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Although the interactions between proteins and vari-
ous types of macromolecules are of considerable tech-
nological interest,1 little theoretical work has been done
that makes use of the fact that proteins are often
comparatively small particles. Thus, our interest is in
a regime opposite to that focused on in the usual
depletion theories.2 Here, a protein will be viewed,
perhaps naively, as a small hard sphere whose dielectric
permittivity is negligible compared to that of water. Its
interaction otherwise with some macromolecular seg-
ment will be inert. Some time ago, de Gennes already
presented several, not so widely known, preliminary
calculations of a spherical particle interacting with a
semidilute solution of polymers.3 One supposition he
made concerning the irrelevance of a certain scale, will
be proved here. My aim is to present a scaling analysis
of the interaction between a small sphere and a mac-
romolecule, particularly in dilute solution. Though
obviously of restricted validity, the expressions derived
may prove helpful in qualitatively understanding phase
separation phenomena occurring in nondilute suspen-
sions.
We first consider a protein sphere of radius a im-

mersed in an aqueous solution containing a semidilute
polymer which is well soluble. Its Kuhn length is AK,
and the excluded volume between two segments is â )
AK

3. In a self-consistent field approximation, the poly-
mer segment density ψ2(rb) at position rb is given by2

where the origin is at the center of the sphere, ε is an
eigenvalue, and ψ must tend to zero at the protein
surface (r ) a). Without solving eq 1, I wish to
investigate the nature of the depletion layer surround-
ing the protein. Far from the sphere, the concentration
ψ2 asymptotes toward a constant co, the bulk concentra-
tion of Kuhn segments, so we conveniently introduce ψ
≡ co1/2f and eq 1 becomes

Here, the correlation length ê ≡ AK(3âco)-1/2 is supposed
to be larger than the radius a, a condition easily
realizable in practice. Assuming spherical symmetry
and setting r≡ aR, one is faced with finding the solution
f ) f(R,a/ê) to

with boundary conditions f ) 0 at R ) 1 and f ) 1 at R
) ∞. For an infinitesimally small sphere, we have
simply

which implies the depletion layer around the sphere is

approximately of size a. Moreover, the second and third
terms in eq 3 are straightforward regular perturbations
for a , ê. Hence, eq 4 remains valid within a zero-order
approximation, even when a > 0 provided a , ê. We
conclude that the scale of the depletion layer for a small
sphere is given solely by its radius a and does not
involve ê at all, at least to the leading order. The
irrelevancy of ê (assumed earlier3) is nontrivial for it is
circumstantial. Note that an improved theorysa hybrid
approach combining scaling and self-consistent argu-
ments as in the theory of polymer adsorption4swould
not alter this conclusion. One would require a correla-
tion length ê ∼ co-3/4 from scaling theory instead of ê ∼
co-1/2 and hence replace f3 in eq 3 by f4.
We now rederive a previous result3 by way of illustra-

tion. We wish to compute the work w expended by
inserting a protein sphere in a semidilute solution.
Since a and ê ) AK

-5/4co-3/4 are the only relevant scales,
we havew/kBT ) h(a/ê) with h a dimensionless function,
kB Boltzmann’s constant, and T the temperature. As
shown above, a volume of order a3 surrounding the
protein, is depleted of a3co segments. Therefore, the
number of protein-segment interactions involved in the
workwmust be proportional to co or in other words ê-4/3.
Assuming h(x) is a simple power law, we then have3

Next, the same argument may be used for a small
sphere enclosed within a chain of radius5 R = NK

3/5AK
consisting of NK Kuhn segments: a3c segments are
depleted from the vicinity of the protein; the average
segment concentration in the coil is c = NKR-3. Hence
we obtain

for a and R are the relevant scales in this case. The
interaction w as such is not so interesting but rather
the cross second virial coefficient

given in terms of the system volume V and the potential
of mean force w(rbp,rbm) between the protein centered at
rbp and the macromolecule with center of mass fixed at
rbm and with all configurations integrated out. Since
w(rbp,rbm) ) O(w) and w , kBT, eq 7 reduces to

Accordingly, the cross coefficient is quite small and
proportional to NK which is plausible in retrospect: the
interaction between a small, inert object and a long
chain is expected to be extensive. Equation 8 should
be compared to the analogous coefficient between a short
and a long chain discussed by Witten and Prentis.6 The
same reasoning applied to a small sphere interacting
with an ideal Gaussian coil of radius Ro = NK

1/2AK would
lead to

w
kBT

= (aê)
4/3

(ê > a) (5)

w
kBT

= (aR)
4/3

(R > a) (6)

Bh ≡ B2,pm ≡ 1
2V∫drbp∫dnbm (1 - e-w(rbp,rbm)/kBT) (7)

Bh =
1
V∫R3drbp∫Vdrbm

w
kBT

= R5/3a4/3 (R > a) (8)

w
kBT

=
a
Ro

(9)

- 1
6
AK

2∆ψ + âψ3 ) εψ (1)

∆f - 2
ê2
f3 + 2

ê2
f ) 0 (2)

1
R2

d
dR(R2 df

dR) - 2a2

ê2
f3 + 2a2

ê2
f ) 0 (3)

f(R,0) ) 1 - R-1 (4)
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Equation 10 agrees with that derived by Jansons and
Phillips.7
Next, it is of some interest to compute the cross

coefficient in case water is no longer a very good solvent
for the polymer (i.e. â < AK

3). There is now a subtlety
connected with the excluded-volume effect arising from
the relatively small size of the protein. If the excluded-
volume parameter ZN ) NK

1/2âAK
-3 pertaining to the

whole chain, is much greater than unity, we have the
usual Flory law5 R = NK

3/5â1/5AK
2/5. Accordingly, we

expect to regain eq 8 since â is irrelevant

Note, however, that there is now a new stringent
condition on a.
Again, a depletion volume of order a3 excludes a chain

section consisting of g segments with a = g3/5â1/5AK
2/5.

But now we insist that the pertinent excluded-volume
parameter zg ) g1/2âAK

-3 be greater than unity, if the
excluded-volume effect is to be fully exerted within the
section expelled from the neighborhood of the sphere.
In the adjoining regime (zg < 1), the interaction between
the segments of the displaced section is effectively ideal,
so we actually attain the ideal chain case given by eq
10, even though the whole chain itself is expanded by
the excluded-volume effect.

This indeed crosses over to eq 11 when we set a )
AK

4â-1, as it must. It is inferred that the interaction
between a protein and a flexible chain is peculiarly
sensitive to the chain stiffness and the quality of the
solvent.
Next, it is straightforward to apply the same argu-

ment when the macromolecule is a semiflexible chain
of length L, persistence length P ) 1/2AK, and diameter
D, for we know8 that â ) P2D.

Often, the chain may be so stiff that the inequality P >
a > D is valid, implying that we view the small sphere
as interacting with a thin curve that is effectively
straight on the scale of a. Hence, the following simple
relation is valid

which crosses over to eq 12 at a ) P, as it should.
Finally, biofilaments exist for which P > D > a in which
case we may write

It is also a matter of quadrature to extend these
expressions to the case of a protein interacting with a
highly charged polyelectrolyte in excess salt. The
correlation length ê is given in terms of the total
persistence length Pt, the Debye length κ-1, and the

monomer concentration cA, each monomer of length A
bearing one elementary charge.9

Therefore, the ionic-strength dependence of the protein-
polyelectrolyte interaction can be expressed by

where ns is the 1:1 electrolyte concentration and Pt ∼
κ-2 ∼ ns-1 at low salt.9 In dilute solution, the polyion
radius is9

so there are four regimes analogous to those for semi-
flexible chains discussed above

In the last expression, the exclusion radius is the Debye
screening length κ-1 because the protein is repelled by
the chain via the formation of image charges.10

Note Added in Proof: Recently, Wills et al.11 per-
formed gel chromatography and sedimentation experi-
ments on poly(ethylene glycol) and a substantial num-
ber of globular proteins so as to determine the cross
coefficient Bh as a function of the protein radius a. The
expression derived by Jansons and Phillips,7 valid even
for large radii, appears to agree with the experimental
curve fairly well except for a deviation possibly attribut-
able to eq 11. The peculiar ionic-strength dependence
of Bh described by eqs 20-23 stems from the OSF theory
of the persistence length. Note that entropic fluctua-
tions12 will not perturb the scaling nature of these
expressions.
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Bh = Ro
2a (Ro > a) (10)

Bh = R5/3a4/3

= NKâ1/3AK
2/3a4/3 (a > AK

4â-1) (11)

Bh = NKAK
2a (L > a > P; a < AK

4â-1) (12)

Bh = LP1/3D1/3a4/3 (L > P > D; a > P2D-1) (13)

Bh = LPa (L > a > P > D; a < P2D-1) (14)

Bh = La2 (L > P > a > D) (15)

Bh = LD2 (L > P > D > a) (16)

ê = (κ/Pt)
1/4(AcA)

-3/4 (17)

w
kBT
∼ (Pt/κ)

1/3

∼ ns
-1/2 at low salt (18)

R = L3/5(Pt/κ)
1/5 (19)

Bh = L(Pt/κ)
1/3a4/3 (L > Pt > κ

-1; a > Pt
2
κ) (20)

Bh = LPta (L > a > Pt > κ
-1; a < Pt

2
κ) (21)

Bh = La2 (L > Pt > a > κ
-1) (22)

Bh = Lκ-2 (L > Pt > κ
-1 > a) (23)
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