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Abstract

A Quantum Internet will enable new applications that are provably impossible with clas-
sical communication alone. However, the optical fibers used to carry the quantum infor-
mation are inherently lossy. To overcome the exponential losses over distance so-called
quantum repeaters are needed to amplify the signal.

In this thesis we investigate the performance of different repeater architectures within
the European Quantum Internet Alliance which are based on atomic ensemble technology.
For each of the groups from Barcelona, Delft, Geneva and Paris we simulate different sets
of current and future performance parameters.

In contrast to previous simulations and analytical models we present the first simulation
that includes important sources of error for these types of architectures, such as multi-pair
emission, time-dependent memory efficiency and photon distinguishability. Key to this is
our new approach using discrete event simulation never used before for atomic ensemble
based quantum repeater protocols.

We find that previous models do not accurately describe the performance of such re-
peater architectures and provide an analysis of how each of these noise parameters impacts
performance. This allows us to assess the potential of different component technologies,
such as photon sources and quantum memories, and quantify what improvements are nec-
essary to bridge long distances in the future.

With our simulation we provide a crucial stepping stone towards a blueprint for a
pan-European Quantum Internet.
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Chapter 1

Introduction

Recent advances in Quantum Information Technology such as Google’s quantum supremacy
experiment [1] have drawn large public attention to this particular field of Quantum
Physics. The enormous advancements in the ability to detect and manipulate single quan-
tum objects has led the European Union to announce that a "Second Quantum Revolution
is unfolding" and invest one billion Euro in the Quantum Flagship Project [2] as part of
Horizon 2020 [3].

While the whole world is talking about quantum computers, there is one very unique
project within the Quantum Flagship called the Quantum Internet Alliance (QIA)
[4]. Its goal is to develop a Blueprint for a pan-European entanglement-based Quantum
Internet, by developing, integrating and demonstrating all the functional hardware and
software subsystems [5]. Such a Quantum Internet will use fundamentally quantum me-
chanical properties such as entanglement and superposition to allow for features that
are impossible using the current classical Internet. It would thus act as a supplement to the
classical Internet enabling e.g. provably secure communication using Quantum Key Distri-
bution (QKD) [6], secure access to remote quantum computers (blind quantum computing)
[7], extension of telescope baselines [8] or a global 4-dimensional quantum positioning sys-
tem [9].

Central to all of the applications is sharing an entangled state between end nodes
over long distances. Similar to the classical Internet, to overcome the exponential losses
over distance the signal needs to be amplified. However, quantum information can not
be copied [10], [11] and therefore our usual approaches for signal amplification do not
work here. We have to employ a more sophisticated method called Quantum Repeaters
[12]. There are many experimental efforts going on around the world trying to improve
the hardware used for such a device but in order to develop the blueprint for a Quantum
Internet mentioned above a significant amount of theoretical analysis will be required to
guide those experimental efforts.

As a first stepping stone towards the QIA goal, a team of scientists with various back-
grounds under the direction of Prof. Wehner is working on simulating a Quantum Internet
for the Netherlands. Simulation allows us to effectively study the behavior of different
classes of repeater protocols under various parameters. This will enable us to define further
design and research goals and to develop a realistic blueprint for a large scale Quantum
Internet. It also makes a wide variety of other applications possible, such as analyzing
future networking protocols [13], parameter optimization, comparing different hard- or
software components and analyzing the scalability of various proposals. To permit this the
simulation model however needs to be as realistic as possible. The knowledge that will be
gathered from this smaller scale analysis will provide invaluable input for any larger scale
quantum network.

One particular class of repeater protocols is based on using Atomic Ensembles and



5

linear optics [14]. This approach utilizes the collective effects of atoms in ensembles to
reliably generate and distribute entanglement between end nodes. The greatest advantage
over other protocols comes from their ability to use multiple photon modes in parallel to
greatly improve the rate of entanglement distribution. They therefore offer great promise
for future application [15] and are under active experimental development within QIA.

In this thesis we provide two major contributions:

• We develop a more realistic and highly modular simulation of atomic en-
semble based quantum repeater architectures. By including various noise
parameters that are analytically hard to investigate such as multi-photon emission,
time-dependent memory noise or photon distinguishability we offer a model that
allows for analysis beyond any currently existing models.

• We compare current experimental efforts within QIA to realize atomic
ensemble based quantum repeaters, demonstrating the capabilities of our sim-
ulations to assess the scalability of different repeater protocols. The modularity,
efficiency and scalability of our simulation makes it possible to simulate many differ-
ent hardware components in large quantum network topologies. Thus we compare
the repeater protocols developed in Barcelona, Delft, Geneva and Paris in a simulated
QKD experiment.

To approach these tasks this work starts out by introducing the basic background
knowledge and building blocks of quantum repeaters in Chapter 2. After introducing the
more theoretical aspects the chapter will close with a current proposal of a real physical
implementation of a repeater protocol including a discussion of the necessary devices.
In Chapter 3 we will first give a basic introduction in the functionality of the components
we had to design for our simulation. Then we go into a detailed discussion of how we
implemented multi-photon emission, which was especially challenging.
Once we have elaborated our model we will then verify it against various existing analytical
and numerical models in Chapter 4 to convince ourselves of its validity.
In the following Chapter 5 we will then move beyond previously existing models and in-
vestigate the effects of various more sophisticated noise parameters. Key to this analysis
is the simulation we developed especially for atomic ensembles.
We then demonstrate the capabilities of our model by comparing the four different exper-
imental efforts to realize atomic ensemble based repeaters within QIA in Chapter 6. This
is enabled by our simulation’s focus on keeping things modular, thus making it easy to
compare different component technologies.
Finally we will give an idea of how our model can be used to optimize real experiments in
Chapter 7. To conclude we will propose future research topics in Chapter 8.



Chapter 2

Background

2.1 Introduction

To be able to understand and appreciate the work presented in this thesis it is necessary
to give some theoretical background information. In this chapter we will approach this in
a step-by-step manner. We will start by introducing the fundamental problem of quantum
communication thus motivating and explaining the concept of quantum repeaters. Then we
will go over necessary requirements for a quantum repeater architecture to then introduce
atomic ensembles and show how they can meet all of those requirements. The result
is the most fundamental atomic ensemble based repeater protocol. From there we will
compare various improved protocols to then identify the crucial concept of multiplexing.
We introduce various forms of multiplexing and finally arrive at a current implementation
of quantum repeaters using real and imperfect components. We finish the theoretical
discussion by a detailed description of those components to explain the main sources of
noise they introduce.

2.2 Quantum Repeaters

The very definition of the purpose of a Quantum Internet is the ability to distribute a
quantum state over a long distance. In order to do this, the state needs to be sent through
a quantum channel such as optical fibers or free space. Currently the only feasible candidate
to carry such a state are photons.
The distance over which any information can be sent over a channel is limited by loss
and in the case of quantum information also decoherence. In practice however, the most
dominant problem is photon loss which (just like decoherence) scales exponentially with
distance L. This is reflected by the probability of transmitting a photon, the so called
transmittance τ which scales with length L as

τ(L) = τ(0)× 10−αL/10, (2.1)

where α is the so called attenuation, which is the parameter characterizing the loss of a
channel. The same scaling holds for other figures of merit as for example the rate or the
fidelity, which characterizes how close to a target state the end-to-end transmitted state
is. For typical optical fibers used for telecommunication α is roughly 0.2 dB/km in the
optimal wavelength range around 1.5µm. While this is impressively low for short distances
(95% transmission over a distance of 1 km) it quickly becomes very significant when looking
at distances relevant for a large scale quantum network [15]. As an example we can insert
some more distances in eq. (2.1): For a distance of 500km the rate gets damped by a factor
of 1010 and for 1000km even by 1020. That would dampen a 10 GHz source (equal to 10
Billion photons per second) down to a rate of just 10−10 Hz (corresponding to roughly 1
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photon every 300 years).
As the distances in telecommunication networks are typically of the order of hundreds or
thousands of kilometers, the signal therefore needs to be boosted somehow.
In classical telecommunication this can simply be done by inserting amplifiers at certain
intermediate distances, but unfortunately this is impossible for quantum communication
due to the no-cloning theorem [10], [11]. It was discovered already in the 1980s and
states that noiseless amplification of a quantum state is impossible for non-orthogonal
states.
The theorem is fairly quick to proof (see box below), but feel free to skip this box and
continue reading.

Proof: No-Cloning theorem
Say we have an unknown quantum state |φ〉 that we wish to copy and a second pure
state |s〉. Now we would like to have some unitary U that copies |φ〉 onto |s〉, i.e.

Ucopy(|φ〉 ⊗ |s〉) = |φ〉 ⊗ |φ〉 . (2.2)

Suppose this copying procedure works for any state, specifically also for two different
states |a〉 and |b〉, then

Ucopy(|a〉 ⊗ |s〉) = |a〉 ⊗ |a〉 (2.3)
Ucopy(|b〉 ⊗ |s〉) = |b〉 ⊗ |b〉 . (2.4)

If we now take the inner product of the two equations above we get

〈a|b〉 = 〈a|b〉2 . (2.5)

It is obvious that x = x2 only has two solutions x ∈ {0, 1}. This means |a〉 and
|b〉 are either equal or orthogonal. Therefore, any cloning device can only clone
states which are orthogonal to one another. If one allows for mixed-states or a non-
unitary cloning device the same statement holds unless one also allows for a finite
loss of fidelity in the copied state, which would defy the purpose of amplification
[16]. Since the advantage of quantum protocols comes precisely from the existence
of non-orthogonal states one needs to come up with a more sophisticated method of
distributing quantum information over long distances [15].

The solution to this fundamental problem of quantum communication was proposed
by Briegel et al. in 1998 where they introduce intermediate connection points [12], which
are now know as quantum repeaters.

At this point it is crucial to mention that quantum states have a property known
as entanglement, which is of fundamental importance to entanglement-based quantum
networks. It is a profoundly non-classical, counter-intuitive property which lies at the heart
of quantum non-locality [17]. To understand the approach proposed in [12] one needs to
know that entanglement can be "swapped" [18].
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A B C D

Measurement 
on B and C

A D

Classical communication

entangled pair A-B entangled pair C-D

entangled pair A-D

t

Figure 2.1: Principle of Entanglement Swapping [18]. Given two entangled states, e.g. one
between A and B and one between C and D, it is possible to "swap" the entanglement to
generate an entangled pair between A and D. This is done by performing a joint measurement
on systems B and C in a basis of entangled states, followed by classical communication of the
result to the location of systems A and D. This can be used to create remote entanglement
between systems that have never directly interacted.

The principle of entanglement swapping is explained in Fig. 2.1. The measurement
performed on B−C is called a Bell State Measurement (BSM) as it projects the state
of A − B onto a maximally entangled state or Bell state. This forms the basis of many
interesting applications, such as quantum teleportation [19] and most importantly for this
thesis: quantum repeaters. The basic idea brought forward in [12] is to - just as in classical
networks - divide the channel into N segments with repeaters at the connection points. A
Bell state is then distributed over each of those N segments called elementary links. At
the connecting repeater nodes one then performs a Bell state measurement and classically
communicates the measurement results to adjacent nodes. In this way entanglement is
swapped at each intermediate node until the two end nodes share an entangled state, see
Fig. 2.2. We will show later that this protocol scales much better than direct transmission
for longer distances.

(a) entanglement generation

(b) entanglement swapping

(c) end-to-end entanglement

BA DC XW ZY...

BA DC XW ZY...

A Z

Figure 2.2: Principle of quantum repeaters [15]. To distribute entanglement between two
remote locations A and Z over a long distance one first generates entanglement over shorter
elementary links, e.g. A-B, C-D, ..., W-X, Y-Z as shown in (a). As detailed in Fig. 2.1
entanglement is then swapped at all the intermediate nodes (b) until nodes A and Z share
entanglement (c). The blue circles represent quantum memories, while the dashed connections
symbolize entanglement and the dark blue boxes indicate Bell state measurements.
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2.3 Requirements for Quantum Repeaters

From the above description of the quantum repeater scheme, we can now identify three
core requirements for the protocols we will discuss in this thesis:

1. The ability to generate heralded entanglement over the elementary links.

2. The ability to store created entanglement long enough to enable swapping.

3. The ability to perform the swap operation.

In the following we will explain these three in detail and then in the next section present
possible solutions.

The first step detailed in Fig. 2.2 is entanglement creation. We therefore need to be
able to create entanglement between two nodes and we want to know when it has been
established successfully. This is called "heralded" entanglement generation over the
elementary links. As the most basic approach one might suggest to create an entangled
pair of photons locally and then send one of the photons to the other node in the link. This
would indeed be a possibility, but it comes with two major drawbacks: In a realistic repeater
protocol, the elementary links still have lengths of the order of a hundred kilometers [15],
corresponding to a transmission of order 10−2, see Eq. (2.1). Additionally, to herald the
success one would need to be able to detect the arrival of the photon without destroying
the entanglement, which is difficult to do in practice. In the next chapter we will present
a possibility how heralded entanglement can be generated remotely, by sending photons
to a middle station, where entanglement will we swapped by a measurement to herald
entanglement between the nodes of the elementary link.

The second step detailed in Fig. 2.2 is entanglement swapping. In order to be able to
swap the entanglement, one needs to be able to store the entanglement for long enough
until the neighboring links have also generated heralded entanglement. Only then can
the joint measurement be done and the entanglement swapped. If not all repeater nodes
swap at the same time, but the higher-level entanglement is swapped step by step, then
the storage requirements are even higher. Therefore, quantum repeater protocols require
quantum memories [20] which we will discuss in Section 2.8.2.

Finally, to actually execute step (b) in Fig. 2.2 one needs to be able to perform the
entanglement swapping operation between the quantum memories. This means that one
needs a way to perform a local joint measurement projecting onto entangled states between
the two memories. If one has the possibility to perform general quantum gates between
the memories, this is easy to do. However, for the sake of feasibility it is worth considering
a simpler approach, e.g. measurements which only succeed with certain a probability,
as general quantum gates are challenging to realize experimentally. Again the following
chapter will present a proposal for a simple solution to this requirement.

For completeness it is necessary to mention that the original proposal [12] also requires
entanglement purification [21]. This is a process where multiple pairs of lower fidelity
with respect to the target Bell state are used to generate a single pair of higher fidelity
in order to overcome effects of decoherence on a noisy channel. Since multiple pairs are
used to generate a single higher fidelity pair this will decrease the maximum rate. In this
work we will focus on simpler protocols which do not require purification, as they are the
most realistic candidate for near-term repeater experiments with the goal of outperforming
direct transmission [15].

2.4 A simple approach - the DLCZ protocol

With all the requirements for a quantum repeater mapped out, we now proceed to propose
a first actual implementation of such a protocol. In doing so we want to explain why
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write
laser

read
laser

a) b)Stokes anti-Stokes

Figure 2.3: Basic energy level scheme of spontaneous Raman emission. |g〉 denotes the ground
state, |e〉 the excited state and |s〉 the meta-stable state used to store the atomic excitation.
a) Write process: When a laser off-resonantly pumps the e−g transition a Stokes photon
(blue wiggly line) will be emitted on the e− s transition and an atomic excitation (blue dot)
stored on |s〉. ∆ denotes the detuning of the laser pulse. b) Read process: When a laser
pumps the s − e transition any atomic excitation will be converted back to an anti-Stokes
photon (blue wiggly line) emitted on the e− g transition which will be collectively enhanced
[14].

atomic ensembles are a promising candidate for such an architecture and also explain one
of the most basic quantum repeater protocols.

In 2001 Duan, Lukin, Cirac and Zoller published a seminal paper detailing how to
meet all of the above requirements using atomic ensembles as quantum memories, now
known as the DLCZ protocol [14]. All Bell state measurements, both at the midpoint
of the elementary links (as we will explain in the following section) and the repeater
nodes (as explained above) are done using simple linear optics in combination with photon
counting detectors. This makes it a simple approach very much within reach for near-
term experiments. The main process the scheme is based on is spontaneous Raman
emission. In this process a single photon is spontaneously emitted while simultaneously
creating a spin-excitation in the atomic ensemble memory entangled to the photon. The
resulting repeater protocol will be described in detail in the next sections of this chapter.

Given that spontaneous Raman emission is a probabilistic effect it is easy to see why
one would like to use an ensemble instead of a single emitter: The collective effects of
the large number of atoms in an ensemble make it much easier to achieve strong and
controllable coupling between the emitted photon and the memory.

We will now go through all the requirements of a repeater scheme mentioned before
and explain in detail how the DLCZ protocol approaches them.

2.4.1 Heralded Entanglement Generation

The fundamental building block of the DLCZ scheme is an ensemble of N identical atoms
with a three-level structure as shown in Fig. 2.3. It contains two metastable ground states
|g〉 and |s〉, e.g. hyperfine or Zeeman sublevels, and one exited state |e〉. All atoms in
the ensemble are initially prepared in the ground state |g〉. To emit a photon from the
ensemble it is illuminated with a short, off-resonant1 laser pulse (the write pulse) on the
g − e transition. This leads to the spontaneous emission of a Raman photon on the e− s
transition. Following the usual terminology of Raman scattering and provided that the
energy of |s〉 is slightly higher than the energy of |g〉, this will be called the Stokes photon.

1Resonant excitation would introduce fast inhomogeneous dephasing of the generated spin excitation
leading to low read-out efficiency [22].
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If one now detects this photon in such a way that no information is revealed about which
atom it came from, e.g. by detecting it in the far field, the state of the ensemble is [15]

|ψ〉ensemble =
1√
N

N∑
n=1

ei(kw−kS)xn |g〉1 · · · |g〉n−1 |s〉n |g〉n+1 · · · |g〉N , (2.6)

where kw is the k-vector of the write laser, kS is the k-vector of the detected Stokes photon
and xn is the position of the nth atom of the ensemble. This is a coherent superposition
of all possible terms with N − 1 atoms in |g〉 and one in |s〉. In practice, the different
terms may have varying amplitudes depending on the profile of the laser and the shape
of the atomic ensemble. It is clear that in an ensemble of atoms where we have certain
probability pe of emitting a single Stokes photon we will also have the possibility for the
same event happening two or more times [15].

We can assign bosonic operators a and sa to the Stokes photon and the atomic excitation
respectively to write the total state of the atomic ensemble and the Stokes mode as

|φ〉 = |0〉a |0〉s +
√
pea
†s†a |0〉a |0〉s +O(pe), (2.7)

where |0〉a , |0〉s are the ground state of the atomic ensemble and the vacuum state of the
Stokes pulse respectively and pe < 1 is the small probability that an atom is excited to |s〉
and a Stokes photon is emitted. O(pe) represents all terms with more than one excitation
and therefore probabilities ≤ p2e. The time evolution of such a system can be described by
the following Hamiltonian with coupling constant χ [15]

H = χ(a†s†a + asa), (2.8)

which is formally equivalent to the non-linear process of parametric down-conversion. This
equivalence will become important when we introduce more advanced protocols such as the
one described in section 2.7 where this equivalence allows us to use the same description.
The coupling χ depends on the intensity of the read laser, the number of atoms in the
ensemble, the detuning of the laser and the transition strengths of the g − e and e − s
transitions.

We now have a way of emitting a photon which is entangled to an atomic excitation
in the atomic ensemble, so let’s now use this to generate heralded entanglement over an
elementary link as shown in Figure 2.4.

Say we have two remote atomic ensembles A and B with both their states described
by (2.7), then the total state of A and B is [15]

|φ〉 =

(
1 +

√
pe
2

(s†aa
†eiφa + s†bb

†eiφb) +O(pe)

)
|0〉 , (2.9)

where a/b, sa/sb and φa/φb are the bosonic operators of the Stokes photon and the atomic
ensemble and the phases of the pump lasers of locations A and B respectively.

The Stokes photons from both sides are now coupled into optical fibers and sent to a
central detection station containing a beam splitter and two photon counting detectors d
and d̃. Detection of a single photon in d or d̃ projects the state of the two ensembles onto
[15]
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Figure 2.4: Heralded entanglement generation between two atomic ensembles at A and B
within the DLCZ protocol. DLCZ-type atomic ensembles (blue circles) can probabilistically
emit Stokes photons (green dots) entangled to atomic excitations within the ensemble (see
(2.7)). These photons are then coupled into optical fibers (dotted black lines) and sent to
a central station consisting of a beam splitter (vertical bar, BS) and two photon counting
detectors (semi-circles) d and d̃. Detection of of a single Stoked photon that could have come
from either A or B, heralds the storage of a single atomic excitation [15].

|ψd〉AB =
1√
2

(s†ae
i(φa+ξa) + s†be

i(φb+ξb)) |0〉AB

=
1√
2

(|10〉AB + |01〉AB e
iθAB ) (2.10)∣∣ψd̃〉AB =

1√
2

(s†ae
i(φa+ξa) − s†be

i(φb+ξb)) |0〉AB

=
1√
2

(|10〉AB − |01〉AB e
iθAB ), (2.11)

where ξa/ξb is the phase a photon picks up on its way to the central station from A/B
respectively and we defined θAB ≡ φb − φa + ξb − ξa. We see that both these states are
entangled states of a single atomic excitation delocalized between A and B. Therefore
a single click on either detector heralds entanglement between the two remote atomic
ensembles.
Note that this too can be seen as a form of entanglement swapping:
We started out with two entangled pairs of Stokes-photon and atomic excitation. The
single-photon detection at the midpoint is a Bell state measurement projecting the photonic
modes on one of two maximally entangled states, thereby creating heralded entanglement
between the two atomic ensembles [15].

2.4.2 Entanglement Storage and Swap

The next requirement for a quantum repeater is the ability to store entanglement long
enough to enable a swap operation between neighboring elementary links. Improving
storage times is the object of active research, however current experimental setups already
report storage times for atomic excitations which are long enough to enable swapping [23],
[24].
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So we will quickly move on to the third requirement, namely being able to perform
the swap operation. We will now go into detail how an atomic excitation in a three-level
system as described in 2.3 can fulfill this requirement as well.

What makes the DLCZ approach a very interesting candidate for a quantum repeater
setup is the fact that the atomic excitation can be read out very efficiently. This can be
achieved by illuminating the ensemble with a resonant laser pulse on the s − e transition
leading to the emission of a single photon propagating in a well-defined direction, thanks
to collective interference [14]. The ensemble will then be in a state analogous to (2.6) with
N − 1 atoms in |g〉, one delocalized excitation in |e〉 and an additional phase eikrx′n , where
kr is the k-vector of the read out laser and x′n is the position of the nth atom at the time
of the readout. All terms of such a state can decay to the initial ground state |0〉a = |g〉⊗N
while emitting a photon on the e−g transition. Again following the standard nomenclature
of Raman scattering this would be the anti-Stokes photon.
The total amplitude for this process is then proportional to

N∑
n=1

ei(kw−kS)xnei(kr−kAS)x
′
n , (2.12)

where kAS is the k-vector of the anti-Stokes photon. To achieve constructive interference
of all N terms we can differentiate between two cases:

1. Case 1: xn = x′n, atoms are at rest.
Constructive interference for kw + kr = kS + kAS leads to a very large probability
amplitude of emitting an anti-Stokes photon along kAS = kw + kr − kS.

2. Case 2: xn 6= x′n, atoms are moving.
Constructive interference only for kw = kS and kr = kAS. For all other configu-
rations the motion of the atoms will cause a dephasing that ultimately limits the
storage time [15].

The strong emission into one direction caused by Case 1 allows for a very efficient collection
of the anti-Stokes photon. Note that the collective interference is specific to the anti-Stokes
photon as for the Stokes photon all the terms in (2.6) correspond to orthogonal final
states and therefore full which-way information is stored in the atomic ensemble, making
interference impossible [15].

Fig. 2.5 shows the procedure used to swap entanglement in the DLCZ protocol. We
start out with two elementary links (see Fig. 2.4) AB and CD where the two atomic
ensembles in each link are in a state

∣∣∣ψd/d̃〉NM as described in (2.10). The total state of
the two links is therefore

|ψ〉ABCD =
∣∣∣ψd/d̃〉AB ⊗ ∣∣∣ψd/d̃〉CD . (2.13)

To swap the entanglement the two atomic ensembles at B and C are now read out as
described above by illuminating them with a strong resonant laser pulse. Any atomic exci-
tation in B or C will thus be emitted very efficiently, thanks to the collective interference,
as an anti-Stokes photon in a well-defined mode.

Just like at the midpoint of the elementary link, the two photonic modes b′ and c′ will
then be combined at a beam splitter. Once again detection of a single photon on one of
the detectors will herald success and the ensembles A and D will now be projected onto
the state ∣∣∣ψd/d̃〉AD =

1√
2

(s†a ± s
†
de
i(θAB+θCD)) |0〉AD

=
1√
2

(|10〉 ± |01〉 ei(θAB+θCD))AD. (2.14)



14 CHAPTER 2. BACKGROUND

Figure 2.5: Entanglement swapping between two elementary links AB and CD both sharing
an entangled state (2.10). The quantum memories (blue circles) B and C are read out with
a laser pulse and the emitted anti-Stokes photons are combined at a beam splitter (BS).
Detection of a single photon on the detectors (semi-circles) heralds a successful entanglement
swap to create an entangled state (2.10) between A and D [15].

By successfully executing such a swap operation at every repeater node along a chain it is
possible to connect two remote ensembles over long distances. It is worth noting at this
point that the linear optical Bell state measurements proposed in the DLCZ protocol are
probabilistic. While a complete BSM allows projecting any two-photon state deterministi-
cally onto the set of four Bell-states, it has been shown, that a complete BSM is impossible
when using linear optics and no auxiliary photons. The maximum success probability of
the linear optical BSM used here is psucc ≤ 50% [25].
This probability is further reduced when we also consider imperfections in the setup. Let
us therefore now investigate the effects of an imperfect memory with a probability ηm 6= 1
of converting an atomic excitation into an anti-Stokes photon and imperfect detectors with
a probability of ηd 6= 1 of detecting a photon that enters the detector. Both of these inef-
ficiencies allow for the case where there is an atomic excitation at both B and C but only
one photon is detected behind the beam splitter.

This can either happen if both excitations where read out correctly and only one was
detected because of an imperfect detector or one of the two excitations was not read out
and the only emitted anti-Stokes photon was correctly detected. The state of AD after
the BSM now contains a vacuum component, since we heralded a successful measurement
while there is actually no atomic excitation in A or D as described by (2.10). Their density
matrix is thus

ρAD = α
∣∣∣ψd/d̃〉〈ψd/d̃∣∣∣AB + β |0〉〈0|AD , (2.15)

where α = 1/(2 − η), β = (1 − η)/(2 − η) and η ≡ ηdηm. It is now possible to show that
the relative weight of the vacuum component scales as

β

α
= (1− η)(n− 1), (2.16)

so linearly with the number of elementary links n in the repeater chain [15]. This severely
limits the performance of the DLCZ protocol. One way of keeping this vacuum component
constant is switching to two-photon interference BSMs as will be discussed in section 2.7.
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Figure 2.6: Postselection of two-photon entanglement in the DLCZ scheme. Entanglement
between the end nodes A and Z is independently created within two repeater chains 1 and 2
such that A1Z1 and A2Z2 each share a state of the form (2.14). At each location the atomic
excitations are read out and the emitted anti-Stokes photons (red) are combined at a beam
splitter an then counted at the detectors (semi circles). Measurements in arbitrary basis can be
done by adjusting the transmission coefficient and phase of the beam splitter at both locations
[15].

2.4.3 Postselection

Before we take a look at the performance of the DLCZ protocol in the next section, we
need to investigate one last step in the protocol: postselection.

Once we have established remote entanglement between two end nodes in a state of
the form (2.14), one might point out that a single delocalized excitation is of limited use
of its own, since it it difficult to perform measurements in any basis other than the Fock
basis {|0〉 , |1〉}. We therefore need a second entangled pair between the two end-nodes to
combine the two states into more directly useful two-photon entanglement given by

|φ〉AZ =
1

2
(a†1 + eiθ1z†1)(a

†
2 + eiθ2z†2) |0〉AZ . (2.17)

This can be achieved with a setup as shown in Fig. 2.6, where we have two atomic ensembles
at each location. One then projects onto the subspace with one excitation/photon in each
location A,Z by reading out the ensembles and counting the number of photons in each
location. The projection of the end-to-end state onto this subspace is

|φ〉AZ =
1√
2

(a′†1 z
′†
2 + ei(θ2−θ1)a′†2 z

′†
1 ) |0〉AZ

=
1√
2

(|10, 01〉+ ei(θ2−θ1) |01, 10〉). (2.18)

In the second line we used the notation |a1a2, z1z2〉, where ai, zi denotes the number of
anti-Stokes photons in that mode, to highlight the analogy of the state to conventional
polarization or time-bin entangled states.
Measurement in arbitrary basis are possible by once again combining the two photonic
modes on a beam splitter with appropriate transmission coefficient and phase and then
detecting a single photon at one of the detectors as shown in Fig. 2.6.

2.4.4 Separation of Source and Memory

A DLCZ like ensemble as described in the previous sections can be emulated by a setup
of a quantum memory dedicated solely to storing the photon and a photon pair source
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Figure 2.7: Separation of entanglement storage and creation using absorptive quantum mem-
ories (yellow squares) and photon-pair sources (blue) emitting pairs of entangled photons i, i′.
The primed modes are stored in adjacent memories, while the non-primed modes are sent to
the central measurement station. Detection of a single photon in one of the output modes
heralds successful entanglement between the quantum memories [15].

dedicated to emitting entangled photon pairs.
This separation comes with two major advantages. Firstly, it supplies greater flexibility
for the allowed wavelength of the quantum memory. While the original DLCZ protocol
requires the Stokes photon to be emitted in telecom wavelength, when the memory and
the source are separated the source can emit a pair of entangled photons with different
wavelengths. The modified setup of such an DLCZ-style elementary link is shown in Fig.
2.7.

The photon that is coupled into the fiber should ideally have telecom wavelength, while
the photon that will be stored into the memory should have a wavelength suitable with the
bandwidth of the memory. These two wavelength are typically quite different. Secondly,
if the memory allows for the storage of many different photonic modes at the same time
this approach promises greatly improved entanglement rates as will be discussed in detail
in section 2.6.

The separation of source and memory only slightly changes the basic entanglement
generation protocol of the DLCZ approach.
Instead of having just one atomic ensemble in each location, now there will be an absorptive
quantum memory and a photon-pair source per location. The photon-pair sources are then
simultaneously and coherently excited such that each source has a small probability pe/2
of emitting an entangled photon pair corresponding to

|ψ〉PPS =
(
1 +

pe
2

(a†a′† + b†b′†) +O(pe)
)
|0〉AB , (2.19)

where a, b describe photonic modes from source A and B respectively, while the prime
indicates a difference in modes, e.g. non-primed emitted towards measurement station and
primed emitted towards memory. For simplicity the phases of the different photonic modes
have been omitted. O(pe) describes the possibility of emitting multiple pairs. Since this
introduces error (see section 3.2) the emission probability should be kept small, analogously
to the original DLCZ protocol. Similarly to the original protocol the detection of a single
photon after the central beam splitter heralds the storage of a single photon in one of the
quantum memories. The resulting state is once again represented by (2.10). To swap the
entanglement one can then just follow the original DLCZ protocol again.
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Figure 2.8: Comparison of different repeater protocols based on atomic ensembles and linear
optics in terms of entanglement distribution time over total distance. The target end-to-end
fidelity is F = 0.9 while we assume fiber losses of 0.2 dB/km corresponding to telecom fibers
at 1.5µm and speed of light c = 2× 105m/s in the fiber. For direct transmission we assume
a single-photon source emitting with a rate of 10 GHz. Furthermore in all approaches we set
the efficiencies to ηd = ηm = 0.9. For the DLCZ protocol we set the emission probability
to the value given in [15] pe = 0.010. For the protocol presented by Jiang et al. [26] we
used pe = 0.037. For the approach of Chen et al. [27] we used a source repetition rate of
r = 10MHz and an emission probability of pe = 0.01. For the protocol proposed by Simon
et al. [28] we used m = 100 modes and and pe = 0.009. For the protocol introduced by
Sangouard et al. in 2007 [29] pe = 0.9, while for Sangouard et al., 2008 [30] we used
pe = 0.013 and again r = 10MHz. It is important to note here that, while for all the other
protocols we set the number of elementary links used to bridge the total distance to n = 4, in
this last approach we used n = 8 links, because this protocols favors a higher number of links
[15].

2.5 Performance of different protocols

After having explained the DLCZ protocol in detail, we are now curious how it actu-
ally performs in comparison to direct transmission and other proposed repeater protocols.
Specifically we want to analyze the rate at which each protocol can distribute end-to-end
entangled states.
Sangouard et al. [15] list closed analytical expressions for a selection of protocols that are
based on the original DLCZ protocol but try to improve on it in different ways and explains
them in great detail. Here we are not interested in the analytical details but merely want
to get an idea of how the protocols compare. A plot of the end-to-end entanglement times
over different length L is shown in figure 2.8.

In the plot we picked different fixed values for the emission probability pe from the
literature as the optimal value varies for different protocols. See [15] for a detailed review
of repeater protocols using atomic ensembles, including all of the ones shown in Fig. 2.8.

There are a number of things to point out about this figure.
Let’s begin by comparing the DLCZ protocol to direct transmission. The choice of a source
with repetition rate of 10GHz is both ambitious and somewhat arbitrary. However, for our
comparison the exact choice of rate will not change the conclusions we draw since the scal-
ing with distance is fundamentally different for direct transmission and quantum repeaters.
Therefore the exact value will not change the fact that the curve for direct transmission
will have a much steeper slope but will merely influence the exact position of where it



18 CHAPTER 2. BACKGROUND

intersects the repeater curves.
For the DLCZ protocol the rate crosses the rate of direct transmission somewhere around
L = 630km with an entanglement generation time of slightly above 300s for four elemen-
tary links. Above this distance the DLCZ protocol clearly outperforms direct transmission
but the rate of roughly 1/300s ≈ 3.3mHz at this point is pretty low. Most importantly it
requires memories that can store the entanglement for times comparable to 300s. This is
very challenging even with recent experimental advances [15], [23], [24]. This simple com-
parison using the analytical models given by Sangouard et al. [15] clearly shows the need
for more sophisticated repeater protocols that can significantly improve the entanglement
generation time.
Secondly Fig. 2.8 shows that this is indeed possible. There are numerous proposals of
protocols based on the original DLCZ protocol that either try to improve the rate [26],
[29], [30] or the robustness [27] of the protocol. The most notable improvement however
is achieved by the protocol proposed by Simon et al. [28], clearly outperforming all oth-
ers protocols. Therefore in the following we will investigate the reason for this drastic
improvement in rate, called multiplexing. This will be a central concept in this work.

2.6 Multiplexing

To understand what multiplexing is and what it is for we need to take a look at two major
limitations of the protocol.

Firstly, once a Stokes-photon has been generated by illuminating the atomic ensemble
with a write laser pulse, one has to wait at least for the time twait = L0/c before one can
try generating entanglement again. Here twait is the time it takes the photon to travel to
the central station and the classical information about the measurement result to travel
back. After every unsuccessful attempt the memory must be emptied before trying again
[15]. This obviously puts a fundamental upper bound on the achievable entanglement rate
of rmax = L0/c.

Secondly, both the emission of the photon and the Bell state measurement at the
midpoint are probabilistic processes. Thus the rate will usually be quite far below the
above bound. In order to compensate for the probabilistic nature of the protocol one must
therefore find a different approach.

We will discuss physical devices needed to enable such a multiplexed protocol in section
2.8, but it is worth noting here that separating source and memory as described previously
is especially well suited for sending many modes. However, there are also other approaches
to enable multiplexing for the DLCZ protocol as we will discuss in section 6.2.
There are many different possibilities for the degree of freedom that is used for multiplexing,
but the three most common ones are time, frequency and location. No matter which degree
of freedom is used the effect is always the same. The entanglement rate of an elementary
link now scales as

plink = 1− (1− psingle)M , (2.20)

where psingle is the success probability of a single mode and M is the number of modes.
It is therefore clear that since (1 − psingle) ≤ 1 we get limM→∞ plink = 1. For a more
detailed analytical discussion see section 4.2.2. We will now give some examples to clarify
the implementation of multiplexing.

2.6.1 Temporal multiplexing

If the quantum memory used allows for storage of not just one photon but a train of
photons one can use it for temporal multiplexing. In this scenario one can trigger the
source many times per waiting time twait, probabilistically generating entangled photon
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Figure 2.9: Entanglement generation using temporal multiplexing as proposed in [28]. The
photon-pair source (blue) can be triggered many times Nm in each time interval L0/c. One
mode of each generated pair is saved in the adjacent multi-mode quantum memory (yellow
square) while the other one is sent to a central Bell state measurement [15].

pairs in different time slots i. The modes ai, a′i are then referred to as different temporal
modes, where i = 1, ...,M with M the total number of temporal modes.

Fig. 2.9 shows such a setup, where all the primed modes a′i and b
′
i are stored in the

adjacent quantum memories while the unprimed modes are sent to the central measurement
station. At the central station Bell state measurements are performed on every temporal
mode independently and therefore any of the modes ai or bi can now cause a successful
measurement. This increases the entanglement generation probability of the elementary
link Plink as described in (2.20).

In order to swap entanglement in such a protocol one has to be able to recombine
exactly those modes, whose partners have taken part in a successful BSM. Say we have
two elementary links AB and CD and mode 5 was successful in AB, while mode 1 was
successful in CD. Then mode b′5 and c′1 must be simultaneously combined at the beam
splitter of the swapping BSM. There are a number of promising approaches to realize a
quantum memory with the required properties, e.g. based on photon-echo and we will
discuss one particularly promising approach based on atomic frequency combs [31] in
section 2.8.2.

2.6.2 Spectral multiplexing

Another popular approach is spectral multiplexing. Instead of triggering the source many
times in one time interval L0/c to create many different temporal modes, one now creates
many modes with different frequency in the same pulse. As can be seen in Fig. 2.10
one half of each spectral mode created in this way will be stored in the adjacent memory
while the other half is sent to the midpoint station. Every spectral mode is measured
independently at the same time and can cause a successful measurement. The information
of which spectral mode was successful is sent back classically so the correct spectral modes
can be combined at the swap.
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Figure 2.10: Entanglement generation using spectral multiplexing. The photon-pair source
(blue) can generate many different spectral modes simultaneously. One mode of each generated
pair is saved in the adjacent spectrally multi-mode quantum memory (yellow square) while the
other one is sent to a central Bell state measurement station which simultaneously performs
a BSM on all the different spectral modes.

This again gives the same fundamental increase in rate as the previous approach. For
a more detailed analytical discussion, see section4.2.2.

This makes multiplexed protocols the most promising candidate for beating the rate
of direct transmission. In the following section we will discuss a more recently proposed
protocol using spectral multiplexing that uses imperfect physical components which can
already be realized in experiments today.

2.7 A practical approach - Quantum Repeaters with Para-
metric Down-Conversion and Atomic Frequency combs

As multiplexing enables quasi-deterministic entanglement distribution over elementary
links (see. (2.20)) it also significantly reduces requirements on the individual compo-
nents used. Since the elementary link success probability can (in theory) be arbitrarily
increased through the number of modes it allows the source to operate with very low emis-
sion probabilities, thus enabling the use of probabilistic photon sources such as SPDC
sources. Similarly, since the links are deterministic, there is no need to store entangle-
ment for multiple attempts. Therefore we can adapt the entanglement protocol and work
with memories that are highly multi-mode but can have shorter storage times. Instead of
storing the entanglement in elementary links until we have success in all links (potentially
at different times) we now apply a round based approach. In every round we attempt
to generate entanglement in all elementary links simultaneously. If all elementary links
succeed in the same attempt we swap entanglement simultaneously at all repeater nodes.
If one or more elementary links failed we discard the attempt, reset all of the memories
and try again on all links. This reduces the necessary storage time on the memory to only
one cycle time L0/c.

In this section we will present in more detail the protocol that we will focus on for our
simulation and justify why this is an interesting candidate.
The original DLCZ protocol as well as the protocol by Simon et al. [28] both rely on the
use of single-photon interference to create entanglement over an elementary link. As we
have seen in equation (2.16) the growing vacuum component limits the performance of
such protocols. Also single-photon interference requires interferometic stability over great
distances which is difficult to achieve experimentally.
This experimental challenge can be circumvented by creating elementary link entanglement
based on two photon interference [30], [32]. In turn, this requires simultaneous single
photon pair emission from both sources in a link, such that one photon from each pair



2.8 Physical Devices 21

Figure 2.11: Illustration of the repeater protocol used by Sinclair et al. in [32]. Each elemen-
tary link contains two photon pair sources (red) and quantum memories (blue). Both sources
emit a pair of photons in M different frequency modes. One half of the pair is stored in the
quantum memory while the other half travels to the midpoint where each mode is measured in-
dependently. Photons are now in time-bin/polarization encoding, thus two-clicks in any mode
(one click per time-bin/polarization) heralds successful entanglement generation. The projec-
tions on the Bell states resulting from the different possible click patterns of the detectors
are shown in Fig. 2.12. Information about which mode was successful is then sent classically
to the nodes where all spectral modes are shifted in frequency such that the successful mode
ends up at a pre-agreed frequency. All other frequency modes are then filtered out, and the
photons coming from adjacent links interfered at a swapping BSM, thus erasing any which
way information. (a) shows the general setup of the setup, (b) shows the implementation of
temporal multiplexing and (c) depicts the combination of temporal and spectral multiplexing
including the filtering process at the swap.

can interfere at the midpoint measurement station. This also makes the protocol more
sensitive to detector imperfections as two-photons now need to be detected correctly.

The protocol proposed in [32] is also used in the group of Wolfgang Tittel here in Delft.
It is shown and described in Figure 2.11 and it will the protocol used throughout this thesis
unless explicitly stated otherwise.

2.8 Physical Devices

The multiplexed nature of this protocol allows it to compensate for low emission prob-
abilities of the photon pair source and allows for shorter memory times as long as both
components are highly multi-mode. Therefore it uses a photon pair source based on sponta-
neous parametric down-conversion, or SPDC source for short. The basis of the quantum
memory is a concept known asAtomic Frequency Combs (AFC). In this section we will
give a detailed description of how these real physical systems work and what imperfections
they introduce.

2.8.1 SPDC Sources

For the protocol shown in Fig 2.11 we need a source component which can produce pairs
of entangled photons. A very well known and understood physical process producing such
as pair is spontaneous parametric down-conversion [34]. In this nonlinear instant optical
process one photon of higher energy, the pump photon, is converted into a pair of photons
of lower energy (signal and idler), according to laws of energy and momentum conservation
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Figure 2.12: Projection on Bell states for time-bin encoded protocols [33]. a) General setup
of the Bell state measurement for time-bin qubits using linear optics and photon counting
detectors. b) Detector click patterns for projections onto |Ψ−〉. c) Detector click patterns
for projections onto |Ψ+〉. All other click patterns are discarded as failure thus leading to a
maximum success probability of the BSM of 50% (4 out of 8 possible patterns are successes).
It is worth noting that these results can also be mapped to other double-click protocols such
as ones using polarization encoding.
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Figure 2.13: Schematic of the SPDC process and the concepts of energy and momentum
conservation. A photon of higher energy (pump), is converted into a pair of photons of lower
energy (signal and idler) in a non-linear process according to laws of energy and momentum
conservation [35].

(see Fig. 2.13) [35].
To use this process in a component a non-linear crystal is combined with a pump laser,

to produce entangled pairs of signal and idler photons [35]. A great benefit of using this
process is that the wavelengths of the outcoming photons can be tuned within the limits
of energy-momentum conservation and do not have to be the same. This way one of the
photons can be at the optimal operation wavelength of the quantum memory while the
other photon can be at telecom wavelength. This tuning is achieved by using a periodi-
cally poled lithium niobate (PPLN) crystal [36]. Using periodic poling we can change the
momentum phase matching condition in Fig. 2.13 into the quasi-phase-matching condition
kPump = ks + ki + kp, where kp is an additional momentum contribution corresponding
to the wavevector of the periodic structure [37]. This way in principle any three-wave
mixing process that satisfies energy conservation can be phase-matched thus allowing for
perfect tuning of signal and idler frequency by simply changing the temperature of the
crystal.

There are three different kinds of crystals in spontaneous parametric down-conversion
differing by the polarization of the produced photons [35]. Some types of crystals produce
pairs that are entangled in polarization however in the protocol of Tittel et al. the photon
pairs are generated not in polarization but time-bin encoding. The type of crystal is
therefore chosen such that both signal and and idler photon have the same polarization to
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Figure 2.14: Creation of time-bin encoded entangled photon pairs with a PPLN crystal. A
pump laser (PL) emits a photon, which travels through an unbalanced Mach-Zehnder inter-
ferometer with different arm lengths and two beam splitters (BS). This results in a photon
that is in a superposition of being in the early and late time window which are generally
separated by a few ns. These photon state then continues to the periodically poled lithium
niobate (PPLN) crystal, which creates a time-bin encoded photon pair through spontaneous
parametric down-conversion. Figure is taken from [38].

make them indistinguishable. The ideal output state is

|φ〉SPDC =
1√
2

(|es, ei〉+ |ls, li〉) (2.21)

=
1√
2

(|1, 0; 1, 0〉+ |0, 1; 0, 1〉), (2.22)

where e/(l) symbols the presence of a photon in the early/(late) time-bin (subscript i, s
for signal and idler). The second line is just a different representation of the same state
where each ket is |es, ls; ei, li〉 and 1,0 represent presence or absence.

Obtaining such a state is achieved by pumping the crystal with photons that are in
superposition of early and late time window |φpump〉 = (|e〉+ |l〉)/

√
2. This can be achieved

by first sending the laser light through an Mach-Zehnder interferometer with different arm
lengths as shown in Fig. 2.14.

SPDC Sources are inherently highly multi-mode as many pairs of entangled photons
can be created independently in different spectral modes.

However the process is by definition spontaneous and therefore probabilistic. This
means that a single pair is emitted only with a probability of pe, which depends on the
pump power of the laser. It also means there is an intrinsic probability to emit more than
one photon pair. In fact the photon number distribution can be derived from the two-mode
squeezing Hamiltonian and is given by [34]

pSPDCe (n) = (n+ 1)
µn

(µ+ 1)(n+2)
, (2.23)

where n is the number of emitted photons and µ is the mean photon pair number. µ
increases with the pump power of the laser and it is obvious that the probability of emit-
ting multiple photon pairs grows with µ. This significantly limits the performance of the
protocol as we investigate in sections 3.2 and 5.2. However choosing µ too low also re-
duces the entanglement generation rate as we then mostly produce vacuum. It is therefore
clear that µ is an important parameter to optimize over. However without a model that
correctly implements multi-pair emissions no accurate analysis is possible. Especially if
one wants to optimize µ for e.g. large repeater chains an efficient simulation framework is
needed. Offering such a framework is one of the main contribution of this work and will
be discussed in later chapters.

2.8.2 AFC Memories

For any scalable quantum repeater protocol we need to store entangled qubits for long
enough to be able to perform further operations on them. For example, we need to store
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Figure 2.15: Illustration of the setup for the AFC protocol. a) An inhomogeneously broad-
ened medium with a FWHM of Γ is created by a combination of homogeneously broadened
absorption peaks, which are shifted due to changes in their local environment. b) Delocalized
storage in which a probe photon (red envelope) is absorbed by an inhomogeneously broadened
medium with spectral width Γ, which is split up into equidistant peaks with spacing Π that
have a FWHM of Υ. Both figures are from [38].

the qubits at a repeater node sufficiently long to have successful entanglement generation
in both adjacent elementary links before we perform the swapping operation on them.
Since most protocols include one or more probabilistic operations, such as optical Bell
state measurements or entanglement purification, the availability of quantum memories is
essential to any long distance entanglement protocol.
It is worth noting that for applications requiring short storage times a low-loss optical
fiber could be sufficient to delay photons until a classical signal arrives. However, for
applications where storage times exceed around 10 µs, fiber transmission drops below
90% (2.1) and quantum storage based on light-matter interaction will be necessary [32].
Different types of such memories based on atomic ensembles have been proposed like EIT
(electromagnetically induced transparency) [20], [39] or AFC (atomic frequency comb)
[31], [40] based memories. Here we will focus on AFC memories which are also used in the
protocol by Sinclair et al [32]. For a comparison of the two types of memories see [38].

Atomic frequency comb memories consist of an ensemble of atoms with at least one
exited state |e〉 and one ground state |g〉. The optical transition |g〉−|e〉 is assumed to have
a narrow homogeneous linewidth but a large inhomogeneous broadening [31]. Rare-earth
doped crystals such as thulium or erbium, which are commonly used for AFC memories,
are a good example of such a material [41]. The ions of the dopant have a narrow linewidth,
but each individual ion has a slightly different local environment in the crystal, e.g. with
different stress/strain on the lattice and different local fields. It is therefore intuitive that
the transition will have large inhomogeneous broadening due to the contributions of the
many individual ions.

Furthermore the atomic density function of the transition is designed to be a series of
narrow peaks spanning a large range in frequency space resembling the shape of a comb,
such giving the memory its characteristic name . This profile can be produced by optically
pumping atoms of certain frequencies from the ground state |g〉 to a meta-stable auxiliary
state |aux〉, e.g. an additional hyperfine state of |g〉.

An absorbed photon will be stored in the AFC as a single excitation de-localized over
all atoms in the ensemble that are in resonance with the photon. This process is shown in
Figure 2.15. The resulting state can be written as a collective Dicke state [42]

|Ψ〉 =

N∑
j=1

cje
iδjte−ikzj |g1 . . . ej . . . gN 〉, (2.24)

where zj is the position of the atom j, k the wave-number of the light field, δj the detuning
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of the atom with respect to the laser frequency and the cj the amplitude. cj depends on
the frequency and position of the particular atom j.

This state is reminiscent of the state of the stored Stokes-photon (2.6) in the original
DLCZ protocol. However the stored state in the AFC memory will now rapidly dephase
due to the relative detuning eiδjt of the different modes. After a fixed time trephase = 2π/δj
the system will rephase and emit the photon while returning to the collective ground state.
The retrieval efficiency of the AFC protocol is given by [40]

ηAFC0 = e−d0e−7/F
2
ed/F

(
d

F

)2

, (2.25)

where d is the optical depth of the medium, F = Π/Υ the finesse of the comb and d0 is
the residual optical depth caused by left-over atoms that were not correctly transferred to
the auxiliary state during the creation of the comb. The first factor in (2.25) thus captures
imperfections in the AFC preparation. The second factor represents loss due to dephasing
while the last two terms represent losses due to re-emission and re-absorption. There is
various possibilities and proposals of how to improve theses efficiency, such as embedding
the memory in an optical cavity [43].

However, there is an additional fundamental limitation of the protocol. The excited
level used for storage only has a finite coherence time Tc. This causes the retrieval efficiency
to degrade with time as

ηAFC(t) = ηAFC0 × e−t/Tc . (2.26)

Storage times for AFC based quantum memories of the order of seconds have been
shown [23], while other results show their multi-mode capabilities [44] and close unit input-
output fidelity FIO ≈ 93 ± 2% of the retrieved photons [45]. The large inhomogeneous
broadening of rare-earth doped crystals makes them an ideal technology to be extended
to even higher multi-mode capacity [15]. This makes them a very promising candidate for
multiplexed quantum repeater architectures.

However if one wants to accurately investigate the scalability of a repeater protocol
using AFC memories it is clear that the underlying model needs to be able to correctly
capture the time dependence in (2.26) which also becomes much less trivial once one
considers a modified version of the AFC model which allows for on-demand retrieval of
photons and is explained in 6.2.

This concludes our discussion of a real physical implementation of a quantum repeater
protocol using atomic ensembles.

2.9 Secret-key rate

From the previous section it is clear that promising candidates for the required components
of a quantum repeater protocol exist. However if one wants to make any prediction about
how their performance scales in an actual quantum network the underlying model needs
to capture their various imperfections such as multi-photon emission and time-dependent
efficiency. This will be one of the key contributions of this thesis.

In order to analyze scalability we also need to define a figure of merit we want to
investigate. To this end we choose the secret key rate (SKR) obtainable for Quantum
Key Distribution using the BB84 protocol [6]. It is the rate at which secret key can be
distributed and it is a compelling figure of merit as it combines the rate of entanglement
generation and the fidelity of the created end-to-end state. In the BB84 protocol a secret
key is constructed by performing measurements in two orthogonal bases, typically X and
Z. In each round, the two parties Alice and Bob independently and randomly pick one
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of these two bases to measure their photons in. The measurement outcome is stored as
a single classical bit. After a certain number of rounds they communicate their basis
choices via classical communication. The secret key is then extracted by comparing the
measurement outcomes of the rounds in which Alice and Bob measured in the same basis,
after they have performed error correction and privacy amplification.

In case of time-bin encoding, measurements in the Z basis are performed by measuring
the photons in both time bins separately. After successful entanglement generation between
the end-nodes the expected shared state will be either |Ψ+〉 or |Ψ−〉 (see Fig. 2.12), such
that measurements in the Z basis should always be anti-correlated. This implies that if
Alice measures a photon in the early time bin, Bob should measure a photon in the late
time bin.

If we want to perform measurements in the X (or Y ) basis, we will need to be able to
interfere the two time bins. For a more detailed discussion of how this is done see section
3.4.3. Measurements in the X basis can be both correlated or anti-correlated, depending on
the BSM outcomes a long the repeater chain. This is due to |Ψ+〉 an |Ψ−〉 having different
eigenvalues in the X basis.

We can now compare the actual measurement outcomes of Alice and Bob with these
expected correlations. The fraction of wrong bits among the measurement outcomes in each
basis is called the Quantum Bit Error Rate (QBER) and is determined individually
for X and Z.

From this we then compute the secret key rate RSK as

RSK = Rsucc ×max(0, 1−H(QX)−H(QZ)), (2.27)

where H(x) is the binary entropy, QX , QZ are the QBERs in X and Z basis and Rsucc is
the rate of successful end-node measurements.

There have been a number of analytical investigation on the secret key rates of atomic
ensemble based quantum repeater protocols and we will discuss them in detail in Chapter
4.

To conclude this chapter let us quickly summarize what we have learned. We started out
by identifying exponential losses and the quantum no-cloning theorem as the fundamental
problem of quantum communications. We then found a simple way of dealing with this
problem with quantum repeaters called the DLCZ protocol. Among the various protocol
that were developed from it we identified multiplexed protocols to be the most promising
candidates. Therefore we then introduced a very promising new approach which is under
active development within the Quantum Internet Alliance. Through the example of this
protocol we investigated the physical processes involved in real components and already
hinted at important noise parameters they introduce. We closed the chapter with an
introduction to the main figure of merit we will be using for the rest of this thesis.



Chapter 3

Simulation

3.1 Introduction

Having the necessary physical background we now want to give a detailed description of
how we implement this in our simulation. We start by first motivating the need for a
simulation by showing the effects of multi photon emission as a major source of error
in atomic ensemble repeater protocols. We then introduce our main tool, the NetSquid
Simulator and proceed by going over the modeling of the different components. We finish
the chapter by giving a detailed account of how we implemented the multi-photon events
mentioned in the motivation.

3.2 Motivation: Multi-photon errors

In any protocol that relies on linear optical BSMs the probability of emitting multiple pairs
from the source will be a cause of error. Most analytical discussions so far avoid this by
assuming small emission probabilities pe such that the multi-photon emission is sufficiently
suppressed. However, working with such low emission probabilities has a large negative
impact on the achievable rate.

Guha et al. [46] present an exact numerical calculation of the secret key rate including
two-pair emission and show that even a small amount of multi pair emission probability
can be detrimental to the usability of the protocol. Fig. 3.1 shows the secret key rate for a
fixed set of parameters, where only the probability to emit two photon pairs p(2) is varied
from plot to plot. Starting at the top left plot one can see the typical behavior expected
for perfect photon pair sources. The secret key rate is a graph with three distinct sections:

1. The first part of the graph is flat. This is the region where the number of modes
used make successful entanglement over the elementary link (almost) deterministic.

2. In the second part the number of modes is no longer sufficient to compensate for the
losses along the fiber due to the finite attenuation length. The number of attempts
necessary for a successful entanglement generation increases while the rate drops
exponentially.

3. In the third section, the probability of having a dark count in the detector becomes
comparably to the probability of having a successful Bell state measurement at the
midpoint. The errors introduced by the dark counts on the detectors rapidly drop
the secret key rate to zero.

Adding repeaters decreases the rate at L = 0 as each swap is probabilistic, but the added
repeater increases the flat part of the rate curve thus allowing the secret key rate to surpass
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Figure 3.1: Numerical analysis of the Secret-key rate RN over the total distance L for N =
1, 2, 4, 8 elementary links and two-pair emission probability p(2) varied from 0.001 (top left) to
0.055 (bottom right). The parameters used are: clock rate of 20 MHz, dark count probabilities
and efficiencies of all detectors of Pdc = 10−6 and ηd = 0.9, M = 1000 frequency modes,
attenuation of α = 0.15dB/km and memory loss of 1 dB. For any given value of p(2) there is
a certain number Nmax of elementary links up until which the secret-key rate remains almost
identical to the perfect p(2) = 0 case. For N > Nmax the rate drops to zero at any distance
L. It is clearly shown in (j)-(l) that for p(2) ≥ 0.035 it is better to have a single elementary
link between the end nodes than any number of repeaters. This figure is directly taken from
[46].
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the elementary link performance after a certain length.
However it is now interesting to observe what happens once one increases the probability
of emitting a second pair. It is easy to see that between a probability of p(2) = 0.001 and
p(2) = 0.007 (plots (a)-(d)) the secret key rate of 1,2 and 4 elementary links barely changes,
while it comes crashing down for N = 8 links. As soon as the N = 8 curve has disappeared,
the N = 4 curve begins to disappear as well (plots (e)-(h)) and the same happens to the
N = 2 curve in plots (i) to (l). At a two-pair emission probability of p(2) = 0.055 the
secret-key rate for the a single repeater has almost completely disappeared.
It is clear from this numerical analysis, that multi-pair emission poses a most serious
problem to any repeater architecture relying on imperfect photon-pair sources with p(n >
1) 6= 0. For a more detailed discussion of the effects of multi-photon emission see section
5.2.

All near-term repeater experiments, such as the ones currently ongoing within QIA,
employ probabilistic sources.

This leads us to two main conclusions:

• It is extremely interesting and important to have a way to accurately simulate multi-
pair emission. Since the model by Guha et al. [46] only takes into account two
pair emission it is crucial to expand this model also to higher photon numbers and
different distributions. This is one of the main goals of this thesis.

• It is worth investigating ways to improve our repeater protocol, such that multi-
photon errors are suppressed as much as possible.

As for the second point there is a significant research effort going into the development
of quasi-deterministic photon pair sources, such as quantum dots [47] and there are also
proposals of protocols using number-resolving detectors which can be used to further reduce
multi-photon errors and have been investigated by Krovi et al. [48].

Nonetheless it is of great importance to offer a framework to investigate the effect of
multi-photon emission accurately.

This is where our simulation comes in:
It enables us not only to accurately model multi-photon emissions (see 3.5), but also to take
into account other sources of noise which are analytically difficult to treat. These currently
also include time-dependent efficiency of the memory and photon-indistinguishability (see
Chapter 5). Future plans also include simulations of e.g. timing jitters between the nodes.

Such a detailed simulation can be used to (a) simulate the performance of current
hardware in a large repeater experiment as we do in Chapter 6, (b) run optimiza-
tions to determine the influence of improving certain parameters, see Chapter 7.
This can then guide future experimental efforts.

With this clear motivation in mind we now turn towards the technical implementation
and start with introducing our simulation software.

3.3 The NetSquid Simulator

For our simulations we use the purpose built ’Network Simulator forQuantum Information
using Discrete events’, or short NetSquid [49].

NetSquid is based on DynAA [50]–[52], a computer-aided analysis and design tool for
the development of large, distributed, adaptive, and networked systems [13]. It is currently
under active development at QuTech and will soon be released under public license.
NetSquid comes with many benefits.
On the one hand the front end is entirely written in Python, which makes it very easy
to use. On the other hand the discrete event paradigm that is also known from classical
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network simulators [53], [54] allows NetSquid to efficiently simulate the transmission and
decay of quantum information in combination with the complex and stochastic nature of
repeater protocols. It is able to perform arbitrary quantum operations and its modularity
in terms of components and protocols allows us to easily investigate networks containing
many nodes and different component technologies. This makes it a perfect tool for our
purpose.

However NetSquid only provides very general base components and models. For our
simulation we need components and models that are more specific to the actual physical
setup described in the previous chapter. Therefore we had to make a number of additional
components and features that can now be found in the atomic ensemble Netsquid Snippet
NetSquid-AE [55].

3.4 Components

The aforementioned modularity allows us to easily swap out any component in our simula-
tion and exchange it for another. In the following we will go over the basic implementation
of the components needed to simulate atomic ensemble based repeater protocols before
going into more detail about how we implemented in the individual components.

3.4.1 Source

Any repeater protocol will need a source of the photons used to carry information. There
are however a multitude of different available sources of entangled photons with different
properties. Common to all sources is their ability to emit a certain photon state with a
distinct emission probability distribution at a certain frequency. We therefore designed
an abstract quantum source class which includes all these features and allows accurate
simulations of many available technologies.

In the case of a perfect single photon-pair source, an emission probability pe must be
provided by the user. The source will then construct the correct state and schedule an
emission event at a frequency specified by the user. Every time an emission is scheduled
in the discrete event simulator a random number is drawn to determine whether a photon
is emitted or not (using the specified emission probability). To allow for simulation of
both single-click and double-click protocols the source supports dual-rail (e.g. time-bin)
or single-rail (presence-absence) encoding.

For multi-photon emission, the user can either specify a mean photon-pair number µ for
the probability distribution of a SPDC Source (2.23) or give a list {p(0), p(1), p(2), p(3)}
containing the individual probabilities of emitting no, one, two or three photon pairs re-
spectively. This allows to quickly change between different kinds of sources with different
distribution without needing to change any code of the component. For a more detailed
description of the emitted state see 3.5.1.

For multiplexed operation this state can be independently and simultaneously emitted
in any number of modes.

3.4.2 Channel

Both for classical and quantum channels we use the standard components supplied by
NetSquid. These allow for different delay, loss and noise models to be applied to the
transmitted items. This can be coupling loss of the photons , length-dependent attenuation,
depolarizing or dephasing noise or Gaussian delay models. Any of these models can be
switched out independently, thus allowing us to analyze the performance of a quantum
network under any number of different scenarios for transmission.
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For our analysis we generally assume that classical channels are noiseless and separate
from the quantum channel. However classical channels also allow for arbitrary noise that
can be specified by the user e.g. bit flip.

Channels can have arbitrary length therefore allowing for perfect flexibility in setting up
any desired network topology. While in this work we always assume that the elementary
link BSM station is positioned at the middle of the link this is a simple choice not a
limitation given by the simulation.

3.4.3 Detectors

The next component common to all repeater protocols are detectors. In our simulation
they are used for the midpoint BSM of the elementary links, the entanglement swapping
at the repeater nodes and the measurement in different bases at the end nodes.

All detectors have detection efficiency ηdet and dark count probability pdark as param-
eters and the linear optical BSM also includes photon indistinguishability. The BSM is
implemented by applying a set of POVMs to the arriving qubits and then classically adding
dark counts and efficiency to the measurement outcomes. This allows us to easily imple-
ment number- and non-number-resolving BSMs. For a detailed derivation of the POVMs
see 3.5.3.

The end node detectors support measurement in X,Y and Z basis. This enables us
to not only perform the BB84 but in principle also the six-state protocol [56]. While
the measurement in the Z basis is simply implemented as a threshold detector counting
photons (in each time bin), the other basis measurements are slightly more difficult. For
presence-absence encoding we apply a scheme as shown in Fig. 2.6 of interfering two
repeater chains and simply use our regular BSM detectors together with an appropriate
phase shift to change from X to Y basis. For time-bin encoding we need to interfere the
two time-bins with one another. This can be achieved in two ways: either actively with an
optical switch, or passively with an additional beam splitter. Both setups use threshold
detectors and are shown in Fig. 3.2

Our component supports both modes of operation. Ultra-fast optical switches have
been experimentally demonstrated but have a rather low efficiency of 1% [57]. However
it is computationally much faster as for the passive setup the quantum state needs to be
expanded which becomes slow when using the multi photon implementation detailed in 3.5.
Additionally, for the passive implementation we need to use a squashing model as detailed
in [58] to map the clicks in bins b1, b3, b4 and b6 onto click patterns in the interference
bins b2 and b5. The active setup only has the two interference bins and therefore all click
patterns can immediately be used without using squashing maps. In the end it is up to
the user to choose between the two implementations, however in our simulation we use the
computationally faster active switching. For future analysis of timing jitters we plan to
also include detection time windows in our detectors.

3.4.4 Memory

Any scalable quantum repeater protocol will also need a quantum memory. For our abstract
implementation of such a device we use the QuantumMemory class in NetSquid as a base.
This means we can initialize a certain number of memory positions and for each of these
positions choose a noise, loss or emission model.
In our simulation of AFC and EIT memories the main source of ’noise’ in the memory is
photon loss. Therefore we put a loss model on each of the memory positions similar to the
one used on the quantum channel. It takes a maximum memory efficiency ηmem(t = 0)
and the coherence time τc of the state the photon is stored in. Once the qubit is taken
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Figure 3.2: Schematic of the end node detector for time-bin encoding. The time-bins are
interfered to perform a measurement in the X basis. A phase shift by π/2 on one of the arms
allows for measurements in the Y basis. a) Passive setup with two beam splitters, in which
the photon ends up in one of six detection bins b1, . . . , b6, while we are only interested in
clicks in bins b2 or b5 for our QKD measurements, since interference has occurred only in
these bins. b) Active setup in which the early (late) photon is always routed through the long
(short) arm by a fast optical switch, such that the time-bins will always correctly interfere at
the beam splitter [38].

from the memory the probability of losing the qubit is calculated as

ploss = 1−
(
ηmem(t = 0)× e−

t
τc

)
(3.1)

where t is the time spent on the memory. Using this probability it then applies a generalized
amplitude damping channel as detailed in 3.5.2. The qubit can be retrieved at any time,
while in real AFC memories the photons will only be re-emitted once all the states in the
Dicke state (eq. 2.24) rephase. (On demand memories are of course an exception) This
needs to be accounted for by the protocols accessing the memory. Since in an experiment
the storage time can be pre-programmed to the correct duration, it is equivalent to access
the qubit only at this given time or having the memory emit it automatically.
With the flexibility given by the different noise models that can be put onto our memory
component we want to make even more detailed simulations in the future, e.g. by modeling
noise introduced by the read-out laser.

3.4.5 Magic

Though strictly speaking not a component of the simulation, there is one additional im-
portant concept that needs to be introduced. When analyzing long repeater chains or even
more complex network topologies, simulating every single photon and every single quan-
tum operations in every link becomes unfavorable. To enable an efficient simulation of
such large scale networks we introduce a sampling method for our elementary links which
we termed "Magic". This simply means that the elementary link is not fully simulated
but states are inserted into the memories "magically" and has nothing to do with "magic
states" known in the context of error correction [59].

We distinguish between two kinds of Magic: analytical and sampled. For analytical
Magic we implement a fully analytical model of the elementary link with a number of
different states with corresponding probabilities calculated from the simulation parameters.
This can for example be the model proposed by Guha et al. in [46]. The state is then
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"magically" put into the memories of an elementary link after a certain generation time
sampled from the probabilities, rather than simulating the full emission, loss, noise and
measurement of the entangled-photon pairs. This is a very quick way to generate data,
however it is not always possible to derive an exact analytical model, especially when
combining many different sources of noise.

Therefore in this work we use the so called sampled Magic. This means we run the
full simulation many times to generate a large set of sampled elementary link states with
their corresponding midpoint outcomes and number of attempts it took to generate them.
This can be done for a single elementary link or the end-to-end states of an arbitrary
portion of a network for even larger simulations. This way we keep the full power of our
simulation while allowing for arbitrary scalability.

However, this way of resampling states introduces additional statistical errors due to
the finite size of the data set. This is known as a bootstrapping problem and we will be
looking to quantify this in the future. It also means that for each set of parameters one
needs to run the sampling again, making optimization a slow process. We are currently
working on a way to make the sampling much more efficient which we will use for future
optimization efforts.

This concludes the discussion of the basic building blocks used in our simulation. In
the next section we will go into more detail about how we simulate multi-photon emission.

3.5 Simulation of Multi-photon Emission

As explained in the beginning of this chapter multi-photon emission is one of the largest
sources of error in current repeater protocols. It is therefore of great importance to simulate
this accurately. Unfortunately at the time of writing this thesis NetSquid does not offer
the possibility to use qu-d-its, so we have to work with qubits to represent a multi-photon
state.
A simple way of encoding a multiple-photon state with qubits is mapping the number of
the Fock state to its binary representation:

|0〉 → |00〉
|1〉 → |01〉
|2〉 → |10〉
|3〉 → |11〉

(3.2)

A multi-photon state |n〉, for n ≤ 3, is therefore represented by two qubits in the simulation.
Consequently the time-bin encoded state |early, late〉 = |n,m〉, for n,m ≤ 3, is represented
by four qubits. Creating a pair of such states obviously doubles that number.
This change requires all our components to be able to handle such multi-qubit states. In
the following we will go over each of the individual components in our simulation and
describe in detail how they handle multi-photon emission.

3.5.1 Source - Multi-Photon Emission

Using binary encoding requires two main changes in our source component:
It needs to be able to emit groups of more than one qubit correctly representing a multi-
photon state and it needs to correctly model the photon-number distribution of the physical
source.
In the following we describe theses changes, both for time-bin and presence-absence en-
coding.
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Time-bin encoding

The general state that a source generates for n time-bin encoded photons is given by [48]

|ψ〉 =
∞∑
n=0

√
p(n) |ψn〉 , (3.3)

where

|ψn〉 =
1√
n+ 1

n∑
m=0

(−1)m |n−m,m;n−m,m〉 . (3.4)

Note that (3.4) differs from what is used in [48], since for time-bin encoding the number of
photons per time bin should be perfectly correlated, while the expression in [48] describes
the anti-correlation between the polarization modes in the case of polarization encoding.
For n ≤ 3 photons, we therefore obtain the state

|ψ〉time−bin =
√
p(0) |0, 0; 0, 0〉+

√
p(1)

2
(|1, 0; 1, 0〉 − |0, 1; 0, 1〉)

+

√
p(2)

3
(|2, 0; 2, 0〉 − |1, 1; 1, 1〉+ |0, 2; 0, 2〉)

+

√
p(3)

2
(|3, 0; 3, 0〉 − |2, 1; 2, 1〉+ |1, 2; 1, 2〉 − |0, 3; 0, 3〉) , (3.5)

This state can be rewritten in binary representation as

|ψ〉time−bin =
√
p(0) |00, 00; 00, 00〉+

√
p(1)

2
(|01, 00; 01, 00〉 − |00, 01; 00, 01〉)

+

√
p(2)

3
(|10, 00; 10, 00〉 − |01, 01; 01, 01〉+ |00, 10; 00, 10〉)

+

√
p(3)

2
(|11, 00; 11, 00〉 − |10, 01; 10, 01〉

+ |01, 10; 01, 10〉 − |00, 11; 00, 11〉).

As noted before we therefore need 8 qubits to describe this state (4 in each half of the pair
of which pairs of 2 describe the number of photons per time-bin).
Truncating the state after n ≤ 3 photons also requires us to truncate the probability
distribution for the SPDC source (2.23) accordingly, such that

p(0) =
1

(µ+ 1)2

p(1) =
2µ

(µ+ 1)3

p(2) =
3µ2

(µ+ 1)4

p(3) = 1−
2∑

n=0

p(n)

=
µ3(µ+ 4)

(µ+ 1)4

(3.6)
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Presence-absence encoding

For presence-absence encoding, the coherence of the state is embedded in the number of
photons that are created by the pump photon. In the case of at most single photon events,
we can thus resort to an emission probability that now denotes the probability of generating
a perfect single photon pair, i.e.

|ψ〉pa,s =
√

1− pe |00〉+
√
pe |11〉 ,

where the state |ii〉 now denotes i photons traveling to both directions with equal polar-
ization and always emitted at the same time.
Now moving to the case of allowed multi-photon emission, we get the state

|ψ〉pa,m =
√
p(0) |00〉+

√
p(1) |11〉+

√
p(2) |22〉+

√
p(3) |33〉

=
√
p(0) |00, 00〉+

√
p(1) |01, 01〉+

√
p(2) |10, 10〉+

√
p(3) |11, 11〉 , (3.7)

where we can again use the truncated probability distribution (3.6). We also note that this
encoding only requires 4 qubits per state (2 per half traveling in each direction) making it
computationally lighter.

3.5.2 Photon Loss - Generalized Amplitude Damping

Photon loss, as it for example occurs in an optical fibre or a quantum memory, can be
described by an amplitude damping channel. In the general case losing exactly k photons
can be expressed by the following non-unitary Kraus operators describing both photon loss
and the effects of amplitude decay [60]

Ak =

∞∑
n=k

√(
n

k

)√
(1− γ)n−kγk |n− k〉 〈n| , (3.8)

where γ is the probability of losing a photon. Specifically, γ depends on the time t the
qubits spend on the memory (and the memory’s maximum efficiency) or the length L of
the quantum channel.

γmem(t) = 1− (1− γmem(0))e−t/τ (3.9)

γchan(L) = 1− (1− γchan(0))e−L/Lα , (3.10)

where τ is the memory lifetime and Lα the attenuation length of the channel.
The Kraus operators Ak satisfy

∑∞
k=0A

†
kAk = 1 and Ak ≥ 0. The loss channel is therefore

a completely-positive trace-preserving map.
In our case of having n ≤ 3 photons the Kraus operators in binary encoding are simply

A0 = |00〉〈00|+
√

1− γ |01〉〈01|+ (1− γ) |10〉〈10|+ (1− γ)3/2 |11〉〈11|

A1 =
√
γ |00〉〈01|+

√
2(1− γ)γ |01〉〈10|+ (1− γ)

√
3γ |10〉〈11|

A2 = γ |00〉〈10|+ γ
√

3(1− γ) |01〉〈11|
A3 = γ3/2 |00〉〈11| .

(3.11)

The action of the generalized amplitude damping channel on an arbitrary input state ρi is
then described by

ρf =

3∑
k=0

AkρiA
†
k. (3.12)

For time-bin encoding the Kraus operators are simply Aij = Ai⊗Aj with i, j ∈ (0, 1, 2, 3).
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3.5.3 Bell State measurement

Here we describe the modeling of our optical Bell state measurement setup (see Fig. 3.3)
for multiple photons, that are not perfectly indistinguishable, coming from each side. If
photons hitting the beam-splitter are distinguishable the beam-splitter will not perfectly
erase the which-way-information and therefore no photon bunching, as described by the
Hong-Ou-Mandel effect [61] , will occur (see section 5.4). This can be detected in the
experiment and change the BSM outcome.
In the following we will derive the effective POVM operators for the Bell state measurement
in terms of the photon indistinguishability / visibility ν and describe how dark-counts and
detector efficiency are implemented. We will follow the derivation in [13] very closely but
generalize it to arbitrary photon numbers.

a b

c d

Figure 3.3: Schematics of the heralding station with input arms a and b, 50:50 beam-splitter
(blue), output arms c and d and photon detectors (black). The two incident photons (red)
interfering at the beam-splitter have visibility 0 ≤ ν ≤ 1.

Figure 3.3 shows a 50:50 beam splitter with input arms a and b, output arms c and d and
photon detectors at the end of them. We will assume here that the photon detectors can
count photons, i.e. there are different measurement outcomes for each number n of detected
photons on a detector. From there it is then trivial to derive the corresponding POVMs
for detectors which can not resolve different photon numbers, as we will demonstrate later.

Basis states

When modeling multi-photon emission, we can describe the state before the beam-splitter
as a state living in the 4-qubit Hilbert space spanned by the 16 basis vectors:

|n,m〉ab (3.13)

with n,m ∈ {0, 1, 2, 3} being the number of photons coming in through input arms a and b
respectively. Describing the state solely by the number of photons hides the fact, that each
photon can have a multitude of other degrees of freedom, such as polarization, spectral and
temporal properties. Following [13], we will focus on spectral properties in the following,
though this is easily generalizable to other degrees of freedom. A single photon in arm a
with a spectral amplitude function φ can be modeled as

|1〉a =

∫
dωφ(ω)a†(ω) |0〉a (3.14)

where a†(ω) is the creation operator of a single photon in arm a of frequency ω and |0〉a is
the vacuum. The state is properly normalized, such that∫

dω|φ(ω)|2 = 1. (3.15)
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Consequently, we can then describe a single photon in arm b as

|1〉b =

∫
dωψ(ω)b†(ω) |0〉b , (3.16)

where we capture the fact, that the photons arriving at the beam-splitter can have different
spectral properties by having different φ and ψ.
Therefore the basis states before the beam-splitter can be written as

|n,m〉ab =
1√
n!m!

( n∏
i=1

∫
dωiφi(ωi)a

†(ωi)

)( n+m∏
j=n+1

∫
dωjψj(ωj)b

†(ωj)

)
|00〉ab . (3.17)

The normalization factor in front comes from the property of the creation operator that
a† |n〉 =

√
n+ 1 |n+ 1〉, or put differently |n〉 = 1√

n
a† |n− 1〉.

A temporal shift τ between the arrival times of the photons can be easily integrated into
the basis state as well, by simply introducing the following action on the creation operators

b†(ω)→ b†(ω)e−iωτ , (3.18)

but this will be omitted in the following for simplicity.

Beam-splitter

Let’s now look at the next part of the BSM: the 50:50 beam-splitter. Its action on the
creation operators is described by

a†(ω)→ 1√
2

(c†(ω) + d†(ω))

b†(ω)→ 1√
2

(c†(ω)− d†(ω)).

(3.19)

Thus, the basis states described by (3.17) of n,m photons arriving from a, b will after the
beam-splitter become

|n,m〉cd =
1√
n!m!

×
( n∏
i=1

∫
dωiφi(ωi)

1√
2

(
c†(ωi) + d†(ωi)

))
×

( n+m∏
j=n+1

∫
dωjψj(ωj)

1√
2

(
c†(ω)− d†(ω)

))
|00〉cd . (3.20)

With this, we can now define an isometry Uab→cd describing the action of the beam-splitter
on the basis states as

|n,m〉ab → |n,m〉cd (3.21)

for all n,m.
In our case of up to 3 photons coming from each input arm this will therefore by given by

Uab→cd =

3∑
n=0

3∑
m=0

|n,m〉cd 〈n,m|ab . (3.22)

Obviously a similar expression holds for arbitrary incoming photon numbers.
Since the states |n,m〉 are mutually orthogonal it can be easily checked, that Uab→cd is
indeed an isometry with

(Uab→cd)
†Uab→cd = 1. (3.23)

With the beam-splitter unitary in hand we now have a look at the detectors.
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Detectors

We assume that the detectors have a flat frequency response. The event that the detector
at the end of arm c detected k photons and the detector at the end of arm d detected l
photons can be described by the projector

Pk,l =
1

k!l!

( k∏
i=1

∫
dωic

†(ωi)

)( k+l∏
j=k+1

∫
dωjc

†(ωj)

)
×

× |00〉〈00|cd
( k∏
i=1

c(ωi)

)( k+l∏
j=k+1

c(ωj)

)
. (3.24)

The six projectors for up to a single photon coming from each side, as described in [13],
follow from this much more general expression. In our case of up to three photons coming
from each side we get a total of 28 projectors Pk,l with 0 ≤ k + l ≤ 6.

Effective POVMs

Lets assume we have an arbitrary state |n,m〉ab and want to calculate the probability of
obtaining a measurement outcome corresponding to the projector Pk,l for the state after
the beam-splitter Uab→cd |n,m〉ab. Following Born’s rule, this probability is

〈n,m|ab (Uab→cd)
†Pk,lUab→cd |n,m〉ab = tr

[
(Uab→cd)

†Pk,lUab→cd |n,m〉〈n,m|ab
]
. (3.25)

From this equation we find that the effective POVM on ab of the BSM described by Fig.
3.3 is given by

Mkl = (Uab→cd)
†Pk,lUab→cd. (3.26)

The resulting expressions are fairly simple to evaluate using:

• The commutation relations of the creation/annihilation operators[
a(ω(wi)), a

†(ωj)
]

= δ(ωi − ωj), (3.27)

with all other commutators equal to zero.

• The properties of the δ-function∫
dωjf(ωj)δ(ωi − ωj) = f(ωi) (3.28)

• The indistinguishability / visibility ν given by

ν =

∣∣∣∣( ∫ dωφ∗(ω)ψ(ω)

)∣∣∣∣2. (3.29)

Note that the probability that incident photons on the beam-splitter go to different
output arms is χ = 1

2(1− ν).

An explicit calculation of the POVMs for the single photon case can be found in the ap-
pendix of [13].
For the case of up to three photons the calculation involves a large amount of different
combinations and is thus tedious to do by hand. Therefore, we used a script to calculate
the full set of POVMs using a symbolic linear algrebra python module for quantum me-
chanics named QuAlg [62]. In the simulation the POVM operators are then converted to
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Kraus operators by taking the matrix square root.
For detectors that can not resolve the exact photon number, but are instead simple thresh-
old detectors the POVMs can be derived from the full set of POVMs by summation:

M(no− click) = M00 (3.30)

M(c− clicked) =

n∑
i=1

Mi0 (3.31)

M(d− clicked) =

m∑
i=1

M0i (3.32)

M(both− clicked) =

n∑
i=1

m∑
j=1

Mij , (3.33)

with n,m the maximum number of clicks in the detectors at the end of arms c and d
respectively.

Dark-Counts and Detection Efficiency

After obtaining a click-pattern from applying the full set of POVMs (number or non-
number resolving) dark-counts and detection-efficiency are applied classically:

• Each click of the ’perfect’ measurement outcome can be lost with a probability of
plost = 1 − ηdet, where ηdet is the detection efficiency. This for example means that
if there were n photons on the detector the probability of having no click is plost for
the non-number resolving but pnlost for the number resolving detector.

• With probability pdc = 1 − e−Rdcτdet one dark count occurred during the detection
time window and a click is added. Here Rdc is the dark count rate of the detector
and τdet is the detection time-window.

In that way we fully implement the entire linear optical Bell state measurement shown in
Fig. 3.3, including photon-indistinguishability, dark-counts and detector efficiency for up
to three photons coming from each side.

This way we show how we can correctly simulate multi-photon emission in every part
of our simulation. Before we move on to the validation of our model let us briefly discuss
how we collect our data.

3.6 Data collection

In order to calculate our figure of merit, the secret key rate (see section 2.9), we need to
collect measurement data from our simulation. To this end every time after all the swaps
and end node measurements are performed we collect all measurement outcomes and the
basis the end-nodes measured in. We then determine the expected end-to-end Bell state
from the measurement outcomes of the midpoint and swap BSMs along the repeater chain.
From the expected end-to-end state we determine the expected correlation of measurement
outcomes in the basis the end nodes measured in, given they both chose the same one. We
then compare the actual measured correlation with the expected correlations to determine
the QBER for each basis. Using (2.27) we then calculate the secret key rate.

For our error bars we use the standard deviation for the QBERs and the average number
of attempts necessary to generate a successful end node measurement. However since the
secret-key rate is not a smooth function we here simple give the minimal and maximal
rate calculated from the minimal/maximal QBERs within their respective error bars. This
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leads to the error bars of the secret key rate to sometimes drop to zero when the QBERs
exceed certain threshold of ∼ 13%. Since we plot the secret key rate on a logarithmic scale
this makes it appear as if we have really large error bars. This is however not reflecting
large statistical uncertainty but rather the behavior of the secret-key rate that is calculated
from binary entropies.

With a clear idea of how we obtain our figure of merit let us now turn to validating
our model against existing models.
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Verification

4.1 Introduction

In order to verify our simulation, we follow the historical development of the spectral
multiplexing approach. Therefore, we focus on three models in particular:

Sinclair et al. [32] introduces spectral multiplexing using AFC memories. In the sup-
plemental material an analytical calculation for the probability and rate of end-to-end
entanglement generation over n elementary links with m spectral modes is presented. A
perfect photon pair source and negligible dark counts are assumed, thus arriving at a
very simple closed form analytical expression. This seems like a logical starting point for
the validation, as this is the most basic model and therefore well suited for finding any
fundamental errors in our simulation.

Guha et al. [46] present an analytical solution of the secret key rate including dark
counts and imperfect detectors, but again only for a perfect photon pair source.

Finally, to investigate multi-pair emission, Guha et al. [46] also finds numerical solu-
tions for the secret key rate (see Fig. 3.1) that incorporates up to two-pair emission. This
enables us to compare our implementation of multi-pair emission against their results.

This way all aspects of our simulation setup will be verified against the literature it was
based on. At this point we would like to note that shortly before the end of this project
first experimental data using atomic ensembles was published in Nature [63]. Due to the
short time left we have not yet tried to reproduce their results with our simulation but this
will be very interesting to look at in future work.

4.2 Validation of end-to-end entanglement rate

Here we will briefly remind ourselves of the setup that is assumed by Sinclair et al. [32].
Then the derivation of the analytical expression for the end-to-end entanglement rate is
explained and finally we present the results of our simulation and how they compare to
the prediction.

4.2.1 Setup

The setup used by Sinclair et al. [32] assumes a lossy quantum channel of length L with
attenuation α. This total distance is then divided into n elementary links of length L/n. At
each side of the elementary link is a spectrally multimode quantum memory with constant
efficiency ηmem. Next to each memory is a source that generates entangled photon pairs
in many spectral modes simultaneously, with the probability of emitting an entangled pair
denoted by ρ. These different spectral modes are generated independent of each other.
Of each pair, one photon is immediately stored in the memory, while the other one travels
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through the channel to a double-click midpoint bell state measurement. This linear optics
BSM is performed on each spectral mode, using one photon from each source and has a
success probability of maximally 1/2. Additionally the detectors have an efficiency of ηd1
and are assumed to be noiseless (dark counts are thus neglected). The central station
containing the detectors then sends a classical signal to the ends of the elementary link,
heralding the successful spectral mode (multiple simultaneous successes are ignored).
To extend the entanglement over multiple elementary links , neighboring links must perform
entanglement swapping. This is again done using a linear optic BSM, this time between two
neighboring memories of different elementary links. To make the photons indistinguishable
the frequency of both modes is converted to a pre-agreed upon common frequency. If all
BSMs succeed entanglement between the end nodes of the quantum channel is established
[32].

4.2.2 Analytical expression for rate of entanglement generation

With this information the success probability of end-to-end entanglement generation can
be calculated.
Starting with a single elementary link the probability for a single spectral mode to trigger
a successful BSM is given by

Psuccess(1mode) = PsuccessfulBSM × (PPhotonNotLost)
2

=
1

2
× (ηd1 × ρ× 10−αL/2n)2

(4.1)

where the square appears as two photons need to be detected at the central station. It has
been assumed here that the two photons are perfectly indistinguishable (visibility ν = 1).
For m spectral modes the probability that all modes fail to generate entanglement over
the elementary link is simply

PallFail = (1− Psuccess(1mode))m

= (1− 1

2
(ηd1ρ10−αL/2n)2)m.

(4.2)

Therefore the probability for at least one spectral mode top be successful and thus the
probability to generate entanglement over a single elementary link is

Plink = (1− PallFail) = 1−
(

1− 1

2
(ηd1ρ10−αL/2n)2

)m
(4.3)

From this equation it is obvious that by choosing the number of spectral modes m suf-
ficiently high, the probability of elementary link entanglement generation success can be
brought arbitrarily close to 1.
To now swap entanglement between two links two photons need to be retrieved from their
memories (η2mem) and then successfully detected (η2d2) at the BSM (50% success).

The probability to distribute entanglement over the entire distance with n elementary
links (n− 1 swaps) is therefore

Ptotal = P
(n−1)
SuccessfulSwap × P

n
link

=

(
1

2
η2memη

2
d2

)(n−1)(
1−

(
1− 1

2
η2d1ρ

210−αL/n
)m)n (4.4)

It is worth noting that all deviation from deterministic success - again assuming sufficiently
large m - is contained in the first term, describing the success of all swaps. Finally the
actual rate of entanglement generation is simply

Rsuccess =
Ptotal
∆t

(4.5)

with ∆t the time between successive attempts to generate entanglement [32]
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Figure 4.1: Entanglement distribution rate in Hz for m = 100 modes and varied for 0 ≤ n ≤ 3
repeater nodes. The black lines are the respective analytical curves. The rate of the source is
set to 1 Hz.

4.2.3 Results

To compare our simulation with the results from [32] we used the same parameters: ηmem =
ηd1 = ηd2 = ρ = 0.9 and α = 0.2dB/km.
While Sinclair et al. assume a memory that is able to store multiple qubits in each spectral
mode simultaneously, resulting in a really high rate, we limited our simulation to a single
photon per spectral mode. However this does not influence the comparability of the models
as we can just insert the same rate used in our simulation into the analytical model.
For simplicity the time between attempts was set to 1s, while the maximum rate is achieved
for ∆t = tcycle = L/(n× c). For the channel lengths considered in the following this would
be much larger than 1Hz.

We see very good agreement between the analytical results and our simulation both
when varying the number of elementary links n (see Fig. 4.1) and the number of modes m
(see Fig. 4.2).
Our simulation can therefore accurately model this simplest of models for a repeater chain
of atomic ensembles.
Since this model does not include any of the interesting noise parameters like dark counts,
we will now move on to a more sophisticated analytical model including these parameters
and investigate whether our simulation can also reliably replicate those results.

4.3 Validation of more sophisticated model

Here we will briefly go over some important results presented by Guha et al. in [46]
presenting a model that now also includes dark counts and imperfect detectors. We will
again mention some details about the used repeater protocol and then go over the main
results for perfect photon pair sources. Finally we will get into imperfect sources with
the probability to emit multiple photon pairs and how the introduced multi-photon errors
influence the secret key rate in the next section.



44 CHAPTER 4. VERIFICATION

0 50 100 150 200 250 300 350
Total Leng h [km]

10−3

10−2

10−1

100

En
 a

ng
le

m
en

  G
en

er
a 

io
n 

Ra
 e

 [H
z]

m = 10
m = 100
m = 1000
m = 10000

Comparing analy ical and simula ed en anglemen  ra e.

Figure 4.2: Entanglement distribution rate in Hz for n = 1 repeater nodes and varied over the
number of modes m for m = 10, m = 100, m = 1000 and m = 10000. The black lines are the
respective analytical curves. The rate of the source is set to 1 Hz.

4.3.1 Setup

The setup used is essentially the same as in the previous paper, where a double-click
scheme is employed and the chain is built up from elementary links containing two sources
of entangled photon pairs, two quantummemories and a central station with a beam splitter
and detectors to perform the linear optic BSM. Entanglement is swapped simultaneously on
all repeater nodes with linear optical BSMs and a universal synchronized clock is assumed.

4.3.2 Analytical results for perfect photon pair source

We will now give a brief overview of the main analytical results of Guha et al. used to
verify our setup. All detailed derivations can be found in the paper [46] and here we will
instead try to give some intuition about why the equations make sense. First the full
expression is presented and we will then go over all the different factors one by one.
For a perfect photon pair source [46] derives an exact expression for the secret-key rate
achievable by this setup. It is given by:

R = P1PsuccR2(Qn+1)/2Tq secret-key bits/s (4.6)

with P1 the sift probability, Psucc the overall success probability of the connection, R2(Q) =
1 + 2(1−Q)log2(1−Q) + 2Qlog2(Q) the secret-key rate of BB84 in bits per sifted symbol,
Q the error probability of the sifted bit and T−1q the clock rate of the system. The factor
of 2 in the denominator accounts for the probability that Alice and Bob use the same basis
choice.

The sift probability P1,
P1 = (q1 + q2 + q3)

2 (4.7)

is the probability, that neither Alice nor Bob gets zero clicks on their detectors, given
they both measure in the same basis. This is important as we again use a double-click
scheme with time-bin encoding. Here q1 = (1− Pd)Ad, q2 = (1−Ad)Pd, q3 = PdAd, Ad =
ηd + (1− ηd)Pd and ηd, Pd are detector efficiency and dark count probability respectively.
This can be interpreted as follows:
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• q1 is the probability that the outcome is detected correctly.
|01〉 as (no-click, click) and |10〉 as (click, no-click)

• q2 is the probability that the noisy detector ’flips’ the outcome.
|01〉 as (click, no-click) and vice versa

• q3 is the probability that, no matter whether the state is |01〉 or |10〉 , the noisy
detector generates (click, click).

All three probabilities are symmetric in the inputs and each half of the state has exactly
one photon, therefore the probability of a successful sift is simply the probability of both
Alice and Bob getting one of the above three events (no-flip, flip, double-click) as described
in eq. (4.7).

For the overall success probability Psucc [46] derive an expression similar to eq. (4.4),

Psucc = (4s)2n−1[1− (1− 4s1)
m]2n ∼ PN−1SuccessfulSwap × P

N
link (4.8)

where m the number of modes, 2n the number of elementary links and 4s, 4s1 success
probabilities of the swap and the elementary link BSM (per mode) respectively. It is worth
noting that the swap probability now actually depends on the quantum state which is
being tracked.

The QBER is recursively calculated to be

Qi =
1

2

(
1− td

tr
(trte)

2i−1

)
(4.9)

where te, tr, td are functions of the loss-noise parameters of the detectors in the elementary
link, repeater nodes and end node detectors respectively. For zero dark-count probability
Px = 0 they become tx = 1, while they can still have imperfect detection efficiency ηx 6= 1.
For the exact derivation, which requires solving a variant of the chaotic logistic map, we
again point to the original paper [46].

Qualitatively the result is easy to understand: In this very simple model the only
quantum bit error comes from the detectors. Detection efficiency will not lead to a flipped
bit, but only to a reduced rate, as some successful events are just not detected. Dark counts
however can flip the outcome of a detector in the sense as above (e.g. |01〉 detected as
|10〉). This leads to a different end-to-end state being heralded as a success and therefore
introduces quantum bit error. In the repeater chain there are N midpoint BSMs, N − 1
swapping BSMs and one end node detection combining to the term (td/tr)(trte)

2i−1 in the
recursion. The factor 1

2 accounts for the maximum QBER being 1
2 , indicating complete

randomness of Alice and Bobs measurement results.
This model produces a curve for the secret key rate with three distinct region as shown

and in Fig. 4.3 and explained in section 3.2.

4.3.3 Simulation results for perfect photon pair source

In the following we will investigate how well our simulation results agree with the analytical
expression for the secret-key rate (4.6) presented above.
This investigation was done by Julian Rabbie using the same simulation and can be found
in his thesis [38]. Fig. 4.4 shows the results for different numbers of elementary links N.

We see that there is good agreement between the analytical results and the simulation
data for all N. While the elementary link stays below the theoretical capacity bound for
all lengths, with a single repeater the secret-key rate crosses the bound after ∼ 250km.
Once again we demonstrate that our simulation can accurately reproduce the analytical
results for a perfect photon pair source, even when dark counts and detector efficiencies
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Figure 4.3: Analytical calculation of the secret key rate as in [46] for different numbers of
elementary links N. Qualitatively each curve has a similar shape consisting of three distinct
regions as described in section 3.2. This is the purely analytical model without inclusion of
multi-photon emission.

are included.
This concludes our verification of analytical results, as we now want to start moving beyond
analytical predictions and investigate our implementation of multi-photon errors.

4.4 Validation of multi-pair implementation

In order to validate our full implementation we turn to the numerical analysis done by
Guha et al. [46]. As shown in Fig. 3.1 they analyse the effect of different multi-photon
emission probabilities on the secret key rate. Since our source (see section 3.5.1) allows
us to input the individual emission probabilities p(n), where n is the number of emitted
pairs, we take a couple of values for p(2) and compare our simulation to the plots in [46].
In the current implementation the computation time required to create the necessary data
increases with the number of attempts needed for end-to-end entanglement. Therefore we
limit our analysis to the regime where the elementary link still provides near-deterministic
entanglement generation. This way we get a good idea whether our implementation of
the multi-photon POVMs is correct while the loss and dark counts responsible for the
exponential decrease in rate have already been validated in the previous section. From
Fig. 3.1 it is clear that even for this region we can expect significant changes in behavior
when introducing multi-pair emission.

For our comparison we use the same parameters that are specified in the caption of
Fig. 3.1. Each datapoint represents 1000 successful end node measurements.

We first start by using a source which has no probability of emitting a second photon
pair as shown in Fig. 4.5. In analogy to Guha et al. we set the other probabilities to
p(1) = 0.9, p(2) = p(3) = 0 and p(0) = 1− p(1)− p(2).

We then start turning on the two-pair emission probability and set p(2) = 0.013 in Fig.
4.6.
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Figure 4.4: Validation of our simulation model against the more sophisticated analytical model
of Guha et al. [46] performed by J. Rabbie [38]. Each datapoint corresponds to only 100
successful measurement outcomes. a) Secret key rate for a single elementary link (N = 1),
one (N = 2) and two repeaters (N = 3), plotted with the theoretical PLOB bound [64]. The
error bars represent minimal and maximal values calculated from the QBER. Solid red lines
represent the analytic model and dots the data obtained from our simulation. We see good
agreement between the two for all values of N. b) QBER for N = 2. While the secret key
rate is constant both QBERs remain zero since the model assumes a perfect photon pair
source. Once the elementary link success probability starts to become smaller than 1 dark
counts start to give a small amount of false positives leading to a non-zero QBER. c) For the
same reason the number of required attempts needed to successfully generate entanglement
increases exponentially beyond a range of 200km Qualitatively similar behavior for QBER and
number of attempts can be observed for other values of N. The parameters used to generate
this are an attenuation coefficient α = 0.2dB/km, a source with frequency f = 2MHz and
perfect single pair emission (p(1) = 1, p(0) = p(2) = p(3) = 0), M = 1000 spectral modes,
dark count probability Pdark = 3 · 10−5, detector efficiency ηdet = 0.9, visibility v = 1 and
fixed memory efficiency ηmem = 0.8.
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Figure 4.5: Comparison of the analytical secret key rate obtained in [46] (left) and our simu-
lation for two-pair emission probability p(2) = 0. Left: Analytical results for elementary link
(blue) and single repeater (red). Right: Simulation results for elementary link (blue) and
single repeater (orange). The black line is the secret key rate calculated from a linear fit to
the QBER in both basis and is given as a visual aid. For the simulated range our simulation
agrees perfectly with the analytical model. Each datapoint represents 1000 successful end
node measurements.
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Figure 4.6: Comparison of the numerical secret key rate obtained in [46] (left) and our simu-
lation for two-pair emission probability p(2) = 0.013. Left: Numerical results for elementary
link (red), single repeater (dashed-blue) and three repeaters (dashed-black). Right: Simu-
lation results for elementary link (blue),single repeater (orange) and three repeaters (green).
The black line is the secret key rate calculated from a linear fit to the QBER in both basis
and is given as a visual aid. For the simulated range our simulation agrees perfectly with
the analytical model. For the three repeater experiment the fit might seem like it does not
agree with the datapoints, however most datapoints in the region ∼ 280−400km are at 0 and
therefore not visible in the logarithmic plot shown. This also shows that our simulation is able
to simulate repeater chains for distances of hundreds of kilometers efficiently. Each datapoint
represents 1000 successful end node measurements.
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Figure 4.7: Comparison of the numerical secret key rate obtained in [46] (left) and our sim-
ulation for two-pair emission probability p(2) = 0.041 (right). Left: Numerical results for
elementary link (red) and single repeater (blue). Right: Simulation results for elementary
link (blue) and single repeater (orange). The error bars indicate minimal and maximal secret
key rate calculated from the standard deviation of the measured QBER. For some datapoints
the maximal QBER passes the threshold at which the secret key rate drops to zero. The black
line is the secret key rate calculated from a linear fit to the QBER in both basis and is given
as a visual aid. Qualitatively our results agree with the numerical calculation. However our
rate drops to zero earlier (at ≈ 75km instead of ≈ 125km). This is caused by the fact that we
run the entire experiment with noisy end node detectors, therefore our results have a slightly
higher QBER than the numerical investigation which calculated the QBER directly from the
obtained end state. This results in our simulation crossing the threshold for zero secret key
slightly earlier. Each datapoint represents 1000 successful end node measurements.

Finally we set p(2) = 0.41 and show the results in Fig. 4.7.
In all cases we see good agreement between our simulation and the analysis by Guha

et al. [46]. However we run a full QKD experiment and obtain slightly higher QBER in
both bases due to our noisy end node detection compared to the numerical results where
the QBER is directly calculated from the end-to-end state.

We can thus conclude that our simulation can correctly reproduce all previous analytical
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and numerical work done on atomic ensemble based repeater architectures. Figure 4.6 also
shows that our simulation is capable of simulating repeater chains of hundreds of kilometers
efficiently as the 1000 successful measurements took only about 10 core-hours per simulated
distance.

Let us now move beyond those limits and explore the full potential of our simulation
by analyzing a number of previously neglected noise parameters in the next chapter.



Chapter 5

Analysis of different noise parameters

5.1 Introduction

So far we have explained the details of our simulation and tested it against available
analytical models. The aim of this chapter is to now use the additional capabilities of our
simulation to investigate various noise parameters previously excluded from analysis.

To demonstrate this we will first run our simulation with the same parameters as
detailed in the caption of Fig. 3.1 for a source with p(0) = 0.1 and p(1) = 0.9 and then
investigate the influence of the different noise parameters on the results.

Fig. 5.1 shows the results of that simulation replicating the analytical model [46]. We
show the case of zero and one repeater node for an elementary link length of up to 100km.
This is the regime where elementary link entanglement generation happens deterministi-
cally. Therefore both the elementary link and the single repeater exhibit constant secret
key rate and zero QBER in both basis.

This will be our starting point for first analyzing multi-photon emission, time-dependent
memory noise and photon distinguishability one-by-one before showing the accumulated
difference of our simulation over the analytical model.

5.2 Multi-photon emission

We have already mentioned the importance of multi-photon emission a couple of times in
this thesis. Let us now have a closer look at how it affects the secret key rate.

Figure 5.2 shows the same simulation as before but now with a non-zero probability of
emitting two-photon pairs of p(2) = 0.013.

Already for the elementary link we see a difference compared to the purely analytical
model without multi-photon emission. The second photon pair that can be emitted will
introduce false positives at the midpoint BSM such introducing errors in both X and Z basis
resulting in a non-zero QBER. These false positives are easy to understand as the detectors
for the midpoint BSM can not resolve different photon numbers and can therefore not
discern between measuring one or multiple photons. Thus they will mistake a two-photon
measurement for a successful one-photon detection and wrongly herald success. However
the Rate still stays constant which is at least qualitatively captured by the analytical
model.

The difference to the analytical model becomes more drastic in the single repeater
scenario. Not only does the QBER in both basis increase again due to the additional
BSMs introducing further probability of false positive measurements, but now also the
secret key rate starts to drop slightly.

The effect is even more drastic for higher p(2) as can be seen in Fig. 4.7 where the rate
drops to zero because of the introduced QBER.
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Figure 5.1: Simulation of the analytical model in [46] without any additional noise parameters
for zero (top) and one (bottom) repeater for elementary link length up to 100km. The secret
key rate (left) stays constant for both scenarios as the elementary link has success probability
1. In both cases the QBER (middle) in both X and Z basis is 0 and the reduced secret key rate
in the one repeater scenario is caused by the increased number of attempts (right) necessary to
obtain a successful measurement. This is due to the probabilistic swap at the repeater node.
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Figure 5.2: Simulation of the analytical model in [46] with two-pair emission probability
p(2) = 0.013 for zero (top) and one (bottom) repeater. Both scenarios were simulated up to
an elementary link length of 100km. Compared to the analytical model the secret key rate
(left) is slightly reduced for the elementary link while for the single repeater it now drops
slightly. In both cases the QBER (middle) in both X and Z basis is now non-zero. For the
single repeater this effect is stronger since more BSMs are involved.
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Figure 5.3: Simulation of the analytical model in [46] with time-dependent memory efficiency
and a memory coherence time Tc = 100µs for zero (top) and one (bottom) repeater. The
elementary link is simulated for up to 100km while the single repeater simulation was stopped
after only 90km because the exponentially dropping rate leads to exponentially increasing
computation time. Compared to the analytical model there is no change for the elementary
link as we measure qubits directly while for the single repeater the secret key rate (left) now
drops exponentially due to the increasing average number of attempts (right) caused by the
photon loss. In both cases the QBER (middle) in both X and Z basis stays unchanged.

5.3 Time-dependent memory efficiency

Since NetSquid is a discrete event simulator is inherently well suited to investigate effects
related to time. In current analytical work memory efficiency is always assumed to have a
constant value ηmem. However for real quantum memories such as AFC based memories
(see 2.8.2) this efficiency decreases exponentially with time.

ηmem → ηAFC(t) = ηAFC(0)e−t/Tc (5.1)

We therefore expect the average number of attempts per measurement success to increase
exponentially as soon as we introduce one or more repeaters. Since in our QKD experiment
we measure qubits directly at the end nodes they are not stored in the memory for the
elementary link scenario and we expect the secret key rate to stay the same. This behavior
can nicely be observed in Fig. 5.3.

5.4 Photon distinguishability / visibility

Bell state measurements are a fundamental part of any repeater architecture. In Chapter
2 we already discussed that a BSM performed with linear optics has a maximum success
probability of 50%. However even when a measurement was successful the quality of the
measurement / swap also depends on whether or not the photons arriving at the beam
splitter were indistinguishable or not. Any photons arriving at the beam splitter 3.3 should
be identical in all degrees of freedom, i.e. frequency, spectral shape, arrival time, phase
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Figure 5.4: Simulation of the analytical model in [46] with imperfect photon indistinguisha-
bility / visibility ν = 0.9 for zero (top) and one (bottom) repeater. The average number of
attempts for a successful measurement (right) remains unchanged. Due to the loss of phase
coherence introduced by the distinguishability of the photons the QBER (middle) in X basis
increases significantly for both scenarios. This is results in a corresponding drop in secret key
rate (left).

and polarization, in order to be free of any ‘which-way’ information. If this is not the case,
one could (partially) determine where the photon came from, which degrades the quality
of the projected entangled state.

The effects of decreasing the visibility from ν = 1 (perfectly indistinguishable photons)
to ν = 0.9 are shown in Figure 5.4. We can see a clear drop in the absolute value of the
secret key rate and larger statistical uncertainty of our datapoints. This is caused by a
large increase of QBER in the X basis. The distinguishability of the incoming photons
causes a loss of phase coherence which will not show up for measurements in the Z basis
but will introduce errors in the X basis. The same would hold for a measurement in the
Y basis. If we were to perform our BB84 protocol by measuring in X and Y instead of X
and Z we would not be able to extract any key since the QBER in both basis would be
above the threshold. The average number of attempts per successful measurement stays
unchanged thus also confirming that non-unit visibility ν just introduces false positives.

5.5 Total improvement over analytical models

To conclude this chapter we now have a look at the cumulative effects of all previously
mentioned sources of noise. Figure 5.5 shows our simulation results for elementary link
and single repeater.

Figure 5.6 shows the secret key rate of a single repeater experiment for the same
parameters and compares them to the analytical model of Guha et al. [46]. For the
elementary link the difference between the analytical model and the simulation is only a
slight decrease in rate due to the increased QBER caused by visibility and multi-photon
emission.
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Figure 5.5: Simulation of the analytical model in [46] with imperfect photon pair source
with p(2) = 0.013, time-dependent memory noise with Tc = 100µs and imperfect photon
indistinguishability / visibility ν = 0.9 for zero (top) and one (bottom) repeater. We see a
drop in rate caused by the increased QBER for the elementary link compared to Fig. 5.1.
For the single repeater we see both and exponential increase in number of attempts (green)
as well as an increase of QBER in both basis leading to a significantly lower rate. For a direct
comparison to the analytical model see Fig 5.6.
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Figure 5.6: Direct comparison of single repeater secret key rate calculated from the analytical
model of Guha et al. (blue) and obtained from our simulation including all additional noise
parameters as in Fig 5.5. It is clear that our simulation provides a inherently larger amount of
information about the physical system. Any meaningful future scalability analysis of atomic
ensemble system should such use our simulation over the analytical model.
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However as soon as we include a single repeater the behavior changes drastically. While
the analytical model predicts the rate to stay constant over more than 200km, our sim-
ulation shows that the rate in fact drops to zero at only ≈ 90km. Already at 20km the
simulated rate is an order of magnitude lower than predicted by the analytical model.

This clearly shows that there is a large gain in information by using our simulation. Any
meaningful scalability analysis of atomic ensemble architectures needs an accurate way of
including such significant sources of noise. Our simulation offers an efficient way for such an
analysis while at the same time offering absolute modularity. This will be demonstrated
in the next chapter, where we compare different setups using different components to
showcase the flexibility of the simulation.



Chapter 6

Comparison of different QIA nodes

6.1 Introduction

Within the Quantum Internet Alliance there are currently a number of experimental ef-
forts concentrating on realizing the hardware needed for a repeater protocol using atomic
ensembles and linear optics. They all fall within the class of multiplexed protocols, but still
use slightly different hardware and setups. There have been significant improvements in
performance over the last years e.g. reported memory efficiencies of over 70% [24], storage
times of the order of seconds [23] or close unit input-output fidelity FIO ≈ 93± 2% of the
retrieved photons [45] Still, all of the groups are working on the individual components and
none of them have a complete repeater experiment as of the time of writing this thesis.
It is therefore extremely interesting to take the parameters of the individual components,
plug them into our simulation and investigate how the actual experimental hardware would
perform in a repeater experiment.
This will be the goal of this chapter. We will start by giving a short overview of the
differences of the individual setups outlining their core differences and then present the
comparison for a number of different scenarios.

6.2 QIA Nodes

Currently four groups within QIA are working on atomic ensemble based quantum re-
peaters:

1. A group at QuTech in Delft lead by Wolfgang Tittel,

2. one at University of Geneva lead by Mikael Afzelius,

3. one at ICFO in Barcelona lead by Hugue de Riedmatten,

4. and a group at Sorbonne University in Paris lead my Julien Laurat.

We will now briefly describe the different protocols and hardware they use before showing
the results of our simulation.

6.2.1 Delft

The group in Delft employs an entanglement scheme based on spectral multiplexing using
AFC quantum memories and SPDC sources. We already described the setup and used
components at the end of Chapter 2.
The benefit of this particular hardware is its multiplexing capability. However the memory
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efficiency is currently still very low. It is important to point out that this is a double-click
protocol (e.g. based on successful detection of two photons at the BSM).

6.2.2 Geneva

In Geneva they use a modified version of the original DLCZ protocol (see section 2.4),
where source and memory are one component, using solid-state ensembles [22]. This novel
approach makes the protocol inherently multi-mode. They create an AFC on the optical
transition of their DLCZ level scheme to employ inhomogeneous dephasing control to
counteract the weak oscillator strength of their rare-earth ions. This would otherwise lead
to very low read-out efficiencies. Using an AFC memory and encoding their spin-excitation
in a Dicke state (2.24) makes their protocol inherently multimode in time. The foundation
for this is that the detection of time-separated Stokes photons leads to distinguishable
spin waves, thus resulting in a temporally multiplexed DLZC scheme [22] Since the
produced photon needs to be converted to telecom wavelength their protocol has large
conversion losses. However, these losses can be more easily compensated by the protocol
since it only depends on a single photon being detected at the BSM (single-click protocol).

6.2.3 Barcelona

In Barcelona they also run a temporally multiplexed DLCZ protocol, however they separate
their source (SPDC) and their memory (AFC) [44]. This way they aim to reach a large
number of total modes by combining temporal, spectral and spatial multiplexing. They are
currently still experimenting with different memory protocols. In addition to the regular
AFC protocol described in section 2.8.2 they also experiment with so called on-demand
AFC memories. This is a slightly modified version where instead of having just two levels
one adds an extra spin level, between the excited and the ground state, to the protocol to
obtain a so called lambda-scheme. This is motivated by the fact that coherence times of
the excited level used for storage are usually quite small [23]. The coherence time of the
spin-level is significantly larger thus allowing for longer storage times.

The memory protocol then works as follows. Just like in the original protocol a comb
is created on the optical transition and the incoming photon is stored in the Dicke state
(2.24) where it starts to dephase. After a time t1 ≥ 0 the whole state is then pumped
to the spin state with a laser pulse. As there is no comb on the spin-level the phase of
the stored state is "frozen" while on this level. When one wants to retrieve the state e.g.
after retrieving the classical communication from the midpoint the state is pumped back
to the excited level. The Dicke state than continues to dephase and rephases after a time
t2 = trephase− t1 at which point the photon is re-emitted from the memory. The total time
on the memory is therefore tstorage = t1 + tspin + t2 = trephase + tspin, where tspin is the
time spent on the spin-level.

This not only allows for longer storage times due to the longer coherence time of the
spin-level but also enables on-demand retrieval of the stored photon. By varying tspin the
storage time can in principle be set to any desired value. This is also very useful when
trying to match temporal modes in neighboring elementary links, as modes can easily
spend different times on the memory and are not simply emitted after a fixed time as in
the original AFC protocol.

In the following comparison we used the regular two-level AFC memory as storage
times of the three-level AFC are still quite low and also to make setups more compara-
ble. However the event-based nature of our simulator makes the simulation of such more
complicated time-dependence very simple and this will certainly be part of our future
research.
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Barcelona has a really flexible setup promising high efficiencies as photons from the
source do not need to be frequency converted and also promises very high multiplexing
capabilities [44]. Just like Geneva this is a single-click protocol.

6.2.4 Paris

The main focus of the Paris group is developing a memory based on electromagnetically-
induced transparency (EIT) [24]. As of now they have no apparent plan of setting up
their own repeater experiment. However it is still interesting to see how their memory
would perform in such an experiment. Since the group does not have a source component
we had to improvise a little and just substituted the photon pair source with the Delft
source as their memory also requires an encoding equivalent to time-bin encoding. [24].
This choice is somehow arbitrary as the EIT memory has quite different restrictions than
an AFC based memory, e.g. due to the extremely narrow bandwith of the EIT memory no
spectral multiplexing is possible. Nonetheless we think that this very interesting component
technology should be investigated and integrating it is a nice way to demonstrate the
modularity and flexibility of our simulation. Another important difference is that the
decay in efficiency over time of the EIT memory is gaussian instead of exponential 1.

6.3 Comparison of elementary links experiments

To compare the different setups we asked each of the four groups to submit three different
sets of parameters:

1. Already measured in the laboratory now (measured 2020).

2. Expected to achieve in the laboratory this year (expected 2020).

3. Projected to achieve three years from now (projected 2023).

The full list of used parameters with a short description of how they are used can be found
in Appendix A. In this section we will start by comparing how the different parameter sets
perform on a single elementary link. We will first investigate the two DLCZ-like single-click
protocols Barcelona (Fig. 6.1) and Geneva (Fig. 6.2) and then present the two double-click
protocols Delft (Fig. 6.3) and Paris (Fig. 6.4) that follow the setup presented in section
2.7.

It is worth pointing out that these are two conceptually quite different approaches
that are differently affected by noise parameters. For the physical implementation refer
to section 2.4, 2.7 and for the implementational differences see Chapter 3. In particular
note the differences between presence-absence (corresponding to single-click protocols) and
time-bin encoding (corresponding to double-click protocols).

Figures 6.1 - 6.4 show nicely that our simulation is able to simulate all four different
repeater architectures. All protocols promise increases in achievable rate of several orders
of magnitude over the next three years. The rates here are given in bits per entanglement
attempt, thus if one would be interested in the rate in bits per second one would have to
multiply this with the actual rate of the source which ranges from 104 to 108 Hz but also
depends on e.g. the pump power of the laser.

It is nice to observe the difference between the single- and double-click protocol. Com-
paring for example the expected and projected performance of the Delft and the Geneva
protocol in Figures 6.3 and 6.2 we see very similar rates from 10−2 to 10−4 and 10−1 to 10−3

for expected and projected respectively. However, this same drops happens over 100km in
1From private correspondence with F. Hoffet from the Paris group.
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Figure 6.1: Barcelona: Secret key rate generated over an elementary link for up to 100km.
The secret key rate is given in bits per entanglement attempt. Within this year the expected
parameters increase the achievable rate by several orders of magnitude. This is caused by
massively increasing the amount of multiplexing and various efficiencies. In three years the
submitted parameters achieve deterministic entanglement generation over more than 100km.
It is worth noting that it is not clear how such optimistic parameters are to be reached in such
a short time.

Figure 6.2: Geneva: Secret key rate generated over an elementary link for up to 100km.
The secret key rate is given in bits per entanglement attempt. Within this year the expected
parameters increase the achievable rate by several orders of magnitude. This is caused by
increasing the amount of multiplexing and greatly improving various efficiencies. Within
three years the rate is projected to increase another order of magnitude.

Figure 6.3: Delft: Secret key rate generated over an elementary link for up to 50km. The
secret key rate is given in bits per entanglement attempt. Within this year the expected
parameters increase the achievable rate by approximately one order of magnitude. This is
caused by slightly increasing the amount of multiplexing and various efficiencies. Within
three years the rate is projected to increase another order of magnitude. It is worth noting
that for the leftmost plot the number of modes is 1 as this group is the only one taking into
account that the midpoint detectors can limit the amount of multiplexing. This is due to the
fact that distinguishing m > 1 spectral modes is experimentally not trivial.
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Figure 6.4: Paris: Secret key rate generated over an elementary link for up to ∼ 25km. The
secret key rate is given in bits per entanglement attempt. As this group does not have their own
photon pair source we used a dummy source with similar parameters as the one in Delft. They
achieve much lower rate than the Delft group as their midpoint detector has severely lower
quality, however all data points still exhibit non-zero rate. Since this is a double-click protocol
this has an especially large effect on the protocol. It would be interesting to investigate the
performance of this memory technology in a more comparable setup.

the Geneva protocol and only 50km in the Delft protocol. This is exactly what we would
expect: While the double-click protocol does not require interferometric stability it does
rely on the correct detection of two photons instead of one. Therefore the double-click
protocol is hit twice as hard by any imperfections in photon transmission and detection
thus leading to the same drop in rate in half the distance compared to the single-click
protocol.

It is worth pointing out that the simulation of the expected or projected parameter sets
of the different groups is not a fair comparison, as the groups submitted vastly different
parameter prognoses. For a detailed list of the submitted parameters see Appendix A,
but as a quick example let us look at the total number of modes the groups expect to
achieve. While the three groups from Delft, Geneva and Paris expect their total number of
modes to grow by roughly one order of magnitude (e.g. from 1 to up to 50 modes in Delft)
over three years, the group in Barcelona expects to improve this number by two orders of
magnitude in just this year alone (from 33 to 1200 modes). It is not clear how such a quick
increase is achievable even when combining spectral, temporal and spatial multiplexing.
Therefore the simulation data here should not be seen as an exact evaluation of which setup
is superior over others in the future but should rather emphasize that our simulation is
able to simulate different protocols with different components and parameters accurately.

6.4 Comparison of single-repeater experiments

After having investigated the performance over elementary links we are now interested in
what happens when we add a repeater to our experiment. The performance of the single
repeater experiment is quite encouraging (especially keeping the high possible repetition
rates of real sources in mind). Remembering Chapter 5 and especially Fig. 5.5 however,
we were much more affected by the additional imperfections in the single repeater setup.
Thus we expect much worse performance. Let us now investigate how real parameters
perform in such an experiment.

Qualitatively representative for the performance of all four setups Fig. 6.5 shows the
secret key rate generated over a single repeater for the projected parameters in Geneva. It
is clear that the accumulated effects of the additional noise parameters in our simulations
drop the secret key rate to zero for all distances. Multi-photon emission of the source
causes quantum bit errors in both basis, while the non-unit visibility ν further increases
the QBER in the X basis as described in 5.4. This pushes the QBER over the threshold
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Figure 6.5: Secret key rate generated over a single repeater for up to 200km in bits per
entanglement attempt. The parameter set shown is from the Geneva group, but qualitatively
all four parameter sets show similar behavior. Rate (left) is 0 for all simulated distances
due to the high QBER (middle) in both basis while the number of attempts (right) grows
exponentially. The rate is zero for all length except for a few statistical outliers resulting in a
small non-zero rate calculated from the minimal QBER values for 5 of the 100 data points.

where the secret key rate drops to zero for all length. Similar behavior can be observed for
all four setups and all submitted parameter sets.

This teaches us two main lessons:

1. The additional noise profoundly influences the performance of the protocol, not al-
lowing for any secret key being transmitted over a single repeater even for optimistic
parameters.

2. Any scalability analysis not taking those noise parameters into account is meaningless
for current physical devices.

Additionally it is worth noting that some points are actually close to crossing the
threshold of producing non-zero rate. Therefore it might be interesting for further research
to actually investigate other figures of merit such as rate of transmission of end-to-end
states with certain fidelity.



Chapter 7

Parameter Exploration

7.1 Introduction

After using our simulation to show the performance of certain sets of parameters for differ-
ent setups we now want to get a glimpse of what we can do with our simulation framework
in the future. An important future application will be the exploration of parameter space
for different architectures in order to give experimentalists valuable input.

As a first step we start by exploring the scaling with number of modes. The results
here will not be very surprising as the scaling is fairly simple, however this is intended as
a proof of concept and an outlook onto future research.

7.2 Exploring number of modes

As a first step for our exploration of parameter space, we investigate the number of modes.
As we already pointed out in Chapter 2 multiplexing is one of the main advantages of
atomic ensemble protocols. Remembering equations (2.20) or (4.4) the probability to
distribute entanglement over an elementary link is

plink = 1− (1− psingle)M . (7.1)

where M is the number of modes.
It is therefore trivial that the optimum number of modes for maximizing the probability
is m→∞. However it is still interesting to look at the scaling of different protocols.

Figure 7.1 confirms the expected scaling very well. It is also worth observing the
significantly better rate of the double-click protocol in the right-most plot.

Figure 7.2 shows another interesting but not surprising detail. If the parameters im-
prove over a certain threshold the secret key rate normalized by the number of modes m
has a peak at relatively low values of m for the given length. Increasing the number of
modes above this point has diminishing returns. This is also expected since the maximum
success probability for the elementary link is of course 1. If we are already extremely close
to this maximum value there is not much to gain by further increasing the number of
modes.

This is a nice proof of concept of how our detailed simulation can produce helpful
information for future experimental efforts. Of course this is only a the simplest of examples
and it will be much more interesting to investigate the impact of other parameters. This
brings us to our final chapter, where we want to point out possible future research enabled
by our simulation.
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Figure 7.1: Average number of attempts per entanglement success for an elementary link of
50km. From left to right we compare the protocols from Barcelona, Geneva and Delft with
current measured parameters. We see similar behavior for all the setups. Increasing the
number of modes up to 100 has the most significant effect of improving the rate by several
orders of magnitudes. Further increasing the number still improves the rate and no real
saturation is observable for up to 500 modes. There is also a significant difference in absolute
rates between the two single-click protocols (Barcelona, Geneva) and the double-click protocol
(Delft).

Figure 7.2: Comparison of secret key rate and secret key rate normalized by the number of
modes for the Barcelona setup with measured parameters (left) and 2023 projected parameters
(right) for an elementary link of length 50km. For the current parameters we see that both
the raw and the normalized secret key rate are monotonously increasing for up to 500 total
modes. For the highly improved, projected parameters we see a qualitatively very different
behavior. After a relatively small amount of modes (< 100 modes) the raw secret key rate
becomes constant. The normalized secret key rate however peaks around ∼ 20 modes and then
monotonously decreases. It indicates there is a parameter threshold after which increasing the
number of modes further does not lead to significant improvements on the possible secret key
rate. This is not unexpected since the maximum plink is of course one and at some point
adding more modes will just not improve this probability further.



Chapter 8

Future research

In the previous chapters we showed how different noise parameters influence the perfor-
mance of repeaters protocols, how the parameters of actual physical setups perform and
demonstrated how our simulation can be used for parameter exploration. It is now time
to wrap up this thesis by looking at possible future research goals enabled by this work.

As briefly mentioned in Chapter 4 it would be interesting to replicate the first exper-
imental results using an atomic ensemble based protocol published this year [63]. This
would give as a first chance to validate our simulation against actual experimental data
which was previously impossible.

We also already mentioned in Chapter 3, that due to the large size of our quantum states
our full simulation is computationally quite heavy. The use of "Magic" significantly speeds
up the simulation, however generating the sampling data still needs the full simulation. We
are currently working on significantly improving the time to generate the sampling data
by keeping track of the full quantum state and all probabilistic events in our simulation
(e.g. which POVM outcome was successful). This way we expect to be able to recreate
the full quantum state of the simulation efficiently.

With this highly optimized simulation we then aim to start exploring parameter space
for different repeater protocols in much greater detail than done in Chapter 7. This way we
will be able to make valuable predictions about the behavior of different protocols in large
scale quantum networks. It will enable us to define lower bounds on component technologies
required for a certain performance, e.g. in the form "parameters x, y of component z must
be improved by i% in order to reach end-to-end fidelity F at rate R".

Additionally we plan to use a greatly reduced set of more abstract parameters in addi-
tion with sophisticated optimization methods, such as genetic algorithms, to run a full op-
timization that will also be able to compare different repeater technologies such as trapped
ions or nitrogen-vacancy centers.

Further optimizations and interesting parameters to include in our simulation model
are a detailed analysis of timing issues such as timing jitters between nodes, detector time
windows and detailed investigation of different memory components such as on-demand
AFC memories as mentioned in 6.2.

We also plan on investigating hybridization, the connection of different repeater tech-
nologies. As atomic ensembles provide high rates but do not allow for complicated quantum
operations such as a complete set of quantum gates it is very interesting to investigating
the possibility of e.g. connecting an atomic ensemble based repeater chain to a nitrogen-
vacancy end node with full processing power.

From this brief discussion it is clear that there are many interesting research topics that
are enabled by our work and we are very excited to further contribute to the development
of a future Quantum Internet.



Appendix A

QIA Parameters

In this section we will first go over the different parameters submitted by the QIA groups
(see Chapter 6) and how they are utilized in our simulation. Then we will list the individual
parameters used to obtain the results in Chapter 6. For a detailed discussion of the
implementation we refer to Chapter 3.

A.1 Source

Let us start our discussion of the parameters with the source component. The relevant
parameters here are:

• Source spectral modes. Number of spectral modes that can be generated by the
source.

• Source spatial modes. Number of spatial modes that can be generated by the
source. Both the number of spectral and spatial modes are used to determine the
total number of modes of the protocol as explained later.

• Mean photon (pair) number. Mean number of photon (pairs) µ emitted by
the source in presence-absence (time-bin) encoding. This number is then used to
determine the emission probabilities p(n) for n photons (photon pairs) and create
the correct quantum state as in Eq. (3.6).

A.2 Memory

The next component is the memory. Here the relevant parameters are:

• Memory spectral modes. Number of spectral modes that the memory can store.

• Memory spatial modes. Number of spatial modes that the memory can store.

• Memory temporal modes. Number of temporal modes that the memory can
store. The number of spectral, spatial and temporal modes are used to determine
the total number of modes of the protocol as explained later.

• Maximum memory efficiency. Maximum retrieval efficiency ηAFC0 of the memory
as described in Eq. (2.26).

• Memory coherence time Tc determining the time-dependence of the memory ef-
ficiency as described in Eq. (2.26).
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A.3 Detectors

We split the detectors in midpoint (as in the midpoint of an elementary link) and swap
detectors as they can be potentially different. However they both have the same set of free
parameters:

• Visibility. Visibility ν of the photons arriving at the detector. Can be different
depending on whether the photons come from the source (midpoint detector) or from
the memories (swap detectors). Used in the effective POVMs of the measurements
as explained in Sec. 3.5.3.

• Detection time window of the detectors.

• Dark count rate of the detectors. This together with the detection time window is
used to calculate the dark count probability pdc used on the detector component.

• Detector efficiency ηd which is used to determine the probability of not detecting
a photon p = 1− ηd.

• Number-resolving. Boolean indicating whether the used detector can resolve pho-
ton number or is merely a threshold detector.

• Detector mode limit. Limit for the number of modes that the detector introduces.
It is e.g. experimentally hard to develop a detector that can resolve an arbitrary
number of spectral modes. This parameter only applies to the midpoint detectors as
the swap operation is performed on a single mode anyway.

More details about the implementation can be found in Section 3.5.3.

A.4 Fiber

The fiber only has attenuation α and initial loss probability as free parameters. The
latter is the probability that the photon created in the source gets lost when put on the fiber
and captures all losses due to e.g. frequency shifting or coupling of the telecom photon.

A.5 General

In this section we describe parameters that are not specific to a component but concern
the entire protocol.

• Encoding. The encoding of the photons used in the protocol. This determines
whether the protocols is single- or double-click.

• Total number of modes. This is determined by taking the minimum value of
modes between memory and source for each type of multiplexing and then upper-
bounding it with the mode limit introduced by the midpoint detectors. For example
for the Delft ’Expected 2020’ parameter set the source can generate 50 spectral modes
while the memory can only hold 26 and the detector limits to 10. Therefore the total
number of modes is set to 10.
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A.6 Parameter values

Here we just give a table with the parameters used to produce the results in Chapter
6. M2020, E2020, P2023 denote the parameter sets Measured 2020, Expected 2020 and
Projected 2023 respectively. MD and SD are short for midpoint and swap detectors. The ∗
denotes that this parameter was not supplied by the group but filled in by us as an educated
guess, while ∗∗ indicates a choice we made from a number of provided parameters.

We will start with the two single-click protocols from Geneva and Barcelona in Table
A.1 and then provide the parameters for the two double-click protocols from Delft and
Paris in Table A.2.

When looking at some of the values (e.g. total number of modes) it is clear that some
groups have been more optimistic than others about their predictions. This makes a fair
comparison difficult and it is worth noting that it is not clear how these parameters can
be reached in such a short time.

It is also worth noting that one important parameter, the source frequency, has
been omitted so far. Since we are only comparing rates in bits per attempt this is not
really relevant. For completeness we would like to mention them anyway. The values
provided are different quantities and thus difficult to compare. Delft provided their rate
of coincidence of 10kHz, which is the rate of having a coincident detection of both the
signal and the idler photon emitted by the source. This is not the source frequency we
would use in our simulation as it already contains a number of other loss parameters such
as detection efficiency and does not include the vacuum component.

Barcelona reports a rate of between 1 and 5 kHz per mW power of the pump laser.
Geneva reports a rate of 20Hz but did not specify what rate that is exactly or how it was
measured. Paris did not submit any number.

This shows us that in order to have a fair comparison of setups there still needs to
be further communication to standardize the provided parameters, especially the source
frequency.
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Parameter Name
[Unit]

Geneva Barcelona
M2020 E2020 P2023 M2020 E2020 P2023

Encoding presence-absence (single-click protocols)
Source spectral modes 1 15 15 15**
Source spatial modes 1 2
Mean photon (pair) number 0.001** 0.01** 0.01** 3e-3** 0.005** 0.05**
Memory spectral modes 1 1 30 100
Memory spatial modes 1 1 3 100
Memory temporal modes 12 50 100 33 40 40
Maximum memory efficiency 0.025 0.1 0.3 0.3 0.4 0.84
Memory coherence time [ns] 1e6 100e6 1e9** 34000 27500 27500
MD visibility 0.9* 0.9 0.95 0.9 0.95 0.95
MD detection time window [ns] 1000 300
MD dark count rate [Hz] 0.1 10
MD detection efficiency 0.6 0.6 0.9 0.1 0.8 0.8
MD number-resolving False
MD mode limit None
SD visibility 0.9* 0.9 0.95 0.9* 0.95* 0.95*
SD detection time window [ns] 1000 300
SD dark count rate [Hz] 0.1 10
SD detection efficiency 0.6 0.6 0.9 0.5 0.5 0.8
SD number resolving False
Fiber attenuation [dB/km] 0.16 0.25 0.25 0.17
Fiber Initial loss probability 0.9 0.8 0.8 0 0 0
Total number of modes 12 50 100 33 1200 1200

Table A.1: Parameters used for the single-click setups from Geneva and Barcelona.

Parameter Name
[Unit]

Delft Paris
M2020 E2020 P2023 M2020 E2020 P2023

Encoding time-bin (double-click protocols)
Source spectral modes 3 50 50 1 1 14
Source spatial modes 1 1 1 14
Mean photon (pair) number 0.05** 0.05*
Memory spectral modes 26 26 50 1
Memory spatial modes 1 1 5 2 2 14
Memory temporal modes 1 1
Maximum memory efficiency 0.005 0.12 0.1 0.9
Memory coherence time [ns] 1e5 5e5 1e6 1e4
MD visibility 0.9* 0.9* 0.95 0.9* 0.9* 0.95*
MD detection time window [ns] 10 10
MD dark count rate [Hz] 10 50
MD detection efficiency 0.75 0.75 0.9 0.5
MD number-resolving False
MD mode limit 1 10 50 None
SD visibility 0.9* 0.9* 0.95 0.9* 0.9* 0.95 *
SD detection time window [ns] 10 10
SD dark count rate [Hz] 10 50
SD detection efficiency 0.75 0.75 0.9 0.5
SD number resolving False
Fiber attenuation [dB/km] 0.2 0.2*
Fiber Initial loss probability 0.03 0.03*
Total number of modes 1 10 50 2 2 14

Table A.2: Parameters used for the double-click setups from Delft and Paris.
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