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In this paper, we present a number of key numerical methods that can be used to study elongated par-
ticles in fluid flows, with a specific emphasis on fluidised beds. Fluidised beds are frequently used for the
production of biofuels, bioenergy, and other products from biomass particles, which often have an
approximate elongated shape. This raises numerous issues in a numerical approach such as particle-par-
ticle contact detection and the accurate description of the various hydrodynamic forces, such as drag, lift,
and torque, that elongated particles experience when moving in a fluid flow. The modelling is further
complicated by a separation of length scales where industrial flow structures that can extend for many
metres evolve subject to solid-solid and solid-fluid interactions at the millimetre scale. As a result, it is
impossible to simulate both length scales using the same numerical approach, and a multiscale approach
is necessary. First, we outline the direct numerical simulation (DNS) approach that may be employed to
estimate hydrodynamic force closures for elongated particles in a fluid flow. We then describe the key
aspects of a CFD-DEM approach, which can be used to simulate laboratory scale fluidisation processes,
that must be addressed to study elongated particles. Finally, we briefly consider how current indus-
trial-scale models, which concretely assume particle sphericity, could be adapted for the simulation of
large collections of elongated particles subject to fluidisation.
� 2019 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction tower loop reactors (Lbbert and Larson, 1990; Dejaloud et al.,
Numerous industrial operations involve the processing of mul-
tiphase flows, which can be defined as flows that consist of more
than one distinctive phase or component. Such flows are fre-
quently encountered in the chemical (Kapteijn et al., 2001; Stitt,
2002; Kreutzer et al., 2005; Son and Kim, 2006; Mattisson et al.,
2018), food (Norton and Sun, 2006; Kumar et al., 2007; Joardder
et al., 2017; Azmir et al., 2018), pharmaceutical (Ricard et al.,
2005; Kremer and Hancock, 2006; Gutmann et al., 2015; Tong
et al., 2017), petrochemical (Williams and Williams, 1999; Gao
et al., 2015; Xue et al., 2016; Valus et al., 2017; Aydin and
Larachi, 2005), and bioenergy industries (Cui and Grace, 2007;
Nikoo and Mahinpey, 2008; Svoboda et al., 2009; Molino et al.,
2016; Pio et al., 2017). Multiphase flows are treated in a variety
of equipment such as packed bed reactors (Jafari et al., 2008;
Dasgupta and Atta, 2018; Li et al., 2018), fluidised bed reactors
(Alauddin et al., 2010; Paudel and Feng, 2013; Hejazi et al., 2014;
Molino et al., 2016; Zhong et al., 2016), cyclone separators
(Cortes and Gil, 2007; Chu et al., 2011; Zhou et al., 2018), airlift
2018), combustors (Cheng and Farmer, 2006; Bauerheim et al.,
2015; Mei et al., 2017), and fermenters (Trad et al., 2016; Zhang
et al., 2012; Desobgo, 2018). Hence, a thorough understanding of
the behaviour of multiphase flows can have implications for the
formulation and efficiency of processes, the fundamental design
of equipment, and the choices made in relation to the materials
that constitute multiphase flows.

The simplest multiphase flow is a two-phase flow, where one
phase is an interstitial liquid or gas and the second phase is a mix-
ture of solid particles. In particular, multiphase flows in many flu-
idisation processes can be categorised as dense gas-solid flows
where particle-particle interactions are dominant due to the large
number of solid particles transported in the flow (van der Hoef
et al., 2008). In the bioenergy industry, dense gas-solid fluidised
beds are frequently used for biomass gasification in the production
of biofuels and bioenergy. To facilitate the fluidisation process and
augment pyrolysis, the biomass material is typically fluidised in
the presence of an inert material such as sand (Paudel and Feng,
2013). While fluidised bed reactors can process different types of
biomass, challenges remain in the gasification and downstream
processing of biomass in such reactors for viable commercial
applications (Kumar et al., 2009). The challenges with gasification
are to understand the influence of variable operating conditions
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Fig. 1. (a)–(d): Microscopic images of various biomass materials demonstrating
their elongated nature after pre-treament. (a) Pine. (b) Beanstalk. (c) Rice straw. (d)
Reed. Images taken from Guo et al. (2012). (e) and (f): Images of processed pellets.
(e) Grass pellet. (f) Wood pellet. Images taken from Roy et al. (2013).
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on gasification reactions for the reliable prediction and optimisa-
tion of product compositions, and for obtaining maximal efficien-
cies. Characterisation of the hydrodynamics of, and coupled to
this the heat and mass transfer in, multiphase flows consisting of
biomass particles can directly impact the design and operation of
fluidised bed reactors, and is thus imperative for the economic via-
bility of future gasification energy conversion processes (Cui and
Grace, 2007).

Traditional efforts to study gasification processes in the labora-
tory routinely involve the construction of replicas of industrial
scale equipment. With regards to the hydrodynamics, such appara-
tus can allow for the measurement of particle dynamics using
approaches such as magnetic particle tracking (MPT) (Buist et al.,
2017), where the trajectory of a single magnetic tracer particle is
tracked through a reactor, or Particle Tracking Velocimetry (PTV)
(Mahajan et al., 2018), which can concurrently estimate the veloc-
ity of multiple particles in the reactor. However, the construction
of laboratory experiments can be both costly and time consuming,
requiring extensive calibration and validation before utilising the
apparatus for dedicated investigations. In reality, laboratory appa-
ratus are simply scaled-down versions of industrial apparatus, and
as a result they cannot capture certain flow behaviours that may be
dependent on the length scale of the reactor.

An alternative approach for the study of fluidisation processes is
via numerical simulations, which have numerous advantages over
laboratory experiments. Firstly, numerical codes can be quickly
created and evaluated in comparison to the development of pre-
liminary laboratory-scale prototypes of industrial designs. Sec-
ondly, numerical codes are reusable and easily adapted to
simulate other apparatus. An experimental apparatus may have
to undergo significant reconstruction and redesign to study
another process. Thirdly, numerical codes are relatively cheap to
develop in comparison to experimental setups. Fourthly, a numer-
ical code can also be used to safely study operational conditions
that would otherwise be dangerous in laboratory or industrial set-
tings. Finally, numerical simulations allow for access to informa-
tion that would be difficult to measure in experimental or
industrial apparatus. Nonetheless, the simulation of the processing
of multiphase flows in industrial fluidised bed reactors is compli-
cated by mainly two factors; namely particle shape and size distri-
bution, and the large separation of relevant length scales.

Biomass particles in fluidised beds are inherently non-spherical,
typically elongated, with a large range of particle sizes (Cui and
Grace, 2007; Guo et al., 2012). Examples of microscopic images
of elongated biomass particles and pellets are shown in Fig. 1. In
comparison to spherical particles, elongated particles have a larger
surface area-to-volume ratio, which can promote greater heat and
mass transfer rates as well as affect the devolatilisation of the bio-
mass (Lu et al., 2010). Biomass particles, and certainly pelletised
biomass, are typically large (with a Sauter mean diameter larger
than a millimetre), making them part of the Geldart D group
(Geldart, 1973). Such particles require a large fluidisation velocity
and can form large bubbles. Group D particles have been the sub-
ject of recent investigations in laboratory scale fluidised beds
(Kruggel-Emden and Vollmari, 2016; Mahajan et al., 2018).

Typically, biomass particles are fluidised in a mixture with an
inert material such as sand, alumina, or calcite to overcome diffi-
culties in the fluidisation and promote faster pyrolysis. Nonethe-
less, there have been numerous experimental studies on the
fluidisation response of packings consisting of elongated bio-
mass-like particles only (Vollmari et al., 2015; He et al., 2016;
Kruggel-Emden and Vollmari, 2016; Vollmari et al., 2016;
Mahajan et al., 2017, 2018; Rezaei et al., 2018), motivated not only
by the use of biomass particles in fluidised bed reactors, but also in
other industrial processes where biomass particles are integral. In
these experimental studies, imaging of the fluidisation process is
commonplace, typically via the use of high resolution cameras
(Vollmari et al., 2016; Mahajan et al., 2018). Post-processing routi-
nes such as Digital Image Analysis (DIA), Particle Image Velocime-
try (PIV), and Particle Tracking Velocimetry (PTV) can subsequently
be used to ascertain bed height, particle orientation, particle
coalignment, void fraction, and particle coordination number
(Vollmari et al., 2016; Mahajan et al., 2018).

For simplicity, in most numerical studies of fluidised beds, par-
ticles are treated as idealised spheres subject only to drag for ease
of computation, with the other hydrodynamical forces deemed to
have negligible effects on particle dynamics (Tsuji et al., 1993;
Hoomans et al., 1996; Xu and Yu, 1997; Deen et al., 2007; Zhu
et al., 2008; van der Hoef et al., 2006, 2008). Capturing the true
shape of real biomass particles, which are elongated, severely com-
plicates the detection of particle-particle contacts and associated
contact forces. In addition to hydrodynamic drag, elongated parti-
cles are also subject to hydrodynamic lift, pitching torque, and
rotational torque, which are dependent on particle orientation rel-
ative to the incoming fluid flow. These additional hydrodynamic
forces can appreciably affect the trajectory of elongated particles
in fluidised beds and must be accounted for in any numerical study
involving elongated particles.

To accurately model multiphase flows relevant for the indus-
trial scale, where flow structures can extend over the order of
metres, we need information on the particle scale, where the typ-
ical size of particles is of the order of millimetres. Due to this sep-
aration of length scales, it is impossible to capture both the particle
scale and industrial scale simultaneously in a numerical scheme
without sacrificing computational efficiency and lengthening com-
putation time. For the case of a complex system such as a fluidised
bed, a multiscale simulation approach must allow for correlation of
different phenomena between length scales, to couple both spatial
and temporal variations, and identify the emergent critical phe-
nomena (Li et al., 2004). Instead of a single simulation algorithm,



Table 1
Treatment of the gas and solid phases in particle-scale, laboratory-scale and
industrial-scale numerical algorithms.

Scale Numerical approach Gas phase Solid phase

Particle DNS Resolved Lagrangian
(deterministic collisions)

Laboratory CFD-DEM Resolved Lagrangian
(deterministic collisions)

Industrial MP-PIC Resolved Lagrangian and Eulerian
(implicit collisions)

Industrial TFM Resolved Eulerian
(implicit collisions)
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a suite of algorithms is thus required, with each algorithm focusing
on a specific length scale. For a fluidised bed reactor, this equates
to algorithms that can capture responses at the particle scale, lab-
oratory scale and, ultimately, the industrial scale.

The idea of using a multiscale approach to model fluidised beds
is certainly not new; it has been reviewed extensively in the liter-
ature (van der Hoef et al., 2006, 2008). Most previous multiscale
modelling methods papers have focused on spherical particles.
However, such an interpretation of particle shape is not represen-
tative of real systems where biomass units are non-spherical or
elongated in nature. Therefore, in this paper, we present the
numerical methods and associated considerations that are of great-
est relevance for the study of fluidised biomass. In particular, we
highlight the differences and peculiarities that arise when one
models fluidised beds consisting of elongated particles as opposed
to spherical particles. At the particle scale, we outline a direct
numerical simulations (DNS) approach that can be used to evaluate
the varying hydrodynamic forces experienced by elongated parti-
cles subject to varying particle orientation and flow conditions
(Section 3). Such simulations lead to correlations that can be incor-
porated in coupled computational fluid dynamics - discrete ele-
ment method (CFD-DEM) simulations, which are suitable for the
simulation of laboratory scale processes (Section 4). In CFD-DEM,
collisions between elongated particles can be handled through
the use of specific collision detection schemes. We also briefly con-
sider how CFD-DEM simulations can be used to define constitutive
relations that are specifically relevant for elongated particles that
can be used in industrial-scale models. Such relations are currently
unavailable in the literature. Finally, we consider the current status
of industrial-scale models such as the two-fluid model (TFM)
(Gidaspow, 1994; van der Hoef et al., 2008) and the multi-phase
particle-in-cell (MP-PIC) method (Andrews and O’Rourke, 1996)
(Section 5). TFM is based on expressions for solid stress that are
traditionally derived from the Kinetic Theory of Granular Flow
(KGTF) (Chapman et al., 1990), which assumes particle sphericity
and isotropy, binary interactions, and uncorrelated pre-collisional
velocities. Such assumptions are certainly not applicable for dense
multiphase flows consisting of elongated particles, making the
need for a proper flow of information from lower level models to
these industrial-scale models much more urgent than in the case
of spherical particles.

This paper is presented as follows. First, we give an overview of
the multiscale approach before introducing details of the associ-
ated numerical approaches. For the algorithms at the particle scale
(Section 3) and laboratory scale (Section 4), we present results
from our own studies and compare findings with the state-of-
the-art in the field. At the industrial scale (Section 5), we highlight
the issues with defining an algorithm suitable for elongated parti-
cles, and suggest possible solutions and directions of future
research. Although we focus here on the implementation of a mul-
tiscale approach for the fluidisation of elongated particles that
approximate the shape of biomass feedstocks, the algorithms can
be easily adapted and applied to study other unit operations where
multiphase flows of non-spherical particles are relevant.
2. Overview of multiscale approach for fluidized bed modelling

As argued in the introduction, a multiscale modelling approach
is a necessity to cover all relevant length scales in a fluidised bed.
The algorithms that comprise a multiscale approach for multiphase
flows can be distinguished by their treatment of the solid and fluid
phases (van der Hoef et al., 2008) (Table 1). There are two primary
methods for numerically describing the solid phase of a typical
multiphase flow. First, the solid phase can be depicted as a set of
dispersed or discrete particles that collide with each other and
any rigid boundaries or walls in a geometry. Such particles follow
trajectories that are evolved subject to Newton’s laws of motion.
This representation is referred to as Lagrangian. For the second rep-
resentation, which is referred to as Eulerian, the solid phase is
described using a continuum approach that may be based upon
the Navier-Stokes equations, combined with a constitutive equa-
tion describing the solid phase rheology, where the phase is repre-
sented as a grid of cells with each cell containing information
related to the phase properties. The fluid phase is usually also trea-
ted in such a continuum manner. The direct numerical simulation
(DNS) approach (Deen et al., 2012, 2014; van der Hoef et al., 2006),
which is presented in detail in Section 3, and the coupled compu-
tational fluid dynamics - discrete element method (CFD-DEM)
approach (Deen et al., 2007; Mema et al., 2017, 2019; Mahajan
et al., 2018), which is discussed in Section 4, are both so-called
Lagrangian-Eulerian approaches since the solid phase is described
in a discrete manner and the fluid is described as a continuum. The
difference between the two approaches is that in DNS, the fluid
flow around the particles is fully resolved by choosing sufficiently
small fluid cells, while in CFD-DEM the fluid flow is unresolved,
where fluid cells are much larger than a single particle. In both
cases, the particle-particle collisions are treated deterministically,
which is very expensive computationally, making these methods
unsuitable for predictions at the industrial scale. To reach the
industrial scale, it is necessary to make approximations to avoid
the explicit deterministic treatment of particle collisions. The mul-
tiphase particle-in-cell (MP-PIC) method (Andrews and O’Rourke,
1996) and two-fluid model (TFM) (Lindborg et al., 2007) are two
common approaches to deal with large scale simulations. In MP-
PIC, the particles are simultaneously treated in a Lagrangian man-
ner and as an Eulerian (continuum) field, where the effects of the
collisions are treated implicitly from gradients in the continuum
fields. In TFM, the particles are treated fully Eulerian, interpene-
trating with the continuous fluid phase. Both approaches, and their
amenability for extension to elongated particles, will be briefly
described in Section 5.

Although a multiscale methodology has already been exten-
sively described in the literature for spherical particles, e.g. van
der Hoef et al. (2006, 2008) and Deen et al. (2007), in this paper,
we focus on the new problems that emerge when dealing with
elongated particles. Generally, we find that solving these new
problems requires a strong coupling between the numerical mod-
els at different scales. In fact, the coupling is stronger than is usu-
ally required for spherical particles. The relationship between the
numerical models is depicted in Fig. 2. A DNS approach is used
to accurately resolve the fluid flow in the vicinity of O(102–103)
particles (Fig. 2(a)). Measurements from the DNS simulations can
then be utilised to define hydrodynamic closures for drag, lift
and torque for elongated particles subject to varying aspect ratio,
orientation and Reynolds number. We present details on the DNS
approach in Section 3.

For larger numbers of particles, a DNS approach is too computa-
tionally expensive. Instead, closures from DNS simulations can be



Fig. 2. Relationship between the numerical models at the different scales. (a) Direct numerical simulation (DNS) where the solid phase is represented in a discrete
(Lagrangian) manner and the fluid flow around the particles is fully resolved. (b) Computational fluid dynamics – discrete element method (CFD-DEM) where the particles are
discrete, but the fluid flow is no longer resolved at the particle scale. (c) Industrial scale model such as multiphase particle-in-cell (MP-PIC) where particles are still discrete,
but the fluid flow is no longer resolved at the particle scale.
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employed to couple the gas and discrete particle phases in a CFD-
DEM approach where the fluid is solved on a grid that is larger than
the elongated particles (Fig. 2(b)). For elongated particles, CFD-
DEM has been applied to duplicate fluidization processes at the
laboratory scale where the bed is composed of O(105) particles
(Vollmari et al., 2017; Mema et al., 2019; Mahajan et al., 2018).
Details of the CFD-DEM approach are outlined in Section 4.

Although advancements in parallel programming permit CFD-
DEM simulations of fluidised beds with millions of particles on
dedicated parallel architectures, these studies generally represent
the solid phase as spherical particles due to ease of contact detec-
tion and particle representation (Capecelatro and Desjardins, 2013;
Amritkar et al., 2014). In addition, there is a necessity for expensive
and often scarce parallel computing resources and the number of
system particles can still be orders of magnitude less than the
number in industrial settings. These issues can be somewhat
addressed by considering a coarse-grained model of a fluidised
bed (Fig. 2(c)). Rather than evaluating deterministic particle inter-
actions as in CFD-DEM, a coarse-grained approach such as MP-PIC
(Andrews and O’Rourke, 1996) or TFM (Lindborg et al., 2007) can
evaluate the effect of numerous particle interactions concurrently
without the need for parallel computing hardware. Solid stress
expressions for coarse-grained approaches have been formulated
for spherical particles based on the Kinetic Theory of Granular Flow
(KTGF), which is based on assumptions that are valid for dilute and
semi-dilute flows but applied to dense particle configurations as an
approximation. In Section 5 we briefly consider the principle issues
with adapting such coarse-grained models to non-spherical parti-
cles and outline potential solutions to these issues.
3. Particle-scale simulations: direct numerical simulations
(DNS)

At the most detailed scale, one is interested in resolving the
flow and transport details at the particle scale. This is often
referred to as direct numerical simulation (DNS) (Deen et al.,
2012, 2014; van der Hoef et al., 2006). Typical DNS approaches
use a grid for the calculation of fluid properties and for the evolu-
tion of interactions between the fluid and solid boundaries.
3.1. Introduction to direct numerical simulation (DNS)

To simulate mass, momentum and energy transport, there are
three main approaches; namely microscopic, mesoscopic and
macroscopic (or continuum). For the case of a fluid, these scales
are depicted in Fig. 3. Microscopic schemes view a fluid as a set
of discrete interacting particles. An example of a microscopic
approach is molecular dynamics (MD) where the inter-particle
forces are identified and the trajectory of the particles then calcu-
lated, similar to CFD-DEM (Section 4). MD approaches do not
include a definition of fluid properties such as viscosity or temper-
ature, and for numerical stability the time step must be less than
the typical particle collision time, which for fluid particles is of
the order of 10�14 s. Thus, microscopic schemes are not applicable
for large scale flows (Mohamad, 2011; Krüger et al., 2017). Macro-
scopic or continuum approaches solve the governing differential
equations by applying conservation laws of mass, momentum
and energy to certain control volumes.

A number of DNS techniques are available such as the overset
grid approach (Chesshire and Henshaw, 1990; Henshaw and
Schwendeman, 2003; Koblitz et al., 2017), the immersed boundary
method (Peskin, 1972, 1977, 2002; Zastawny et al., 2012; Mittal
and Iaccarino, 2005) and the lattice Boltzmann method (LBM)
(Krüger et al., 2017; Sanjeevi and Padding, 2017; Aidun and
Clausen, 2010; Zarghami and Padding, 2018; Saito et al., 2017;
Zarghami and Van den Akker, 2017; den Akker, 2018). In the over-
set grid approach, a set of structured grids representing the spatial
domain and physical space overlap to provide fast moving grid
generation in the case of moving geometries. For example, the
overset grid approach has been extensively used to study fluid
dynamics problems in aerospace (Chan, 2009). For the immersed
boundary method, which was originally introduced to study flows



Fig. 3. Molecular dynamics, lattice Boltzmann and Navier-Stokes simulations of fluid flow at different scales. Image from Saito et al. (2017).
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in the vicinity of heart valves (Peskin, 1972), Eulerian variables are
assigned to a fixed Cartesian grid while Lagrangian variables are
associated with a secondary mesh that can move relative to the
Cartesian grid without constraint (Peskin, 2002).

In this paper, the focus is on the lattice Boltzmann method
(LBM), which we have applied to study elongated particles in vary-
ing fluid flows (Sanjeevi and Padding, 2017; Sanjeevi et al., 2018;
Zarghami and Padding, 2018). LBM is possibly the best known of
so-called mesoscopic techniques, where individual detailed colli-
sions between the fluid particles are no longer modelled explicitly.
LBM has been used to simulate a range of complex fluid flows
(Friedrich et al., 2001; Tatsumi and Yamamoto, 2012; Krüger
et al., 2017; Aidun and Clausen, 2010; Mukherjee et al., 2018). Cen-
tral to LBM is the solution of the discrete Boltzmann equation,
which describes the dynamics of a fluid on a mesoscopic scale
and leads to emergent Navier-Stokes fluid dynamics at the macro-
scale. LBM is naturally scalable to parallel computing platforms,
extendable, and can easily handle complex shapes or geometries,
such as elongated particles. Moreover, pressure fields and stress
tensors are locally accessible (Mohamad, 2011; Krüger et al.,
2017; Succi, 2001).

3.2. Lattice Boltzmann method

The lattice Boltzmann method (LBM) is based upon Ludwig
Boltzmann’s kinetic theory of gases (Mohamad, 2011; Krüger
et al., 2017; Succi, 2001). Similar to other lattice models (Hardy
et al., 1976; Frisch et al., 1986; Fitzgerald and Corcoran, 2005;
Fitzgerald et al., 2014, 2011, 2017), the fundamental principle of
LBM is that fluids (whether gas or liquid) can be imagined as a
large number of discrete particles moving in space. In LBM, the
velocity is discretised such that particles may only have specific
velocity vectors dictated by the choice of velocity set and the
underlying lattice. A discrete version of the continuous Boltzmann
equation for a specific velocity vector or direction can be expressed
as

@f i
@t

þ ci � $f i ¼ �1
s

f i � f eqi
� � ð1Þ

where f i is the density distribution function and ci represents the
discrete velocity vectors. In effect, Eq. (1) represents a set of equa-
tions, one for each of the discrete velocity directions in the velocity
set and for macroscopic flow simulations, Eq. (1) replaces the
Navier-Stokes equations. Using a first-order explicit Euler scheme,
a discrete version of Eq. (1) leads to the lattice Boltzmann equation
(LBE), which is the combination of a collision operation

~f i x; t þ Dtð Þ ¼ f i x; tð Þ � Dt
s

f i x; tð Þ � f eqi x; tð Þ� � ð2Þ

and a streaming operation

f i xþ ciDt; t þ Dtð Þ ¼ ~f i x; t þ Dtð Þ ð3Þ

where Dt is the time step, ~f represents the post-collision state, and
f eq is the equilibrium density distribution function. Further details
on the velocity vector sets and f eq are available in the literature
(Krüger et al., 2017; Sanjeevi and Padding, 2017; Sanjeevi et al.,
2018). LBM simulations are performed on a structured Cartesian
grid with a lattice spacing Dx where it is convenient to set
Dt ¼ Dx ¼ 1. The LBE and Navier-Stokes equations can be linked
via Chapman-Enskog analysis (Krüger et al., 2017). Using this
approach, the kinematic shear viscosity can be estimated from the
relaxation time s using m ¼ c2s s� Dt

2

� �
where cs ¼ 1=

ffiffiffi
3

p
is the speed

of sound for LBM in 3D.
Eq. (3) is the general lattice equation with a single relaxation-

time (SRT). Flows can also be simulated with a multi-relaxation
time (MRT) approach whereby a suitable transformation matrix
is used to transform the particle distribution function from velocity
space to moment space (Sanjeevi et al., 2018; d’Humiéres et al.,
2002). In comparison to the SRT approach, the MRT approach pro-
vides greater stability in the solution as it allows for the inclusion
of relaxation times for relevant physical processes (Rui and Bao-
chang, 2010; Yoshida and Nagaoka, 2010; d’Humiéres et al., 2002).

There are notable differences between LBM and the macro-
scopic methods based on the Navier-Stokes (NS) equation. Firstly,
the governing equation of LBM is first-order, while the NS equation
is a second-order partial differential equation. Secondly, LBM
includes a simple advection term that allows for uniform field
streaming as opposed to a nonlinear convective term inherent in
NS methods. Thirdly, owing to the kinetic nature of LBM, the pres-
sure and stress tensor fields are locally available. Hence, there is no
need to solve a Pressure Poisson equation; rather the pressure is
extracted from the equation of state. Fourthly, spatial discretisa-
tion in LBM is coupled to the discretisation of the velocity space
and leads to regular square grids. This is a general limitation of
the lattice Boltzmann approach. Finally, the kinetic nature of
LBM eases the incorporation of molecular level interactions in
comparison to NS-based methods.
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The lattice Boltzmann method is a quasi-compressible method
that solves the compressible Navier-Stokes equation in the incom-
pressible limit. Thus, when simulating incompressible flow, the
macroscopic equations recovered from LBM differ from the incom-
pressible Navier-Stokes equations by terms of spatial derivatives of
the fluid density, otherwise known as compressibility error (Succi,
2001; Lin et al., 1996). Accurate simulations of incompressible
flows require that the density variation dqð Þ and the Mach number
(Ma) are negligibly small, i.e. dq=q ! 0 and Ma ! 0. In effect, for
an incompressible flow studied with LBM, the density, and hence
the mass, is effectively constant. Any deviation from these require-
ments amplify the compressibility error and as a result signifi-
cantly impact the numerical accuracy. It has been demonstrated
that for finite Ma numbers, the compressibility error of LBM scales
as O(Ma2) (Dellar, 2003).
3.3. Boundary conditions and mass leakage

As LBM is based on a regular Cartesian grid, the method can be
classified as a non-boundary-fitted scheme for the simulation of
fluid flows with curved boundaries, including fluid flow around
non-spherical particles. Implementation of boundary conditions
can be achieved by changing the particle distribution function of
any grid location deemed to be part of or near a solid boundary
or solid particle. One of the major difficulties of implementing
boundary conditions in LBM is the determination of accurate dis-
tribution functions for boundary interactions (Sanjeevi et al.,
2018; Zarghami and Padding, 2018).

The most commonly used boundary condition used in LBM sim-
ulations is the bounce-back (BB) scheme. In the BB scheme, when a
particle distribution streams to a wall node, it reflects back to the
fluid node along its respective incoming link (Succi, 2001). Exam-
ples of implementations of the bounce-back scheme are on-site
BB and halfway BB (Ziegler, 1993). In the on-site BB scheme, the
physical boundary nodes lie exactly on the lattice nodes. However,
in the mid-grid BB scheme, the solid boundary is located exactly
mid-plane between the boundary fluid node and the off-lattice
node located inside the solid. The on-site BB scheme is first-order
accurate whereas the mid-grid BB scheme provides second-order
accuracy in both space and time (Succi, 2001; Ginzbourg and
d’Humières, 1996; Luo, 1997).

A major drawback of on-site and mid-grid BB schemes is their
failure to accurately account for curved boundaries (Sanjeevi
et al., 2018) as these schemes approximate curved boundaries as
discrete staircase shaped boundaries (Ladd, 1994; Ladd and
Verberg, 2001), leading to a loss of resolution and a non-zero wall
velocity (Kandhai et al., 1999). The effects of this approximation
are greater at high Reynolds number where the fluid boundary lay-
Fig. 4. One-dimensional regular lattice and curved-wall boundary. xf ;xff and xfff are all fl
of intersection between the curved-wall and the link between xb and xf . Here jxb � xf j ¼
ers are thinner. A number of boundary treatments using inter/ex-
trapolation techniques are available to model curved boundaries
without the staircase representation (Mei et al., 1999; Bouzidi
et al., 2001; Yu et al., 2003; Bao et al., 2008; Feng and
Michaelides, 2004; Krüger et al., 2017). One such approach is the
interpolated bounce-back (IBB) approach of Bouzidi et al.
(Bouzidi et al., 2001; Krüger et al., 2017). Fig. 4 shows a schematic
of a curved-wall boundary intersecting a fluid node xf and a
boundary node xb at the point xw where q ¼ jxw � xf j=jxb � xf j,
which is the fraction of the intersected lattice link in the fluid
domain. In the Bouzidi scheme (Bouzidi et al., 2001; Sanjeevi
et al., 2018), a linear interpolation of the distribution functions is
given as

~f i xf ; t þ Dt
� � ¼ 2q~f i xf ; t

� �þ 1� 2qð Þ~f i xff ; t
� �

q � 1=2;
1
2q
~f i xf ; t
� �þ 2q�1

2q
~f i xf ; t
� �

q P 1=2;

(
ð4Þ

where i denotes the opposite direction to i. The mid-grid bounce-
back scheme can be recovered when q ¼ 1=2. A quadratic interpola-
tion approach is also available, which is also second-order accurate
(Zarghami and Padding, 2018; Bouzidi et al., 2001; Krüger et al.,
2017). The use of the quadratic interpolation approach requires
an additional fluid node (xfff in Fig. 4). A disadvantage of all interpo-
lation schemes is mass leakage, which refers to both mass loss and
gain over time (Yin et al., 2012; Krüger et al., 2017; Sanjeevi et al.,
2018). Issues with mass leakage are specifically prevalent for sys-
tems operating at high Reynolds number with periodic boundaries,
such as for studies on flows experienced by Geldart D type particles
(Sanjeevi et al., 2018). When inflow-outflow boundary conditions
are used, mass leakage is not a real concern since the flow is contin-
uously replenished. However for other boundary conditions, if the
mass leakage is not monitored, there can be significant departure
from constant density over time.To alleviate any mass leakage
effects induced by the bounce-back scheme, mass conservation
can be enforced by monitoring system mass, and adding or remov-
ing mass from the system (Sanjeevi et al., 2018).

An alternative approach to the BB schemes can also be consid-
ered for LBM studies. For instance, the immersed boundary (IB)
method (Peskin, 1977, 2002) can be combined with the LBM
approach and is referred to as the immersed boundary lattice
Boltzmann method (IB-LBM) (Li et al., 2016; Mountrakis et al.,
2017). Similar to LBM, the IB method represents the fluid on a dis-
crete grid or mesh. In addition, solid elements such as particles or
boundaries are also represented on a second grid that does not
need to align with the fluid grid. Central to the IB method is the
inclusion of a non-slip boundary condition between the fluid and
the solid structure. To achieve this, grid points associated with a
solid are affixed to the fluid, with the fluid velocity then interpo-
uid nodes and xb is a node located within the curved-wall boundary. xw is the point
Dx.
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lated at the Lagrangian points and the resulting forces distributed
over the Eulerian fluid points subject to a coupling function f, with
this function then used to calculate a forcing term in the LBM
approach (Li et al., 2016; Mountrakis et al., 2017). Both velocity
interpolation and force distribution at the solid surface are con-
trolled by kernel functions.

3.4. Hydrodynamic forces on elongated particles

In this section recent applications of LBM for the study of elon-
gated particles in fluid flows are summarised. Our primary interest
is studies related to hydrodynamic forces. Nonetheless, pertinent
studies related to LBM studies on heat transfer in systems of
non-spherical particles are also highlighted. In a fluidised bed reac-
tor, particles experience variable hydrodynamic conditions
depending on local particle density, Reynolds number, orientation,
and proximity to boundaries. Here, the Reynolds number for a par-
ticle is denoted as Re ¼ qf dp vf � vi

�� ��=lf with dp the (volume-

equivalent sphere) particle diameter, vf � vi

�� �� the local relative
velocity between the fluid and particle, qf the fluid density, and
lf the fluid viscosity. In the first part of this section the focus is
on the use of the LBM approach to estimate hydrodynamic correla-
tions and coefficients for isolated and arrested elongated particles,
while in the second part we compare these correlations with the
state-of-the-art. It should be noted that the approximation of
arrested particles for the determination of hydrodynamic forces
is only well suited for particles with large Stokes number, i.e.
where the particle response time to flow changes is much greater
than the response time of the fluid (Rubinstein et al., 2016,
2017). Finally, we consider the influence of nearby boundaries on
the hydrodynamic forces of elongated particles.

3.4.1. Hydrodynamic force and torque coefficient correlations
DNS approaches have been applied to derive correlations for the

hydrodynamic force coefficients associated with the differing
hydrodynamic forces experienced by non-spherical particles in
fluid flows (Zastawny et al., 2012; Ouchene et al., 2016; Sanjeevi
and Padding, 2017; Sanjeevi et al., 2018). While spherical particles
are primarily subject to hydrodynamic drag and experience negli-
gible lift force or torque in fluidised beds, non-spherical particles
are subject to drag, lift, and torque, which all need to be included
appropriately in larger scale numerical simulations. For an isolated
particle moving with a velocity vi in a fluid flow with an undis-
turbed velocity vf , the drag force is given by

FD0 ¼ 1
2
CDqf vf � vi

� �2 p
4
d2
p

ð5Þ

where CD is the drag force coefficient and dp is the diameter of a
sphere with the same volume as the non-spherical particle. Note
that here we have chosen the reference area for the particle equal

to p
4 d

2
p , which is the cross-sectional area of the volume equivalent

sphere. We purposefully choose this reference area to be invariant
to changes in the orientation of the particle to make the dependence
of the drag force on the particle orientation fully explicit in the drag
force coefficient CD. In the case of spherical particles, a number of
widely employed expressions for the drag force for differing flow
conditions are available in the literature (Ergun, 1952; Wen and
Yu, 1966; Hill et al., 2001; Beetstra et al., 2007).

When a non-spherical particle is not aligned with one of its
symmetry axes with respect to the fluid velocity, a shape-induced
lift force results that can significantly affect the trajectory of a par-
ticle. In this situation, the fluid flow near the upper and lower sides
of the particle differ. The pressure drops in regions of rapid flow
while the pressure increases in regions where the fluid velocity
decreases. This leads to an asymmetric pressure distribution and
induces a lift force that is perpendicular to the direction of the rel-
ative fluid flow. An example of the lift force FL due to a fluid flow
acting on a spherocylinder that is not aligned with the direction
of the flow is depicted in Fig. 5(a). FL is orthogonal to the relative
velocity of the fluid with respect to the particle v0

fi. Due to symme-
try, FL lies in the plane defined by the orientation vector u and v0

fi.
We do note that at higher Reynolds numbers turbulent vortex
shedding can lead to time-varying lift components perpendicular
to this plane, but such lift forces are usually at least an order of
magnitude weaker than the lift force discussed here, certainly in
a time-averaged sense. The magnitude of the lift force for an iso-
lated particle is given by

FL0 ¼ 1
2
CLqf vf � vi

� �2 p
4
d2
p

ð6Þ

where CL is the lift force coefficient. The resultant lift force is
FL ¼ FLêL0 , where êL0 is the lift force orientation vector given by
(Mema et al., 2017, 2019)

êL0 ¼
ui � v0

fi

ui � v0
fi

��� ���
ui � v0

fi

� �
� v0

fi

ui � v0
fi

� �
� v0

fi

��� ��� : ð7Þ

When the centre of pressure xcp does not coincide with the cen-
tre of mass of the particle xcm, a pitching torque results that acts
around the axis perpendicular to the plane of relative fluid velocity
v0
fi and particle orientation vector ui, and as a result, can lead to

changes in the angle of incidence / of the particle, which is defined
as the angle between ui and v0

fi. The pitching torque acting on a
spherocylindrical particle is shown in Fig. 5(b). The magnitude of
the pitching torque on an isolated particle is given by

T0 ¼ 1
2
CTqf vf � vi

� �2 p
8
d3
p

ð8Þ

where CT is the pitching torque coefficient. The hydrodynamic tor-
que is perpendicular to the plane of the particle relative velocity
and particle orientation vector such that the torque orientation vec-
tor êT0 is given by

êT0 ¼
v0
fi � ui

v0
fi � ui

��� ���
v0
fi � ui

v0
fi � ui

��� ��� : ð9Þ

The resultant torque is expressed as Tp ¼ T0êT0 . A particle may also
be subject to hydrodynamic rotational torque that acts around the
axis of symmetry of the particle. However, in this paper, rotational
torque is not considered. Further information on rotational torque
and the calculation of a rotational torque correlation function for
elongated particles is available in the immersed boundary method
study of Zastawny et al. (2012).

For accurate Euler-Lagrangian simulation of elongated particle
dynamics in fluidised beds or other processing equipment, dedi-
cated correlations for the coefficients in Eqs. (5), (6) and (8) are
essential. Furthermore, the correlations need to be applicable to
the high Re regime given that larger elongated particles can expe-
rience Re P 2000 (Sanjeevi et al., 2018).

Using LBM with a multi-relaxation time scheme, we have
derived drag, lift and torque functions for ellipsoids and sphero-
cylinders subject to varying flow conditions (Sanjeevi and
Padding, 2017; Sanjeevi et al., 2018). In an initial study on force
correlations for prolate spheroids, we established that the mean

drag coefficient for different incidence angles follows a sin2 / scal-
ing between the extremes at 0 and 90 degrees. Motivated by this
initial evaluation of the drag on spheroids, we extended the
MRT-LBM approach to study the drag, lift and torque experienced
by elongated particles of aspect ratio 5=2 and 4 when subject to a
fluid flow of uniform velocity in an inflow-outflow geometry with



Fig. 5. (a) Illustration of drag and lift force acting on an inclined spherocylindrical particle in a fluid flow. The relative velocity of the fluid with respect to the particle is v0
fi , ui

denotes the particle orientation vector, and / is the angle of incidence of the fluid flow. This is the domain used in our MRT-LBM simulations (Sanjeevi et al., 2018). The
undisturbed fluid enters the domain from the left with a velocity vf while the side walls are represented as free-slip boundaries. (b) Illustration of pitching torque acting on a
spherocylindrical particle. The difference between the centre of pressure xcp and the centre of mass xcm leads to a hydrodynamic torque Ti;f acting on the particle. Dx is the
distance between xcp and xcm .
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free-slip boundaries (Sanjeevi et al., 2018). The particle Reynolds
number was varied in the range 0:1 6 Re 6 2000 while the incident
angle was in the range 0� 6 / 6 90�. Arrested particle arrange-
ments are used for all LBM simulations given that particle mobility
can have significant effects on the hydrodynamic forces experi-
enced by a particle. A previous DNS study on spherical particles
has shown that particle mobility also influences the drag force
(Tang et al., 2016). In the case of elongated particles, this effect
would likely be greater as in dense configurations, such as those
expected in fluidised bed reactors, elongated particles display
mutual alignment when subject to sufficient deformation (Guo
et al., 2012). The influence of the mobility of elongated particles
on the ensuing hydrodynamic forces could be investigated in a
future study.

The drag coefficient CD at varying incident angle / and Re for a
prolate spheroid, an oblate spheroid and a spherocylinder interpo-
lates as a sine-squared function between the limits at / ¼ 0�;90� of
the form

CD;/ ¼ CD;/¼0� þ CD;/¼90� � CD;/¼0�
� �

sin2 / ð10Þ

where CD;/¼0� and CD;/¼90� are calculated from

CD;/¼0� ;90� ¼ a1
Re

þ a2

Rea3

	 

e�a4Re þ a5 1� e�a4Re

� � ð11Þ

where the fitting coefficients a1 to a5 for the different particles can
be found in the paper of Sanjeevi et al. (2018). An example of the
variation of CD with / for the three different spheroids for
Re = 100 is shown in Fig. 6(a) where excellent correspondence is
observed in all cases.

The variation of the lift coefficient CL with the incident angle /
and Re for a prolate spheroid, an oblate spheroid and a spherocylin-
der Re ¼ 1;100 is given by the correlation function

CL;/ ¼ b1

Re
þ b2

Reb3
þ b4

Reb5

	 

sin/1þb6Re

b7 cos/1þb8Re
b9 ð12Þ

with the fitting coefficients b1 to b9 available in the literature
(Sanjeevi et al., 2018). This correlation function provides a good
fit to the simulation data for all particle shapes and Reynolds num-
ber (Sanjeevi et al., 2018) with an example of the fit for Re = 100
provided in Fig. 6(b). The lift correlation function is dependent on
powers of the sine and cosine of the incident angle, where the expo-
nents tend to 1 as Re ! 0, as anticipated for the Stokes flow regime.
In the unsteady regime, the distribution has an inherent skewness
for all particle types (Sanjeevi et al., 2018).

Finally, the variation of the pitching torque coefficient CT with
the incident angle / for a prolate spheroid, an oblate spheroid
and a spherocylinder can be described by the expression

CT;/ ¼ c1
Rec2

þ c3
Rec4

	 

sin/1þc5Re

c6 cos/1þc7Re
c8 ð13Þ

where the coefficients c1 to c8 can be found in Sanjeevi et al. (2018).
As for the lift correlation function, the torque correlation function
depends on the sine and cosine of the incident angle each with an
associated exponent. In the Stokes regime, pitching torque is negli-
gible and therefore can be excluded from the fit. An example of the
fit applied to simulation data at Re = 100 is shown in Fig. 6(c). For all
values of Re, the mean relative deviation of the correlation function
from the data for the spherocylinder is just 4.12% (Sanjeevi et al.,
2018).

3.4.2. Comparison with other coefficient correlations
Using a substantial set of experimental data and results from

simulations, Hölzer and Sommerfeld (2008) formulated a drag cor-
relation function that is applicable to arbitrary-shaped particles of
the form

CD ¼ 8
Re

1ffiffiffiffiffiffi
Ujj

p þ 16
Re

1ffiffiffiffi
U

p þ 3ffiffiffiffiffiffi
Re

p 1
U3=4 þ 0:42� 100:4 � logUð Þ0:2 1

U?

ð14Þ
where U is the particle sphericity defined as the ratio between the
surface area of the volume equivalent sphere and the particle of
interest, Ujj is the lengthwise sphericity defined as the ratio
between the cross-sectional area of the volume equivalent sphere
and the difference between half the surface area and the projected
cross-sectional area parallel to the direction of relative flow of the
particle of interest, and U? is the crosswise sphericity, which is
the ratio between the cross-sectional area of the volume equivalent
sphere and the projected cross-sectional area perpendicular to the
flow for the particle of interest (Hölzer and Sommerfeld, 2008).
Eq. (14) is in part based upon an expression proposed by Leith
(1987) for non-spherical particles in the Stokes regime, which does
not account for the orientation dependence on CD and does not



Fig. 6. Variation of hydrodynamic force coefficients at Re = 100 with / for a prolate spheroid (red squares), oblate spheroid (green discs) and a spherocylinder (blue triangles).
(a) CD (Drag) with fits given by Eq. (10); (b) CL (Lift) with fits given by Eq. (12); (c) CT (Torque) with fits given by Eq. (13). Images from Sanjeevi et al. (2018). (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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depend onUjj. Given thatUjj is more difficult to calculate in compar-
ison to U?, Ujj can be been replaced by U? in Eq. (14). This expres-
sion is easy to implement and applicable to many different particle
shapes. In addition, the mean relative deviation of the expression
from experimental data is 14.1% with Ujj and 14.4% with U?, which
is significantly lower than previous expressions (Haider and
Levenspiel, 1989; Ganser, 1993).

Hölzer and Sommerfeld (2008) only proposed a correlation
function for the drag coefficient experienced by non-spherical par-
ticles. A DNS study using the immersed boundary method by
Zastawny et al. (2012) proposed correlations for drag, lift, pitching
torque, and rotational torque for spheroids, discs and spherocylin-
ders. The aspect ratio of the particles was varied from 1.25 to 5 and
Re 6 300. For the drag coefficient, the correlation function has the
form

CD;/ ¼ CD;/¼0� þ CD;/¼90� � CD;/¼0�
� �

sina0 / ð15Þ

where CD;/¼0� ¼ a1=Re
a2 þ a3=Re

a4 and CD;/¼90� ¼ a5=Re
a6 þ a7=Re

a8 .
Eq. (15) is similar to the expression for Stokes flow (Happel and
Brenn, 1983) and the expression from our LBM studies (Sanjeevi
and Padding, 2017; Sanjeevi et al., 2018), where the central differ-
ence is the exponent a0 that is dependent on particle shape. The
other parameters in CD;/¼0� and CD;/¼90� are also specific to the par-
ticle size and shape. In the case of lift, the correlation function is
expressed as

CL;/ ¼ b1

Reb2
þ b3

Reb4

	 

sin/b5þb6Re

b7 cos/b8þb9Re
b10 ð16Þ

where the bk parameters are dependent on particle shape. Eq. (16) is
comparable to the lift correlation function from our LBM study
(Sanjeevi et al., 2018). One characteristic difference is that Eq.
(12) explicitly captures the physical limit for Stokes flow (Happel
and Brenn, 1983) where the exponents for the sine and cosine terms
both tend to the expected value of 1 for low Re. Finally, the correla-
tion function for pitching torque has a form similar to the function
for lift (Eq. (16)) and is given by

CL ¼ c1
Rec2

þ c3
Rec4

	 

sin/c5þc6Re

c7 cos/c8þc9Re
c10 ð17Þ

where the ck parameters are dependent on particle shape. Zastawny
et al. (2012) also provide a correlation function for the rotational
torque (CR) that is dependent on the rotational Reynolds number
ReR.

Using the commercial Finite Volume solver ANSYS FLUENT,
Richter and Nikrityuk calculated drag, lift, and torque correlations
for spherical, ellipsoidal, and cubic particles (Richter and Nikrityuk,
2013). We focus on the expressions for the ellipsoidal particle in
their study, which had an aspect ratio of 2. The correlation func-
tions defined by Richter and Nikrityuk depend on a transformed
angle of incidence defined as

~/ ¼ j /þ 90ð Þmod180ð Þ � 180j; ð18Þ

which basically means that the roles of parallel (/ ¼ 0; ~/ ¼ 90) and
perpendicular (/ ¼ 90; ~/ ¼ 0) are reversed. For an ellipsoid, the
drag, lift and torque correlations as a function of ~/ and calculated
from fits to DNS simulation data are

CD ¼ 0:0316þ 18:9
Re

þ 6:25ffiffiffiffiffiffi
Re

p þ 2:21
Re0:303

sin2 ~/; ð19Þ

CL ¼ 0:97
Re0:25

sin 2~/� 0:0262
Re0:25

cos 2~/; ð20Þ

CT ¼ � 0:408
Re

þ 0:369
Re0:126

	 

sin 2~/: ð21Þ

The correlations by Richter and Nikrityuk were estimated for flows
with Reynolds numbers between 10 and 200 and they also provided
correlations for heat transfer studies. It is also worth highlighting
the DNS study where an Immersed Boundary-lattice Boltzman
method (IB-LBM) was applied to find the following drag correlation
function for heated ellipsoidal particles with varying aspect ratio w
and incident angle, and for 10 6 Re 6 200 (Ke et al., 2018)

CD ¼ a1
Re

wa2 þ a3ffiffiffiffiffiffi
Re

p wa4 þ a5wa6 þwa7 w� 1ð Þ a8
Rea9

sin2 a10/ð Þ:

ð22Þ
The fitting parameters in Eq. (22) are provided in the literature (Ke
et al., 2018).

In a subsequent DNS study with ANSYS FLUENT, Ouchene et al.
(2016) derived and validated correlations for non-spherical parti-
cles, specifically prolate spheroids, with aspect ratios ranging from
1 to 32, subject to a uniform flow with Re between 1.21 and 240.
The correlation functions in all cases are dependent on Re, the
aspect ratio, and the incident angle. The drag correlation proposed
by Ouchene et al. is inspired by the expression for Stokes flow
(Happel and Brenn, 1983) and equivalent to that proposed by
Sanjeevi and Padding (2017) and Sanjeevi et al. (2018). However,
the expressions for CD;/¼0� and CD;/¼90� from Ouchene et al. differ
from Sanjeevi et al. in that they account for varying aspect ratio.
Full details on CD;/¼0� and CD;/¼90� can be found in the literature
(Ouchene et al., 2016; Arcen et al., 2017). In the case of lift, the cor-
relation function takes the form

CL ¼ FL wð ÞRe0:25 þ GL wð Þ
Re0:755

	 

cos/ sin1:002Re /: ð23Þ
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For brevity we do not include the full expressions for FL wð Þ and
GL wð Þ, which can be found in the relevant literature (Ouchene
et al., 2016; Arcen et al., 2017). Finally, Ouchene et al. also defined
a correlation function for the pitching torque. The authors identified
separate pitching torque correlations for small aspect ratio (w 6 10)
and large aspect ratio (10 6 w 6 32) particles of the form

CT ¼ FT wð Þ
Rec1

þ GT wð Þ
Rec2

	 

cosc

Re
3 sin/ ð24Þ

where ck are fitting parameters related to the small and large aspect
ratios, and FT wð Þ and GT wð Þ are fitting functions. For both small and
large aspect ratios c3 � 1. Values of all fitting parameters and addi-
tional function expressions are provided in the study of Ouchene
et al. (Ouchene et al., 2016). These correlations have been applied
to study the dynamics of ellipsoidal particles in vertical turbulent
flow channels (Arcen et al., 2017). The correlation functions speci-
fied from Eqs. (14)–(24) are limited to steady flows. As outlined,
the correlations of Zastawny et al. (2012) and Ouchene et al.
(2016) have been derived for flows with Re 6 300, whereas the cor-
relations of our LBM study are applicable to steady and unsteady
flows with Re 6 2000.

Fig. 7 shows a comparison of CD at Re ¼ 100 and Re ¼ 2000 for a
prolate spheroid of aspect ratio w ¼ 5=2 and a spherocylinder of
aspect ratio w ¼ 4 as calculated with the correlation functions of
Hölzer and Sommerfeld (2008), Zastawny et al. (2012), Ouchene
et al. (2016), and the simulation data and correlations from our
LBM study (Sanjeevi et al., 2018). For both particle shapes there
is good agreement between our correlation and the correlation of
Hölzer and Sommerfeld (2008) at Re ¼ 100. Differences in the cor-
relation at Re ¼ 2000 arise as the Hölzer and Sommerfeld correla-
tion is applicable to arbitrary shaped particles and a wide range of
Re, while our correlation applies specifically to elongated particles
such as ellipsoids and spherocylinders. For the prolate spheroid,
there is good agreement between our correlation and that of
Zastawny et al. (2012). In addition, the correlation function of
Ouchene et al. (2016) does not match the trend at either Reynolds
number with the difference most pronounced at large /.

Fig. 8 shows a comparison of CL at Re ¼ 100 and Re ¼ 2000 for a
prolate spheroid with w ¼ 5=2 as calculated with the correlation
Fig. 7. Comparison of CD using various correlation functions for varying particle shape, inc
correlation functions of Hölzer and Sommerfeld (2008), Zastawny et al. (2012), Ouchene
Sanjeevi et al. is also presented. Images based on those in Sanjeevi et al. (2018).
functions of Zastawny et al. (2012) and Ouchene et al. (2016),
and the simulation data and correlations from our LBM study
(Sanjeevi et al., 2018). Our correlation function is shown to be in
good agreement with the correlation function of Zastawny et al.
at Re ¼ 100, while the expression of Ouchene et al. appears to
underestimate CL at all incident angles with a maximum deviation
of 40% observed at / � 45�. At Re ¼ 2000, the correlation function
of Zastawny et al. does not have the same agreement with the LBM
simulation data and our correlation function as observed at
Re ¼ 100. Considering that the correlation function of Zastawny
et al. (Eq. (16)) was derived for flows up to Re ¼ 300, the degree
of correspondence is reasonable.

Correlation functions for CT from LBM simulations and other
DNS studies for a prolate spheroid with w ¼ 5=2 are plotted in
Fig. 9. At Re ¼ 100, there is good correspondence between the cor-
relations of Zastawny et al. and Ouchene et al. while our correla-
tion function and LBM data estimates a larger CT at all incident
angles. The difference between our correlation and the correlation
of Zastawny et al. may be attributed to the powers associated with
the sine and cosine terms of the correlation function. In both cases,
the sine-cosine expression is inspired by the CL expression from
Stokes flow (Happel and Brenn, 1983). We predict a function
skewed to the left while the correlation functions of Zastawny
et al. and Ouchene et al. are both skewed to the right, a difference
that emerges since the correlation functions of Zastawny et al. and
Ouchene et al. have been derived for flows with Re 6 300 while our
correlation function applies up to Re ¼ 2000 and to even larger val-
ues of the Reynolds number.

In summary, significant work has already been done to find cor-
relation functions for drag, lift and torque on a single isolated par-
ticle subject to idealised channel-like flow conditions. However, in
a fluidised bed reactor, the flow field experienced by a specific par-
ticle will also depend on the presence of neighbouring particles.
Therefore, multiparticle effects on the drag, lift, torque, and their
associated correlation functions must also be taken into consider-
ation. A recent DNS study by He and Tafti using the immersed
boundary method (IBM) simulated random monodisperse suspen-
sions of ellipsoidal particles in systems with a solid fraction rang-
ing from 0.1 to 0.35 (191 to 669 particles) and at Reynolds
ident angle /, and Re. In the case of the prolate spheroid, CD is plotted using the drag
et al. (2016), and Sanjeevi et al. (2018). In addition the LBM simulation data from



Fig. 8. Comparison of CL using various correlation functions for a prolate spheroid for varying incident angle and Re. Images based on those in Sanjeevi et al. (2018).

Fig. 9. Comparison of CT using various correlation functions for a prolate spheroid for varying incident angle and Re. Images based on those in Sanjeevi et al. (2018).
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numbers in the range 10 < Re < 200 (He and Tafti, 2018). The
study revealed that the variation in the mean drag, lift, and torque
experienced by a particle for differing incident angles is similar to
the case of an isolated particle although the authors do not present
correlation expressions accounting for the effects of local solid
fraction. In addition, the magnitude of the variations in the drag,
lift, and torque are much larger for particle suspensions than for
isolated particles. The authors also investigated the relevance of
secondary forces induced by the presence of other particles in close
proximity. The study of He and Tafti highlights the importance of
accounting for multi-particle effects, and motivates further investi-
gations for the derivation of multi-particle drag, lift, and torque
correlations.

It is pertinent to briefly consider recent LBM studies that have
focused on the hydrodynamic forces experienced by other non-
spherical particles. Guan et al. (2017) used the LBM approach to
study only the drag force acting on cylindrical, square, and spher-
ical particles in a channel flow for Reynolds numbers between 0.1
and 3000, which exceeds the maximum Re of our LBM studies. An
important finding from their study is that the variation of the CD

trend with Reynolds numbers is different for each particle shape.
However, the accuracy of their results is poor at the highest grid
resolution, even for intermediate values of Re. For example, for a
spherical particle at the highest grid resolution, CD differs by
approximately 20% from the correlation expression of Haider and
Levenspiel (1989) and Clift et al. (2005). Sommerfeld and Qadir
investigated the hydrodynamic forces acting on highly irregular
shaped particles in a flow channel for Reynolds numbers between
1 and 200 (Sommerfeld and Qadir, 2018). Results show a normal
distribution for all coefficients over all particle shapes and orienta-
tions. In addition, the study concludes that the drag coefficient
increases as the particles become more irregular in shape. Follow-
ing their initial LBM study, Sommerfeld and Qadir formulated a
stochastic modelling method whereby the fluid forces acting on a
non-spherical particle in an Euler/Lagrangian approach are calcu-
lated using probability density functions (PDFs) for the drag, lift,
and torque (Sommerfeld and Lain, 2018). The PDFs were estimated
using data from the initial LBM simulations (Sommerfeld and
Qadir, 2018). Trunk et al. (2018) used the homogenised LBM
(HLBM) approach, which is a LBM variant that includes a smoother
interpolation between the fluid and the particle solid than the Bou-
zidi bounce-back scheme, to compare the settling of arbitrarily
shaped limestone particles and spheres. While this HLBM approach
was not used to calculate hydrodynamic forces on the limestone
particles, the drag and lift forces acting on a cylinder were calcu-
lated and compared with previous studies. A study such as that
of Trunk et al. (2018) could be used to determine correlation func-
tions for highly irregular particles.



12 B.W. Fitzgerald et al. / Chemical Engineering Science: X 2 (2019) 100019
3.4.3. Effect of boundaries
During fluidisation, particles will contact adjacent particles and,

invariably, boundaries such as confining walls. Furthermore, even
as a particle moves close to a boundary, the drag, lift, and torque
experienced will differ from the case when the particle is distant
from the boundary. To date, the majority of numerical studies have
focused on the influence of boundaries for spherical particles (Zeng
et al., 2009; Lee and Balachandar, 2010, 2017; Tsuji et al., 2013;
Zhou et al., 2017; Ignatenko et al., 2017) while there have only
been few studies on non-spherical particles (Gavze and Shapiro,
1997; Lee and Hyun, 2015; Zarghami and Padding, 2018).

In the study of Gavze and Shapiro (1997), the forces acting on
prolate spheroids of varying aspect ratios in a shear flow near a
rigid boundary were investigated in the Stokes limit. As the particle
aspect ratio increased, the maximum lift force, which occurred at
an incident angle / ¼ 45�, also increased. Interestingly, the maxi-
mum lift force was observed at an aspect ratio w � 3 while parti-
cles with w � 1 (spheres) and w ¼ 10 (highly prolate particles)
were subject to smaller lift forces. At w � 1, this is unsurprising
given that spherical particles are subject to negligible lift. For par-
ticles with w ¼ 10, the major axis of the particle can extend far
from the rigid boundary into a region of the system where the flow
is unperturbed by the boundary. Gavze and Shapiro also derived
correlation expressions for the drag, lift, and torque experienced
by particles. For instance, the ratio of the lift force on a particle
with aspect ratio w at a distance y from the boundary (FL) and
the lift force on a particle in an unbounded flow (F1

L ), i.e. a particle
that is distant from a boundary, was expressed as

FL

F1
L
¼ 1þ 0:43þ 1:53=w

y=a
þ 0:66=w

y=að Þ2 ð25Þ

where a is the major axis of the particle. The above expression is
valid for particles with an aspect ratio in the range 1:11 < w < 10.
Additional expressions are available in Gavze and Shapiro (1997).

In a recent study motivated by particle-based drug delivery sys-
tems and the forces experienced by particles in vascular flows, Lee
et al. assessed the variation of drag, lift, and torque on non-spher-
ical particles near walls in Stokes flow using ANSYS FLUENT (Lee
and Hyun, 2015). Although the flow field and forces on the particle
were solved in 3D, the particles were not allowed to move in the
depth direction, thus representing a pseudo-2D system. As the par-
ticle was moved closer to the boundary, the drag force and torque
increased while the lift force was shown to oscillate around zero
with changes in the particle orientation. Although Lee et al. did
Fig. 10. Illustration of the flow configuration and boundary conditions for a prolate spher
and the no-slip boundary. a and b are the lengths of the major and minor axes of the p
not provide correlations in the same manner as Gavze and
Shapiro (1997), the simulations yielded insight with regards to
the resistance portrayed by a particle as it translates and rotates
in a flow.

Given the lack of studies on the hydrodynamic forces experi-
enced by non-spherical particles beyond Stokes flow, we have
made a first exploration of the drag, lift, and torque experienced
by an ellipse of varying aspect ratio near a wall in a 2D flow chan-
nel using the LBM approach (Zarghami and Padding, 2018). A sche-
matic of the flow configuration with associated boundary
conditions is presented in Fig. 10.

Fig. 11 show the average drag, lift, and torque as a function of
incident angle / and various values of the gap width h for an ellipse
with an aspect ratio w ¼ 4 and in a flow with Re ¼ 100. As / ! 0�

or / ! 180�, the drag force tends to zero (Fig. 11(a)). With increas-
ing /, the drag force increases and peaks at / ! 90� as the frontal
area of the particle facing the flow reaches the maximum value,
and leads to maximum disturbance of the flow field. It should be
noted that at / ¼ 90� the maximum drag force is observed when
h ¼ a. As the gap is decreased further, at / ¼ 90�, the drag force
decreases given that the wall slows down the flow through the
gap at small h and leads to a decrease in viscous drag.

Fig. 11(b) shows the variation of the lift force with / for varying
h. Unlike for drag force, the variation of lift force with / is asym-
metric. At / ¼ 0�, the lift force is positive, indicating that the par-
ticle experiences a force directed away from the wall. As /
increases, the magnitude of the lift force increases for all h and
reaches a peak in all cases at / � 45�. However, at / > 90�, the lift
force becomes negative, thus indicating a wall-directed lift force.

Finally, the variation of torque is illustrated in Fig. 11(c). The
trends for torque are notably asymmetric, with the particle experi-
encing predominantly negative torques, especially when furthest
from the wall. As / increases from 0�, a positive counter-clockwise
torque on the particle results with a magnitude that increases with
decreasing gap size. The maximum positive torque occurs for the
smallest value of h. The continued increase of / eventually leads
to a negative clockwise torque on the particle. A negative torque
emerges since the shear layer on the lower side of the particle
directly interacts with the shear layer of the wall and almost cancel
out each other. As a result, the shear layer on the upper side with a
negative sign dominates leading to a clockwise rotation of the
particle.

This investigation on the drag, lift, and torque experienced by
ellipses close to a no-slip boundary is the first step towards a
numerical study of ellipsoids in 3D configurations. We initially
oid adjacent to a no-slip rigid boundary. h is the gap between the base of the particle
article while the aspect ratio w ¼ a=b.



Fig. 11. Variation of the drag, lift, and torque with / experienced by an ellipse with
w ¼ 4, Re ¼ 100, and varying h. (a) Drag force. (b). Lift force. (c) Torque.

Fig. 12. Example of mutation process for the mathematical function
tan 1þ cos xð Þð Þ.
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explored a 2D system given the lower number of degrees of free-
dom for an ellipse in comparison to the 3D case. In 2D, an ellipse
has five degrees of freedom - centre of mass coordinates, the major
diameter (a), the minor diameter (b) and the incident angle /. As
demonstrated in the study, the forces are also dependent on Re,
distance of the particle from the wall, and aspect ratio. In 3D, an
ellipsoid has nine degrees of freedom - centre of mass coordinates,
the semi-major diameter, the semi-intermediate diameter, the
semi-minor diameter, and the three Euler angles associated with
orientation. A complementary 3D study would therefore require
exploration of a substantially larger parameter space.

3.5. The role of machine learning

While the aforementioned correlation functions for the drag,
lift, and torque coefficients have been formulated in part using
expressions based on the expected flow physics in different
regimes, an alternative approach can be used to define and esti-
mate these expressions. Symbolic regression is a new framework
for regression analysis that is part of the genetic programming
algorithms family first proposed by Koza (1994). It is a data-based
machine learning algorithm that is very efficient in detecting
mathematical relations between data. Thus, it facilitates finding
expressions that are representative of the physics associated with
the problem at hand. The principle difference between symbolic
regression and other regression methods such as non-linear
regression (Kass, 1990) is that the latter can only consider one
equation per regression run, while the former can evaluate billions
of equations in a single run. Symbolic regression searches the space
of mathematical functions using methods similar to genetic evolu-
tion (Kass, 1990), where mathematical expressions are generated
through mutations and random combinations. Initially, the sym-
bolic regression algorithm is provided with selected mathematical
functions that are specific to the problem investigated and act as
the initial guess for a solution. The next step, which is the essential
step of the algorithm, is referred to as breeding whereby offspring,
which are modified versions of the initial mathematical function,
are generated. They can be generated by either a crossover of the
initial mathematical functions or with the introduction of a ran-
dom mutation to the function that adds a new function to the
existing space of functions. Fig. 12 shows an example of a mutation
process for the mathematical function tan 1þ cos xð Þð Þ. After breed-
ing, the fitness of the offspring functions are evaluated with
regards to how closely they capture the supplied data sets. Finally,
the last step is the selection process where the offspring that have
the highest fitness are selected. The majority of symbolic regres-
sion algorithms seek a balance between model complexity and
accuracy. This approach allows for a deeper understanding of the
underlying physics of the problem and also eliminates the possibil-
ity of overfitting.
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Given the functionality of symbolic regression, it is appealing to
use this tool to obtain fitting correlations for hydrodynamic drag,
lift, and torque from numerical data similar to that used to find
the correlations defined previously (Sanjeevi et al., 2018). How-
ever, we believe that the most beneficial use for the methods of
machine learning, such as symbolic regression, is in exploring their
capability to obtain accurate predictive fitting equations in a
higher parameter space from data obtained from a lower parame-
ter space. For instance, the correlation expressions of Sanjeevi et al.
(2018) are a function of Re and the particle orientation /. However,
we would like to extend the correlation expression to also account
for the aspect ratio of the elongated particle using data that con-
tains information as to how drag, lift, and torque vary with Re
and /. This can be achieved by using semi-supervised methods that
can learn from data sets such that any input data is not associated
with the output data. For instance, in such a case, the number of
input data sets can exceed that of the output data sets. An attrac-
tive aspect of using symbolic regression with semi-supervised
learning is the use of previous knowledge, such as functional
dependencies in certain regimes of the problem under investiga-
tion. This would significantly reduce the time needed for DNS sim-
ulations. Currently, using a set of data, machine learning
algorithms based on genetic programming can predict the mathe-
matical structure of the coupled ordinary differential equations in
an approach known as the advanced symbolic regression algorithm
(Schmidt and Lipson, 2009). Alternatively, a more advanced
method such as sparse identification can be used to ascertain the
nature of the partial differential equations that best capture a data
set (Brunton et al., 2016). For example, sparse identification algo-
rithms can be used to identify the transport equation or equations
that describe behaviours in fluidised beds, while advanced sym-
bolic algorithms can assist in the formulation of a system of predic-
tive equations that govern the fluidisation process of particulate
flows. Thus, machine learning solvers such as symbolic regressions
are an attractive approach for the evaluation of precise correlation
functions to approximate hydrodynamic forces for elongated parti-
cles subject to variation in parameters such as Re, /, and aspect
ratio. In addition, this approach can be applied to a multitude of
length scales given that machine learning algorithms are not sub-
ject to spatial or temporal resolution constraints.
4. Laboratory-scale simulations: CFD-DEM

CFD-DEM is a powerful numerical tool that can be used to study
dense gas-solid flows in fluidised beds (Deen et al., 2007; van der
Hoef et al., 2006, 2008; Goniva et al., 2012; Zhong et al., 2016;
Mahajan et al., 2017, 2018; Mema et al., 2017, 2019) as well as
jet formation and cratering in granular packings (Kuang et al.,
2013), gas-solid flows in cyclones (Chu et al., 2011), reacting flows
in fluid catalytic cracking processes (Wu et al., 2010), stick-slip
behaviour in a sheared granular fault (Dorostkar and Carmeliet,
2018), and discharge of lunar soil from a closed container similar
to that included on a lunar space rover (Otto et al., 2018). Unlike
DNS, CFD-DEM does not fully resolve the fluid flow in the vicinity
of particles. Instead, fluid-solid interactions are included using
hydrodynamic closures. Various coupling approaches between
the phases can be utilised, depending on the solid volume fraction
�s (van der Hoef et al., 2006). For fluid-solid suspensions in flu-
idized bed reactors where �s > 10�3, ‘‘four-way coupling” is
required since the fluid affects the solid particles, the particles
affect the fluid, and the particles interact with each other and the
walls. The CFD-DEM approach consists of two coupled algorithms,
which are computational fluid dynamics (CFD) (Anderson et al.,
1995; Versteeg and Malalasekera, 2007) for the fluid phase and dis-
crete element method (DEM) (Cundall and Strack, 1979) for the
solid particle phase. CFD is used to evolve the (averaged) intersti-
tial fluid between the particles while DEM represents the solid
phase as soft deformable particles that exert forces on other parti-
cles and any boundaries upon contact. In this section, we outline
the key steps for the implementation of a CFD-DEM study that
are specific for elongated particles subject to a fluid flow. Theoret-
ical considerations for the CFD-DEMmodelling of other non-spher-
ical particle shapes are available in Zhong et al. (Zhong et al., 2016).
After briefly introducing the implementation of CFD, we present
details of DEM and specific considerations for elongated particles.

4.1. Computational fluid dynamics (CFD)

The evolution of the fluid phase using a CFD approach involves
the solution of the equations for continuity and momentum trans-
port. For an incompressible fluid, the equation of continuity is

@ �fqf

� �
@t

þr � �fqfvf

� �
¼ 0 ð26Þ

where �f is fluid volume fraction, qf is fluid density, and vf is the
fluid velocity. Momentum conservation is expressed as

@ �fqfvf

� �
@t

þr � �fqfvfvf

� �
¼ ��frpþr � �f sf

� �þ Rf ;p þ �fqfg

ð27Þ
where sf is the fluid stress tensor, Rf ;p represents the momentum
exchange between the fluid and particle phases, and g is gravity.
Discretized versions of Eqs. (26) and (27) can be solved using the
Pressure Implicit with Splitting of Operators (PISO) algorithm or
the Semi-Implicit Method for Pressure-Linked Equation (SIMPLE)
algorithm (Versteeg and Malalasekera, 2007). Further details on
both PISO and SIMPLE can be found in the literature (Versteeg
and Malalasekera, 2007; Hilton et al., 2010). When solving the fluid
flow, careful consideration must be made with regards to the size of
a grid cell. If the grid size is too large, crucial aspects of the fluid
flow will be averaged out, while a grid size that is too small relative
to the particle size can lead to anomalies in the solution (Clarke
et al., 2018).

4.2. Discrete element method (DEM)

The discrete element method (DEM) of Cundall and Strack
(Cundall and Strack, 1979) is one of the most important models
currently applied to study discrete granular particle systems. The
DEM approach was initially developed to simulate rock mechanics
and resolve stresses between particles inside rock samples
(Cundall, 1971). Development of the algorithm was further moti-
vated by the failure of an analytical model of cubic arrays of discs
or spheres (Deresiewicz, 1958) to accurately capture internal stres-
ses recovered from experiments on packings of photoelastic disks
(de Josselin de Jong and Verrujit, 1969).

In DEM, particles trajectories are determined by contact inter-
actions with other grains and any confining boundaries. Contacts
with grains create inter-particle forces that are used in DEM to
evolve particle positions by integrating Newton’s equations of
motion. The stiffness of particles in DEM is typically chosen to be
lower than the realistic particle stiffness as ascribed by Young’s
modulus of the material. Such a choice facilitates faster evaluation
of prolonged particle contacts by allowing for a larger time step in
the integration scheme. This approach is satisfactory, provided the
contact time is shorter than the mean free time between subse-
quent collisions. Particle deformation during a contact is approxi-
mated by the overlap between two particles and used in the
calculation of the resulting contact force.
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In the field of granular materials DEM has been applied to
model laboratory scale experiments such as the shear of grains in
a planar geometry (Aharonov and Sparks, 1999, 2002; Fitzgerald
et al., 2014), shear in a Couette geometry (Schöllmann, 1999;
Latzel et al., 2000, 2003), and jet formation in impacted granular
packings (Lohse et al., 2004). DEM has also been used to study a
variety of industrial situations such as grinding processes in
ceramics (Jiang et al., 2015), die filling for the manufacturing of
pharmaceutical tablets (Wu, 2008), processes in agriculture
(Tijskens et al., 2003), flows in hopper geometries (Balevicius
et al., 2011; Cleary and Sawley, 2002), particle flows in rotating
drums (Poschel and Schwager, 2004; Komossa et al., 2014; Xiao
et al., 2017), and the filling of silos (Holst et al., 1999).

4.2.1. Equations of motion and inter-particle forces
Consider a particle i with massmi moving with a velocity vi in a

gas-solid system such as a fluidised bed. The translational motion
of the particle can be calculated via the integration of

mi
dvi

dt
¼
X
j

Fij;n þ Fij;t
� �þ Fi;f þ Fi;p þ Fi;b ð28Þ

where the sum runs over all neighbours j in contact with particle i,
Fij;n is the normal contact force acting on particle i due to its inter-
action with particle j, Fij;t is the tangential contact force acting on
particle i due to its interaction with particle j, Fi;f is the total hydro-
dynamic force acting on particle i, Fi;p represents the pressure gra-
dient (buoyancy) force acting on particle i, and Fi;b is any body
force acting on particle i including gravity. The rotational motion
of particle i is solved using

d Ii �xið Þ
dt

¼
X
j

Tij þ Ti;f þ Ti;external ð29Þ

where Ii is the moment of inertia tensor of particle i;xi is the angu-
lar velocity of particle i;Tij is the contact torque acting on particle i
due to its interaction with a neighbouring particle j;Ti;f is the fluid-
induced torque acting on particle i, and Ti;external is any external tor-
que acting on particle i. Particle velocities, positions, and orienta-
tions are evolved by time integration subject to a fixed
integration time step using an approach such as the Velocity-Verlet
method.

Under experimental conditions, the contact force Fij between
two contacting particles i and j is distributed across the contact
surface. However, in DEM, contacts between adjacent particles
are approximated as particle overlaps. Therefore, the contact force
is assumed to act at a single point in the centre of the overlap
region. In the next section, approaches for the identification of
inter-particle contacts and the contact point for various particles
shapes are presented. Here the focus is on the numerical descrip-
tion of the normal and tangential components of the contact force
when a contact is identified between two particles. The normal
contact force Fij;n between two particles i and j can be written as

Fij;n ¼ Fij;el þ Fij;dis ð30Þ
where Fij;el represents the elastic repulsion and Fij;dis is associated
with the kinetic energy dissipation. A number of normal contact
force model approaches are available in the literature (Schäfer
et al., 1996; Džiugys and Peters, 2001; Poschel and Schwager,
2004; Kruggel-Emden et al., 2007). A popular representation of
the normal interaction in DEM is a linear spring-dashpot scheme
where the elastic component is described by a linear spring and
the dissipative component is represented as a dashpot, which can
be expressed as

Fij;n ¼ �kndnnij � gnvij;n ð31Þ
where kn is the normal spring constant, dn is the degree of overlap
between the particles, nij is the normal unit vector, gn is a phe-
nomenological damping coefficient, and vij;n is the normal relative
velocity between the particles at the location of the contact point.
Both kn and gn depend on material properties such as the particle
stiffness and the coefficient of normal restitution en.

The linear spring-dashpot model in Eq. (31) assumes a constant
en at any impact speed. In reality, the amount of energy dissipation
depends on the maximum amount of deformation, and therefore
on the impact speed. This physics can be addressed by using a
non-linear spring-dissipative model based upon the Hertz theory
of elastic contacts (Schäfer et al., 1996; Kruggel-Emden et al.,
2007; Antypov and Elliott, 2011) which is given as

Fij;n ¼ �kHertzn d3=2n /�3=2
ell nij � gnvij;n ð32Þ

where kHertzn is the Hertzian spring constant and /ell is a factor that
takes into consideration the geometry of the elliptical contact area.
When a circular contact area is assumed, /ell ¼ 1 (Kumar et al.,

2018). The constant kHertzn is given by

kHertzn ¼ 4
3
Eeff

ffiffiffiffiffiffiffiffi
Reff

p
: ð33Þ

In Eq. (33) Eeff is the effective elastic modulus for the particle con-
tact and expressed as

Eeff ¼
1� m21
� �

E1
þ 1� m22
� �

E2

� ��1

ð34Þ

where Ei and mi are the elastic modulus and Poisson’s ratio for the ith

particle. Reff is the effective particle radius; for the simple case of

two spheres Reff ¼ RiRj
RiþRj

. An expression for Reff of an elliptical contact

area is also available in the literature (Kumar et al., 2018). For sphe-
rocylindrical particles, it has been demonstrated that a linear-dash-
pot model or a Hertzian force model where a circular contact area is
assumed are more than sufficient for studies on force data and the
bulk properties of particle packings. On the other hand, if more
detailed information on particles contacts such as area, overlap,
duration, and frequency are required, then a Hertzian force model
that accounts for variable contacting areas should be employed
(Kumar et al., 2018).

If the tangential relative velocity vij;t at the contact point is non-
zero at the start of a particle contact, then the interaction is oblique
and as a result, the particles experience tangential forces. There are
a number of schemes available for the description of tangential
forces (Schäfer et al., 1996; Poschel and Schwager, 2004). For brev-
ity, we highlight the Coulomb-type friction expression for the mag-
nitude of the tangential force, given by

Fij;t ¼ min �ktdt � gtvij;t

�� ��;l Fij;n

�� ��� � ð35Þ
where kt ; dt ;gt , and l are the tangential spring constant, tangential
overlap vector, tangential damping coefficient, and friction coeffi-
cient respectively. dt is calculated using the time integral of the tan-
gential relative velocity at the contact point since the development
of the initial particle contact (Mahajan et al., 2018).

Implicit to any force scheme are parameters associated with the
elastic and dissipative responses whose values are dependent on
particle material parameters. The two traditional approaches used
to estimate representative values of DEM parameters are calibra-
tion and measurement (Marigo and Stitt, 2015; Coetzee, 2017).
For the calibration approach, the DEM parameters in simulations
are varied until acceptable correspondence of specific bulk proper-
ties from experiments and simulations is reached. This approach is
iterative, meaning that DEM parameters must be suitably varied to
enable convergence of the data sets. For the measurement
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approach, the material properties are measured at the particle or
contact scale (Coetzee, 2017). For instance, the coefficient of resti-
tution can be measured via high-speed imaging of colliding parti-
cles (Wang et al., 2008; Mahajan et al., 2018) while the rolling
friction for particles can be inferred from the motion of near-spher-
ical particles down an incline (Ketterhagen et al., 2010).

Particle shape can also influence the measured material param-
eters (Marigo and Stitt, 2015; Coetzee, 2017). It is not sufficient to
just measure the material parameters for a spherical particle made
from the same material as the non-spherical particle geometry of
interest. Collisions between non-spherical particles can lead to
complex post-collision trajectories and thus complicate the pro-
cess of making an accurate estimation of the coefficient of restitu-
tion. In general, it is advisable to apply statistical analysis
procedures as part of a systematic method to demonstrate the
importance of certain DEM parameters, such as Young’s modulus
and the coefficient of rolling friction, and hence aid in the timely
selection and calibration of these parameters (Yan et al., 2015).
Alternatively, parameters can be estimated using a weighted least
squares fitting approach for experimental data (Kruggel-Emden
et al., 2007) with the parameters then used as input for DEM
simulations.

4.2.2. DEM collision detection schemes
As outlined previously, particles in fluidised bed reactors for

biomass processing tend to be elongated in nature and can be rep-
resented as fibres, rods, spherocylinders, or ellipsoids. For any DEM
simulation, the most important step is the identification of particle
contacts. Any contact detection algorithm must satisfy three pri-
mary requirements. Firstly, the algorithm should accurately detect
a contact between particles. Secondly, the algorithm should deter-
mine the contact point and the associated contact tangent. Finally,
the algorithm should calculate the magnitude of the particle over-
lap, which is used to calculate the normal contact force subject to a
specified force law. A number of pertinent collision detection
schemes for particle shapes relevant to fluidisation processes are
now presented.

The simplest representation of a solid particle in CFD-DEM sim-
ulations is a sphere. A sphere can be described by a single param-
eter i.e. the particle radius, and has no discernible orientation. Two
spherical grains of radius Ri and Rj are deemed to be in contact
Fig. 13. A schematic of a sample contact between two spherocylinders with each havin
particles P1 and P2 respectively for which the shortest distance between the particles resu
the translational velocity. The mid-point between s1 and s2 can be denoted as rc and
tangential unit vectors for the contact respectively, which are shown in the inset image
when the length of the vector between their respective centres of
mass rij is less than the sum of their radii. The degree of overlap
dn can be referred to as the mutual compression of the particles
and expressed mathematically as

dn ¼ Ri þ Rj � jrijj: ð36Þ
Spheres (discs in two-dimensional studies) have been extensively
used to represent particle shapes in simulations of gas-solid flows
(Tsuji et al., 1993; Xu and Yu, 1997; Deen et al., 2007; Zhu et al.,
2008; van der Hoef et al., 2008). Although spherical particles allow
for rapid numerical simulations, their geometry is too simplistic to
capture the realistic hydrodynamic and contact forces experienced
by a particle. For spherocylindrical particles, contact detection is
more complicated than for the case of spheres, as shown in
Fig. 13. Two spherocylindrical particles are in contact when the
shortest distance between their shafts is smaller than the sum of
their respective radii such that s2 � s1j j < 2Rp where s1 and s2 are
the end points of the line connecting the two shafts of the particles.
Therefore, the principle aim of any contact detection algorithm for
spherocylinders is to calculate s1 and s2 (Pournin et al., 2005;
Vega and Lago, 1994; Mema et al., 2019; Mahajan et al., 2017,
2018; Marschall and Teitel, 2018).

It is instructive to show a brief derivation of the locations s1 and
s2. Parametric equations for the shafts of particles P1 and P2 can be
written as

nP1 : k# r1 þ ku1 ð37Þ
nP2 : w # r2 þ wu2 ð38Þ
where r1 and r2 are the centres of mass of particles 1 and 2, respec-
tively, u1 and u2 are the unit orientation vectors of their shafts, and
k 2 �lp=2; lp=2

 �
and w 2 �lp=2; lp=2

 �
. Using these parametric equa-

tions, the vector r between the shafts can be expressed as

r ¼ nP2 � nP1 ¼ r12 þ wu2 � ku1: ð39Þ
with r12 ¼ r2 � r1. Without constraints on k and w, the squared dis-
tance is given by

r2 ¼ r212 þ w2 þ k2 þ 2wu2 � r12 � 2ku1 � r12 � 2kwu2 � u1: ð40Þ
Calculation of the minimum distance is achieved via the minimisa-
tion of r2 leading to preliminary values of k and w:
g a shaft length lp and characteristic radius Rp . s1 and s2 represents the points on
lts. ri is the centre of mass, ui is the orientation unit vector originating at ri and vi is
the degree of overlap between the particles is dn. n12 and t12 are the normal and
. Image adapted from Mema et al. (2019).



Fig. 15. Quartic equation approach for the geometrical potential algorithm to locate
the contact point C between two overlapping ellipsoids.

B.W. Fitzgerald et al. / Chemical Engineering Science: X 2 (2019) 100019 17
k� ¼ r12 � u1ð Þ � r12 � u2ð Þ u1 � u2ð Þ
1� u1 � u2ð Þ2

; ð41Þ

w� ¼ � r12 � u2ð Þ þ r12 � u1ð Þ u1 � u2ð Þ
1� u1 � u2ð Þ2

: ð42Þ

If either or both k� and w� are outside the range �lp=2; lp=2
 �

, corre-
sponding to a contact at the hemispherical end of the spherocylin-
der, they are clipped to 	lp=2. These final values of k� and w� are
then reinserted in Eqs. (37) and (38) to find the locations s1 and
s2, and the shortest distance between the particles can be evaluated
by inserting the values for k� and w� in Eq. (39) or Eq. (40). Further
details on the collision detection algorithm can be found in the
paper of Mahajan et al. (2018).

In an idealised case, two spherocylinders are perfectly parallel

when 1� u1 � u2ð Þ2 ¼ 0. However, due to numerical accuracy, two

particles are taken to be parallel when 1� u1 � u2ð Þ2 is sufficiently
small, e.g. less than 10�6. Once the values of k� and w� have been
attained, s1; s2, and rc , which is the mid-point between s1; s2
(Fig. 13), can be easily calculated.

An ellipsoid is a specific example of a superquadratic (Džiugys
and Peters, 2001; Williams and Pentland, 1992) with the general
formula for a superquadratic in a (body-fixed) Cartesian coordinate
system given by

x
a

��� ����1 þ y
b

��� ����2 þ z
c

��� ����3 ¼ 1 ð43Þ

where a; b, and c are the principal semi-axes of the ellipsoid, and
�1; �2, and �3 are powers such that 0 < �1; �2; �3 < 1. It has been
suggested that up to 80% of solids can be represented as a superqua-
dratic (Williams and Pentland, 1992). Thus, a precise identification
of contacts between ellipsoids is imperative for the numerical
reproduction of particle dynamics in real processes. A number of
contact detection schemes are available in the literature such as
the intersection algorithm (Rothenburg and Bathurst, 1991; Ting,
1992; Lin and Ng, 1995; Džiugys and Peters, 2001), the geometrical
potential algorithm (Lin and Ng, 1995; Džiugys and Peters, 2001;
Džiugys and Peters, 2001), and the common normal concept (Lin
and Ng, 1995; Kildashti et al., 2018).

In the intersection algorithm, the intersection points A and B
between two overlapping ellipses are calculated, and thereafter
used to calculate the midpoint between the points C (Fig. 14(a)).
The points A and B are calculated via the analytical or iterative
solution of a quartic polynomial equation. While this algorithm
can identify the intersection points for large overlaps, the algo-
rithm encounters accuracy and stability issues when the overlap
area between particles is small. Similar issues also arise when
the semi-axes of two ellipses are aligned to each other. In these sit-
Fig. 14. Example of an overlapping contact between two ellipsoids Pi and Pj. (a) Contact
points of the two ellipses while C is the midpoint of these intersection points. (Right) Con
point inside the particle j while Tj is the deepest point inside the particle i. Point C is th
uations, the quartic equation can be ill-conditioned and thus lead
to erroneous solutions. This approach is best suited for contacting
ellipses (2D) with the extension of the algorithm to ellipsoids in
3D, where the intersection of two particles, denoted as a curve, is
not trivial (Ting, 1992; Lin and Ng, 1995; Džiugys and Peters,
2001).

The geometrical potential algorithm provides a more stable
scheme for contact detection between ellipsoids (Ng, 1994; Ting,
1992; Lin and Ng, 1995; Džiugys and Peters, 2001). A contact as
described by the geometrical potential algorithm is illustrated in
Fig. 14(b). In this contact scheme, the contact point C is calculated
as the midpoint of Ti and Tj, where Ti is defined as the deepest
point of particle i inside particle j while Tj is the deepest point of
particle j inside particle i. One approach is based on the formula-
tion of a quartic equation (Ting, 1992) while a second approach
establishes a trigonometric equation that is equivalent to the quar-
tic equation (Ng, 1994). In addition, a geometric potential algo-
rithm has been derived for ellipsoids (Lin and Ng, 1995; Zhou
et al., 2011).

Here, we elaborate further on the quartic equation approach
(Ting, 1992) in Fig. 15. This approach allows for a better-condi-
tioned quartic polynomial in comparison to the intersection
method. The function g x; yð Þ ¼ c associated with ellipse j is the
family of ellipses with the same origin, orientation, and an aspect
ratio that depends on c. One ellipse from this family of functions
just touches the ellipse i described by the function f x; yð Þ ¼ 0 at
Ti. In the same manner, f x; yð Þ ¼ c0 is a function associated with
ellipse i that just touches ellipse j at Tj. An additional function
as described by the intersection algorithm. The points A and B are the intersection
tact as described by the geometrical potential algorithm. The point Ti is the deepest
e contact point and the midpoint of the line joining Ti and Tj .
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h x; yð Þ ¼ 0 is the locus of points where the ellipses f x; yð Þ ¼ c0 and
g x; yð Þ ¼ c have the same slope. The function h x; yð Þ ¼ 0 intersects
the functions f x; yð Þ ¼ 0 and g x; yð Þ ¼ 0 at approximately right
angles, which allows for the formulation of two quartic functions
that are well-conditioned. These equations can then be combined
to calculate either analytically or iteratively the contact point C
between Ti and Tj. Further details on this approach and other geo-
metrical potential algorithms are available in the literature (Ng,
1994; Ting, 1992; Lin and Ng, 1995; Džiugys and Peters, 2001;
Zhou et al., 2011,).

Spheres, spherocylinders, and ellipsoids all represent regular or
symmetric particle shapes for which collision detection schemes
can be analytically formulated. However, in reality, particles do
not exhibit such precise symmetry and can have highly irregular
shapes. Thus, a number of collision detection schemes are available
for irregularly shaped particles (Džiugys and Peters, 2001; Zhong
et al., 2016).

A popular approach for the representation of non-spherical par-
ticles is the composite sphere or multi-sphere approach whereby a
complex particle is depicted as a combination of several spherical
particles (Džiugys and Peters, 2001; Matsushima and Saomoto,
2002; Poschel and Schwager, 2004; Bing et al., 2014; Zhao et al.,
2015; Zhong et al., 2016). For example, cylindrical particles can
be depicted as a series of overlapping spheres (Bing et al., 2014)
(Fig. 16) while more complicated shapes can be composed of mul-
tiple spheres (Poschel and Schwager, 2004; Zhao et al., 2015). This
approach takes advantage of the ease of calculating the overlap
between contacting spheres. Highly irregular particles can be
described in simulations using multiple overlapping spheres by
first taking high resolution images of the particles (Matsushima
and Saomoto, 2002; Katagiri et al., 2010). In one study, a micro
X-ray scanner was used to generate high resolution CT images of
Toyoura sand particles (Katagiri et al., 2010). The resulting particle
shapes were then modelled as a group of spherical particles using
the dynamic optimisation method (Matsushima and Saomoto,
2002). Results show that grains comprising of 10 spherical ele-
ments was sufficient to reproduce shear responses in experiments
for dense particle configurations.

There are alternatives for the description of irregular particles
that do not rely on spherical particle elements. In the concept of
potential particles, a convex shaped particle can be represented
as a polynomial function (Boon et al., 2013). Contact detection
between two particles i and j amounts to a constrained minimisa-
tion problem where, for example, the function for particle i (f i) is
minimised subject to the constraint f j ¼ 0. This algorithm has been
successfully applied to packings of pointed tetrahedral particles,
rounded tetrahedral particles, prisms, and cubes (Boon et al.,
2013). An approach that couples a broad-phase and a narrow-
phase contact detection scheme for convex shaped particles has
recently been formulated (Seelen et al., 2018). Firstly, the broad-
phase scheme, which is based on a bounding volume that com-
pletely envelopes a particle, is used to construct a list of feasible
particle contact pairs. From this list, a narrow-phase algorithm,
based upon Minkowski differences and the Gilbert-Johnson-
Fig. 16. Multi-sphere representation of a cylindrical particle. (Left) 2D view of a cylindric
et al. (2014).
Keerthi (GJK) overlap algorithm, establishes which potential con-
tact pairs are in contact. This algorithm has been applied to study
random packings of various particle shapes including complex
polyhedral shapes (Seelen et al., 2018).

Another approach for irregular particles is based on orientation
discretisation and applicable to any shaped particle in both two
and three dimensions (Dong et al., 2015). This method calculates
the degree of overlap between particles without resorting to the
solution of polynomial functions. For any arbitrary shape, a data-
base of the overlap between two particles for varying orientations
and centre of mass separations is constructed prior to simulation.
When two particles overlap during a simulation, their respective
orientations and centre of mass distance act as database lookup
parameters for the degree of overlap between the particles. This
method eliminates the need to calculate the overlap region at
every time step and is proposed to be more accurate than the solu-
tion of polynomial functions (Boon et al., 2013). Regardless of par-
ticle shape or the numerical detection scheme, the aforementioned
approaches all seek to identify the point of contact between over-
lapping particles. Once a contact has been identified, the extent of
that contact can be quantified by measures such as the overlap dis-
tance dn or the overlap volume VO, with these values then used to
calculate the contact force subject to a prescribed force scheme.
The use of overlap distance is deemed to be insufficient for irregu-
lar non-spherical particles such as polyhedrals (Govender et al.,
2018) and even ellipsoids (Dong et al., 2015; Kildashti et al.,
2018). In the case of two overlapping convex shapes with a single
point of contact the particle radius R can be replaced with the
radius of the circumscribed sphere Rc and the overlap distance cal-
culated from

dn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VO=pRc

p
: ð44Þ

This expression applies to the case of spheres where VO � pd2nR and
dn 
 R (Dong et al., 2015). In effect, calculation of the overlap dis-
tance from the overlap volume Eq. (44) presents an alternative
method of calculating the overlap distance, thus showing the non-
uniqueness of the overlap depth for non-spherical particles. The
issues become even more complicated when considering two con-
tacting polyhedral particles, which can have the same overlap dis-
tance for a multitude of particle orientations. However, each
contact arrangement can have a differing overlap volume. Thus,
basing the contact force on the overlap distance can lead to erro-
neous estimates of the contact force (Govender et al., 2018). Both
the overlap distance and overlap volume have been used in the cal-
culation of contact forces in simulations of perturbed spherocylin-
der packings. For instance, in our studies on spherocylinders in
fluidised beds, we calculated the overlap distance, which is defined
graphically in Fig. 13, using the previously described scheme and
then used this in the calculation of the normal contact force
(Mema et al., 2019; Mahajan et al., 2018), while in DEM simulations
of spherocylinder mixing in horizontal drums, the overlap distance
was calculated using Eq. (44) (Yu et al., 2018), where the contact
volume between spherocylinders is mainly assumed to be the same
as that between two spheres. Different contact areas can be associ-
al particle represented by spheres. (Right) 3D view of a cylindrical particle from Bing
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ated with different contact scenarios as shown by Kumar et al.
(2018), which can lead to better resolution of the normal and tan-
gential forces. A key issue with using the overlap distance is the
non-conservation of particle volume. One approach towards over-
coming this issue is to redistribute the overlap volume over the
non-overlapping surface of the particle, which would approximate
real particle contacts where particle undergo deformation at the
microscale. This has been defined for spheres (Haustein et al.,
2017) but yet to be formulated for non-spherical particles such as
spherocylinders.

4.2.3. Void fraction calculation schemes
As demonstrated in Section 4.1, calculations in the CFD scheme

are dependent on the accurate calculation of the fluid volume frac-
tion, otherwise referred to as the void fraction (�f ). A number of
void fraction calculation schemes are available in the literature
that must satisfy a series of conditions (Clarke et al., 2018). Firstly,
the scheme must conserve the total volume of the solid particle
phase at the grid-scale. Secondly, the scheme should predict a
grid-independent void fraction field. Finally, the scheme should
lead to smooth void fraction fields within densely packed particle
phases. Violation of any of these conditions could lead to inaccura-
cies in the particle drag force, which in turn could lead to instabil-
ities in the evolution of the fluid phase.

In terms of implementation, the particle-centred method (PCM)
is the simplest void fraction calculation scheme. This scheme
assumes that the total particle volume is located in the grid cell
where the centre of mass of the particle is located. The void frac-
tion for a grid cell c as described by the PCM approach is given by

�cf ¼ 1�
PNc

p
p¼1V pð Þ
Vi

cell

ð45Þ

where �cf is the void fraction for cell c;Nc
p is the number of particles

in cell c, V pð Þ is the volume of the pth particle with its centre of mass

in cell c, and Vi
cell is the volume of the grid cell. This approach for the

calculation of void fraction was used in the pioneering CFD-DEM
investigation of fluidised beds by Tsuji et al. (1993). The PCM
approach becomes problematic when particles intersect one or
more grid cells. Note that this is more likely to occur for elongated
particles than for spherical particles of equivalent volume. Large
fluctuations in hydrodynamic forces can result when particle cen-
tres move between grid cells. For simulations of spheres where
the PCM is used, it has been shown that these fluctuations do not
emerge if the grid cell size is greater than 3.8 particle diameters
(Peng et al., 2014). It is currently unknown what the critical grid cell
size is for elongated particles such as spherocylinders.

To eliminate the grid cell transition effects, the particle volume
can be assigned to grid cells subject to a geometrical approach
known as the divided particle volume method (DPVM) (Clarke
et al., 2018). This approach allows for the assignment of particle
volume to multiple grid cells where applicable. Using DPVM, the
void fraction in a cell is calculated using

�cf ¼ 1�
PNc

p
p¼1/

c
pV pð Þ

Vi
cell

ð46Þ

where /c
p is the volume fraction of particle p in cell c. In this expres-

sion Nc
p is the number of particles with centres located in the grid

cell c and in the neighbouring cells of c. In the cuboid DPVM
approach, a particle is placed within a cuboid container. Thus a
spherical particle is placed within a cube while a spherocylindrical
particle is placed in a rectangular cuboid. For a spherocylindrical
particle, /c

p is calculated from
/c
p ¼

dxdydz
D2

pLp
ð47Þ

where dx; dy, and dz are the lengths of the cuboid that contains the
particle portion in cell c;Dp ¼ 2Rp is the diameter of the particle,
and Lp ¼ lp þ Dp, the total length of the particle. For a sphere, Lp ¼ Dp.

In our numerical studies of spherocylinders in fluidised beds,
we have used the satellite point method (Hilton et al., 2010;
Peng et al., 2016; Clarke et al., 2018) for the calculation of grid cell
void fraction (Mema et al., 2017, 2019; Mahajan et al., 2017, 2018).
In this method, which is conceptually between the PCM and DPVM
approach, each particle is populated with a number of evenly-
spaced satellite points nsp throughout the particle volume where
each point is assigned an equal weight or fraction of the particle
volume. The parent cell for a particle is identified subject to the
centre of mass position ri. Particle volume is then assigned to the
parent cell and the adjacent cells subject to the location of the
satellite points on the underlying grid. When the entire volume
is confined to the parent cell no distribution of particle volume is
required. To optimise the approach, the number of satellite points
and their associated weight can be varied.

The choice of void fraction scheme also influences the optimal
grid cell size for the evolution of the fluid (Peng et al., 2014;
Clarke et al., 2018). If the grid cell size is too large, then flow struc-
tures cannot be resolved while a grid cell that is too small can lead
to anomalies in the solution of the continuity and Navier-Stokes
equations for the fluid. For processes where boundaries are of rel-
evance, such as in fluidised bed reactors, an excessively large grid
cell size can affect the precision of boundary-fluid interactions. In
simulations of spheres in a fluidised bed reactor with the PCM
approach, an upper grid cell size of 3.8 particle diameters and
lower grid size of 1.6 particle diameters is advised (Peng et al.,
2014). For spherocylindrical particles, the equivalent limits would
have to be expressed in terms of particle length, which could lead
to a grid cell size that does not resolve flow structures. Given that
we implement the satellite point method for spherocylindrical par-
ticles, these grid cell size limits are not applicable. We use a grid
cell size such that a spherocylinder simultaneously intersects at
most 2 grid cells in each Cartesian direction (Mema et al., 2019;
Mahajan et al., 2018). For instance, we have used a particle length
to grid cell size ratio of 1.25 (Mema et al., 2019). Although this
value is below the lower limit advised for spheres with the PCM
approach, the satellite point method is significantly more accurate
than the PCM approach (Clarke et al., 2018).

4.2.4. Momentum exchange, voidage effects and gas-phase coupling
As presented in Eq. (28), the translational motion of an elon-

gated particle in CFD-DEM depends on the total hydrodynamic
force acting on the particle (Fi;f ), which is composed of the drag
force and lift force, while the rotational motion (Eq. (29)) is depen-
dent on the fluid-induced pitching torque Ti;f . For an isolated elon-
gated particle, the drag force, lift force, and torque can be
calculated using the expressions and correlation functions derived
using DNS methods given in Sections 3.4.1 and 3.4.2. In a fluidised
bed reactor, these expressions and correlations are highly suited
for particles in dilute regions of the reactor (solid fraction
�s < 0:2). As mentioned previously, He and Tafti studied the hydro-
dynamic forces experienced by ellipsoidal particles in dense pack-
ings with �s ¼ 0:35 subject to moderate Reynolds number
(Re = 200) noting that drag, lift, and torque have correlation trends
that are similar to trends for isolated particles. However, the
authors did not present explicit multiparticle correlation functions.
To address the lack of correlation functions, a number of approxi-
mations, some of which stem from studies on spherical particles,
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can be applied for the case of elongated particles to account for
variable voidage effects.

In CFD-DEM studies on spherical particles, the only hydrody-
namic force considered is usually drag, given that lift and torque
are deemed to be negligible. Thus, in Eq. (28), the term Fi;f can be

replaced by a drag force term Vib
�s

vf � vi
� �

where Vi is the particle
volume and b is the inter-phase momentum transfer coefficient.
In beds of spherical particles, the Ergun expression (Ergun, 1952)
is frequently applied for solid fraction �s > 0:2, denoted as

bErgun ¼ 150
lg�

2
s

�f d
2
p

þ 1:75
qf �s
dp

vf � vi

�� �� ð48Þ

where dp is the diameter of the volume equivalent sphere. However,
in the case of less dense configurations (�s < 0:2), the Wen and Yu
expression (Wen and Yu, 1966) can be applied, which is expressed as

bWenYu ¼ 3
4dp

CD�s��1:65
f qf vf � vi

�� ��: ð49Þ

The combination of the Ergun (1952) and Wen and Yu (1966) leads
to an abrupt or step change in the value of calculated drag force
(Kafui et al., 2002). To avoid this step change in the drag force, an
alternative to the Ergun/Wen and Yu correlations is to use the Di
Felice approximation that accounts for the effect of neighbouring
particles on the drag force experienced by a spherical particle (Di
Felice, 1994), which is given by

FD Rep
� � ¼ FD0�

1�v
f ð50Þ

where FD0 is the drag force experienced by an isolated particle (Eq.
(5)) and v is a correction factor given by

v ¼ 3:7� 0:65 exp � 1:5� log Rep
� �� �2

=2
� ih

ð51Þ

and Rep is the particle Reynolds number defined earlier. For studies
on the fluidisation of elongated particles, both the Ergun equation
(Oschmann et al., 2014; Mahajan et al., 2018) and Di Felice’s expres-
sion (Hilton et al., 2010; Vollmari et al., 2016; Gan et al., 2016;
Mema et al., 2017, 2019) have been utilised. As an approximation,
we have also applied the Di Felice expression to the lift force expe-
rienced by elongated particles (Mema et al., 2017). An updated
expression for factor v that includes the effects of porosity and Rey-
nolds number has been defined by Rong et al. (2013) using lattice-
Boltzmann simulations of flows through arrays of spherical parti-
cles and is given as

v ¼ 2:65 �f þ 1
� �� 5:3� 3:5�f

� �
�2f exp � 1:5� log Rep

� �� �2
=2

� i
:

h
ð52Þ

This factor has been implemented in a study on the fluidisation of
elongated particles with varying aspect ratio (Nan et al., 2016). In
our CFD-DEM study, we have considered both the Ergun and Di
Felice expression for drag force in dense domains of a fluidised
bed where the minimum of the two expressions is taken as the drag
force (Mahajan et al., 2018).

There are a number of alternatives to the Ergun equation and Di
Felice expression. Using a particle-resolved DNS approach, Tenneti
et al. derived an expression that accounts for voidage effects for
flows through fixed arrays of monodisperse spheres (Tenneti
et al., 2011). Variations in the normalised drag forces on the parti-
cle arrays were found to be fitted by

FD �f ;Rep
� � ¼ F isol Rep

� �
�3f

þ F�f �f
� �þ F�f ;Rep �f ;Rep

� �
: ð53Þ

The first term on the righthand side is the drag force on an isolated
sphere, the second term is a component that depends on void frac-
tion only, and the final term is a component that depends on both
the void fraction and Rep. Full expressions for Fisol Rep

� �
, F�f �f

� �
and F�f ;Rep �f ;Rep

� �
can be found in paper of Tenneti et al. (2011).

The expression of Tenneti et al. is based on sphere packings
with �s 2 0:1;0:5½ � and Rep 2 1;300½ �. However, in a fluidised bed
composed of elongated particles with diameters of several mil-
limetres, Rep can reach beyond 1000 (Sanjeevi et al., 2018). There-
fore, a drag correlation that accounts for voidage effects and is
applicable to large Reynolds numbers is paramount. A DNS study
based upon the immersed boundary method (IBM) on fluid flows
through regular and random arrays of static spheres by Tang
et al. (Tang et al., 2015) derived

FD �f ;Rep
� �¼10 1��f

� �
�2f

þ�2f 1þ1:5
ffiffiffiffiffi
�f

p� �

þ 0:11 1��f
� �

2��f
� ��0:00456

�4f
þ 0:169�f þ0:0644

�4f

 !
Re�0:343

p

" #
Rep:

ð54Þ

Good agreement between the correlation of Tenneti et al. (Eq. (53))
and that of Tang et al. is observed at Rep ¼ 50;100 (Tang et al.,
2015). However, at larger Rep, the expression of Tenneti et al. is less
accurate and diverges from the DNS simulation data of Tang et al. In
a study on the simulation of spherical particles in a Wurster flu-
idised bed, the expression of Tang et al. was tested against the
Ergun equation in addition to other voidage correction correlations
(Li et al., 2016). It is important to note that Eqs. (53) and (54) have
been estimated for assemblies of static spheres. Similar to the Di
Felice expression (Eqs. (50) and (51)), which has also been formu-
lated for spheres, these expressions can be applied to instances of
spherocylinders as an approximation. Unfortunately, expressions
to correct for voidage effects in spherocylinders are not yet avail-
able in the literature. One way to address this is to formulate
multi-particle hydrodynamic correlations using the DNS approach,
as suggested in Section 3.4.2.

Expressions for the hydrodynamic forces acting on the particles
account for momentum transfer from the fluid to the particle.
According to Newton’s third law of motion, a balancing force must
be exerted on the fluid. In Eq. (27), Rf ;p is the momentum exchange
between the fluid phase and the discrete particle phase. For the
drag force, the volumetric fluid-particle interaction force (Xu and
Yu, 1997) can be calculated using

Rf ;p ¼ �
PNp

p¼1Fp;D

V cell

ð55Þ

where p is the particle label, Np is the number of particles in the
computational fluid cell, Fp;D is the drag force acting on particle p
due to the fluid, and V cell is the volume of a computational fluid cell.
Similar expressions can be applied for fluid-induced lift force,
hydrodynamic torque and other variables (Link et al., 2005).
4.3. Application of CFD-DEM to elongated particles

We now overview recent applications of CFD-DEM for the study
of suspensions of elongated particles, specifically spherocylinders,
in laboratory-scale fluidised beds. First, we summarise results per-
taining to the study of spherocylinder dynamics in pseudo-2D flu-
idised beds (Mahajan et al., 2018). Simulation results are compared
with the experiments of Mahajan et al. (2018). Thereafter, the rel-
evance of lift and torque on the dynamics of elongated particles in
a wider fluidised bed using CFD-DEM is considered (Mema et al.,
2017, 2019). In addition, results from recent CFD-DEM studies on
elongated particles are summarised and discussed.
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4.3.1. Fluidisation of spherocylindrical particles: pseudo-2D approach
The behaviours exhibited by collections of non-spherical parti-

cles are crucially dependent on the fluidisation velocity. When the
gasification velocity U0 is a little larger than the minimum fluidiza-
tion velocity Umf , bubbles form near the distribution plate at the
base of the reactor and move through voids between the sus-
pended particles, while for larger velocities, circulation patterns
develop where particles move up in the centre of the reactor and
return to the base via the walls. For elongated particles, such
macroscopic responses are likely to be influenced by particle orien-
tations relative to the flow and their interaction with adjacent par-
ticles. In a real reactor consisting of many millions of particles, it is
impossible to measure bed attributes such as local particle orienta-
tion or coordination number. To access this information in labora-
tory experiments, the fluidised bed requires some degree of
simplification such as decreasing the particle number to O(104–
105) particles and changing the geometry to a pseudo-2D system,
which allows for feasible optical tracking of individual particles,
while at the same time preserving the integrity of a fluidisation
process (Mahajan et al., 2017, 2018).

Although a laboratory pseudo-2D fluidised bed provides a
plethora of observations and measurements, certain particle prop-
erties are difficult to measure. For example, Digital Image Analysis
(DIA) can only decipher the orientation of particles at the front wall
that are lying parallel to the wall. However, a CFD-DEM simulation
of the same system can provide access to this supplementary infor-
mation on particle orientation and other relevant attributes. A
schematic of the setup for a CFD-DEM simulation is presented in
Fig. 17. A key step in the development of any numerical model is
validation of the model by comparing simulation output with
equivalent laboratory measurements (Mahajan et al., 2018). Once
validated, the numerical model can be used to study properties
that are difficult to access in experiments. Hence, we have
compared CFD-DEM simulations with our previous laboratory
experiments of pseudo-2D fluidised beds comprising of sphero-
cylindrical particles (Mahajan et al., 2018). The numerical study
focuses on the implementation of various drag force models and
Fig. 17. Simulation representation of a pseudo-2D fluidised bed showing a packed
bed representing the initial conditions for a simulation. hd is the reactor height, hbed

is the initial height of the packed bed, dd is the depth of the reactor, and wd is the
width of the reactor. Image from Mahajan et al. (2018). This configuration is similar
to that of our experimental studies (Mahajan et al., 2017, 2018).
voidage calculation schemes. In particular, the drag model defined
by Hölzer and Sommerfeld (2008) (Eq. (14)) is compared with the
drag correlation derived from our DNS study. Voidage calculation
schemes considered include those of Di Felice (1994), Tenneti
et al. (2011), and Tang et al. (2015), which have been outlined in
Section 4.2.4. Mahajan et al. (2018) did not yet consider the influ-
ence of lift or torque on particle dynamics. Two fluidised beds, one
large and one small, were simulated and the superficial gas veloc-
ities varied from 0.2 m/s to 2.6 m/s.

We consider the comparison of pressure drop measurements
from the simulations and experiments of Mahajan et al. (2018).
As shown in Fig. 18, the case with the Hölzer and Sommerfeld drag
model (Hölzer and Sommerfeld, 2008) and the Di Felice voidage
expression (Di Felice, 1994) (HDF) under-predicts the pressure
drop, particularly in the packed bed regime, and estimates a higher
minimum fluidization velocity Umf . This disparity is more than
likely associated with the adaptation of the Hölzer and Sommerfeld
single particle drag model for a multiparticle configuration. The
cases with the Sanjeevi drag model with voidage corrections of
Tang and Tenneti provide better correspondence between the sim-
ulations and the experiments, which is possibly due to the higher
accuracy of these models for different Reynolds numbers. Recall
that the Sanjeevi drag model has been derived specifically for flows
where Re 6 2000 in the vicinity of spherocylindrical particles
(Sanjeevi et al., 2018) while the Hölzer and Sommerfeld drag
model (Hölzer and Sommerfeld, 2008) has been derived using
experimental and LBM results on spheres, plates, and cubes, and
has been adapted for spherocylindrical particles in this study.
Mahajan et al. (2018) also note differences in the bed height where
the Hölzer and Sommerfeld drag model underestimates bed height,
while the Sanjeevi drag model overestimates the bed height. The
difference in both cases is more than likely due to the fact that
the drag models do not accurately capture multiparticle effects
(Mahajan et al., 2018).

Through DIA, it is possible to determine the probability density
function of particle orientations of the particles (PDF(a)) that are
visible through the front wall. Fig. 19(a) shows the particle orien-
tations from experiments while Fig. 19(b) shows the particle orien-
tations from CFD-DEM simulations. In the simulation results, it is
clear that particles do not align with the flow at high gas flow
velocities, which contrasts with experimental observations. In fact,
the particles remain mainly horizontal, except at the highest veloc-
ities where a small peak in the PDF is observed at an orientation of
0�. The lower figure of Fig. 19(b) shows that the central peak is a
boundary effect, given the distribution for particle distances less
than 2Lp from the side wall is the only distribution with a peak
at 0�. The differences between the experiments and the simula-
tions is likely to be partly due to the absence of important hydro-
dynamic force contributions in the simulations. In the
experiments, particles are subject to transverse lift, pitching tor-
que, and rotational torque, none of which were included in the
simulations. In particular, torque can aid particle rotation and thus
its inclusion in CFD-DEM simulations could lead to a more accurate
estimation of particle orientations as recorded in experiments.
4.3.2. Fluidisation of spherocylindrical particles: importance of lift and
torque

The CFD-DEM study in the previous section explored the impact
of specific drag correlations on the dynamics of spherocylinders in
a fluidised bed reactor. However, this study did not take into
account transverse lift and pitching torque. For an elongated parti-
cle in a dilute suspension, the lift force can exceed more than half
the drag force acting on the particle, depending on Reynolds num-
ber, and thus greatly affect the particle trajectory. As outlined in
Section 3.4.2, a number of drag and lift force coefficient correla-



Fig. 18. Comparison of the pressure drop DP (black) and the standard deviation (grey) in the pressure drop r from pseudo-2D experiments and simulations for a fluidised bed.
For the experiments, the pressure drop curves are plotted for cases of increasing and decreasing U0. For the simulations, the pressure drop curves represent different cases of
the drag model and voidage scheme where HDF is Hölzer and Sommerfeld drag model (Hölzer and Sommerfeld, 2008) with the Di Felice voidage expression (Di Felice, 1994),
STE is the Sanjeevi drag model (Sanjeevi et al., 2018) with the Tenneti model for voidage effects (Tenneti et al., 2011), and STA is the Sanjeevi drag model with the Tang model
for voidage effects (Tang et al., 2015). For the experimental data set, PB is Packed Bed, PC is Passive Channelling, AC is Active Channelling, and BF is Bubbling Fluidisation.
Image from Mahajan et al. (2018).
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tions are available in the literature, although there are fewer tor-
que coefficient correlations (Sanjeevi et al., 2018; Zastawny et al.,
2012). Nonetheless, the effects of lift force and pitching torque
on particle dynamics in dense suspensions are poorly understood.

To address these issues, we have also investigated, using CFD-
DEM simulations, the influence on particle dynamics of varying lift
and torque conditions experienced by spherocylinders with an
aspect ratio 4 in a 3D fluidised bed (Mema et al., 2019). We
employed the correlation functions from Sanjeevi et al. (2018) for
the drag, lift, and pitching torque coefficients acting on an isolated
spherocylinder particle. Lift and torque were calculated using the
expressions given in Section 3.4.1. In this study, we did not con-
sider two-way coupling for the pitching torque. In other words,
we implemented one-way coupling for the pitching torque where
the influence of the flow on the particles is considered.

First, the effect of including different types of hydrodynamic
forces on the average particle velocity parallel to the direction of
gravity vz was examined at three different positions. These loca-
tions are roughly midway along the y-axis. The lowest position,
at z ¼ 0:0675 m is closest to the flow inlet, while z ¼ 0:3075 m is
the position furthest from the flow inlet and a region characterised
by dilute particle conditions. Note that the temporally averaged
velocity vz is not the same as the average mass flux, given that
there may be strong correlations between the local solid volume
fraction and particle velocity, which has been demonstrated for
spherocylindrical particles in a pseudo-2D fluidised bed (Mahajan
et al., 2018). The inclusion of lift has a significant effect on vz, as
shown in Fig. 20. At z ¼ 0:0675 m, in comparison to the case with
drag only, lift leads to an increase in vz midway along x-axis. Sim-
ilar changes in vz are observed for the other positions, however the
differences in the trends are not as pronounced at z ¼ 0:3075 m,
which is due to the dilute particle conditions at the higher z-axis
position. Conversely, the inclusion of torque has a negligible effect
on vz in this system. Even for the case with all hydrodynamic
forces, there is no significant change in vz relative to the case with
drag and lift forces only.
Including or excluding different types of hydrodynamic forces
also affects the particle orientations in the fluidised bed. Particle
orientation relative to the x-, y-, and z-axis is defined by the unit
vector consisting of the components ux;uy, and uz respectively. A
particle is deemed to be fully aligned with the z-axis when uz 	 1
and perpendicular to the flow when uz ¼ 0. Fig. 21 shows the dis-
tribution f uzð Þ of uz values in the fluidised bed. It demonstrates that
torque critically affects the orientation of particles relative to the z-
axis. The case with only drag force is almost indiscernible from the
case with drag and lift forces, indicating that lift has a negligible
effect on particle orientation in this system. However, inclusion
of torque with drag leads to a decrease in the number of particles
aligned with the z-axis and an increase in the number of particles
approximately perpendicular to the flow. The addition of lift force
along with drag and torque does not appreciably affect this trend.

To ascertain the preferred particle orientation in specific parts
i.e. grid cells, of the reactor, the particle orientation tensor S is eval-
uated using
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u2
x

� �
uxuy
� �

uxuzh i
uyux
� �

u2
y

D E
uyuz
� �

uzuxh i uzuy
� �

u2
z

� �
2
664

3
775: ð56Þ

where the angular brackets indicate averaging over the particles in
the cell of interest and over time. The preferred alignment of the
particles is determined by the diagonal components of S. Firstly, if
one of the diagonal components is substantially greater than the
other two diagonal components, the particles are deemed to be
preferably aligned with that axis. Secondly, a particle is judged to
be randomly orientated if the difference between any of the diago-
nal components is less than 0.1. Fig. 22 shows the preferred particle
alignment on the x-z plane for a cross section along the y-axis for
differing hydrodynamic force conditions. To identify the preferred
particle orientation in the grid cells, a colour scheme has been
applied such that a blue cell represents alignment with the x-axis,



Fig. 19. Probability density function (PDF) of particle orientations from experiments (a) and simulations (b), based on particles that are visible through the front wall. The
upper figure shows the distribution of particle orientations for four different gas velocities that correspond to the four different fluidisation regimes. The lower figure shows
the distribution of particle orientations at different positions relative to the side walls of the reactor for the case U0 ¼ 1:9Umf . Angles of �90� and 90� represent particles that
are horizontal and an angle of 0� is a particle that is vertically orientated. The length of the particles Lp ¼ 12 mm. Images from Mahajan et al. (2018).
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a green cell represents alignment with the y-axis, and a red cell rep-
resents alignment with the z-axis. A cyan-filled cell represents a cell
with no preferred alignment. Fig. 22(b) shows the case with the
addition of lift where particle orientation is observed to become
more random in the central section of the reactor in comparison
to the case with drag force only (Fig. 22(a)). However, when torque
is considered (Fig. 22(c)), a significant change in the orientation of
particles is observed in agreement with variations in f p uzð Þ
(Fig. 21). With torque, particles are either randomly orientated or
perpendicular to the z-axis in the central domain of the reactor. In
addition, the alignment of particles adjacent to the walls also
changes. For the case with lift, particles next to the walls are aligned
with the z-axis and with torque, particles are aligned with the y-
axis. The case with all forces shown in Fig. 22(d)) is similar to the



Fig. 20. Comparison of the temporally-averaged vz along the x-axis for various
heights in a fluidised bed for different hydrodynamic conditions: Drag only (black),
lift force and drag force (blue), torque and drag force (red), and a case with all
hydrodynamic forces (green). x is the position normalised by the length of reactor
along the x-axis (Lx ¼ 0:15 m). Based on image from Mema et al. (2019). (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

Fig. 21. Variation of f p uzð Þ demonstrating the preferred particle orientations fo
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case with torque and drag force (Fig. 22(c)), confirming the observa-
tion in Fig. 21 that the inclusion of lift does not lead to large differ-
ences in particle orientation.

4.4. Comparison with other CFD-DEM studies on fluidised beds

In the previous sections, we presented CFD-DEM results related
to the fluidisation of spherocylinders, focusing on the effect of bed
geometry (Mahajan et al., 2017, 2018) and hydrodynamic force
conditions (Mema et al., 2017, 2019). We now consider briefly
the findings of a number of other relevant CFD-DEM studies on flu-
idised non-spherical particles.

Prompted by the use of variable-shaped particles in processes
such as catalysis and pyrolysis, Hilton et al. (2010) studied the flu-
idisation of a number of particle shapes such as spheres, cuboids,
and ellipsoids. Drag forces were described by the Hölzer and Som-
merfeld expression (Hölzer and Sommerfeld, 2008) while voidage
effects were taken into account using the Di Felice correction (Di
Felice, 1994) After validating the numerical approach using spher-
ical particles and comparison with the work of Tsuji et al. (1993),
Hilton et al. showed a larger pressure drop and lower fluidisation
velocity for non-spherical particles in comparison to spherical par-
ticles due to a decrease in the porosity of the bed. Particles with
varying shapes and aspect ratios can also affect mixing and particle
orientations in bidisperse packings in a fluidised bed, as demon-
strated by Oschmann et al. (2014). Particles were subject to the
same drag force condition as Hilton et al. (2010). Simulations
revealed that mixing and the maximum bed height depend on par-
ticle shape and that a large gas velocity increases mixing for com-
plex shapes, while a low gas velocity leads to incomplete mixing.
Elongated particles were shown to exhibit slower mixing with
increasing elongation and these particles were also shown to align
parallel to the rigid walls. We have also recovered this alignment
behaviour in our CFD-DEM simulations of large 3D reactors
(Fig. 22). However, the work of Oschmann et al. (2014) did not
include lift forces or hydrodynamic torque, which we have shown
to significantly affect particle alignment (Fig. 22) (Mema et al.,
2019).

In a study combining experimental and numerical methods,
Vollmari et al. (2016) explored the fluidisation of a number of Gel-
dart D particle shapes including spheres, cylinders, cubes, plates,
r differing hydrodynamic force conditions. Image from Mema et al. (2019).



Fig. 22. Preferred particle orientations for differing hydrodynamic force conditions:
(a) drag only, (b) lift force and drag force, (c) torque and drag force, (d) all
hydrodynamic forces. The number of grid cells along the x-axis and z-axis are 10
and 66 respectively. Blue is preferred alignment with the x-axis, green is preferred
alignment with the y-axis, red is preferred alignment with the z-axis. Cyan means
no preferred alignment. Image from Mema et al. (2019). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of
this article.)
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and highly elongated variants of non-spherical particles. All parti-
cle types were subject to drag forces as described by Hölzer and
Sommerfeld with multiparticle effects accounted for using the Di
Felice approximation. To measure particle orientation, a DIA
approach similar to that used in the experiments of Mahajan
et al. (2018) on pseudo-2D beds was utilised. In terms of shape,
the closest particle in their study to a spherocylinder was a flat-
ended elongated cylinder. The simulations accurately captured
particle orientation, particularly at high gasification velocities,
where particles tend to align themselves with the direction of flow
Fig. 23. Distribution of the orientation of elongated cylinders (4 mm � 14 mm) along the
between simulations and experiments occurs at high gasification velocities when partic
(Fig. 23). Similar particle shapes including elongated particles have
also been studied in 3D fluidised beds (Kruggel-Emden and
Vollmari, 2016) where a number of particle-shape dependent flow
regimes were identified.

Similar to the work presented earlier in this section, there have
been CFD-DEM studies that have focused solely on the fluidisation
of elongated particles. Nan et al. (2016) presented CFD-DEM simu-
lations on the fluidisation of rod-like particles subject to hydrody-
namic drag only, using the multiparticle coefficient of Rong et al.
(Eq. (52)) for multiparticle effects. A multi-sphere model was used
to represent rods, which is based on the model of Favier et al.
(1999). Variation of the particle aspect ratio and bed porosity
was shown to affect the bed permeability and coordination num-
ber (Fig. 24). The degree of horizontal particle alignment decreased
during fluidisation of the bed (Fig. 24). In a similar CFD-DEM study,
Ma et al. (2017) investigated rod-like particles in a pseudo-2D flu-
idised bed where the particles were described by the standard for-
mula for a super-ellipsoid (Eq. (43)). Particles were subject only to
a drag force described by the Hölzer and Sommerfeld expression
(Hölzer and Sommerfeld, 2008) and multiparticle effects estimated
using the Di Felice approximation. Both pressure drop and particle
orientation were shown to depend on particle aspect ratio, with
particles with the largest aspect ratio subject to greater wall
effects.

CFD-DEM has also been applied to study ellipsoidal particles
subject to fluidisation (Zhou et al., 2011; Jieqing et al., 2016; Gan
et al., 2016). Zhou et al. (2011) considered ellipsoidal particles sub-
ject only to hydrodynamic drag, with torque excluded on the argu-
ment that the rotation of particles due to the fluid can be ignored
(Hilton et al., 2010). As shown above, this assumption may have
been a bit premature. The effect of neighbouring particles on the
drag force was calculated using the Di Felice expression and con-
tacts between particles calculated using the geometric potential
algorithm (Ting, 1992; Džiugys and Peters, 2001). They demon-
strated that particle shape, i.e. prolate or oblate, can affect bed per-
meability, that flow structures consisting of ellipsoids are more
correlated than structures in flows of spheres, that the coordina-
tion number increases as particle aspect ratio increases, and that
contact forces in packings of spheres are larger than for ellipsoids.
While these results provide interesting insight on the fluidisation
of ellipsoids, we note that the algorithm lacks some key details
such as a custom particle-particle force model for ellipsoids and
the inclusion of other hydrodynamical forces other than drag.
x-z plane from (a) CFD-DEM simulations and (b) experiments. Best correspondence
les align with the direction of flow. Images from Vollmari et al. (2016).



Fig. 24. (a) Temporal fluctuations in the average coordination number in a fluidised bed with spheres (rf ¼ 0) and spherocylinders (rf ¼ 0). (b) Temporal fluctuations in the
particle orientation in a fluidised bed with two different spherocylinders (rf ¼ 5 and rf ¼ 8). The superficial gas velocity is twice the minimum fluidisation velocity. Images
from Nan et al. (2016).
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The studies outlined earlier apply to the fluidisation of Geldart D
non-spherical particles. CFD-DEM simulations of both Geldart A
particles (25 lm 6 dp 6100 lm) and Geldart B particles (500 lm
6 dp 61000 lm) in fluidised beds have been examined by Jieqing
et al. (2016). Particles of different shapes such as spheres and ellip-
soids were subject only to a drag force that did not account for
multiparticle effects. A van der Waals attractive force was also
included to facilitate the formation of agglomerates. A decrease
in ellipsoid size led to an increase in the size of particle agglomer-
ates while the minimum fluidisation velocity increased exponen-
tially with an increase in particle size. In addition, larger
fluctuations in pressure drop were observed for increased particle
size but little difference was observed for different particle types.
The same authors have also extended the CFD-DEM approach to
study the dynamics and heat transfer of Geldart A ellipsoidal-like
particles, ranging from disk-type to cylinder-type particles (Gan
et al., 2016). Particles were subject to drag forces described by
the Holzer and Sommerfeld expression and multiparticle effects
were approximated using the Di Felice correction, while lift and
torque were not included. An increased aspect ratio of the particles
was shown to affect the effective thermal conductivity due to an
increase in particle coordination number and contact area. In addi-
tion, ellipsoids have a higher conductive heat transfer rate than
spheres, but in a fluidised bed, spheres are easier to heat (Gan
et al., 2016). Adhesive nanoparticle agglomerates have also been
studied in a fluidised bed by Liu et al. (2016).

Although not the primary focus of this paper, we briefly con-
sider the use of CFD-DEM for the study of binary mixtures. A
CFD-DEM study by Ma et al. investigated the fluidisation of binary
particulate mixtures subject only to drag force in a fluidised bed
(Ma and Zhao, 2018). The binary mixture consisted of spherical
particles and rod-like particles that represent the inert bed mate-
rial i.e. sand, and the biomass feedstock, respectively, with both
particles described as super-ellipsoids. In a fluidised bed reactor,
the inert bed material facilitates the fluidisation of the biomass
particles, thus CFD-DEM simulations can provide valuable insight
with regards to particle dynamics that could be relevant for appa-
ratus design and process optimisation. The simulations revealed
that the minimum fluidisation velocity increased with increasing
volume fraction of rod-like particles while mixing and particle
coordination numbers were dependent on gas velocity and rod-like
particle volume fraction. The orientation of rod-like particles dif-
fered considerably in mixtures in comparison to systems of just
rod-like particles. Results on particle orientation from this CFD-
DEM study agree with an in-depth experimental study on the flu-
idisation of mixtures of spherical and cylindrical particles in a
pseudo-2D fluidised bed by Boer et al. (2018). In these experi-
ments, particle orientation was determined using Digital Image
Analysis (DIA) of images of particle dynamics taken with a CCD
camera, with the long axis of the cylindrical particles shown to
align with the direction of the fluid flow. In addition, particle seg-
regation was shown to develop in the non-bubbling flow regime.
The DIA technique can only accurately analyse particle orientations
for particles adjacent to the front wall of the bed, unlike the CFD-
DEM simulations of Ma and Zhao (2018) where particle orienta-
tions could be isolated in any domain of the reactor.

While these CFD-DEM studies consider differing implementa-
tions of drag and associated multiparticle effects, none of the stud-
ies consider the influence of lift and torque on the dynamics of
elongated particles such as ellipsoids or spherocylinders. Never-
theless, our preliminary CFD-DEM study on the fluidisation of
spherocylinders has demonstrated that both lift and torque can
appreciably affect particle dynamics (Mema et al., 2019). However,
we have only considered lift and torque correlation functions for
an isolated particle and did not yet consider the multiparticle
effects on these correlations. Our work partially addresses the
shortfall of studies on the importance of lift and torque on elon-
gated particles. When multiparticle correlation functions become
available in the literature, their implementation in future CFD-
DEM investigations will represent a natural progression in terms
of advancing existing algorithms for the accurate simulation of flu-
idisation apparatus.

4.5. Stress correlation calculations

In addition to simulating fluidised bed dynamics, the CFD-DEM
algorithm for spherocylinders can be used for the calculation of
particle stress correlations that can be used in the definition of a
constitutive model for industrial scale models. This approach is
principally motivated by the lack of applicability of Kinetic Theory
of Granular Flow (KTGF) to dense flows of elongated particles since
KTGF has been defined for dilute or moderately dense configura-
tions of spheres. Rather than extracting stress expressions from a
large-scale fluidised bed, a simplified system without the intersti-
tial fluid and consisting of a collection of elongated particles sub-
ject to shear deformation can be considered (Guo et al., 2012,
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2013; Berzi et al., 2016). The shearing boundaries can be imple-
mented as either solid boundaries or as Lees-Edwards boundaries
(Lees and Edwards, 1972). Such an approach allows for exact con-
trol over the particle solid volume fraction in the shear cell while
algorithms can be applied to control the initial arrangement of
dense particle packings (Guo et al., 2012). The particle-phase stress
tensor can be based on the summation of two components. First, a
kinetic component rk (Campbell and Gong, 1986) associated with
momentum transfer between particles is calculated with

rk ¼ m v0v0h i ð57Þ
where m is the particle mass, hi is an average over time and space,
and v0 ¼ vi � vh i is the fluctuating velocity. Second, a particle con-
tact or collisional component rc is calculated using

rc ¼ Fijlij
� � ð58Þ

where Fij is the force between the particles i and j, and lij is the vec-
tor from the centre of mass of i to the centre of mass of j. Dense con-
figurations are typically dominated by prolonged contacts between
neighbouring particles, and thus the stress tensor is dominated by
rc (Guo et al., 2012, 2013), while in dilute systems, where long-last-
ing particle contacts are less prevalent, the stress tensor is mediated
by rk. Previous studies have investigated the effect of volume frac-
tion, aspect ratio, coefficient of restitution, interparticle friction, and
Young’s modulus on the components of the solid phase stress tensor
for deformed packings of elongated particles (Guo et al., 2012,
2013; Berzi et al., 2016).

The aforementioned approach allows for the calculation of solid
phase stress tensors. However, it is specifically applied in a shear
cell where particle deformation subject to shear and in the absence
of a fluid can be precisely regulated. Such an idealised system is not
completely representative of the deformations that particles expe-
rience in a fluidised bed environment. In a recent CFD-DEM study,
Gu et al. (2019) measured the particle phase stress and granular
temperature of spherical particles subject to fluidisation in a
fully-periodic bed geometry. Critically, this study accounted for
the effects of the interstitial fluid and a fluidised bed system on
the stress tensor. First, the study investigated the fluidisation of
non-cohesive particles and found that simulation results corre-
sponded well with constitutive expressions from KTGF, thus vali-
dating the approach. Gu et al. (2019) then investigated the
fluidisation of cohesive particles and used the numerical results
to formulate a constitutive theory for cohesive particles. The calcu-
lation of stress tensors for packings of elongated particles in a shear
cell using DEM (Guo et al., 2012, 2013; Berzi et al., 2016) and for
cohesive spherical particles in a fully-periodic fluidised bed (Gu
et al., 2019) are both intermediate steps towards the definition of
constitutive relations for elongated particles in a fluidised bed
geometry. For the case of spherocylindrical particles, a first study
should focus on particles subject to shear deformation in a shear
cell for a range of volume fractions. Thereafter, a CFD-DEM study
of a fluidised spherocylinders in a periodic fluidised bed could be
used to revise relations for bulk dynamics. Finally, a fluidised bed
with boundaries could be considered to explore the influence of
the boundaries on the constitutive relations. Crucially, a CFD-
DEM approach is the most appropriate method for the calculation
of stress closures that take into account the effect of the fluid.

5. Macroscopic simulations

For the prediction of truly large-scale gas-solid flows, it is not
feasible to resolve every individual particle collision due to the
high number of calculations associated with large packings of par-
ticles. Instead, the effect of particle collisions can be modelled in an
averaged approach, with an appropriate particle collision closure
relation. The two-fluid model (TFM) (Gidaspow, 1994) and multi-
phase particle-in-cell (MPPIC) (Snider, 2001; Andrews and
O’Rourke, 1996) methods are two common approaches to evaluate
interactions in systems with large numbers of particles. In TFM,
both the gas and solids phase are treated as fully interpenetrating
continua. The Kinetic Theory of Granular Flow (KTGF) is used to
describe particle-particle interactions on a fundamental level. In
the most common version of KTGF, the particle-particle collisions
are described by a single parameter collision model (Jenkins and
Savage, 1983). The theory assumes the particles to be perfectly
smooth, and particle velocity changes in the tangential impact
direction are neglected. Only the normal impact and rebound
velocities of two colliding particles are taken into account using
the coefficient of normal restitution. Advanced versions of KTGF
also include the effects of tangential friction for spheres that gives
rise to particle rotation as well as sliding and sticking collisions, as
previously implemented in TFM by one of the authors of this paper
(Yang et al., 2016,). This implementation of KTGF was subsequently
validated via comparison with magnetic particle tracking experi-
ments in 3D fluidised beds (Yang et al., 2017). TFM is fast, but
depends on theoretical expressions for the solid stress, usually
based on KTGF. In KTGF, far-reaching assumptions are made to
make the theoretical calculations tractable, such as particle
sphericity and isotropy, molecular chaos (no pre-collisional veloc-
ity correlations), and binary interactions. However, it is known that
correlations in the velocities build up in denser flows (Radl and
Sundaresan, 2014), and multiple simultaneous particle contacts
can no longer be ignored. Most importantly, for non-spherical par-
ticles all distribution functions become non-isotropic and the stan-
dard kinetic theory can no longer be applied. A new kinetic theory
should be proposed for non-spherical particles that describes
stress transmission through the continuum particle phase. The
granular temperature, which is the kinetic energy per unit mass
associated with the fluctuating motion of non-spherical particles
relative to the local average velocity of the particle phase, is a topic
of current research. Similar to spherical particles, the particle
phase stress for non-spherical particles can be expressed in terms
of local particle volume fraction, granular temperature, local rate of
deformation, and particle orientation. Despite the importance of
non-spherical particles in industry, no efforts have been made thus
far to treat non-spherical particles as a continuum phase, and thus
remains a prevailing challenge for accurate simulations.

Another approach to overcome limitations on the number of
particles in a simulation, is the parcels of point particles approach
developed by Andrews and O’Rourke (1996). In the so-called mul-
tiphase particle-in-cell (MP-PIC) method, the fluid phase is treated
as a continuum (Eulerian) and the particles are traced in a Lagran-
gian fashion, including a parcel approach where each simulated
particle represents a large collection of real particles. Each parcel
follows Newton’s equations of motion, where inter-phase momen-
tum transfer is evaluated by mapping and interpolating quantities
back and forth between parcel locations and the Eulerian grid for
the fluid. Particle-particle collisions in MP-PIC are not fully
resolved and instead derived via gradients in particle stresses. In
most commonly applied MP-PIC approaches, the particle stress is
simply approximated by the (scalar) particle pressure, which for
spherical particles at high solids volume fraction is given by a rela-
tion introduced by Harris and Crighton (1994). Particle stress gra-
dients, which are difficult to calculate on the level of an individual
particle, are calculated as a gradient on the Eulerian grid and then
interpolated to discrete particles. The point particle and parcel
approach is explained in the literature only for spherical particles
(Harris and Crighton, 1994). For non-spherical particles no such
approach is discussed. The principal difficulties lie in the represen-
tation as point particles, where additional degrees of freedom
should be introduced for non-spherical particles. For example, an
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elongated particle could be represented by its centre of mass loca-
tion and an orientation vector. The distribution of centre of mass
positions leads to the Eulerian solids volume fraction field. Simi-
larly, we can imagine the distribution of the orientation vectors
leads to an Eulerian order tensor field. The order tensor field and
solid volume fraction fields, and their gradient, at the location of
the particle can then be used to determine the fluid-particle drag,
lift, and torque, as well as the (effective) forces on the particles due
to particle-particle interactions.

As outlined, MP-PIC particle collisions are not fully resolved but
effectively taken into account using the solid stress, and possibly
also collisional dissipation rate and granular conductivity. Correla-
tions for particle stresses for spherical particles are available in the
literature (Lu et al., 2017), but no such stress relations have been
defined for non-spherical particles. In fact, even for spherical par-
ticles, particle stress models are not well developed or validated.
The particles stress for non-spherical particles not only depends
on the particle volume fraction and granular temperature, but also
on the orientation of particles. As a consequence, the constitutive
equations for particle stress are no longer characterised simply
by shear and bulk viscosity coefficients, but will also contain terms
that couple the solids rate of deformation and rate of rotation fields
to the order tensor (Sagis and van der Linden, 2001; Sagis et al.,
2001). The coefficients of these constitutive equations can be
obtained from CFD-DEM simulations. However, the main challenge
is to obtain such expressions when the particle volume fraction
becomes sufficiently large such that interactions between the
non-spherical particles become prevalent. When non-spherical
particles are aligned, the number of particle collisions is not the
same in every direction, leading to strong anisotropy in the granu-
lar temperature. Anisotropies may become larger when the defor-
mation rates are larger and influenced by the angles between the
average particle orientation and the principle axes of the deforma-
tion or rotation flow. Therefore, the expression for particle-phase
stresses for non-spherical particles cannot be generalised for parti-
cles of different shapes. However, CFD-DEM studies can aid in the
derivation and validation of constitutive equations for a specific
particle shape. We expect that viscous particle stresses, which
are a function of granular temperature, solids volume fraction,
and particle orientation, are dominant for dense granular flows of
elongated particles. Viscous stresses are typically ignored in classi-
cal MP-PIC models as they are assumed to have little influence.
However, viscous particle stresses represent frictional effects
between particles by mutual collisions, which are expected to be
very important for elongated particles at high volume fraction.
The fluctuating components of the non-spherical particle velocities
need proper consideration for the calculation of granular tempera-
ture, which for non-spherical particles is computable for dilute
flows, but still remains a challenge for dense phase flows. Accurate
information on granular temperature in dense regions is necessary
for the development of MP-PIC, which can also be extracted from
extensive CFD-DEM simulations.

Continuum and discrete parcel approaches on coarser computa-
tional grids facilitate more time efficient large-scale simulations.
Such coarse-grid simulations can resolve large-scale behaviour,
but fail to capture small-scale heterogeneous flow structures. Thus,
fine grid simulations are required to capture these small-scale
heterogeneities in fluidised beds (Wang et al., 2009; Andrews
et al., 2005). For a system of spherical particles, Benyahia and
Sundaresan (2012) demonstrated that continuum and MP-PIC
approaches yield approximately homogeneous flows when coarse
grids are employed. In addition, when the grid is refined, both
approaches produce similar heterogeneous flow structures with
essentially the same domain average slip velocity. Therefore, sim-
ulations with highly resolved grids and reduced computational
costs are required for industrial applications. To overcome this
problem, the effect of unresolved heterogeneous structures can
be described by sub-grid modelling (Agrawal et al., 2001; Wang
and Li, 2007; Ozel et al., 2013). Sub-grid and filtered models for
the continuum approach can be applied in the MP-PIC approach
(Benyahia and Sundaresan, 2012). To capture heterogeneous and
microscopic structures within coarse-grid models, filtered consti-
tutive relations such as for drag force, lift force, torque, and particle
stresses are imperative. These sub-grid constitutive relations can
be estimated by filtering fine grid TFM or CFD-DEM simulations
with these relations depending significantly on the filter length
and grid size (Schneiderbauer et al., 2013). For the case of elon-
gated particles such as spherocylinders, the sub-grid heterogeneity
effects may be more pronounced given that elongated particles can
experience a greater frequency of inelastic interactions.

The development of coarse-grid models for elongated particles
can be used in TFM and MP-PIC simulations. Filtered sub-grid con-
stitutive models for elongated particles can be derived in similar
fashion to models for spherical particles. However, unlike spherical
particles, elongated particles require effective filtered drag, lift, and
torque. CFD-DEM simulations can provide filtered frictional solid
stresses, which, for elongated particles, depend upon filter length,
particle orientation, and their packing arrangement. Constitutive
frictional solid stresses from CFD-DEM for MP-PIC models can be
further upgraded to obtain filtered frictional stresses through vari-
ation of filter lengths. Highly resolved TFM and MP-PIC simulations
for non-spherical particles that account for frictional solid stresses
in dense packings can also be used develop filtered frictional solid
stresses. However, filtered frictional stresses may become impor-
tant even at significantly smaller solids volume fractions. There-
fore, CFD-DEM is proposed for the derivation of a filtered solid
stress model. The difference in obtaining filtered quantitates from
CFD-DEM and fine grid Euler-Euler simulations for spherical parti-
cles has been discussed by Ozel et al. (2016). Similar differences
can be scaled for non-spherical particles in relation to torque and
lift forces.
6. Conclusions

In this paper, we have presented the algorithms required to
implement a multiscale numerical investigation of multiphase
flows consisting of elongated particles in fluidised bed reactors. A
multiscale approach is necessary due to the large range of length
scales in fluidised beds, whereby macrometre-size flow structures
in industrial apparatus emerge as a result of particle interactions at
the millimetre scale. The multiscale approach consists of algo-
rithms at three length scales; namely the particle scale, the labora-
tory scale, and the industrial scale.

First, the lattice Boltzmann method (LBM), which is a DNS
approach and capable of accurately resolving flow and transport
details such as hydrodynamic forces at the particle scale, was over-
viewed (Section 3). We outlined the expressions central to the
algorithm and considerations with regards to implementing
boundary conditions and contending with mass leakage issues.
Thereafter, results from previous LBM studies of stationary elon-
gated particles, such as spherocylinders and ellipsoids, were pre-
sented. Drag, lift, and torque correlations for various elongated
particles in both steady and unsteady flows derived from our
LBM studies were compared with those from other DNS investiga-
tions. Variations in the hydrodynamic forces were shown to be
dependent on particle orientation, Reynolds number, and,
crucially, particle shape. The correlations presented here relate to
the forces acting on an isolated particle in a flow field. In reality,
during fluidisation, particles will regularly collide with adjacent
particles and be located in dense particle regions. Multiparticle
correlation functions are logically required to properly describe
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the hydrodynamic forces experienced by particles in an evolving
fluidisation process. In addition, it would be pertinent to study par-
ticle mobility effects for single particle and multiparticle packings
on the resulting hydrodynamic forces.

As the primary focus in this paper has been the hydrodynamic
forces experienced by elongated particles, studies on the heat
transfer between phases were not discussed. Details on heat trans-
fer implementations for LBM and other DNS approaches for both
spherical and elongated particles are available in the literature
(Deen et al., 2014; Ke et al., 2018,). Results from a study on the
effect of a nearby rigid boundary on the hydrodynamics experi-
enced by 2D elongated particles with varying orientations and par-
ticle Reynolds number were also outlined. While there are a
number of DNS studies have derived correlations for isolated elon-
gated particles, there is a lack of studies on 3D non-spherical par-
ticles adjacent to boundaries. In fluidised bed reactors and other
apparatus that manipulate multiphase flows, interactions with
wall boundaries are inevitable, which motivates the potential for
further studies to derive hydrodynamic correlation functions.

The second algorithm presented was the coupled CFD-DEM
approach (Section 4). The CFD component of the algorithm solves
the fluid phase between the solid particle phase, while DEM han-
dles the identification of particle contacts and the subsequent cal-
culation of contact forces. Collision detection schemes for
ellipsoidal and spherocylindrical particle contacts were described
and schemes for void fraction calculation were outlined. The
hydrodynamic forces experienced by elongated particles can be
calculated using the correlation functions defined in the DNS stud-
ies. However, these correlations typically apply to isolated particles
and are best suited for dilute regions of a fluidised bed reactor i.e.
where the solid fraction �s < 0:2. The influence of neighbouring
particles on the drag force can be estimated using a number of
approximations based on �s (Di Felice, 1994; Rong et al., 2013;
Tenneti et al., 2011; Tang et al., 2015). Similar corrections for
hydrodynamic lift and torque are currently not available, although
recent studies suggest that the drag, lift, and torque experienced by
elongated particles in dense configurations have a similar trend to
the hydrodynamic forces on an isolated particle (He and Tafti,
2018). CFD-DEM results from our studies on the dynamics of sphe-
rocylinders in a pseudo-2D (Mahajan et al., 2018) and 3D fluidised
bed reactors (Mema et al., 2019) were summarised. A discussion on
comparable CFD-DEM studies was also provided, with the signifi-
cant observation that no studies besides the work of Mema et al.
(2017, 2019) consider the influence of lift and torque on elongated
particle dynamics. This may be due to the lack of multiparticle cor-
relations for hydrodynamic lift and torque. While the work of
Mema et al. (2019) demonstrates that torque has an appreciable
effect on particle alignment, this needs further validation. Never-
theless, the absence of detailed studies on lift and torque needs
to be addressed, given the extensive use of elongated particles in
the bioenergy industry and the lack of understanding as to how
particle geometry affects hydrodynamics, thermodynamics, chem-
ical reactions, and the design of fluidisation processes.

In Section 5, coarse-grained methods such as the two-fluid
model (TFM) and the multi-phase particle-in-cell (MP-PIC) were
briefly overviewed. These models are highly suited for the study
of dilute to semi-dilute flows consisting of spherical particles,
given that the solid stress expressions have been derived from
the Kinetic Theory of Granular Flow (KTGF). Neither algorithm is
currently suited for the simulation of dense multiphase flows
involving elongated particles where velocity correlations are dom-
inant and multiple particle collisions are frequent. Thus, it is
important to establish accurate hydrodynamic and rheological
descriptions for non-spherical particles, and develop constitutive
relations from CFD-DEM simulations that can represent stresses
due to collisions between non-spherical particles. Despite the
importance of non-spherical particles in many industries,
approaches for the treatment of non-spherical particles in coarse-
grained methods are lacking.

We have taken an idealised view of a fluidised bed reactor for
the sole purpose of studying the hydrodynamical forces acting on
elongated particle during fluidisation. No heat transfer, mass trans-
fer, or chemical reactions, all of which are inherent to real fluidised
bed reactors, were discussed. We also did not consider mixtures of
biomass feedstock and an inert bed material, which is typically
sand. In previous CFD-DEM simulations of mixtures in fluidised
beds, sand particles have been approximated as spherical particles
(Wang et al., 2018; Ma and Zhao, 2018). Contacts between the
elongated particles presented in this paper and spherical particles
can be achieved by updating the collision detection algorithm
while there are a number of drag force expressions in the literature
for isolated and arrays of spherical particles (Deen et al., 2007;
Beetstra et al., 2007). Multiparticle hydrodynamic forces in the
presence of particle mixtures have yet to be defined.

Although the dynamics of elongated particles in fluidised bed
reactors has formed the basis of this paper, the numerical tech-
niques, hydrodynamic force correlations, and collision detection
schemes are applicable for the numerical study of multiphase
flows involving elongated particles in other industrial processes
or in geophysical flows. In terms of industrial apparatus, CFD-
DEM has also been applied in the study of multiphase flows in
cyclone separators (Chu et al., 2009, 2011), coupled circulating flu-
idised bed-cyclone arrangements (Chu and Yu, 2008; Wang et al.,
2017), downer reactors (Zhao et al., 2010; Wu et al., 2010), and
riser flows (Varas et al., 2017). Invariably, these studies approxi-
mate solid particles as spheres for ease of implementation when
in real processes these particles are notably non-spherical. Thus,
there is scope for further numerical investigations on these appara-
tus where the solid phase may be depicted as elongated particles
such as spherocylinders or ellipsoids.
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