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Abstract—Visual counting is an important task in computer
vision with broad applications in areas such as crowd monitoring,
agriculture, and environmental analysis. While deep learning
has significantly advanced this field by enabling models to
learn robust feature representations, deep learning approaches
suffer from sensitivity to data imbalances, which occur in the
distribution of object counts across counting datasets as a
result of annotation effort. Most state-of-the-art counting models,
categorized into clustering-, detection-, regression-, and density
estimation-based methods, are built upon Convolutional Neural
Networks (CNNs) and Transformers, both of which are known to
be susceptible to imbalances in the training data. This study intro-
duces a hybrid model that incorporates a programmatically guar-
anteed counting mechanism using the RASP language [1] and the
Tracr [2] compiler, enabling the construction of Transformer-
based models that can reliably execute predefined tasks, such as
counting. By combining this exact counting mechanism with a
trainable embedding module, we present a model that is capable
of learning to count various tokens, even under significant data
imbalance. We validate our approach on a synthetic, imbalanced
dataset and compare its performance, training time, and data
efficiency against standard CNN- and Transformer-based models.
Results suggest that our method achieves strong generalization
across the full spectrum of object counts while requiring less
training data, highlighting the potential for this architecture to
be further investigated and adapted to be used for robust and
efficient visual counting.

Index Terms—RASP, Tracr, Counting, Transformer, Learning,
Compiling

I. INTRODUCTION

Visual counting is a rapidly growing research field with
applications in crowd monitoring and control, environmental
monitoring, and the agricultural sector [3]. The field studies
methods to automate the counting of objects in images or count
moving objects and repetitive actions in videos, a task that
changed significantly with the advancements in deep learn-
ing. Before the widespread use of deep learning, researchers
used handcrafted features to detect and count objects of
interest while currently most state-of-the-art implementations
use some form of deep learning model to learn the most
optimal features or transformation. Difficulties in the field of
visual counting that deep learning helped solve include the
recognition of objects under different poses, varying lighting
conditions and image quality [4]–[6] as well as the struggle
with occluded objects, dense clusters and varying object sizes
[7], [8].

Current deep learning based visual counting models use
different techniques to estimate count, which can be used to
subdivide these models into into four different categories [9]:

• clustering-based counting
• detection-based counting
• regression-based counting
• density estimation-based counting

Each technique has different benefits and applications, for
example counting using clustering can operate on unseen data
by clustering similar patches [10], whereas counting using
regression and density estimation have applications in crowd
counting scenarios due to the ability to estimate the count of
large occluded clusters of objects, as can be seen in Figure
1. Although these techniques have different architectures and
excel in different applications, they are all build upon a set of
Convolutional Neural Network (CNN) and Transformer [11]
layers.

These visual counting models require a lot of data to be
trained, and this data is very costly to annotate. In this field,
the four most common ways of annotation are:

• segmentation annotation
• bounding box annotation
• center point/dot annotation
• total count annotation

These annotations are arranged in descending order of effort
required of human annotators to generate them. While detailed
segmentation annotation masks provide the most information
and can be transformed into the other types of annotation, they
are labor-intensive to create. Simpler annotation techniques,
such as total count labels, require less effort but lack spatial
information, resulting in limited interpretability regarding what
specific features a model learns to base its decision on during
training to estimate the final count [13]. This highlights the
trade-off between annotation effort and model performance
present in this field.

Therefore, most datasets in the field present center point
annotations, or other, more informative annotation types. This
serves to provide models with spatial information in addition
to the total count. Most publicly available datasets for counting
tasks focus primarily on crowd counting, due to the significant
amount of research dedicated to this domain. Notable crowd
counting datasets include ShanghaiTech Parts A and B [14],
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Fig. 1. Illustration of different visual counting techniques, from left to right: clustering based, detection based, regression based and density estimation based
counting [9], [12].

UCF CC 50 [15], UCF QNRF [16], and WorldExpo’10 [17].
Therefore, in recent years, more counting datasets focused on
more general object counting were introduced, such as RSOC
[18], DOTA [19], CARPK [20], and FSC-147 [21].

Due to the increased annotation effort required for images
with higher object counts, datasets often contain fewer in-
stances with high counts. This results in a distribution where
both low and high object counts are underrepresented, as is
shown in Figure 2. The figure illustrates this distribution of
counts for crowd counting datasets such as ShanghaiTech Parts
A and B [14], UCF CC 50 [15], and the general-purpose
counting dataset FSC-147 [21]. The underrepresentation of
low-count images arises because counting datasets are de-
signed to differ from object classification datasets by including
multiple instances of objects per image. For instance, the FSC-
147 counting dataset was developed by Ranjan et al. [21] to
address the limitations of datasets like COCO [22], which were
deemed unsuitable for counting tasks due to an insufficient
number of object instances per image. On the other hand,
high-count images are underrepresented because annotating
them is labor-intensive, requiring significant effort to label
each instance accurately.

Deep learning models, including those based on Convolu-
tional Neural Networks (CNNs) and Transformers, are sensi-
tive to imbalances in training data distributions [23]–[25]. As
discussed, since most visual counting models rely on CNNs
and Transformers, this issue also arises in visual counting
models as well. This sensitivity can lead to performance degra-
dation, particularly when models encounter test samples with
object counts that exceed those observed during training. For
instance, Hobley et al. (2022) [26] observed a significant drop
in performance of their class-agnostic counting model when
evaluated on other datasets containing high count images. They
attributed this decline to the presence of out-of-distribution
samples, noting that 70% of the test images had more instances
than the maximum count seen during training. This shows that
this count imbalance naturally present in the datasets poses
challenges for training robust counting models, as they may
not generalize well across the full spectrum of object counts.

In this work, we propose a method that is able to truly count,
and is therefore unaffected by imbalances in the dataset. For
this we leverage the properties of RASP [1] and Tracr [2].
These frameworks allow us calculate transformer weights that,
when implemented into a transformer, perform the exact task
that the corresponding program written in the RASP language

is designed to do. Since we encode a counting algorithm,
we can be sure that the model is able to count. We propose
a method that combines a learned embedding model with a
RASP-based counting model, creating a hybrid end-to-end
model that is guaranteed to count. Therefore, we hypothesize
that this model is able to generalize well across the full
spectrum of object counts even when trained on an imbalanced
dataset. Moreover, since most of the model is precomputed we
hypothesize that this model improves upon data efficiency and
training time compared to conventional baseline models.

To test these hypotheses, we create a simplified imbalanced
dataset. We train our model on this dataset and compare
its performance to baseline models that consist of CNN and
Transformer backbones. We compare the training time of these
models and vary the size of the simplified dataset to test data
efficiency. The final models are evaluated on the full count
range present in the original imbalanced dataset, in order to
verify whether they are truly able to count and deal with
imbalanced training data. Our contributions are summarized
by a model that is expected to:

• generalize effectively despite significant data imbal-
ance

• reduce the amount of training data required
• decrease training time
In section II, we review Related Work, where we explore

RASP and Tracr. Moreover, we also expand our research to
the field of visual counting. In section III we outline the
Methodology section. We describe the architecture of the
models we propose, the datasets used to test and the design
of the training loop. In the Experiments section (IV), we
elaborate on the designed experiments and their outcome. In
the Conclusion section (V), we reflect on the results of these
experiments and discuss the most important findings, after
which we conclude this paper and give some recommendations
on future work.

II. RELATED WORK

This section reviews the concepts and frameworks relevant
to our work. We first elaborate on the RASP and Tracr frame-
works, highlighting their potential for creating interpretable
and robust Transformer models. We then discuss the state-of-
the-art visual counting methods, emphasizing their limitations
concerning dataset imbalances and the potential benefits of
integrating RASP-based solutions.
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Fig. 2. The imbalance in distribution of counts shown for the crowd counting datasets ShanghaiTech Parts A and B [14] (top) and UCF CC 50 [15] (bottom
left), and for the general purpose counting dataset FSC-147 [21] (bottom right). The long tail of the FSC-147 is shown on a log scale for demonstration
purposes.

A. RASP

The Restricted Access Sequence Processing (RASP) lan-
guage, introduced by Weiss et al. [1], provides a programming
framework designed to model and understand the computa-
tional capabilities of Transformer models [11]. Whereas recur-
rent neural networks (RNNs) have an abstract computational
model in the form of finite state machines used for analysis,
transformers do not. RASP addressed this gap by translating
the fundamental operations of Transformer architectures, the
attention mechanisms and feed-forward layers, into a set of
three primitive operations. Expressing programs and solutions
in terms of these primitives allows researchers to better un-
derstand and analyze transformer computations.

Weiss et al (2021) [1] demonstrate the utility of RASP by
creating programs for various algorithmic tasks, such as com-
puting histograms, sorting tokens, and the reversal of strings.
By formulating these tasks as RASP programs, researchers
can predict the maximum number of attention heads and
the minimum number of layers required for a transformer to
perform these tasks, thereby improving interpretability.

Furthermore, the authors show that it is possible for a
transformer to learn a solution proposed by the RASP frame-
work. They introduce an additional loss term, encouraging
the transformer to learn the attention patterns created by the
compiled RASP program. This allows for the training of inter-
pretable transformer models where the underlying operations
are known and can be analyzed and understood. By providing
a means to “compile” high-level algorithmic operations into

transformer models, RASP enables the development of more
transparent and explainable AI systems.

In summary, the introduction of RASP presents a significant
advancement in the interpretability and theoretical understand-
ing of transformer models. By mapping transformer operations
to simple primitives, Weiss et al (2021) [1] offer a powerful
tool for analyzing existing models as well as designing new
architectures with predictable and interpretable behavior.

B. Tracr
Building on RASP, Lindner et al. (2023) [2] proposes Tracr,

a compiler that is capable of translating high-level RASP
programs directly into transformer models. This compiler
enables the construction of transformer models with known
functionality based on RASP programs, and therefore im-
prove the study of interpretability. Tracr compiled programs
provide a ground truth functionality against which existing
interpretability methods can be evaluated.

Compared to RASP, Tracr actually compiles the primitives
to form a transformer model. They do this by ordering the
RASP primitives from the program into a computational graph
structure, after which they translate the nodes to corresponding
attention heads and feed forward layers. The final output is a
transformer model, implemented in the Haiku [27] framework.

By having a known functionality, these models serve as
valuable tools for examining phenomena like superposition
in transformers. Superposition is a process during which
transformers can compress a large number of sparse features
into fewer dimensions. By compressing Tracr compiled models
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using gradient descent, the authors observe that compressed
models tend to drop unnecessary features and represent less
important features in superposition. However, by analyzing the
encodings, the authors also note that these compressed models
probably do not stay faithful to the originally intended RASP
programs.

Furthermore, the ability of Tracr to generate models with
known functionality provides a method to evaluate inter-
pretability methods directly. Since regular tasks learned by
transformers are often unknown, it is difficult to determine
whether the interpretation is correct or accurate. With Tracr,
researchers can compare the known functionality of compiled
models to the explanations produced by interpretability tools,
and thereby asses their accuracy and reliability.

In summary, Tracr offers a new approach based on RASP to
study transformer interpretability by enabling the creation of
models with known, human-readable functionality. This capa-
bility is not only used in understanding complex transformer
behavior but it also provides a ground truth for evaluating the
effectiveness of interpretability methods.

C. Visual Counting

Visual counting methods, as discussed previously, are
typically subdivided into four categories: clustering-based,
detection-based, regression-based, and density estimation-
based methods. While these methods differ in their specifics
and practical applications, they uniformly rely on deep learn-
ing architectures, predominantly Convolutional Neural Net-
works (CNNs) and Transformers, to extract informative fea-
tures and predict the final counts [3], [9].

Despite numerous advancements after the introduction of
deep learning, visual counting methods face challenges related
to dataset imbalance. As illustrated in Figure 2, publicly
available counting datasets such as ShanghaiTech A and B
[14], UCF CC 50 [15], and FSC-147 [21] show that both
extremes of object counts are underrepresented. Lower count
images are less frequent due to counting datasets having
multiple-instance images, while higher count images are un-
derrepresented due to the annotation effort required to create
them [13] [21]. This imbalance impacts the generalization
ability of models, particularly in scenarios where test data
contains counts significantly outside the distribution observed
during training [26].

To address these limitations, we propose a hybrid counting
model that leverages the strengths of RASP and Tracr. Our
proposed architecture integrates an exact counting mechanism
derived from a RASP program compiled using Tracr into a
Transformer model. Since this counting mechanism is exact,
this model is truly able to count, and is therefore expected
to be able to generalize well while being trained on imbal-
anced data. To improve the practical utility, we extend this
compiled Transformer with a learnable embedding module to
pre-process the input, enabling it to count a diverse set of
tokens from its vocabulary effectively. In this way, our model
is expected to generalize well to imbalanced data. Since most
of the model is precomputed, we also expect our model to

improve of data efficiency and training time, compared to
regular CNN and Transformer based models.

To conclude, RASP and Tracr are tools that can be used
to compile algorithmic logic and programs into transformer
weights without the need for gradient-based training. By
integrating RASP and Tracr into visual counting, we expect to
address the limitations posed by dataset imbalance, by creating
a model that generalizes well to imbalanced data. Specifically,
our contributions are characterized by a model that is expected
to:

• generalize effectively despite significant data imbal-
ance

• reduce the amount of training data required
• decrease training time
The following sections provide insights into our proposed

method, dataset preparation, and experimental design.

III. METHOD

The RASP source code created by Weiss et al. [1] provides
an example for a counting function. This function can be found
below in Listing 1. However, as can be seen, this example code
has a limitation as it requires the token to be counted to be
specified at compile time. As a result, this token is permanently
embedded into the compiled Transformer weights, restricting
flexibility after model creation.

Listing 1. A default RASP function to count occurrences of a predefined
token in a sequence.

1 def make_count(sop, token):
2 """Returns the count of ‘token‘ in ‘

sop‘.
3

4 The output sequence contains this
count in each position.

5

6 Example usage:
7 count = make_count(tokens, "a")
8 count(["a", "a", "a", "b", "b", "c

"])
9 >> [3, 3, 3, 3, 3, 3]

10 count(["c", "a", "b", "c"])
11 >> [1, 1, 1, 1]
12

13 Args:
14 sop: Sop to count tokens in.
15 token: Token to count.
16 """
17 return rasp.SelectorWidth(rasp.Select

(sop, sop, lambda k, q: k == token
)).named(f"count_{token}")

To overcome this limitation, we develop a novel RASP-
based counting method capable of counting variable tokens
determined at runtime. The corresponding RASP program is
presented in Listing 2. Unlike the default RASP function,
this custom implementation counts occurrences of the first
token appearing in the input sequence. Our approach leverages
the three fundamental RASP primitives, Select, SelectorWidth,
and Aggregate, which are sufficient to represent essential
computational patterns within Transformer architectures [1].
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Specifically, our program first identifies and extracts the token
at the initial position, and subsequently counts its occurrences.
This counting operation is achieved by generating a boolean
array indicating token equality at each position between the
token to be counted and the input sequence. After summing
this boolean array and broadcasting the resulting count to
uniformly replace the input sequence, the sequence is returned,
effectively counting the first token occurring in the sequence
(Line 8, Listing 2). This novel formulation is unique compared
to existing RASP examples, which all require static compile-
time tokens to perform tasks, such as count, shift tokens or
compute token frequencies, and thus lack dynamic flexibility.
Consequently, the top half of our hybrid model should learn to
select and insert the appropriate counting token at runtime at
the initial position, enabling robust counting across any token
defined in the model’s vocabulary.

Listing 2. A custom RASP function that counts the occurrences of the first
token in the total sequence.

1 def count_agnostic_first(self):
2 """Counts the first token in the

sequence
3 """
4 ALL_TRUE = rasp.Select(rasp.tokens,

rasp.tokens, rasp.Comparison.
TRUE)

5 IDX = rasp.SelectorWidth(ALL_TRUE)
* 0

6 SELECT_FIRST = rasp.Select(rasp.
indices, IDX, rasp.Comparison.EQ
)

7 FIRST_TOK = rasp.Aggregate(
SELECT_FIRST, rasp.tokens)

8 COUNT = rasp.SelectorWidth(rasp.
Select(rasp.tokens, FIRST_TOK,
rasp.Comparison.EQ))

9 return COUNT

The developed RASP program (Listing 2) is compiled into
a Transformer model using the Tracr framework, producing an
model using the Haiku library [27], which relies on the JAX
framework for computational performance [28]. Despite JAX’s
efficiency, we converted our compiled models into PyTorch
due to its broader adoption, established community support,
and widespread academic usage. The conversion procedure
required modifying the Tracr source code and implementing
additional utilities to facilitate translation between Haiku and
PyTorch model definitions. These modifications can be found
in our source code repository 1.

The final PyTorch model, as presented in Table I, consists
of four distinct Transformer blocks. Notably, the compiled
RASP model inherently includes an Argmax operation, a non-
differentiable step in the final unembedding layer. For training
purposes, we removed this Argmax operation and instead
utilized the raw logits directly in the loss calculation against
the count supervisory signal. However, as the initial compiled
model includes a fixed embedding layer, it does not permit
gradient updates upstream of this layer, necessary for end-

1https://github.com/roverwater/Algorithmic-Counting

to-end training. To enable effective training, we inserted a
learnable classifier module between the frozen embedding and
the compiled Transformer, operating on the embeddings of the
input tokens.

TABLE I
ARCHITECTURE OF OUR RASP BASED MODEL, TRANSLATED INTO

PYTORCH

Module Description

Embedding Module
pos_embed Embedding(39, 132)
token_embed Embedding(7, 132)

Transformer Module
ATT_Module (x4)

Softmax Softmax(dim=-1)
Query Matrix Linear(132, 39)
Key Matrix Linear(132, 39)
Value Matrix Linear(132, 39)
Linear Matrix Linear(39, 132)

MLP_Module (x4)
Linear 1 Linear(132, 78)
Activation ReLU()
Linear 2 Linear(78, 132)

Unembedding Module
unembed Linear(132, 39, bias=False)

We conducted various experiments to design an effective
classifier. Initially, a simple fully-connected neural network
was employed between the embedding and Transformer mod-
ules. However, this proved inadequate due to convergence
issues. Subsequently, we tested inserting an additional Trans-
former block, mirroring the downstream Transformer archi-
tecture. This modification achieved perfect in-distribution ac-
curacy but exhibited poor out-of-distribution generalization to
sequences of different lengths. Our objective was to teach the
transformer to only replace the embedding of first token, in-
herently ensuring sequence-length-independent generalization.
Consequently, this approach was discarded because it did not
achieve this objective and intended behavior.

Further attempts utilized classifiers operating explicitly
on a single token embedding (Listing 3). Although both
transformer-based and linear classifiers succeeded in isolated
testing scenarios with direct supervision on the output of the
embeddings classifier layer, their performance significantly de-
teriorated when integrated into the full model. We hypothesize
that there are two reasons for this behavior:

• The shear challenge of precisely learning highly sparse
token embeddings positioned early within the computa-
tional graph, requiring exact matches downstream.

• Insufficient gradient signals propagating from high-level
count supervision through multiple Transformer layers,
complicating the accurate recovery of sparse embeddings.

Although insightful, these hypotheses remain speculative,
since we did not further verify these hypotheses.

Listing 3. Initial classifier design, operating on token level.
1 def forward(self, x):
2 token = x[:, 1, :]
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3 x_out = x.clone()
4 x_out[:, 1, :] += self.classifier(

token) # += or =
5 return x_out

Ultimately, we adopted an alternative classifier design with a
small number of learnable parameters leveraging the Gumbel-
Softmax distribution [29] to approximate differentiable token
selection (Listing 4). Specifically, the classifier maintains
a learnable logit vector (line 1), which is passed through
the Gumbel-Softmax function to probabilistically select the
token to insert (line 7 - 13). This token is taken from the
matrix containing the token embeddings, representing the
vocabulary originally computed while compiling the RASP
code using Tracr. Positional embeddings were decoupled from
token embeddings, as previous experiments showed improper
positional encoding as a major factor hindering performance
(line 15). Additionally, a temperature annealing schedule was
implemented to be used during training to initially encourage
exploration before converging to a stable token selection. In
the final experiments to reduce variability the temperature is
kept at an constant value.

Listing 4. Design of the final classifier used, using Gumbel Softmax to predict
token.

1 token_logits = nn.Parameter(torch.zeros
(self.vocab_size))

2 self.token_embeddings #Token embedding
matrix

3

4 def forward(self, x, temperature,
tmp_position_idx=1):

5 batch_size = x.shape[0]
6

7 soft_weights = F.gumbel_softmax(
8 self.token_logits.unsqueeze(0).

expand(batch_size, -1),
9 tau=temperature,

10 hard=False
11 )
12

13 replacement_token_emb = torch.
einsum("bv,vd->bd", soft_weights
, self.token_embeddings)

14

15 pos_emb = self.pos_embed(torch.
tensor(tmp_position_idx, device=
x.device))

16 replacement_emb =
replacement_token_emb + pos_emb.
unsqueeze(0)

17

18 x_modified = x.clone()
19 x_modified[:, tmp_position_idx, :]

= replacement_emb
20

21 return x_modified

Figure 3 depict the token selection probabilities, taken from
within the embedding classier, evolving over epochs. Early
training demonstrates exploration among multiple candidate
tokens, quickly narrowing the probability distribution. After
approximately 10 epochs, token ”1” emerges as the dominant

candidate, rapidly converging to near-certainty by around
epoch 50. This behavior confirms successful convergence and
validates the intended use of our embedding classifier.

Fig. 3. Evolution of the selected token during training, showing probability
against epoch. Observe the probability of the token denoted in orange being
selected increasing as training progresses.

Through these developments, our proposed hybrid counting
model integrates the algorithmic counting capability provided
by RASP with a flexible embedding-selection mechanism,
enabling generalizable counting across input tokens and se-
quences.

IV. EXPERIMENTS

To validate the hypotheses formulated in the Introduction,
we designed a set of comparative experiments involving six
distinct models:

• RASP-based compiled model (ours)
• RASP-based model architecture (uninitialized and

fully trainable)
• CNN feature extractor with classification head
• CNN feature extractor with regression head
• Transformer feature extractor with classification head
• Transformer feature extractor with regression head

The model referred to as the ”RASP-based model architecture”
shares the same overall structure as our compiled solution.
However, unlike the compiled version, this model is randomly
initialized at the start of training, with all layers, including the
embedding layers, set as fully trainable.

For each model, we selected loss functions appropriate
for their architecture. Specifically, regression-based models
utilized Mean Squared Error (MSE), classification-based mod-
els employed Cross Entropy Loss, and our proposed RASP-
based compiled model employed Kullback–Leibler Divergence
Loss (KL-divergence) for its ability to deal with multiclass
classification. Unlike standard classification, RASP requires
predicting structured distributions over output sequences. For
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example, in our counting solution given an input of [1, 1, 1,
0], the model learns to assign uniform probabilities to specific
positions (e.g., class 3), resulting in logits that yield [3, 3, 3, 3]
after the final argmax operation. KL-divergence is suited here
because it measures how well the predicted soft distribution
matches the target distribution.

All models were trained on a synthetic dataset comprising
1000 samples, each instance containing a sequence of 28
tokens. An illustrative data sample is shown in Listing 5. We
observe a beginning of sequence (‘BOS’) token followed by
a temporary (‘TMP’) token. The intended use of our model
is to learn to replace the embedding of the ‘TMP’ token
with the embedding of the token of interest, which, in this
example, is ‘1’. Each dataset instance includes sequences
of tokens along with associated labels indicating the token
count of the token of interest. We maintained a fixed 90/10
training-validation split across experiments, varying only the
data points allocated to each subset to ensure robustness.
Multiple learning rates were tested for each model, and we
report results corresponding to the optimal learning rate that
achieved the fastest convergence. The count distribution within
the dataset, designed to mimic imbalances encountered in real-
world counting datasets, is depicted in Figure 4.

Listing 5. Data set sample. The temporary token ’TMP’ is the token that
will be replaced by the learned token of interest. In this sample, the token of
interest is ’1’, corresponding to count label 3.

1

2 input = [[’BOS’,’TMP’,’SEP’,’1’,’1’,’0’
,’2’,’1’,’2’, ....]]

3 label = [[3]]

Fig. 4. Distribution of counts in the synthetic dataset, mimicking the
imbalance in counting datasets as demonstrated in Figure 2.

A. Generalization under Data Imbalance

To examine each model’s ability to generalize across an im-
balanced distribution of counts, we evaluated performance on
a balanced test set. This evaluation set contained 100 samples
per count class across the entire possible count range (0–25).
Due to combinatorial constraints, some counts at the upper end
included overlapping sequences. The evaluation was replicated

over seven experimental runs, and detailed results are reported
in Appendix A. In run 2, our RASP model did not converge to
a solution. We hypothesize that poor convergence occasionally
occurs due to random unfortunate initialization, combined with
weak gradient signals. These weak gradients likely originate
from the nature of the total count supervision, which must
propagate through a deep architecture containing numerous
frozen layers and sparse embeddings, thereby limiting effective
gradient flow. For the sake of comparison, in the results down
below we decided to omit this example and present the top 5
performing runs for our RASP model.

Our RASP-based compiled model demonstrated strong gen-
eralization across all count categories, consistently achiev-
ing near-perfect accuracy (Figure 5). Minor deviations from
perfect accuracy in some runs (notably run 5) occurred due
to incomplete convergence of the Gumbel-Softmax token
selection, explaining the noise observed. Extended training
beyond the 1000 training epochs or hard token selection could
further mitigate these discrepancies.

Fig. 5. Generalization performance of RASP-based compiled model over the
full count range. Observe the near perfect performance across the count range,
while trained on data distributed as seen in Figure 4.

In contrast, Transformer- and CNN-based models with
classification heads (Figures 6, 7) showed substantial accuracy
drops at the extremes of the count distribution. These models
achieved near-perfect performance only within the highly
represented count ranges, failing notably at the lower and
upper extremes due to data scarcity.

Transformer-based regression models and the fully trainable
(uninitialized) RASP model architecture exhibited improved
generalization compared to classification counterparts but still
struggled with counts at dataset extremes (Figures 8, 9).

Remarkably, the CNN-based regression model exhibited
perfect generalization performance across the entire count
range (Figure 10). This outcome suggests the CNN-based
regressor effectively interpolated across the imbalanced dataset
distribution. However, we hypothesize that further increasing
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Fig. 6. Transformer model with classification head generalization. Observe
the poor performance near the extremes of the count ranges, while trained on
data distributed as seen in Figure 4.

Fig. 7. CNN model with classification head generalization. Observe the poor
performance near the extremes of the count ranges, while trained on data
distributed as seen in Figure 4.

imbalance, especially extending into extrapolative ranges, may
eventually challenge the regression model’s performance.

B. Data Efficiency

To assess data efficiency, we trained each model variant
on progressively smaller datasets, specifically datasets of 100,
250, 500, 750, and 1000 samples (maintaining a 90/10 split).
Detailed outcomes are documented in Appendix B.

Our RASP-based compiled model exhibited good data effi-
ciency, achieving strong generalization across the count range
even at reduced dataset sizes of 250 samples (20). In contrast,
classification-based models exhibited significantly deteriorat-
ing performance with fewer samples, requiring larger datasets
for robust generalization. However, the CNN-based regression
model maintained consistently strong performance even on

Fig. 8. Transformer model with regression head generalization. Observe the
poor performance near the extremes of the count ranges, while trained on data
distributed as seen in Figure 4.

Fig. 9. Trainable RASP model (uninitialized) generalization. Observe the
poor performance near the extremes of the count ranges, while trained on
data distributed as seen in Figure 4.

reduced datasets, such as 100 samples (19), reaffirming its
capability for effective interpolation given very limited data.

C. Training Time Efficiency

To evaluate training-time efficiency, we monitored valida-
tion accuracy over training epochs across models. Figure 11
illustrates results from the optimal experimental run (run 4)
of our RASP-based compiled model relative to other architec-
tures.

Our compiled RASP model reached 100% accuracy much
faster (epoch 95) compared to the CNN regression model
(epoch 200). However, performance variability across multiple
runs (notably runs 5-7) suggests marginal gains over conven-
tional models in some scenarios and negligible differences in
others. Consequently, we cannot definitively claim superior
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Fig. 10. CNN model with regression head generalization. Observe the perfect
performance across the count range, while trained on data distributed as seen
in Figure 4.

training efficiency for our compiled model based solely on
these experiments.

Fig. 11. Validation accuracy over training epochs (optimal run 4). Observe
the marginal improvement between RASP (COMP) (ours) and other models.

V. DISCUSSION AND CONCLUSION

This work leverages the Restricted Access Sequence Pro-
cessing (RASP) language [1] and the Tracr compiler frame-
work [2], to introduce a hybrid visual counting model ex-
plicitly designed to mitigate challenges associated with imbal-
anced counting datasets. We compared our proposed model
against CNN- and Transformer-based counting models across
multiple experiments: generalization under dataset imbalance,
data efficiency, and training-time efficiency.

Our experiments show that the compiled RASP-based model
achieves strong generalization performance across imbalanced
count distributions, notably surpassing Transformer and CNN
models with classification heads, as well as the Transformer
model with a regression head and the uninitialized, fully
trainable model based on the RASP architecture, particularly

at the extremes of the dataset distribution. The explicit count-
ing mechanism provided by RASP ensures that the model’s
accuracy remains invariant to data imbalance, addressing
limitations encountered in the field of viusal counting [26].
However, the CNN-based counting model with a regression
head model unexpectedly matched our RASP-based model’s
performance in generalization experiments, suggesting that
regression presents strengths in interpolating between sparse
counts. Nevertheless, we hypothesize that this advantage may
diminish as the imbalance grows or when extrapolation beyond
training distributions becomes necessary, scenarios that can
occur in practical applications (observe the extremely long and
sparse tail of the FSC-147 dataset (Figure 2).

Regarding data efficiency, our RASP-based model demon-
strated robustness, successfully learning accurate counting
representations from significantly reduced datasets. In con-
trast, the classification based models exhibited notable perfor-
mance degradation with limited training data, while the CNN-
regression architecture also retained its strong interpolation
capability even for small datasets, surpassing our model.
Further experiments are necessary to evaluate CNN-regression
architectures on datasets with greater imbalance, to determine
whether their performance advantage remains under more
challenging extrapolation conditions compared to our proposed
RASP-based solution. Overall we show that the integration
of counting via RASP within a Transformer-based context
improves data efficiency, which is particularly relevant in
scenarios with limited annotation resources [13].

Concerning training efficiency, our model achieved slightly
faster convergence compared to baseline models, but these
improvements were small and inconsistent across runs. Hence,
definitive claims regarding substantial training-time advan-
tages cannot be drawn.

A. Limitations and Future Work

Despite promising results, our approach presents certain
limitations which require additional research. The token-
selection mechanism introduced via the Gumbel-Softmax for-
mulation occasionally exhibited unstable convergence, sug-
gesting that further optimization improvements are necessary.
Moreover, our current experiments are performed with simpli-
fied synthetic datasets; therefore, future studies should validate
this methodology on real-world visual counting datasets. How-
ever for this, more research should be performed on RASP,
as it is currently only possible to operate on discrete tokens.
Different methods, such as mapping visual patches to discrete
token vectors could also be investigated.

Additionally, while our RASP-based model demonstrated
robustness under imbalance, further experiments should be
performed on datasets with greater imbalance. Datasets with
extreme imbalance, that require significant interpolation and
extrapolation, are hypothesized to show the superior perfor-
mance of our solution compared to a CNN model using
regression to estimate the final count.

Our results indicate that hybrid models that use RASP based
models offer promising solutions to challenges in visual count-
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ing. While additional development is needed, the approach
shows considerable potential.
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APPENDIX A
GENERALIZATION RUN DATA

Figures 12, 13, 14, 15, 16, 17, 18
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APPENDIX B
DATA EFFICIENCY DATA

Figures 19, 20, 21, 22
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