
The effect of a corrupt program on virtualized P4 programs in HyperVDP

by

Ruben Couwenberg
Supervisors: Fernando Kuipers, Chenxing Ji

A Paper
Submitted to EEMCS faculty

Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 19, 2022



Abstract
After software defined networking (SDN)
separated the control-plane from the data-
plane, P4 was proposed as a solution to be
able to program the data-plane. The pro-
grammable data plane (PDP) is very useful to
alter the behaviour of programmable network
devices. The drawback, however, is that with-
out virtualization only one single P4 program
can run at a time on the PDP. Compiler based
and hypervisor based approaches can be used
to virtualize the P4 data-plane to let P4 pro-
grams run alongside each other.
This increases the flexibility when compared
to P4, but can potentially come with added
risks. Hypervisor based approaches share re-
sources, while compiler based approaches try
to minimize the sharing of resources. This
opens up hypervisor based approaches, like
HyperVDP and Hyper4, to attacks from a cor-
rupt P4 program. Because of the resource
sharing, when one of the virtualized P4 pro-
grams in HyperVDP is corrupted, there po-
tentially is a risk that the other virtualized pro-
grams also get influenced.
This paper will attempt to answer the ques-
tion; can a malicious P4 program corrupt be-
haviour of another P4 program while running
alongside each other. This will be done by
laying out a method to answer this question
using HyperVDP. A repository containing the
updated source code of HyperVDP will also
be created and provided to allow for a stable
framework.

1 Introduction
In the current design of network devices, the con-
trol plane determines how the network packets should
flow. The data-plane subsequently uses the control-
plane rules on how to actually forward these packets.
Because this design can be quite limiting in flexibility,
the software defined networking (SDN) architecture was
developed [8]. SDN separated this control plane of the
underlying data plane allowing for greater flexibility in
the control plane, especially when combined with Open-
Flow [3], a control protocol for SDN. This makes it eas-
ier for programmers to reconfigure how data packets are
handled on the control plane [7].

Following the advancements in SDN, the next step
was to have more flexibility in the data plane as well.
With the traditional design of network devices it is only
possible to change the configuration of these devices in
the control-plane. When functionalities are needed that
the networking device does not have, only the manu-
facturer of the device can implement this. To convince
the manufacturer to implement a new functionality for

you would take a huge amount of effort and time. Con-
sequently, to mitigate these issues, the Programmable
Data Plane [9] (PDP) and the Programming Protocol-
independent Packet Processors language P4 [2] were
proposed.

When P4 was first introduced, it provided a state-of-
the-art method to customize the functionality of data-
planes, all while being open source. P4 aims to make it
viable for ”programmers to be able to change the way
switches process packets once they are deployed. [2,
p. 1]” Thus allowing programmers themselves to imple-
ment the missing functions, drastically cutting down on
the development time.

While the programmable network device does need a
chip that supports P4, it is a protocol independent lan-
guage. Meaning that P4 is not relying on existing packet
formatting and does not have built-in support for any
network protocols, e.g. IP, Ethernet, TCP. The program-
mer needs to specify what should happen with the data
packets and make the data packets parsable in the P4
program.

Due to the recent advancements in programmable
switches and the P4 language itself, the added flexibility
of having multiple P4 programs running alongside each
other (i.e. virtualization) in the PDP is becoming in-
creasingly important. Virtualizing programs comes with
its own difficulties however. These difficulties include
the fact that the virtualized programs not only need to ef-
ficiently run alongside each other but also need to share
the same physical hardware resources. HyperVDP has
introduced viable methods of virtualization, while keep-
ing the performance comparable to P4 [13].

Nonetheless, the benefits of HyperVDP could come
with added risks. If programs share memory resources
on the programmable network device it could poten-
tially be possible for the programs to corrupt each
other’s data. To this end, this research will inspect the
security vulnerabilities of virtualization when using Hy-
perVDP. The specific question this research will attempt
to answer is if a malicious P4 program could corrupt be-
haviour of another P4 program when they are virtualized
alongside each other.

This main question will be subdivided in the follow-
ing sub questions:

• Can P4 programs make use of the same data when
running alongside each other?

• Can a P4 program influence data another P4 pro-
gram makes use of when running alongside each
other?

• Can a malicious P4 program corrupt the P4 pro-
grams that use the same data?

In the following section 2, the relevant background
of P4, HyperVDP, compiler based and hypervisor based
approaches will be explained more in depth. Section
3 will discuss the methodology used to answer the re-
search question and the necessities for the testing en-
vironment are introduced. Section 4 will contain the
details of the experiments performed and discuss the



results of these performed experiments. In section 5
the ethical aspects of the research will be discussed to-
gether with the thoughts that went into making the re-
search responsible. Section 6 will discuss the results
and compare this research to existing papers. Lastly, in
section 7 the research conclusions will be provided to-
gether with possible improvements and new questions
that arose during this research, combined with recom-
mendations for future works.

2 Background

Additional background of HyperVDP and virtualization
will be provided in the following subsections to get a
better grasp of this research.

2.1 Compiler vs hypervisor based approach

Like Han et al. (2020) notes, there are two ways to
approach virtualization in the P4 data-plane, compiler
based and hypervisor based.

The compiler based approach focuses on separating
the used resources and functionalities between the vir-
tualized P4 programs. This is done by merging the pro-
grams into one P4 configuration file [5]. After merging
the P4 programs, the configuration file is installed onto
the target switch. The consequence is that if it is needed
to reconfigure or delete one of the virtualized P4 pro-
grams, the configuration file has to be compiled again.
Resulting in down-time of the network while this is in
progress.

The other approach is hypervisor based. This ap-
proach creates a platform where the P4 programs can be
installed on. By creating this platform and not focusing
on the separation of resources, like the compiler based
approach, there is potentially data shared between the
P4 programs. HyperVDP [13] and Hyper4 [6] are two
of these hypervisor based approaches. These hypervisor
based approaches allow for programmers to modify the
loaded P4 programs at runtime. When compared to Hy-
per4 (Figure 1), HyperVDP at runtime not only saves on
the number of declared tables but additionally also saves
on the amount of bits that are used for metadata. Zhang
et al. showed that HyperVDP has on average a 2.5x per-
formance advantage on Hyper4 in terms of bandwidth
and latency while reducing the resource usage by a four
fold [13, p. 2]. In this paper we will examine the hyper-
visor based approach HyperVDP more closely.

Figure 1: Table usage at runtime [13]

The fact that the compiler based approach tries to
mitigate resource sharing while the hypervisor approach
does not, makes it easier to potentially corrupt a P4 pro-
gram that is running alongside a malicious P4 program
with the hypervisor based approach. This data sharing
will be used to our advantage when attempting to find a
vulnerability in section 3.

2.2 HyperVDP

HyperVDP not only has a performance edge on it’s
hypervisor companion Hyper4, but also provides more
flexibility than the native P4 language. In native P4, if a
network function that is loaded on the data-plane needs
to be reconfigured or removed, the table entries of the
populated match-action tables get lost. This is due to
the workflow of P4, in which the program needs to be
recompiled and the tables repopulated after each change
is processed.

HyperVDP solves this problem by creating virtual
PDPs on top of the physical PDP, as is visualised in
figure 2. This allows for multiple PDPs to run on the
physical PDP and ensures that when a network func-
tion needs to be reconfigured, the state of the forward-
ing tables can be maintained. This omits the restraining
nature of native P4 regarding the reconfiguring of the
loaded P4 program on the switch. The reconfigurability,
introduced by virtualized PDPs, at runtime is an espe-
cially welcome advantage when other network functions
on the PDP need to keep running while reconfiguration
is in progress.

Figure 2: Design of HyperVDP [13]



3 Methodology
This research will be performed with the steps explained
in the following subsections.

3.1 Test network simulation
First, to begin the attempt to answer the research ques-
tions there is a test environment needed. Mininet [4]
will be used to simulate a testing network. Mininet is a
tool for easy creation of testing networks and can use
a pre-specified topology when creating its simulation
network to ensure that the topology is thought out and
works for the use case of the programmer. To this end
there is a predefined topology file supplied in the repos-
itory of this research.

3.2 Behavioral model version 2
The behavioral model version 2 (BMv2) is used as a ref-
erence P4 software switch1. This is the software switch
that would usually run the P4 program. In this research
the functions of the software switch BMv2 are extended,
since it should be used as the target where HyperVDP
will be implemented on to virtualize the P4 programs.

3.3 Mininet using HyperVDP
The created test network needs to be instantiated using
the BMv2 software switch that is capable of running
HyperVDP. The source code of HyperVDP is available
on Github2. Because the source code is now outdated,
it does not work right out of the box. While effort has
been put in updating the code, it still has some outdated
sections, leaving some test cases that do not work. The
progress of fixing and updating the source code has been
uploaded3 in a repository forked from the HyperVDP
source code.

Once the simulated switch instance is created with the
HyperVDP source code as intended, this switch can be
used by mininet in the simulated network. This network
now has a switch capable of using the virtualization that
HyperVDP provides.

3.4 HyperVDP
When the test network is running multiple test network
functions can be loaded onto the switch that is running
in the mininet environment. These test functions are
provided in the HyperVDP source code. They can be
used to test the implementation of HyperVDP. Specifi-
cally this means that the match-action tables should be
populated with the rules that the test network functions
provide.

The source code of HyperVDP provides multiple of
these test functions. However, the authors warn that
these functions may not work. This warning is indeed

1https://github.com/p4lang/behavioral-model
2https://github.com/HyperVDP/HyperV
3https://github.com/2016Ruben/HyperV

correct as the rules of these functions throw error re-
sponses. Significant progress has been made towards
a stable framework. This progress is uploaded to the
Github repository of this research.

3.5 Testing and probing with scapy
After the test network is set up and running, the network
will be tested and probed in search of answers to the
proposed research questions.

The first matter that needs to be established to answer
the research questions will be if it can cause any issues
when the same data is used by the virtualized programs.
The main question regards a corrupted program that
is running alongside other virtualized programs. Cor-
rupted in this research will be interpreted as a program
that is under (partial) control of a person trying to inten-
tionally disrupt the other programs.

Scapy [1, 12] is used to send and receive packets on
the ethernet interfaces that are created by the HyperVDP
source code. These packets can be meticulously crafted
using scapy to ensure the programmer has total control
of the data that is sent to the switch running HyperVDP.
Furthermore, scapy can also receive the responses given
by the switch. Ensuring that the programmer can imme-
diately see what has been done to the packet that was
sent.

4 Experimental Setup and Results
To investigate how a malicious program, that is loaded
in a virtualized data-plane by HyperVDP, can disrupt
other programs, the following steps are to be taken.

To be able to use mininet in conjunction with a sim-
ulated switch that is using HyperVDP, we first need to
create the file for this switch with the source code of
HyperVDP. Second, we need to specify that we want
HyperVDP to use the BMv2 to create the switch. Once
the code from this research’s repository has been cloned
the project should be build using the make file. This
takes the p4 source file and parses it into a JSON simple
switch file.

The simple topology setup used for mininet is the fol-
lowing. There are 3 hosts (h1, h2, h3) bidirectionally
connected to one switch (s1), see figure 3. This switch
will be running with the simple switch file previously
created by HyperVDP. Using this format we can con-
centrate the network around one simulated HyperVDP
switch to run the packets through. Then mininet can be
used in conjunction with this simple custom topology
and the simulated HyperVDP switch to simulate the test
network.

Once this is running, the match-action tables should
be populated with the test cases the source code of Hy-
perVDP supplies. After the setup and population is
complete the match-action tables will be filled with the
commands of the test network function cases, thus being
ready to be probed and tested for potential vulnerabili-
ties.



Figure 3: Simple network topology used in this research. Cen-
tral switch with three bidirectionally connected hosts.

As mentioned in the previous section, using scapy
creates the opportunity to generate packets that target
specific parts of the virtualized PDPs. However, due to
the time constraints of this paper and the tedious work
that preceded the creation of the stable framework, there
was insufficient time to demonstrate a significant vul-
nerability.

5 Responsible Research
In this research the proper amount of time has been
taken to cite papers, projects and code of others to give
credits to work where it is due. We acknowledge that
this research could be used as a stepping stone by peo-
ple with malicious intent to get a better understanding
of how to corrupt virtualized P4 programs.

It is, however, stressed that this paper is more valu-
able when used to bring awareness to how P4 programs
that are virtualized can possibly be corrupted. This kind
of research is necessary to make advancements in any
security related field. When this awareness increases,
the solutions to such problems also grow. It is therefore
necessary that this research is performed and the results
shared.

To aid in the reproducibility of the methods used in
this paper there has been a significant amount of time
poured into writing a clear and concise explanation in
methodology and experimental setup sections.

6 Discussion
Previous works concerning P4 security focused primar-
ily on the security threat from the outside of the net-
work [10, 11]. These papers mainly looked at how P4

programs can be created and used to prevent security
threats. To the best of our knowledge no other paper has
investigated and discussed the risks that occur when a
malicious program is in the virtualized PDPs.

This study has limitations that should be reflected
upon. The progress was more difficult than was antici-
pated. The consequence is that not everything has been
accomplished that we set out to do at the beginning of
this paper. However, significant strides to create a test
environment have been taken. These strides have been
taken by updating the HyperVDP source code to be us-
able together with fixing the test cases the source code
provided.

This is where the value of this paper can be found,
due to the fact that this malicious program problem has
not yet been investigated. The framework that has been
built during this research is a good base to seek potential
vulnerabilities from.

7 Conclusions and Future Work
In this paper we laid out a method to search for possi-
ble vulnerabilities in the shared data of virtualized P4
programs. This was done by creating a stable frame-
work for HyperVDP to use to simulate a test network
with mininet. Scapy was then used to send and receive
packets that can be specifically created to target the test
network functions that the source code of HyperVDP
provides. Due to the time constraints no viable vulnera-
bility has been found.

An opportunity for the future would be to use this
paper as a stepping stone and build upon the created
framework to continue the investigation into the secu-
rity of HyperVDP. The created progress is best used in
finding a concrete answer to the question, if a malicious
program can corrupt the virtualized P4 programs by Hy-
perVDP that use the same data.

Two interesting possible viable test case scenarios
came forward during the progression of this research.
The first scenario consists of a P4 firewall program vir-
tualized together with the malicious program. It could
be possible for this malicious program to parse the pack-
ets in such a way that they will be accepted by the fire-
wall.

Another possible scenario that came forward is when
the malicious program alters the data of the packet in
such a way that the other programs can not use the pack-
age. This could have far reaching consequences for the
network and is therefore recommended to pursue.

HyperVDP provides a useful feature by allowing the
virtualization of multiple PDP on the physical PDP.
Granting the functionality of re-configuring and delet-
ing virtualized P4 programs in runtime, without inter-
fering with other virtualized data-planes. Yet it has no
built-in security features and lacks research focused on
a malicious P4 program in a virtualized PDP. Although
HyperVDP is a tricky subject, it is highly recommended
that continuation of this research is performed in the fu-
ture.



References
[1] Philippe Biondi and the Scapy community. Scapy:

Packet crafting for python2 and python3, 2022.
[2] Pat Bosshart, Dan Daly, Glen Gibb, Martin Iz-

zard, Nick McKeown, Jennifer Rexford, Cole
Schlesinger, Dan Talayco, Amin Vahdat, George
Varghese, and David Walker. P4: Programming
protocol-independent packet processors. SIG-
COMM Comput. Commun. Rev., 44(3):87–95, jul
2014.

[3] Wolfgang Braun and Michael Menth. Software-
defined networking using openflow: Protocols, ap-
plications and architectural design choices. Future
Internet, 6(2):302–336, 2014.

[4] Mininet Project Contributors. Mininet: An instant
virtual network on your laptop (or other pc), 2022.

[5] Sol Han, Seokwon Jang, Hongrok Choi, Hochan
Lee, and Sangheon Pack. Virtualization in pro-
grammable data plane: A survey and open chal-
lenges. IEEE Open Journal of the Communica-
tions Society, 1:527–534, 2020.

[6] David Hancock and Jacobus van der Merwe. Hy-
per4: Using p4 to virtualize the programmable
data plane. In Proceedings of the 12th Inter-
national on Conference on Emerging Network-
ing EXperiments and Technologies, CoNEXT ’16,
page 35–49, New York, NY, USA, 2016. Associa-
tion for Computing Machinery.

[7] Keith Kirkpatrick. Software-defined networking.
Communications of the ACM, 56(9):16–19, 2013.

[8] Diego Kreutz, Fernando MV Ramos, Paulo Es-
teves Verissimo, Christian Esteve Rothenberg, Sia-
mak Azodolmolky, and Steve Uhlig. Software-
defined networking: A comprehensive survey.
Proceedings of the IEEE, 103(1):14–76, 2014.

[9] Oliver Michel, Roberto Bifulco, Gábor Rétvári,
and Stefan Schmid. The programmable data plane:
Abstractions, architectures, algorithms, and appli-
cations. ACM Comput. Surv., 54(4), may 2021.

[10] F. Paolucci, F. Civerchia, A. Sgambelluri, A. Gior-
getti, F. Cugini, and P. Castoldi. P4 edge node en-
abling stateful traffic engineering and cyber secu-
rity. J. Opt. Commun. Netw., 11(1):A84–A95, Jan
2019.

[11] F. Paolucci, F. Cugini, and P. Castoldi. P4-based
multi-layer traffic engineering encompassing cy-
ber security. In 2018 Optical Fiber Communica-
tions Conference and Exposition (OFC), pages 1–
3, 2018.

[12] Rohith Raj S, Rohith R, Minal Moharir, and
Shobha G. Scapy- a powerful interactive packet
manipulation program. In 2018 International Con-
ference on Networking, Embedded and Wireless
Systems (ICNEWS), pages 1–5, 2018.

[13] Cheng Zhang, Jun Bi, Yu Zhou, and Jianping Wu.
Hypervdp: High-performance virtualization of the
programmable data plane. IEEE Journal on Se-
lected Areas in Communications, 37(3):556–569,
2019.


	Introduction
	Background
	Compiler vs hypervisor based approach
	HyperVDP

	Methodology
	Test network simulation
	Behavioral model version 2
	Mininet using HyperVDP
	HyperVDP
	Testing and probing with scapy

	Experimental Setup and Results
	Responsible Research
	Discussion
	Conclusions and Future Work

