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SUMMARY

The stationary incompressible Navier—Stokes equations are discretized with a finjte volume method in
curvilinear co-ordinates. The arbitrarily shaped domain is mapped onto a rectangular block, resulting in
a boundary-fitted grid. In order to obtain accurate discretizations of the transformed equations, some
requirements on geometric quantities should be met. The choice of velocity components is also of
importance. Contravariant flux unknowns and pressure p are used as primary unknowns on a staggered
grid arrangement.

The system of discretized equations is solved with a non-linear multigrid algorithm, into which a
smoother, called Symmetric Coupled Gauss—Seidel, is implemented. Cell by cell, all unknowns in the grid
cell are updated by solving four momentum equations and a continuity equation simultaneously. The
solution algorithm shows satisfying average reduction factors for several domains.

1. INTRODUCTION

In order to compute flows in complex geometries, boundary-fitted co-ordinates may be used.
In the development of numerical methods for the incompressible Navier—Stokes equations in
general co-ordinates the following choices have to be made: (i) a staggered or non-staggered
grid; (ii) velocity unknowns: Cartesian, contravariant or other; (iii) the interactive solution
method.

On a non-staggered grid discretizations in general co-ordinates are less complicated than on
‘a staggered grid. With non-staggered grids artificial stabilizing terms are required. Staggered
grids easily lead to inherently stable and accurate discretizations. They have been used in
general co-ordinates in References 1-3, If contravariant velocity unknowns are used,
additional body force terms arise due to grid line curvature. In these terms the so-called
Christoffel symbols occur. These involve the second derivative of the co-ordinate mapping, so
that inaccuracies are to be feared on non-smooth grids. For this reason and because they are
so many of them (18 in three dimensions) many authors avoid the Christoffel symbols by using
Cartesian velocity components. This does not combine easily with staggered grids because
these call for velocity components normal to co-ordinate lines, and this is usually done on non-
staggered grids, which probably explains why this approach is more popular.

0748-8025/92/100721-14%12.00 | Received August 1991
© 1992 by John Wiley & Sons, Ltd. Revised January 1992



722 C. W. OOSTERLEE AND P. WESSELING

If a co-ordinate invariant discretization is formulated in Gibbs’ vector notation, explicit
occurrence of Christoffel symbols is avoided, as in Reference 2. Instead other geometric
quantities appear implicitly, defining approximations to the Christoffel symbols.

The purpose of the present paper is twofold: firstly, to define a co-ordinate-invariant
discretization on a staggered grid in standard tensor notation, showing that good accuracy can
be obtained provided certain rules are followed; secondly, to present a multigrid method for
the efficient solution of the resulting system of non-linear algebraic equations. '

2. DISCRETIZATION IN GENERAL CURVILINEAR CO-ORDINATES

The transformation
x=x(§),x€Q,£(€G (N

maps a computational rectangular block G onto the physical domain Q; x, £ are Cartesian and
boundary-conforming curvilinear co-ordinates, respectively. Covariant base vectors a(,
contravariant base vectors a®, the covariant and contravariant metric tensors gos and g% are
defined as

ax @ _ 08 af — (@), o(8)

—_ a® =25 = A * A(8), =a®.a 2
3" % 8af = A(x) " A(B) 4 2
The determinant of the covariant metric tensor g is denoted by g; Jg equals the Jacobian
of the transformation, given by ‘

Aa) =

J=Jg=an @pram) 3)

Tensor notation proves indispensable for formulating physical conservation laws in general co-
ordinates. An introduction to tensor analysis can be found in References 4—6, for example,
For completeness we summarize some basic tools used.

_ For the covariant derivative of a contravariant tensor of rank one and for the covariant
derivative of a contravariant tensor of rank two it can be shown that:

o« ath {OI} of I d gQGIB {C{} ]
=2 % = +1 % 1o )
S AN I A A T VO
where {y5] represents the Christoffel symbol of the second kind, defined by
a) _ .08 _ 3% 9%x°
{'rﬁ} S T Pl T ®
Application of the divergence theorem to a constant vector field gives
S Q% da = ‘§> Q% dSa=¢° <§> aff® dSa =0 (©6)
Q S S
where dQ is the infinitesimal volume element given by
dQ = Jg d' dg?... dg” )

d being the number of spatial dimensions, and dS, represents the (physical) surface element.
Since ¢® = constant is arbitrary, this leads to the following geometric identity:

§. af ds.=0 ®)
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The governing equations are the incompressible Navier—Stokes equations. Using contravariant
velocity components, the co-ordinate-invariant formulation of the governing equations
becomes

U%=0 9
and

af
T

(pUUP) g+ (gp) g — 1% = pF™ (10)
where p is the fluid density and 7% represents the deviatoric stress tensor given by
7% = u(g*UP, + U2 (1

with u the viscosity coefficient. '
We now turn to the discretization of (9) to (11) in two dimensions. We found that for
accuracy reasons the following requirements should be met:

(i) The geometric identity (8) should be satisfied exactly for all cells.-

(ii) When representing a constant velocity field u on the staggered grid in terms of its
contravariant components U, and recomputing u from U®, the original vector field u
should be recovered exactly.

(iii) Uniform flow fields should satisfy the discrete equations exactly.

The first two requirements can be met if one proceeds as follows. The base vectors ag) are
computed according to '

(=]
=

5xP
afy=220, afy=2%5 (12)

88"’ 3

in the U?- and U'-points, respectively, in the staggered grid. Furthermore,

[ot]

1 1
2 2 2
Jg=alyaly — afyaby, a(”=j§ (aly, ~aly), af ):J_é; (—aly, aly)  (13)

taking averages where required.
Integration of the incompressibility constraint over a pressure cell with centre at (0, 0) gives

g Ue, d = <§> U= ds., (14)
Q N

Discretization of (14) gives
b U ds.= v M08+ vIGL, 08! (15)
s
where ¥ = JgU®. Let u be a constant vector field. Substituting V* = [ga$u® and using (12).
one finds that '
VS 682 + V2|0 88 =0 (16)
so that requirement (i) is satisfied. Requirement (ii) is verified as follows. Let w® be a constant

vector field. Its representation in terms of ¥ on the staggered grid is V* = Jga§w®. Hence,
using (13),

Vi=abyw! —alyw?,  Vi= —ahyw!+ alyw? a7
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Now recompute the Cartesian components #® from (17) in the cell vertices:

W 1y = = [T (@ V) + Ta(ady V) (18)

2g
where I, indicates summation over grid points (1,0) and (1, 2), and Z, indicates summation
over (0, 1) and (2, 1). Substitution of (17) in (18), and evaluation of Jg according to (13) results
in ‘

S w1 =W (19)

t

We also have (19) in cell centres (0, 0). Hence, requirement (ii) is satisfied. If U® is used as
primary unknown instead of V%, (19) would not hold exactly, which is why the use of V* is
to be preferred. This is confirmed by numerical experiments on the Navier—Stokes equations.
As a preparation for the discretization of the momentum equations we discuss the
discretization of a general conservation law of the form

T =1 (20)

This equation is to be integrated over finite volumes. On the staggered grid -used here,
integration takes place over cells with vertices in U*-points and centre in a U Lpoint for a =1,
and vice versa for o = 2. Taking a cell with centre at (1, 0) as an example, using equation (4)
and partial integration gives

S T,J;;BdQ=S Mdg‘dguj {I}T"ﬂ\/gdél %
r] Q o (Y8

agP
= (JgT" | 8:8 882+ (g7 | 111 88
+ (Jg{ylﬁ} 7| 1,0) 8¢t 582 Q1)

With Tf",ifi from (10) this is the discretization used for the momentum equations. It is found that
the variable V* = JgU, appears naturally in many places in (21).

In order to obtain equations suitable for multigrid solution some form of upwind
discretization has to be used for the convection terms. In Cartesian co-ordinate systems the so-
called hybrid scheme’ is popular. For the convection terms a central difference scheme (CDS)
is used if the mesh Reynolds number is smaller than 2, and a first-order upwind scheme (UDS)
if it exceeds 2. For further discussion of the hybrid scheme, see Reference 8. In general co-
ordinates it is not at all trivial how a hybrid scheme should be formulated and how the mesh -
Reynolds number should be defined, because of the occurrence of source terms and mixed
derivatives in the viscous stress term. The criterion for switching between CDS and UDS will
be generalized to general co-ordinates by requiring that the sum of coefficients arising from
the viscous terms and the flux part (i.e. the part not involving Christoffel symbols) of the
convection terms multiplying ¥ in neighbouring points should be non-positive. This implies
that a suitable definition of the mesh Reynolds number Re%/ is that it is the ratio of the
absolute magnitudes of the viscous term and the flux part of the convective term, discretized
with a central scheme in point (i, /). If Re'*/) > 1, UDS is used; if Ret/) < 1, CDS is used.
Unlike the original hybrid scheme the contribution of the viscous stress tensor will be kept for
all mesh Reynolds numbers. The volume integral remaining in the convective terms in general
co-ordinates is discretized with a central scheme.
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Convergence problems for the multigrid method are avoided by using a ‘smooth’ switch
from central to upwind discretization:

CONV.TERM = (1 — o!*/y CENTRAL + ot"/) UPWIND ‘ 22)
where ol"/) = a(Re® /) may be defined by
‘ Reli) < 09 ;0 =0
0:9< Ret ) <11 ;a(i-j) =5 Rellh/) — 4.5 (23)
Re) > 1-1 ;o0 =1

The total number of variables linked together in a momentum equation is 19.

On a non-smooth grid, discretizing all Christoffe] symbols according to (5) was found to
cause a non-physical pressure distribution. This is avoided by eliminating the Christoffel
symbols from the pressure term in (10) and (21) with the relation

o,
Jg{a]gﬁ"/: _a(«jgé; ﬁ) 24
By 0t

Figure | gives an example of a Poiseuille flow on an irregular grid.

The grid shown in (a), (b) gives the pressure distribution, where the Christoffel symbols in
the pressure term are kept and discretized according to (5). The pressure distribution is not
correct. Figure 1(c) shows the correct distribution obtained by using (24).

It remains to verify requirement (iii). Imposing boundary conditions such that the exact
solution is a uniform flow in an arbitrary direction on the grids of Figure 9 and solving the
discrete equations numerically results in the correct solution, showing empirically that (iii) is
satisfied. However, when the mapping is non-differentiable, this is not the case. This can
perhaps be remedied, but we will not pursue this further here. The sensitivity of the accuracy
to details of the implementation of the geometric quantities in the case of non-differentiable

(a)

SEEranul

©

Figure 1. A Poiseuille flow, Re = 100: (a) the 11 x 13-grid; (b) the non-physical pressure using (5); (¢) the physical
pressure using (24)
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co-ordinate mappings is illustrated by the following example. Straightforward approximation
of the viscous stress leads to terms like

=g U+ g?UD) 25)
TIZ____M(gllU,%_’_ gZZU,é) (26)
2 =2u(g"?U 3+ g2U3) 27

By using the following identity:

gt (1Y (1) s A (1), (1) s
asl‘{w}g *La}g “2<{11}g +{12}g} @)

(a) ) '

y (@

Figure 2. Flow through a bend-shaped channel: (a) the non-smooth (16 x 40) grid; (b) sgrgamlines; (c) the non-physical
pressure distribution discretizing (25)—(27); (d) the pressure distribution discretizing (26), (29) and (30)
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Vand 7% can be rewritten as

S 11372 0 _V_l_) 12__3_(_1_/_]> VAol n{!

+2u*[(g ) ot <ng2 TE e Jg +Jg (g {12]+g [22})] @

2y o 22932 0 Vz) 12__3__<l/_2> Vil (2 2{ 2 :'
e[ 5 () + () < () ()] oo

Both versions are applied to a test problem, a flow through a bend, where the physical domain
~ is a non-smooth grid. Figure 2 shows that the second OpthIl is more accurate, so this version
is used in the sequel.

3. THE MULTIGRID ALGORITHM

The standard non-linear multigrid algorithm is used in the form bresented in Reference 9. A
non-recursive well structured version (requiring only one GOTOQO statement in Fortran) is
presented in References 10 and 11. Iteration should start with nested iteration for best
efficiency, but this has not yet been implemented.

The smoothing method used here is the symmetric coupled Gauss—Seidel method (SCGS)
with underrelaxation introduced in Reference 12. The variables are updated collectively cell by
cell. Five discretized equations are solved simultaneously for an interior cell. Corrections are
calculated and added to a current solution.

Prolongation and restriction operators are more or less dictated by the staggered grid
arrangement. Prolongation operators are derived for all variables using bilinear interpolation.

The restricted coarse grid fluxes V* are defined to be the mean of their two neighbouring
fine grid fluxes. Coarse grid pressures are defined to be the mean of the four neighbouring fine
grid pressures. In evaluating the coarse grid right-hand-side area weighting is used for the fine
grid residuals, as follows:

)k~ 1 1)k ( Dk '
rl(j) 1/8(r§i)—2,21+"2:) 2, zj—1+"f2:)2,+r51)2j D+ (31)
1k
/4("gz)~1 2J+"24—1 21 (32)
Dk—1 Nk @k P
"” —1/8("(2:)21 2+ 3,2~ 2+rgl)2j+rgl)-—12,j)+ (33)
Dk
1/4(r§/)2j—1 +f(z,)-1 -1 (34)
W~ | Nk 1k
VAR VS AR o VARV v z, +rid-0) (35)
E
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f
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Figure 3. Definition of grid point numbering. The coarse grid cell shown is the union of the four ﬁne grid cells shown.
The grids are divided into triads with gridpoint indices: .

A=B=C=(,j), D=(+1,/), E=(i,j+1)
and
A=B=C=(Q}2j),D=E=F=Q2i,2j-1)
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The grid point numbering is given in Figure 3. The coarse grid is constructed by removing the
even cell vertices from the next finer grid, and the geometric quantities are calculated as was
done on the finest grid. Therefore requirement (i) derived in Section 2 is satisfied also on a
coarse grid.

4. TEST PROBLEMS AND SOME RESULTS

The first test problem investigated is the driven cavity flow. Average reduction factors r are

compared, defined as
es 1720

l| res [lo

i.e. the h-norm of the residual after 20 iterations divided by the h-norm of the starting
residual. For the driven cavity flow, r is computed for a skewed cavity (i.e. a parallelogram)
and a unit rectangular cavity, for several Reynolds numbers (Re). The starting vector is the
zero solution on the finest grid. The number of presmoothing iterations npre is 1, the number
of postsmoothing iterations npost is 1, the number of coarse grid relaxation iterations ncrs is
10. The results given are reduction factors for the W-cycle, which showed the best reduction
factors, followed by the F and V cycle. As in Reference 13 different underrelaxation
parameters oy in the SCGS smoother are needed for different Reynolds numbers, For high Re
we need to choose oy different from Reference 13, probably because the stress term is not
neglected in our hybrid scheme, For low Re (Re < 400) the SCGS smoother is lexicographical
(i.e. sweeping along horizontal lines); for high Re the lexicographical sweep is followed by a
sweep along vertical lines as in Reference 13. Tables I-IV give the reduction factors. In Tables
III and IV an unusual improvement of the average reduction factors is observed when the grid
is refined. This improvement is due to the fact that a hybrid scheme is used for the convective

Table I. Driven cavity (Re = 1), lexicographical SCGS,
npre = npost = 1, W-cycle

Re =1 .

o =07 Levels Grid r, skewed r, square
4 : 16 X 16 0-331 0-288
5 32 %32 0+349 0-268
6 64 x 64 0-360 0-316

Table II. Driven cavity (Re = 100), lexicographical SCGS,
npre = npost = 1, W-cycle

Re = 100

ar=07 Levels Grid r, skewed r, square
4 16 x 16 0-390 0-328
5 32x32 0+353 0-315
6 64 x 64 0-345 0-310
7

128 % 128 0-338 0-313
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Table II1. Driven cavity (Re = 400), alternating SCGS,
npre = npost = 1, W-cycle

Re =400

oar=04 Levels Grid r, skewed r, square
4 16 16 0:-502 ' 0454
5 32x32 0-445 0-446
6 64 % 64 0-463 0-398
7 128 x 128 0-310 0-310

Table IV. Driven cavity (Re = 1000), alternating SCGS,
npre = npost = 1, W-cycle

Re = 1000

ar=03 Levels Grid r, skewed r, square
4 16 x 16 0-508 0-516
5 32x32 0:619 0-565
6 64 X 64 0-646 0-564
7 128 x 128 0-710 0-517

terms, so the central difference scheme will be applied in large parts of the domain when the
grid is very fine. This improves the convergence rate. Figures 4—7 show the streamlines and
the pressure contours for the skewed cavity (skew angle 63°), obtained on the 64 x 64 grid. It
looks as if r is bounded well away from 1 independent of the number of levels, except for
Re = 1000; this effect is not there when the cavity is closer to a square. With a skew angle of
79°, r=0-526 on a 128 x 128 grid. The following test problems show the potentialities of the
discretization method at the present stage of development. A flow at Jow Reynolds number
through a straight pipe (equidistant grid, square cells), an L-shaped pipe and a nozzle flow are
considered. Parabolic velocity profiles are prescribed at in- and outflow. This is unphysical of

Figure 4, Streamlines and pressure contours for the skewed (under 63 degrees) driven cavity, Re = 1,64 x 64 grid
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&/

Figure 5. Streamlines and pressure contours for the skewed driven cavity, Re = 100, 64 X 64 grid

i

Figure 7. Streamlines and pressure contours for the skewed driven cavity, Re = 1000, 64 x 64 grid
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Figure 8(a). Flow through an L-shaped pipe: (1) the 8 x 20 grid, (2) flow pattern, (3) streamlines, (4) pressure

©)

—

(2)

7 o e am e

|

(,

gaasannzs o L
T
gENsRessatignsss —
\\\\\\\\\ THTR =
\\\\\\ LHHR ~
LT T T
TR
HUHTH T T
LT T H

gusyalatatas’
HLH T H AN

MU
cpiangiyserel’y’

pignzaisgley s TT
gl gl gl gBylvgy rrrsssa; 1
LT W H A8 L2227

Rgigigiglse Y ITREN
MM o255

Z

L\u x;\uL ZLZIAZL LT T

MWz 22 7277777
WUz v v o w

qFq VAV A A
i L7 A A7 0 7 7 2 20

U

I

<

va

(b)

(4)

Figure 8(b). Flow through an L-shaped pipe:'(I) the 16 x 40 grid, (2) flow pattern, (3) streamlines, (4) pressure
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Figure 9(a). Flow through a nozzle: (1) the 8 x 20 grid, (2) flow pattern, (3) streamlines, (4) pressure
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Figure 9(b). Flow through a nozzle: (1) the 16 x 40 grid, (2) flow pattern, (3) streamlines, (4) pressure

Table V. Channel flows at Re = 1, lexicographical SCGS,
npre = npost = 1, W-cycle

Levels Grid r (pipe) r (L-shape) r (nozzle)
1=sg 4% 10 0-835 0848 0-843
2 4% 10 0-254 0-376 0:329
3 8x20 0-281 0-385 0-376
4 16 x 40 0-301 0-437 0-468
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course, but of no concern here. Average reduction factors r are compared for these geometries
for several grids. Table V shows the reduction factors for the W-cycle. The reduction factors
for the other cycles did not differ much. The details for the MG-algorithm are: npre =1,
npost =1, ncrs =10, s¢ =1, Re=1, lexicographical SCGS, oy = 0-7. Figures 8 and 9 show
grids, flow patterns, streamlines and pressure contours for the L-shape and nozzle geometry.
It seems that for the nozzle reduction factors are not level-independent, but Figure 9 shows
that the 16 x 40 grid is much more non-uniform than the 8 x 20 grid, which may be of greater
consequence for r than the number of levels.

5., CONCLUSIONS

An invariant formulation of the incompressible Navier—Stokes equations has been presented
in which Christoffel symbols occur. The discretization of the invariant formulation shows good
results for many geometries and fairly non-uniform grids. A standard multigrid solution
method is found to work well. A level-independent convergence rate has been found for the
test problems. Reduction factors for rectangular and some more complex geometries do not
seem to differ much. ‘

The code is robust, especially for low Reynolds number flows. Then it is insensitive to large
variations of the relaxation parameters. The convergence rate slows down with larger
relaxation parameters for higher Reynolds numbers (> 400).

Further development of the code will include nested iteration and a line smoother to cope
with stretched cells.
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