e

Delft Urflfi__;ersft-;c; Technology

'robl Sinars Ersmg '

So 710 Combmatar 1
Ppace-BouHEg " v\

MixedAriteger Lméar "‘
Problém Solvers &
Jasper Shmmens : ﬂ“ ‘ -

e

sSolving Combinatorial
Space-Routing Problems

Using Mixed-Integer
Linear Problem Solvers

by

Jasper Slimmens

to obtain the degree of Master of Science
at the Delft University of Technology,
to be defended publicly on Thursday the 18th of January 2024.

Student number: 4286324

Project duration: March 2022 — January 2024

Thesis committee: Dr.ir. Dominic Dirkx TU Delft, Chair
Dr. Angelo Cervone TU Delft, Examiner
Ir. Kevin Cowan MBA TU Delft, Supervisor

An electronic version of this thesis is available at http://repository.tudelft.nl/.

o]
TUDelft

http://repository.tudelft.nl/

List of Figures
List of Tables

List of Abbreviations

List of Symbols

1

Introduction

1.1 Researchobjectives
1.2 Reportstructure

Paper

Introduction
Problem definiton
Targetselection.
Problem Formulation
Evaluation.,
Targetordering
Problem Formulation
Evaluation.
Trajectory optimisation
Problem Formulation
Evaluation.,
Global optimisation
Conclusion

Dynamical models

3.1 OrbitPropagation.
3.2 PropulsionModel
3.3 LambertProblem

Mixed-Integer Linear Problem Optimisation

4.1 Fixed Budgetand FullTour
411 Implementation
4.1.2 \Verification and Validation

42 FixedTour.
421 Implementation
4.2.2 \Verification and Validation

Global Optimisation

5.1 Global Optimisation Algorithm
5.2 Performance Analysis

Conclusions & Recommendations

6.1 Conclusions
6.2 Recommendations

List of References

contents

P.1

P.2

P.3

P4

P.5

P.6

P.7

P.8

P.9

4.1

List of Figures

A plot showing the time needed to solve problems with varying amounts of targets. A
comparison is made between different ToF range widths.
Comparison between the known and generated solutions. The markers represent the
fly-by of a target. The blue line and red markers show the GTOC4 result by MSU [22]. The
orange line with yellow markers shows the result produced with the global optimisation
algorithm. e
Optimisation performance for different C,,,., multipliers and ordering settings per total
computational time. Solid lines plot the best-known objective in the population. Dashed
lines plot the average objective of the population.
Optimisation performance for different numbers of seeded individuals in the initial popula-
tion. Solid lines plot the best-known objective in the population. Dashed lines plot the
average objective of the population. L.
Optimisation performance for different setups not using internal iterations. Solid lines plot
the best-known objective in the population. Dashed lines plot the average objective of
the population.
Comparison between the first 8 targets of the GTOC4 solution from The Aerospace
Corporation[22], and a solution created with the proposed algorithm.
Comparison between the second 8 targets of the GTOC4 solution from The Aerospace
Corporation[22], and a solution created with the proposed algorithm.
Comparison between the first 8 targets of the GTOC4 solution from ESA's Advanced
Concepts Team[22], and a solution created with the proposed algorithm.
Comparison between the second 8 targets of the GTOC4 solution from ESA’'s Advanced
Concepts Team[22], and a solution created with the proposed algorithm.

Visualisation of possible visittimes, ¢,

11

20

List of Tables

P.1 Constants and conversion[8]
P.2 Default parametervalues
P.3 Run-times for different combinations of SCIP settingsinseconds
P.4 Run-time sensitivity on C\.x, n, and ny parameters
P.5 Defaultparametervalues
P.6 Run-times for different combinations of SCIP settingsinseconds
P.7 Solution improvement proportions
P.8 Total run-times for different combinations of SCIP settingsinms
P.9 Average number of iterations for varying n,, and ToF range widths
P.10 Default parametervalues
P.11 Known optimal tour for sixtargets
P.12 Performance statistics for different solver setups. All values are the average of 5 runs

performed at the same setting. 1: Best objective, 2: Iterations until best objective, 3:

Average solving iterations per evaluation, 4: Average targets in evaluation, 5: Average

solving time per evaluation [s], 6: Percentage solving time Fixed Budget, 7: Percentage

solving time Full Tour, 8: Percentage solving time Fixed Tour.

3.1 Constants e
3.2 Accuracy of propagation with different time-step durations
3.3 Accuracy of propagation of Lambertsolutions

5.1 Initial conditions and targets for the comparative problem instances

11

21

List of Abbreviations

Abbreviation Definition

AAS American Astronautical Society

AIAA American Institute of Aeronautics and Astronautics
BILP Binary-Integer Linear Programming

GACO Extended Ant Colony Optimisation

GTOC Global Trajectory Optimisation Competition

MILP Mixed-Integer Linear Programming

MSU Moscow State University

PyGMO Python Parallel Global Multiobjective Optimizer
PySCIPOpt Python Interface for the SCIP Optimization Suite
SCIP Solving Constraint Integer Programs

TUDAT Technical University Delft Astrodynamics Toolbox

v

List of Symbols

Symbol Definition Unit
AU Astronomical Unit [km]
Chnax Cost budget [km/s]
Copt Cost of the best known solution [km/s]
AV Velocity change [km/s]
7 Position vector

Ar Absolute difference in radial distance [km]
Ax Absolute difference in x position [km]
Ay Absolute difference in y position [km]
Az Absolute difference in z position [km]
s Gravitational parameter of the Sun [km?3/s?]

Introduction

With the continued development of space exploration and research missions, the need to be able to
predict and plan journeys through space is ever-growing. Since humans first started to make these kinds
of calculations, the resources to do so have developed tremendously. Available computational power is
many orders of magnitude larger, and methods to calculate and simulate astrodynamic trajectories have
made leaps. As both the interest and ability in space exploration keep growing, doors are opening to
new types of space missions. Historically, much work has been done into the design and optimisation of
these single leg transfers both for ballistic and low-thrust cases [1, 2, 3, 4, 5, 6]. This research is still
relevant and integral to solving any space-routing problem, but it has become a smaller part of a larger
type of problem.

With the increasing technological ability of modern spacecraft comes a necessity for more complex
mission designs. Instead of cases where a journey to a single specific target needs to be simulated,
missions could target large sets of objects or points of interest. Now, a much larger and more complex
problem must be solved, where targets and trajectories must be selected to design an optimal mission.
Relevant and realistic, complex space-routing problems can be found in the challenges posed in the
recurring Global Trajectory Optimisation Competition (GTOC). Examples are problem settings where
the maximum number of Near Earth Asteroids as possible need to be visited [7, 8, 9], or a large number
of debris objects in orbit around Earth needs to be cleaned up [10]. These types of problems can be
classed as combinatorial optimisation problems, and solving them efficiently requires implementing
state-of-the-art optimisation methods that might not have been used in a space flight context before.

A combinatorial problem refers to a type of problem in mathematics and computer science that involves
making selections, arrangements, or combinations from a finite set of objects or elements according
to specific rules or constraints. It involves counting, organising, and analysing various possibilities or
configurations arising from a given set of objects. One of the best-known examples of a combinatorial
problem would be the ‘travelling salesperson’ problem [11, 12, 13]. Combinatorial problems have been
studied and solved [14, 15, 16] since long before space flight was born, and powerful tools exist to
solve them. This research focuses on solving complex space routing problems that adhere to the
combinatorial problem definition. Specifically, this means that the problem consists of a finite set of
available targets which are of interest and a set of boundary conditions, constraints and optimisation
criteria. These include dynamical models, budgets like time and fuel, and the ultimate mission objectives.

It is essential to develop robust frameworks and methods to handle these larger and more complex
problems and solve them to satisfactory optimality. Ideally, these new solving methods build upon or
extend the already available tools. In an effort to progress the ability to solve combinatorial space routing
problems, this thesis studies the possibility of effectively moulding the problem into a linear form that
can be solved with available state-of-the-art solving tools. Specifically, mixed-integer linear problem

1.1. Research objectives 2

(MILP) solving tools like SCIP [17], which is known to be very well suited to solve combinatorial problems
[18, 19, 20]. Instead of linearising the problem as a whole, splitting the problem into multiple linear
sub-problems is considered. Solving these sub-problems in sequence should provide a valid solution to
the entire problem instance. Sub-problems focusing on smaller parts of the problem make linearising
easier and help keep the computational requirements low as more minor instances are fed into the
MILP solver. This report will study an effective way to split up the main combinatorial routing problem
into linear sub-parts, as well as the optimal SCIP setup for solving these individual sub-problems. The
sub-problems are defined as follows:

» Fixed Budget: A subset of targets is selected based on a fixed AV budget.

» Full Tour: The selected targets are ordered by finding the cheapest trajectory through all targets in
the subset.

 Fixed Tour: The flight time for every leg of the trajectory is optimised for a minimal total AV

These parts are integrated into a global optimisation algorithm using the PyGMO [21] optimisation library.
In this global optimisation algorithm, the effectiveness of sub-problems and their integration toward
finding the final solution is studied. The integration of the sub-steps and possible simplifications that
can be made are studied. One possible simplification is to skip solving the Full Tour sub-problem, as
reordering the targets seems to have little impact on the final result. Another consideration is between
solving every evaluation within the global optimisation algorithm to feasibility or propagating infeasible
solutions instead. After solving the three sub-problems, a solution is found which has a certain AV cost.
This cost may be higher than the budget. The choice is between solving the sub-problems again to find
a solution within the budget or marking the result as infeasible after one iteration and moving to the
next evaluation instead. Also, the possibility of seeding initial populations with known values instead of
randomly generated ones is studied. This will result in a proposal for a global optimisation algorithm to
solve combinatorial space routing problems, for which results will be compared to known solutions from
GTOC4 [8].

1.1. Research objectives

The purpose of this paper is to study novel methods utilising MILP-solving tools in the process of solving
complex space routing problems. For this purpose, a new solving framework, implementing MILP
solving techniques, will be created. As part of this study, the following questions are formulated:

» How can MILP-solving techniques be used to solve complex combinatorial space routing problems?

To allow the use of these specific techniques, the space routing problem needs to be refor-
mulated in a linear form. Instead of linearising the full problem at once, it is split into multiple linear
sub-problems. In the study of these sub-problems, the following sub-questions are considered:

— What are the primary sub-problems, and what is their function?
— What SCIP settings provide the best performance for solving the isolated sub-problems?
» How do further simplifications to the solving algorithm impact its performance?

In the process of designing the framework, multiple areas for possible algorithm simplifications
were identified. The effectiveness of these simplifications is studied. The following sub-questions
are considered:

— What is the impact of removing the Full-Tour solving step from the algorithm?

— What is the impact of propagating infeasible individuals instead of iterating every individual to
be feasible?

» What is the effect of seeding the initial population with constant values instead of randomly gener-
ated values?

Including known or probable solutions in the initial population for a global optimisation algo-
rithm can greatly affect performance. In this case, the effect of including individuals with a constant

1.2. Report structure 3

value for all parameters is studied instead of generating all parameters randomly. The following
sub-questions are considered:

— What number or proportion of the initial population would optimally be seeded?

* How do the results from the proposed methodology compare with benchmark solutions from
GTOC4?

To analyse the accuracy and effectiveness of the new solver implementation, GTOCA4 results [22]
are used as benchmarks. The problem definition of GTOC4 will be used to set up specific test
cases for which the optimal solution is known.

1.2. Report structure

This thesis report consists of two main parts. First, in Chapter 2, a paper manuscript is included, which
presents the core of the research work. The following chapters then provide additional information on
the content provided in the paper. In Chapter 3, the methods and models used regarding space-flight
dynamics are discussed. Chapter 4 gives additional explanations on the use and implementations
for optimising MILPs and the verification and validation of those implementations. Chapter 5 contains
further information on the implementation and analysis of the global optimisation algorithm. Finally,
conclusions regarding the research objectives and recommendations for future work are presented in
Chapter 6.

Paper

This chapter contains the paper manuscript with the main description of the problem and the results.
The paper has been written with the format of the AAS/AIAA Astrodynamics Specialist Conference’

"http://www.univelt.com/FAQ.html#SUBMISSION, online accessed on 23-5-2023

4

http://www.univelt.com/FAQ.html#SUBMISSION

(Preprint) IAA-AAS XX-XXX

SOLVING COMBINATORIAL SPACE-ROUTING PROBLEMS USING
MIXED-INTEGER LINEAR PROBLEM SOLVERS

Jasper Slimmens*and Kevin Cowan’

With the development of space research into novel areas, new complex problems arise. The
interest in solving space routing problems considering large numbers of targets has recently
grown. This paper proposes a novel method to solve the optimal trajectory in such com-
binatorial space routing problems. This paper focuses on a global optimisation algorithm
implemented to solve the problem posed in the 4™ Global Trajectory Optimisation Com-
petition (GTOC4). The solution is a trajectory of multiple legs, where each leg links two
targets and has a specific flight time. To enable the use of the powerful mixed-integer linear
problem solver software, Solving Constraint Integer Programs (SCIP), the routing problem
concerned with visiting as many target bodies with a predetermined fuel and time budget is
split into linear sub-problems. The Fixed Budget sub-problem selects a subset of the given
set of targets. The Full Tour sub-problem orders the targets in the subset, and the Fixed Tour
sub-problem optimises the flight time for every leg of the given trajectory to find the solution
with the lowest total fuel consumption. Each of these sub-problems is formulated in a lin-
ear form and is solved using SCIP. The global optimisation algorithm evolves a population
where every individual exists of a set of initial guesses for the time of flight values. Analysis
shows that initialising this population with a mix of randomly generated individuals and in-
dividuals containing a constant value for all entries leads to the fastest convergence towards
the optimal solution. In a population of 20, seeding ten individuals is found to be optimal.
It is also found that the algorithm performance can be further increased by evolving individ-
uals with infeasible solutions instead of iterating them until a feasible solution is found and
eliminating the Full Tour sub-problem. These simplifications allow for an increase in the
cost budget multiplier, which leads to finding better objective values without further increas-
ing computational time. The best-performing setup, which uses a cost budget multiplier of
10, can find the optimal solution to the test problem in 100% of the runs, on average in 9
iterations, with a computation time of 5.82 seconds per evaluation. The results show that the
global optimisation algorithm produces results that closely match known results for GTOC4
consistently and accurately.

INTRODUCTION

With the continued development of space exploration and research missions, the need to predict and plan
journeys through space is ever-growing. Without this ability, it would be impossible to plot courses to set
targets or to estimate the amounts of fuel that would be needed along the way. Since humans first started
to make these kinds of calculations, the resources to do so have developed tremendously. Available com-
putational power is many orders of magnitude larger, and methods to calculate and simulate astrodynamic
trajectories have made leaps. Still, further improvement is always essential. Currently, these tools are not
only crucial to simulate journeys to set targets, but they have become part of a much more extensive and
complex problem space. A subset of these complex problems can be described as combinatorial problems,
which will be the focus of this paper.

A combinatorial problem refers to a type of problem in mathematics and computer science which involves
making selections, arrangements, or combinations from a finite set of objects or elements according to specific
rules or constraints. It consists of counting, organising, and analysing various possibilities or configurations

*Graduate Student, Faculty of Aerospace Engineering, Delft University of Technology, Delft, The Netherlands
TEducation Fellow + Lecturer, Faculty of Aerospace Engineering, Delft University of Technology, Delft, The Netherlands

arising from a given set of objects. This paper focuses on solving complex space routing problems that adhere
to the combinatorial problem definition. Specifically, this means that the problem consists of a finite set of
available targets of interest and a set of boundary conditions, constraints and optimisation criteria. These
include dynamical models, budgets like time and fuel, and the ultimate mission objectives. Examples of
these problem instances can be found in the challenges posed by the regularly organised Global Trajectory
Optimisation Competitions (GTOCs).! These competitions pose complex global optimisation problems
that competing teams from around the world solve using state-of-the-art methods.

These problems are generally hard to solve because of their scale and complexity. Still, they are realistic
and relevant in space mission design, especially in up-and-coming areas of space exploration where the
number of relevant targets can be vast, like asteroid research or debris clean-up missions. It is crucial to
develop robust frameworks and methods to handle these more extensive and complex problems and solve
them to satisfactory optimality. Combinatorial problems have been studied and solved since long before
space flight was born,*® and powerful tools exist to solve them. Ideally, these new solving methods build
upon or extend the already available tools.

The purpose of this paper is to propose a specific implementation of a global optimisation algorithm which
can be used to solve complex space routing problems. The particular implementation is set up to solve the
problem posed in GTOC4,” where the goal is to find a trajectory which allows one to visit the maximum
number of given targets within the fuel and time budgets. The problem is split into sub-problems formulated
as mixed-integer linear problems (MILPs) to find the optimal solution. This means the sub-problems can
be solved in sequence using the Solving Constraint Integer Programming (SCIP)® software, which is known
to be very well suited to solve combinatorial problems.>”!! The Fixed Budget sub-problem selects a subset
of the given set of targets. The Full Tour sub-problem orders the targets in the subset, and the Fixed Tour
sub-problem optimises the flight time for every leg of the given trajectory to find the solution with the lowest
total fuel consumption.

The first section of this paper lays out the general definition of the considered space routing problem and
an overview of the proposed methods for solving this problem. The following sections then focus on the three
sub-problems used in the solving process: target selection, target ordering and trajectory optimisation. Each
section will describe and evaluate the methods used to solve the sub-problem. Then, a global optimisation
algorithm is presented, where the three sub-problems are aggregated into a single solver. The algorithm’s per-
formance and accuracy are analysed, leading to further improvements to the algorithm’s efficiency. Finally,
the results are compared to known results from the GTOC4.

PROBLEM DEFINITION

In the most general sense, the problem can be described as: Given a budget, a set of targets, and some
boundary conditions, visit as many of the given targets as possible. Budgets can be fuel and time or some
other relevant quantity that depletes during the mission. Targets can be locations in space or objects moving
through space in known or assumed orbits. Examples of sets of targets could be near-Earth asteroids in
trajectories around the Sun or pieces of space debris in orbits around Earth. The problem is further defined
by the starting conditions, which could include but are not limited to launch-time windows, launch location
and launch velocities, and final conditions, such as a required final position or state. Other factors that impact
the problem are the environmental and dynamical models used to simulate motions through space and the
spacecraft’s specifications on, for example, thrust. The term “visit” can also be defined in different ways.
Common ways to make visits in space are the fly-by, where only the position vectors of the spacecraft and the
target need to match up at some time, and the rendezvous, where both the position vectors and the velocity
vectors of the spacecraft and the target need to match. Additionally, for a rendezvous, there can be conditions
on the minimum or maximum duration, while fly-bys are, by definition, only a singular moment.

In this paper, the general problem will be further specified to make it a suitable test case for analysing the
proposed solving algorithm implementation. The problem definition is inspired by the problem presented in
GTOC4 but is implemented with slight alterations to keep the complexity low enough to be practical in the
sense of computational time needed to optimise the problem. Still, the similarity to the example problem

from GTOC4 allows for a reasonable comparison of the results. For this research, the following assumptions
and definitions regarding the problem settings are used, which are the same as those in GTOC4:

* The budgets consists of a maximum velocity change (Cy,ax) in km/s and a maximum total mission
duration (7) in s.

* The starting position is the point-mass position of Earth.
» The targets are objects orbiting the Sun in (near-Earth) Kepler orbits.

» A visit is defined as a fly-by of a target. A fly-by constitutes an exact match of positions. Velocities do
not need to match.

The following assumptions and definitions are used in this paper but differ from GTOC4:

¢ The launch time (¢g) is fixed.
* The mission is open-ended. There are no final conditions.

* The spacecraft can change its velocity instantly during a fly-by. Between fly-bys, the spacecraft follows
a Kepler orbit around the Sun.

* The first transfer is “free”. At launch time, at launch position, the spacecraft can make an unlimited
instant velocity change, which does not count to the budget.

For the assumptions that differ from GTOC4, the motivation is to reduce the complexity of the problem.
These differences have a significant impact on the complexity while allowing the creation of problem in-
stances that are comparable to available partial solutions from GTOC4.

These assumptions and definitions define the optimisation problem considered in this paper. The objective
is to find the trajectory that visits the maximum number of targets. The secondary objective is to use the
lowest possible AV. As there is no comparison between different spacecraft or propulsion systems, the
magnitude of required AV is directly equivalent to the cost in fuel mass. A solution that visits more targets is
always better, but between solutions that visit the same number of targets, the one costing less AV, thus fuel,
is better. From this problem definition, specific problem instances can be created by defining the values for
the initial conditions, budgets, target state histories and time step duration. In the remainder of this section,
the most relevant methods and rules of thumb used to come up with these values are introduced. Finally, a
general outline of the methodology used in the solving algorithm is provided.

The position of Earth and the targets are derived from the initial conditions given in the GTOC4 problem
description. From these initial conditions, the orbits are propagated forward through time using the Technical
University Delft Astrodynamics Toolbox (TUDAT).!? All orbits are propagated as pure Kepler orbits, so
given the initial Keplerian elements, the orbits are determined and governed by the equations in Equation 1.7

2
. r vy o i = Va2 +y? 422 = oo
b= —ps—g, §=-psg E=—psg, where r = m2+y2—|—z271+€7a)8w) (0

Z, 4, and Z represent the Cartesian acceleration components caused by the gravitational force of the central
body, the Sun in this case. x, y, and 2 are the Cartesian positional coordinates, jg is the gravitational param-
eter of the Sun. r is the distance from the Sun, which can be expressed both in Cartesian position coordinates
or in Keplerian orbital parameters. a is the semi-major axis, e is eccentricity and € is the true anomaly. To
compare the results from this research with the results of the comparable problem in GTOC4, the same values
for relevant constants and conversion parameters are used for all computations in this paper. These values
can be found in Table 1.

Table 1: Constants and conversion’

Parameter Value

Sun’s gravitational parameter u, km>/s? 1.32712440018 x 10!
Astronomical Unit (AU), km 1.49597870691 x 10t
Standard acceleration due to gravity, go, m/s? | 9.80665

Day, s 86400

Year, days 365.25

The GTOC4 problem description also shows that the spacecraft has an engine with a specific impulse, I,
of 3000s and a maximum thrust of 0.135N. Also, the propellant mass is 1000kg, and the spacecraft dry mass
is 500kg. The value for g is given in Table 1. Using these values and Equation 2, it is determined that these
conditions are equivalent to a maximum total velocity change, AV, of 32.3 km/s. This value will be used
as a reference limit for the test cases in this research, as it will not use low thrust but rather instant velocity
changes to reduce complexity.

AV = I,,g0In 2)
my

By defining the problem and the spacecraft specifications as given above, the spacecraft’s trajectory is
determined by Kepler arcs from fly-by to fly-by. The velocity change needed at a certain fly-by to reach the
next fly-by can be computed by solving the trajectory legs using Lambert solutions.!> The velocity vectors
resulting from the Lambert solutions for the incoming and the outgoing transfer legs can conveniently be used
to determine the AV needed during a fly-by.

Say a trajectory is selected from A to B, to C, where A, BandC are in the set of targets. For a given flight
time from A to B, the Lambert solution gives the required velocity at A and the resulting velocity at B for this
specific trajectory. In the same way, for a given time of flight, ToF, between B and C, the Lambert solution
gives a required velocity at B and a resulting velocity at C'. The AV needed at B is now defined as the vector
difference between the resultant velocity from the A — B leg and the required velocity for the B — C leg.
Using this method, the AV travelling any three-point arc can be computed, given the flight times for the two
legs. It can be used to, in a relatively simple and fast way, calculate the total velocity change needed for a
longer multi-target trajectory by patching three-point arcs together. Targets must be selected and ordered to
find an optimal solution, and the trajectory through these targets must be optimised for a minimal AV. Given
the targets in the solution, the solution then consists of a set of consecutive, partly overlapping, three-point
arcs. So if the first arc is A — B — C, which gives the AV at B, the second arc has to start with B — C' — ..
to provide the AV at C. The total AV for the trajectory is the sum of the AV for all individual arcs.

Ideally, the ToF values are taken as variables to be solved for the lowest possible AV. However, the total
velocity is not a linear function of the ToF variables. So, solving for the ToF variables directly leads to a
non-linear problem, which would be considerably more challenging to solve than a linear problem. To use a
powerful linear solver, the problem is split into multiple linear sub-problems, which are solved sequentially
to create the optimal solution. The sub-problems are defined as follows:

* Fixed Budget: A subset of targets is selected based on the AV budget.

* Full Tour: The selected targets are ordered by finding the cheapest trajectory through all targets in the
subset.

* Fixed Tour: The flight time for every leg of the trajectory is optimised for a minimal total AV

The following sections will explain the methodology for solving these individual sub-problems. All sub-
problems are formulated as MILPs and solved using PySCIPOpt'# (a Python wrapper for SCIP). They are

individually evaluated® for setup and performance before patching the sub-problems together and assessing
the global optimisation algorithm. In the global optimisation algorithm, PyGMO' performs parallel batch
evaluations, reducing total computational time. Unless stated differently, run-time values are averages from
runs executed in 10 parallel threads, both in sub-problem and global optimisation analyses. Ideally, sets of
targets are used for the evaluations for which an optimal, or reasonably close to optimal, solution is known.
This allows validation of the results produced by the proposed algorithm. Also, these sets are preferably
small to reduce computation time in the performance evaluation. For this purpose, the known solutions for
GTOC4!6 are used to generate smaller problem instances consisting of subsets of the complete target set
provided. For example, when using the launch position and time of a known solution and searching for a
solution among the ten targets first visited by this solution, one would reasonably expect to find a solution
which is equal to or similar to the known solution. In evaluating the individual steps, targets will be taken
from the targets visited in the solution provided by Moscow State University (MSU).!¢ Results produced with
the global optimisation algorithm will be compared with multiple partial solutions from GTOC4.

TARGET SELECTION

This first step in the solving process aims to select a subset of the targets given in the problem instance. The
requirement is that there is a trajectory which flies by all the targets in the subset while not needing more AV’
and time than the budgets allow. The sub-problem aiming to find the trajectory passing the maximum number
of targets within this requirement is called the Fixed Budget sub-problem. To allow solving the sub-problem
using a MILP-solver, which is considered well suited for solving optimisation problems of this kind,'” the
sub-problem needs to be formulated as a MILP. To achieve this, all ToF parameters (tof; ; ;), defining the
flight time between two targets, ¢ and j, are given a constant value instead of solving them for optimality. All
time values and durations are expressed as an integer number of time steps, where the duration of a time step
in seconds is a constant. The solution produced by solving this sub-problem is a trajectory visiting a subset
of all available targets in the problem instance. This subset is used as input in the following sub-problems.

Problem Formulation

The mathematical formulation for the Fixed Budget sub-problem is given in Equations 3-11.

nt My My TNy

maximise ZZZ Z:pm’j#k, with i #£ji#kj#k 3)

t=0 i=1 j=1 k=1

subject to

Zri5k € {0,1}, forall ¢,4,j,k 4)
SN woiak =1, with i#ki#lLk#1 (5)
k=1 i=1

SN mpijk <1, forall i, with i#ji#EkjFEk (6)
t=0 j=1 k=1

oD wagu <1, forall joowith i ji#kjEk (M)
t=0 i=1 k=1

S > wmage <1, forall ko with i ik j £k (8)
t=0 i=1 j=1

*All computations are executed using Python on an HP ZBook Studio G5 laptop with the following hardware: Intel Core i7-8750U
CPU (2.2GHz) and 32 GB 2667 MHz DDR4 SODIMM RAM.

Ny Moy
th”’j,k — quk,i_j =0, forall t¢,47,5, with
i=1 i=1)

i#j,i#k,j#k,j;ﬁl,tgzt-i‘tOft,i,j
N Ny My Ny

SIS tofi gk weige < e, with Q£ i £k G Ak (10)
t=0 i=1 j=1 k=1
Ng Ny My Ny
DN NN crighwrigh < Cmax, with i £ i #k,j#k (11

t=0 i=1 j=1 k=1

Equation 4 ensures all = variables have binary values. They represent the inclusion of a particular arc in
the solution trajectory. In other words, x ; ;. represents the statement: the spacecraft flies by target j at
time t, it came in from target ¢ and continues to target k. This is either true, represented by value 1, or false,
represented by value 0. Note the x variables are the only variables being solved in this problem, meaning that
the problem contains only binary variables. This makes the problem a Binary Integer Linear Programming
(BILP), a subset of MILPs. i, j, and k are integers that all exist in the same set of targets. n, is the total
number of targets in the problem instance, including the starting position. (The subscript v is derived from
the term vertices, commonly used in graph-based problems. It is used here to distinguish clearly from the
number of timesteps n;.) t values are integers in a finite set of time steps. n; is the total number of time steps,
which defines the maximum mission duration.

x variables only exist for the cases where the three targets are unique. There is no path from a target to itself,
and returning paths between only two targets, like A-B-A, are not considered. The complete set of « variables
represents all possible trajectory arcs at all available times. The objective, given in Equation 3, is to maximise
the number of arcs in the trajectory, as this directly corresponds with the number of targets visited. The ¢ ; ;1
values directly correspond with the amount of AV needed to include arc x ; ; ;. in the solution trajectory.
These values can all be computed before starting the actual optimisation, given the constant ToF values. This
makes evaluations within the optimisation process cheap and fast regarding computational requirements.
To compute the AV, the input parameters ¢, 7, j, kK must be converted into an actual time value and actual
positions in space. These are taken from the state histories computed by orbit propagation.

Constraints are used to ensure the continuity of the trajectory and to enforce the budgets. Equation 5 is
a constraint to lock in the start position and start time, requiring that target 1 has an outgoing arc at time 0.
Equations 6, 7, and 8 are three sets of constraints that ensure a single target never has more than one incoming
and one outgoing arc. The value is allowed to be 0, as it is not required for all targets to be visited. As the
ToF values are known, these can be used to ensure the continuity of the trajectory. Equation 9 is a constraint
that enforces the outgoing arc departs at the exact time the incoming arc arrives. This also ensures that an
outgoing arc always matches an incoming arc. The case where ;7 = 1, meaning the trajectory departs from
the start point, is excepted from this constraint. The simplest way to fully constrain this problem is to require
a closing loop. The cost for any transfer to the start point is set to O to make the loop practically open-ended.
So, a closed loop is solved, but the cost and duration for the final transfer are disregarded. Finally, the budget
constraints for total time and cost are given in Equations 10 and 11.

Note that these constraints do not prevent a solution from containing sub-tours. For example, a solution
with six targets might be found, but the trajectory consists of two disconnected loops of three targets. In such
a case, additional constraints must be added to the problem before solving it again. The constraints that will
be added are given in Equation 12. S is a sub-tour, which contains several targets. For every sub-tour in the
solution, a constraint is added to restrict the number of active arcs to be less than the number of targets in
the sub-tour. This prevents the sub-tour from being part of the solution in the future. These constraints are
only added during solving when sub-tours are encountered, as it is not feasible to set the constraint for every
possible sub-tour in the problem beforehand, considering the total number of subsets has a magnitude of

10

2Nv | After the sub-tour constraints are imposed, the problem is solved again. These steps are repeated until a

solution is found, which consists of a single continuous loop. With a more significant number of targets, the
chance of finding solutions containing sub-tours increases. This might considerably impact the solving time,
as the sub-tours must be eliminated iteratively.

izzzxt,i,jﬁkg |S| —1, forall S, with i#ji#kj#k (12)

t=0ieS jeS kesS

Given that the solution is found using constant ToF values that are random or guessed, assuming that
the resulting trajectory is not necessarily the optimal trajectory through the given targets is reasonable. The
solution will be further optimised in the target ordering and trajectory optimisation steps of the global solving
algorithm. As it can reasonably be assumed the final trajectory has a lower fuel consumption than the initially
found solution, the Cy,,x budget can be increased for this first step, hoping that the optimisation will bring
the solution back within the actual budget. The impact of the budget parameter on this individual step will
be evaluated, but the impact will be more significant when used in the complete solver. The considerations
in choosing this increased initial budget and the impact on the overall solving performance will be discussed
later.

The sub-problem is solved using SCIP,® wrapped in Python (PySCIPOpt'%). The core of this software is a
general branch and bound algorithm'® and a set of well-known and proven effective heuristics.” It is effective
in solving MILP problems like the problem considered in this paper.'®!" Extensive setup and tuning of the
solver are outside this research’s scope, but to ensure sufficient performance, some high-level settings are
tuned for solving time and efficiency. For the evaluations, all problem instances will be solved to finality.
An instance could be infeasible to solve, but if a solution is found, this is guaranteed to be the best possible
solution, according to the objective function, within the given constraints. The considered settings will not
change the solution found for a specific instance, but they might impact the time it takes to do so.

The result of solving this problem will be a trajectory, represented by x variables with a value of 1. The
problem definition guarantees finding a solution with the maximum number of targets within the budget. Still,
there is no guarantee that this is the cheapest solution for that number of targets or even for that specific set
of targets. For example, if a total set of 10 targets is given, a solution might be found containing five targets.
This means there is no possible solution of six targets within the budget, but there might be a different five-
target solution with a lower total cost. It is also crucial to note that the solution here highly depends on the
initial ToF values used. It is a locally optimal solution within the whole problem space. Choosing the initial
values and finding global optima using this local solution is discussed later in this paper.

Evaluation

The target selection algorithm is tested to tune the SCIP settings and to find sensitivity to several problem
parameters. As the aim is to design a computationally efficient algorithm, the most relevant performance
parameter is run-time. The default values used to define the problem used as a test case can be found in Table
2.

Table 2: Default parameter values

Parameter Value
Clnax, km/s 12

Ny 10

Ny 100
Time-step, days | 5

to, MID 58677

The starting position is Earth’s position at the defined ¢y. The set of 10 targets consists of the first ten
targets of a known GTOC4 solution. Precisely, it consists of the following asteroids: 2006QV89, 2006XP4,

11

2008EP6, 2007KV2, 2005XN27, 2006TB7, 2008 AF4, 2006HF6, 2008PK3, 2007VL3. This fully defines the
problem instance, first used to find the best combination of SCIP settings. The settings considered are the
“Presolve” and “Heuristics” settings. These settings determine the extent to which the default pre-solving
methods and default heuristics are used in SCIP’s default solving engine. The available options are: “De-
fault”, ”Aggressive”, "Fast”, and "Off” for both Presolve and Heuristics. Note that these settings will not
impact the solution to the problem, only how this solution is produced. For this reason, computation time is
the only relevant performance parameter in this comparison.

Table 3: Run-times for different combinations of SCIP settings in seconds

Heuristics
Default Aggressive Fast Off
Default 18.16 25.52 19.01 19.06
Presolve | Aggressive | 17.65 23.72 19.70 17.63
Fast 18.67 23.02 17.55 18.10
Off 15.89 34.44 15.63 15.14

The results for running the available combination of the settings can be found in Table 3. These are the
mean run-time values over 500 runs evaluated using multi-threading. The only difference between the runs,
in this case, is the constant ToF values, which are randomly generated for every run. The results show that
using aggressive Heuristics takes a significant amount of time. It can also be seen that more aggressive
Presolving in combination with using Heuristics can be beneficial for solving time. Still, setting both the
Presolve and Heuristics settings to Off gives the best performance with a mean time of 15.14s per evaluation.
The results suggest that the posed problem is relatively easy for the SCIP solver. Pre-solving and Heuristics
can help reach good solutions for complex problems faster, but they only slow the solver down in this case.
Unless stated differently, the Presolve and Heuristic settings will be turned off when solving the Fixed Budget
problem.

Table 4: Run-time sensitivity on Cax, 7, and n; parameters

Parameter Run-time [s] Change [%] | Nvars Change [%]
Chax = 6 km/s 14.72 -2.8 99990 0

Chax =18 km/s | 18.59 +22.8 99990 0

n, =5 1.86 -87.7 12120 -87.9

n, =15 59.51 +293.1 339360 +239.4

ng =50 7.14 -52.8 50490 -49.5

ng =150 25.69 +69.7 149490 +49.5

The same problem instance is then used to study the sensitivity of the Fixed Budget sub-problem to some
of the most critical problem parameters: Cy,ax, 1, and n;. n, and n; impact the problem’s size directly as the
number of variables changes. C,.x does not have this same direct impact on the problem’s size but does have
an impact on the size of the feasible solution domain, which in turn impacts solving time. The comparative
results for the runs with parameter changes can be found in Table 4. Along with the change in run-time, it
also shows the change’s impact on the problem’s size.

The small changes in run-time, seen in Table 4, show the sensitivity on Cl,ax is minor. The increase has
a more significant impact than the decrease. A possible explanation could be that reducing Cy,ax past some
lower limit, which would depend on the specific problem instance, does not make the problem any easier
to solve. In the same way, there might be an upper limit, past which increasing Cy,ax does not make the
problem more challenging to solve, but this value is expected to be much higher. Table 4 shows significant
changes in the number of variables and the computational time for n,, indicating very high sensitivity. It is
known that n,, has a cubic relation to the number of variables. With reducing n,,, the reduction in solving time
is relatively equal to the reduction in variables. This indicates the relation between these parameters might
be linear to a certain point. It can be seen that this linearity is broken when moving in the other direction,

12

where the increase in run-time is significantly larger than the increase in variables. This same observation
is made with the n; results. n; has a linear relation to the number of variables. In reduction, the impact on
run-time and variables is nearly the same, but when the number of variables grows larger, the computational
time increases disproportionally.

These results reveal a real scalability problem. Considering that realistic real-world problem instances
might have larger budgets, longer timelines, and, most significantly, target sets containing hundreds or even
thousands of targets, the exponential increase in computational time for increasing any of these is a very
significant problem. It is recommended that future research consider improvements to the proposed methods
or propose alternate methods for target selection to make solving larger problem instances feasible.

TARGET ORDERING

The second step in the solving process aims to find the optimal order to visit the targets given by solving
the Fixed Budget sub-problem. That solution is already a feasible trajectory within the allocated budgets, but
it is not guaranteed to be the optimal tour through these targets. It is now required that the resulting trajectory
flies by all the given targets. The sub-problem targeting to find the trajectory through all targets with the
lowest total velocity change is called the “Full Tour” sub-problem. As for the previous sub-problem, constant
values are used for all ToF parameters to allow a MILP formulation. In the global optimisation algorithm,
solving the Full Tour sub-problem will follow the solving of the Fixed Budget sub-problem. The instance to
be solved is the same, meaning that all ¢; ; ; » and tof; ; ;, values are the same. This guarantees that a feasible
solution to the Fixed Budget sub-problem is also a feasible solution to the Full Tour sub-problem.

Problem Formulation

The formulation of the Full Tour sub-problem is very similar to that of the Fixed Budget sub-problem but
has some alterations. The formulation can be found in Equations 13-20. All symbols have the exact definition
as in the previous section. Again, the problem only solves for the x variables, which makes the formulated
problem a BILP.

Nt My Ny Ny

minimise SIS etk weige, with Q£ jiEk Ak (13)

t=0 i=1 j=1 k=1

subject to
xi k6 € {0,1}, forall t,i,5,k (14)
S woiak =1, with i#ki#Lk#1 (15)
k=1 1=1
S3> wage=1, forall i, with i#jitkj#k (16)
t=0 j=1 k=1
SN wpije=1, forall j, with i%ji#kj#k (17)
t=0 i=1 k=1
SN wiije=1, forall k, with i#ji#kj#k (18)

t=0 i=1 j=1

Ny Ty

E Lty,i,5,k — E Tt k,ij = 07 for all t, i,j,
=1 =1

with i #ji#k,j#kj#1,
tQ =1t +t0ft,i,j

(19)

13

Nng Ny Ny Ny

SO S tofe ik weige < e, with i £ i Ak Ak (20)

t=0 i=1 j=1 k=1

There is no constraint on AV cost. Instead, as given in Equation 13, the objective is to minimise the total
AV of all included trajectory arcs. The sets of constraints in Equations 16, 17, and 18 are similar to the
ones used previously, but now the number of incoming and outgoing legs for every target is enforced to be
exactly one, as it is required that every target is visited. The other constraints are precisely the same as in the
Fixed Budget sub-problem. Finding solutions with disjoint sub-tours is again handled by adding additional
constraints as in Equation 12.

The solution to the formulated problem is a trajectory defined by the = variables with a value of 1. If an
optimal solution is found, this is guaranteed to be the cheapest trajectory to visit all the targets in the set,
given the constant ToF values. This can be the exact solution found in the Fixed Budget sub-problem or a
different, cheaper solution. Again, this is only a locally optimal solution, which strongly depends on the ToF
values given. Cheaper trajectories likely exist when different ToF values are considered.

Evaluation

To optimise the solving performance for this sub-problem, the SCIP settings are re-evaluated. The test case
is very similar to the one used in the previous section. The performance of this sub-problem will be tested
in combination with the Fixed Budget sub-problem. The Fixed Budget and Full Tour sub-problems will be
solved in sequence for every run. The solution generated with the Fixed Budget is used as input for the Full
Tour sub-problem. This means the number of targets in the problem to be solved depends on the result of
the first sub-problem and is not a constant. To make meaningful comparisons, comparing runs with the same
problem size is essential.

Table 5: Default parameter values

Parameter Value
Clnax, km/s 50

Ny 10

Ny 100
Time-step, days | 5

to, MID 58677

The specific problem instance used for analysis is chosen so that solving the Fixed Budget sub-problem
will likely result in a five-target solution. The problem instance’s parameters can be found in Table 5. The
starting position and asteroids in the initial target set are the same as in the previous section.

Table 6: Run-times for different combinations of SCIP settings in seconds

Heuristics
Default Aggressive Fast Off
Default 5.48 5.00 579 4.83
Presolve | Aggressive | 6.01 6.11 6.70 5.78
Fast 4.44 5.43 480 4.44
Off 0.76 5.23 0.61 0.17

The same options are available for both the Presolve and Heuristics settings and the results for average
run-times on iterations can be found in Table 6. These are the mean run-time values over 500 runs evaluated
using multi-threading. These results show a massive impact of the Presolving setting on the run-time. Setting

14

it to ”Off” makes solving an order of magnitude faster in all cases except for Aggressive Heuristics. The
relative impact of the Heuristic setting is much smaller, but still, the quickest solving times are found when
turning the Heuristics off completely.

Table 7: Solution improvement proportions

Heuristics
Default Aggressive Fast Off
Default 16.25% 9.5% 19.25% 17.25%
Presolve | Aggressive | 16.5% 14.5% 17.25% 17.25%
Fast 16.5% 11.25% 18.25% 15.25%
Off 2.75% 2.75% 5.5% 4.5%

For this ordering step to be practical in the global optimisation algorithm, the time it takes to get a solution
should be in line with the probability of finding a different, better solution than the Fixed Budget solution.
The proportion of improved solutions is computed for the different SCIP settings to assess this effectiveness.
The results are found in Table 7. This shows that although the Presolving setting considerably increases the
solving time, it also significantly increases the chance of finding a better solution. In this isolated scenario, it
is impossible to make the trade-off between computational time and the chance of finding better solutions, as
only their impact on the global optimisation algorithm is relevant.

This second step takes much less time in the global solving process than the previous target selection step.
This is primarily because the problem instance considered in this step is much smaller. The Fixed Budget
problem considers all targets in the given problem, while the Full Tour problem only considers the targets
that are part of the previous solution. But also, when comparing problems of similar size, the second step
seems more straightforward to solve. A Fixed Budget problem instance with five targets and 100 time steps
on average takes 1.86s to solve (see Table 4), while the Full Tour problem with the same values only takes
0.174 seconds on average. This is likely a result of the different constraints for both problems. The Fixed
Budget problem has multiple sets of inequality constraints (Equations 6, 7 and 8), allowing tours not to visit
every target. These are replaced with equality constraints (Equations 16, 17 and 18) in the Full Tour problem,
where it is required to visit all targets. The equality constraints leave a much smaller feasible domain to be
searched.

TRAJECTORY OPTIMISATION

The last step in the solving process aims to optimise the ToF values for the trajectory produced by solving
the Full Tour sub-problem. This trajectory is guaranteed to be the cheapest order to visit these targets, given
the constant ToF values that were initially assumed. Now, the targets and their order are considered fixed,
and the objective is to find the ToF value for every leg of the trajectory, which results in the lowest possible
total cost for the entire trajectory. This sub-problem is called the “Fixed Tour” sub-problem. As the ToF
values will now be variable, the problem formulation and solving process substantially differ from those in
the previous steps.

Problem Formulation

Even though the implementation for this sub-problem is significantly different, the idea behind the formu-
lation is the same as for the Fixed Budget and Full Tour problems. There is a set of binary x variables that
represent possible trajectory arcs that are selected to either be part of the solution trajectory or not. These
are the only variables to solve, making this sub-problem a BILP. This formulation differs from the previ-
ous sub-problems in multiple ways. The Fixed Tour optimisation problem formulation is given in Equations
21-24.

The input to this problem is a complete trajectory (1), of which the exact order will be followed. 1" consists
of a set of consecutive arcs (a). One arc represents three targets previously shown as ¢, j, k. Every arc a then
consists of two legs, one inbound (aq, e.g. from ¢ to j) and one outbound (as, e.g. from j to k) and each

15

minixmise E g E g Ct,a,tofy ,tofy * Lt,a,tofy ,tofy (21)

a€T tEtpa tofy Etof,, tofz Etofq,
subject to
Tt,a,0f, tofs € 10,1}, forall ¢, a,tofy, tofy (22)

S Y Y sracten =1, forall a€T 23)

tEtp, tofy Etofa1 tofy Elofa2

§ ztA,aA,toflA,long - § xtB,aB,tole,tosz = 07

tofl 4 Etof, tofa , Etof,.
14 B 2p (24)
forall as €T,ap €T,t4 € tp,,,tofs, € tof,,,,

with a9y = 0,1}37t0f1B :tOng,tB =14 +t0f2A

leg has a ToF (tofy, tofz). To get the cheapest possible solution, optimal values for tof; and tof; need to be
found. However, these optimal values cannot be searched for directly by setting all ToFs as variables, as this
would break the problem’s linearity. To work around this issue, the ToF values are varied over a small discrete
number of available values. tof,, and tof,, represent the sets of available ToF values for the inbound and
outbound legs of arc a. The binary decision variables now represent the statement: the spacecraft travels
the three-point arc a, passing the middle-point at time ¢, with a flight time of tof; for the inbound leg, and a
flight time of tofs for the outbound leg. Again, for every x, the AV required to include that specific arc in
the solution is computed. This cost is represented by the c; 4 tof, 1o, Values. The set of possible timestamps at
which a target can be visited is called tp,, where the target considered is the middle point of three-point arc
a.

The objective, Equation 21, is to minimise the sum of the AV of all active arcs in the solution. Equation
23 ensures that every arc of the Full Tour solution is included exactly once, and Equation 24 ensures the
continuity of the resulting trajectory. A and B represent consecutive arcs of the trajectory. The trajectory arcs
and their order are already determined. Still, the continuity constraint enforces that the arrival and departure
times match at every target and match the chosen flight times between the targets.

With the discrete set of allowed ToF values for every trajectory leg, timestamps can be determined at which
every target could be visited. The values in this set and the size of the set depend on the possible ToF values
and the number of legs travelled before reaching the target. For example, one could consider three possible
flight times for every leg of the trajectory: the constant value given in the previous step, a ToF of 1 timestep
shorter, and a ToF of 1 timestep longer. In this case, as the starting point is fixed at t = 0, the trajectory’s
first target can be visited at three different times, corresponding with the three possible flight times for the leg
from the start point to the first target. So, the leg from the first to the second target has three possible start
times and three possible flight times. As the start times and the flight times are three consecutive numbers of
timesteps, the second target could be visited at five different times. This way, all possible times for visiting
all targets along the trajectory can be expanded, producing the ¢p, sets.

As the expansion of all possible trajectory arcs can quickly lead to an excessive number of variables, the
ranges in which the ToF values are considered need to be reasonably small. The result is a trajectory with
optimised values within their small ranges. Still, there is a high probability that the actual optimal value could
be outside the initial considered range. To reach the actual optimal flight times, the solving is done iteratively.
After an iteration, the ToF values in the solution are checked, and if a value is at the bound of the range, the
range is shifted. If the value is found at the lower bound, it is taken as the new upper bound, expanding
the range to lower values for the next iteration. When a solution is found for which none of the bounds are
required to be shifted, the iterations stop, and the solution is considered the optimal solution.

Given the formulation of this sub-problem and the fact that the ToF value that is part of the previous
solution will always remain available in the range for the next iteration, the solution for every next iteration

16

is guaranteed to be equal to or better than the previous iteration. Where better means the total AV of the
trajectory is lower. This means that after this last step, it is very likely that an optimised solution is found
that has a lower cost than the initial solution found for the Fixed Budget sub-problem. This is why the cost
limit in that first step can be increased relative to the actual mission limit in a global optimisation context. In
that case, the real limit would need to be checked after solving this final sub-problem. An optimal solution is
found if the cost is below the actual limit.

The solution found by solving the Fixed Tour sub-problem is guaranteed to be the cheapest trajectory
through the given targets in the given order. It is not dependent on the initial ToF values that are used. This is
still a locally optimal solution in the global optimisation context, as the targets and their order were produced
by solving the previous sub-problems that are highly dependent on the initial ToF values.

Evaluation

The problem is solved in an iterative manner, where with every iteration, the ToF ranges for the legs of
the trajectory are shifted if necessary to finally find the solution with the lowest possible cost for this specific
trajectory. The performance of this sub-problem is evaluated in combination with the other sub-problems.
This means the Fixed Budget sub-problem is solved to provide a subset of targets, and the Full Tour sub-
problem is solved to get the optimal order, which is used as input to solve the Fixed Tour sub-problem finally.
The Fixed Budget problem is initiated every run with randomly generated ToF values. The problem instance
considered is the same as the one used to evaluate the Full Tour sub-problem. Relevant problem parameters
can be found in Table 5. To compare the different SCIP settings only runs with five target solutions are
considered.

Table 8: Total run-times for different combinations of SCIP settings in ms

Heuristics
Default Aggressive Fast Off
Default 115.3 436.9 124.4 148.7
Presolve | Aggressive | 126.5 385.9 1437 1272
Fast 101.7 470.3 113.6 136.8
Off 60.4 401.4 509 324

The same options are available for both the Presolve and Heuristics settings. Table 8 shows the average
results for different setting combinations over 500 runs, evaluated using multi-threading. Some of the same
general trends as in the previous sections are seen. Setting Aggressive Heuristics significantly increases the
solving time, while Aggressive Presolving can be quicker than Default and Fast. Still, turning both settings
to Off gives the fastest solving time by a large margin. As for the Fixed Budget problem, the SCIP settings
are not considered to impact the quality of the solution, only the time it takes to reach it. For this reason, the
setting giving the quickest solving time is considered the best.

Notably, the time needed to solve this sub-problem is much shorter than the other sub-problems, especially
compared to the Fixed Budget sub-problem. For all settings, the average solving time is only a fraction of
a second, while the found impact on the solution is tremendous. On average, optimising the flight times
reduces the trajectory cost resulting from the previous sub-problem by more than 50%, with cases where the
reduction is up to 99%. This shows this sub-problem is a critical part of the solving algorithm, and the high
efficiency observed in solving it is very positive.

The Fixed Tour solver’s performance depends on the time per single evaluation and the number of iter-
ations needed to reach the optimal solution. The number of iterations is not expected to rely on the SCIP
settings but rather on the initial ToF values and the width of the ToF ranges used. This is confirmed by
comparing the number of iterations and the solving time per iteration between different settings. For this test
problem instance, the average amount of iterations varies between a minimum of 7.45 and a maximum of
8.44 for different setting combinations, with standard deviations of 3.1 and 3.8, respectively. This difference
is considered insignificant, and the variation is thus independent of SCIP settings.

17

Table 9: Average number of iterations for varying n.,, and ToF range widths

ToF range
2 4 6 8
4 | 1038 6.68 4.83 5.00
998 6.17 490 4.17
6 | 860 526 4.65 344

wn

Ty

—&— ToF range = 2
0.6 - —@— ToF range = 4
—e— ToFrange =6
—8— ToF range = 8
0.5
2 0.4 -
w
E
=
2
50.3-
=]
(%3]
0.2
0.1 4 B —
B . -
*r—

T T T
4.00 4.25 4.50 4.75 5.00 5.25 5.50 575 6.00
Number of targets

Figure 1: A plot showing the time needed to solve problems with varying amounts of targets. A comparison
is made between different ToF range widths.

A ToF range of 2 means that the values from ToF-1 until ToF+1, where ToF is the constant ToF value
given at the start of the Fixed Budget problem, are considered in the initial iteration of solving the Fixed Tour
problem. So, three possible ToFs are considered for every trajectory leg: [ToF-1, ToF, ToF+1]. A ToF range
of 4 extends this to: [ToF-2, ToF-1, ToF, ToF+1, ToF+2], etc.

Reasonably, a wider ToF range reduces the number of iterations necessary to find the optimal solution. Still,
it also increases the complexity of the problem to be solved every iteration. Table 9 shows the average number
of iterations needed to reach the optimal solution for different ToF range widths. Although the reduction is
apparent, it is not 1:1 with the range increase. Doubling the range leads to roughly 1/3 reduction of iterations.
Figure 1 shows the total solving times corresponding to different ToF range widths. Total solving time means
the time needed to solve all the necessary iterations to reach the optimal solution. The plot shows that the
effect of the increased complexity outweighs the reduced number of iterations. The solving time increases
significantly with the width of the ToF range. So, the smallest possible ToF range of 2 will be used going
forward.

GLOBAL OPTIMISATION

The Fixed Budget, Full Tour and Fixed Tour sub-problems form the core of a global optimisation algorithm.
Given a set of initial constant ToF values, solving these sub-problems sequentially gives a locally optimal
solution to a specific problem instance. The dependence on the initial ToF values makes the solution locally
optimal. The global optimum will only be found if specific initial ToF values are used. No simple methods
or heuristics are known to compute or guess these initial values, so they must be searched using a global

18

optimisation algorithm. PyGMO’s “Extended Ant Colony Optimization algorithm”, GACO, which allows
for parallel batch computations, is used as an optimisation engine. The objective is to find a solution which
visits the highest number of targets, and for solutions with the same number of targets, a solution with a lower
AV cost is considered better. As the algorithm works with a single objective, the objective to be maximised
is defined in Equation 25. The cost will always be smaller than 100 km/s, so this definition guarantees that a
solution with a higher number of targets always has a better objective value while preferring a lower cost for
the same number of targets.

0bj = Nargets * 100 — AV (25)
Table 10: Default parameter values Table 11: Known optimal tour for six targets

Parameter Value Target ToF [days] Cost [km/s]
Clnax, km/s 15 Start: Earth | 65 -

Ny 6 2006QV89 | 70 0.261

ny 100 2006XP4 65 0.667
Time-step, days | 5 2008EP6 105 0.431

to, MID 58677 2007KV2 115 0.605
Population size | 20 2005XN27 | 30 1.726
Iterations 50 2006TB7 - -

Chax multiplier | 4 Total 450 3.690

To analyse and validate the global optimisation algorithm, a problem instance is created which is as similar
as possible to a known solution of the GTOC4.!® This instance is made with the targets visited in the solution
by MSU, which won the competition. If an instance with six targets is mentioned, the first six targets visited
by the MSU solution are part of the problem instance. Other default problem parameters are found in Table
10. This relatively small problem instance allows the production of results in reasonably short computation
times. tg is when the first transfer departs from Earth’s position. Its value is derived from the MSU solution
to match the time of their departure from Earth.

The population size and the number of iterations are parameters for the GACO algorithm. The Cpax
multiplier is a factor with which Ci,.x is multiplied before solving the Fixed Budget sub-problem for the
first time. As the reasonable expectation is for the cost of the solution to be significantly improved when
solving the Fixed Tour sub-problem later, this can still lead to a feasible solution for the global problem. An
iteration is made if the Fixed Tour sub-problem returns a solution with a cost higher than C\, .. First, the
ToF values for the trajectory legs part of the Fixed Tour solution are updated to the optimal values found.
Then, all three sub-problems are solved again, but C\,., for the Fixed Budget problem is set to the cost of
the previous solution of the Fixed Tour problem. This new iteration will either return a trajectory with the
same number of targets and a lower total cost or a solution with a lower cost and a lower number of targets.
These iterations are repeated until a solution is returned with a total AV cost below the global Cy,,x budget.
Ideally, the number of iterations is as low as possible to reduce solving time while setting the C,. multiplier
as high as possible to increase the feasible space that is initially being searched.

So, the global optimisation algorithm evolves a population of individuals represented by a set of initial
ToF values. In every iteration, the population is evolved and evaluated. The evaluation of an individual
consists of solving the three sub-problems sequentially until a feasible solution is found. With Equation 25,
the fitness value corresponding with this individual’s solution is calculated. The higher the fitness, the better
the individual. In every iteration, the fitness of the whole population is evaluated, and the best-known values
are updated before starting the next iteration.

Using this global optimisation algorithm, an optimal solution is found with the problem instance based on
the values in Table 10 and the first six targets from the MSU solution. Table 11 shows the trajectory, with the
order in which targets are visited, the flight times for the trajectory legs, and the AV cost of the manoeuvres.
Figure 2 visually compares the results. This shows that the algorithm’s result closely corresponds with the

19

1.05

1.00

Distance to the sun [AU]

0.95

58,677 59,000
Time [MJD]

Figure 2: Comparison between the known and generated solutions. The markers represent the fly-by of

a target. The blue line and red markers show the GTOC4 result by MSU.'® The orange line with yellow

markers shows the result produced with the global optimisation algorithm.

known solution from GTOC4. Even with the differences in propulsion models and the algorithm using a fixed
timestep of 5 days, the order in which targets are visited is exactly the same, and the timing and location of
the visits are close to identical. This resemblance confirms the validity of the solving method. It shows the
default parameters to be well-suited as base values for performance analysis, as the known optimal solution
can be found with this setup.

Table 12 summarises the results from multiple comparative solving runs. Different setups and parameters
for the global solving algorithm are compared by solving the problem instance with six targets five times. All
values in the table are averaged over the five runs for that setup. In every column, the value considered best
is marked green. Extensive tuning of the global optimisation algorithm is outside the scope of this research.
Only the newly developed algorithm’s integral and critical parameters and settings are analysed. The base
setup is the setup shown in Table 10, used to produce the results found in Table 11 and Figure 2. First, the
impact of the Cy,,x multiplier and the SCIP settings in the Full Tour sub-problem are analysed.

The results show the expected impact of changing the C'y,,x multiplier. Reducing it decreases the number
of iterations within evaluations, as a smaller improvement of the solution between the Fixed Budget and Fixed
Tour sub-problems is needed to produce a globally feasible solution. This results in shorter solving times,
a reduced objective value for the average found solution and a reduced probability of finding the optimal
solution. Increasing the C\,.x multiplier shows opposite results: Higher iterations per evaluation, higher
solving time, better average solutions and a higher probability of finding the optimal solution.

An interesting observation is that the solving time is primarily dominated by the Fixed Budget solving step
in all cases, except where the computational effort in the Full Tour step is explicitly increased by turning
the use of Presolving and Heuristics on. ”Aggressive ordering” corresponds with setting both Presolve and
Heuristic settings to Fast when solving the Full Tour sub-problem. Using this setting significantly increases
solving time, while the other parameters are only slightly better than for the base setup. “No ordering”

20

Table 12: Performance statistics for different solver setups. All values are the average of 5 runs performed
at the same setting. 1: Best objective, 2: Iterations until best objective, 3: Average solving iterations per
evaluation, 4: Average targets in evaluation, 5: Average solving time per evaluation [s], 6: Percentage solving
time Fixed Budget, 7: Percentage solving time Full Tour, 8: Percentage solving time Fixed Tour.

Setting 1 2 3 4 5 6 7 8
Base 637.0 202 145 449 425|949 45 0.6
Clnax 2X 5977 272 1.09 399 397|975 20 0.6
Chax 10x 676.7 250 183 4.89 476|892 10.0 0.8
Aggr. ordering 676.7 242 139 460 752|515 481 03
No ordering 656.8 378 141 459 442|993 00 0.7
Nyeeds = D 656.7 142 147 4.64 506|939 55 0.6
Ngeeqs = 10 6963 198 140 496 544|922 72 0.6
Nyeeds = 20 657.0 220 148 471 500|937 57 0.6
No iterations:

Chnax 2X 696.3 13.6 1.00 4.69 623|959 37 04
Clnax 4X 6963 256 1.00 525 631|926 6.8 0.5
Cax 10x 696.3 198 1.00 5.61 635|867 125 0.9
Chax 10X, no ordering | 696.3 9.0 1.00 575 5821 99.0 0.0 1.0
Chax 15%, no ordering | 696.3 15.6 1.00 5.84 5.07 | 989 0.0 1.1

skips solving this sub-problem completely. The result from the Fixed Budget problem is directly input into
the Fixed Tour problem. In Table 12, the "No ordering” case shows performance parameters similar to the

Aggressive ordering case but with a much shorter solving time.

650 /
600 4 Vi
R ’
] ,/ II
L 550 7 7 —
= I A] -
] ~ £
s n I Fa r". A 1
w ,’l‘ noo~et i 'll PR Iy ke -1 J
; 500 £ - 4y \‘ i l. ’t \‘ ’\'; \ - ' s y
5] 0 ! I 1 lf~ ! [1 1 ’
- ! 1 \ s
£ S Sl /w(l\'_‘\ Lrs ! "1 ! VS ! \ /.
1 - ’
8 ’ vt VA ,?\ \ “4‘2_-4 F J., ! L ;
450 AP i W | WP 8 ol A WL LY SN N 1 AR S { At
£] v sy OF L7y Moy VT A ‘- v/
PP e IR V) o S N (W / ' . VA
AT, AY L Aoy \ v/ -
[A / [1= a W A (s —— base
MUN_ T - \ ’ [
,'ﬂ)f’ R v/ ’ L .
400 xJ ¥ ¢ v v —— max_cost * 2
Vi
\ —— max_cost * 6
350 —— aggressive ordering
—— no ordering

T
0 2000

T
4000

T
6000

T
8000

T
10000

Computation time [s]

Figure 3: Optimisation performance for different C,,x multipliers and ordering settings per total compu-
tational time. Solid lines plot the best-known objective in the population. Dashed lines plot the average
objective of the population.

Figure 3 visually represents the solving results. It shows the progression of the best-known objective value
(continuous lines) and the population’s average objective value (dotted lines) over time during solving. Most
of the cases show significant variances in the average values. The behaviour of the GACO algorithm can
explain this. The algorithm aims to find a better solution by converging towards the current best-known
solution. This process is reset to avoid getting stuck near local optima if a better solution is not found in a
predefined number of iterations. This resetting would explain the sharp reduction in the average objective
value of the population and the following increase as the population again converges. As the settings that are

21

compared influence the solving time per iteration, the visual comparison is made over total computational
time instead of the number of iterations. So, while all runs have the same number of iterations, it can be seen
that a setting with a short solving time, like with C},,x multiplier = 2, terminates much earlier than other
settings. The computational time in the plot is computed as the sum of the run-time for all evaluations. In
reality, ten evaluations run in parallel, but this does not impact the relative performance between the cases.

The plot shows that increasing the C\,,.x multiplier benefits the algorithm’s performance. It helps find better
solutions more quickly than any other setting. It also shows that the significant increase in solving time for the
”Aggressive ordering” makes that setting relatively slow to find better solutions. It does find good solutions
eventually, but the computational time it takes is a considerable disadvantage. Especially considering this
is a simple testing problem, when scaling the instance size, this run time difference is expected to increase.
Using ”No ordering” shows very similar results to the base setup. It does not offer a clear benefit over the

base setting, but this also means there is no clear benefit of using the Full Tour sub-problem in its base setting
compared to not using it at all.

Another possible improvement to the global optimisation algorithm is considered in seeding the initial
population. The algorithm searches for the best initial ToF values to produce the best possible solution.
By default, the initial population consists of randomly generated individuals. If there is a different way to
initialise the individuals, resulting in better initial objective values, this is very beneficial for the algorithm’s
performance. There is no simple way to guess the best initial ToF values accurately. Instead, a straightforward
policy is considered: a seeded individual is initialised with a constant ToF value for all (¢,4,7). A set of
these individuals could make a good base for quickly evolving a population to an optimal solution. The
constant values that will be used depend on the number of individuals seeded and the number of timesteps
in the problem instance. The value for the first seeded individual is taken as 7;/(2 * 7geeqs), and every next

individual will have the value of the previous plus the first value. So an instance with n; = 100 and ngeeqs = 5
will use values 10, 20, 30, 40 and 50.

Table 12 shows the results for three different cases. The case with ten seeded individuals in a total popula-
tion shows the most promise. It shows the highest probability of finding the optimal solution; it was found in
all of the five runs. Also, the iterations per evaluation are low, while the average solution has a high number
of targets. This would suggest that the average quality of the individuals in the population is the highest. In

Table 12, all cases with seeded individuals show longer solving times than the base setup. This can likely be
attributed to the average solution’s higher number of targets.

700 1 — base
5 seeds
6501 — 10 seeds
—— 20 seeds
600
A !
= 550 S ’ \ et .
B4 oo / \ ’ \ .r
v 13 \ I \ \ /
> . i / \ B INT A \]
2 AT AV [== \ LY Y
S 500 4 77\ v x — =7 v N AR,
o " 7N 1 \ I sk \ LY AN
o / \ \ Ay ; o I \ /
o - Wi S0 KT N A7 Ny 1o * \ /
P ’/r \‘ ‘,\\\) /, AN RN \\\ ¥ 1 L~
4 . ~ P Al a LY
450 47 hY \ P V7 Lk\.t l)_'”\’ N - N _-!" ‘\ /”
- - - -
-7/’! \ \ ~ & 4 \ " \ (e
/ \ A s A . v N7 -
Ay \ IRLONGT N el A A
400 2E2 4 LR A A y
e N 7 v 7
24 /
_’vq"
/’/j
350 1=
z
T T T T T T T
0 1000 2000 3000 4000 5000 6000 7000

Computation time [s]

Figure 4: Optimisation performance for different numbers of seeded individuals in the initial population.

Solid lines plot the best-known objective in the population. Dashed lines plot the average objective of the
population.

22

A visual representation is given in Figure 4. This plot shows that seeding considerably affects the initial
best objective value in all cases. This supports the theory that using seeds with a constant ToF value helps to
produce high-value individuals in the initial population reliably. The population averages are not immediately
much higher but converge to higher values more quickly, especially for the case with ten seeded individuals.
With the best performance seen for the case with 10/20 seeded individuals, it is concluded that a population
that consists of 50% seeded individuals and 50% random individuals is optimal. This is the setup that will be
used going forward.

A final possible improvement is considered. It has been shown that increasing the C\,,.x multiplier pos-
itively impacts the algorithm’s performance. However, it also results in an increase in iterations during the
evaluation of individuals. Increasing the multiplier increases the chance of finding infeasible solutions, which
are always iterated. However, the data shows that these iterations are not at all effective. In all analyses un-
til now, 40,000 individuals have been evaluated. Of the 15,303 individuals that needed multiple iterations
to be solved, only five resulted in the global optimal solution. Meanwhile, the global optimum was found
for 1,306 of the 24,697 individuals solved in a single iteration. This shows that the chance of finding the
optimal solution with an individual that is infeasible after the first iteration is close to zero. So, any effort
put into the following iterations is wasted. As an alternative to making these iterations, a case is analysed
where individuals that produce an infeasible solution on the first iteration are given a penalty objective value
of —2 % Crhax.

This should allow to raise the Cy,a.x multiplier and increase performance while reducing the compromising
increase in solving time. As seen in Table 12, increasing the multiplier increases the average number of targets
in the solutions. This, in turn, leads to increased solving time, most notably in the Full Tour sub-problem,
which can be seen to only require 2% of the computational time with a C,. multiplier of 2, while it takes
up 10% of the solving time when the C\,,x multiplier is 10. So, with an increasing multiplier, removing the
Full Tour sub-problem from the algorithm might be increasingly beneficial. Table 12 shows that the results
for all cases not using internal iterations are auspicious. All five runs per setup result in the global optimal
solution in less than 50 iterations. As expected, increasing the C',,x multiplier leads to an increase in average
targets in the solutions and an increase in the proportional solving time needed to solve the Full Tour sub-
problem. Disabling that sub-problem shows excellent benefit in this case. In Table 12, it is seen that the
average solution quality rises even further while solving times are significantly reduced.

700
600 {== ek
A
X ! ‘\ -
- ay I L=
4 ', ’ o VP -
500 = y N, SrCAY A v N 7S
P \ P N I S, - ~H= . \ s
o —— - \ T P VL m) P \‘\ - ’ \ -
E =T N '« <~ Rl i ’ Nz ! \, -
—— - 1
S 400 — - <# FANN = T i e | 7 t v
g — A AR N PO 2l n A Py AL S /
> - ! < oA N \ X [/
] I S Y ok A YA VA i [/L
g A FRE Iy on N Y ERNN sl | P KA
2 M AN WA . | R, oy 4R A St
= 300 T = N - N S Ak At (F e N\ Vi ~
© P ;o 4 vt N T R s Min T \ |\ PN N
i N/ \ ’ VT Lk FRSN i gt VAN =t v e
! ! A Vod NN AL A S 1
A rj-v . % AN ,: AR V) Vi L AN, s \/ Vi —— base
] . robl . - s
20097 O 7 KN W A B iy B Ry i RSO v .
! Ad A N g AN ’ vt A AN % v, Cmax 2x
Yy N N I / v
NG TN N \ — cmax 5x
100 st A ;. e hd LY, —— Cmax 10x
7 \ s / - .
ﬁ.\/ rt YN ¥ F —— Cmax 10x, no ordering
; \ v :
Q;,." i ~ > —— Cmax 15x, no ordering
0 == T T T T T T T
] 1000 2000 3000 4000 5000 6000 7000

Computational time [s]

Figure 5: Optimisation performance for different setups not using internal iterations. Solid lines plot the
best-known objective in the population. Dashed lines plot the average objective of the population.

These results are also visualised in Figure 5. The impact of penalising the infeasible individuals instead of
iterating them till feasible is seen in the much lower population averages. It also shows that the best-known
objectives for the high C\,.x multiplier setups are low, but these very quickly improve and surpass the best
solutions of the lower C',,,x multiplier setups. It is interesting to see that increasing the Cl,,x multiplier from

23

10 to 15, when not using ordering, significantly reduces computational time while keeping good performance
considering the best objective value. Still, the 10x setting reaches the best objective value much sooner
regarding time and iterations. From the data, it is concluded that not using internal iterations and not using
the Full Tour sub-problem, in combination with using a high Cy,, multiplier, maximises the algorithm’s

performance.

i I
| :
oo -
~ - %
‘|'I 1.20F - S CERTETEPRITRE
I ‘I'I : :
| : :
| | |
| |
: - :
R R REEREEERES f ____________ 115
= : 4 3 | ‘
= N — :
& : 5 ' ,f 2
Q2 . n :]
= . 2 Y DU T P -
2 : £1.10 : 11
ug | I g i :1
8 | JI - | A
Eloo ----- L ------ J j -------- % ‘
a ’ B o5l e ... 5
[| [=han]]
| | |\
l! .
fl_ |
i 1.00) 3
[| |
[B |
095_‘ I N . l
* \
y
o
58,662 59,000 Time [M)D] 59'500Time (M) 60,000

Figure 6: Comparison between the first 8 targets of Figure 7: Comparison between the second 8 targets
the GT0C4 solution from The Aerospace Corpora-of the GTOC4 solution from The Aerospace Corpora-
tion,'® and a solution created with the proposed algo- tion,'® and a solution created with the proposed algo-
rithm. rithm.

To show the performance and accuracy of the improved global optimisation algorithm, four different test
cases are considered. These are four different problem instances designed to correspond with known GTOC4
results directly. Figures 6 - 9 show the comparative results for all cases. The orange lines show the solutions
produced with the algorithm, and the blue lines show the known solutions from Reference 16. All plots show
the distance from the Sun over time, and the markers represent target fly-bys. This form of visual comparison
is used because this is the only form in which the GTOC4 results are available. Two cases are taken from
The Aerospace Corporation’s solution and two from ESA’s Advanced Concepts Team’s solution. For these
solutions, the visited targets and their order are known. To create the problem instances, the initial departure
from Earth and the visit of the 8th target are chosen as two different starting points. The following eight tar-
gets visited in the known solution then make up the set of targets available for the problem. This makes four
instances. In all instances, 160 time steps of 5 days, a Ciax of 10, a Chax-multiplier of 10 and a population

size of 20 are used.

24

1.15 :
. 1.20
— : =
2 : =3
. c
c .
5110 : %
i
£ :
£ : £
- L]
8 : $1.10
£ : i
2 . o
& : B
105 == e L
1.05-%--- 8
j
F, : . |‘
100/'\. 100<‘I‘
60,000 Time [MJD] 60,500 60,602 61,000

Time [M]D]
Figure 8: Comparison between the first 8 targets of

the GTOC4 solution from ESA’s Advanced Concepts Figure 9: Compa.nson between,the second 8 targets of
16 . . the GTOC4 solution from ESA’s Advanced Concepts
Team, ° and a solution created with the proposed algo-

rithm Team,'® and a solution created with the proposed algo-
' rithm.

All instances are solved five times, and the best solution found for each case is shown in Figures 6 - 9. In
these plots, a close resemblance between the known solution and the solution produced with the proposed
algorithm is seen. In all four cases, a solution is found that can visit all targets in the 8-target set, and in all
cases, the targets are visited in the same order as in the known result. Still, the results are not perfect matches.
Both Figure 6 and Figure 9 show differences at the plot peaks. Likely factors impacting these changes are
numerical errors in propagated state histories for the targets. Depending on the initial state, the propagation
might lead to a larger or smaller error in the propagated state. Also, the timing of the visits is relevant. Using
a time step of five days is likely to lead to mismatches in visit times with the known solutions. This difference
in time causes a difference in position, which is most notable in the trajectory’s extreme points, the peaks in
the plots. Figure 7 and Figure 8 show the most significant divergence between the plotted lines near the end of
the trajectory. Of influence here is the difference in final conditions. The known solutions are segments of a
longer trajectory. The visits of the last targets are, in those cases, chosen optimally, considering the following
targets they will be visiting. The solution created with the algorithm is open-ended. This makes it likely that
the optimal time and place to visit these last targets is different.

25

So, the differences can largely be attributed to numerical errors and implementation differences. They do
not have a significant impact on the solution, which critically consists of the chosen targets and their order.
These test cases show that the global optimisation algorithm can consistently and accurately re-produce the
best-known solutions for problem instances with different starting points and target sets.

CONCLUSION

This paper proposes a global optimisation algorithm for complex combinatorial space routing problems.
First, the problem is split into sub-problems, which are solved sequentially using SCIP. The sub-problems
are all formulated as binary integer linear programmings. Solving the first sub-problem, called the Fixed
Budget problem, produces a subset of targets from the problem instance, then solving the Full Tour problem
orders these targets, and finally, solving the Fixed Tour problem optimises the time-of-flight for each leg of
the trajectory to minimise fuel consumption. The global optimisation algorithm then searches for the initial
values for which solving the three sub-problems sequentially produces the best possible solution.

The results show that the algorithm dramatically benefits from simplifications that were made. Turning
off both the iterations within the evaluations and the Full Tour sub-problem reduces computational times,
allowing an increase in the C'y,,x multiplier, which increases the chance of finding solutions with a higher
objective value. Using a C',,x multiplier of 10 has shown the best performance for the considered test case.
Using this, the optimal solution was found in every one of the five runs, in an average of 9.0 optimisation it-
erations, with an average computation time of 5.82 seconds per evaluation. The algorithm can also reproduce
the best-known result for all four considered test cases taken from GTOC4. This shows that the proposed
optimisation algorithm and the underlying sub-problems are valid and produce accurate results. However,
considering scalability to larger, more complex problem instances, improvements are needed before this al-
gorithm can practically be applied. Solving the Fixed Budget sub-problem requires the grand majority of
computational resources. To be practical, the solving time for this specific step should be improved consid-
erably. Future research into improving this specific solving step by tuning the setup and hyper-parameters or
considering different problem methodologies or formulations could be of interest.

REFERENCES

[1] L. Casalino, G. Colasurdo, and M. R. Sentinella, “Problem Description for the 3rd Global Trajectory
Optimisation Competition,” 2007.

[2] A. E. Petropoulos, “Problem Description for the 6th Global Trajectory Optimisation Competition,”
2012.

[3] D. Izzo, “Problem description for the 9th Global Trajectory Optimisation Competition,” 2017.

[4] A. Lodi, “MIP Computation,” 50 years of integer programming 1958-2008, 2009.

[5] E. Balas, S. Ceria, G. Cornuéjols, and N. Natraj, “Gomory cuts revisited,” Operations Research Letters,
1996.

[6] R. Gomory, “An algorithm for the mixed integer problem,” Tech. Report RM-2597, 1960.

[7] R. Bertrand, R. Epenoy, and B. Meyssignac, “Problem Description for the 4th Global Trajectory Opti-
misation Competition,” 2009.

[8] K. Bestuzheva, M. Besancon, W.-K. Chen, A. Chmiela, T. Donkiewicz, J. v. Doornmalen, L. Eifler,
O. Gaul, G. Gamrath, A. Gleixner, L. Gottwald, C. Graczyk, K. Halbig, A. Hoen, C. Hojny, R. v. d.
Hulst, T. Koch, M. Liibbecke, S. J. Maher, F. Matter, E. Miihmer, B. Miiller, M. E. Pfetsch, D. Rehfeldt,
S. Schlein, F. Schlosser, F. Serrano, Y. Shinano, B. Sofranac, M. Turner, S. Vigerske, F. Wegscheider,
P. Wellner, D. Weninger, and J. Witzig, “The SCIP Optimization Suite 8.0,” technical report, Optimiza-
tion Online, 12 2021.

[9] T. Achterberg, “SCIP: solving constraint integer programs,” Mathematical Programming Computation,
2009.

[10] E. B. Khalil, B. Dilkina, G. L. Nemhauser, S. Ahmed, and Y. Shao, “Learning to Run Heuristics in Tree
Search,” IJCAI, 2017.

[11] D. Izzo and M. Mirtens, “The Kessler Run: On the Design of the GTOC9 Challenge,” Acta Futura 11,
2018.

[12] D. Dirkx, M. Fayolle, G. Garrett, M. Avillez, K. Cowan, S. Cowan, J. Encarnacao, C. F. Lombrana,
J. Gaffarel, J. Hener, X. Hu, M. v. Nistelrooij, F. Oggionnil, and M. Plumaris, “The open-source astro-
dynamics Tudatpy software — overview for planetary mission design and science analysis,” Europlanet
Science Congress 2022, 2022.

26

[13] D. Izzo, “Revisiting Lambert’s Problem,” Celestial Mechanics and Dynamical Astronomy, 2015.

[14] S. J. Maher, M. Miltenberger, J. P. Pedroso, D. Rehfeldt, R. Schwarz, and F. Serrano, “PySCIPOpt:
Mathematical Programming in Python with the SCIP Optimization Suite,” Mathematical Software -
ICMS 2016, Vol. 9725, 2016, pp. 301 — 307.

[15] F. Biscani and D. Izzo, “A parallel global multiobjective framework for optimization: pagmo,” Journal
of Open Source Software, Vol. 5, No. 53, 2020, p. 2338, 10.21105/joss.02338.

[16] R. Bertrand, R. Epenoy, and B. Meyssignac, “Final Results of the 4th Global Trajectory Optimisation
Competition,” 20009.

[17] K. Mehlhorn and P. Sanders, Algorithms and Data Structures: The Basic Toolbox. Springer, 2008.
[18] J. Clausen, “Branch and Bound Algorithms - Principles and Examples,” 1999.

27

Dynamical models

In this chapter, additional context and explanation on the dynamical and propulsion models used in the
context of the solver proposed in the paper in Chapter 2 is provided. Before the global optimisation
algorithm can be used to start solving the space-routing problem, a full cost matrix is needed. This
matrix contains the AV required for every possible fly-by at every time step. To compute these AV
values, the state histories for all targets in the problem are needed. In Section 3.1, the orbit propagation
used to create these state histories is discussed. In determining the cost of travelling from one point in
space to another, it is important to consider the propulsion system, explained in Section 3.2. Finally, the
method of calculating the required AV, using the propulsion system, is described in Section 3.3.

3.1. Orbit Propagation

In the GTOCA4 [8] problem, which is used as a test case, targets are considered for which initial Kepler
elements are provided. The state histories are then created by propagating the orbits from this initial
Kepler state, using the TUDAT software [24]. All propagation environments are set up using TUDAT’s
standard kernels and the J2000 orientation frame. For values that are not explicitly mentioned, defaults
are used.

Table 3.1: Constants

Parameter | Value
us, km3/s? | 1.32712440018 x 10!
AU, km 1.49597870691 x 108

First, the Keplerian elements are converted to a Cartesian state, using the Sun as the central body. This
is done with TUDAT’s keplerian_to_cartesian function and the constants found in Table 3.1. Angles
given in degrees are converted to radians using Numpy’s deg2rad, and the given mean anomaly is
converted to a true anomaly using TUDAT’s mean_to_true_anomaly. This Cartesian state will be used
as the initial state for the propagation. The only force considered in the propagation is the point-mass
gravitational force from the Sun, using the ps value from Table 3.1. The fourth-order Runge-Kutta
method is used to integrate, and the translational propagator from TUDAT is used. The total time for
which the state is propagated depends on the problem instance. The start time for the propagation
is determined by the epoch of the provided initial state, and the termination time is determined by the
problem’s start time and the number and duration of time steps.

The propagation does not necessarily use the same time-step duration as the optimisation problem. The
reason is that the accuracy for propagated states quickly reduces when larger time steps are used. The
propagation only needs to be performed once at the start of the solver run and takes little computational
time relative to the rest of the computation. This allows the use of a shorter step duration, providing
more accurate state histories. To make a trade-off, the position errors for different time step durations
are compared. As a baseline, a time step of 1 hour is used. The position errors relative to this baseline,

28

3.2. Propulsion Model 29

Table 3.2: Accuracy of propagation with different time-step durations

Time-step | Absolute error [km] Relative error [%] Run-time [s]
2 hours 0.0390 1.784 x 1078 0.842
4 hours 0.9959 4.704 x 1077 0.411
12 hours 194.4 9.531 x 1079 0.135
24 hours 5830 2.893 x 1073 0.066
48 hours 2.222 x 108 1.210 0.033

using longer time steps, are provided in Table 3.2. The errors are averaged over 45 propagated objects
taken from the GTOC4 data set. The 44 asteroids visited by MSU’s solution [22] and Earth are used
as objects. Both the absolute error and relative error are taken for the final position of the object after
propagating for a total duration of 12 years. The absolute error is computed using Equation (3.1), and
the relative error is calculated using Equation (3.2). In both, #is the position vector where the subscript
denotes the time step. For the problem instances solved in the paper, a maximum of 10 objects need
to be propagated for a total duration of roughly 15 years. With that context, the 4-hour time step is
considered a reasonable balance between run time and accuracy. The average absolute error of <1 km
is sufficient to make meaningful comparisons between results using these state histories and the results
from GTOCA4. Therefore, a time step of 4 hours is used for all propagations in Chapter 2.

Absolute error = |7 — 713 (3.1)

—

|7 — 71|

Relative error = —
|71 |

(3.2)

The propagation is done using the methods published in the TUDAT software. None of the methods or
computations is custom implemented. As the published software used is considered to be verified and
validated, the results for these propagations can be regarded as valid.

3.2. Propulsion Model

Velocity changes the spacecraft makes along the trajectory are modelled as impulsive shots. At the
time a manoeuvre is made, the velocity of the spacecraft changes instantly. There is no restriction on
the direction or the magnitude of the velocity change. Practically, at every fly-by, the velocity of the
spacecraft is instantly changed from its current velocity to the velocity that is needed to visit the next
target. How the required velocity is determined is explained in Section 3.3.

In the optimisation algorithm, the magnitude of the velocity changes is considered the cost of a manoeuvre.
In practice, to get this change in velocity, a propulsion system is needed, which uses fuel to change
the spacecraft’s velocity. The exact amount of fuel required would depend on the specifications of the
propulsion system and the mass of the spacecraft. As there is no need to compare different spacecraft
or different propulsion systems to optimise this specific problem, the AV can directly be used as a cost
parameter, and it can be considered equivalent to consumed fuel mass.

3.3. Lambert Problem

To solve for the optimal trajectory from target to target, considering impulsive shots are used at the time
of flying by a target, Lambert solutions [4] are used. Specifically, the LambertTargeterIzzo implemen-
tation from TUDAT [28] is used. To solve a Lambert problem, the initial position, final position, flight
time and gravitational parameter of the central body are needed as inputs. The flight time can have a
value of any integer number of time steps. The initial and final positions are taken from the propagated
state histories, where the time at the final position is the initial time plus the flight time. The ug value
from Table 3.1 is used for the central body. The targeter finds an exact Kepler orbit matching the given
inputs, giving the velocity vectors belonging to that orbit in the initial and final positions. These velocities

3.3. Lambert Problem 30

are then used to determine the needed AV at every target fly-by.

For example, to solve the trajectory from A to B to C, given the time of flight for both legs, the Lambert
targeter is used for both the leg from A to B and the leg from B to C. Both will give a velocity vector at
point B; one is the resulting velocity from the leg from A to B, and the other is the initial velocity for the
leg from B to C. The AV needed in point B is the magnitude of the difference between these two ve-
locity vectors. This method can be used to determine the required AV at every target along the trajectory.

As the TUDAT code base is considered verified and validated, the results produced with the LambertTargeterIzzo
are also regarded as valid. The velocity vectors from the Lambert targeter will be used to propagate the
spacecraft’s trajectory. To prevent the trajectory from diverging due to growing numerical errors, the
spacecraft trajectory is propagated leg by leg. At the start of a leg, the spacecraft is assumed to be at

the exact position of the target it visits. The initial velocity at that position is taken from the Lambert
solution. This initial state is then used to propagate the orbit to the next visit, again using a 4-hour time

step.

Table 3.3: Accuracy of propagation of Lambert solutions

Fly-by | Az [km] Ay [km] Az [km] Ar [km]

1 1.376 x 1073 4.011 x 1072 7.511 x 10~° —1.214 x 1072
2 —9.678 x 107* 2.773 x 107! —3.511 x 1073 2.067 x 10!
3 —4.446 x 1072 1.006 x 10~* —2.449 x 10~* 1.089 x 10!
4 4.952 x 1072 —2.338 x 1072 2947 x 1073 —1.233 x 1072
5 —4.315x 1071 3.352 x 1072 8.204 x 10~° —4.035 x 1071
6 2.949 x 10~1 6.247 x 10~ 4.631 x 1073 2.948 x 101

Table 3.3 shows the position errors found at every fly-by in the 6-target solution also used in the paper’s
Global Optimisation section. The delta value is the difference between the spacecraft position at the
end of the propagated leg and the target position taken from the earlier propagated state history. The
table shows the absolute position errors are <1 km in every case, and the errors do not grow throughout
the trajectory. Note that these are the position differences at the end of each leg. At the start of a leg,
the position error is nullified by assuming the spacecraft is at the exact position of the visited target. The
errors are considered acceptable for all purposes in this research.

Mixed-Integer Linear Problem
Optimisation

In this chapter, additional context and explanation on the implementation and optimisation of MILPs in
the context of the optimisation algorithm proposed in the paper in Chapter 2 is provided. The algorithm
implements and optimises different problem variations using the PySCIPOpt software [25], which will
be discussed in the following sections. In Section 4.1, the implementation of the similar Fixed Budget
and Full Tour sub-problems is discussed. Also, an explanation of the verification and validation steps is
provided. Then, in Section 4.2, the implementation for the Fixed Tour sub-problem is explained. The
mathematical formulation for these sub-problems can be found in the following sections of the paper:
Paper/Target selection (page 9), Paper/Target ordering (page 13) and Paper/Trajectory optimisation
(page 15). The focus of this chapter will be the specific software implementation that is used.

4.1. Fixed Budget and Full Tour

The Fixed Budget and Full Tour sub-problems are very similar concerning their implementation and
setup. Although the optimisation objectives are different, they use almost identical constraints. The Fixed
Budget sub-problem maximises the number of targets for a fixed cost, while the Full Tour sub-problem
minimises the cost for a fixed set of targets. Because of these similarities, the implementation and,
verification and validation of these sub-problems will be discussed simultaneously in this section.

4.1.1. Implementation

The sub-problem instances are solved with the PySCIPOpt code library [25]. The Model class is used to
set up the problems, as formulated in the Target Selection and Target Ordering sections of Chapter 2.
First, the x variables are created using Model .addVar. Every z variable represents a possible fly-by.
It corresponds with a time ¢, previous target i, fly-by target j and next target k. A variable is created
for every possible fly-by, meaning every combination of unique i, j, and & at every available time. All x
variables are binary variables, where a value of 1 means the specific fly-by is part of the solution, and a
value of 0 means it is not. Next, for every x variable, the AV cost values are computed using the method
described in Section 3.3. These are then used to add the relevant constraints to the Model instance using
Model .addCons, and the optimisation objective is set using Model.setObjective. In the Fixed Budget
case, the objective is the number of visited targets, which is maximised, while in the Full Tour case, the
objective is the total AV, which is minimised. After this setup, the Model .optimize method is used to
find the optimal solution. No custom settings or implementations are used except for the Presolve and
Heuristics settings, which are set using Model .setPresolve and Model.setHeuristics. The used
settings differ per sub-problem and are explained in Chapter 2.

31

4.7. Fixed Tour 32

It could be the case that no feasible solution can be found. In this case, an infeasible status is returned.
If a solution is found, a check is done to make sure the solution does not contain disjoint sub-tours. The
pre-set constraints do not exclude this situation, where a solution consists of two or more smaller closed
loops that are not connected. It is not feasible to pre-set all constraints to prevent these sub-tours, as
the set of constraints needed to eliminate all sub-tours has a magnitude of 2%V, where N is the number
of targets in the problem instance. Instead, the constraint like Equation (4.1) is added only if a solution
containing sub-tours is found. This constraint prevents the specific sub-tours that are found from being
part of the solution in the future. S is a sub-tour, which contains a subset of the targets in the problem.
After adding a constraint for every sub-tour in the solution, the problem is optimised again, and this
process is repeated until a solution is found that consists of a single tour.

iZZmeJ)kS\ﬂ—L forall S, with i#£j ik j+k 4.1)

t=0 i€S jeS keS

4.1.2. Verification and Validation

To verify the accuracy and correctness of the optimisation setups, the outputs of multiple optimisa-
tion runs with random initialisation for both the Fixed Budget, and Full Tour problems are manually
checked to be accurate and feasible. The solution in both cases is in the form of a sequence of
targets, with a flight time and a AV cost for every leg of the trajectory. For every leg of the solution,
the cost is re-computed using the LambertTargeterIzzo. In all considered cases, the re-computed
values exactly match the optimisation result. This shows that the cost computation is correctly inte-
grated into the optimisation algorithm. Also, none of the inspected results are found to contain disjoint
sub-tours, which proves the discussed method of preventing sub-tours is effective and well-implemented.

Validation is more complicated, as there are no problems with this exact format for which the optimal
solution has been published to be used for comparison. Still, a trivial way to validate the functionality of
the optimisation is to observe the progression of solutions over iterations. In all the observed cases, the
convergence curves show the expected pattern, where the best-known solution first improves quickly,
and the improvement rate slows down as the solution converges towards the optimal solution. The
optimal solution for the test cases are derived from the known GTOC4 solutions. The final returned
solutions are valid and feasible in all inspected cases.

4.2. Fixed Tour

In the Fixed Tour sub-problem, the targets in the trajectory and their order are fixed, while the time of
flight for each leg is varied in search of the solution with the lowest total AV'. These differences require
changes in the implementation, which will be discussed in this section.

4.2.1. Implementation

The problem is implemented and optimised using PySCIPOpt’s Model class. First, the binary x variables
are added using Model.addVar. Note that these «x variables differ from the z variables mentioned in
the previous section. They do still represent specific fly-bys that are either part of the solution (value
1) or not (value 0), but the possible fly-bys are defined differently, as the order of targets is now fixed.
This difference is further explained in Paper/Trajectory optimisation (page 15). The AV cost for every
x variable is computed using the same method as before. Also, a set of possible visit times for every
target is stored. This set depends on the possible visit times for the previous target and the set of
possible flight times for the inbound trajectory leg. The set of possible time of flight values is a range of
durations. The length of the range is a sub-problem parameter. Figure 4.1 visualises the possible visit
times. The arrows represent the different possible flight times between the sequential targets in the
trajectory. In this case, three time of flight values are available for every trajectory leg. It can be seen
that along the trajectory, with every next target, the amount of possible visit times grows. Finally, the
constraints are added using Model . addCons, the settings to be used are set using Model . setPresolve
and Model.setHeuristics and the objective is set using Model.setObjective. The objective is to
minimise the total AV cost.

4.7. Fixed Tour 33

t=1ho4
t=tp2’3—
t=tp2’2—
t=tp2’1 —
=150
t=1512
t=1511
t=1510
t=0(J | T

Target 0 Target 1 Target 2

Figure 4.1: Visualisation of possible visit times, ¢,

This optimisation will always return a feasible solution, as the solution from the Full Tour problem is
always available within the constraints of the Fixed Tour problem. It is more likely that a better solution is
found where some or all of the time of flight values are different from the previous solution. The solution
is restricted by the time of flight ranges. Suppose one or more of the time of flight values in the optimal
solution is at the very edge of the range of available values. In that case, it is assumed that a solution
with a lower total cost might be available outside of the current ranges. So, in this case, for the trajectory
legs where the value is found at the edge of the range, the range is shifted to find a better solution. If
the value is at the bottom of the range, the range is moved, so the previous value is not at the top of the
range. The constraints for the optimisation problem are then reset with the new ranges, and the problem
is solved again. In this further optimisation, the previous solution is always available, as the prior time
of flight values are still available in the new ranges. Iterations, where ranges are shifted, will continue
as long as any time of flight values are found at the edge of the range. A solution will be accepted as
optimal when, for all of the time of flight values, it is not at the edge of the range or the same value as in
the previous solution.

4.2.2. Verification and Validation
The verification and validation done for this optimisation step are the same as discussed in Section 4.1.2.

Global Optimisation

This chapter provides additional context and explanation on the implementation of the global optimisation
algorithm as proposed in the paper in Chapter 2. Solving the sub-problems using PySCIPOpt, discussed
in the previous chapter, provides a solution that depends heavily on the time of flight values initially
supplied. It is challenging to determine or predict the initial time of flight values that will provide the
optimal solution. So, to find a globally optimal solution to the problem, an algorithm is implemented to
search for the initial values that lead to the best solution. The first section of this chapter focuses on
the specific implementation of the algorithm, and the second section provides additional context on the
analysis done in Paper/Global optimisation (page 18).

5.1. Global Optimisation Algorithm

The global optimisation algorithm is implemented using the PyGMO software library [21]. A pseudo-code
version of the algorithm can be found in Algorithm 1. First, all orbits are propagated to obtain state
histories for all relevant bodies, using the methods explained in Section 3.1. Then, a PyGMO population
is initiated. An individual in the population consists of an integer time of flight value for every (¢, 1, j),
where t is any epoch, i is any of the targets that are part of the problem, and j is any target except i.

Different methods of initialising the population are discussed in the Global Optimisation section of
Chapter 2. Note that all the variables are integers, and all are bounded by [1, n;]. After initialisation, the
optimisation iterations start. The algorithm used to optimise is the Extended Ant Colony Optimization
algorithm (GACO) [29] implemented by PyGMO. This algorithm is chosen as it can optimise the custom
fitness function, which in this case consists of solving the MILP sub-problems, and it allows for batch
evaluation of the population fitness. This means that the for-loop over individuals in the population can
run several loops in parallel. As explained in Chapter 2, ten parallel evaluations are done in most of the
cases seen in the paper. The default GACO setup is used for all relevant parameters. The parameters
that can be varied are the size of the population and the total number of iterations.

The Cax temp Value is used within the loop on lines 7-13 only, while Cy,.x is the global problem parameter.
Crax temp Will always be larger than the C.,.x value because of the multiplier that is applied in line 6.
This larger Cpax temp Value increases the feasible space in which a solution can be found in the Fixed
Budget sub-problem, and the steps on lines 10 and 11 will reduce the C,,; value of the solution. If it is
then below the global C,, .y, the algorithm continues. If it is not, in the initial version of the algorithm, a
new iteration is made where the Ciax temp is updated with the C,,,, value of the last iteration.

Some changes are made to this algorithm throughout the research and analysis in the paper. In a
trade-off between computation time and solution quality, the solving of the Full Tour sub-problem on
line 10 is skipped. In this case, the Fixed Tour sub-problem is solved with the targets and order from
the Fixed Budget solution. Also, the while-loop on line 7 is eliminated. The code within the loop is still

34

5.2. Performance Analysis 35

Algorithm 1 Global optimisation algorithm using GACO

1: Propagate Earth and target orbits

2: Initialise population

3: for iteration in range (Viterations) dO

4: Evolve population (PyGMO GACO algorithm)
5 for individual in population do

6 Copt = Crmax x multiplier

7 while C,,,; > Cpax do

8: Crax temp = Copt — 0.01
9
0

Solve Fixed Budget problem with a AV budget of Cyax temp

10: Solve Full Tour problem with the sub-set of targets from the Fixed Budget solution

1: Solve Fixed Tour problem with the targets and order from the Full Tour solution
12: Update C,,; with the value from the Fixed Tour solution
13: end while

14: if Solution = infeasible then

15: Ntargets =0

16: Copt = Crmax X 2

17: end if

18: Fitness = —(MNiargets in solution) x 100 + Cop¢

19: end for

20: Update and store Best Individual and Best Fitness

21: end for

executed, but only once. If the C,,; value after that one execution is larger than C\,.x, the solution is
considered infeasible.

5.2. Performance Analysis

To analyse and compare the results produced with the global optimisation algorithm, relevant param-
eters are stored with every fitness evaluation. With this data, the tables and plots in Paper/Global
optimisation (page 18) are created. The optimisation curves in the plots, showing the progression of
both the average and best-known objective values in the population over time, improve significantly in
the early stages as the algorithm explores the solution space. Then, as the algorithm begins to exploit
the best solutions found, the improvements in fitness become more incremental. This behaviour is
typical of global optimisation algorithms approaching an optimum.

Finally, a comparison is made between the results produced by the global optimisation algorithm and the
known solutions from GTOC4 [22]. These comparisons can be seen in Paper/Figure 6 - Paper/Figure 9.
The comparison using a time vs radius plot is not the most obvious, but this is the only way in which
the GTOCA4 results are available, and it does give a clear visual comparison of the results. The four
problem instances used for comparison are created by taking a starting time and position derived from
the GTOC4 result and setting up the problem with the next eight targets visited by the solution from that
starting point. Table 5.1 shows the initial conditions and targets for each of the comparative problem
instances. The similarity seen in the plots gives confidence that this algorithm finds the optimal solution
in all of these test cases. Also, it provides confidence that the global optimisation algorithm and all
its underlying parts produce accurate and feasible results within the boundaries given by the GTOC4
problem.

5.2. Performance Analysis

36

Table 5.1: Initial conditions and targets for the comparative problem instances

Figure 6 Figure 7 Figure 8 Figure 9
Start time [MJD] | 58662 59306 59868 60602
Starting body Earth 2007DC Earth 2004QJ13
Targets 2006QV89 2005NJ63 2003BN4 2004YC
1999TM12 2007FO3 2004XN44 2005YP180
2003YT70 1999VS6 2006UB17 2006HU30
164207 2006BC8 2002AU4 2007TK15
137126 2007LF 2005BN1 2006RJ1
2004TP1 20030Q13 4581 1998XX2
1998BT13 2003WY153 2005NW44 2006AU3
2007DC 2006KV89 2004QJ13 2001RQ17

Conclusions & Recommendations

In this section, the findings of the study will be presented. The described problem, the proposed solving
methodology, and its results are considered in the context of the research objectives posed in Section 1.1.
Also, recommendations for future work are provided.

6.1. Conclusions

The purpose of this paper was to study novel methods utilising MILP-solving tools to solve complex space routing problems.
For this purpose, a new solving framework, implementing MILP solving techniques, was created.

This report presented and studied a framework for solving complex, combinatorial space routing prob-
lems. Splitting the problem up into linear sub-problems allowed the application of SCIP, a powerful
MILP-solving software. Solving the sub-problems in sequence gave valid solutions to the whole problem
instance. However, these solutions were only locally optimal and highly dependent on provided initial
time-of-flight values. A global optimisation layer using PyGMQO’s GACO algorithm was added to reach
better global optimal solutions.

At the start of this thesis, some research objectives related to different areas of the design and analysis
of the global optimisation algorithm were defined. Below is a summary of the results that were found in
the context of these objectives:

» How can MILP-solving techniques be used to solve complex combinatorial space routing problems?

To allow the use of MILP-solving techniques, the considered problem needed to be in linear
form. Instead of linearising the entire instance at once, the choice was made to split the instance
into linear sub-problems. These splits were made by adding constraints and fixing variables.
Solving the sub-problems sequentially, using SCIP, where every sub-problem takes input from the
sub-problem solved before, leads to a final solution.

— What are the primary sub-problems, and how do they function?

A split into three different sub-problems was found to work well. These are:

* Fixed Budget:

The Fixed Budget sub-problem aims to select a subset of all available targets in the
problem instance. To do so, time-of-flight values for every possible transfer between
two targets are taken as input. These values are used to compute the needed velocity
change for all possible transfers, which is used to find a trajectory through the maximum
number of targets within the given budget. The returned solution is guaranteed a valid
trajectory within the cost budget. Still, it is not guaranteed to be optimal regarding the
targets’ visiting order or times-of-flight between them.

37

6.1. Conclusions 38

% Full Tour:

The Full Tour sub-problem aims to find the optimal order of visiting the targets in the
subset provided by the Fixed Budget sub-problem. The same time-of-flight values are
used to determine the necessary velocity change for all possible transfers. However, the
optimisation objective now is to find the trajectory that visits all the given targets with the
lowest possible total velocity change. The returned solution is either the same trajectory
as seen in the previous step or one with a different order and a lower total cost. Still, the
times-of-flight between targets are not optimised.

* Fixed Tour:

The purpose of the Fixed Tour sub-problem is to optimise the times-of-flight for every
leg of the trajectory that resulted from the Full Tour sub-problem. For every leg of the
trajectory, the time-of-flight is considered in a small discrete range of values. A "trajectory
tree” can be expanded with these ranges, containing all possible trajectory legs, target
visiting times, and transfer times-of-flight. Optimising for the lowest total velocity change
gives the optimal time-of-flight per leg. For every time-of-flight value found to be on
a bound of the discrete range, the range is shifted, and the problem is solved again.
Iterations are made until no bounds need to be moved or no better solution can be found.
The times-of-flight given in the solution to this sub-problem are guaranteed to be the
values for which visiting the given targets in the given order takes the lowest possible
velocity change.

— What solver settings provide the best performance for solving the isolated sub-problems?

The performance impact of the top-level SCIP settings "Presolve” and "Heuristics”, which
determine the use and aggressiveness of default pre-solving techniques and default heuristics
during the optimisation of the given problem, was studied. For all sub-problems, it was found
that turning both settings completely off led to a significant decrease in the computational
time needed to find a solution to the test cases.

For the Fixed Budget and Fixed Tour sub-problems, the settings were found to have no
impact on the quality of the solutions. For these cases, it was concluded that turning the
settings off leads to the best performance, which is the same result in a reduced amount of
time.

In contrast, for the Full Tour sub-problem, it was found that using more aggressive settings
for both Presolve and Heuristics increased the chance of finding a target order with a lower
total cost. The impact on the integrated global optimisation algorithm was studied to make a
trade-off between the effects of reduced computational time. This led to the conclusion that
the increased chance of finding a better solution did not outweigh the reduction in computa-
tional time.

So, for all sub-problems, turning both Presolve and Heuristics settings off showed the best
performance regarding a combination of solution quality and computation time.

» How do further simplifications to the solving algorithm impact the performance?

Performance analysis of the global optimisation algorithm identified multiple possible inefficiencies
in the setup. Firstly, with the optimal SCIP settings for the Full Tour sub-problem, it was shown
that the chance of finding a better solution in this step is only 4.5%. Therefore, the consideration
was made to remove this sub-problem from the algorithm and directly input the targets in the
order found in the Fixed Budget sub-problem into the Fixed Tour sub-problem. The analysis has
shown that removing the sub-problem from the algorithm significantly reduces the computation
time, while the solution quality was not noticeably reduced.

6.1. Conclusions 39

In the original algorithm iterations were used, solving the three sub-problems in a loop until a
feasible solution was found. The analysis showed that these iterations were ineffective in finding
the optimal solution. In all observed cases, the best solution was found for an individual where a
feasible solution was found within the first iteration. Individuals that needed multiple iterations to
find a feasible solution never returned a solution that would be globally optimal. For that reason,
the iterations within the algorithm were disabled.

— What is the impact of removing the Full Tour sub-problem from the algorithm?

The performance while skipping the Full Tour sub-problem was analysed in two scenar-
ios. First, cutting the sub-problem did not show a performance improvement in the case
where all individuals are iterated until feasible. Compared to the base setup, the chance of
finding the best-known solution was slightly higher, but it would take, on average, 87% more
generations to reach the best solution. This made it significantly slower to find good solutions.
However, the performance of removing the sub-problem in combination with turning off the
iterations shows a significant improvement. Then, it found the best solution in 55% fewer
generations while computational time per generation is 8% shorter. When the C,,,., multiplier
was increased, this led to even better results, with a further computation time reduction of
13% and a slight increase in the number of targets in the average solution. So, removing the
Full Tour sub-problem from the global optimisation algorithm is beneficial in combination with
disabling the iterations.

— What is the impact of propagating infeasible individuals instead of iterating every individual to
be feasible?

It was found that individuals that needed iterations to return a feasible solution could never
produce the known optimal solution. So, to improve the solving algorithm, they were given
a very low objective value instead of iterating individuals that initially returned an infeasible
solution. This would reduce the computational time spent on these non-optimal individuals,
and the low associated objective would help to evolve away from these individuals towards
more optimal ones. A combination of these effects can be seen in the performance analysis.

For all cases observed with iterations disabled, the chance of finding the known optimal
solution was much higher than for previous cases. Every single run led to the optimal 6-
target trajectory. With a low C\,,, multiplier, it is seen that the average solution contained a
larger number of targets but also that the computational time was higher than for the case
with iterations. This was attributed to solutions with more targets taking longer to compute.
When the C\,,, multiplier was increased, the average solution contained more targets, and
computational requirements increased further. Most of the increase came from solving the
Full Tour sub-problem. As mentioned in the previous answer, the optimal setup was found to
be a combination of disabling the iteration and removing the Full Tour sub-problem.

* What is the effect of seeding the initial population with constant values instead of randomly gener-
ated values?

Analysis showed that seeding the population with constant values positively affects performance.
The most significant improvement was found in the solutions’ quality in the first generation of
global optimisation. Using several seeded individuals helped to reliably find a better solution in
the initial generation, which helped to converge more quickly towards the known optimal solution.
All runs using seeded individuals show a better chance of finding the known optimal solution. It
should be noted that the average computational time per generation was slightly longer due to the
average solution having a higher number of targets.

— What number or proportion of the initial population would optimally be seeded?
Three different proportions were compared, and the best performance was found when

10 out of 20 initial individuals were seeded. All three cases start with the same, higher than
average, best solution in the first iteration. After that, the 10/20 case converged towards the

6.2. Recommendations 40

known optimal solution faster than the 5/20 and 20/20 cases. In the 10/20 case, all observed
runs lead to the known optimal solution. This led to the conclusion that seeding at least half
of the initial population is beneficial, but keeping part of the population randomly generated
could help the convergence.

» How do the results from the proposed methodology compare with benchmark solutions from
GTOC4?

It was shown that the proposed global optimisation algorithm could produce solutions that almost
exactly match the known GTOC4 solutions, considering missing segments with up to 8 targets.
This was shown for multiple different target sets and starting points. This ability to reproduce
results has provided a high-level validation of the proposed algorithm and the methods used within.
The results were exact matches in terms of the targets visited and their order. Slight differences
could still seen in the precise trajectories. This was explained by possible numerical differences
in the propagation of the asteroid orbits and the different propulsion models used in the GTOC4
problem.

These results for the proposed novel methodology look promising. It was demonstrated that solving
a complex space routing problem using the SCIP solver is possible by breaking it down into linear
sub-problems. The efficiency of the algorithm was further improved by making available simplifications.
Also, the algorithm can reproduce partial GTOC4 solutions well. However, further improvements to the
methods are required to enable the algorithm to solve more extensive and complex problem instances.
Some of the possible improvement directions are discussed in the next section.

6.2. Recommendations

In the final version of the algorithm, solving the Fixed Budget sub-problem limits the performance.
Paper/Table 12 shows that this step takes up 99% of the required computation time, and Paper/Table 4
shows a significant sensitivity of the computational effort to the number of targets and the number of
time steps in the problem instance. To scale the algorithm’s capabilities to allow solving larger problem
instances, the performance in this specific sub-problem has to be improved. Possible improvements
can be made in different directions.

The optimisation problem formulation and implementation could be reviewed and improved to find a
new formulation that leads to the same result more efficiently. Also, using a more specific SCIP setup
could help. It might be possible to develop specific heuristics that help solve this specific problem more
quickly. This is also relevant for the other sub-problems. In a search for MILP-compatible sub-problems,
all sub-problem formulations turned out to be BILPs, a specific subset of MILPs where all variables are
binary. So, for all sub-problems, it might be possible to use a more effective or specialised solver de-
signed to solve BILPs. This could be SCIP using a specific setup with custom heuristics or a completely
different software.

More drastic changes are also possible. Targets do not necessarily need to be selected by solving an
optimisation problem. There might be possibilities where the global optimisation algorithm searches
for a subset of targets as initial values instead of searching for initial ToF values to feed into the Fixed
Budget sub-problem. Machine learning applications might be suitable in the search for this subset.
Clustering and pruning techniques could be of great value in finding targets that can be combined into a
good solution.

Another area that could have a significant impact on the performance of the global optimisation algorithm
is the seeding of the initial population. In this study, a straightforward policy was used to seed the
population partially, leading to a significant increase in performance. Future research could investigate
the use of more elaborate techniques or heuristics to improve the initial population further. This could
potentially lead to faster convergence and better-quality solutions.

(1]
(2]
[3]

[4]
[5]

[6]
[7]
(8]
(9]

[10]
[11]

[12]
[13]

[14]
[15]
[16]
[17]

[18]

[19]
[20]

[21]

[22]

[23]

List of References

Dario |zzo. “Lambert’s Problem for Exponential Sinusoids”. In: Journal of guidance, control, and dynamics
(2006).

Oliver Schitze et al. “Designing optimal low-thrust gravity-assist trajectories using space pruning
and a multi-objective approach”. In: Engineering Optimization (2009).

Bernardetta Addis et al. “A global optimization method for the design of space trajectories”. In:
Computational Optimization and Applications (2011).

Dario 1zzo. “Revisiting Lambert’s Problem”. In: Celestial Mechanics and Dynamical Astronomy (2015).

Daniel Hennes and Dario 1zzo. “Interplanetary Trajectory Planning with Monte Carlo Tree Search”.
In: Twenty-Fourth International Joint Conference on Artificial Intelligence (2015).

Haibin Shang and Yuxin Liu. “Assessing Accessibility of Main-Belt Asteroids Based on Gaussian
Process Regression”. In: Journal of Guidance, Control, and Dynamics (2017).

Lorenzo Casalino, Guido Colasurdo, and Matteo Rosa Sentinella. “Problem Description for the
3rd Global Trajectory Optimisation Competition”. In: (2007).

Régis Bertrand, Richard Epenoy, and Benoit Meyssignac. “Problem Description for the 4th Global
Trajectory Optimisation Competition”. In: (2009).

llia S. Grigoriev and Maxim P. Zapletin. “GTOCS5: Problem statement and notes on solution
verification”. In: Acta Futura 8 (2014).

Dario |zzo. “Problem description for the 9th Global Trajectory Optimisation Competition”. In: (2017).

G. Dantzig, R. Fulkerson, and S. Johnson. “Solution of a Large-Scale Traveling-Salesman Prob-
lem”. In: Journal of the Operations Research Society of America (1954).

E. Balas. “The Prize Collecting Traveling Salesman Problem and its Applications”. In: The Traveling
Salesman Problem and its Variations (2002), pp. 663—696.

Karla L. Hoffman, Manfred Padberg, and Giovanni Rinaldi. “Traveling salesman problem”. In:
Encyclopedia of Operations Research and Management Science (2013).

A. Lodi. “MIP Computation”. In: 50 years of integer programming 1958-2008 (2009).
E. Balas et al. “Gomory cuts revisited”. In: Operations Research Letters (1996).
R.E. Gomory. “An algorithm for the mixed integer problem”. In: Tech. Report RM-2597 (1960).

Ksenia Bestuzheva et al. The SCIP Optimization Suite 8.0. Technical Report. Optimization Online, Dec.
2021. URL: http://www.optimization-online.org/DB_HTML/2021/12/8728 .html.

Tobias Achterberg. “SCIP: solving constraint integer programs”. In: Mathematical Programming Compu-
tation (2009).

Elias B. Khalil et al. “Learning to Run Heuristics in Tree Search”. In: IJCAI (2017).

Dario Izzo and Marcus Martens. “The Kessler Run: On the Design of the GTOC9 Challenge”. In:
Acta Futura 11 (2018).

Francesco Biscani and Dario 1zzo. “A parallel global multiobjective framework for optimization:
pagmo”. In: Journal of Open Source Software 5.53 (2020), p. 2338. DOI: 10.21105/joss.02338. URL:
https://doi.org/10.21105/joss.02338.

Régis Bertrand, Richard Epenoy, and Benoit Meyssignac. “Final Results of the 4th Global Trajectory
Optimisation Competition”. In: (2009).

Anastassios E. Petropoulos. “Problem Description for the 6th Global Trajectory Optimisation
Competition”. In: (2012).

41

http://www.optimization-online.org/DB_HTML/2021/12/8728.html
https://doi.org/10.21105/joss.02338
https://doi.org/10.21105/joss.02338

List of References 42

[24]
[25]

[26]
[27]
[28]

[29]

Dominic Dirkx et al. “The open-source astrodynamics Tudatpy software — overview for planetary
mission design and science analysis”. In: Europlanet Science Congress 2022 (2022).

Stephen J. Maher et al. “PySCIPOpt: Mathematical Programming in Python with the SCIP Opti-
mization Suite”. In: Mathematical Software - ICMS 2016. Vol. 9725. 2016, pp. 301-307.

Kurt Mehlhorn and Peter Sanders. Algorithms and Data Structures: The Basic Toolbox. Springer, 2008.
Jens Clausen. “Branch and Bound Algorithms - Principles and Examples”. In: (1999).

TU Delft. TU Delft Astrodynamics Toolbox - 5.2. Mission Segments. 2018. URL: https://tudat.tudelft.
nl/tutorials/tudatFeatures/astroTools/missionSegments.html (visited on 10/20/2021).

Martin Schlueter, Jose A. Egea, and Julio R. Banga. “Extended ant colony optimization for non-
convex mixed integer nonlinear programming”. In: Computers & Operations Research 36.7 (2009),
pp. 2217-2229. DOI: 10.1016/j.cor.2008.08.015. URL: https://doi.org/10.1016/j.cor.
2008.08.015.

https://tudat.tudelft.nl/tutorials/tudatFeatures/astroTools/missionSegments.html
https://tudat.tudelft.nl/tutorials/tudatFeatures/astroTools/missionSegments.html
https://doi.org/10.1016/j.cor.2008.08.015
https://doi.org/10.1016/j.cor.2008.08.015
https://doi.org/10.1016/j.cor.2008.08.015

	Table of Contents
	List of Figures
	List of Tables
	List of Abbreviations
	List of Symbols
	Introduction
	Research objectives
	Report structure

	Paper
	Introduction
	Problem definition
	Target selection
	Problem Formulation
	Evaluation

	Target ordering
	Problem Formulation
	Evaluation

	Trajectory optimisation
	Problem Formulation
	Evaluation

	Global optimisation
	Conclusion

	Dynamical models
	Orbit Propagation
	Propulsion Model
	Lambert Problem

	Mixed-Integer Linear Problem Optimisation
	Fixed Budget and Full Tour
	Implementation
	Verification and Validation

	Fixed Tour
	Implementation
	Verification and Validation

	Global Optimisation
	Global Optimisation Algorithm
	Performance Analysis

	Conclusions & Recommendations
	Conclusions
	Recommendations

	List of References

