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Abstract

The explosive growth in data collection driven by
the proliferation of interconnected devices necessi-
tates novel approaches to data processing. Tradi-
tional centralised data processing methods are in-
creasingly inadequate due to the sheer volume of
data generated. Distributed Tiny Learning (DTL)
offers a compelling solution by distributing ma-
chine learning tasks across multiple edge devices
and processing data locally, thus minimising the
need for data transmission to central servers. This
approach is particularly beneficial in scenarios with
limited network bandwidth and stringent privacy
requirements, enhancing data security and com-
pliance with privacy regulations. The advent of
6G networks, with their promise of unprecedented
speed, capacity, and reliability, can further am-
plify the power of DTL. By providing higher band-
width and lower latency, 6G enables more effi-
cient data processing and communication among
edge devices, thereby enhancing the overall per-
formance and scalability of DTL systems. This
integration supports real-time decision-making for
applications such as autonomous vehicles, smart
cities, and healthcare monitoring.

This paper conducts a comprehensive survey of
the state-of-the-art in DTL, categorising scientific
literature, mapping the ecosystem and tools, and
addressing performance, efficiency, and scalability
challenges in ultra-low-power devices within a 6G
context. Additionally, it implements and bench-
marks two DTL algorithms, providing practical in-
sights into their effectiveness and operational via-
bility.

1 Introduction

In the modern technology landscape, data collection has ex-
perienced incredible growth. As the number of deployed in-
terconnected devices increases, so does the need to process
the produced and collected data.

While data processing was traditionally performed in a
centralized fashion, the sheer volume of collected data points
has shifted the focus to distributed data processing techniques
- machine learning being no exception to that trend [1].

The concept of Distributed Tiny Learning involves dis-
tributing the learning process across multiple edge devices,
which process data locally, thereby minimizing the need to
transmit sensitive information to a central server. This ap-
proach is particularly vital in scenarios where network band-
width is limited and privacy is a concern, making it highly
relevant for modern IoT deployments. The ability to pro-
cess data at the edge not only reduces latency but also en-
hances data security and compliance with privacy regula-
tions by keeping sensitive information on local devices. This
paradigm shift is essential in the era of the Internet of Things
(IoT), where countless devices continuously generate and
process vast amounts of data [2].

The growing interest in Distributed Tiny Learning aligns
with the evolving requirements of 6G networks, which
promise to deliver unprecedented speed, capacity, and reli-
ability. [3] These networks are expected to support a vast ar-
ray of IoT devices, demanding efficient, scalable, and secure
data processing solutions. Edge computing and Distributed
Tiny Learning are poised to play critical roles in realizing the
full potential of 6G by enabling intelligent data processing
directly on IoT devices [4]. This shift not only optimizes net-
work usage but also supports real-time decision-making pro-
cesses, which are crucial for applications such as autonomous
vehicles, smart cities, and healthcare monitoring systems [5].

The works of Lin et al. [6] and Gonzalez-Soto et al. [7]
explore frameworks for decentralized Tiny learning; how-
ever, most existing studies lack a detailed exploration of the
practical integration of these technologies into real-world IoT
applications for 6G environments, which would demonstrate
their true viability and performance benefits.

This project aims to conduct a comprehensive survey and
categorize the state-of-the-art scientific literature, map out
the ecosystem and available tools, and specifically target the
performance, efficiency, and scalability challenges of imple-
menting Distributed Tiny Learning on ultra-low-power de-
vices within a 6G context.

In addition, two algorithms for distributed TinyML will be
implemented, evaluated, and benchmarked to provide practi-
cal insights into their effectiveness and operational viability.
This dual approach aims to bridge the gap between theoreti-
cal frameworks and real-world applications, offering concrete
evidence of the benefits and challenges associated with Dis-
tributed Tiny Learning in advanced network environments.

2 Methodology

The methodology chosen for this literature review systemat-
ically identifies, selects, and analyses relevant literature on
distributed TinyML techniques, applications, challenges, and
future directions. Following the guidelines established by
Kitchenham and Charters [8], it consists of six distinct steps
designed to ensure a comprehensive and representative col-
lection of scientific literature for the research:

1. Identification of Relevant Databases and Search
Terms: A set of relevant databases, including IEEE
Xplore', ACM Digital Library?, and Google Scholar?
were identified for conducting literature searches. Out of
those, Google Scholar was not used as a primary litera-
ture source but rather as an augmentation tool to enhance
the results obtained through the first three databases.

A combination of keywords and search terms related to
distributed TinyML were used to retrieve relevant arti-
cles. The exact query is presented in subsection A.1.

2. Inclusion and Exclusion Criteria: Articles consid-
ered for inclusion were those published in peer-reviewed
journals, conference proceedings, and relevant technical
reports. The inclusion criteria include studies focusing

"https://ieeexplore.ieee.org/Xplore/home.jsp
Zhttps://dl.acm.org/
*https://scholar.google.com/



on distributed machine-learning techniques specifically
tailored/adapted for resource-constrained devices. Ex-
clusion criteria involved studies unrelated to TinyML,
non-English publications, and any articles lacking sub-
stantial relevance to the scope of this review.

3. Screening and Selection Process: Initial screening in-
volved the assessment of titles and abstracts to iden-
tify potentially relevant articles. Full-text screening
was conducted for articles passing the initial screening
phase, applying the inclusion and exclusion criteria to
determine their final eligibility.

4. Data Extraction and Synthesis: Relevant data from
selected articles were extracted systematically, includ-
ing information on distributed TinyML algorithms, ar-
chitectures, applications, performance metrics, and chal-
lenges. Data synthesis involved organising extracted in-
formation thematically, enabling a coherent presentation
of key findings, trends, and gaps in the literature.

5. Quality Assessment: The quality of selected articles
was assessed based on factors such as research rigour,
methodology clarity, experimental design, and contri-
bution to the field of distributed TinyML. High-quality
studies were accorded greater weight in the synthesis of
findings and conclusions.

6. Analysis and Interpretation: Analytical techniques
such as thematic analysis and comparative evaluation
were employed to interpret the synthesised data, identify
recurring patterns, and elucidate emerging trends in dis-
tributed TinyML research. Critical insights derived from
the analysis were used to formulate conclusions and pro-
pose avenues for future research.

The implementation of two algorithms is based on the find-
ings of the literature review. As a part of the research process,
within the ”Data Extraction and Synthesis” step, two suit-
able algorithms for distributed tiny machine learning were
selected as implementation candidates. They were chosen
based on specific criteria such as popularity, performance,
practical applicability, and scalability.

One of the implementations will target the Arduino Nano
33 BLE* board, as it is a prevalent development platform
for deployed tiny edge devices [9]. The other implementa-
tion will target the more powerful Raspberry Pi computer, an
immensely popular platform for edge-deployed devices [10].
The programming language of choice will be C/C++, a pop-
ular language for embedded software development [11] and
Python, a popular framework for machine learning tasks [12].

The development process will start with the initial proto-
type implementation on a general-purpose laptop before be-
ing transferred to the resource-constrained microcontroller.
After the initial microcontroller implementation is complete,
an iterative process will follow, during which the algorithm
implementations will be refined to approach or surpass the
benchmark results in the available literature.

*https://store.arduino.cc/products/arduino-nano-33-ble

3 Related work

A survey by Verbraeken et al. provides a comprehensive ex-
amination of distributed machine learning, driven by the es-
calating demands for artificial intelligence and the limitations
of hardware acceleration in processing extensive training data
[13].

Gonzalez-Soto et al. introduce a novel decentralised and
collaborative machine learning framework designed specifi-
cally for resource-constrained IoT devices, offering an alter-
native to traditional federated learning models with enhanced
security features [7].

McMahan et al. describe a decentralised approach to ma-
chine learning where training data remains on mobile devices,
maintaining privacy while harnessing rich, user-generated
data to enhance device functionalities through improved lan-
guage and image models. This method involves iterative
model averaging and has been empirically validated across
various architectures and datasets, showing resilience against
unbalanced and non-IID (non-Independent and Identically
Distributed) data distributions typical of this setup [14].

A survey performed by Peteiro-Barral and Guijarro-
Berdifias provides an overview of distributed learning meth-
ods, highlighting their advantages in scaling up learning al-
gorithms and dealing with naturally distributed datasets en-
countered in real-world applications [15].

Rajapakse et al. present a comprehensive survey of re-
formable TinyML solutions, showcasing a new taxonomy that
evaluates the adaptability of models on microcontroller units
(MCUs) post-deployment [16].

A survey by Tsoukas et al. categorises prevalent optimisa-
tion techniques for Neural Network compression alongside an
overview of available development boards and TinyML soft-
ware [17].

Additionally, another survey by Tsoukas et al. explores the
potential of TinyML technology in revolutionising healthcare
applications by enabling on-device data processing, thereby
eliminating the need for data transmission to external servers
[18].

A paper by Lakshman and Eisty identifies key obstacles
faced by TinyML developers and investigates state-of-the-art
Software Engineering approaches tailored to the unique de-
mands of TinyML engineering [19].

4 Results

The results of this literature survey are presented by exam-
ining various aspects that serve as key differentiating factors
among different algorithms and frameworks. These aspects
were identified through the analysis of overarching categories
and themes within the surveyed literature.

First, different model training approaches are explored in
subsection 4.1. In subsection 4.2, various network configura-
tions that support DTL are analysed. Methods used to divide
and allocate data across multiple edge devices are examined
in subsection 4.3. In subsection 4.4 the scalability of DTL
systems and their resilience to faults are investigated. In sub-
section 4.5, an overview of the practical applications of DTL
across various domains is provided. Finally, in subsection 4.6
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Figure 1: Collaborative learning and federated learning [32]

the efficiency of communication protocols within DTL sys-
tems is addressed.

4.1 Model Training Approach and Architecture

Model training approaches in distributed TinyML vary and
can be categorised into federated, collaborative, swarm, and
split/hybrid learning. These methods determine how data is
handled during training and how model weight updates are
propagated within the network. Each approach has its advan-
tages regarding privacy, scalability, and decentralisation [20;
21;22;23].

Federated Learning

Federated learning involves training models locally on edge
devices using their data and only sending model updates to
a central server, ensuring data privacy. This approach has
gained popularity due to stringent privacy laws and its effi-
ciency in reducing the load on central servers, especially in
the context of 6G networks. Research indicates that federated
learning is particularly advantageous in scenarios involving
sensitive data, such as healthcare, where privacy is paramount
[24; 25; 26; 27; 28]. Moreover, federated learning reduces la-
tency and improves the system’s scalability by minimising the
reliance on a central server [21].

Collaborative Learning

Collaborative learning, as depicted in Figure 1, differs from
federated learning in the means of training. In the former,
training datasets are exchanged between devices, which aids
in balancing the loads across the network and achieving scal-
ability. It is particularly effective in heterogeneous networks
where load distribution based on device capabilities is cru-
cial [29; 30; 31]. This approach also facilitates faster conver-
gence of the learning process by leveraging the computational
power of multiple devices [23].

Swarm Learning

Swarm learning eliminates the need for a centralised server
by using a decentralised data distribution channel for model
updates and data sharing. An example of such a mechanism
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Figure 2: Centralised learning and decentralised learning [41]

is blockchain, which has been demonstrated to be a viable
option when implementing an edge-based machine-learning
swarm [33; 34]. This peer-to-peer communication model en-
hances privacy and scalability [35; 20; 36]. The fully decen-
tralised nature of swarm learning also enhances fault toler-
ance and reduces the risk of single points of failure [37].

Split/hybrid Learning

Split learning, or hybrid learning, involves dividing a model
into parts and training them independently, often combining
different distributed learning approaches. This method lever-
ages collaborative and federated learning benefits, balancing
performance and privacy [38; 39; 40]. Split learning can also
be adapted to varying network conditions and device capabil-
ities, making it highly flexible [22].

4.2 Network Topology

Network topology plays a crucial role in determining the per-
formance and efficiency of distributed TinyML systems. The
topology affects how data and model updates are propagated
through the network, influencing latency, scalability, and fault
tolerance.

Centralised Topology

In a centralised topology, all edge devices communicate with
a central server that coordinates the training process and ag-
gregates model updates. While this topology is straight-
forward and easy to implement, it suffers from scalabil-
ity issues and potential single points of failure [21]. Cen-
tralised topologies are often used in small-scale networks
or where a powerful central server is available [42; 43;
14].

Decentralised Topology

Decentralised topologies eliminate the need for a central
server by enabling direct communication between edge de-
vices. This approach enhances scalability and fault tolerance,
as there is no single point of failure. In addition, decentralised
designs reduce the communication load in the network, as
there are fewer opportunities for communication bottlenecks
to develop [44], which can, in turn, lower the overall la-
tency of the network communication and information prop-



agation [45]. Peer-to-peer networks and blockchain-based
systems are common decentralised topologies [46]. Decen-
tralised topologies are particularly useful in environments
where devices are mobile or intermittently connected [47; 48;
49].

Hybrid Topology

Hybrid topologies combine elements of both centralised and
decentralised approaches. For example, a hierarchical struc-
ture where groups of edge devices communicate with lo-
cal aggregators, which in turn communicate with a central
server, can balance the benefits of both approaches [50]. Hy-
brid topologies are adaptable and can be optimised for spe-
cific application requirements and network conditions [39;
511.

4.3 Data Partitioning

Data partitioning strategies in distributed TinyML can be
classified into data-parallel, model-parallel, and hybrid ap-
proaches. These strategies determine how data is divided and
distributed among edge devices for processing.

Data Parallel Partitioning

Data parallel processing involves dividing the entire dataset
into smaller, complete data samples, and distributing those
samples across multiple devices or processors. Each device
or processor then works on its assigned portion of the data
independently. Zhao et al. discuss various methods of data-
parallel machine learning, focusing on the synchronisation
and communication required for model aggregation. They
highlight three primary communication mechanisms: bulk
synchronous parallel, asynchronous parallel, and stale syn-
chronous parallel [52].

Fan et al. introduce a loss function weight reorder stochas-
tic gradient descent method, which enhances accuracy and
performance compared to traditional methods [53]. Addi-
tionally, Wang et al. propose incorporating device reputation
into model aggregation, significantly improving performance
on non-IID datasets in federated learning environments [54].
Deb et al. report a substantial reduction in CPU usage through
their optimised data-parallel learning techniques [55].

Model Parallel Partitioning

Model parallel partitioning involves splitting different parts
of a single model across multiple devices or processors. Each
device then works on a specific portion of the model, allowing
for more efficient processing of large models that may not fit
entirely on a single device. The difference between the model
parallel and data parallel approach is shown in Figure 3. This
approach can reduce the memory and CPU consumption on
individual devices, as highlighted by Jeon et al. and Zhang
et al. [50; 56]. However, it introduces challenges related to
synchronisation and communication overheads.

Jeon et al. proposed a privacy-sensitive model parallel
framework that enhances data privacy by processing sensitive
features on more secure devices and less sensitive features on
less secure devices. This framework addresses privacy con-
cerns in distributed learning environments while leveraging
the benefits of model parallelism [50].

Data parallelism

(@

Model parallelism

Shared model Partitioned model

Figure 3: Data-parallel and model-parallel partitioning [57]

Zhang et al. discussed split learning, where a model is par-
titioned into multiple segments, each trained on a different
device. This approach reduces the memory footprint on in-
dividual devices and allows for training more complex mod-
els on resource-constrained edge devices. It also facilitates
a more balanced workload distribution, enhancing the effi-
ciency of distributed training processes [56].

Advancements in model compression techniques, such as
quantisation and pruning, further optimise model parallel par-
titioning by reducing model size without significantly im-
pacting accuracy. These techniques lower computational and
memory requirements, enabling the deployment of sophisti-
cated models on edge devices with limited resources [58].

Hybrid Partitioning

Hybrid partitioning combines data-parallel and model-
parallel techniques to maximise resource utilisation and ef-
ficiency [59]. This approach can adapt to varying work-
loads and device capabilities, providing a balanced solution
for complex distributed learning tasks [60; 61].

4.4 Scalability and Fault tolerance

Scalability and fault tolerance are critical factors in the de-
ployment of distributed TinyML systems. Scalability refers
to the system’s ability to efficiently incorporate additional
devices without significant performance degradation, while
fault tolerance pertains to the system’s resilience against de-
vice failures and malicious nodes. Effective fault tolerance
mechanisms and load-balancing strategies are essential to
maintaining these attributes [62].

Scalability
Scalability is critical for integrating an increasing number
of devices without performance degradation. Techniques for
large-scale optimisation in distributed machine learning, es-
pecially within 6G networks, facilitate the integration of ad-
ditional ultra-low-powered devices [63; 30]. Methods such as
hierarchical clustering and decentralised aggregation improve
scalability by reducing the communication overhead [64;
65].

Furthermore, we can optimise resource utilisation across
the entire distributed TinyML network by leveraging tech-



niques like hardware-aware scaling. This approach dynam-
ically tailors the computational demands of individual infer-
ence tasks to the specific capabilities of the underlying hard-
ware on each device [66].

Fault Tolerance

Fault tolerance ensures the resilience and continuous oper-
ation of distributed TinyML systems despite device failures
and malicious nodes. Research has shown that distributed
learning frameworks can maintain performance even under
adverse conditions, such as packet loss or malicious gradi-
ent submissions [67; 68; 69]. Techniques such as secure and
privacy-enhanced federated learning (SPEFL) protect against
malicious nodes by verifying the integrity of model updates
[68].

4.5 Use Cases and Applications

The practical applications of distributed TinyML span vari-
ous domains, highlighting its versatility and potential impact.
Key use cases include healthcare, autonomous systems, smart
cities, and industrial Internet of Things (IoT). Each area ben-
efits from the unique advantages of distributed TinyML, such
as improved data privacy, reduced latency, and enhanced real-
time processing capabilities [70].

Healthcare

Healthcare is a prominent field where distributed TinyML is
making significant strides. The proliferation of IoT-enabled
medical devices has created a demand for efficient data pro-
cessing methods that can handle the sensitive nature of medi-
cal information. Distributed TinyML offers a solution by en-
abling localised data processing, thereby preserving patient
privacy while still leveraging the power of machine learning
for diagnostic and monitoring purposes [71].

Federated learning is particularly advantageous in health-
care applications due to its privacy-preserving design. This
method allows hospitals and medical devices to collabora-
tively train models without sharing raw data, ensuring com-
pliance with privacy regulations such as HIPAA. Surveys by
Elayan et al. have highlighted the adoption of federated learn-
ing in healthcare, showcasing its potential in applications
like predictive diagnostics and remote patient monitoring [72;
731.

Industrial IoT

Industrial IoT (IToT) encompasses various applications where
distributed TinyML can enhance operational efficiency and
predictive maintenance. In agricultural settings, distributed
learning approaches have been tailored to monitor crop health
and optimise resource usage. Devaraj et al. demonstrated a
distributed learning approach specifically designed for agri-
cultural applications, showcasing its effectiveness in rural ar-
eas where centralised data processing may not be feasible
[26].

Predictive maintenance is another crucial application in
IIoT, where the timely detection of equipment failures can
prevent costly downtimes. Jiang et al. introduced a federated
learning mechanism that utilises IoT-based data to perform
high-accuracy predictive maintenance. By leveraging data
from various sensors and devices across an industrial setup,

this approach minimises the risk of failures and extends the
lifespan of equipment [74].

Autonomous Systems
Autonomous systems, particularly in vehicular networks,
benefit significantly from distributed TinyML. The ability to
process data locally on edge devices such as vehicles ensures
low latency and quick decision-making, critical for safe and
efficient operations [75]. Research also explores the use of
machine learning in vehicular networks supported by 6G in-
frastructure. The study compares different machine learning
algorithms’ ability to detect problematic driving patterns, en-
hancing road safety and traffic management [76].
Autonomous drones and robots also utilise distributed
TinyML for navigation and obstacle avoidance. These sys-
tems require real-time data processing to adapt to dynamic
environments, and distributed learning enables them to share
and learn from each other’s experiences without relying on a
central server [77]. This collaborative approach improves the
overall intelligence and responsiveness of autonomous sys-
tems [78; 5].

Smart Cities

Smart cities leverage distributed TinyML to enhance urban
services, including traffic management, energy optimisation,
and environmental monitoring. By deploying TinyML mod-
els on edge devices such as traffic lights, streetlights, and
environmental sensors, cities can achieve real-time data pro-
cessing and decision-making [79].

For instance, smart traffic management systems can use
distributed learning to analyse traffic patterns and optimise
signal timings, reducing congestion and improving traffic
flow [80; 81; 82]. Similarly, energy optimisation systems
can monitor and control energy usage in real-time, leading
to more efficient and sustainable urban living [83; 84]. Re-
search also highlights the application of distributed TinyML
in smart cities, demonstrating its potential to transform urban
environments [80; 82].

Satellite Networks
In satellite networks, distributed TinyML addresses the chal-
lenges posed by the high latency of long-distance commu-
nication. Zhao et al. proposed a novel distributed machine
learning network structure for low Earth orbit (LEO) satel-
lite networks. This structure involves a layered hierarchi-
cal approach to combat delays, enabling satellites to collab-
oratively process data and update models without relying on
ground stations. This approach reduces latency and enhances
the overall efficiency of satellite networks [85].
Satellite-based distributed learning can be particularly ben-
eficial for global environmental monitoring and disaster re-
sponse applications, where timely data processing is crucial.
By enabling satellites to share and process data collabora-
tively, distributed TinyML ensures that critical information
is quickly available for decision-making and response efforts
[861.

4.6 Communication Efficiency

Efficient communication is crucial in Distributed TinyML,
where edge devices with limited bandwidth must collabo-
rate over constrained networks [87]. Strategies such as model



gossiping and protocol optimisations reduce the volume and
frequency of data exchanges, improving overall network effi-
ciency [88; 89; 90; 91; 92; 63].

Model Gossiping

Model gossiping is a technique where devices exchange
model updates with a subset of their peers instead of all
nodes. This reduces communication overhead and helps
scale the network to more devices [93]. Gossiping pro-
tocols are robust to network changes and device failures,
making them suitable for dynamic environments [92; 94;
95].

Protocol Optimisations

Optimising communication protocols to reduce data transfer
size and frequency is essential for maintaining efficiency in
distributed TinyML systems. Techniques such as quantisa-
tion, sparsification, and compression of model updates help
to minimise bandwidth requirements [96]. Protocol optimisa-
tions also include efficient aggregation methods, like secure
multi-party computation (SMC), to enhance privacy and re-
duce communication costs [97].

Quantisation Techniques

Quantisation techniques are vital in reducing the size of
model updates transmitted between devices. By representing
model parameters with lower precision, these techniques sig-
nificantly decrease the amount of data that needs to be sent,
thus conserving bandwidth and reducing latency [98]. In ad-
dition, lower communication requirements often translate to
lower power consumption, which is a very important consid-
eration for edge-deployed tiny devices [99]. Popular quanti-
sation methods include fixed-point arithmetic, where param-
eters are stored as integers, and dynamic quantisation, which
adapts the precision based on the value range of parameters
[100; 101; 102].

Sparsification Methods

Sparsification involves reducing the number of non-zero ele-
ments in model updates, thus decreasing the volume of data
that needs to be communicated. Techniques like gradient
sparsification and weight pruning ensure that only the most
critical information is transmitted, effectively lowering com-
munication overhead [103]. This approach is particularly
beneficial when network bandwidth is severely limited [104].

Compression Algorithms

Compression algorithms such as Huffman coding, run-length
encoding, and more sophisticated methods like Deep Com-
pression can be applied to model updates to reduce data size
further. These algorithms exploit the redundancy in data to
encode information more efficiently, resulting in significant
bandwidth savings [105]. Combining compression with other
techniques like quantisation and sparsification can lead to
even more significant improvements in communication effi-
ciency [106].

Efficient Aggregation Methods

Efficient aggregation methods are essential to combine model
updates from multiple devices while minimising communi-
cation costs. Techniques such as federated averaging, where

local models are averaged to update the global model, reduce
the need for frequent and large-scale data transfers [14]. Ad-
vanced methods like secure multi-party computation (SMC)
ensure that the aggregation process is efficient and privacy-
preserving, making them suitable for sensitive applications
[107].

Adaptive Communication Strategies

Adaptive communication strategies dynamically adjust the
frequency and volume of data exchanges based on network
conditions and resource availability. Techniques such as
bandwidth-aware scheduling and adaptive compression can
optimise communication, ensuring efficient use of available
resources while maintaining model accuracy [108]. These
strategies are particularly useful in heterogeneous networks
where devices may have varying capabilities and network
connections [109].

Future Directions in communication efficiency

Future research in communication efficiency for distributed
TinyML could explore the integration of emerging technolo-
gies such as 5G and edge Al These technologies promise to
enhance network capabilities, enabling more efficient and re-
liable communication between devices [110]. Additionally,
advancements in hardware design, such as specialised com-
munication processors, could further optimise the data ex-
change process in TinyML systems [111].

5 Algorithm implementation details

As part of this research, two algorithms were selected to
demonstrate the feasibility of using TinyML. These algo-
rithms were chosen to exemplify different approaches to ef-
ficiently handling machine learning tasks within the limited
computational and memory resources of such devices. Each
algorithm highlights a unique method of optimising perfor-
mance and resource usage, thereby providing insights into
the practical implementation of machine learning in resource-
constrained environments.

5.1 Incremental Learning Vector Quantisation

The first of the two implemented algorithms was Incremen-
tal Learning Vector Quantisation (ILVQ) [112]. TLVQ is an
enhanced version of the Learning Vector Quantisation algo-
rithm, conceptually similar to the k-nearest neighbours classi-
fier, with the key distinction that it does not require the entire
dataset to be stored in memory. Instead, it maintains only a
few prototypes (analogous to centroids in the k-nearest neigh-
bours algorithm) in memory, which are gradually updated
throughout the training process. Classification of a given data
vector is then performed by selecting the prototype that is
closest to the data vector, according to some distance metric.
In this experiment, euclidean distance was used.

The primary contribution of ILVQ is its ability to han-
dle incremental learning in two distinct ways: within-class
and between-class. Within-class incremental learning allows
the model to gradually assimilate new information within the
same class. Conversely, between-class incremental learn-
ing enables the model to progressively learn new informa-
tion from new classes as they emerge. In essence, ILVQ can



Figure 4: Visualisation of the synthetic dataset (n = 2500)

update its knowledge base within existing classes and recog-
nise and learn new classes during the training phase [113;
114]. This capability makes it particularly suitable for dy-
namic environments where new data categories may continu-
ally appear.

ILVQ was selected for this study due to its simplicity and
low-performance constraints, which make it an excellent can-
didate for implementation on low-powered microcontrollers
[115]. Tts efficient use of memory and computational re-
sources aligns well with the limitations typically associated
with TinyML applications, ensuring practical feasibility in
resource-constrained settings.

Experiment setup

The model was tasked with classifying points in 3-
dimensional space into two categories: one for points within
a sphere with a radius of 1 and another for points outside the
sphere.

The dataset was generated by uniformly sampling vectors,
with every component within the [—3, ] range. Effectively,
all sampled data points were in a 1x1x1 cube, centred at the
(0,0,0) point.

The generated dataset was then split into two groups:
the group of points within the sphere and those outside the
sphere. Figure 4 depicts a sample of the generated synthetic
dataset, with points within the sphere coloured red and points
outside of the sphere coloured blue.

The implementation of the algorithm also had to be adapted
for the distributed topology of the machine learning network.
To achieve this, a federated learning approach was adopted,
with a simple aggregation algorithm which propagated the
best-performing model to all devices in the learning network.

Distributed training networks with 1, 2, 5, and 10 devices
were simulated, and the training accuracy of each configu-
ration was measured. The data was uniformly distributed
among all participating devices, resulting in an IID dataset
and training setup.

The algorithm was written in C++ and deployed to an Ar-
duino 33 BLE board. As only a single board was available
for performing the experiment, additional devices were sim-
ulated by swapping the active model prototypes - meaning
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Figure 5: Accuracy of different number of devices

that to simulate ten different devices, there were ten sets of
prototypes, which were trained in a round-robin fashion.

Benchmark results

The performance of the Incremental Learning Vector Quan-
tisation algorithm was evaluated based on its classification
accuracy over multiple training iterations. The experiment
measured the algorithm’s ability to adapt and improve over
time, particularly in a resource-constrained environment.

As illustrated in Figure 5, the trained models achieved a
classification accuracy of at least 85% across all simulated
configurations by the conclusion of the training process. This
performance significantly surpasses the baseline accuracy of
52% associated with a “random guessing” strategy, thereby
demonstrating the efficacy of the Incremental Learning Vec-
tor Quantisation algorithm in effectively learning and classi-
fying data points.

However, it is important to note that the accuracy of the
trained model could potentially decrease significantly if it
were applied to non-IID data distributions. Non-IID data,
where the distribution of training samples is not uniform
across devices, presents additional challenges for model gen-
eralisation and accuracy. This concern is supported by find-
ings in related research, such as the work by Chiu et al.
[116], which highlights the potential impact of non-IID data
on model performance. Consequently, further investigation
into the algorithm’s robustness in such scenarios is necessary
to fully understand its practical applicability in diverse real-
world settings.

5.2 MNIST classification with TensorFlow
Federated learning framework

The second implemented algorithm was a simple neural net-
work classifier, tasked with classifying the digits from the
MNIST handwritten digit dataset® [117].

Shttps://en.wikipedia.org/wiki/MNIST_database



| Layer type | Output shape | Number of params |
Dense (None, 10) 7850
Softmax (None, 10) 0

| Total parameters | 7850 (30.66 KB) |

Table 1: TensorFlow model summary

The implementation was written using the TensorFlow fed-
erated machine learning framework®.

Experiment setup

The model selected for this experiment comprises two layers:
a dense layer and a softmax output layer. This architecture
was chosen for its simplicity and efficiency [118].

One of the primary reasons for selecting this particular
model was its minimal memory footprint. The entire model
requires less than 32KB of memory, as detailed in Table 1.
This characteristic makes it exceptionally well-suited for de-
ployment on devices with limited memory resources, which
is a common constraint in many real-world applications of
federated learning.

In the experimental setup, each device was provided with
a portion of the input dataset in a non-IID (non-Independent
and Identically Distributed) manner. This means that the dis-
tribution of digit samples across devices was not uniform; for
example, some devices might receive more samples of digit
1 and fewer of digit 7. This approach evaluated the model’s
performance under more realistic and challenging conditions,
reflecting the variability and heterogeneity often encountered
in practical federated learning scenarios. By doing so, the
robustness and adaptability of the model in handling diverse
data distributions were assessed.

The experiment was conducted by simulating various fed-
erated learning configurations to evaluate the model’s perfor-
mance. Specifically, simulations were conducted with 5, 10,
50, and 100 devices. By varying the number of devices, we
aimed to understand the impact of federation size on model
accuracy, convergence rate, and stability.

Benchmark results

As shown in Figure 6, the accuracy of the model was found to
be consistent across all setups and sufficiently high (around
85% across all setups), indicating the robustness of the al-
gorithm in distributed learning environments. However, it
was observed that a lower number of devices resulted in a
more significant variance in the accuracy metrics, suggesting
that larger federations provide more stable and reliable per-
formance.

6 Responsible Research

In conducting this literature survey, ethical aspects and the
reproducibility of methods were considered, as ensuring re-
sponsible research practices helps maintain the integrity and
credibility of the scientific process.

Shttps://www.tensorflow.org/federated
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Figure 6: Accuracy of the model with a different number of devices

6.1 Ethical Considerations

Ethical considerations in research involve several key aspects,
including:

* Transparency and Honesty: All sources of information
used in this survey are accurately cited to give proper
credit to original authors and allow readers to verify the
sources independently. There is no fabrication or falsifi-
cation of data or findings.

* Respect for Intellectual Property: Proper citations are
made to respect the intellectual property rights of au-
thors whose work has been referenced. This includes
adhering to copyright laws and licensing agreements.

* Bias Avoidance: Efforts have been made to include a
wide range of studies to provide a balanced view of the
current state of TinyML research. This includes avoid-
ing the selective reporting of results that support a partic-
ular viewpoint and considering diverse perspectives and
methodologies.

6.2 Reproducibility of Methods

To ensure reproducibility in this literature survey, a system-
atic methodology was adopted, guided by established proto-
cols for systematic reviews.

By adhering to it, the survey ensures that the research pro-
cess is transparent, verifiable, and reproducible. This ap-
proach aligns with the guidelines established by Kitchenham
and Charters [8], emphasising the importance of systematic
reviews in providing reliable and comprehensive insights into
research topics.

The study also follows the FAIR principles[119] by citing
all analysed articles, only using publicly available reposito-
ries, and publishing the source code replication package’.

7 Conclusions and Future Work

Distributed TinyML offers a spectrum of training approaches,
including federated, swarm, collaborative, and split learning.
Each approach caters to specific requirements concerning

"https://github.com/rstular/BSc-Thesis-Tiny-Machine-Learning-
Survey



data privacy, scalability, and resource constraints. Data par-
titioning strategies, such as model-parallel and data-parallel
partitioning, can optimise resource utilisation and training
efficiency for distributed models. Scalability and robust-
ness are crucial for real-world deployments, and advance-
ments in fault tolerance mechanisms and load-balancing tech-
niques are essential for ensuring reliable operation. Dis-
tributed TinyML demonstrates significant potential in var-
ious use cases, including healthcare, autonomous systems,
smart cities, and satellite networks. Its ability to process
data locally while facilitating collaborative learning opens
doors for innovative applications. Communication efficiency
is paramount in resource-constrained environments. Strate-
gies like model gossiping, compression, protocol optimisa-
tions, and efficient aggregation methods are crucial for min-
imising network overhead. Network topology plays a vital
role in determining performance. Centralised, decentralised,
and hybrid topologies have advantages and disadvantages,
and the optimal choice depends on the specific application
and network characteristics.

Future research directions in distributed TinyML can ex-
plore several promising avenues:

* Integration with emerging technologies: The synergy
between distributed TinyML and technologies like 6G
and edge Al holds immense potential for enhancing net-
work capabilities and communication efficiency.

e Hardware advancements: Specialised communication
processors and energy-efficient hardware designs can
further optimise data exchange and processing within
TinyML systems.

* Security and privacy enhancements: Robust security
mechanisms are essential for protecting sensitive data
and ensuring the integrity of model updates in dis-
tributed environments.

* Federated learning for non-IID data: Addressing the
challenges associated with non-IID data distributions is
crucial for ensuring the generalisability and robustness
of federated learning models in real-world scenarios.

» Explainability and interpretability: Developing tech-
niques to understand how distributed TinyML models
arrive at their decisions can enhance trust and facilitate
their adoption in safety-critical applications.

By addressing these research areas, distributed TinyML
can evolve into a cornerstone technology for intelligent and
efficient data processing at the edge, paving the way for a
more interconnected and intelligent world.

A Appendix
A.1 Article database search query

(("federated" NEAR/5 "learning" NEAR/5 "iot") OR ("
distributed" NEAR/5 "learning" NEAR/5 "iot") OR
("distributed" NEAR/5 "learning" NEAR/5 "
microcontroller"”) OR ("federated" NEAR/5 "
learning" NEAR/5 "microcontroller") OR ("
federated" NEAR/5 "learning" NEAR/5 "embedded
system") OR ("distributed" NEAR/5 "learning"

NEAR/5 "embedded system") OR ("federated" NEAR
/5 "learning" NEAR/5 "sensor") OR ("distributed
" NEAR/5 "learning" NEAR/5 "sensor") OR ("
federated" NEAR/5 "machine learning" NEAR/5 "
iot") OR ("distributed" NEAR/5 "machine
learning" NEAR/5 "iot") OR ("distributed" NEAR
/5 "machine learning" NEAR/5 "microcontroller")
OR ("federated" NEAR/5 "machine learning" NEAR
/5 "microcontroller") OR ("federated" NEAR/S5 "
machine learning” NEAR/5 "embedded system") OR
("distributed" NEAR/5 "machine learning" NEAR/5

"embedded system") OR ("federated" NEAR/5 "
machine learning" NEAR/5 "sensor") OR ("
distributed" NEAR/5 "machine learning" NEAR/5 "
sensor"))
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