents in SMT. Circa 80% of the code has been factored into
the platform, and the team expects future projects to reuse
(parts of) the platform. Referring to Figure 1, the platform
code includes all of HAL, COMM and UTIL as well parts of
APPLICATION and METROLOGY.

However, since the product-line that is built on the plat-
form consists of similar, but not identical products, it must
be possible to express variability. In SMT, coarse-grained
variability is realized by combining components in different
ways. This is enabled by the components’ support for poly-
morphism (different implementations of an interface) and
multiple instantiations of a component (similar to objects
in an object-oriented language). According to the develop-
ers, this came close to the vision of “LegoTM-like software
assembly”. For example, the metrology and communication
stacks can be used with different processors by combining
them with different HAL components.

For finer-grained variability, components support param-
eters. These are declared as part of the definition of a com-
ponent and are supplied with values when the component
instance is defined. This mechanism has been used exten-
sively in SMT: 50 components have a total of 84 parameters
set to 324 different values. Examples are the conversion fac-
tors between raw measurements and the physical values.

Presence conditions (Section 5.3, Variability) are used
sparingly; only 117 presence conditions are used for fine-
grained variability. This is in contrast to most embedded
software, including the ESC, which is typically laced with
#ifdefs, leading to a variety of problems in terms of ana-
lyzability and IDE support [27, 32].
Additional Type Checks with Units The algorithms
adapted from the ESC contained several errors that would
have been found if physical units, were available in the
type system. An example is the “calibration" of a temper-
ature T through T = T * T + offset;. Obviously, this is
wrong because, assuming the temperature was measured in
K (Kelvin), the right hand side unit would be K2, which
cannot be assigned to K on the left side. mbeddr’s support
for physical units (Section 5.3, Physical Units) detected this
and other similar errors (the variable T would be declared as
double/K/ T;). Note that typdef’ed C primitive types are
not enough because the C type system cannot calculate with
units (as in K2 ≡ K ∗K or Ω ≡ V

A).
Custom Extensions The extension for messages intro-
duced in Section 5.4, Messages, prevents low-level mistakes
in these arrays and hence removes accidental complexity.
The extensions for registers and interrupts (Section 5.4, Reg-
isters and Interrupts) also reduce complexity since they en-
capsulate the variability necessary for switching between the
variants for the target device and for testing on the PC; no
explicit #ifdef-like variability is necessary in the code.
Missing Extensions The SMT team has identified the need
for additional mbeddr extensions. This need is itself a con-

SERG Using C Language Extensions for Developing Embedded Software: A Case Study

TUD-SERG-2015-010 9

firmation of mbeddr’s approach since it demonstrates that
developers realize that language extensions can be used to
solve real problems. What follows is a “wish list” expressed
by the SMT developers.

Extensions for queues, stacks and ring buffers with very
limited overhead and OO-style syntax (stack.pop) would
be useful. Support for Q-formatted fixed point numbers
would help for platforms without a floating-point unit. The
SMT team also suggested extensions for testing and de-
bugging, and some of them have been prototyped in SMT.
These include extensions for signal analysis (plotting of sig-
nal sequences as graphs), tracing of signal sequences in the
target system (instrumented code, UART communication,
visualization/evaluation on host PC) as well as performance
profiling (with port pin toggling, oscilloscope on host PC).

The SMT developers suggested additional checks, some
done by the type system and others performed at runtime by
optionally generated code: (1) detection/avoidance of unnec-
essary initialization of RAM variables to prevent watchdog
resets during startup, (2) detection of missing volatile us-
ages, (3) detection of automatic promotion of signed to un-
signed integers, and (4) detection of word accesses to byte-
aligned (odd) memory addresses.

Finally, a language for specifying initialization parame-
ters and constraints between the parameters was suggested
to streamline component configuration. Currently, primitive
C types or structs are used for this purpose.

None of these extensions are SMT-specific, so they will
be developed as part of mbeddr’s evolution. Some of them
(such as the ring buffers and stacks) have already been im-
plemented at the time of this writing.
Unused mbeddr Extensions mbeddr ships with more ex-
tensions than those used in SMT. The two most important
ones are requirements and requirements tracing [56] as well
as formal verification [34]. The requirements and require-
ments tracing was not used because it was not requested by
the customer. The verification support could have been used
to statically check contracts of interfaces. It was not used
because of the team’s unfamiliarity with formal verification
and the realization that unit testing was enough to ensure
quality. Both of these extensions have been used success-
fully in other projects, though. In particular, static verifica-
tion is an important ingredient of the controls engineering
tool currently developed by Siemens PLM Software.
Notation and Readability Once the right abstractions are
in place, these can be rendered with intuitive notations by
MPS’ projectional editor. SMT has made use of mathemat-
ical notations such as sum, square root or fraction bar sym-
bols in some places. Also, component instances and connec-
tions are rendered graphically (similar to UML composite
structure diagrams, see Figure 2): SMT has 72 instance con-
figurations with on average 5 instances and 8 connectors (the
top size quartile has 10 instances and 19 connectors) to set up
the test scenarios. These structures are much more accessible

with a graphical notation. Generally, by using easily recog-
nizable first-class language constructs for domain-relevant
concepts (such as registers, message definitions or state ma-
chines), readability is improved.

We summarize as follows regarding RQ-Complexity:

The developers naturally think in terms of extensions, and
suggested additional ones during the project.

mbeddr components help structure the overall architec-
ture and enable reuse and configurability.

mbeddr extensions facilitate strong static checking, im-
prove readability and help avoid low-level mistakes.

6.2 RQ-Testing
Components and Testing Componentization simplifies
testing because well-defined behavioral units are available
that can be unit-tested individually. The 107 test cases, 2,400
assertions and 56 test-specific components (including the 9
stubs and 8 mocks) lead to a test coverage (line coverage)
of 80% for the critical metrology subsystem and ca. 40%
for the less challenging application parts.10 The state-of-
the-practice in industry (outside of safety-critical domains)
achieves much lower unit test coverage and relies heavily
on hardware-in-the-loop test, often for whole systems, and
often executed manually [43].
Automated, Hardware-Independent Testing Hardware-
independent testing refers to the ability to run unit tests
for functional requirements on the developer’s PC and on
a continuous integration (CI) server. In SMT, this was facil-
itated by isolating the hardware-dependent functionality us-
ing components and interfaces. Efficiently testing SMT re-
quires hardware-independent testing for two reasons. First,
the SMT hardware only became available after the soft-
ware development had started. Second, it enables continuous
build, test and integration on a CI server. The latter is well
established in software engineering and is known to increase
quality and reduce integration time [15]. However, in em-
bedded software, it is still rarely used (as are agile processes
in general [43]). In SMT, all the hardware-independent parts
were continuously built, tested and integrated with the Team-
city CI server.11

The focus on testing paid off: only 13% of the total
effort were spent on integration. For embedded software,
this is very low: Sztipanovits [47] puts the number at 40%
to 50%, and Broy calls integration a “major challenge” and
a “nightmare” [5].

A common alternative to hardware-independent testing is
the use of a simulator. Simulators, if available, are supplied
by the hardware vendor and faithfully simulate the behavior

10 The team stopped adding unit tests once the overall acceptance test suite
(during integration and commissioning, covering the key functional and
non-functional requirements) passed.
11 https://www.jetbrains.com/teamcity/

Using C Language Extensions for Developing Embedded Software: A Case Study SERG

10 TUD-SERG-2015-010

of the hardware in software, executing the hardware-specific
binaries. While this is useful for some tests, it is not a re-
placement for automated unit testing on a CI server: simu-
lators are hard to integrate into a CI build process because
they are typically not designed to be used in an automated,
non-interactive way.
Testing Hardware-Dependent Parts Some tests that in-
volve hardware specifics were performed on the PC nonethe-
less, exploiting the improved testability provided by the reg-
ister and interrupt extensions: both can be generated in a way
that emulates special-purpose registers and the occurrence of
interrupts. This contributed to the low testing effort of 16%,
because formerly manually executed, hardware-specific tests
could now be executed as part of the automated test suite.

Some aspects (e.g., timing) had to be tested manually
on the target device once it was available. In one case
a broken checksum on the serial interface led to a failed
test. Oscilloscope-based low-level debugging revealed that
the last byte was not sent because of a timing issue: the
TransmitEnable interrupt, which triggers sending of each
byte, was disabled before the last byte was sent. Generally,
component-based incremental integration helped identify
(hardware-dependent) components that created problems.
Incremental Integration and Commissioning Commis-
sioning refers to the steps necessary between finishing the
implementation on the PC and getting it to run on the tar-
get device. Despite extensive hardware-independent testing,
this is challenging: any number of problems can occur in the
overall system as a consequence of timing and resource al-
location interactions as well as hardware configuration.

Tracking down such problems is simplified by commis-
sioning the system in steps. Initially, only a minimal system
is deployed, one that performs only a single task and requires
only limited resources. The system is then grown incremen-
tally to the full scope. Occuring problems must be related to
the parts added during the last step. The causes for prob-
lems can also be narrowed down by iteratively deploying
different subsets of the full system (as opposed to linearly
growing the full system). Components helped with this pro-
cess because it is easy to compose subsets of the total set
of componenrs for commissioning. As an example, consider
inter-processor communication: it transports both measure-
ment data and calibration data. In the fully deployed system,
these two kinds of data are multiplexed over the single con-
nection. Commissioning happened in four steps: calibration
data only, measurement data only, then both together, and fi-
nally both together with the real metrology (which changes
the timing).

The commissioning of the minimal SMT system was
painless and only one problem was found: an explicit cast
between 16 bit and 32 bit integers was missing for the 16
bit target. This is in stark contrast to the team’s previous
experience, where integration often meant that developers
debug their way forward, bug by bug.

Certification The SMT device must be certified by gov-
ernment agencies regarding its accuracy. This is done by
subjecting the finished product to calibrated signals, mea-
suring the achieved accuracy. Certification has not been done
yet. However, the certification-relevant signal scenarios are
known and they are continuously exercised with software-
in-the-loop tests. This builds confidence in the readiness for
certification, which in turn avoids premature (and expensive)
certification attempts. By making these tests part of the re-
gression test suite, one can also avoid problems with certifi-
cation as the software evolves. Testing is done by using stub
and mock components in place of some of the drivers. In par-
ticular, the ADC driver is replaced by a signal simulator that
generates changing values over time. Assertions are used to
signal inaccuracies.

Regarding RQ-Testing we summarize the SMT experi-
ence as follows:

mbeddr components are instrumental in improving testa-
bility through clear interfaces and small units, leading to
80% test coverage for core components.

The custom extensions and the components facilitate
hardware-independent testing, continuous integration and
automated dry runs of the certification process.

The modularization facilitated by components helps track
down problems during commissioning.

6.3 RQ-Overhead
Memory Consumption In terms of memory consump-
tion, the mbeddr-generated binary is small enough for the
target device: the fully configured system for the metrol-
ogy processor uses 16,736 bytes of flash ROM and 4,321
bytes of RAM. For the application processor, these figures
are 10,978 and 2,917 bytes, respectively (both cases refer to
non-optimized debug code, which means the production bi-
nary will be smaller). 512 KB of flash and 32 KB of RAM
are available, so future growth is possible. Note that no dy-
namic memory allocation (malloc, free) is used as the pro-
gram runs. All memory is acquired statically at runtime or
resides on the stack, as is common in embedded systems.

The componentization is also useful in the context of
memory consumption: since the system is split into (rela-
tively) small components with clear dependencies, and since
the mbeddr component generator does not generate C code
for components that are not instantiated as part of a given
executable, one can avoid deploying unnecessary function-
ality and avoid consuming resources that are not necessary
for a given product variant. On the flip side, the components
also produce some overhead: the binary uses 2,804 bytes of
ROM and 2,647 bytes of RAM to hold the data structures
and pointers that represent component instances and their
connections. While not a problem for SMT, Appendix B dis-
cusses how this overhead can be reduced.

SERG Using C Language Extensions for Developing Embedded Software: A Case Study

TUD-SERG-2015-010 11

Development Tasks Effort % Total

Implementation 200 PD 66%
Reimplementation 145 PD 48%

Additional Functionality 55 PD 18%

Tests, Simulators 48 PD 16%
Integration & Commissioning 38 PD 13%
Custom Language Extensions 14 PD 5%

Table 3. Breakdown of the SMT development effort.

Performance We group language extensions relative to
overhead and identify three categories. In the following para-
graphs we relate the language constructs used in mbeddr
from Table 2 to these categories.

The first category has no runtime footprint, because the
respective extensions are removed before code generation. In
SMT, physical units (only relevant for the type system) and
the product line variability (presence conditions are evalu-
ated statically, similarly to #ifdefs) belong to this category.

The second category has a footprint similar to manually
written, idiomatic C code. Most of the mbeddr and custom
extensions belong to this category: state machines are re-
duced to a switch-based implementation; registers become
direct memory access based on #defines; interrupts are re-
duced to interrupt handler functions; protocol message defi-
nitions are reduced to their native, array access-based form;
all C constructs are transformed to C text without change.

Category three requires more sophisticated code struc-
tures to be generated and leads to some performance over-
head. In SMT, components are the only extension that falls
into this category: interface polymorphism is handled via
function pointers, which introduces a performance penalty
because of the indirection. Appendix B discusses existing
and future optimizations to reduce this overhead. Since the
optimizations trade flexibility for efficiency, and because the
optimizations were not necessary to run the SMT software
on the intended hardware, the team decided not to use them.

Runtime performance was paramount for SMT to achieve
the 4,096 Hz sample rate, which directly influences the mea-
surement accuracy. The implementation achieved the re-
quired sample rate, which is testament to the limited runtime
overhead. In terms of overhead, we summarize:

The memory requirements of SMT are low enough for it
to run on the intended hardware, with room for growth.

Componentization enables deployment of only the func-
tionality necessary for a variant, conserving resources.

The performance overhead is low enough to achieve the
required 4,096 Hz sample rate on the given hardware.

6.4 RQ-Effort
Developing and integrating the SMT software consumed 300
person days (PDs) overall. Table 3 breaks the 300 PDs down
into the different development tasks.

66% of the total effort (200 PDs) were used for the ac-
tual implementation of SMT. 48% (145 PDs) were required
for a maintainable and extensible implementation of the ESC
functionality in mbeddr. Since no C code importer was avail-
able, even the algorithmic code that should be reused from
the ESC had to be retyped into mbeddr. An importer is avail-
able now; however, the team estimates that only ca. 10 PDs
could have been saved if it had been available earlier, be-
cause, as mentioned before, the vast majority of the ESC had
to be redone completely.

18% of the overall effort (55 PDs) were necessary to im-
plement additional functionality required by the specifica-
tion that goes beyond the ESC. This includes
• the ability to run on two processors,
• the communication between the two processors,
• increased flexibility of the communication infrastructure

(multiplexing between calibration data and MQTT, two
communication technologies RS485 and IrDa),

• an I2C Bus driver,
• an EEPROM controller,
• a subset of the required DLMS/COSEM messages
• as well as additional application functionality such as

historical data recording and reset functionality.

Since, at this point, the core system was already in mbeddr
and structured into components, integrating this additional
functionality was straightforward; we consider 55 PDs for
this additional functionality a low figure. Of these 55 PDs,
ca. 20 were required for the MQTT implementation. Once
this was done, the distribution over two processors was a
matter of a few hours.

16% of the total effort (48 PDs) were spent on unit and
integration tests and the required test harness, specifically,
mock components and signal generator components.

13% of the overall effort (38 PDs) were spent on in-
tegration and commissioning onto the target hardware and
on validation of the non-functional properties (performance,
resource consumption). As mentioned before, this figure is
very low for embedded software. The team attributes this to
the componentization and the custom register and interrupt
extensions, which made extensive, automated testing feasi-
ble and facilitated incremental commissioning.

It took 5% of the effort (or 14 PDs) to build the custom
extensions. Considering the benefits of the extensions for
testing and maintainability, the SMT team considers this
effort well spent. Also, the number is small enough to make
custom extensions a realistic option for real projects.

Based on mbeddr’s promises and some initial experience
with mbeddr, the team originally estimated 250 to 290 PD of
total effort for an mbeddr-based implementation of SMT.12

The resulting effort of 300 PD is only slightly over this es-
timate, so no effort-increasing suprises came up during de-
velopment and mbeddr delivered as promised: the resulting

12 The team does have experience with estimating software project efforts.

Using C Language Extensions for Developing Embedded Software: A Case Study SERG

12 TUD-SERG-2015-010

software has a better structure and higher test coverage than
what could have been achieved with plain C.

Concerning RQ-Effort we conclude:

The effort for the additional functionality, integration and
commissioning is lower than what is common in embed-
ded software.

The effort for building the extensions is low enough for it
to be absorbed in a real project.

Overall, using mbeddr does not lead to significant effort
overrun, while resulting in better-structured software.

7. Discussion
In the preceding sections we have seen how C language
extensions as provided by mbeddr affect the complexity,
testability, overhead, and effort involved in the development
of a commercial smart meter device. In this section we put
our results in a broader perspective.

7.1 Threats to Internal Validity
From the perspective of internal validity, the key question is
whether our findings are trustworthy.
Bias One factor that affects this question is the bias because
of the involvement of the authors in this case study itself. The
first and third authors are the lead creators of mbeddr, and
the fourth author led the SMT project in industry with evi-
dent commercial interests. To counter this bias, we focused
on aspects that can be objectively measured (size, concept
counts, effort, overhead), not just for this case study, but also
in other (future) projects. Furthermore, the second author has
no connection to mbeddr or the companies involved in the
case study, and was brought in primarily for his experience
in conducting qualitative research.
Team Expertise To clarify the potential impact of the team
on the case study outcomes, we describe the team’s back-
ground and expertise: The team was led by a senior devel-
oper with 15+ years of experience in software engineering,
object orientation and application development with Java
and C++. He had a solid background in embedded hardware
and embedded software development in C. The team had no
experience in the SMT domain. When the project started,
the SMT team had no signficant experience with the mbeddr
languages or tools, but understood the abstractions behind
the extensions (components, state machines, product lines);
little education was necessary. However, the SMT team had
access to the mbeddr developers for training and assistance.
Example Smart Meter Code Another factor potentially
affecting the outcomes is the ESC. On the one hand, it served
as a means for the team to understand the specifics of the
SMT functionality (thereby reducing effort). On the other
hand, as mentioned in Section 6.4, the team did not have
experience with smart meters and the team estimates that

30% to 40% of the 200 PDs of implementation effort was
due to this lack of expertise. We estimate that the net effects
of the ESC on overall effort are roughly neutral.

In terms of the architecture, structure, testing or perfor-
mance considerations, the mbeddr SMT implementation is
new software: non-availability of the ESC would not have
had a significant influence.

7.2 Conclusion Validity
Conclusion validity raises the question whether there is an
explanation for our findings, which are positive overall, and
favor the adoption the use of language extensions.
Design of mbeddr The mbeddr C extensions have been
specifically designed to achieve the benefits reported in this
case study. So the design rationale of mbeddr forms the the-
oretical explanation of the case study outcomes. For an ex-
tensive description of this design rationale we refer to [51].
Cognitive Dimensions of Notations The extensions im-
prove C according to Green’s cognitive dimensions of no-
tations [18], a set of established language evaluation crite-
ria. Five dimensions are specifically improved by the exten-
sions. Incrementally adding extensions to C directly realizes
the Abstraction Gradient: the abstraction level is increased
incrementally. The user is not forced to encode everything
in either a (too) low-level or a (too) high-level language. A
suitable extension can be used (or developed) for each par-
ticular case. Adding domain-specific abstractions and nota-
tions increases the Closeness of Mapping between the code
and the domain. The additional abstractions and notations
are also a way of adjusting the Diffuseness/Terseness trade-
off of a language (or a specific program). Generally, a more
terse program is better, since it exhibits lower complex-
ity [17], assuming the language constructs used to achieve
the terseness are known to all involved parties. Using the ex-
tensions reduces Error-Proneness because programmers can
ignore low-level details irrelevant for the problem at hand.
Finally, Progressive Evaluation is improved by IDE support
and good error messages; both are emphasized in mbeddr
and generally more helpful than in a regular C IDE (partly
because the preprocessor makes this hard in regular C).
Concepts vs. Language A rival explanation of the suc-
cess we measured might be that mbeddr’s concepts (such as
proper modularization) are responsible, but that the mbeddr
language extensions are not needed. The SMT team is skep-
tical: a lot of discipline would be required without the exten-
sions, and the team appreciated the seamless integration be-
tween the extensions and C itself as well as the tool support.
In fact, one of the developers has developed component-
oriented software in plain C before, and expresses that
having these abstractions as first-class language constructs
makes a huge difference in terms of productivity: “mbeddr
simplifies doing it the right way. Without language and tool
support, you are constantly tempted to do it the wrong way,
and you are on your own not to do it wrong.”

SERG Using C Language Extensions for Developing Embedded Software: A Case Study

TUD-SERG-2015-010 13

Language vs. Tool One may also ask whether it is the lan-
guage extensions themselves or the IDE support for the ex-
tensions that led to the success. However, since MPS always
provides IDE support for a language and its extensions, we
are not able to evaluate the case where users have access to
the language extensions but not to the IDE support. In ad-
dition, the extensions and the IDE support are synergistic in
the sense that because of the abstractions provided by the
extensions the IDE is able to provide meaningful support.
Stated differently: a major reason for defining language ex-
tensions is to enable better IDE support. In this sense, a strict
distinction between the language itself and the IDE support
for the language is not meaningful.

7.3 Additional Embedded Software Challenges
When describing our case study setup (Section 3), we ex-
plained how the four aspects studied (complexity, testabil-
ity, overhead, and effort) relate to our overall goal of assess-
ing the usefulness of C language extensions for developing
embedded systems. From a construct validity point of view,
there are additional aspects (constructs) that we could have
studied, which we briefly cover below. However, they are
secondary in importance and also harder to measure than the
criteria covered by the research questions; this is why we
cover them here in the discussion section instead.
Debugging Embedded software development requires de-
bugging to understand some of the hardware-specific behav-
ior. Extensive testing can reduce, but not avoid this need. We
distinguish extension level debugging (in mbeddr) and low-
level debugging (of the generated code).

mbeddr’s debugger supports step and watch on the level
of the extensions [36]. While it is possible to exchange de-
bugger backends to support on-device debugging, extension-
level debugging is mostly used for hardware-independent
test cases running on the PC, using a gdb backend.

Low-level debugging of the generated code uses target-
platform specific debuggers (such as the one from the IAR
Embedded Workbench). In SMT the latter was also neces-
sary to find bugs in the mbeddr generators, some of which
were not yet completely finished at the time (this happened
on average once per month). To make low-level debugging
feasible, the generated code must be readable (see below).

Both are here to stay: developers will always want to de-
bug application logic on extension-level since extensions are
built to simplify the expression of application logic. They
will also want to understand the low-level representation to
understand timing and resource consumption (some embed-
ded software developers look at assembly code even today).
Quality of the Generated Code Quality refers to resource
consumption and performance as well as readability and
good coding practices. We cover overhead and performance
in Section 6.3, so we focus on the other two criteria here.

Readability is essential for debugging as well as for track-
ing down problems in the mbeddr generators. mbeddr has

always taken readability of generated code into account:
names are propagated from the model, generated names are
meaningful and the code is correctly indented. The code
looks generally as if it were handwritten, except where the
high-level extensions require the use of ugly, low-level id-
ioms (such as pointer indirections for supporting component
polymorphism, see Appendix A). We are currently investi-
gating the use of (generated) macros to make this kind of
code more readable.

mbeddr supports namespaces, and generated names are
prefixed by their namespace. Since this has led to some very
long names, an option has been added to mbeddr that only
adds prefixes if the non-prefixed name is not globally unique.
This has improved readability of the code significantly.

In embedded software, “good coding practices” is usu-
ally synonymous with compliance to MISRA-C, an industry
standard that defines rules for improving the reliability of
C code and avoiding errors [33]. We found through manual
analysis that ca. 25% of all MISRA rules are automatically
followed as a consequence of mbeddr’s language design, and
only a few rules are violated by the code generator (e.g., the
31 character limit for identifiers or the avoidance of function
pointers). The status of the remaining rules depends on the
code written by the developer in mbeddr. A future mbeddr
release will ship with a checker to detect MISRA violations
of code written in mbeddr.

The quality of the generated code is also important in
safety-critical contexts. Standards such as ISO 61508, ISO
26262 or DO178 have strict guidelines on process, tools and
code quality. Since mbeddr is not considered a qualified tool
(i.e., one whose correctness has been formally proven or
shown over time), the generated C code will be considered
as the relevant artifact relative to the standard, requiring high
code quality. A detailed discussion of tool qualification and
safety-critical systems is beyond the scope of this paper.
Maintainability Van Deursen and Klint [49] conclude that
a DSL designed for a well-chosen domain and implemented
with adequate tools may drastically reduce the costs [..] for
maintaining [applications].. We have no long-term experi-
ence on SMT maintainability, but we can make observations
that confirm the conclusion by Van Deursen and Klint [49].

The implementation of SMT proceeded in two phases.
First, the ESC functionality was rebuilt with mbeddr, and
then additional functionalities were added. This second
phase can be considered an evolution of SMT. The low effort
(55 PD) illustrates the extensibility of the component-based
architecture, especially considering that the system had to
be distributed to run on two processors during these 55 PDs.

Recently, new sensor hardware has become available to
perform the core SMT measurement. It provides better ac-
curacy and makes SMT easier to certify. The team has de-
cided to develop a variant of SMT that uses this new sensor.
A preliminary investigation has found that support for this
sensor can be provided through alternative implementations

Using C Language Extensions for Developing Embedded Software: A Case Study SERG

14 TUD-SERG-2015-010

for a small set of interfaces. The variant itself can be created
by integrating (connecting) instances of the new and the ex-
isting components. This confirms the expectation that new
product variants can be handled easily.

Part of the effort in software maintenance is the devel-
opers’ (re-)understanding the code after a potentially long
time. mbeddr’s emphasis on readability (through good ab-
stractions and notations) suggests that (re-)comprehension
of the system is simplified compared to a C implementation.

Another maintenance concern is the migration of exist-
ing code as languages change in non-backward compati-
ble ways (an active research area, as exemplified by [20]).
Since mbeddr evolved significantly during SMT develop-
ment, this occurred repeatedly. Until recently, no migration
support has been available in MPS, requiring manual (or
manually scripted) migration work; sometimes the evolu-
tion of mbeddr and SMT had to be coordinated explicitly,
which was feasible because of the slack in the project time-
line. Partly as a result of the experience with SMT, MPS 3.2
has added support for systematically dealing with language
versions and code migration, largely solving these problems.

7.4 External Validity
In this section we discuss a key question: to what extent can
the results of this case study be generalized?
Beyond SMT mbeddr is best suited for systems where low-
level and high-level code must be mixed, where different
abstractions must be used together, and where efficiency is
an important (but not the only) concern. While SMT is the
most significant system of this kind built with mbeddr so
far, mbeddr has been used for several smaller systems (see
Chapter 5 of [51]) and for a number of additional industry
projects. The findings discussed in this paper apply to these
projects as well, to various degrees.

Systems that are primarily control algorithms, are better
developed with data-flow oriented modeling tools such as
Simulink (we are currently exploring how data-flow abstrac-
tions can be added to mbeddr in the context of the controls
engineering tool developed by Siemens PLM Software).
Beyond the Team To be successful with mbeddr, a team
should have solid software engineering skills (abstraction,
modularization, reuse and automated testing) in addition to
proficiency in embedded software and C. The SMT devel-
opers had these skills. Unfortunately, these skills are not
ubiquitous in the embedded software workforce, which tra-
ditionally emphasizes locally optimized, efficient code over
(big picture) software engineering. If developers have these
skills, the mbeddr-specific training is a matter of a few days
based on our experience. Feedback from other organisations
using mbeddr tells us that the user guide, examples and the
occasional question in the forum are sufficient for learning
mbeddr: no training by the mbeddr team is necessary.
Beyond mbeddr’s Extensions The C extensions evaluated
in this paper have proven useful because, as Section 6 eval-

uates, they solve real problems in embedded software devel-
opment. Other extensions have been built in other projects
that, anecdotally, exhibit similar benefits. The Missing Ex-
tensions discussed in Section 6.1 suggest there are additional
extensions that could prove useful as well. Based on this ex-
perience, we conclude that language extensions are useful if
(1) they address a real problem in embedded software, (2)
their implementation does not introduce significant runtime
overhead, and (3) they enable improved type checking, ver-
ification or IDE support compared to native C abstractions
or macros. In addition, the effort for building the extensions
must not be prohibitively high, but this is ensured by relying
on a language workbench as the foundation.
Beyond mbeddr’s MPS Implementation The language
engineering necessary for building mbeddr and enabling the
extensibility is beyond the scope of this paper (see Section
7.5 and Chapter 10 of [51]). We have chosen MPS because of
its robust support for modular language extension and flex-
ible notations. To the degree that these features are avail-
able in other language workbenches, we expect similar re-
sults when building something like mbeddr and SMT. While
MPS’ support for non-textual notations was important for
SMT, modular language extensibility was even more crit-
ical. Modular language extension is also available in Ras-
cal [25] and Spoofax [23], and in fact, both communities are
currently implementing (subsets of) mbeddr in order to com-
pare the language workbenches.

7.5 Reliability (Repeatability)
The case study reports on the development of a real-world
embedded system: SMT was not specifically set up as a case
study. This has advantages and drawbacks. The advantages
include a realistic system, realistic constraints, real deadlines
and experienced developers with industry-level skills. The
drawback is the unavailability of the source code as well
as limited availability of data. In McGrath’s terms [31], this
case study emphasizes realism (a real industry project) over
repeatability (availability of all sources).

7.6 Practical Challenges and Drawbacks
We draw generally positive conclusions for mbeddr from
SMT. However, there are also challenges and drawbacks
when using mbeddr. Some of them are related to organi-
zational change and introducing news ideas into organiza-
tions [39] and we do not discuss them here. Some of them
are more directly related to mbeddr; we discuss those below.
Limited Generator Optimizations The generators that
create C code from mbeddr’s extensions are not as opti-
mized as those of some established tools (such as Simulink
or Stateflow). Since our existing extensions are fundamen-
tally imperative in nature, this is not a problem. As demon-
strated by SMT, the generated code runs on reasonably small
hardware. In addition, because of the tight integration with
C, users can always write efficient, low-level C code if in

SERG Using C Language Extensions for Developing Embedded Software: A Case Study

TUD-SERG-2015-010 15

particular places the generated code is not efficient enough
(this was not necessary in SMT). For extensions that im-
plement a different programming paradigm (such as matrix
math or data flow models), optimizations will become more
important, requiring more effort in generator development.
Longer Build Times Use of mbeddr and its extensions
lengthens build times, because of the required code gener-
ation. Compared to just compiling and linking C, mbeddr’s
build times are typically 2-3 times longer. In SMT, we have
modularized the software to ensure that incremental build of
a model (as the developer writes code and executes tests)
runs in less than 10 seconds. A full rebuild of SMT can take
up to 4 minutes (done primarily during nightly builds).
Tool Lock-in mbeddr relies on MPS for editing, diff-
merge and C code generation; MPS does not rely on any
modeling standards (beyond a MOF-like meta meta model).
While an export as generated text or on AST level (e.g., to
EMF) is feasible, the benefits of the approach in terms of
notation and language modularity can only be reaped when
using the mbeddr/MPS tools. The drawback of tool lock-in
is mitigated to some degree by the fact that mbeddr and MPS
are both open source software.
Version Control Integration mbeddr stores programs in
files (as an XML-serialized AST) which can be managed
with any file-based version control system (such as subver-
sion or git, the latter being used in SMT). However, diff-
merge can only be done meaningfully in MPS, which uses
the projectional editor also when showing diffs (known as a
rendered diff). This means that text-based diff tools or web-
based code-review tools such as gerrit cannot be used.
Learning Curve Using MPS’ projectional editor requires
some getting used to and may lead to some initial frustra-
tion. As the study in [57] shows, the required time varies
between a few hours and a few days. In addition, users have
to learn the extensions provided by mbeddr. This includes
learning the concrete syntax, but also the concepts and the
semantics; as discussed in Section 7.1, Team Expertise, the
degree to which this is an issue depends on education of the
developers. It was not a problem in SMT because of the team
members’ skills and their access to the mbeddr developers.
Language Engineering Skills mbeddr can be used out-
of-the-box, exploiting the existing extensions. As this paper
shows, these extensions provide significant benefits in them-
selves. However, to fully exploit mbeddr and extend it with
domain-specific extensions (see the Missing Extensions dis-
cussed in Section 6.1), an organization may want to acquire
language engineering skills. These skills are not naturally
present in many organizations that develop embedded soft-
ware, and may even be hard to hire.
A Language Extension Ecosystem An ecosystem requires
independent third parties to be able to develop language ex-
tensions, without changing the base languages. For example,
all the missing extensions identified in Section 6.1 could be
built by third parties as modular language extensions. While

the extensions in SMT have been developed together with
the mbeddr team, non-trivial extensions have been devel-
oped without help of the mbeddr team in other projects and
companies (for example, by Siemens PLM). Openly avail-
able extensions include those developed by students: parallel
programming,13 and extensions for tasks and scheduling.14

For an extension ecosystem to be healthy, clear quality
criteria are needed. We propose the criteria expressed by
the research questions in this paper as a starting point for
such quality criteria. An extension ecosystem need not be
global (with a central and public “extension store”) to be
useful. An extension library can also be maintained within
an organisation or even specifically for a (large) project.

7.7 Research Implications
This paper provides an in depth case study of the use of
mbeddr to implement a smart metering system, focusing
on complexity, testability, performance, and effort. To cor-
roborate and challenge our findings, additional studies are
needed, both for mbeddr-based systems as well as for other
extension-based approaches in embedded software. Further-
more, to better understand long term implications on, e.g.,
maintainabilility, longitudinal studies should be set up. For
SMT, we will monitor and report on the continued evolution
of SMT itself as part of our future work

8. Related Work
Industry Studies Model-driven engineering (MDE) uses
models (as opposed to code) as the main development arti-
facts. In embedded software, MDE often specifically refers
to dataflow models as implemented in Simulink15 or Ascet
SD16. An empirical study by Whittle et al. [59] finds that
most commercial tools only support models at an abstraction
level very close to the code. This is reinforced by Kamma et
al. [22]. Whittle et al. also state that users were only suc-
cessful with MDE if they customized existing tools or built
their own; otherwise the complexity of the overall process
was too high. Kuhn et al. [26] also performed an industry
study on MDE in embedded software. Similar to Whittle’s
study, it expresses a need for problem-specific expressibil-
ity, i.e. the ability to define "little languages" for particular
abstractions in the domain. The paper also emphasizes the
lack of real abstraction. mbeddr addresses these issues by
supporting different abstractions, some more code-oriented
(for the low-level aspects of a system like the units in SMT)
and some more abstract (where reasonable abstractions can
be found, e.g., state machines). Since mbeddr relies on a
language workbench, it is straightforward for users to add
domain-specific extensions (such as the registers, interrupts
and messages in SMT). Whittle also points out that users of-

13 http://mbeddr.com/2014/09/29/bastianThesis.html
14 http://mbeddr.com/2014/09/26/janoschThesis.html
15 http://www.mathworks.com/products/simulink
16 http://etas.com/en/products/ascet_software_products.php

Using C Language Extensions for Developing Embedded Software: A Case Study SERG

16 TUD-SERG-2015-010

ten prefer to not exclusively use graphical notations. This is
in line with our own experiences, which is why mbeddr sup-
ports (mixing of) textual, symbolic, tabular and graphical no-
tations [52]. Finally, Kuhn identifies model diffing and fine-
grained traceability as major issues in existing tools. Both
are addressed by mbeddr: it supports diff-merge for any lan-
guage, and tracing works for program elements expressed in
any language, at any abstraction level.
Model-Driven Engineering mbeddr can be seen as a flavor
of MDE in the sense that developers work at higher levels
of abstraction, and generation translates these abstractions
to C. However, there are two important differences com-
pared to mainstream embedded software MDE tools (such as
ASCET-SD, Matlab/Simulink or Stateflow17). First, mbeddr
is fully open: additional extensions can be added as neces-
sary (as has been done in SMT), and extensions can be com-
bined because the semantics of all extensions is based on
C. Second, users can seamlessly integrate low-level C code
with the extensions; they are not forced into the abstractions
prescribed by the tool (in SMT, components contain effi-
cient, algorithmic C code). All of this is supported in the
same IDE, avoiding tool integration hassles. Existing MDE
tools do not have robust support for this.
DSLs in Embedded Software Studies such as Broy’s [6]
and Liggesmeyer’s [30] show that DSLs substantially in-
crease productivity, and DSLs are increasingly used for em-
bedded software. Examples include Feldspar [1] for digital
signal processing; Hume [19] for real-time embedded sys-
tems, as well as [16], where DSLs are used to address quality
of service concerns in middleware for distributed real-time
systems. These DSLs generate C code, but the DSL program
is not syntactically integrated with C. mbeddr supports vary-
ing degrees of syntactic integration with C. This includes ex-
ternal DSLs that have no syntactic integration and just gener-
ate C code; DSLs which are syntactically separate, but refer-
ence C program elements; and DSLs which are syntactically
embedded into C code, and are transformed to C. This last
approach is used extensively in mbeddr and SMT.

Syntax extension of C is also not new, as exemplified by
Palopoli et al. [35], Boussinot [4] and Ben-Asher et al. [2].
However, these are all specific extensions, created by in-
vasively changing the C grammar, and they do not include
IDE support. mbeddr is different because it provides an open
framework and tool for defining modular extensions of C, as
well as the IDE. Xoc [7] supports parser-based modular ex-
tensibility, but it is limited to textual notations and also does
not address IDE extension. Our SMT study shows that de-
velopers actually use this extension possibility.
Macros In today’s practice, macro libraries such as Pro-
tothreads [10], SynchronousC [58] and PRET-C [42] are are
used extensively. Macros are resolved during compilation
and hence incur no performance penalty, but they have draw-

17 http://www.mathworks.com/products/stateflow/

backs. Syntactic flexibility is limited because macros essen-
tially look like function calls. Also, macro calls are not type
checked. Since macros operate on text, they can lead to syn-
tactically invalid C programs and subtle errors. Finally, many
IDEs cannot deal well with macros in terms of navigation in
the code. Analysis tools also often have problems. We refer
to [32] for a detailed discussion on the good and bad aspects
of macros. mbeddr’s extensions have none of these prob-
lems, since they are native, first-class language constructs.
The SMT developers did not indicate that they missed C’s
regular macro facilities.
C++ Based on private conversations of the authors with
developers in industry (from Bosch, BMW and Harmann
Becker), complex embedded software that is not targeted to
very small target platforms is increasingly developed with
C++. Examples include entertainment and navigation sys-
tems in cars or flight management systems in aircraft. How-
ever, overall, C++ still plays a relatively limited role in em-
bedded software, especially in systems that target relatively
small hardware like SMT. According to Stroustrup18, this is
also true for Embedded C++ 19 a restricted version of C++.

While mbeddr does not yet integrate with C++, it shares
some concepts. mbeddr’s components support the main use
case of C++ classes in embedded programming: a clear
separation between interface and implementation, and the
ability to have several implementations for the same inter-
face. However, mbeddr supports this via translation to C, so
no C++ compiler is necessary for the target device. Also,
all component instances are allocated at program startup to
avoid running out of memory as the program executes (this
is good practice in embedded software and was no limitation
for SMT; C++ reliance on the heap is considered a drawback
in this context). Special care has been taken to avoid perfor-
mance overhead. Another reason for using C++ is template
meta programming [8] for compile-time "language exten-
sion". mbeddr supports language extensions natively, pro-
viding much better IDE support and avoiding the cryptic er-
ror messages known from template meta programming.
Language Workbenches In Section 7.4 we argue why we
have chosen MPS for the mbeddr implementation and dis-
cuss how other contemporary language workbenches, in par-
ticular Rascal [25] and Spoofax [23], differ relative to a pos-
sible realization of mbeddr’s C extensions. Since language
engineering is beyond the scope of this paper, we keep the re-
lated work on language workbenches brief and refer to [13]
for a comparison of contemporary language workbenches.

Early examples of language workbenches include the
Synthesizer Generator [38] and the Meta Environment [24].
The latter is an editor for languages defined via SDF, a
general parsing framework. Rascal and Spoofax provide
Eclipse-based IDE support for SDF-based languages and,

18 http://www.stroustrup.com/bs_faq.html#EC++
19 http://www.caravan.net/ec2plus/

SERG Using C Language Extensions for Developing Embedded Software: A Case Study

TUD-SERG-2015-010 17

together with Xtext20, are recent parser-based language
workbenches. In contrast to MPS, their parser-based na-
ture restricts language syntax to essentially linear text. Lan-
guage extension and extension composition is supported in
Spoofax and Rascal; Xtext does not support extension com-
position, and hence cannot be used to build mbeddr.

Like MPS, the Intentional Domain Workbench [45] uses
a projectional editor. In terms of syntactic flexibility, it has
demonstrated diagrams and tables mixed with text. In terms
of language extension and extension composition the avail-
able information is limited, since it is a commercial product.

Renggli et al.’s Helvetia [37] supports language embed-
ding and extension of Smalltalk using homogeneous ex-
tension, which means that the host language (Smalltalk) is
also used for defining the extensions (these kinds of exten-
sions are also known as embedded DSLs according to Hu-
dak [21]). The authors argue that the approach is indepen-
dent of the host language. While this is true in principle,
their implementation strategy heavily relies on the unique
aspects of the Smalltalk system which are not available for
other languages, and in particular, not for C. mbeddr uses
a heterogeneous approach which does not have these lim-
itations: MPS provides a language-agnostic framework for
language and IDE extension that can be used with any lan-
guage, once the language is implemented in MPS.

9. Conclusions
This paper presents a case study that evaluates the use of
mbeddr’s extensible C for embedded software development.
We describe the setup and context, the challenges as well an
evaluation that concludes (compared to a plain C implemen-
tation, as explained at the beginning of Section 3):
• The extensions help mastering complexity and lead to

software that is more testable, easier to integrate and
commission and is more evolvable.

• Despite the abstractions introduced by mbeddr, the addi-
tional overhead is very low and acceptable in practice.

• The development effort is reduced, particularly regarding
evolution and commissioning.

Our experience with this case study and other projects also
reveals that introducing mbeddr into an organization may be
difficult, despite these benefits, due to a lack of developer
skills and the need to adapt the development process.

As part of future work we will track the evolution of SMT
to evaluate long-time maintainability and growth. We will
also investigate other mbeddr-based projects and compare
the experiences in these projects to the findings in this case
study; we will evaluate the same criteria introduced in this
paper. We have also already started implementing some of
the possible additions to mbeddr mentioned in Section 6.1
and the performance optimizations for components in Ap-
pendix B. In particular, we are working on adding data flow

20 http://eclipse.org/Xtext

extensions as part of our work with Siemens PLM Software.
Finally, we are considering updating the mbeddr user guide
to not just explain how mbeddr works, but also teach the es-
sential software engineering principles to prospective users
to address the skill-related adoption barrier.

Acknowledgements
We thank Prof. Dr. Sami S. Al-Wakeel of the King Saud
University as well as Abdelghani El-Kacimi of itemis France
for their advice and the permission to write about the smart
meter projet. We also thank Daniel Ratiu, Sebastian Erdweg
and Iris Groher for their feedback on the paper

References
[1] E. Axelsson, K. Claessen, G. Devai, Z. Horvath, K. Keijzer, B. Ly-

ckegard, A. Persson, M. Sheeran, J. Svenningsson, and A. Vajda.
Feldspar: A domain specific language for digital signal processing al-
gorithms. In MEMOCODE 2010, 2010.

[2] Y. Ben-Asher, D. G. Feitelson, and L. Rudolph. ParC - An extension
of C for shared memory parallel processing. Software: Practice and
Experience, 26(5), 1996.

[3] D. Beuche, H. Papajewski, and W. Schröder-Preikschat. Variability
management with feature models. Science of Computer Programming,
53(3), 2004.

[4] F. Boussinot. Reactive C: An extension of C to program reactive
systems. Software: Practice and Experience, (4).

[5] M. Broy. Challenges in automotive software engineering. In Proc.
of the 28th Intl. Conference on Software engineering, ICSE ’06, New
York, NY, USA, 2006. ACM.

[6] M. Broy, S. Kirstan, H. Krcmar, and B. Schätz. What is the benefit of
a model-based design of embedded software systems in the car indus-
try? In Emerging Technologies for the Evolution and Maintenance of
Models. ICI.

[7] R. Cox, T. Bergan, A. T. Clements, M. F. Kaashoek, and E. Kohler.
Xoc, an extension-oriented compiler for systems programming. In
ASPLOS 2008, 2008.

[8] K. Czarnecki and U. W. Eisenecker. Generative Programming: Meth-
ods, Tools, and Applications. ACM Press/Addison-Wesley Publishing
Co., New York, NY, USA, 2000.

[9] W. Damm, R. Achatz, K. Beetz, H. Daembkes, K. Grimm, P. Ligges-
meyer, et al. Nationale Roadmap Embedded Systems. In Cyber-
Physical Systems. Springer, 2010.

[10] A. Dunkels, O. Schmidt, T. Voigt, and M. Ali. Protothreads: simplify-
ing event-driven programming of memory-constrained embedded sys-
tems. In Proceedings of the 4th international conference on Embedded
networked sensor systems, SenSys ’06. ACM, 2006.

[11] T. Dybå, D. I. Sjøberg, and D. S. Cruzes. What works for whom,
where, when, and why? On the role of context in empirical software
engineering. In Proceedings of the ACM-IEEE International Sympo-
sium on Empirical Software Engineering and Measurement, 2012.

[12] C. Ebert and C. Jones. Embedded software: facts, figures, and future.
Computer, 42(4), april 2009.

[13] S. Erdweg, T. Storm, M. Völter, et al. The state of the art in language
workbenches. In M. Erwig, R. Paige, and E. Wyk, editors, Software
Language Engineering, volume 8225 of LNCS. Springer, 2013.

[14] M. Fowler. Language workbenches: The killer-app for DSLs?
ThoughtWorks, http://www.martinfowler.com/ articles/languageWork-
bench.html, 2005.

[15] M. Fowler and M. Foemmel. Continuous integration. ThoughtWorks,
http://martinfowler.com/articles/continuousIntegration.html, 2006.

Using C Language Extensions for Developing Embedded Software: A Case Study SERG

18 TUD-SERG-2015-010

[16] A. S. Gokhale, K. Balasubramanian, A. S. Krishna, J. Balasubrama-
nian, G. Edwards, G. Deng, E. Turkay, J. Parsons, and D. C. Schmidt.
Model driven middleware. Science of Computer Programming, 73(1),
2008.

[17] J. Graylin, J. E. Hale, R. K. Smith, H. David, N. A. Kraft, W. Charles,
et al. Cyclomatic complexity and LOC: empirical evidence of a stable
linear relationship. J. of Software Engineering and Applications, 2(3),
2009.

[18] T. R. Green. Cognitive dimensions of notations. People and computers
V, 1989.

[19] K. Hammond and G. Michaelson. Hume: a domain-specific language
for real-time embedded systems. GPCE ’03, 2003.

[20] M. Herrmannsdoerfer, S. D. Vermolen, and G. Wachsmuth. An exten-
sive catalog of operators for the coupled evolution of metamodels and
models. In Software Language Engineering. Springer, 2011.

[21] P. Hudak. Modular domain specific languages and tools. In Software
Reuse, 1998. Proceedings. Fifth International Conference on, pages
134–142. IEEE, 1998.

[22] D. Kamma and K. Sasi. Effect of model-based software development
on productivity of enhancement tasks - an industrial study. In Proc. of
the 21st Asia-Pacific Software Eng. Conference (APSEC) 2014.

[23] L. C. L. Kats and E. Visser. The Spoofax language workbench: Rules
for declarative specification of languages and IDEs. In OOPSLA.
ACM, 2010.

[24] P. Klint. A meta-environment for generating programming environ-
ments. ACM Transactions on Software Engineering Methodology, 2
(2), 1993.

[25] P. Klint, T. van der Storm, and J. Vinju. EASY meta-programming
with Rascal. In GTTSE III, volume 6491 of LNCS. Springer, 2011.

[26] A. Kuhn, G. Murphy, and C. Thompson. An exploratory study of
forces and frictions affecting large-scale model-driven development.
In R. France, J. Kazmeier, R. Breu, and C. Atkinson, editors, Model
Driven Engineering Languages and Systems, volume 7590 of LNCS.
Springer, 2012.

[27] D. Le, E. Walkingshaw, and M. Erwig. # ifdef confirmed harmful: Pro-
moting understandable software variation. In 2011 IEEE Symposium
on Visual Languages and Human-Centric Computing.

[28] E. Lee. What’s ahead for embedded software? Computer, 33(9), 2000.

[29] E. Lee. Cyber-Physical Systems: Design challenges. In Object Ori-
ented Real-Time Distributed Computing (ISORC), 2008 11th IEEE In-
ternational Symposium on, 2008.

[30] P. Liggesmeyer and M. Trapp. Trends in embedded software engineer-
ing. IEEE Softw., 26, May 2009.

[31] E. McGrath. Methodology matters: Doing research in the behavioral
and social sciences. In Readings in Human-Computer Interaction:
Toward the Year 2000 (2nd ed. Citeseer, 1995.

[32] F. Medeiros, C. Kästner, M. Ribeiro, S. Nadi, and R. Gheyi.
The love/hate relationship with the C preprocessor: An interview
study. In Proceedings of the 29th European Conference on Object-
Oriented Programming (ECOOP), Lecture Notes in Computer Sci-
ence, Berlin/Heidelberg, 2015. Springer-Verlag.

[33] MISRA. Guidelines for the use of C in critical systems, 2004.

[34] Z. Molotnikov, M. Völter, and D. Ratiu. Automated domain-specific
C verification with mbeddr. In Proc. of the 29th ACM/IEEE Intl.
Conference on Automated Software Engineering. ACM, 2014.

[35] L. Palopoli, P. Ancilotti, and G. C. Buttazzo. A C language extension
for programming real-time applications. In 6th Int. Workshop on Real-
Time Computing and Applications (RTCSA 99). IEEE CS, 1999.

[36] D. Pavletic, A. S. Raza, M. Voelter, B. Kolb, and T. Kehrer. Extensible
debuggers for extensible languages. In GI/ACM WS on Software
Reengineering, 2013.

[37] L. Renggli, T. Girba, and O. Nierstrasz. Embedding languages without
breaking tools. In ECOOP’10, 2010.

[38] T. W. Reps and T. Teitelbaum. The synthesizer generator. In First ACM
SIGSOFT/SIGPLAN software engineering symposium on Practical
software development environments. ACM, 1984.

[39] L. Rising and M. L. Manns. Fearless change: patterns for introducing
new ideas. Pearson Education, 2004.

[40] P. Romaniuk. Introduction to multithreaded programming
in embedded systems. http://elesoftrom.com.pl/en/os/ multi-
threaded_programming.pdf, 2013.

[41] P. Runeson, M. Host, A. Rainer, and B. Regnell. Case study research
in software engineering: Guidelines and examples. Wiley, 2012.

[42] A. G. S. Andalam, P. S. Roop. Predictable multithreading of embedded
applications using PRET-C. In Proc. of ACM-IEEE Int. Conference on
Formal Methods and Models for Codesign (MEMOCODE),, 2010.

[43] O. Salo and P. Abrahamsson. Agile methods in European embedded
software development organisations: a survey on the actual use and
usefulness of XP and Scrum. Software, IET, 2(1), 2008.

[44] Saudi Electricity Company. Specifications for electronic
revenue CT and CT-VT meter. https://www.se.com.sa/ar-
sa/Business_Document/Specifications

[45] C. Simonyi, M. Christerson, and S. Clifford. Intentional Software.
SIGPLAN Not., 41(10), Oct. 2006.

[46] G. L. Steele. Growing a language. Higher-Order and Symbolic
Computation, 12(3), 1999.

[47] J. Sztipanovits. Embedded software: Opportunities and chal-
lenges. http://archive.darpa.mil/DARPATech2000/Presentations
/ito_pdf/2SztipanovitsEmbedSWBW.pdf, 2000.

[48] J. Sztipanovits and G. Karsai. In T. Henzinger and C. Kirsch, editors,
Embedded Software, volume 2211 of LNCS. Springer, 2001.

[49] A. van Deursen and P. Klint. Little languages: Little maintenance?
Journal of software maintenance, 10(2), 1998.

[50] M. Voelter. Language and ide development, modularization and com-
position with MPS. In GTTSE 2011, LNCS. Springer, 2011.

[51] M. Voelter. Generic Tools, Specific Languages. PhD thesis, Delft
University of Technology, 2014.

[52] M. Voelter and S. Lisson. Supporting diverse notations in MPS’
projectional editor. GEMOC Workshop, 2014.

[53] M. Voelter, D. Ratiu, B. Schaetz, and B. Kolb. mbeddr: an extensible
C-based programming language and ide for embedded systems. In
Proceedings of SPLASH Wavefront 2012, 2012.

[54] M. Voelter, S. Benz, C. Dietrich, B. Engelmann, M. Helander, L. Kats,
E. Visser, and G. Wachsmuth. DSL Engineering. dslbook.org, 2013.

[55] M. Voelter, D. Ratiu, B. Kolb, and B. Schaetz. mbeddr: instantiating
a language workbench in the embedded software domain. Automated
Software Engineering, 20(3), 2013.

[56] M. Voelter, D. Ratiu, and F. Tomassetti. Requirements as first-class cit-
izens: Integrating requirements closely with implementation artifacts.
In ACESMB@MoDELS, 2013.

[57] M. Voelter, J. Siegmund, T. Berger, and B. Kolb. Towards user-friendly
projectional editors. In 7th International Conference on Software
Language Engineering (SLE), 2014.

[58] R. von Hanxleden. Synccharts in C - a proposal for light-weight, deter-
ministic concurrency. In Proceedings of the International Conference
on Embedded Sofware (EMSOFT’09), 2009.

[59] J. Whittle, J. Hutchinson, M. Rouncefield, H. Burden, and R. Heldal.
Industrial adoption of model-driven engineering: Are the tools really
the problem? In Proc. of the 16th Intl. Conf. on Model Driven
Engineering Languages and Systems (MODELS) 2013. ACM, 2013.

[60] R. K. Yin. Case study research: Design and methods. Sage publica-
tions, 2014.

SERG Using C Language Extensions for Developing Embedded Software: A Case Study

TUD-SERG-2015-010 19

A. Runtime Overhead of Components
For every component, we generate a struct that holds the
data associated with each component instance. Specifically,
it contains a member for each component field (divident__
field in the example below), a member for each required
port (store__port) and a member that is typed to another
struct that holds a function pointer for each operation on a
required port (store__ops); this latter struct is specific to
the interface associated with the particular port. Note that
every instance of a given component may be connected to a
different target component, as long as it provides a port with
the required interface (interface polymorphism). This is why
the “wiring data” must be stored for every instance, which
is why it is held in members of the instance struct (__port
and __ops).

// struct for the ’Interpolator’ component
struct Interpolator__cdata {
// component field ’divident’
int8 divident__field;
// required port ’store’
void* store__port;
// operations for the ’TrackpointStore’
// interface on the ’store’ required port
TrackpointStore__idata_t* store__ops; };

// struct for the ’TrackpointStore’ interface.
struct TrackpointStore__idata {
// operation void save(Trackpoint_t* tp)
void (*save)(Trackpoint_t*,void*);
// operation Trackpoint* get()
Trackpoint_t* (*get)(void*);
// operation Trackpoint* take()
Trackpoint_t* (*take)(void*);
// operation bool isEmpty()
bool (*isEmpty)(void*); };

The following code is generated from a component runnable
that, in the first line of the implementation, invokes the save
method on a store required port:

void Interpolator_processor_process
(Trackpoint* p, void* ___inst) {

Interpolator__cdata* ___ci =
((Interpolator__cdata*)(___inst));

(*___ci->portops_store->save)(p, ___ci->port_store);
...

}

Every component runnable gets an additional argument that
represents the data for the current instance, ___inst. Its
type is the struct generated for the component that owns the
struct (Interpolator__cdata in the example above). For
technical reasons it is passed as a void pointer, and then
downcast to the correct concrete type in the first line of ev-
ery runnable. The second line in the code above is the actual
call; the call is performed via a function pointer save (the
name of the called operation) in the portops struct for the

store required port. While the accesses to the members in
the struct has no overhead because the addresses can be cal-
culated by the compiler, the call through the function pointer
is less efficient than a direct function call. In addition, the ad-
ditional ___inst argument increases the required stack size,
a scarce commodity on some embedded processors.

B. Reducing the Overhead of Components
The overhead incurred by components is especially prob-
lematic because components are used extensively in order to
create modular, testable and maintainable software. In this
section we discuss existing and planned ways of reducing
this overhead.
Static Wiring If in a given executable an interface is only
provided by one component, and hence no runtime polymor-
phism is required, the components can be connected stat-
ically, and the indirection through function pointers is not
necessary. This leads to better performance, and reduces the
required stack size, because no function pointers have to be
stored in the generated component struct. But it also limits
flexibility: no polymorphism is supported. Below is the code
from Appendix A with static wiring enabled. The genera-
tor knows statically that the TrackpointStore interface is
only provided by the InMemoryStore component. As the
code below shows, its save operation is called directly, no
indirection through a function pointer is used.

void Interpolator_processor_process
(Trackpoint* p, void* ___inst) {

Interpolator__cdata* ___ci =
((Interpolator__cdata*)(___inst));

InMemoryStore_store_save(p, ___ci->port_store);
...

}

Limiting Stack Size We are currently working on an ad-
ditional optimization which allocates the ___inst argument
as a global variable if a component is only instantiated once,
avoiding the increase in required stack size.
Inlining Runnables Extensive use of components leads
to many calls between runnables (functions in the generated
C code). So, while mbeddr incurs no additional overhead
compared to function calls when static wiring is used, it is
slower than putting everything into one runnable or func-
tion because of the function calls. We are currently work-
ing on the ability to inline runnables using a combination of
C’s inline keyword and a transformation that actually in-
lines a runnable call on mbeddr level. As a trade-off to the
reduced performance cost, the code size will increase as a
consequence of code duplication.

Using C Language Extensions for Developing Embedded Software: A Case Study SERG

20 TUD-SERG-2015-010

TUD-SERG-2015-010
ISSN 1872-5392 SERG

