
 
 

Delft University of Technology

SpineLoft
Interactive Spine-based 2D-to-3D Modeling
Thiault, Alexandre; Philippe, Telo; Parakkat, Amal Dev; Eisemann, Elmar; Muthuganapathy, Ramanathan;
Igarashi, Takeo
DOI
10.1145/3706598.3713439
Publication date
2025
Document Version
Final published version
Published in
CHI '25: Proceedings of the 2025 CHI Conference on Human Factors in Computing Systems

Citation (APA)
Thiault, A., Philippe, T., Parakkat, A. D., Eisemann, E., Muthuganapathy, R., & Igarashi, T. (2025).
SpineLoft: Interactive Spine-based 2D-to-3D Modeling. In N. Yamashita, V. Evers, K. Yatani, X. Ding, B.
Lee, M. Chetty, & P. Toups-Dugas (Eds.), CHI '25: Proceedings of the 2025 CHI Conference on Human
Factors in Computing Systems Article 822 Association for Computing Machinery (ACM).
https://doi.org/10.1145/3706598.3713439
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1145/3706598.3713439
https://doi.org/10.1145/3706598.3713439


SpineLof: Interactive Spine-based 2D-to-3D Modeling 
Alexandre Thiault 

LTCI - Telecom Paris, IP Paris 
Palaiseau, France 

alexandre.thiault@hotmail.com 

Telo Philippe 
LTCI - Telecom Paris, IP Paris 

Palaiseau, France 
telo.philippe@gmail.com 

Amal Dev Parakkat 
LTCI - Telecom Paris, IP Paris 

Palaiseau, France 
adp.upasana@gmail.com 

Elmar Eisemann 
Delft University of Technology 

Delft, Netherlands 
e.eisemann@tudelft.nl 

Ramanathan Muthuganapathy 
Indian Institute of Technology Madras 

Chennai, India 
emry01@gmail.com 

Takeo Igarashi 
The University of Tokyo 

Tokyo, Japan 
takeo@acm.org 

Figure 1: Our system takes an image along with user annotations to compute an editable spine-rib system. Based on detected 
edges and a user-defned spine, it generates a 3D model, extruding a user-defned cross-section (here, the cross-section was 
chosen to be circular). Our solution addresses inherent problems of image-based systems (like missing edges and occluded 
regions), and users can modify the geometry locally (Image from PixaBay - www.pixabay.com). 

Abstract 
3D artists (professionals and novices alike) often take inspiration 
from sketches or photos to guide their designs. Yet, existing mod-

eling systems are not tailored to fully make use of such input. 
Consequently, signifcant efort and expertise are needed when cre-
ating model prototypes or exploring design options. In this work, 
we introduce a system to support the exploratory modeling pro-
cess by enabling the transformation of 2D image elements into 
geometric 3D objects. Our solution relies on a novel �2 distance 
function, supporting a region-based lofting process, and delivers 
easily-editable 3D geometric "spine-rib" representations. The user 
draws a spine, and the system generates and modifes a general-
ized cylinder around it, considering image edges. The proposed 
approach, driven by simple user-defned scribble defnitions, can 
robustly handle various image sources, ranging from photos to 
hand-drawn content. 
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1 Introduction 
Sketch-based modeling has gained much attention since it is typi-
cally easier to sketch in 2D than directly working on a 3D object. 
A sketch can guide an artist during modeling, and it is even com-

mon to start with a 2D concept sketch, often involving existing 
image sources for inspiration. Still, there is a separation between 
the 2D information and the actual 3D modeling step. Our approach, 
SpineLoft, will bring these two domains closer together by allowing 
artists (professionals or novices) to transform 2D regions, even if 
coarsely defned in a sketch or partially occluded, into a 3D element 
to be used in their model design, relying only on simple user anno-
tations. To make our solution efective, we address the following 
questions: 

• Selection: How to easily support selecting regions of interest 
from image references? 

• Robustness: How to handle adverse conditions (occluded, 
missing or ambiguous boundaries)? 

• Editing: How to provide the possibility to infuence the cre-
ation of 3D geometry in an intuitive manner? 

https://orcid.org/0009-0005-8326-5454
https://orcid.org/0009-0003-8814-7137
https://orcid.org/0000-0002-7554-3291
https://orcid.org/0000-0003-4153-065X
https://orcid.org/0000-0003-0182-977X
https://orcid.org/0000-0002-5495-6441
www.pixabay.com
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3706598.3713439
https://doi.org/10.1145/3706598.3713439
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3706598.3713439&domain=pdf&date_stamp=2025-04-25


CHI ’25, April 26–May 01, 2025, Yokohama, Japan A. Thiault, T. Philippe, A.D. Parakkat, E. Eisemann, R. Muthuganapathy, T. Igarashi 

Figure 2: Comparison with the state-of-the-art method (3-sweep [10]). 3-sweep tends to fail on shapes with ambiguous edges, 
such as this mug with a jagged shape profle (b), requiring the user to edit the input image extensively (c). In contrast, our 
method based on a spine-rib representation (e) is more robust and generates a more plausible and smoother shape (f, g) 

To address region selection, we present a novel distance function 
to create a hull. The user provides a scribble (spine), for which we 
generate a set of outgoing edges around it (ribs), which, together 
with user-defned cross sections, results in a 3D representation, con-
ceptually similar to an endoskeleton. All annotations can be loose 
as SpineLoft automatically optimizes them following the image con-
tent. To achieve robustness, we rely on a rib length optimization to 
handle partial occlusion or noisy boundaries, which are especially 
common in hand-drawn content and photographs. Specifcally, our 
procedure follows an optimization that targets a smooth variation 
of the ribs while trying to respect the region boundaries from the 
image. 

To address editing, we do allow user interaction to change the 
rib length (either individually or as a group). Similarly, SpineLoft 
supports user-defned cross sections (either drawn or selected from 
a predefned set), which help infuence the volumetric aspect of an 
object inspired by traditional "lofting" techniques. Finally, we enable 
spine deformations to ease the composition of diferent elements; 
an existing spine-rib representation can be copied to a new spine. 
This action can also be used to drive animations. 

The main objective of SpineLoft is to aid novice users who are 
new to 3D modeling. Traditional 3D modeling systems based on 
polygonal modeling (i.e., as used in the popular software Blender) 
require users to interact with a 3D scene and to understand the un-
derlying 3D shape representation (polygons), which is challenging 
for novices. In SpineLoft, we aim to alleviate these difculties by 
enabling users to create 3D models with simple 2D interactions that 
are quick to perform. From these simple 2D interactions, we create 
a spine-rib system that helps bootstrap the creation process yet re-
tains editability over the fnal 3D shape. While the focus of SpineLoft 
is to encourage creativity and exploration among novice users, it 
can also be used by advanced users. It can serve for rapid proto-
typing before refning the results further in advanced modeling 
software. In summary, our work makes the following contributions: 

• A novel explicit �2 distance function to compute non-
intersecting gradient lines from a user-drawn spine. This 
explicit computation is both easy to implement and efcient, 
making it readily reusable for various interactive tasks, of-
fering advantages over the widely used Euclidean distance 
function. 

• A region extraction algorithm relying on user annotations, 
which can address noisy or missing edges in the input, mak-

ing it useful in creating interactive image cut-out tools simi-

lar to Lazy Snapping [35]. 
• A related lofting method built on a rib length optimization 
to quickly create 3D shapes from erroneous images. 

• An interface to defne/interact with the spine-rib representa-
tion (a novel representation for 3D modeling), handling dis-
crepancies, like occlusion/noise/missing data, with respect 
to the reference image. Additionally, it prioritizes editability, 
recognizing that novice users are more likely to make errors. 

2 Related Works 
The related work for SpineLoft can be classifed into two categories: 
Sketch-based 3D modeling and Playful Interfaces. 
Sketch-based 3D modeling: Sketch-based 3D modeling literature 
is too vast to cover completely in this paper, which is why we restrict 
ourselves to the most-related solutions and refer the interested 
reader to various existing surveys [5, 6, 31, 41, 62]. 

Teddy [23] is a seminal system where a fxed input boundary 
is infated to create a 3D shape. The method can be extended to 
support general input images [8], relighting [43] and animation [7]. 
The latter papers, RigMesh [7] and MonsterMash [16], generate 
3D models by assembling parts created in a single-view model-

ing interface. While these two approaches rely on circular cross-
sections, NaturaSketch [40] proposes a simple infation mechanism 
that involves a user-defned distance function to modify the object’s 
cross-section. Andre et al.[1] use a user-drawn boundary stroke and 
scaling factor to defne a sweeping surface. Yet, the input has to be 
drawn from a fxed viewpoint - making it difcult for novice users. 
Peng et al. [45] introduced a sculpting-based system with a focus 
on animation, but it is mainly useful for repetitive spatiotemporal 
tasks. 

CreatureShop [61] allows users to defne regions in an input 
image but uses simple infation. Bernhardt et al. [2] use painted 2D 
regions in an implicit-based 3D modeling approach, giving control 
over the blending, depth, and thickness. 

Gingold et al. [19] used a generalized cylinder ftting based on 
user annotations to create the desired model. Shtof et al. [51] in-
troduced an interactive geometric snapping tool relying on a sim-

ple drag-and-drop modeling interface. 3-Sweep [10] extends the 
method to extract and manipulate objects in a single photograph. 
While being an inspiration, 3-Sweep is limited with respect to edits 
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Figure 3: Comparison of the �∞ and �2 gradient lines asso-
ciated with a spine represented in dark blue. Isolines show 
equal distance values. �2 results in more smoothness and 
avoids merges inside concavities. Whereas, the �∞ function 
leads to singular gradients at some points in space and thus 
would yield intersecting ribs. 

and control over cross-sections. Further, the efect of occlusions 
or missing edges can lead to undesired artifacts (Figure 2). It is 
worth noting that these methods often rely on a Euclidean distance 
function, which, as explained in Section 3.1, might not always give 
the desired results. 

Some solutions are less general, requiring 3D skeletons [3], or 
focusing on particular content, like garments [18, 48], or trees [11], 
animals in a side view [17], or animal heads [37]. Other similar 
works that are worth mentioning include the use of 3D scafolds 
[25, 26] and reference RGB-D images [34] to create 3D models, but 
are typically targeting expert users, take much time and efort, or 
are designed only for initial prototyping. 

Deep learning has had a major impact on 2D-to-3D modeling 
tasks. Including sketch-based retrieval [59], single-view automatic 
3D modeling [21], single-view interactive 3D modeling [32], normal 
estimation techniques [22] and multi-view modeling [15]. However, 
user control and related editing are limited for these cases. 

Mesh deformation is a well-studied topic in 2D [9] and 3D [24], 
including advanced deformation techniques using multistroke con-
tour drawings [28] or pose/gesture drawings [4, 20]. Nevertheless, 
few of these techniques are integrated directly into the creation 
process, which is crucial for prototypical modeling as targeted in 
this work. 

Diferent from traditional interactive modeling techniques [16, 
19, 40, 61], which take images as a reference over which the user has 
to trace the desired shape (a time-consuming task), our objective 
is to utilise cues extracted from the input photograph (from the 
wild) to ease the modeling process. Further, it is worth mentioning 
that though sketches act as an intuitive and simple medium for 
3D modeling, it is not restricted to these alone. Many systems 
combine user inputs with computer-vision techniques to create 3D 
models from various sources, such as multi-view stereo [46], multi-

view images [60], unordered photo collections [53] and videos [57]. 
Another important direction involves using geometric constraints 
[36] or interactive sculpting [14, 54] to iteratively refne a basic 
shape into the desired 3D model. 
Playful Interfaces: Thanks to the tools that enhance user en-
gagement and enjoyment in a playful exploratory manner [47], the 
concept of "Playful Interfaces" has gained attention in HCI research. 
Not only are such interfaces accessible to novice users (including 
children),but they also improve user experience by providing an ap-
pealing and intuitive interaction. While the literature has explored 

Figure 4: Result of Segment Anything Model (SAM) [27] on 
the image shown in Figure 2. (a) The automatic segmentation 
and (b-e) diferent steps of interactive segmentation. 

such interfaces for a variety of tasks, such as creative design [30], 
sketch processing [42], color interaction [52], and programming 
[38], their application in the context of sketch-based modeling for 
novice users remains a promising direction. Such playful inter-
faces can lower the entry barrier for 3D modeling, making it more 
enjoyable and less intimidating while potentially increasing user 
motivation, encouraging experimentation and, ultimately, leading 
to improved learning outcomes. In contrast to works in this direc-
tion [23], our main objective is to further simplify the modeling 
process by providing users with the support to draw inspiration 
from existing images/photographs. It is worth noting that these 
images/photographs serve only as references while giving complete 
creative freedom to the user. They are supported in conceptualiz-
ing their ideas while being encouraged to explore and experiment 
(please refer to Section 4). 

3 Spine-rib based modeling 

3.1 Design Rationale 
Inspired by skeletal systems widely seen in many organic shapes, 
we adopt such a structure for our intuitive approach to sketch-
based 3D modeling. Our spine-rib system allows users to easily 
conceptualize 3D shapes by focusing on a central axis (spine) and 
its associated cross-sections (ribs). The simplicity of this represen-
tation makes it accessible to novice users with little to no modeling 
experience, enabling them to create 3D models with minimal input. 
The modeling process starts with the user drawing an approximate 
spine of the object to be modeled (an easy task to do, thanks to 
the fexibility to draw imprecise spines and the natural ability of 
users to infer spines). Once the spine is drawn, the system can then 
compute the corresponding ribs - automating a signifcant portion 
of the modeling process. 

Though ribs can be imagined as line segments orthogonal to 
the spines, automatically computing them is not trivial. The simple 
solution for computing ribs would be to follow the gradient of 
a simple Euclidean distance function, which, while intuitive, is 
not diferentiable everywhere (because the function min is not). 
Its gradient discontinuities correspond to the local maxima of the 
distance function. Consequently, multiple points that follow the 
gradient from diferent starting positions can converge to the same 
discontinuity, causing intersections (as shown in Figure 3). Yet, 
more complex distance functions based on heat equations, while 
avoiding intersections, can be computationally expensive. 

To address these challenges, we introduce a �2 function that is 
diferentiable and has continuous gradients to provide a smoother 
and more stable gradient feld. Using our �2 distance function w.r.t. 
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the user-drawn spine, we can defne ribs as the two points ascend-
ing the gradient that will follow parallel paths when approaching 
each other, preventing intersections. This function allows for the 
automatic computing of non-intersecting ribs, making the model-

ing process more accessible and less error-prone for novice users. 
During modeling, these ribs can then act as a guide for a lofting 
surface. As the ribs are just lines projecting out of the spine, we de-
termine endpoints based on their intersection with reference image 
edges. However, due to occlusions or variations in image intensity, 
accurately identifying correct rib endpoints can be challenging. 
Even powerful segmentation tools like SAM (Segment Anything 
Model) [27] may struggle to consistently and precisely identify the 
required boundaries, as shown in Figure 4. 

To overcome these challenges posed by the inconsistencies in 
the input reference image, we implement a rib length optimization 
technique to eliminate noisy or erratic ribs. As a consequence, we 
can reduce the need for manual corrections and create a cleaner 
and more coherent 3D model. Nevertheless, we also provide an 
interactive rib editing functionality where the users can click and 
drag individual ribs or edit multiple ribs simultaneously to provide 
fexibility. With this balance of an automatic approach and inter-
active editing, we ensure that the fnal 3D model aligns with the 
user’s intentions. 

3.2 Overview 
The overview of SpineLoft is illustrated in Figure 1. The user selects 
an input image, which can be photos, illustrations, or sketches. 
Then, a region of interest, which is to be converted, is selected by 
having the user draw a scribble (referred to as spine - in the spirit 
of curvy skeletons [3]) along the region. From the spine, outgoing 
edges (referred to as ribs) are generated that respect the boundary 
of the region but can be user-adjusted. From this input, the method 
follows a lofting procedure to derive a corresponding 3D shape of 
the modeled part. 

SpineLoft has been built with ease of use in mind. Therefore, we 
need to robustly process the image input, handling missing edges 
or noise. Further, imperfect user input will be common and should 
still lead to a successful lofting process, which requires the spine to 
be adapted and the generated ribs to be constructed carefully. 

In the following, we will describe the steps of our solution in 
detail. We frst explain how to produce ribs in an iterative process. 
We take steps from the spine along a suitable path (Sec. 3.3.1) until 
reaching a region boundary, as indicated by an edge detector. To 
handle occlusions and imperfections in the input image, we rely 
on a rib length optimization procedure (Sec. 3.3.2). To allow for 
larger expressiveness, the user can also interact with the resulting 
rib-spine system (Sec. 4). Finally, the original spine is improved 
based on the computed extent of the ribs, and a fnal 3D shape is 
generated. The latter is obtained by weaving a cross-section along 
the spine, following its orientation and using the ribs to determine 
the scale (Sec. 3.4). 

3.3 Technical details 
3.3.1 Generating Ribs. The rib construction starts with the user 
drawing an initial spine on top of the reference image (without 
self-intersections or loops, and approximately going through the 

center of the required region). The spine consists of points that are 
defned by 2D-pixel coordinates along the curve. Yet, it would be 
insufcient to simply extend the ribs orthogonally outward from 
these spine points, as it could lead to intersections that will not 
result in a valid lofted geometry. 

Instead, we ofset these � spine points only by a value of � in 
both normal directions (for our experiments, � is set to half the 
minimum distance between two consecutive spine points), which 
allows us to construct a hull �0 composed of 2 ∗ � points around 
the spine (the blue polygon in the center of Figure 3). To avoid rib 
crossings, we will defne a distance function to �0 in image space. 
The gradient of this distance function will be used to drive the rib 
generation (where each ‘rib’ is associated with a single distance 
value). Starting from the hull �0, we iteratively follow the gradient, 
using an Euler method with an adaptive step size depending on 
the gradient’s magnitude. This trajectory will defne gradient curve. 
Naturally, following the gradient will avoid rib intersections and 
make them initially orthogonal to �0’s boundary. 

Unfortunately, using a standard distance function between a 
point � and surface � [44], defned as: 

� (�, �) = inf |� − � |
� ∈� 

where � represents points on � , does not provide an explicit so-
lution in 2D. Related alternatives [58] typically result in coarse 
distance approximations, which leads to a signifcant loss of small-

scale spine features. Instead, we defne a natural generalized dis-
tance function between a point � and a polygon � , consisting of Í� −1
vertices �0 to �� −1, with perimeter � = ∥��+1 − �� ∥.�=0 

The distance function of degree � between � and � is then defned 
as an integral on the contour of � [44]: 

�∫ �−1/� 

�� (�, �) = �1/� ∥� − �∥−� �� 
� 

which when � = 2, evaluates to: �∫ �−1/2√ 
�2 (�, �) = � ∥� − �∥−2 �� 

� 

Diferent from Peng et al. [44], which used a �3 function (in a 3D 
confguration), we use � = 2, as it results in an explicit formulation 
while yielding good results and being efcient/easy to use. 

In this section, we explain the discrete formulation of our �2 
function, and we redirect the reader to Appendix A for the complete 
derivation. When the user draws a spine, we consider it a polyline 
with an ordered set of points �� , with � ranging from 0 to �. We 
aim to compute the �2 distance between a point � and the curve 
(user-drawn spine). Due to the discrete nature of the curve, we use 
a discrete sum: 

√ √ 
� � 

�2 (�) = √∫ = √Í�−1 
Curve ∥� − �∥−2 ��. �=0 ��� [�� ,��+1 ] 
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Figure 5: Distance functions computed using (a) convolution, 
(b) heat difusion (with a grid size of 300x300 and a difu-
sion time of 20000) and (c) our �2 function - computed in 
0.0046s, 75.0918s, and 9.3727s respectively. Note the sharp 
convergence of hulls in the result of convolution, making it 
undesirable for our application. In comparison, heat kernel 
and our �2 function give smooth hulls, but the computation 
of hulls using heat kernel is comparatively costly. 

where for each segment:∫ ��+1 

��� [�� ,��+1 ] = ∥� − �∥−2 �� ∫ 
�� 

� 
= ∥�0 − ��1 ∥−2 �� after integrating by substitution 

0 

(�0 and �1 are calculated from �� and ��+1) 

= � (�,� , segment i) − � (�, 0, segment i) 

� (�, �, segment i) is the primitive of ∥�0 − ��1 ∥−2 
with respect to t, 

and T is the length of the segment. 
When integrating, ∥�0 − ��1 ∥ is the Euclidean distance between 

� and the point � along the segment. We rewrite ∥�0 − ��1 ∥2 
as a 

quadratic function: 

∥�0 − ��1 ∥2 = �2 + 2�� (�) + � (�)
which simplifes the integral calculation. 

Expressing it as (� + � (�))2 + � (�) (with � (�) > 0), we can easily 
fnd the primitive of 1 

and compute the integral. We (�+� (� ) )2+� (� )
denote this primitive by � . 

Since the integral is linear, the integral of ∥� − �∥−2 
over the 

broken line is the sum of the integrals over each segment:∫ ∑ 
∥�−�∥−2 = (� (�,� , segment �) − � (�, 0, segment �)) . 

broken line � 

Thus, the fnal expression for the function �2 of a segment is: 
√ 
� 

�2 = √Í . 
� (� (�,� , segment �) − � (�, 0, segment �))

Using the linearity of the sum operator and applying the gradient 
operator, we get the gradient of function �2: 

√ Í 
� (∇� (�,� , segment �) − ∇� (�, 0, segment �)) ∇�2 = − � · Í

2 ( � � (�,� , segment �) − � (�, 0, segment �))3/2 

Figure 5 shows the hulls created using convolution surfaces [50] 
and the heat equation [12] on a polyline with 2000 vertices. Though 
much faster, with a running time of 0.0046 seconds, the convolution-
based approach could not capture important features of the input 
curve. The solution using heat difusion could satisfactorily capture 

Figure 6: An illustration showing our �2 function used for 
sketch stroke infation. 

the important features, but it took around 75.0918 seconds to com-

pute. Moreover, the precision of heat difusion heavily depends on 
the grid size, difusion time, and chosen time step. With our explicit 
solution, we could get similar but precise results in 9.3727 seconds. 
Also, compared to the heat difusion, our �2 function is simpler 
and more efcient as it provides a closed-form expression for both 
the distance and its gradient at any given point; the heat difusion 
requires running a simulation for every point on the grid, for a the-
oretically indefnite amount of steps. In contrast, our method does 
not require a discrete domain defnition. Finally, the calculation 
of the �2 distance and gradient is solely dependent (and linearly 
so) on the number of sections in the shape, making it especially 
well-suited for our application involving strokes and polylines. 

Another alternative would be to work with kernel-based meth-

ods, but truncated kernels with a small time step cannot evaluate 
gradients far of the spine. However, large kernels require the use of 
an FFT to remain efcient, which has higher theoretical complexity. 
In addition, it is unclear whether kernels provide stable estimates 
for the gradient everywhere. For example, when a spine gets close 
to itself, a large time step might fuse structures numerically. 

The versatility of the proposed explicit �2 function extends be-
yond its immediate application in 3D modeling. For example, this 
�2 function can be used in applications such as computing curve 
ofsets [56], rasterization [33], animation [13], and vector art [39]. 
Figure 6 illustrates the result of a prototype that uses our �2 function 
to infate hand-drawn strokes. As can be seen, while the thickness 
increased, the sketch grew without merging nearby features. In ad-
dition, it is worth noting that the �2 function possesses an important 
property that allows for incremental updates when a segment of 
the spine is moved, making it particularly useful for 2D animation 
applications. 

3.3.2 Rib length Optimization. The previous section described how 
ribs grow following a gradient. We perform this iterative process 
and stop when an edge in the input image is reached. These edges 
stem from a Canny edge detector. Using all ribs directly might result 
in incorrect shapes due to edges generated by unwanted occlusions 
or noise in the input. To make the process more robust, we employ a 
rib length optimization algorithm, relying on symmetry constraints 
and edge information available on either side of the user-drawn 
spine as outlined in Algorithm 1. 

The algorithm selects a set of ribs with a minimal penalty (de-
fned below), and its endpoints are then interpolated to produce 
ribs for gradient curves that were not selected. In case the candi-
date list is empty, we would have to restart the function with an 
increased maximum distance ���� . In practice, the algorithm can 
be implemented without a candidate list but by tracking a mini-

mum. Similarly, sorting the ribs by length would make the selection 
according to ���� very simple. 
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Algorithm 1 Rib Length Optimization Algorithm 

1: procedure RibLengthOptimize(Ribs R, ���� ) 
2: ���������� = ∅ 
3: for 100 iterations do 
4: Let random �� ⊂ � with ∀� in �� : �����ℎ(� ) < ���� 
5: for � ∈ {� − �� } with �����ℎ(�) < ���� do 
6: if Penalty(�� ∪ {�}) < 1.0 then 
7: �� ∪ {�}
8: if ���� (�� )> Threshold then 
9: Candidates = ���������� ∪ �� 

10: for � ∈ ��������� do 
11: c = completeViaInterpolation(c) 

return ������� ∈���������� Penalty(c) 

Figure 7: Superposition of the gradient curves of a user-drawn 
spine and the blurred detected edges used to evaluate the 
proximity of a point to a detected edge. Intersections are 
highlighted in red. The algorithm tries to choose as many 
points as possible in these red areas while satisfying other 
smoothness constraints. 

Penalty Energy. We defne the penalty energy as the simple sum 
of three terms: 

• Distance Penalty: This penalty ensures that the rib endpoints 
stay close to the image edges. To compute this, we frst blur 
the Canny edge image with a normalized box flter (kernel 
size: 1% of the image width - resulting in a fgure similar to 
Figure 7). Depending on the pixel color � at the endpoint of 
the rib, we defne the distance penalty as 0 if the pixel color 
is between 200 and 255 (close to the edges), or 1 − �/200 
otherwise (pixel far from the edges). 

• Neighbor Penalty: This penalty ensures that neighboring 
ribs have a similar length (distance to the spine) - or in 
other words, maintains consistency between adjacent ribs. 
Let the ribs be separated by distance � on the hull �0, 
for corresponding steps �1 and �2 along the ribs, while 
following the gradient, the penalty energy is defned as 
3×��� (0, |�2 (�1)−�2 (�2) |/� −1/4). This penalizes large dif-
ferences in rib lengths relative to their separation, ensuring 
smooth transitions between neighboring ribs. 

• Opposite Penalty: This penalty ensures that the ribs have their 
respective step points located at similar distances w.r.t. the 
spine (trying to maintain symmetry). Given the associated 
points �1 and �2 from the stepping points on both sides of 
the spine, the penalty energy is defned as 0.25 × |�2 (�1) − 
�2 (�2) |/�2 (�1). 
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Figure 8: Efect of diferent terms in the penalty energy. (a) 
User-drawn spine (in red color - please note that this is the 
only user interaction in this example), (b) Penalty energy 
with only distance to edge, (c) with distance to edge and sim-
ilarity to previous rib, (d) with distance to edge, similarities 
to previous and next ribs, (e) with all our penalty criteria 
(Image courtesy: PixaBay). 

In case no direct neighboring or opposite ribs exist, we inter-
polate �2 from the nearest already added neighboring ribs. The 
trade-of between these penalty measures was empirically chosen. 
The efect of the penalty criteria are shown in Figure 8. As can be 
seen, the rib-length optimization on distance criteria alone resulted 
in ribs that are jutting out of shape on one side (Figure 8(b)), as 
the algorithm tried to fnd a smooth solution where edges were 
missing (joint between the hind leg and tail). Having constraints 
on neighboring ribs leads to stretched or contracted ribs (Figure 
8(c-d)). Once we used all the penalty criteria, as demonstrated in 
Figure 8(e), we could get the desired rib structure. 

The result of using this rib optimization can be seen in Figure 
9. It can handle not only missing edges but also noisy boundaries 
(typical when the user chooses the edge detection option over a 
natural image). The efciency of our rib length optimization on 
a sample input is shown in Figure 10. Our solution automatically 
generated a decent set of ribs despite the presence of noise and 
missing data near and around the beak. Even if the automatically 
computed ribs do not match the user’s expectations, they can be 
easily edited, as explained next. Figure 10(f-g) shows a result after 
rib adjustment. 

3.4 Lofting 
The fnal step of conversion transforms the rib-spine combination 
into a 3D mesh based on a provided cross-section. The cross-section 
can be chosen from a predefned set (containing simple shapes, such 
as circles, rectangles, triangles, etc.) or sketched out by the user. 

Once a cross-section is provided, the spine is frst centered by 
taking the midpoint along opposing ribs. The center of the cross-
section is then aligned with this midpoint (Figure 11) and scaled to 
match the length of the ribs. Consequently, the shape’s borders will 
coincide with the rib endpoints and, thus, with the edges detected 
in the input image. The cross-section is then rotated and connected 
with the cross-sections corresponding to the neighboring ribs. If 
there is no neighbor, we triangulate the interior of the cross-section 
to create a closed shape. Because the distance function is smooth 
and the spine is centred with respect to the ribs, robustness is 
increased, and a certain imprecision in the user annotations is 
acceptable (see Figure 12). 

The process is very fast and fuid in terms of interaction, as the 
mesh is generated swiftly. Upon sweeping the spine, each pair of 
ribs adds a new boundary piece to the 3D shape until it is complete. 
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Figure 9: Efect of our rib length optimization. (a) User-drawn spine (in red color) (b) Spine-rib system automatically generated 
using our system without rib length optimization, (c-d) Corresponding 3D model, (e) Spine-rib system automatically generated 
using our system with rib length optimization, (f-g) Corresponding 3D model. 

4 User Interaction 
The main interactions made available by our system, as demon-

strated in Figure 13, include: 

• Rib editing: The presence of large occlusions or noise typi-
cally ends up in ribs that do not match the user’s expectation, 

Figure 10: Efect of rib length optimization on input with 
noisy edges. (a) Input image, (b) Result of Canny edge detec-
tion, (c) User drawn spine (in red color), (d) Spine-rib system 
generated using our method, (e) Spine-rib system after edit-
ing, (f-g) Final 3D model generated by our method. 

Figure 11: User-drawn spine (a), spine rearranged after com-
puting ribs (b), and corresponding 3D model (c-d). 

Figure 12: Top: User-drawn approximate spines, Bottom: Ribs 
and updated spines computed by our system. The original 
image is taken from PixaBay. 

or sometimes the user uses the photograph just as a guide 
and has to locally update the shape. In such cases, our inter-
face allows the users to directly manipulate the rib endpoints 
in two ways: either by simply dragging and dropping a rib 
endpoint or by drawing strokes - to which the nearby ribs 
will grow or shrink, thus, adjusting their lengths. 

• Spine reposing: The operation that allows the reorientation 
of a spine (e.g., to match a part to the rest of a created object). 
Here, the user selects a spine and draws a new stroke to 
which the spine is aligned. Specifcally, the user-drawn stroke 
will be considered a new spine, but instead of computing 
gradient-edge intersections and then applying the rib-length 
optimization, we copy the ribs from the original reference 
spine, scaled by the relative stroke length. 

• Cross-section editing: During the lofting phase, our interface 
provides a dictionary of common cross-section shapes. In 
addition, a user can sketch and defne custom cross-sections. 

The supplementary video provides a demonstration of these 
interactions in use. 

5 Results and Discussion 
Several results generated with SpineLoft using sketches (taken 
as bitmaps) and photographs as reference images can be seen in 
Figures 14 and 15. In several examples, object parts are generated 
and composited (Figure 16) using several spines to defne parts, 
and defning appropriate cross-sections enables the creation of 
complex objects. It has to be noted that SpineLoft supports shapes, 
which do not lend themselves well to infation or approximation 
by generalized cylinders. Please note that the results can be further 
smoothed as post-processing. 

5.1 Comparison of Functionalities 
In this section, we compare various key features of SpineLoft to 
existing work and summarize the fndings in Table 1. 

• Type of input - Are general images supported as input? Many 
sketch-based modeling methods, e.g., [1], [23], [7], [51], re-
quire an input sketch, whereas, SpineLoft uses images as 
input. 

• Ability to select parts - Can a user pick and selectively model 
parts of an object? Infation-based methods such as Ink-and-
Ray [55] and NaturaSketch [40] infate complete boundaries 
and lack a clear part defnition. CreatureShop [61] and Andre 
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Figure 13: Spine reposing and rib deformation operations. (a) User-drawn spine in red color, (b) Corresponding 3D model, (c) 
New user-drawn stroke in red color for reposing, (d) Resulting reposed 3D model, (e) User-drawn stroke in green color for 
deforming spines, (f) Resulting 3D model. 

Figure 14: Various results generated by our interface on sketch inputs. Each tuple shows the input sketch (along with the 
spine-rib systems) and the resulting models. 

Figure 15: Various results generated by our interface on image inputs. Each tuple shows the input image and the resulting model 
overlayed on the appropriate part of the image. To illustrate the fexibility of our approach, we used low-polygon cross-sections. 
Images are taken from PixaBay. 
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Figure 16: Models generated by combining multiple spine-rib 
systems and appropriate cross-sections 

et al. [1] also require the user to defne required boundaries 
explicitly. In contrast, SpineLoft provides the freedom to 
select the required parts alone. 

• Editable - Is the resulting shape directly editable? Only 
RigMesh [7], MonsterMash [16], and Ours have this func-
tionality. RigMesh enables modifying a 3D pose, which is 
somewhat refected by our method’s spine reposing. In ad-
dition, we support local edits like MonsterMash. Thanks to 
the spine-rib system, the results of SpineLoft can be easily 
edited. 

• Arbitrary cross-section - What cross-sections can be used? 
Many existing methods use circular infation, which results 
in blobby shapes. NaturaSketch and 3-Sweep [10] defne a 
particular and limited set of cross-section choices. Andre et 
al. [1] uses arbitrary cross-sections but requires them to be 
drawn from a fxed viewpoint. SpineLoft enables arbitrary 
cross-sections. 

• Requires a clean boundary - Can noise and missing edges 
be handled? 3-Sweep handles some small degree of miss-

ing/noisy boundaries but fails for larger occlusions and inac-
curacies. Thanks to the rib length optimization algorithm, 
qualitative comparisons indicate that SpineLoft is more ro-
bust (see Figure 17). 

• Riggable representation - Can the result be rigged? Though 
not made explicit, some methods could be similarly suited 
as ours, such as 3-Sweep, Gingold et al. [19], and a modifed 
MonsterMash in the spirit of RigMesh. 

• Precise input - How precise do user annotations have to 
be? Precise input is time-consuming and requires careful 
interaction. The use of the smooth distance function and the 
centering of the spine enables a degree of inaccuracy in the 
user scribbles. It has to be noted that this functionality is 
unique to SpineLoft. 

5.2 Comparison of Results 
We compared our results with those generated by 3-Sweep [10] 
and two variants of SpineLoft: Case 1 (with the �∞ function and 
without rib editing) and Case 2 (with the �2 function, without rib 
length optimization, and without rib editing), and are shown in 
Figure 17. We concentrate our comparison on 3-Sweep because it 
is the only method, like ours, that uses an image as input and is 
based on a spine-like stroke. For a more detailed comparison with 
other sketch-based modeling tools, please refer to the Appendix B. 

The 3-Sweep method employs a sweeping technique that can 
handle minimal inconsistencies in the input image/sketch. However, 
it is difcult to control the sweeping when there is bending in the 

sweeping profle (as seen with the banana shape in Figure 17). Addi-
tionally, signifcantly missing edges present further difculties (for 
example, the copter in Figure 17), and non-circular cross-sections 
often result in undesirable results (for a fair comparison, we used 
circular profles for most examples). In comparison with our easily 
editable spine-rib system, the 3-Sweep method ofers more limited 
editing capabilities for the extracted 3D objects. It should be noted 
that compared to our solution, 3-Sweep can better handle open 
boundaries in sketches, as demonstrated in Figure 18. 

In contrast, using the �∞ function resulted in self-intersecting 
meshes (evident in the blobby shape and banana examples in Figure 
17), while the �2 function without rib length optimization and rib 
editing produced erroneous shape boundaries (as seen in the jar 
and copter examples in Figure 17). 

5.3 Limitations 
While the SpineLoft is efective in easily creating a variety of shapes, 
it lacks the fexibility to model complex geometries. These limita-

tions arise mainly due to the fact that SpineLoft essentially creates a 
loft surface along a single 2D spine with orthogonal ribs. As shown 
in Figure 19, some shapes that it cannot create include : 

1. Multi-curvature surfaces - As SpineLoft computes ribs as line 
segments orthogonal to the spine, it cannot represent sur-
faces with complex curvatures in multiple directions, such 
as hyperbolic paraboloids (e.g., the shape shown in Figure 
19(a)), as this requires simultaneous positive and negative 
curvatures in diferent directions instead of simple orthogo-
nal ribs. 

2. Rotational interpolation - As the ribs are in 2D and are or-
thogonal to the spine, it cannot create twisted structures 
like pasta shapes (e.g. the shape shown in Figure 19(b)). Gen-
erating such a shape with high torsion or non-linear twist 
would require ribs to rotate along the spine and, hence, re-
quire complex interactions and expertise, which our current 
system does not support. 

3. Non-uniformly scaled objects - As in other sweeping-based 
interfaces (e.g., 3-sweep [10]), our method is not designed for 
non-uniform scaling along the spine. Though SpineLoft al-
lows varying rib sizes along the spine, complex non-uniform 
scaling operations cannot be performed using the current 
interface, making it difcult to model objects like toothpaste 
shown in Figure 19(c) - whose cross-section transforms from 
a circle to an ellipse along the spine. 

4. Shapes with non-planar spines - To make the interactions 
accessible to novice users, we assume that the spines are 
in 2D, making it difcult to generate 3D shapes like helical 
structures (for e.g. the shape shown in Figure 19(d)) which 
requires a 3D spine. 

In addition to the shapes it can generate, our current interface 
implementation has two minor shortcomings: it trims the user-
drawn scribbles on both ends while computing normals, which 
leads to users drawing scribbles slightly longer than needed. In 
addition, we do not add caps to the generated objects (Figure 3). 
One could always close the shapes by trimming the appropriate 
ribs if desired. 



CHI ’25, April 26–May 01, 2025, Yokohama, Japan A. Thiault, T. Philippe, A.D. Parakkat, E. Eisemann, R. Muthuganapathy, T. Igarashi 

Method 
Properties 

Image as 
input? 

Ability to 
select parts? Editable ? Arbitrary 

cross-section? 
Require a 

clean boundary? Riggable? Precise 
input? 

Teddy [23] No NA No No Yes No NA 
Gingold et al. [19] As Ref Yes No No NA Yes Yes 
Andre et al. [1] No Yes No Yes* Yes No Yes 
NaturaSketch [40] As Ref No No Yes* Yes No NA 
RigMesh [7] No NA Yes* No Yes Yes NA 
3-Sweep [10] Yes Yes No No Yes Yes Yes 
Snapping [51] No Yes No No Yes No Yes 
Ink-and-Ray [55] No No No No Yes No NA 
MonsterMash [16] As Ref NA Yes* No Yes Yes Yes 
CreatureShop[61] As Ref Yes No No Yes No Yes 
Ours Yes Yes Yes* Yes No Yes No 

Table 1: Comparison of diferent methods. Many works support images as a reference (marked as "As Ref"), but only 3-sweep 
and SpineLoft are designed to beneft algorithmically. Only our method is able to handle images with incomplete contours or 
occlusion (compare Figure 2). 

Input Sketch 3-Sweep
(without rib length optimization)

d2 function Our resultSpine-rib systemInput Sketch 3-Sweep Our result
(without rib length optimization)

d2 function Spine-rib system

Input Sketch 3-Sweep d2 function Our resultd∞ function Input Sketch 3-Sweep d∞ function Our resultSpine-rib system

Figure 17: Comparison of our method w.r.t. 3-Sweep, �∞ function and �2 function without rib length optimization. 

Input Sketch 3-Sweep (without rib length optimization)
d2 function

(with rib length optimization)
d2 function Spine-rib system

(after optimization and editing) Final 3D model

Figure 18: An example of a sketch drawn with open and mul-
tiple strokes where 3-sweep works better. (a) Input sketch, 
(b) Result of 3-sweep, (c) Our result without rib length op-
timization, (d) Our result with rib length optimization, (e) 
Spine-rib system after editing, (f) Our fnal result. 

5.4 Preliminary User Evaluation 
We conducted a user evaluation of SpineLoft through three distinct 
studies, each targeting diferent aspects of the system. The frst 

Figure 19: A few representative failure cases of our system. 
Our system cannot model (a) Saddle-shaped surface with 
double curvature, (b) Shapes with twisted/rotating profles, 
(c) Shapes with non-uniform scaling, and (d) Helical structure 
from a single sketch. 

study focused on novice users with little to no prior 3D model-

ing experience to evaluate the usability and intuitiveness of the 
interface. The objective was to measure the learning curve and 
initial user experience of novice users. The second study focused 
on obtaining in-depth feedback from experienced users about the 
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capabilities and limitations of the system compared to existing pro-
fessional 3D modeling tools. The third study focused on users with 
varying levels of modeling experience and was intended to explore 
the creative potential of the system. The details of the study are as 
follows: 
Novice user study: Ten participants aged between 12 (with par-
ent’s consent) and 43 with little to no prior experience in 3D model-

ing volunteered to try our system. The users were shown the video 
of our demo (as in the supplementary video) and were allowed to 
familiarize themselves with our system for 10-15 minutes. After 
this phase, they were asked to complete three tasks of increasing 
complexity: creating a cylinder (from a simple image of a rectangle), 
a bird neck (using the reference image shown in Figure 1) and then 
a mug from an image with occlusion (using the reference image 
shown in Figure 2). We measured the task completion times and 
conducted a post-study usability survey on 1-5-point Likert scale. 
The survey focused on various aspects of our system - task un-
derstanding, user-friendliness, feeling of control, task completion 
efciency, helpfulness of spine-rib system, intuitiveness of spine 
drawing, and satisfaction with the fnal 3D shape. 

The results of the survey were highly encouraging. The mean 
scores across all the usability metrics ranged from 4.0 to 4.5 (with 
an average magnitude of deviations from the mean: 0.4 to 0.64) 
- suggesting that our interface is intuitive and user-friendly for 
beginners. In addition to the usability metrics, we also included 
questions to understand the overall experience and intentions for 
future engagement. The questions were about the enjoyment of 
the user while using the system, future use for creative tasks, con-
fdence in using the system and the user’s willingness to create 
more models. The responses to these questions were also encour-
aging, with mean scores varying from 4.3 to 4.5 (with an average 
magnitude of deviations from the mean: 0.5 to 0.56). These high 
scores, especially for enjoyment and intention for future use, were 
particularly promising as they suggest that our system efectively 
engages novice users and develops their interest in 3D modeling 
activities. It is also worth noting that the average modeling time for 
cylinder, bird neck and mug were 67s, 71s, and 162s, respectively -
demonstrating the ability to quickly create 3D models. To gain a 
deep understanding of user perception, we also asked the partici-
pants two open-ended questions: "What did you like most about the 
system?" and "What further improvements would you suggest?". 
A thematic analysis of the answers to the question "What did you 
like most about the system?" reafrmed various strengths of our 
system: 

• Intuitiveness - users appreciated the ability to create 3D 
models from 2D images with simple inputs. 

• Editable ribs - the ability to manipulate ribs for fne-tuning 
3D shapes was frequently mentioned as a positive feature. 

• Ease of use for novice users - many participants, especially 
those doing 3D modeling for the frst time, found the system 
accessible and enjoyable. 

• Spine-rib metaphor - users found the spine drawing and rib 
editing metaphor intuitive and useful for creating 3D models. 

Participants also provided suggestions for future improvements, 
including the recommendation to add color-coded feedback for 
diferent modes (for example, a diferent color for ribs that will get 

afected while deforming ribs) and an improved rib computation to 
reduce the required edits and the time. 
Expert user study: To gain insights from an experienced user 
point of view, we asked four experts with over two years of 3D 
modeling experience to evaluate our system. They were shown 
the demo of our system and asked to model the faucet shown in 
Figure 16. In addition, in the second part, they were asked to edit the 
faucet to modify the shape as they wanted. The experts successfully 
recreated the model in less than 3 minutes and could easily modify it 
to match their imagination. Once satisfed with the modeling, they 
provided valuable qualitative feedback about the system. Thanks to 
the ability to model directly from a reference image and the easy-
to-edit spine-rib representation, all of them unanimously agreed 
that Spineloft would be a compelling alternative to their current 
preferred 3D modeling software - ranging from Blender to Autodesk 
Inventor. 

• The workfow in itself seems pretty innovative. It would 
be nice to use it for prototyping but not for very precise 
modeling. 

• It would be nice to have an automatic merging of individ-
ual parts and an option to edit the ribs long after its cre-
ation, whereas the current system, after creating a new spine, 
makes the previous 3D model uneditable. 

• It would be nice to have it as a plugin for some software, 
such as Blender, so that I can build over the prototypes I 
create. 

• Having an option to manually add or delete ribs would be 
benefcial (especially while using it for CAD modeling). 

Study exploring creative potential: Our third user study ex-
plored the creative potential of the system. To round up our model-

ing tool, we added simple infation tools - using Delaunay infation 
[43] - and planar-sheet extrusion to craft elements like spheres, 
antlers, and wings. The composition of all parts created is done via 
Meshmixer [49], which fuses the components. 

We tested SpineLoft with 12 users aged between 15 (with parent’s 
consent) to 46 years, of which only two had some prior modeling 
experience. We showed them the demo of our system and allowed 
them to explore it for 30 minutes. After that, we asked them to 
model some imaginary characters by mixing and matching parts 
from diferent images. Figure 20 shows a few models they created, 
and it took 10 to 20 minutes for them to create the complete model 
(including the time for spatial arrangement and web-searching for 
the appropriate images). After each modeling session, we collected 
feedback from the users about the overall modeling experience. The 
feedback was overall positive, and the obtained fast prototyping 
results illustrate the strength of our solution. Users mentioned 
that "it is easy and enjoyable" to work with the system and that 
"the entire process was a lot of fun". In several cases, especially 
the inexperienced users were surprised that they "had complete 
control" and "could do whatever I want". 

We also asked the users to rate the interface based on the over-
all experience and the fun they had during the modeling process, 
from Very bad to Excellent. All the users rated it as Very Good or 
Excellent and unanimously gave positive feedback, such as: "the 
entire process was a lot of fun, and we enjoyed it a lot". 
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Figure 20: Some imaginary characters modeled using our interface by novice users (without prior modeling or designing 
experience) during the user study in less than 20 minutes (including the time for searching and fnding appropriate images, 
drawing sketches wherever required, modeling parts using our interface and assembling them together). 

In conclusion, our user studies indicate that SpineLoft provides 
an intuitive framework for 3D modeling. The positive feedback 
across all three studies suggests that our approach has the potential 
to lower the entry barrier for 3D modeling, making it accessible 
and enjoyable for novice users. 

5.5 Future Work 
We envision future work in two primary directions. The frst fo-
cuses on improving the current user interface to provide an en-
riched set of modeling options - making SpineLoft more suitable 
for intermediate/expert-level users. This includes implementing 3D 
rotational interpolation for cross-sections, enabling the creation 
of 3D cross-sections to model complex surfaces, and developing a 
more sophisticated rib length optimization framework. In addition 
to this, the ability to model hollow objects, such as the interior 
of the mug shown in Figure 2, could be envisioned. As typically 
done in Constructive Solid Geometry (CSG) modeling, this could be 
easily done by adding a mesh diference operation, which subtracts 
one solid from another. 

The second direction involves extending the system into full 3D 
space. This includes developing a system similar to Skippy [29] 
to sketch 3D spines from a 2D view, facilitating the generation of 
complex 3D shapes like helices. This extension to 3D interactions 
would allow editing of spines, ribs, and cross-sections in 3D, making 
it possible to create a variety of shapes, including those with non-
uniform scaling profles. 

Additionally, developing a plugin of SpineLoft for established 
3D sculpting platforms like ZBrush or Blender would enable users 
to leverage SpineLoft for rapid abstract shape creation, which can 
then be refned using the advanced tools available in these sculpting 
systems - enhancing productivity for artists and designers in various 
felds. 

6 Conclusion 
We introduced a simple yet powerful, interactive spine-rib-based so-
lution, SpineLoft, allowing users to create 3D models from sketches 
or images rapidly. The proposed method uses a novel �2 function 
and a rib length optimization algorithm to create easily editable 
ribs from a user-drawn approximate spine. The proposed method is 
easy to use for novice users, as it does not require perfect precision. 
It helps develop rapid prototypes and base meshes (which can be 
refned further using specialized tools like Zbrush). The user study 
confrms that the proposed method is accessible even for frst-time 

users and enables them to generate complex models (which pre-
viously they never knew they could) in a fun and playful manner. 
Finally, our specialized distance function, which can be easily com-

puted in an explicit way, can open up avenues for applications 
beyond shape modeling, such as vectorization and animation. 
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A Detailed derivation of the �2 function 
We defne a natural generalized distance function between a point 
� and a polygon � , consisting of vertices �0 to �� −1, with perimeterÍ� −1� = ∥��+1 − �� ∥.�=0 

The distance function of degree � between � and � is then defned 
as an integral on the contour of � [44]: �∫ �−1/� 

�� (�, �) = �1/� ∥� − �∥−� �� . 
� 

When � = 2, it is evaluated as: �∫ �−1/2√ 
�2 (�, �) = � ∥� − �∥−2 �� . 

� 

Calculating the integral directly would be costly. Having con-
centrated on one line segment of the polygon at a time, we can 
rewrite ∫ ∫ 

∥� − �∥−2 ��as ∥� − �∥−2 �� 
� [��+1,�� ] ∫ � �∥��+1 −�� ∥ ��+1 − �� 

= ∥� − �� + � ∥−2 �� 
0 ∥��+1 − �� ∥ 

��+1 −�� 
Let � = ∥��+1 − �� ∥, �0 (�) = � − �� , and �1 = ∥��+1 −�� ∥ . The 

equation can be expressed as: ∫ � ∫ � � �−1 
∥�0 − ��1 ∥−2 �� = ∥�0 − ��1 ∥2 �� 

0 0 

With � = ∥�1 ∥2, � (�) = −2(�0 (�) ·�1), and � (�) = ∥�0 (�)∥2, the 
equation can be rearranged as: ∫ � 

(��2 + � (�) · � + � (�))−1 �� . 
0 

Note that the polynomial ��2 + �� + � is always greater than 0 
and thus can be written as: ∫ � � �−1 

�−1 (� + � (�))2 + �2 �� 
0 

� (� ) � (� )
with � (�) = and �2 (�) = − �2 (�). Finally,

2� � ∫ � � �−1 
�−1 (� + � (�))2 + �2 (�) �� 

0 

evaluates to: 

h i� −1 1 1 = −
� (� +� (� ) ) 

0 �·� (� ) � (� +� (� ) )h � �i� � � � 
1 � +� (� ) 1 � +� (� )

arctan = arctan − arctan �·� (� ) � (� ) �·� (� ) � (� ) 0 

It can be shown that (Pythagorean trigonometric identity) 

�2�2 = ∥�1 ∥2 ∥�0 ∥2 − (�0 · �1)2 = ∥�1 × �0∥2 

� 
� (� )
� (� ) 

Since � is supposed non zero (we exclude the case �� = ��+1 ), 
� (�) = 0 is true if and only if �0®�1 and �®0� are parallel, i.e. if � lies 
on the line formed by �� and ��+1. 

We then derive the gradient of this distance function, in respect 
to x. 
We defne � (�, �):  −1 � (� +� (� ) ) � � if � (�) = 0 
� (�, �) = 

1 � +� (� )
arctan �·� (� ) � (� ) 

with � (�) = � · �2 (�) and � (�, �)
for � (�) ≠ 0) 

Hence, we have: 

� 
�2 (�) = √ , ∇�2 (�) = −� 

� (�,� ) − � (�, 0) 2(� (�, dist) − � (�, 0))3/2 

Using the same notation, we can derive the gradients of the 
variables we use as: 

�0 (�) = � − �� ,so ∇�0 (�) = 1 

� (�) = −2(�0 (�) · �1 ,so ∇� (�) = −2(∇�0 (�) · �1) = −2�1 

� (�) = �0 (�) · �0 (�) ,so ∇� (�) = 2(�0 (�) · ∇�0 (�)) = 2�0 (�) 

� (�) �1
� (�) = ,so ∇� (�) = −

2� � 

� (�) = � (�) − ��2 (�), ,so ∇� (�) = ∇� (�) − 2�� (�)∇� (�) 
= 2�0 (�) + 2�1� (�) √ 

�(� + � (�)) �∇� (�) �(� + � (�))∇( �� (�))
� (�, �) = √ ,so ∇� (�, �) = √ − 

�� (�) �� (�) �� (�) 

Changing ∇� (�) and ∇� (�) by their expression, we get the fol-
lowing. 

�1 � (�, �)∇� (�)∇� (�, �) = − √ + 
�� (�) 2� (�)

In these calculations, � is the variable of the integrand and � is 
the position of the point on the image. 

With this, we can fnally derive the gradient of � (�, �). The case 
� (�) = 0 is quite easy, we fnd: 

−�1∇� (�, �) = if � (�) = 0 
(�(� + � (�)))2 

We now calculate ∇� (�, �) in the case � (�) ≠ 0. 
Let us defne � and � : 
if � (�) = 0 �� 

� (�, �) = arctan(� (�, � )) and � (�) = √ 
1 

if � (�) ≠ 0 �� (�)
We have the following: 

∇� (�, �) = � (�)∇� (�, �) + � (�, �)∇� (�)
With: 

∇� (�, �) �∇� (�)∇� (�, �) = and ∇� (�) = −
1 + � 2 (�, �) 2(�� (�))3/2 

arctan(� (�,� ) )
= √ if � (�) ≠ 0 

�� (� ) 
� (� +� (� ) )

= √ (� (�) is only defned 
�� (� ) 

∇� (�, dist) − ∇� (�, 0) 
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Figure 21: Comparison on a simple closed boundary (Top: Blobby shape) and a simple closed boundary with varying cross-
sections (Bottom: Banana) Left to Right: Input sketch, Outputs of Teddy [23], RigMesh [7], 3-Sweep [10], MonsterMash [16], 
CreatureShop [61], �∞ function, Our Spine-Rib system and the resulting 3D model 

Figure 22: Top to Bottom: Comparison on an occluded boundary (Cross shape), object with missing boundaries (Plane), Noisy data 
(Noisy Jar) and Image (Streetlight); Left to Right: Input sketch, Outputs of Teddy [23], RigMesh [7], 3-Sweep [10], MonsterMash 
[16], CreatureShop [61], �2 function without rib length optimization, Our Spine-Rib system and the resulting 3D model 
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• CreatureShop [61]: Following upon Teddy and RigMesh, it 

1 ∇� (�, � ) �∇� (�) arctan(� (�, �)) can actually handle images as inputs and relies on a Grabcut 
∇� (�, �) = √ 

�� (�) 1 + �2 (�, �)
− 

(2(�� (�)))3/2 algorithm while the user traces the required boundaries as 
in Teddy/RigMesh. Arbitrary cross-sections or local editing 

This gives us the fnal expression of ∇� (�, �): are not supported. 
• Our Method (Case 1): Our �2 function results in smooth sur-

−�1 faces (especially when the spine is bent), while a �∞ function, 
(� (� +� (� ) ) )2 if � (�) = 0 

which we implemented for comparison, does not result in a 
√ 1 ∇� (�,� ) 

� (�) ≠ 0
∇� (�, �) = 

  
− �∇� (� ) arctan(� (�,� ) )

(2(�� (� ) ) )3/2 if suitable output. The blobby and banana examples in Figure
1+�2 (�,� )�� (� ) 

21 show the results generated using the �∞ function. 
As a reminder, • Our Method (Case 2): Using �2, the importance of rib length 

∇� (�, dist) − ∇� (�, 0) optimization can be shown. To be fair, no edits were applied 

2(� (�, dist) − � (�, 0))3/2
∇�2 (�) = −� 

to the ribs. As can be seen in the cross, plane and noisy jar 
examples, the resulting ribs without rib length optimization 
extend to the region boundary (or hull in Figure 18), resultingB Comparison with other sketch-based 

modeling systems in distorted and unexpected shapes.

In this section, we compare our results with those generated by 
fve other methods (whose codes are available) and two variants of 
SpineLoft (Case 1: with �∞ function and without rib-editing, Case 2: 
with �2 function, without rib length optimization and without rib-
editing). It should be noted that only 3-sweep is designed to work 
similarly to SpineLoft by taking images and user-drawn spine-like 
structures as input. All other methods are sketch infation-based 
techniques that infate a user-drawn closed boundary with little to 
no control over the shape, as they are not designed to take editability 
into account. To help readers understand how our methods difer 
from other sketch-based modeling tools, we list the main diferences 
below. 

• Teddy [23]: Teddy uses a simple infation based on a con-
strained Delaunay triangulation. A drawback is the lack of 
support for image-based content. Instead, one needs to man-

ually draw closed outlines. The results are typically blobby 
shapes. Missing boundaries or noisy sketches are not sup-
ported. 

• RigMesh [7]: Similar to Teddy, RigMesh also creates blobby 
objects from user-drawn closed-curve sketches. It shares 
the drawbacks of Teddy, and complex curves with multiple 
branches do not lead to the desired result (compare plane 
in Figure 22). The same holds for the skeleton, which might 
difer from the expectations (noisy jar in Figure 22). 

• 3-Sweep [10]: It uses a sweeping methodology and can han-
dle minimal inconsistencies on the input image/sketch. Yet, 
it is difcult to control the sweep, especially when the pro-
fle requires bending (banana in Figure 21), and shape edits 
are locally not supported. Occlusion and missing edges also 
pose challenges, and non-circular cross-sections often lead 
to unwanted results (for a fair comparison, we used circular 
profles for most results). It should be noted that compared 
to our solution, 3-Sweep can handle open boundaries in 
sketches, as shown in Figure 18. 

• MonsterMash [16]: This approach uses blobby infation, re-
stricting the variety of possible results, but it does enable 
local boundary edits. Further, additional strokes can infu-
ence the infation process (e.g., noisy jar in Figure 22). Nev-
ertheless, it requires a closed boundary, making inputs, as in 
Figure 18, unsuitable. 


	Abstract
	1 Introduction
	2 Related Works
	3 Spine-rib based modeling
	3.1 Design Rationale
	3.2 Overview
	3.3 Technical details
	3.4 Lofting

	4 User Interaction
	5 Results and Discussion
	5.1 Comparison of Functionalities
	5.2 Comparison of Results
	5.3 Limitations
	5.4 Preliminary User Evaluation
	5.5 Future Work

	6 Conclusion
	Acknowledgments
	References
	A Detailed derivation of the d2 function
	B Comparison with other sketch-based modeling systems



