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ABSTRACT With the advent of low-cost, embedded sensor-actuator devices, the applications of cyber-
physical systems have spread multi-fold in domains like infrastructure, manufacturing, automation, etc.
Wireless sensor-actuator networks (WSANs) act as the backbone for applications in these domains. Typical
WSAN deployments focus on energy-efficiency (in-turn lifetime) as replacing batteries is labor intensive and
expensive. However, many CPS applications require highly-reliable data delivery with strict time bounds.
Unfortunately, the classical approach of scheduling/prioritizing flows for bounded time communication is
hard to implement with energy-constrained embedded devices. In this work, we present FLEET, a com-
munication primitive that guarantees timely data delivery with 1) low latency by scheduling a maximum
number of end-to-end flows within a short time span; 2) highly energy-efficient networking; and 3) reliable
data delivery. Using a smart parallelization technique, FLEET achieves simultaneous transmissions while
guaranteeing data delivery. This reduces the average duty-cycle of the nodes and makes it more energy-
efficient than many state-of-the-art protocols. By combining multiple routing strategies, FLEET not only
simplifies the schedulability problem but also accommodates more flows within a time span reducing delay
considerably. Overall, with respect to the state of the art, FLEET offers a delay and duty cycling reduction
by 2.2 and 2.8 times, respectively.

INDEX TERMS Constructive interference, capture effect, clustering, energy-efficient, low-latency, wireless
sensor networks, Internet of Things, cyber-physical systems.

I. INTRODUCTION
Traditionally, Wireless Sensor Networks (WSNs) have been
deployed for collecting data over extended periods of
time [1]. In recent years, due to their ease of deployment and
management, Wireless Sensor-Actuator Networks (WSANs)
have become an integral part of many smart-* applications
in the domain of Internet of Things (IoT) or cyber-physical
systems (CPS) at large. However, many CPS applications
have stringent requirements, unlike traditional WSAN. More
precisely, in CPS, it is important to have: (i) as low latency
as possible; (ii) as high reliability as possible and above all
(iii) as low energy consumption as possible since the devices
are battery operated.

The associate editor coordinating the review of this manuscript and
approving it for publication was Bo Li.

Figure 1 illustrates a generic CPS scenario consisting of
a number of sensor and actuator nodes and a controller.
The system works in a sense-decide-actuate cycle, where
sensors detect and report the events, the controller takes the
decision and sends the actuation commands based on the
event, and the actuators act according to the commands.
Even though this cycle is the primary aspect of any CPS,
the underlying communication protocol makes it possible.
The stringent requirements of CPS make it difficult to simply
adopt the existing protocols in the WSN domain. Let us take
the process industry as an example, where there are more
than 40M sensor and actuator devices installed worldwide,
operating feedback control loops in the time scale of tens
of milliseconds [2], [3]. Since these devices are typically
battery operated, there is an equally strong requirement on
energy efficiency to keep the operational and maintenance
costs down. As classic WSN protocols trade off performance
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FIGURE 1. Communication plays a crucial role in the
sense-decide-actuate cycle of a CPS.

for energy efficiency, there is a need for a new set of bounded-
time communication protocols that strike a (different) balance
between latency and energy consumption while meeting the
demands of CPS applications.

A. PROBLEM DESCRIPTION
Crafting an energy-efficient, low-latency, highly-reliable
communication primitive is not easy for several reasons,
which are listed below.

Duty-cycling dilemma: Duty cycling is the standard
approach to reduce energy consumption by periodically
putting sensor devices to sleep, thereby extending their life-
time up to years compared to days/weeks [4]. To keep the
design complexity low, many WSN-specific MAC protocols
apply duty cycling in an asynchronous fashion. This, how-
ever, seriously affects end-to-end latency as packets will be
delayed at each hop through the network to wait for the next
node to wake up.

Rendezvous predicament: To craft an efficient route (i.e.,
a staggered set of slots) between a source (sensor or sink)
and a destination (sink or actuator) node the network topology
must be known apriori. Collecting, and keeping an up-to-date
status of link availability between neighboring nodes is quite
a challenge as environmental factors can have detrimental
effects on packet reception rates, and link quality may fluc-
tuate heavily. Worse, scheduling multiple flows (i.e., source-
destination pairs) is known to be an NP-hard problem [5], and
it becomes even more difficult when each flow needs to be
completed within a tight time-bound [6].

Periodic v/s. event-driven tussle: Another issue is that
most of the existing bounded-time protocols are aimed at
periodic traffic (flows) where sensor nodes report their data
at regular intervals [7], [8]. However, many cyber-physical
system applications involve event-driven scenarios where the
sensors may read out periodically, but data is reported only
when a significant event is detected [2]. In order to provide
a fixed delay bound for event-data delivery, a trivial solution
would be to decide schedules similar to that of periodic traffic,
i.e., a dedicated set of slots at regular intervals to the nodes
that are involved in routing the data packet from each source.
However, as only the source nodes know whether the data
would be sent or not, all the intermediate nodes would wait
in receiving mode in their respective receiving slots (idle
listening) unnecessarily, which leads to wastage of enormous
amount of energy. Indeed listening to the channel consumes a

bit more energy than transmission. An alternative approach is
to assign a few open slots to handle event-based traffic, where
a node contend within the open slots when it detects an event.
Naturally, when many events are to be reported and few slots
are available, the data packets may repeatedly collide with
each other without being able to deliver, let alone on time.
This has forced protocol designers to overprovision by a large
margin.

B. APPROACH
In this paper we describe FLEET (Flat Latency Energy
Efficient Transmission), a bounded delay communica-
tion protocol that effectively tackles the above-mentioned
scheduling issues and also avoids overprovisioning.
FLEET combines synchronous, slot-based communication at
the link level using advanced flooding and clustering at the
network level to reduce energywastage. Important techniques
used in FLEET are listed below.

Clustering: To limit over provisioning and enhance effi-
ciency, FLEET employs a hierarchical approach in which
nodes report to cluster heads, who aggregate data from all
members into a single packet, which is forwarded (flooded) to
the controller. This reduces the number of data packets within
the network as only the aggregated packets need to travel
multiple hops, which in turn reduces the number of slots in
the global schedule, i.e., across the clusters.

Capture effect: Data collection within a cluster is short
ranged, which allows for spatial reuse of slots when seen from
the network perspective. Because of the capture effect [9],
which dictates that a node will be able to receive the
packet sent from the closest source with high probability,
FLEET opportunistically orchestrates all clusters to operate
in parallel and thus speeding up the data collection process
considerably. Here retransmissions are supported to enhance
reliability for safety-critical applications.

Constructive interference: FLEET employs constructive
interference (CI) to quickly flood the aggregated data through
the network. We capitalize on the success of Glossy [10] and
eliminate the need for hop-by-hop routing. As each cluster
head is directed to flood its message in turns –in one slot–
the flow scheduling problem is effectively eliminated and at
the same time sending packets back-to-back reduces radio
transceiver on-time, thus, energy usage.

To demonstrate the feasibility of FLEET ’s novel design
leveraging the benefits of clustering, capture and CI,
we implemented it on the Contiki [11] operating system and
tested it on two testbeds (Indriya [12] and FlockLab [13]).
FLEET was demonstrated to achieve up to 2.2 and 2 times
lower delay, while consuming up to 2.8 and 3.8 times lesser
energy when compared with the state-of-the-art low-power
wireless bus (LWB) [14] protocol, which is a flow-scheduling
protocol on top of Glossy.

C. CONTRIBUTIONS
The main contribution of this work is in designing a new
communication protocol that encompasses the best practices
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FIGURE 2. Positioning of FLEET in the design space of energy-efficient
and bounded-time protocols.

inWSN protocol design, stitch them together, and adapt them
in a way that two contrasting requirements are met simul-
taneously (Fig. 2). Our FLEET protocol tries to optimize
the delay, reliability as well as energy and time. The salient
features are summarized below:
• Due to its low overhead, FLEET supports both peri-
odic and event-driven traffic (through aggregation)
flexibly, while energy waste for event-driven traffic is
kept minimal.

• FLEET provides bounded communication latency with-
out explicitly solving the complex flow-scheduling
problem. We prove that the total latency in FLEET is
bounded by �(

√
n) andO(n) slots, where the total num-

ber of flows in the network is n.
• To the best of our knowledge, FLEET is the first
to employ on-the-fly clustering for time-bounded
IoT applications.

• Using efficient spatial slot reuse, FLEET ensures that a
large number of flows can be delivered within a given
short time period. In other words, more flows can meet
their deadline compared to conventional (sequential)
communication.

The novelty of this work does not lie in the individual fea-
tures, but for a holistic approach, i.e., it improves the state-
of-the-art on every aspect at the same time. To the best of
our knowledge, this is the first work that comprehensively
brings multiple aspects and binds them into a useful and
highly efficient protocol.1 Further, we have also evaluated the
FLEET protocol on two testbeds.

II. RELATED WORK
FLEET builds upon the foundations laid by energy-efficient
communication developed for WSNs and the low-latency
protocols developed for wireless sensor-actuator networks
(WSANs). We will succinctly review the most relevant work
from both these areas as the amount of literature is vast.
Moreover, as much of FLEET ’s efficiency is due to the use
of clustering, we will also briefly address that topic.

Energy-efficient communication: Communication pro-
tocols for WSNs are geared towards duty-cycling at the
MAC layer [16]–[18], and data collection at the routing
layer [19]–[21]. The former generally sacrifice latency and
predictability for a reduction in energy consumption, while
the latter is too specific in routing traffic only to one

1Part of this work is included in the dissertation of one of the authors [15].

(or few) edge nodes to be used for IoT applications. Even
recent protocols, like RPL [22] and ORPL [23], that do
support any-to-any routing perform poorly in a real-time
context [24].

Bounded latency communication: WirelessHART is the
most prominent time-bound MAC protocol for WSANs [25].
The standard defines a TDMA structure, but leaves open
the scheduling of the slots [26]. In practice, WirelessHART
is often combined with source routing [27] or graph rout-
ing [28]. Source routing is straight forward to implement
but struggles with changing link qualities as routes need to
be recomputed. Graph routing is more robust as it includes
alternative routes in the schedule but pays its price in terms
of latency and energy consumption [28].

To ensure time-bounded data delivery, end-to-end node
scheduling is exercised hand-in-hand with routing. As node
scheduling is an NP-hard problem [5], a number of heuristic
solutions have been proposed in the literature. For example,
a mathematical model for joint routing and link scheduling
is proposed by Soldati et al. [29]. Similarly, Pottner et al.
developed a system with schedule construction for time-
critical data delivery for periodic traffic [7]. As scheduling all
flows in a network within a certain time-bound is a challenge,
schedulability analysis under graph routing is studied in [6].
The common drawback of these solutions is their computa-
tional complexity.

Time slotted channel hopping (TSCH) is a descendant and
improvement of WirelessHART that support time-bounded
and reliable data delivery [30], [31]. Due to adherence to
the layered architecture, it can be coupled with any routing
and higher layer protocols. Like WirelessHART, TSCH also
requires a scheduler to support multihop bounded-latency
routing. Orchestra [32] proposes a distributed scheduler that
is aimed for this purpose. Recently, the IETFWorking Group
6TiSCH [33] is standardizing an IPv6 supported protocol
suite that uses TSCH as MAC combined with RPL-based
routingmechanism. However, a number of challenges are still
open to be improved [34]–[36].

Clustering: The usage of clustering has been success-
fully proposed before [37], [38]. However, most of the exist-
ing research does not consider bounded-time data delivery.
An exception is a work by Deng et al., who propose a
cluster-based data collection mechanism for delay-sensitive
WSANs [39]. Their method, however, cannot quash the
NP-hard scheduling problem. Moreover, it assumes that the
topology of the network is known beforehand. Thus they
cannot be extended to IoT scenarios involving actuator nodes.
Concurrent transmission for communication: An alter-
native approach is to forgo routing altogether and operate
the multi-hop network as a shared bus delivering all data
to all nodes. The corner-stone of this approach is Glossy’s
fast flooding mechanism that exploits constructive interfer-
ence [10] for successful communication. The LWB proto-
col [14] overlays a TDMA structure on top in which nodes
take turns in initiating such an efficient flood. The reduc-
tion in complexity (doing away with routing) outweighs
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the overhead of flooding the whole network in each slot.
LWB works remarkably well outperforming traditional tree-
based routing by quite some margin. However, it does not
scale well to large networks as the average latency grows
linearly with the number of nodes in the network. Though
LWB is shown to be efficient compared to state-of-the-art
data collection protocols, such as CTP [19], RPL [22], and
BCP [40], the inherent all-to-all communication pattern of
LWB introduces a significant amount of energy overhead on
the nodes.

A number of other protocols are developed that exploits
the concurrent transmission primitive of Glossy. For example,
CXFS [41] and Sparkle [42] use a forwarder selection mech-
anism and transmission power control respectively on top
of LWB that reduces the unnecessary participation of nodes
in every Glossy flood while uses concurrent transmission
in a minimalist way to ensure reliability. Similarly, Lane-
Flood [43] is another protocol that improves over LWB and
shows protocols like TCP/UDP and CoAP can run efficiently
by utilizing current transmission.

Zimmerling et al. proposed Blink [8], which is the first
Glossy-based protocol that is tailored for real-time traffic.
It proposes a real-time scheduler (earliest deadline first) on
top of non-real-time LWB that ensures flows meet their dead-
line. However, we show later that it can guarantee deadline
only for a few flows within a given stipulated time. Moreover,
it assumes periodic traffic (though for different flows the
period can be different). Thus, it causes significantly high
energy wastage due to idle listening in case of event-driven
traffic.

Fig. 2 shows how the various protocols fit in the design
space for energy-efficient bounded-time communication pro-
tocols spanned by the two dimensions – latency and energy
consumption. FLEET has been designed to capitalize on
the best practices from the WSN and control domains. The
combination of a slot-based approach and (selective) flooding
by means of clustering yields a solution that results in both
lower latency and lower energy consumption.

III. OVERVIEW
The overall objective of FLEET is to provide a bounded-
time communication primitive that supports both periodic and
event-driven traffic while ensuring high energy efficiency.
This amounts to the following design goals.

Goal 1: support data collection from asmany nodes (flows)
as possible within the given latency constraints. This implies
a slot-based approach since it provides predictability as
opposed to asynchronous approaches.

Goal 2: reduce the average latency as much as possible.
This hints at maximizing the amount of communication hap-
pening in parallel in the network by means of spatial reuse.

Goal 3: handle topology changes in a timely manner.
This rules out running complex, and time-consuming flow
scheduling algorithms at the central controller (or sink node).
This advocates the use of advanced topology-agnostic flood-
ing primitives, but without the associated scaling problems.

FIGURE 3. Components of FLEET grouped in two phases.

TABLE 1. Comparison of various system parameters between
WirelessHART, TSCH, and FLEET.

Goal 4: make the protocol dynamic such that it can effec-
tively support event-based applications. This implies that the
protocol should adapt at the local level instead of at the global
controller.

Fig. 3 shows the key building blocks of FLEET grouped in
two different phases: clustering and operational. During the
clustering phase, FLEET solicits an election process in which
a set of cluster heads is determined such that the remaining
sensor nodes are one-hop away from a cluster-head. Once
the clusters are formed FLEET enters the operational phase
in which data is sent from the sensor nodes via the cluster
heads to the global controller. Subsequently, the controller
determines the necessary actions and sends out commands
(if any) to the actuators in the network.

A. SLOT-BASED COMMUNICATION
FLEET adopts a TDMA approach where activities are
mapped onto slots. To support bounded-time communication,
slots are carefully allocated to minimize energy consump-
tion and maximize parallel execution. The resulting trans-
mission schedule is compact, yet comprises retransmissions
and path diversity to account for the ever-changing wireless
environment. FLEET mimics WirelessHART, whose opera-
tion is driven by a superframe consisting of multiple slots
specifying what needs to happen and when. For reference,
Table 1 shows how the frame structure of FLEET and Wire-
lessHART compare. The main difference is that FLEET uses
two kinds of slots: unicast slots for local (intra-cluster) com-
munication, and (selective) flooding for global (multihop)
communication.

B. FLEET SUPERFRAME
A FLEET superframe consists of radio-on and off dura-
tion, where any data transmission occurs during the radio-on
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FIGURE 4. Structure of the superframe as the building block of slotted
communication in FLEET.

period. The duration of a superframe matches the required
sensing frequency of the application, with as small radio-
on duration as possible (see Fig. 4, which is not drawn to
scale). Even during the radio-on duration, a node turns its
radio on in a particular slot only if it is either a source, for-
warder, or destination. The aim is to make a node participate
in the minimum number of slots to save as much energy as
possible while ensuring end-to-end data delivery of all flows
in the network. Moreover, even within a slot, a node turns-off
its radio immediately after completing the communication.
There are five different types of slots for different purposes,
which are either a unicast or a flooding slot.

Synchronization slot: At the beginning of every super-
frame, a sync slot (re)synchronizes the whole network with
the controller similar to Glossy. Thus, it is a flooding slot in
which every node participates. Additionally, the sync packet
contains the structural information of the superframe, i.e., the
number of different slots within the superframe.

Intra-cluster data slot: These slots (using unicasting) are
used to deliver sensed data from cluster members to their
respective cluster heads. Though each member within a clus-
ter has a separate slot assigned to it, nodes in different clusters
can simultaneously communicate reusing these intra-cluster
slots. Transmissions by the nodes at the border of a cluster
may interfere with other clusters. Thanks to the capture effect,
we see fewer packets being lost.

Global data slot: The global data slots are used to deliver
aggregated sensed data from the cluster heads to the controller
as well as the commands from the controller to the actuators
using flooding. Each cluster-head is assigned a unique global
data slot.

Request/reply (RR) slot: Request/reply (RR) slots are
used to acquire data slots. Intra RR slots (through unicast)
are used to acquire an intra data slot by the cluster members
and global RR slots (through flooding) are used to acquire a
global data slots by the cluster heads.

In the next section, we provide the details of how
FLEET works utilizing this superframe and slot-based com-
munication.

IV. PROTOCOL DESCRIPTION
Asmentioned earlier, FLEET has two phases – clustering and
operational. The first requirement for any node is to synchro-
nize itself with the controller immediately after joining the
network. Thus, after a node is powered on, it keeps its radio
on until it receives a sync packet from the controller. As soon

FIGURE 5. Message exchange among the nodes during cluster formation,
which is intertwined with data slot assignment.

as it receives this packet, it learns the superframe structure and
adjusts its radio-on time accordingly. Subsequently, the node
starts acquiring a data slot (if it is a sensor node) in the
clustering phase.

A. CLUSTERING PHASE
In this phase, every node performs three major tasks:
(i) decide a role for itself, i.e., either become a cluster
head or a member, (ii) acquire a data slot to deliver its data,
and (iii) determine in which global data slots to participate to
help in routing/flooding packets to/from the controller.

1) ELECTION OF CLUSTER HEADS AND ASSIGNMENT OF
GLOBAL DATA SLOTS
Fig. 5 provides an overview of the cluster-formation process.
At the beginning of the clustering phase, a superframe con-
tains only global Request/reply (RR) slots (apart from a sync
slot), and nodes have neither cluster role nor a data slot. Thus,
everyone requests for a global data slot from the controller
in the first (1st ) available RR slot. Note that collisions are
(usually) resolved due to the capture effect, ensuring that only
one request reaches the controller. Note that in the beginning
there are more collisions, but that will reduce sharply over a
few slots when nodes start succeeding (and stop contending).

Upon receiving a request, the controller sends back a
unique global data slot in the next (2nd ) RR slot. After receiv-
ing that reply, the requester node becomes a cluster head.
It announces this fact in the next (3rd ) RR slot to its immediate
neighbors, who become potential cluster members, and the
‘‘upstream’’ nodes who need to aid in (selectively) flood-
ing the data from the cluster head to the controller. After
this, the next round starts with all remaining nodes request-
ing a global data slot. The process terminates once all the
nodes in the network have either been appointed as cluster
head or adopted a potential member status.

It is clear that if there are only a few global RR slots
in every superframe, it will take a large number of rounds
before every node can acquire a data slot. To solve this
issue, FLEET uses as many global RR slots as can possibly
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FIGURE 6. Packet routing in the network during the operational phase. (a) intra-cluster data delivery (slot 1,2,3).
(b) aggregated data delivery (slot 1,2). (c) actuation command delivery (slot 3).

fit within a superframe. After a couple of unutilized global
RR slots, the number of global RR slots is reduced to the
minimum (i.e., three slots for request/reply/announcement for
nodes joining late and/or upgrading to cluster-head status) to
reduce energy waste. This switch is accompanied by a change
in the superframe structure, which will now include intra-
cluster RR slots.

2) REGISTERING CLUSTER MEMBERSHIP AND ASSIGNMENT
OF INTRA-CLUSTER DATA SLOTS
Potential members record a list of all neighboring cluster
heads along with their received signal strengths (RSS). This
allows them to become a member of the cluster they are clos-
est to, providing better protection against inter-cluster inter-
ference (see below in Section IV-B.1). In the first intra-cluster
RR slot, potential members send a request to their cluster head
to allocate them an intra-cluster data slot. As before, colli-
sions are anticipated to be resolved by the capture effect, and
the cluster head sends back a reply to the winning (strongest)
member with its slot index. As only one slot can be handed
out at a time, nodes have to repeatedly send in requests. If the
maximum number of cluster members has been reached the
head respondswith a negative reply, and the potential member
can then switch to another cluster head with the next-best
RSS value.When a node has exhausted the list of neighboring
cluster heads, it must become a cluster head itself and starts
requesting the controller for its own global data slot.

3) PARTICIPATION IN GLOBAL DATA SLOTS
Though intra-cluster data transmission occurs over a single-
hop using unicasting, the cluster heads send the aggre-
gated data to the controller through multiple hops using
selective flooding. Thus, a number of intermediate nodes
need to forward the packet within the same global data
slot. Unlike LWB, FLEET every node distributedly deter-
mine whether or not they should become a forwarder in a
particular global data slot. We follow an approach similar
to CX-LWB [41].

The idea is to widen the shortest path between a node and
the controller by using all paths of equal length2 connecting
the two. A requesting node (n), upon receiving a global data

2For extra reliability, paths with (an) additional hop(s) can also be
included.

slot from the controller, notes the hop count (h) from the
relay-count field in the packet header (as per virtue of the
original Glossy protocol). Since the global RR slots are flood-
ing based, every other node also receives the reply message
and notes its hop count from the controller (hc). Next, when
node n announces itself as a cluster head, it attaches its hop-
distance h from the controller to the announcement message.
All other nodes receive this message and record h as well as
their hop distance (hn) to node n. This allows them to check
if they are ‘‘en route’’ to the controller. If hn + hc ≤ h then
they add the global data slot of node n to their list of active
slots.

B. OPERATIONAL PHASE
From the above description, one can see that the clustering
process is highly efficient and its length is customizable
during the deployment, i.e., proportional to the number of
nodes in the network. The operational phase starts after the
clustering phase and is initiated by the controller adjusting
the layout of the superframes. The intra-cluster RR slots are
dropped, the global RR slots are set to the minimum, and the
appropriate number of intra-cluster and global data slots are
included.

1) INTRA-CLUSTER DATA COLLECTION
As mentioned earlier, cluster members use intra-cluster data
slots to send their data to their respective cluster heads
through unicasting (see Fig. 6(a)). Though the slots are
unique among the members of the same cluster, slots are
reused across clusters. Even if there are simultaneous trans-
missions in their vicinity, cluster heads can successfully
receive the packets from their cluster members due to cap-
ture. When a packet is received correctly, the cluster head
immediately sends an ACK. If no ACK is received, the cluster
member retransmits the packet after a small timeout period
within the same slot (up to 2X). If the retransmission proves
in vain the packet is discarded.

2) DATA COLLECTION AND DELIVERY OF ACTUATION
COMMANDS
As mentioned earlier, global data slots are used by the cluster
heads for data collection (Fig. 6(b)) and by the controller
for delivery of actuation commands (Fig. 6(c)). To report the
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FIGURE 7. Slot-based communication – node activity during the
operational phase for the network in Fig. 6.

aggregated sensed data, only a subset of nodes participate
in forwarding the packets using selective flooding. However,
all nodes forward packets containing actuation commands
such that multiple destinations (actuators) can be reached
within the same slot. Fig. 7 shows the difference between
unicasting and (selective) flooding in the intra and global
slots, respectively.

When none of the cluster members detects any event in
sensing round, the cluster head has no data to report. To save
energy, the cluster head sends a dummy packet so that par-
ticipating nodes can switch-off their radio immediately after
forwarding the packet. Without a dummy packet nodes keep
listening unnecessarily for the whole slot as the exact moment
a flooding ripple passes by is source/destination/ interference
dependent. Dummy packets are also used when no actuation
is required. Thus some more energy is saved because of this
technique.

3) DECIDING THE NUMBER OF GLOBAL DATA SLOTS
The number of global data slots is typically one slot higher
than the number of cluster heads to accommodate actuation
commands. Like sensed data, multiple actuation commands
are aggregated in one packet and sent to multiple actuators
in the same global data slot. If there are more actuation
commands that can fit within a single packet, multiple slots
are used. Each actuation packet contains a flag signaling if it
is the last in the pipeline or not.

C. ACHIEVING BOUNDED LATENCY
Due to the retransmissions within a cluster, and the path
diversity between the cluster heads and controller, sensor data
is delivered with high probability. FLEET also does it faster,
as the name suggests. Exactly how fast FLEET handles this
depends on the number of clusters c. In step one (aggregation)
n/c members may send their data. In the next step, c cluster
heads forward their data to the controller, who then sends
the actuation commands back into the network in a single
slot. That amounts to a total of n/c + c + 1 slots. As the
number of clusters varies from 1 (a clique network) to n/2,
the length of the schedule is bounded to O(n) and �(

√
n),

respectively. As remarked earlier practical constraints on the
maximum payload limits the number of members in a cluster,

so the degenerated case of clique topology will not apply.
Thus, the schedule length is typically in the order of

√
n slots.

Note that this compares favorably to flow scheduling on top
of Glossy, which requires at least n slots, one for each node
to report its data.

V. IMPLEMENTATION DETAILS
FLEET is implemented using the Contiki operating
system [11]. As mentioned earlier, it utilizes constructive
interference for effective communication. The glossy pro-
tocol uses constructive interference based flooding for syn-
chronizing the network. Thus, we used some functionalities
of Glossy with some adaptation to obtain network-wide
time synchronization, and as a basis for route-free multihop
communication. Glossy uses a combined yet simple routing
and MAC layer with a simple communication model. Every
node has a common understanding of time as well as the
starting time of a flood. The initiator node starts the flood
by transmitting the packet, and every other node simply
transmits the packet after receiving it. Glossy ensures a
fixed switching delay between receiving and transmitting
packets in order to ensure constructive interference. On the
other hand, the design of FLEET involves various other
types of communication while maintaining the simple design
principle.

Without loss of generality, we fixed the message size for
intra-cluster communication to 4 bytes of sensor-data pay-
load and 4 bytes of headers (2-byte source and destination
addresses), thus 8 bytes in total. For inter-cluster communica-
tion the message size depends on the number of cluster mem-
bers n, which we varied over 2, 4, and 8, yielding packet sizes
of (n+1)× (4+2)+2+2 bytes to accommodate the payload
of the members and head (with source ID), the destination
address, and a length field (22, 34, and 58 bytes respectively).
To ensure reliable data delivery without end-to-end control
(to reduce latency), FLEET forms clusters such that the link
quality between a cluster head and its member nodes are
sufficiently high. We used an RSS value of −75 dBm as the
threshold to filter out good links. This setting, in combination
with up to two retransmissions within a cluster, proved to
achieve good packet reception rates across a range of different
topologies (as reported in the next section). Only in the case
of very sparse networks the chosen threshold had a noticeable
impact on the performance asmany clusters were createdwith
just a few, or even zero, members due to a lack of quality links,
compromising aggregation efficiency.

The code footprint of FLEET is very small. The implemen-
tation added about 900 lines of C code on top of the existing
implementation of Glossy. The compiled firmware is only
about 26.4 kB as compared to 22.6 kB and 24.8 kB for Glossy
and LWB, respectively.

Though the current implementation of FLEET is targeted
for the Tmote sky platform with CC2420 radio, it can eas-
ily be adapted to work on other types of devices. One of
the biggest hurdles is to achieve constructive inference by
ensuring multiple simultaneous transmissions, i.e., keeping
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FIGURE 8. Sample 9-flow network with schedules for optimal source routing (HRP) and Blink. The slot length for HRP and Blink is 10 ms and
20 ms, respectively. (a) Topology. (b) HRP, completion in 90 ms. (c) Blink, completion in 180 ms.

the switching delay from receive to transmit mode constant
across multiple devices. The developers of Glossy already
described how it can be ported to other radio platforms, and
indeed a number of CI-based systems have emerged running
on other radios, e.g., CC430 [41] and CC2530 [44]. Porting
FLEET to these platforms should be no more complicated.

VI. EVALUATION
We evaluated FLEET both in simulation, which provides
repeatable experiments suitable for cross-protocol compari-
son and on a real-world testbed to study resilience to exter-
nal interference and other practicalities. For the simulations,
we used the Cooja software that comes with the Contiki
operating system. The real-world experiments were carried
out on two publicly-available testbeds, i.e., Indriya [12] and
FlockLab [13] along with some testing on local nodes in our
laboratory. Since the testbed measurements involved a lot of
randomnesses (e.g., interference from 802.11 traffic during
working hours) we ran different protocols back-to-back to
ensure they endured similar conditions.

A. TEST SCENARIOS
The testing code on top of FLEET was set to mimic a control
application in which each node periodically reads out a sensor
and reports it to the central controller. We assume that all the
flows have the same priority, though they can have a different
deadline, which decides the sensing frequency of the source
node. Please note, if there are a significant number of nodes
in the network and the deadline is very small, there is no way
that all the flows can be assigned a slot.

We experimented with four different setups -Default dead-
line (DD), Tight deadline (TD), Extreme deadline (ED), and
Mixed deadline (MD). In DD, TD, and ED scenarios, all flows
have the same deadline of 10 s, 1 s, and 250ms, respectively.
These lead to sensing frequency of 1

10 Hz, 1Hz, and 4Hz,
and the FLEET superframe length of 10 s, 1 s, and 250ms,
respectively. In the extreme setup, only a few flows can
be scheduled within this stipulated time (250ms). However,
using FLEET, a higher number of flows are able to meet
their deadline as compared to any other method (as shown
later). In the MD scenario, different flows have different
deadlines, which leads to a different sensing frequency at the
sensor nodes. We used almost 50% of the nodes with 250ms

deadline (sensing frequency of 4Hz), and the remaining with
1 s deadline (sensing frequency of 1Hz). The FLEET super-
frame length is set to 1 s, where frequently sensing nodes
would get 4 slots in every superframe.

B. COMPARISON WITH AN OPTIMAL ALGORITHM
The lack of an open implementation of any prevalent real-
time routing protocol restricted our options for performing
a one-on-one comparison with FLEET. Before providing
a detailed study based on the actual implementation –to
thoroughly evaluate FLEET vis-á-vis latency– we, therefore,
compare FLEET with two protocols based on their design
principals. The first one is a Hypothetical Real-time Proto-
col (HRP) that packs the data packets tightly to avoid any
wastage of slots. This allows us to find the lower bound on
the delay for a particular scenario. Let us assume that HRP
packs the data packets tightly to avoid any wastage of slots,
and it combines source routing with optimal flow scheduling
as described by Pottner et al. [7]. For the sample 9-flow
(10-node) network shown in Fig. 8(a), the optimal HRP
scheduler finds the shortest possible schedule to complete all
the flows as shown in Fig. 8(b). As messages are not aggre-
gated at least 9 slots are needed. HRP manages to do this by
scheduling the remaining transfers in parallel. Thus, the total
time required is 90ms considering a slot length of 10ms
according to the WirelessHART standard. In practice, com-
pletion will take longer as the flow scheduling problem is
NP-hard, thus we need to resort to heuristics. Moreover, for
resilience one may prefer graph routing over source routing,
adding even more slots to the schedule.

To consider a realistic case for comparison, we turn to
Blink [8], which is the closest state-of-the-art routing protocol
in WSNs that offers data delivery with the lowest latency and
high energy efficiency. Blink also requires 9 slots (like HRP),
but these slots are 20ms long to ensure the data can be flooded
across multiple hops. Thus, it takes Blink a total of 180ms to
complete all the flows (Fig. 8(c)), which is twice as long as
for HRP.

FLEET combines the unicast slots fromHRP and network-
wide floods from Glossy (which is also used by Blink)
through its clustering approach, see Fig. 9. The maximum
number of cluster members was set to 3, leading to 3 clusters
headed by nodes S0, S4, and S9 with 3, 2 and 2 members
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FIGURE 9. Sample 9-flow network with 3 FLEET clusters and selective flooding, completing in
just 70 ms. The length of the intra-cluster and global slots are 10 ms and 20 ms, respectively.

TABLE 2. Comparison between Blink and FLEET – bounded-time
guarantee for number of flows under different deadlines.

respectively. Consequently, FLEET needs 3 intra-cluster
slots, followed by 2 global data slots to forward the aggre-
gated data from remote clusters S4 and S9 to the controller S0.
Thus, the total time required to complete the flows is 70ms
(3× 10+ 2× 20), where the length of an intra-cluster and a
global slot is 10ms and 20ms, respectively.

The key observation is that FLEET outperforms both
HRP and Blink. FLEET beats HRP because it aggregates
data allowing it to use fewer slots while offering additional
resilience through its use of flooding. FLEET beats Blink
because it exploits parallelism at a local level (spatial reuse)
allowing it to use shorter and fewer slots. Please note that for
a network with a smaller diameter, length of a Glossy flood
can be set to a smaller duration, e.g., 10ms. In that case, both
Blink as well as FLEET would be able to complete the flows
in lesser time.

We also compared Blink and FLEET for different dead-
lines. Table 2 summarizes the maximum number of flows
(in an ideal situation) that can meet the deadline using these
two protocols. For, DD, TD, and ED scenarios, Blink uses
20ms for the sync slot and remaining time for data deliv-
ery. Similarly for FLEET, 20ms for the sync slot, 80ms
(8 intra-cluster slots) for intra-cluster communication, and the
remaining time for data delivery. For the mixed deadline in
Blink, 10 flows are scheduled 4 times in every second (250ms
deadline) consuming 800ms. Remaining 180ms (barring
20ms for sync slot) can be used for flows with 1 s deadline.
In the case of FLEET, every 250ms 35 flows can be scheduled
(like ED). Out of these 35 flows, 28 can be of high frequency
(250ms deadline) and the remaining 7 flows would be less
frequent. These 28 flows will have a slot in every 250ms,
whereas the remaining 7 slots can be assigned to different
flows, totaling 56 (28+ 4× 7) flows in every second. Please
note that if there are less number of flows, some part of
the superframe would not be utilized, which leads to the
lower duty cycle. As FLEET packs the flows more tightly,
it achieves higher energy-efficiency than Blink.

C. SIMULATION RESULTS
To study the performance of FLEET in more detail we eval-
uate three aspects: (i) delay bound, (ii) energy efficiency,
and (iii) reliability of data collection. In particular, we are
interested in the associated metrics of the total time (latency)
taken for scheduling all flows, the average duty cycle of the
nodes, and the packet reception ratio (PRR). Since studying
various parameters under various topologies is not possible in
a static testbed, we first performed a simulation-based study.

1) PERFORMANCE UNDER PERIODIC TRAFFIC
Weconsidered three different network topologies of 50 nodes,
in which the average node degree was set to 2, 4 and 8.We did
so by changing the total deployment area while keeping the
total number of nodes (flows) fixed. We compared the per-
formance of FLEET with LWB and its successor Forwarder-
Selection LWB (CXFS), which achieves higher energy effi-
ciency in data collection scenarios by limiting the set of
participating nodes in a flood [41]. Note that FLEET also
uses such forwarder selection when cluster heads report the
aggregated data to the sink. As an open implementation of
Blink is not available, we limit our comparison with LWB
and CXFS only. However, we use the same deadline for
every flow such that LWB becomes equivalent to Blink.
Fig. 10 shows the total time (in blue) and the number of slots
(in yellow) required to complete the 50 flows in the network.
Note that for LWB and CXFS, the numbers remain the same
irrespective of the network density as each flow uses one
global slot (and the number of flows is constant). Hence,
we only plot one bar. For FLEET, however, the increase in
node degree raises the number of members per cluster, which
in turn increases the scope for parallel communication. The
net effect is that FLEET uses more intra-cluster slots (for
members) and fewer global slots (for cluster heads) as the
breakdown shows. This translates into a lower number of
total slots per superframe (more parallelism) leading to lower
latency. Note that this effect is amplified by intra-cluster slots
taking only 10 ms vs. 20 ms for global slots.

FLEET excels not only in terms of overall latency, but it
also reduces the energy consumption of the network. Fig. 11
shows a comparison of the average duty cycle of the nodes.
For LWB and CXFS, unlike with latency, the average duty
cycle of the nodes changes when the density of the network
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FIGURE 10. Comparison of total time and number of slots required to
complete 50 flows for different node degrees.

FIGURE 11. Average duty cycle in a 50 node network.

TABLE 3. Packet reception ratio vs. node degree.

increases. Recall that the density was increased by shrink-
ing the deployment area, which causes nodes to be located
closer to the controller. For LWB this results in Glossy floods
completing faster since fewer hops need to be traversed. This
leads to (slightly) lower duty cycles. This effect also applies
to CXFS, but at the same time, the increased density leads to
more redundant paths between a node and the controller. The
effect of involving more nodes per flood is stronger than the
reduction in hops, causing CXFS’s energy consumption to go
up with increasing density. For FLEET, a third factor comes
into play. Its shift from global (flooding) to local (unicast)
communication counters the reduction in efficiency of the
selective forwarding optimization. The overall effect is that
FLEET ’s efficiency is almost insensitive to network density.

The final performance metric to consider is the average
PRR, which is listed in Table 3. LWB achieves a 100% PRR
due to a high degree of redundancy (all nodes participate in all
floods). CXFS does slightly worse, especially for low-density
networks as the number of redundant paths is limited, causing
about 1% of the packets being lost. FLEET suffers from the
same effect and loses up to 3% of the packets in the worst
case. Closer inspection of the results revealed that this extra
packet loss is incurred during intra-cluster communication.
We conjecture that this is due to the capture effect failing to
resolve all interference from communication in neighboring
clusters. Further research is needed to study if careful cluster
formation or advanced retransmit policies can bring FLEET ’s
reliability in line with LWB/CXFS. Alternatively, more intra-
cluster slots can be used to reduce the amount of parallel
communication.

FIGURE 12. Duty cycle of individual nodes in a 50 node network (node
degree of 4).

FIGURE 13. Duty cycle of FLEET nodes, sorted by hop-distance from the
controller.

To gain a deeper understanding of the efficiency of the
protocols, we have analyzed the duty cycle of individual
nodes. Fig. 12 shows the duty cycle of the 50 nodes for the
three protocols. According to the expectations, LWB shows
hardly any difference between the nodes as they all participate
in all slots. CXFS and FLEET, on the other hand, do show sig-
nificant fluctuations. The selective forwarding scheme only
involves a subset of the nodes, with those close to the sink
being active for all (global) slots and those at the edge only
in case of sending their own data. Note that the maximum
duty cycle for CXFS (by Node 15) is roughly the same as
for LWB, so the network lifetimes, that is until the first node
dies, are the same. In that respect, FLEET does much better
(i.e., doubles the lifetime) due to its cluster-based approach.

Fig. 13 provides additional insight by plotting the duty
cycle of FLEET for members (blue) and cluster heads (pur-
ple) sorted by hop distance to the controller. Two important
observations can be made. First, nodes close to the controller
spend more energy than nodes 2 or 3 hops away, because of
the selective forwarding optimization. Second, cluster heads
consume only a little more than cluster members. That some-
what surprising result follows from the low number of mem-
bers per cluster. Note that the maximum number of cluster
members was set to 4, yet only 30 out of 50 nodes became
cluster members (and not 40 = 4/5 × 50) due to solitary
nodes becoming cluster heads. Apparently, the requirement
for having a strong linkwith the head of a cluster pruned away
too many options for edge nodes, who are relatively poorly
connected, to begin with. Having few members per cluster
automatically reduces the overhead, putting the duty cycle of
the cluster heads in line with that of the members.

2) PERFORMANCE UNDER EVENT-DRIVEN TRAFFIC
To mimic the event-driven traffic, we set a node to transmit
with a probability of 0.5 (this can be set differently to change
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TABLE 4. Duty cycle comparison under event-driven traffic.

TABLE 5. PRR comparison under event-driven traffic.

the event pattern and we may use different distribution too).
We tested only two scenarios for the event-driven traffic,
i.e., DD and TD. As LWB/CXFS cannot guarantee energy-
efficiency, low latency, and guaranteed delivery simultane-
ously for bounded-time event-driven traffic, we followed two
strategies – guaranteed delivery and best-effort delivery.

Table. 4 and 5 shows performance of LWB with these two
strategies compared to FLEET. In guaranteed delivery, every
node has a dedicated slot irrespective whether they have data
to transmit or not. Thus, it ensures guaranteed data delivery
whenever there is data, but energy is being wasted if no mean-
ingful data is sent (if there is no valid data, a dummy packet is
sent to reduce idle listening). Thus, the duty cycling is almost
the same as the periodic traffic irrespective of sparsity in data
traffic.

In the case of best-effort delivery, two nodes share the same
slot. Energy-efficiency of this scheme is better since, during
no traffic times, idle listening is reduced. Since two nodes
share a common slot, there is a delivery failure whenever
both the nodes have to send data at the same time. Naturally,
the overall packet reception ratio gets reduced. Moreover,
as nodes share slots, they cannot send a dummy packet if they
do not have valid data.

On the other hand, FLEET always uses a (globally) dedi-
cated slot for cluster heads, and dedicated intra-cluster slots
for cluster members. Thus, whenever there is no valid data,
a node can send a dummy packet to reduce the idle listening.

D. TESTBED RESULTS
To validate the findings from the Cooja simulations, we con-
ducted real-world tests on the Indriya and FlockLab test-
beds with 97 and 32 TelosB nodes, respectively. On Indriya,
we used Node 1 as the sink and the other 96 nodes as sensors,
of which 10 nodes served the dual role of sensor and actuator,
totaling 106 flows in the network. Similarly, FlockLab has
35 flows in total (31 sensors and 4 actuators). For the testbed
experiments, we used a maximum of 8 intra-cluster slots.
The results reported in Table 6 and Table 7 summarize the
outcome of over 100 hours of experimentation. The per-
formance numbers confirm that FLEET provides a multi-
fold latency reduction compared to LWB and CXFS while
ensuring significantly higher energy efficiency. Specifically,

TABLE 6. Performance comparison of various protocols on the Indriya
testbed with 106 flows (96 sensors and 10 actuators).

TABLE 7. Performance comparison on the FlockLab testbed with 35 flows
(31 sensors and 4 actuators).

FLEET achieves a latency reduction by a factor of 2.2 and
2 over Indriya and FlockLab, respectively.

The average duty cycle of the nodes depends on the
total number of flows in the network and the utilization of
intra-cluster slots. On Indriya FLEET is 2.8 and 1.6 times
more energy efficient compared to LWB and CXFS, respec-
tively. On FlockLab the efficiency is even higher at 3.8 and
1.9 times, respectively. The reason is that the percentage of
global slots in FlockLab is lower compared to Indriya.

The harsh conditions on the testbed reflect in the packet
reception ratios, which are all lower than recorded in the
simulation. Even LWB loses a fraction of packets, while in
simulations it lost none. CXFS and FLEET do slightly worse
and lose about 3-4% of packets. Note however that these
numbers are comparable to the 95% average reliability of
flow delivery reported by Lu et al. using graph routing [45].
To improve the reliability of FLEET, we have created a spe-
cial version (named FLEET extra, or FLEET -X for short) in
which we disable forwarder selection and resort to full Glossy
floods (like LWB). The immediate benefit is an improvement
in PRR. On Indriya, FLEET -X even surpasses the PRR
of CXFS. The remaining packet loss, especially on FlockLab
in comparison to LWB, is due to collisions in the intra-
cluster slots. Of course, there is no free lunch. FLEET -X’s
improved PRR goes at the expense of its energy efficiency,
which is similar to CXFS (but with a much shorter latency).
Whether or not the improved PRR of FLEET -X outweighs
the cost in terms of energy efficiency depends on the applica-
tion at hand.

So far we have discussed the total time required to com-
plete all flows. An important question is what will hap-
pen if the deadline is too small to accommodate all flows.
The flow completion pattern over time is shown in Fig. 14.
It is clear that the majority of the flows can be completed
in about half of the time (80% complete in 540ms). All
the members belonging to the controller’s cluster complete
real quickly during the intra-cluster phase. Then, with each
global slot, a set of flows complete together as the aggre-
gated message contains the data of all members belong-
ing to the cluster head that was allocated to that slot.
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FIGURE 14. Cumulative distribution showing the number of flows that
are completed over time (Indriya testbed).

FIGURE 15. The impact of RSSI threshold on latency and reliability
(Indriya testbed).

The number of flows varies per global slot as the topol-
ogy dictates the cluster formation. In particular, towards the
end slots are taken by solitary cluster heads who failed to
join any cluster and are forced to use a global slot just for
themselves.

Recall that a node decides to join a cluster only if it has
a good link to the respective cluster head. FLEET uses the
RSSI to discriminate good from bad links by means of a
threshold set to−75 dBm.Changing the thresholdwill impact
the cluster formation process. If we tighten the threshold,
the number of cluster members will be lower leading to
more clusters, hence, a longer schedule leading to higher
latency. In return, the reliability will increase as the links are
of better quality. If we relax the threshold, the reverse will
happen with schedules completing faster and PRR becoming
worse. To study the exact trade-off, we have run a number of
experiments with different thresholds on the Indriya testbed,
see Fig. 15. Observe that, as expected, the PRR decreases
when relaxing the threshold from−69 dBm to−81 dBm. The
latency, however, does initially go down, but then raises again
once the threshold is relaxed beyond −75 dBm. A detailed
inspection of this surprising result revealed that this behavior
is a consequence of the safety mechanism built into FLEET.
When a cluster member fails to transmit in two successive
superframes, i.e., it does not receive an ACK from its cluster
head, it leaves the cluster and acquires a global slot. This does
keep the PRR under control, but at the expense of additional
latency (an extra global slot). Without this fail-safe mecha-
nism the latency does decrease further, but the PRR drops
to unacceptably lower values for typical IoT applications.
Therefore, FLEET ’s default threshold of −75 dBm appears
to be the sweet spot to achieve the lowest latency andmarginal
packet loss.

VII. DISCUSSION
In this section, we step back and discuss FLEET in a broader
context. While developing the protocol, we did not consider
all possible application scenarios. In the following, we dis-
cuss the usage of FLEET vis-á-vis different scenarios and also
how FLEET can be adapted in such cases.

In the evaluation, we assumed a maximum time bound
of 1 s and showed that more than 100 flows can be scheduled
within such a deadline. The design of FLEET provides the
flexibility to set the deadline as required by the application
without any design or implementation changes. Of course,
there is a limit on how many flows can be scheduled within
a given time bound. From the bounded-time perspective,
the benefits of FLEET are two-fold (i) it can schedule more
flows within a given time bound, and (ii) it provides a guar-
anteed delay bound with high accuracy. When there are only
a few flows in the network, it becomes easy to accommodate
all of them within the required time bound. In such cases, not
only FLEET, but any other protocol would meet the deadline
for all the flows. However, FLEET will still be effective as it
provides significantly higher energy efficiency than any other
existing protocol.

FLEET assumes a fixed priority for all the flows in the net-
work. Thus, it targets to complete as many flows as possible
within a given time. However, in many applications, flows
may have different priorities. In such cases, high priority tasks
need to be scheduled earlier, and if time permits only then
low priority tasks need to be scheduled. To accommodate
more flows, the low priority flows can be assigned a slot in
every, say s, superframes in a round-robin fashion. A suitable
scheduler on top of FLEET can tackle such priority-based
scheduling while the communication mechanism remains the
same.

VIII. CONCLUSIONS
Latency, reliability, and energy-efficiency are important
aspects of a communication protocol in the domain of the
cyber-physical system. Though many routing protocols pro-
posed that tackle these issues partially, they do not address
all of them together. We presented FLEET (Flat Latency
Energy Efficient Transmission), a highly energy-efficient
communication protocol that provides a bounded-time guar-
antee. It uses a cross-layer approach – slot-based, syn-
chronous communication at the link layer and flooding and
clustering at the network layer. Using on-the-fly cluster-
ing, which is highly dynamic, we split the data collection
into two levels. This allows us to achieve parallel opera-
tions leading to higher energy-efficiency and lower latency
at the same time. We compared FLEET with source rout-
ing and Blink to explain how it behaves and compared its
performance with LWB and CXFS on two public testbeds.
We recorded a 2.8 and 3.8 times reduction in the average duty
cycle at 2.2 and 2 times reduction in data delivery latency
compared to LWB on the testbeds. These benefits are primar-
ily achieved by the use of fast flooding eliminating explicit
routing and hop-by-hop scheduling for each flow. We gained
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further by adopting a selective flooding mechanism to tackle
the inefficiency of flooding the whole network. Moreover,
FLEET is the first protocol that can address both periodic and
event-driven traffic equally well.
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