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Introduction

1.1. Problem Description (Engineering Context)

A wafer scanner is an advanced lithography machine which prints images on a wafer at nano
scale. Fig. 1.1 shows a schematic representation of the litography process. In this process, a
laser creates a beam of light at a certain intensity w (W /m?) which can be set by the customer
before the start of the process. The light beam first passes through a reticle, then through
the lens column (LC), and finally falls onto the wafer. The reticle is made of quartz and has a
chrome layer at the bottom which contains the image to be projected on the wafer. The lens
column consists of multiple passive and actively controlled lenses to reduce the reticle image
by a factor of 4 and also to compensate for disturbances acting on the image. The wafer is a
Silicium disc of 300 mm in diameter, on which the image is projected to create chips.

The area of interest (AOI) denotes the area underneath the reticle where the light beam
passes through. During the exposure process, part of the dose intensity w is dissipated
into heat within the reticle. This reticle heating has two consequences, which negatively
influences the quality of the image created on the wafer, namely:

1. Thermal Disturbances: The most significant consequence of reticle heating is thermal
disturbance of the air between the bottom of the reticle and the lens column. The
environment is conditioned at a constant temperature of 22°C, which is the desired
working temperature. However, due to reticle heating, the average temperature at AOI
increases, leading to temperature differences between AOI and the air underneath the
reticle. This temperature differences cause a boundary layer underneath the reticle due
to natural convection that affects the refractive index of light passing trough this layer.
This causes unpredictable behaviour, which results in distorted images that cannot be
corrected by the lens column and/or the wafer stage.

2. Thermal Deformations: Deformations of the reticle caused by reticle heating are called
thermal deformations. When heat is absorbed on the reticle, the temperature starts to
increase. Deviations in the reticle temperature with respect to a reference temperature,
result in deformations of the reticle. Reticle deformation eventually leads to image errors
due to the fact that the image created by the reticle will also deform with the shape of
the reticle.

In conclusion, during the exposure process the consequences of reticle heating (thermal dis-
turbances and deformations) result in undesired image aberrations created on the wafer. The
next Section explains the current state of practice at ASML and the current state of the art
in literature regarding the above mentioned problems.
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Figure 1.1: A wafer scanner.

1.2. Current State of Practice

As solutions to the above-mentioned reticle heating problems, there are two current ap-
proaches installed:

1. Open-Loop Cooling: To reduce thermal disturbances to air due to reticle heating, wafer
scanners use open-loop reticle cooling (see Figure 1.2a). The goal of this method is to
blow cool air at a constant temperature T,;;,- = 21.8 °C in order to reduce the temperature
difference between AOI and the environment, which implies reducing thermal distur-
bances during the exposure process. In order to achieve control, actuators and sensors
are needed. The actuator consists of a heating element and a nozzle. Conditioned air at
Tpeir = 18 °C is heated by the heater to the desired reference temperature of 21.8 °C. The
saturated input u;, to the heater is the output of the PID-controller, which reduces the
error between the measurement of T,;,, and the desired reference temperature of 21.8 °C.
This solution does not adapt to the change in the temperature difference between AOI
and the environment, instead it only focuses on the temperature of the nozzle outflow
(Tair), hence the reason for calling it open-loop control.

2. Reticle Deformation Correction: This method (see Figure 1.2b) involves the following
steps:

* At the start of every wafer exposure, the deformations (dy*, d}') are being measured
at 16 locations on the bottom surface of the reticle.

* Since the deformation measurement is not available during exposure of a wafer, a
predictor uses the measured deformation (d}", d}') to predict the deformation (dy, ﬁy)
during the time interval of the wafer exposure. The predicted d,, ciy represent de-
formations that are correctable by the Reticle Stage (RS), the Wafer Stage (WS) and
the Lens Column (LC).
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(a) Open-Loop Cooling method. (b) Reticle Deformation Correction method.

Figure 1.2: The current state of practice.

1.3. Problem Formulation and Current State of the Art

Instead of designing a controller which keeps the nozzle outflow temperature T,;, constant,
we aim to investigate the design of a controller which adapts to the change in temperature dif-
ference between AOI and the environment. The goal of this controller is to reduce the effect of
thermal disturbances with respect to the currently used Open-Loop Cooling approach, which
implies reducing the temperature difference. However, when the flow temperature changes,
it also affects the deformation of the reticle. In a worst case scenario, a controller could
introduce reticle deformation shapes that are not correctable by the Reticle Deformation
Correction method. It is thus very important that the feedback controller does not introduce
non-correctable deformations. This is achieved by constraining the non-correctable deforma-
tions such that it does not worsen with respect to Open-Loop Control. The controller should
be able to handle input/output constraints, since Section 2 will show the non-correctable de-
formations to be an output of the reticle model. Incorporation of the sensor output Tegy¢y (S€€
Figure 1.2a) is also a requirement for the controller due to the inability to measure the reticle
states directly since placing sensors on the reticle would lead to inevitable image errors.

A controller which satisfies the above criteria is found in Model Predictive Control (MPC).
MPC distincts itself from other controller methods such as PID, LQ, and H, due to the fact
that it can systematically cope with time domain input/output constraints. There are several
publications on MPC available in literature that provide a good introduction to the theory.
Rawlings [1] provides a tutorial overview of the MPC aimed at control practitioners. Also,
Qin and Badgwell [2] provide an overview of the general MPC control algorithm along with
an overview of the available MPC technology in industry. For a more detailed description
of the MPC algorithm, Van Den Boom and Backs [3] provided lecture notes describing the
basics of MPC, stability, and more. It is however a well known fact that the MPC algorithm
struggles with hard output/state constraints, which is the reason why Zafiriou and Marchal
[4] provided an overview for why instability may occur for SISO systems when implement-
ing MPC (with hard output/state constraints) in a closed-loop manner. Oliveira and Biegler
[5] showed that the presence of hard output/state constraints can introduce extra feedback
terms in the predictive controller, which can lead to instability/infeasibility of the constraint
closed-loop system. The presence of hard input and output constraint constraint results in
an online optimization that produces a nonlinear controller even when the plant and model
are assumed linear (Zafiriou [0]). In all these papers, the use of soft output/state constraints
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is recommended. For MPC problems with non-minimum phase plants there are also pa-
pers describing how to choose the soft-constraint weights in order to improve closed-loop
behaviour [7, 8]. In order to implement MPC in practice, it is necessary to incorporate out-
put feedback. Similar to the LQG-control case, it is possible to separately design a linear
state observer, which estimates the current state of the plant for use in the MPC algorithm
(Rawlings and Mayne [9]).

1.4. Contribution

From the perspective of wafer scanners, this project, to the best of our knowledge, for the
first time develops an optimization-based framework to account for thermal disturbances and
the non-correctable deformations for an MPC controller equipped with partial temperature
sensors located away from the AOI. A particular contribution of this project is to investigate
possible existing tuning guidelines in order to choose the optimal control and prediction
horizon for the MPC-controller in the context of the reticle cooling application. Deriving (sub)
models to be used for MPC using system identification and model reduction techniques, were
also one of the challenges in this project. The process model, as will be introduced in Section
2, is also a contribution of this project.

1.5. Outline

Section 2 discusses the mathematical derivation of the actuator, the reticle and the sen-
sor thermal dynamics. Section 3 uses the derived model to design the MPC using full state
information along with an overview of the tuning guidelines. However, since full state infor-
mation is not realistic, Section 4 discusses the incorporation of the output feedback using
the available sensor.



Thermal Process Modeling

This Section discusses the derivation of the process model (see Figure 2.1), which consists
of the following components, related to system components in Figure 1.2a:

* a sub-model P, of the actuator having inputs u,(t) and T, and output T,;-(t). The
actuator consists of a heater and a nozzle where conditioned air at a certain temperature
Tyeir is heated by the heater, with heating power u;, to the temperature Ty;, (t) out of the
nozzle.

* a sub-model P of the reticle with inputs w(t) and Tg;-(t) and outputs €(t), €,(t), z(t),
and Tg;y,,,- The dose with intensity w(t) falls onto the reticle causing the non-correctable
deformations €,(t), €,(t), the temperature difference z(t), and the airflow temperature
Tair,,, to increase.

* a sub-model Ps of the sensor which relates the flow temperature T,
output y(t) = Tcavity @®.

iroue (t) to the sensor

The three sub-models are derived in Section 2.1, 2.2, and 2.3, respectively. Section 2.4 shows
how the dose disturbance w(t) is modeled and Section 2.5 shows how a series interconnection
of the three sub-models results in the total process model P that will be used throughout this
report.

Figure 2.1: Blok diagram of the process model P with the corresponding sub plants.
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6 2. Thermal Process Modeling

2.1. Actuator Dynamics

As mentioned earlier, conditioned air flows out of the nozzle into the reticle stage at a cer-
tain temperature T,;,-(t), for which a peltier element is used to deliver cool air at a constant
temperature Tp;;. Thereafter, it is heated by a heating element with power u,(t). The actu-
ator dynamics gives a relation between the inputs T, up(s) and the output T,;-(s) in the
Laplace-domain (s € C) that can be written as:

Tair(s) = [1 Puyorg, (5)] [uT:E?)] 2.1)
Pa(s)

where P, r . (s) denotes the dynamics from the heating element u,(s) to the inflow tempera-

ture Tyir(8). By, 1y, (S) can be written as a third-order transfer function

Tair(s) — K
up(s) as3+bs?+cs+1’

P 1oy (8) = (2.2)

where the parameters K = 88.81 mK/W, a = 3.1162 - 10* s3, b = 3.244 - 103 s, and ¢ =
175.69 s are estimated using measured step response data to a heater input of u, = 40 W.
Figure 2.2 shows the step response of the derived model and the measurement data, where
the maximum absolute error equals 0.035 K, which is sufficiently small. For control design
purposes, the actuator dynamics (2.1) are written in state-space form as follows:

X4(8) = Agxp(t) + By [Z:Eltt)]

P, (2.3)

T.
Tair(t) = Ca - x4(t) + Dy [uizltt) ,

where x, € R¥N4*1 4, € RNa*Na B, € RNa*2 (C, € R™Na D, € R1*2 T ;. € R and Ny = 3. The
matrix 4, is Hurwitz with the eigenvalues 4 = —0.0489+0.0512i and 2 = —0.0064. The matrices
of the actuator model can be found in Appendix A.



2.2. Reticle Dynamics 7

Step Response Fitted Model vs Measured Data
From: ul To: y1

— Fitted Model Response
— Measured Data

N
o
T
1

Temperature [K]
o

O 1 1 1 1
0 200 400 600 800 1000

Time (seconds)

Figure 2.2: Fitted model response vs measured data.

2.2. Reticle Dynamics

After the air exits the nozzle, it flows over the reticle in the reticle stage. The flow above
the reticle influences the temperature of the reticle and vice versa. The model is derived
using a FEM discretization of the heat equation, which resulted in an LTI system with 2529
elements/ states and 34 outputs [11]. The first 32 outputs represent the constraint variables
for MPC, which are the non-correctable deformations €,, €y. The non-correctable deformation
is denoted by

ex(t) = d (1) — dy (1) (2.4)
€, () = dIME) — dy (0), (2.5)

where (d}*,d}') € R1® represent the measured deformation at 16 locations at the bottom of
the reticle in the x and y direction, respectively. Assuming the reticle model to be accurate,
(dy, d3t) becomes a linear combination of the states of the reticle model. The correctable
deformations (d,, dy) € R are derived using polynomials representing the basic correctable
reticle shapes shown in Figure 2.3a and 2.3b. The correctable deformations are derived as
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follows:
fx (X1, 1)
ax(t)= fx(x?:}’z) Jey ()
fx(X16, Y16)

—_ —
Fyx

=F, -k, (t) (2.6)

fy(xp)ﬁ)
dAy(t) — fy(x?,}&) 'ky(t)
fy(x16'y16)

Nttt
Fy

= F, -k (t) 2.7)

where f,(x;,y;) € R®1 contains the 8 polynomials describing the mode shapes schematically
depicted in Figure 2.3a and f, (x;,y;) € R*! contains the 6 polynomials of Figure 2.3b evalu-
ated at the positions (x;,y;) on the bottom of the reticle. The terms k, € R®! and k, € R6*1
contains the coefficients belonging to the specified polynomials in f, and f,. The coefficients
(k-parameters) are derived based on a linear least-squares fit between the correctable defor-

mations (2.6), (2.7) and the measured deformations dy*, dj'. The formula for the k-parameters
becomes
ky(t) = (FxTFx)_lFxT -dy'(t) (2.8)
ky(t) = (B E,)7'E - dj*(t) (2.9)

Since the measured deformations d',d}' are linear combinations of the states of the reticle
model P, this implies that k,, k,, are also linear combinations of the states (see (2.8) and (2.9)).
In turn this makes the correctables d,, &y a linear combination of the reticle states (see (2.6)
and (2.7)), which shows that the non correctable deformations €, €, are outputs of the reticle
model with linear relations to the states.

] Waler stage
3 static lens

] Dynamic lons

1 Wafer stage
[ static lens
Dynamic lens

2 Xﬂyﬂ

S
(=]
-
=+
1] 1 N A
— Sl = ‘ ___’ — I
= = EN
inl ™~ LT ™~
= = | ad
o 1T ST ©
— N — T Ll RSN
~ PN
(a) Correctable mode shapes for d,. (b) Correctable mode shapes for dy.

Figure 2.3: Correctable mode shapes for the reticle’s x and y direction.
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The performance output z is the term that has to be minimized by the MPC-controller.
As discussed in Section 1, the goal of the controller is to reduce thermal disturbances which
implies reducing the temperature difference between the reticle bottom and the environment.
The performance variable z thus becomes

z(t) = Ta01(t) — Tenw (2.10)

where Tyo; represents the average temperature at the reticle’s area of interest AOI (see Figure
1.1) and T,,, is the temperature of the environment underneath the reticle. The performance
z is also a linear combination of the reticle state.

The output Ty, denotes the average temperature of the airflow out of the nozzle after
passing over the reticle (see Figure 1.2a). This temperature is related to the sensor output y
via the sensor dynamics P, which is explained in Section 2.3

For control design purposes, the FEM model is reduced using the Balanced Residualiza-
tion technique, which eliminates states that have lower Hankel singular values than that of
the specified model order [11]. The remaining states are altered in order to preserve the DC-
gain. The model order is chosen such that the resulting state-space model (2.11) captures

1 1

most of the dynamics excited by the disturbance with a fundamental frequency of f,, = =1

Hz, where T,, is the fundamental period of the dose w(t) as explained in Section 2.4.

The resulting model has as inputs the dose w(t) and the nozzle outflow temperature T,;,-(t).
The state-space realization of the reduced reticle model is given by

. w(t
xR (t) = Apxp(t) + Bg [Taif()t)]
, €x(t) Ce, De, 2.11)
0 I A I - T P B RO I '
Z(t) RC§ R RD§ Tair (t)
Tairaut (t) CTairout DTairout

where xz € RVR*1 w € R, (€, €,) € R, (2,Typ,,,,) € R and Ny = 25.

2.3. Sensor Dynamics

In order to have a complete model for control design, it is necessary to incorporate a sensor
which measures the state of the reticle in real-time. The difficulty for both modeling and
control lies in the fact that it is not possible to mount a sensor directly on the reticle instead,
the location of the sensor y(t) = T,qpity (t) is chosen just above the reticle. The derived sensor
dynamics Ps(s) should provide a relation between the average air temperature after passing
the reticle Ty, (£) and the sensor output y(t) = Teqpiry(t). The sensor dynamics are derived
using a second-order transfer function P4y, Which was derived using measurement data
available. P.qpity(s) gives the transfer function from the inflow temperature Ty;-(s) to the
measured sensor output T,qyit, (S) (see Figure 2.4 and 2.5). The red line in Figure 2.6 gives
the response of Teqyity(t) (Measured) to a step input of Ty, = —1 °C.
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Figure 2.4: Transfer from Ty, t0 T¢qyiry derived from measurements.

Tair Ty Tcavity (Fitted)

ITout

Figure 2.5: Transfer from T ;- t0 T¢quicy ased on a series interconnection.

The blue line in Figure 2.6 gives the response of Ty;; , (¢) to the same step input of T, = —1
°C. As expected, the response shows that there is indeed missing dynamics between the
measured sensor output Tqpiry (t) and Ty, However, by using knowledge of the acquired
time domain data T, (t) and T.qpity, (t) (measured) and the assumption that the following
relation holds:

Tcavity(s) = Ps(s) - Tairout (s), (2.12)

it is possible to determine the sensor dynamics Ps by using system identification techniques.
The resulting transfer function structure is derived as follows

Ky K,
+ )
Tis+1  15+1

Ps(s) = (2.13)

with the dimensionless parameters K; = 2.03, K, = —1.17 and the time constants being
T, = 27.03 s and 7, = 48.08 s.
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Figure 2.6: Response of both H ity and Hrgy to a step of Ty = -1 °C.

The yellow line of Figure 2.6 shows the responses of T¢4y¢y(t) due to a step input of Ty, =
—1 °C using the series interconnection between PTair'Tairout and the fitted sensor dynamics Fs.
As desired, the result of the fitted sensor output gives a reasonable representation of the
measured sensor output (Teeyity (t)), which means that the sensor dynamics P can be used
as the missing dynamics between Ty, and Teqpiry,- For control design purposes, the sensor
dynamics will be represented by the state-space representation

Xs(t) = Asxs(t) + BsTqir,,, (t)
3 (2.14)
y() = Cs - x5(t) + DsTair,,, ()

where xg € RVs*1, Ay € RNs*Ns| B; € RVs*1, Cg € R™Ns, Dg € RV, and y = T,qpiey Where Ng = 2.
Ag is Hurwitz with the eigenvalues being 1 = —0.0370 and A = —0.0208. The sensor dynamics
has a stable zero at z = —0.0131. The matrices of the sensor model can be found in Appendix
B.

2.4. Dose Modeling

During wafer exposure, the reticle starts to heat up due to the laser dose w(t) acting on the
reticle. This dose, which represents the input disturbance in the model, is what causes the
undesired nonzero performance variable z (see (2.10)). For this reason, this Section discusses
the modeling of the dose/disturbance along with the values of the corresponding parameters.
These parameters are derived based on average values during exposure of +70 wafers. The
dose w(t) is modeled as a pulse-train (see Figure 2.7), where w = 128.8 W/m? and T, = 14
seconds denote the exposure intensity and exposure duration for one wafer respectively.
After exposure of a wafer, there is an average waiting time of three seconds for the next wafer
in which there is no exposure (w(t) = 0). When the next wafer is in place, the exposure
starts again resulting in a pulse train period of T,, = 17 seconds. The time T, at which the
exposure starts is set at 50 seconds. The model of the dose will be used throughout this
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report to represent the real disturbance on the system. Note that this representation is a
mere approximation of a much more complicated disturbance behaviour as seen in practice.
Section 4 however, will consider an uncertainty on the intensity w in order to investigate the
performance loss of MPC in a Kalman-Filter framework.

w(t)

w —
Ty
W [N
Tw, [~
O L
0 t

tend

Figure 2.7: Model of the dose w(t).

2.5. Total Thermal Model

By making a series interconnection of all the sub plants B, Pz, and P according to Figure
2.1, will result in the following total plant P given by

%(t) = Ax(t) + Byup(t) + By [Tve“

w(t)
DY D¢
y — €y €y € pelt
20 ||, [FO | |4 O | pd [w(t)
yol le, D Dy
XA
where x = |xz | € RVt, A € RVeXNt B € RNt*1 B, € RVt*2 N, = N, + N + N, and the matrices is
Xs

given by Appendix C.The total matrix A is Hurwitz with the fastest eigenvalue being 1 = —200
and the slowest eigenvalue being 4 = —0.00487. The system contains right-half plain (RHP)
zeros, which results in a non-minimum phase system. The RHP-zeros stem from the reticle
dynamics derived in Section 2.2.



Model Predictive Control with Full State
Feedback

This Section discusses the mathematical representation of the control problem in the frame-
work that is solvable by using a Model predictive Controller. In Section 3.1, the original
problem is formulated using hard state constraints, but the implementation showed that the
solver was having infeasibility problems. For this reason Section 3.2 introduces soft state
constraints where the state constraints are violated whenever the problem becomes infeasi-
ble. Section 3.3 ends with a guideline on how to choose the control and prediction horizon
based on some defined performance variables.

3.1. Control Problem Formulation with Hard Constraints

Before formulating the control problem, the plant P given by (2.15) is discretized using a
sampling time of T; = 1 seconds. The resulting discrete-time system model becomes

x(k + 1) = dx(k) + Tyup (k) + Ty [\%ﬁﬂ
ex(k)] [Ce D¢, De
§ i d (3.1)
Ce DY D¢ ([ Tye
S |=| 00+ [z [0 + nd ‘ [z;p(lg]
1 L, Dy Dy

with ® = e4Ts, T, = fOTS e4TdtB, and I'y = foTS e4®dtB,. The control problem is written such that
an objective function, related to minimizing the performance variable z, is minimized subject
to input- and state constraints at every time step k according to

N
min Y |z(k + )| (3.2)
up() j=1

subject to the hard state constraints
lex(k + DI, <81 ¥j=1-,N,
(3.3)
”6y(k+])”1352 Vj:ll...'N’

input constraints

Umin S Up(k +J) S Umaxy Vj=0,,Nc—1, (3.4)

13
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and subjected to model constraints given by (3.1) where the following variables are known

w(k + ), Vj=1,-N
Tye(k+j)=c, Vj=1,--N (3.5)
x(k), vk

The objective function (3.2) is aimed at minimizing the absolute value of the difference be-
tween the future reticle temperature at the area of interest Tyo;(k + j) and the constant ref-
erence environment temperature T,,, denoted by |z(k + j)| = |Tuo;(k + j) — Teny| within the
prediction horizon window N. In minimizing the objective function it is nescecarry that all
future constraint variables ||ex(k + j)||; and ||€,, (k + j)||; satisfy the constraints §; and §, re-
spectively. These constraints are derived based on the maximum allowable non-correctable
deformations of the current state of practice. The result of the optimization is a sequence
of control commands u, () = [uy(k), up(k +1),...,up(k + N. — 1), ...,up(k + N)], where N, is the
control horizon. The control input is free to move for the first N, moves and is kept constant
after that according to the following constraint

up(k +j) =up(k + N, —1) Vj>N, (3.6)

Introduction of a control horizon is usually beneficial for the computation time of the opti-
mization problem, while still allowing the prediction horizon to be sufficiently large.

MPC is implemented using the receding horizon principle where after computing the op-
timal control sequence uy(-), only the first control sample uy(k) is implemented. For the
implementation of the MPC in this report, the assumption (3.5) is made that future distur-
bances of the dose w(k+j) is known with the values as discussed in Section 2.4. Furthermore,
the following parameters are used in order to completely define the MPC-algorithm in this
Section:

Tpeir = —4°C (3.7)
6; = 1.051 nm (3.8)
6, =946 nm (3.9)

Umin =0 W (3.10)

Umax = 45 W. (3.11)

The above mentioned parameters are used for all the simulations throughout this report.
The state x(k) is also known for every time step k, where the initial condition x(0) is always
chosen such that the overall reticle stage temperature starts at 22 °C. However, during the
closed-loop simulations with MPC, infeasibility problems occurred due to the fact that at
a certain point in time the solver was not able to solve the optimization problem given by
(3.2)-(3.6). The only explanation is that the solver could not find an input sequence uy(-),
which satisfied the constraints in (3.3) and (3.4). In order to find out which constraint is
violated, Figure 3.1 shows a result of the three constrained signals u,(k), [[ex(K)||,, [l€, (K)||,
along with their constraints u,;,;n, Umax, 01, and §,, respectively in case of when N = 30 and
N, = 1. This specific simulation is terminated at 253 seconds due to infeasibility, which is
also the time at which ||ex(k)||1 reaches the constraint §;. The rest of the signals ||ey(k)||1
and uy (k) do satisfy their constraints. Figure 3.1 thus suggests that infeasibility is caused
by the hard state constraint ||ex(k)||1. Infeasibility due to state constraints is a commonly
recognized problem when using MPC [4], [5], [6]. An approach to avoid of this infeasibility is
by using soft state constraints, which is discussed in the next Section.
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Figure 3.1: Closed-loop simulation results of the three constraint signals until infeasibility occurs in case of N =30 and N, = 1.

3.2. Control Problem Formulation with Soft Constraints

Section 3.1 showed that implementation of hard state constraints can cause infeasibility of
the optimization problem. This is a common problem in MPC, which is usually solved by
relaxing the state constraints with a slack variable a. This variable equals the maximum
constraint violation within the prediction horizon window N. The slack is added in the cost-
function in order to keep the term as small as possible. The objective function and the state
constraint given by (3.2) and (3.3) are modified as

N
min ¥ |z(k+))| +p - a, (3.12)
un (Ve =1

subjected to the soft state constraints given by

lex(k +D||, <61+ We-a Vj=1,.,N,
(3.13)
ley(k + DI, <2+ Wy -a Vj=1,..,N,

and the nonzero slack variable
a=0, (3.14)

where p is a constant penalty term, which adds importance to minimizing the maximum
constraint violation a in the objective function (3.12). The weights W, and W, represent the
concern for relaxing the corresponding state constraints. The larger W, and W,,, the softer the
state constraints. The input constraints denoted by (3.4), the model constraints given by (2.3)
along with the assumptions of (3.5), and the control horizon constraints remains unchanged
in the new framework.

For the implementation of the MPC with soft constraints, the same disturbances param-
eters as in the previous Section are used to define the MPC-algorithm. The algorithm is now
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expanded with the following parameters:
W, =1,W, =1,p =500 (3.15)

Figure 3.2 shows the result of the three constraint signals in closed-loop in case of a soft-
constraint implementation. The value of N and N, used in this figure is the same as in
Figure 3.1. The difference between the two is that, it is now possible for MPC to find feasible
solutions within the specified simulation time. Figure 3.2 also shows that MPC now allows
€,(t) to violate the constraint §; by 43 %. However, a constraint violation of 43 % is quite high
and thus different combinations of N and N, have to be considered in order to reduce this
violation. Since there are infinite possible combinations of choosing N and N, Section 3.3
gives tuning guidelines for choosing a combination which satisfies i.e. the desired constraint
violation.

Closed-Loop Simulation
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Figure 3.2: Closed-loop simulation results of the three constraint signals in case of MPC with soft constraints for N = 30 and
N, = 1.

3.3. Tuning Guidelines

Before comparing the result of MPC with the current state of practice, it is important to inves-
tigate which combination of N and N, gives best performance. The closed-loop performance
outputs that will be used to determine the optimal prediction N* and- control horizon N * are
calculated for each combination of N and N, according to

1 .

2t = = Y ek + ), (3.16)

cl &=

j=1

max ([lex(k + DI, = 81, lex(k + Nep|l, = 61)
@y = - 100, (3.17)
51

where z., denotes the average temperature deviation in K (or °C), N,; = 1000 denotes the

amount of closed-loop iterations and a, denotes the maximum constraint violation within
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the closed-loop window in %. Another important closed-loop performance measure is the
computation time for every iteration, or Comp, which basically denotes the complexity of the
optimization problem for every iteration. Note that the computation time could depend on
the type of optimization solver and the type of processor. The solver used in this project is
Sedumi and the processor is Intel Xeon CPU E3 1505M v5. The calculated performances for
different combinations of N and N, are given by Figure 3.3, where N varies between 1 and
600 and for each combination N, < N. The figure illustrates 6 different cases for the control
horizon, namely N, = N (maximum control horizon), N, = 1 (minimum control horizon),
N, =3, N, =5, N. = 10, and N, = 20. When increasing the control horizon from N, = 1
to N, = 20, it is evident that the objectives z, and a.; for these settings start to resemble
the objective for the setting of N = N.. It can be concluded that the computation time Comp
decreases with decreasing prediction horizon N. When choosing the right setting of (N, N,) it
is not only important to make the average temperature deviation z.; as small as possible, but
also to know how much constraint violation a.; is allowed and what is the sampling time of
the system since preferably Comp << T; = 1 s. Consider for example the following cases:

* Minimum temperature objective z.,: The curves in Figure 3.3 show that z. is the
lowest when N > 550 for N, = 1 and N = 250 for the remaining control horizons. The
corresponding value of z.; is around 0.27 K for the case of N, = 1 and 0.13 K for the
remaining control horizons. However, choosing such high prediction horizons comes
at the cost of high constraint violations (24 < a,; < 30 %). Another price to pay when
increasing the prediction horizon is the increasing computation time Comp, which can
increase up to 19 seconds.

* Decreasing maximum constraint violation «;: If there is only a maximum constraint
violation of, e.g., 10 % allowed, then a setting of N = 80 would be sufficient, however
the price to pay this time is the increase in average temperature deviation (z, = 0.67
K). The computation time Comp does decrease compared to the previous case because
of the choice of lower prediction horizon. The computation time at N = 80 reads 0.97
seconds for N, = 1 and 2.15 seconds for N, = N. The computation time of the remaining
control horizons are in between the mentioned values.

The cases above shows that there is indeed a trade-off between z., a., and Comp when
choosing the right setting of N,N.. However, the main goal in this project is to reduce the
temperature difference z which will reduce the effect of thermal disturbance underneath
the reticle. In doing so, one should be willing to accept the cost of constraint violation and
computation time. The curve of z,; shows that, in order to guarantee a minimum temperature
difference z.;, one has to choose a prediction horizon which contains sufficient time domain
information, i.e. N = t s with 7 being a time constant. This depends also on the choice of
the control horizon N., which determines the freedom that the controller has to minimize
the objective z.; given constraints. A larger control horizon results in a faster convergence to
the minimum. By choosing a control horizon of N, = 3, a much faster convergence of z.; to
its minimum is obtained compared to N, = 1. The choice of increasing the control horizon
also compensates for the slow dynamics from u; — z. The slowest time constants for u, — z
is 7 = 420 seconds and for w = z is T = 200 seconds. As can be seen, when there is only
one degree of freedom N, = 1, the controller needs N to be at least 420 seconds to reach the
minimum z.;. However, when increasing the control horizon to i.e., N, = 3, the controller has
more freedom for u; to compensate for the slow dynamics u; = z. Now, to compensate for the
slowest dynamics w — z, one has to choose a prediction horizon of at least 200 seconds. To
show this, Figure 3.4 shows a situation where N is smaller than 200 (N = 130) and when N
is bigger than 200 (N = 250). As expected, the temperature difference z for N = 250 averages
to zero in steady state while in the case of N = 130 it averages 1 °C above zero (steady state
error). Of course, the price to pay is for the non correctable deformation ||e,||; to violate its
constraints by a maximum of 28 % for N = 250. For the reasons above, we consider that the
setting (N = 250,N, = 3) to be the best choice in our case and this setting will be used from
now on for the remainder of this report. Note however that results in this Section are obtained
using full state information. The next Section will consider output feedback in combination
with a Kalman Filter to reproduce the full state.
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Figure 3.3: Closed-loop performances for for different combinations of N and N..
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Figure 3.4: Time domain simulation results for the MPC settings (N = 130, N, = 3) and (N = 250,N. = 3).






Model Predictive Control with Output
Feedback

As discussed previously, the results obtained in Section 3.3 are derived using full state infor-
mation. However, in reality, there is only access to the sensor output y(t). For this reason,
Section 4.1 introduces a Kalman Filter design to estimate the entire states of the system in
a real-time operation. Section 4.2 discusses the performance loss of a situation in which
the initial conditions of the real system differ from the ones used in the Kalman Filter and
Section 4.3 does the same with the offset in disturbance w. Lastly, Section 4.4 compares
the performance of the designed MPC controller and Kalman Filter with the current state of
practice.

4.1. Kalman Filter Design

For the design of the Kalman Filter, the plant P given by (3.1) is used under the assumption
that only the measurement y(k) is available for control. However, the full state has to be
reconstructed in order to be able to use it in the MPC framework. With the information of
the measurement (and measurement noise), the state can be reconstructed according to the
following Kalman Filter design

(k)

where K € RVa*Nr+Ns represents the Kalman gain, which is a solution to the Ricatti equation
(DARE in Matlab). The estimated state % is used as an initialization to the MPC controller in
order to solve for the optimization. The error signal e(k) € R? is the difference between the
Kalman Filter output y and the output of the actual system y such that

e(k) =y(k) —P(klk — 1) (4.2)
= Cy (x(k) — £(k|k — 1)) + v(k)

2(k + 1]k) = d2(k|k — 1) + Tyup (k) + Ty [‘f}’e” + Ke(k) 4.1)

where v € R! is a zero mean white noise. The error signal will be used in Section 4.2 as a
performance measure for the Kalman Filter.

4.2. Performance Loss due to Offset in Initial Condition

The performance of the MPC as described in Section 3 is based on a certain initial condition
xo of the plant P. However, in reality, the initial condition used in the observer %, might
not always coincide with the real initial condition x;. Even though the Kalman Filter makes
sure that the states will eventually converge, the offset in initial conditions may still affect
the performance of the system. Figure 4.1 shows the simulation results when there is an
initial condition offset between the real system and the observer. The initial condition of

21
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the real system is chosen such that the reticle has an offset of 500 mK (blue line). As for
the first 400 seconds, the temperature difference z for the case of an offset in x, shows a
worse performance compared to the perfect situation with the same initial condition with the
highest values being 1 and 0.5 K, respectively. However, despite the initial condition offset,
the temperature difference z for the two cases reach their steady state (or reference) in about
the same time span (400 seconds). For the constraint variable ||e,||;, there is not much
difference between the two cases where the maximum constraint violation for both cases
ends up to be £31 %. The constraint variable [|¢, ||, for both cases satisfies the constraint §,
and also reaches the steady-state value after 400 seconds. Not much can be said about the
control input u, other than that u; for the case of an initial condition offset remains at zero
for a longer time period. The reason for this is that the reticle needs to be cooled for a longer
time period when it starts at a higher temperature before it reaches its reference (maximum
cooling means u, = 0). The error signal e for the observer in the case of initial condition offset
shows fast convergence (within 100 seconds), which means that the Kalman Filter does not
have difficulties in converging the states after the initial condition offset between the observer
and the real system. Note that the observer error shows faster dynamics than the control
performance z, which is a recommendation when designing an observer in combination with
a controller. The observer error for the case of same initial conditions is around zero for
every time step, since in this case there is no offset in the states such that according to (4.2)
e(k) = v(k) Yk. In conclusion, the observer designed in Section 4.1 is able to get rid of the
effect of offset in initial conditions and even though there is a small loss in performance, the
performance still reaches its reference in steady state.
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Figure 4.1: Time domain simulation results for the case of an offset in initial condition between observer and real system.

4.3. Performance Loss due to Offset in Disturbance

Another possible situation is when there is a small offset between the disturbance w used
in the observer and the real system. This Section discusses the effect of a small offset in
disturbance amplitude on the performance compared to the case when disturbance ampli-
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tude is known. A realistic situation in practice is that the disturbance on the real system
might have a 5 % constant offset in amplitude compared to the real system. Figure 4.2 shows
the result obtained in this situation. The temperature difference z has worsened throughout
the whole simulation time in the case of an offset in disturbance w compared to the ideal
situation. The observer is also not able to reduce this effect, which results in a steady-state
error for z (blue line). The observer error e is now biased due to the constant disturbance
offset, which implies E[e(k)] # E[v(k)] and thus the offset steady state error of z will remain
present. However, this can be solved by adding an output integrator and use the Kalman
Filter to estimate the constant offset, which is outside of the scope of this project but which
is clearly explained in the Matlab’s Model Predictive Control Guide (Morari et al [10]).



4 4. Results of MPC Versus Current State of Practice 25

' = Offset w
0.4 Same w
N 0.2 - Reference
0 [===g
0 100 200 300 400 500 600 700 800 900 1000
2 T T T T T T T T Offset w
— Same w
wx 1F
— 5 1
0
0 100 200 300 400 500 600 700 800 900 1000
1000 T T T T T T T T Offset w
- Same w
j>~ 500
; M 22
0 1 1 1 1 1 1 1 1
0 100 200 300 400 500 600 700 800 900 1000
50 T T T T T T T T Offset w
Same w
=
>
umin
9= = Unax
- .H
m— Offset w
@ Same w
5 . . . . . . . . Reference

0 100 200 300 400 500 600 700 800 900 1000
Time [sec]

Figure 4.2: Time domain simulation results for the case of an offset in disturbance between observer and real system.

4.4. Results of MPC Versus Current State of Practice

This Section compares the result of the designed MPC and Kalman Filter with the current
state of practice. As discussed in Section 1, the current state of practice consists of the Open-
Loop Control and the Reticle Deformation Correction method. The biggest difference between
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feedback controlled cooling with MPC and Open-Loop cooling is that with MPC adaptation
occurs to the change in temperature difference z, while the aim of Open-Loop cooling is to
blow cool air at a constant temperature over the reticle. As can be seen in Figure 4.3, the tem-
perature difference z for the Open-Loop case settles around 1.8 K in steady-state, while MPC
settles around 0 K as discussed previously. This shows the strength of feedback controlled
cooling. However, feedback controlled cooling seemingly introduces more shapes that are not
correctable by Reticle Deformation Correction, hence ||e,||; for the Open-Loop case is lower
than that of MPC. However, due to the implementation of soft constraints, MPC ensures that
the non-correctable deformations do not exceed the Open-Loop case too much. ||, ||; seems
to have been improved with the implementation of the MPC algorithm. The control input uy
between Open-Loop and MPC differ from each other in the sense that the Open-Loop control
input reacts only to the nozzle temperature T,;, until it reaches its constant reference of 21.8
°C after 200 seconds where u;, remains constant. The MPC control input on the other hand
is actively reacting to the change in z while making sure the constraint violations are kept as
small as possible.
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Figure 4.3: Time domain simulation results for MPC and Open Loop Cooling method.






Conclusions and Recommendations

In conclusion, in this project, a successful derivation of the process model has been achieved
and used for the first time in an MPC framework. Also, a control problem is derived in which
the outputs of the process model served as performance and constraint variables in the MPC
algorithm. MPC is a suitable approach due to its ability to cope with time domain constraints
and due to its predictive nature. Subsequently, tuning guidelines for choosing the optimal
control and prediction horizon for the MPC-controller in the context of the reticle cooling
application was given. It was shown that by choosing a sufficient control horizon N, and a
prediction horizon N of at least the slowest time constant of the transfer function w to z, it is
possible to eventually minimize the effect of the disturbance w in the performance variable
z. Also, by using the Kalman Filter in combination with the sensor output to reconstruct the
states, it was still possible for the MPC to minimize the performance variable z despite the
absence of a direct measurement of z. Lastly, results showed improvements in performance
with respect to the current state of practice at the cost of computation time and constraint
violation.

The biggest drawback of using MPC in this framework is the high computation time Comp.
The computation time for the chosen optimal prediction and control horizon of N = 250 and
N, = 3 is on average 8 s for every closed-loop iteration. Since the controller and model are
sampled at Ty = 1 s, this implies that the controller could not yet be implemented in reality.
A future recommendation in order to decrease the computation time is to use a lower order
thermal model, if possible. A lower model order will reduce the dimension of the optimization
problem, which reduces the complexity and thus the computation time. State constraints
also increase the complexity of the optimization problem and thus the computation time.
However, state constraints are an important part of the problem and cannot be removed. It
is thus recommended to replace state constraints with solely an objective function, which
means that the problem definition has to be either changed or relaxed in the future. This
could be done by replacing everything with one objective function, which minimizes the over-
all temperature difference between the reticle and the environment. This is not guaranteed
to have the same results (or better) as what is shown in this report, but it still focuses on
reducing thermal disturbances as well as thermal deformations.
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Matrices of the Actuator Model
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Matrices of the Sensor Model
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Matrices of the Total Process Model
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