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Abstract

The introduction of Blockchain technology has led to
the idea of Decentralized Autonomous Organizations.
(DAOs). DAOs enable decentralized and transparent col-
lective wealth, allowing groups of individuals to pool their
funds for collective management. DAOs rely on complex
smart contracts to function. Despite Bitcoin being the most
popular Blockchain, its simple smart contracts make DAO
unfeasible. This thesis presents a DAO structure that ad-
dresses the challenge of DAOs on Bitcoin. The system uti-
lizes threshold signatures to allow anyone to create Bitcoin
wallets jointly controlled by a group. The system is imple-
mented as an Android application and relies on no central
party, allowing the system to be used by anyone worldwide.
Our experiments show that our system is practical for real-
world use for groups of 50 members. Joining an organiza-
tion in the system and creating a transaction to spend funds
can be done in under a minute. Further research is required
to determine how far the system can scale while being prac-
tical.

1 Introduction

In their simplest form, banks act as a middleman between
depositors and borrowers. They pool the deposits together
and give out personal and corporate loans taking profit by
charging a fee. In the years leading to the 2008 financial cri-
sis, banks invested in excessively risky loans using depos-
itors’ funds, requiring government bailouts [1]. Recently,
the financial system has once again been put to the test with
the failures of multiple banks [2]. Banks act as gateways
to today’s financial world. Without a bank, a person cannot
easily invest, pay online or get loans. Nevertheless, these
bailouts have shown that bankers may recklessly act in the
disinterest of their customers for profit.

Bitcoin presents itself as an alternative to the global fi-
nancial system [3]. It gave individuals an alternative to
banks by allowing anyone to transact on the Internet se-
curely. With Bitcoin, no banks can invest your money into
risky products. Some thought Bitcoin could be an alter-
native to the current financial system [4]. However, Bitcoin
has primarily remained a tool for speculation [5]. High fees,
low scalability, and a lack of user-friendly applications hin-
der Bitcoin use [6].

Collective wealth management would allow a group of

individuals to manage the group’s funds collectively. Each
individual has an equal say in how the funds are used. Col-
lective wealth management is a crucial first step to an alter-
native financial system. Such a system would allow a group
of individuals to be their own bank, where each individual
is part owner. Collective wealth management allows money
to be pooled and invested. This process is transparent and
a majority of the participants need to agree for any action
to be taken. This idea has been realized with Decentralized
Autonomous Organizations (DAOs) on other Blockchains,
like Ethereum [7]. DAOs are Blockchain-based organiza-
tions operating autonomously without central control by us-
ing smart contracts [8]. While collective ownership of Bit-
coins is possible, it is impractical due to high fees and low
scalability [9], [10].

In this thesis, we contribute to the goal of making Bit-
coin an alternative to the financial system. We describe
and partially implement a critical primitive for the collec-
tive ownership of wealth. Using this primitive, individuals
can create shared Bitcoin accounts with hundreds of oth-
ers. Anyone can use our system, which is compatible with
existing Bitcoin tools and services.

Specifically, this thesis makes the following contribu-
tions:

• Collective wealth - We designed a DAO allowing for
the collective ownership of Bitcoins and implemented
it as an Android application.

• Performance analysis - We analyze the scalability of
our system using various experiments. As part of this,
we uncovered performance issues with IPv8’s EVA
protocol.

2 Problem Description
We focus on the problem of wealth under democratic con-
trol. Our goal is to enable a leaderless group of collaborat-
ing humans of unbounded size to control a Bitcoin wallet of
unconstrained wealth democratically.

Decisions in traditional organizations are made by a
small group, with the other members having little influ-
ence. This changed with the internet. The internet rev-
olutionized how individuals collaborate and work towards
a common goal [11], [12]. Individuals working together
over the internet form informal organizations. One exam-
ple is Wikipedia, a free encyclopedia with thousands of
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contributors [13]. However, internet organizations are not
fully decentralized; Managing funds cannot be done by the
whole group. Thus the persons managing the finances are
more powerful. Decentralized Autonomous Organizations
(DAOs) changed this by allowing every member of an or-
ganization to decide how the funds are managed. DAOs
are leaderless organizations using Blockchain technology to
operate without central control or any central authority [8].

The limitations of existing solutions hamper the possibil-
ity of DAOs on Bitcoin. Existing solutions are either expen-
sive in terms of Bitcoin fees or expensive in terms of com-
putation [10], [14]. No solution is scalable enough to enable
a DAO with thousands of members. In addition, most DAOs
are created using advanced smart contracts, which Bitcoin
does not support.

Existing DAOs have several problems. First, They are
often not decentralized or leaderless. Instead, they are con-
trolled by a committee that enacts the will of the DAO [15].
Regular members can vote on proposals by using services
that record the votes. However, the votes have no real
power, and the DAO is always at risk of losing its funds if
the committee decides to turn malicious. Second, they are
hard to use by the everyday user, which limits participation.
Some actions are complex and are only done by those adept
with technology. The complexity of DAOs also means they
are highly susceptible to hacks [16].

Thus, the challenge lies in creating a truly decentralized
and leaderless DAO that is scalable and secure to enable
collective wealth management. Bitcoin fees and computa-
tion must be minimized. Every member must have a say in
governance. The DAO must be secure against hacks. The
code should be bug-free, and all actions must be transparent
to detect malicious behavior.

3 System Design
We aim to solve the problem by creating a peer-2-peer,
leaderless, and decentralized system. This system will al-
low groups of individuals to form organizations similar to
Decentralized Autonomous Organizations (DAOs) that en-
able them to collectively and democratically manage their
wealth [8].

3.1 Bitcoin threshold signatures
The cornerstone of our system is the combination of Bit-
coin and the FROST threshold signature scheme [17]. Bit-
coin allows anyone to send and receive money over the In-
ternet. Bitcoin is decentralized and has tamper-proof and
verifiable transactions, allowing anyone to use it without
relying on a central party. In our system, each group of
participants jointly controls a Bitcoin account that requires
a majority to spend funds. We use the FROST threshold-
signature scheme to enable collective wealth management
without using complex smart contracts [17]. A threshold-
signature scheme allows t members of a group of size n,
where t ≤ n, to create a signature jointly. A threshold-
signature scheme consists of an algorithm for generating a
shared key pair and a signing algorithm for creating joint
signatures. FROST was chosen for its good performance

Figure 1: Bitcoin transaction for joining an organization
when an entrance fee is needed.

because its key generation and signing algorithms only re-
quire two network rounds. The complexity of key genera-
tion and signing are both O(n2) as every participant broad-
casts messages to one another. Each participant FROST re-
ceives a key share after key generation, which can be used
to sign data jointly. Compared to traditional collective man-
agement on Bitcoin [18], threshold signatures can scale to
hundreds of participants. In addition, Bitcoin accounts that
use threshold signatures are indistinguishable from standard
accounts, allowing our design to be compatible with exist-
ing tools.

Threshold signatures have a significant drawback. Join-
ing or leaving a group requires every participant to be on-
line. A single participant could temporarily halt the joining
process by choosing not to participate. To counteract this, a
maximum inactivity duration can be specified, after which
the offending member is kicked.

3.2 Decentralized Communication
To support our goal of decentralization, the system uses
a peer-2-peer network for communication. Each partici-
pant will communicate with another directly to prevent re-
liance on any central actor. We rely on the IPv8 library
for communication [19]. IPv8 allows for the construction
of fully peer-2-peer networks through so-called Communi-
ties. Communities are peer-2-peer networks that contain
application-specific functionality. Additionally, IPv8 em-
ploys hole-punching, which allows devices behind routers
to establish peer-2-peer connections [20]. Hole-punching
is required because routers use network address translation
(NAT) to allow multiple devices to share an IPv4 address.

3.3 Governance
Our governance module sits on top of IPv8’s networking
and enables democratic decision-making for every action
the group takes. The module is responsible for two things:
handling join requests and handling proposals. Join re-
quests allow individuals to request membership, while pro-
posals enable members to suggest actions for the group to
take.

Adding a new member to the group involves creating a
new Bitcoin threshold account and transferring funds from
the old account to the new account. The process has four
messages, depicted in Figure 4. It consists of the following
steps:
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1. The new member creates and broadcasts a request to
join the group with the join request message.

2. The group members receive the request and send back
responses with their votes using the join request re-
sponse message. The message contains a Boolean
value that represents agreement or disagreement. The
message also contains the number of individuals in the
group, which decides how many messages to wait for.

3. The new member waits until they receive agreements
from all group members. Otherwise, the process stops.

4. The new member starts the FROST key generation
process by broadcasting a key gen commitment mes-
sage.

5. Each participant broadcasts a key gen commitment
message after receiving the key gen commitment mes-
sage from the new member.

6. Each participant sends a key share message to every
participant after receiving key gen commitment mes-
sages from all participants. Each key share is unique.

7. The key share messages received are combined into a
key. The key is a cryptographic key that can be used
together with the keys of other participants to spend
funds from the Bitcoin account.

8. Once the key generation is done, a Bitcoin transaction
is created to migrate funds from the old Bitcoin ac-
count to the new one. The transaction may also con-
tain an entrance fee from the new member if required.
The transaction is described in Figure 1

Proposals are Bitcoin transactions that the group can sub-
mit. Proposals allow the group to vote on which actions to
take. The process has four messages, depicted in Figure 3.
This process has the following steps:

1. A member creates a proposal and broadcasts it to the
other members using a sign request message. The mes-
sage contains the proposed Bitcoin transaction.

2. The other group members respond with their votes us-
ing a sign request response message. The message
contains a Boolean value representing the vote.

3. The proposer waits for agreements from a majority of
the group before starting the signing procedure. The
process is canceled if not enough members respond
with agreements during the timeout duration.

4. The proposer starts the signing process by broadcast-
ing a preprocess message. The message will contain
the total number of participants, so all participants
know how many messages to wait for.

5. After receiving the preprocess message, the other
participants will also broadcast preprocess messages.
This time without the number of participants.

6. Each participant creates a signature and sends a sig-
nature share message to the proposer after receiving
preprocess messages from every participant.

7. The final signature is created by combining the signa-
ture shares, and the transaction is completed by adding
the signature. Afterward, the transaction is submitted
to the Bitcoin network. Each Bitcoin input requires a
signature. Thus, the signing process may need to run
in parallel depending on how many inputs there are.

Figure 2 describes the process with 2 participants.

Broadcast created proposal

Send preprocess message

Send signature share

Combine signature shares

Send request response

Send preprocess message

Send signature share

loop Wait for
 enough
 responses

The preprocess
handles things like

nonces.

loop

Wait for
 preprocess
 messages

loop

Wait for
 preprocess
 messages

FROST

Add signature to transaction
and submit

loop

Wait for
 signature shares

Figure 2: Sequence diagram of the signing procedure. The
diagram shows the procedure with two participants.

In both processes, the member proposing is responsi-
ble for signaling the start of the procedure. This signifi-
cantly improves performance, as otherwise, each participant
would need to broadcast readiness individually.

3.4 Identity

IPv8’s identity mechanism is used to identify participants
in the system. The identities are cryptographic keys, allow-
ing participants to prove their identity by signing a mes-
sage. The identity mechanism may be insufficient depend-
ing on whether the organization has anonymous members.
In this case, the organization could be overtaken by a Sybil
attack[21]. To prevent this, a Self-Sovereign Identity mech-
anism could be used[22]. Using Self-Sovereign Identity,
participants could identify themselves without giving out
privileged information.
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message Identifier Bitcoin transactionsign request

8 bytes variable size

sign response

8 bytes

message
Identifier accept

1 bytes

message
Identifier preprocess datapreprocess

8 bytes 66 bytes

amount of
participants

32 bytes

message
Identifier signature sharesignature share

8 bytes 32 bytes

Figure 3: Breakdown of the signing protocol messages.
Dashed borders represent a field that is not always required.

message
Identifier

requester
identifierjoin request

8 bytes 20 bytes

acceptjoin response

8 bytes 1 bytes

amount of
participants

32 bytes

message
Identifier commitmentcommitment

8 bytes 94 + 33 per participant bytes

message
Identifier key sharekey share

8 bytes 32 bytes

message
Identifier

Figure 4: Breakdown of the key generation protocol mes-
sages. Dashed borders represent a field that is not always
required.

4 Implementation

We have created an Android application that partially im-
plements our design. Our work expands the protocol stack
under development for several years at the Delft Univer-
sity of Technology, which contains experimental support
for Bitcoin, BitTorrent streaming, trust framework, self-
sovereign identity, offline digital Euros, and decentralized
learning [23]–[28]. Using the application, users can join a
group, create a proposal, and vote on proposals. The open-
source application is publicly available on GitHub1.

4.1 Shared Bitcoin Wallet

The Android application contains a personal wallet and the
group wallet. The personal wallet is only used for testing
purposes. We use the BitcoinJ open-source library [29] for
Bitcoin support. BitcoinJ tracks the Bitcoins in the group
wallet to allow participants to create proposals easily. Bit-
coinJ stores its data in an SQLite database.

To support threshold signatures, we used an audited
open-source Rust library [30]. We created a wrapper around
the library and then exposed the wrapper to Android via
Java’s native interface [31]. Our wrapper modifies the sig-
nature created by the library to be compatible with Bit-
coin. After the key generation procedure, each participant
receives a key share. The key share is stored in a database
for persistence.

Bitcoin inputs represent spendable Bitcoin. One or mul-
tiple inputs must be spent to create a transaction. The An-
droid application only supports Bitcoin transactions with
one input, as Bitcoin transactions require signatures for
each input used in a transaction. Additionally, only pay-
ment transactions are supported.

1https://github.com/rahimklaber/trustchain-superapp/tree/frost dao/
frostdao

4.2 Joining an Organization

After clicking the join button on the screen depicted in Fig-
ure 5, The application will send a join request message and
waits for responses. The joining procedure starts if enough
responses are received within the timeout duration. Every
participant will join the same DAO since DAO discovery is
not implemented. Once the process is complete, it will be
possible to view details of the group account, create propos-
als, and reject or accept proposals. Our proof-of-principle
prototype lacks features such as entrance fees and migrating
funds when a new user joins.

4.3 Spending funds

The DAO can make investments and spend funds by creat-
ing and accepting proposals. Any member of the DAO can
create a new proposal. Other members then have the choice
of accepting or declining the proposal. If enough members
accept, a signature is created using FROST, and a Bitcoin
transaction is submitted to the network. This process is de-
picted using two devices in figures 5 through 10. We used
our own test Bitcoin network to create fake Bitcoins. The
process is as follows:

• Figure 5 - The DAO wallet is funded with Bitcoins,
shown on the main screen. In the Background, the app
listens for new transactions relating to the DAO ac-
count and uses these transactions to calculate the Bal-
ance.

• Figure 6 - The details for the proposal are filled in. The
top field contains the destination address, and the bot-
tom field contains the amount of Bitcoin in its smallest
unit.

• Figure 7 - After clicking propose on the previous
screen, the proposal is broadcast to the DAO and is
shown on the proposals screen. The member who cre-
ated the proposal can see details of the proposal and
can the transaction hash.
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Figure 5: The DAO account has been
funded

Figure 6: The details to create a pro-
posal are filled.

Figure 7: The proposal has been cre-
ated.

Figure 8: The other device has re-
ceived the proposal.

Figure 9: The proposal has been ac-
cepted.

Figure 10: The Bitcoins have been
spent
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Figure 11: Figures depicting activity grid of a DAO with 25
members. Each square represents a member of a DAO, and
the color represents their status. Pressing a square reveals
information about that member. For testing purposes, the
screenshots are obtained from a real Android device, while
the other DAO members are running on PC hardware.

• Figure 8 - The members who did not create the pro-
posal can accept or reject the proposal.

• Figure 9 - Once the proposal is accepted, the accept
and reject buttons are disabled and the signing process
starts. After signing, the transaction is submitted, and
the proposal status is updated.

• Figure 10 - The Balance is updated after the Bitcoin
network confirms the transaction.

4.4 Activity Grid
The application provides an overview of members’ statuses
through the activity grid. This is a grid with a square for
each member in the DAO. Each square has one of 2 colors
depending on the member’s status. The square is green if
the member is active, which we define as having received
a message from them within one minute. Otherwise, the
square is red, denoting inactivity. Users who have not yet
joined the DAO have a yellow square. Clicking on a square
reveals information about that peer: their identifier, status,
when a message was last received from them, and their IP
address. An example of the activity grid is given in Fig-
ure 11.

4.5 Quality Assurance
We used unit and integration tests to ensure the code is bug-
free and the code coverage is shown in Table 1. The core

Class / Package Line coverage Lines of code
FrostManager 93% 956
SchnorrAgent 94% 216
FrostCommunity 65% 141
FrostViewModel 0% 377
ui 0% 980

Table 1: Code coverage of the FROSTDAO application.

of the application, which consists of FrostManager, Schnor-
rAgent, and FrostCommunity, has been extensively tested.
However, harder-to-test code, like the UI and Bitcoin code,
is not well-tested.

We used unit tests to ensure our code had no significant
flaws. Specifically, we tested key generation and signing
while mocking communication. Integration tests were used
to test key generation and signing without mocked commu-
nication. The integration tests discovered many bugs that
were caused by race conditions. We fixed many of the bugs,
but some still occasionally occur. The bugs rarely occur and
we are unsure if IPv8 or our code is responsible for the bugs.

We also manually tested the Android application to test
the entire application, particularly the Bitcoin integration.
To do this, we created our own private Bitcoin network, en-
abling us to create testing Bitcoins and instantly confirm
transactions. We used two mobile devices for this.

4.6 Challenges

Developing any distributed system is challenging, espe-
cially fully peer-2-peer systems. During development, we
encountered numerous problems and challenges. This in-
cludes challenges relating to communication, Bitcoin, and
reliability.

IPv8 relies on UDP under the hood, which is not reliable.
To address this, we added acknowledgments and timeouts
on top of IPV8. Determining the correct timeout duration
and the amount of retransmission is challenging, especially
for unreliable networking.

The size of the key commitment message (see Figure 4)
during key generation scale with the number of participants.
If we want the UDP packets not to be dropped, we need to
limit their size to around 1400 Bytes [32], which some mes-
sages do not fit into. Therefore, we use IPv8’s EVA proto-
col, which splits data into multiple packets. Using EVA to
send messages results in high latency. Additionally, EVA
transfers have a high failure rate.

The system relies on being able to send messages to all
members. However, IPv8 is not meant to create fully con-
nected peer-2-peer networks. Each peer in a community
will keep track of some peers by sending periodic pings.
This is not a problem in smaller networks (30 members) but
becomes a problem in larger networks. This can be some-
what mitigated by changing IPv8’s configuration.

The signing process requires that every participant has
an up-to-date view of the Bitcoin network. However, It of-
ten happened that some participants lagged behind. This
resulted in the process failing.
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Figure 12: Amount of data in Kilobytes sent during key
generation and Signing

5 Evaluation
In this section, we evaluate the performance of our system.
We are interested in the performance of signing and key
generation, as these are the most expensive parts of our sys-
tem. Using a PC, we measure the performance in 3 ways.
First, we measure the time required for key generation and
signing. Second, we measure the amount of data transferred
during key generation and signing. Third, we introduce ar-
tificial delays to investigate performance in a more real-life
scenario. We also measure the performance using physical
Android devices. We have a limited number of physical de-
vices, so we are conducting an experiment to see how the
system performs on Android and to ensure that the results
are consistent with those of the PC experiment.

5.1 PC Experiments
We ran experiments on a Windows 10 PC with 32GB of
RAM and a Ryzen 7 3700x CPU with 8 cores and 16
threads. We modified the code responsible for communi-
cation and signing to work in a Desktop environment with
a Java virtual machine. This included compiling the native
code to work on Windows. Our experiments were run in
one application that created individual nodes representing
organization members. Each node is an IPv8 node that runs
the entire IPv8 stack. However, network latency is not a
factor since all nodes are on the same PC. We ran the exper-
iments with up to 50 nodes. Attempting to increase the node
count further resulted in peer discovery failing. We modi-
fied the default IPv8 maxPeer configuration to allow each
peer to connect directly to all other peers. Each experiment
was run 5 times.

Figure 12 shows the amount of data sent during key gen-
eration and signing. While both key generation and signing
have a quadratic message complexity, we notice that key
generation scales much worse than signing. This is because
the size of messages sent during key generation depends
on the number of participants (see Figure 4), causing the
amount of data transferred to have cubic complexity. When
running key generation with 50 nodes, each node sent and
received around 160KB of data. While the amount is not a

Figure 13: Duration of the key generation running on the
IPV8 stack. The plot contains the result of 5 runs. The
variance before 17 nodes is not significant.

lot, it will quickly grow with the number of participants and
will present issues for mobile devices with limited band-
width. In contrast to key generation, the signing protocol
requires significantly less data to be sent. This is expected
as each signing operation requires constant data per partici-
pant. These results show that key generation is significantly
more expensive than signing.

Figure 13 shows the duration of the key generation pro-
tocol. Up to 16 nodes, the procedure has a low duration
that increases a small amount when the number of nodes
increases. After 16 nodes, the duration and variability in-
crease dramatically. At this point, the size of messages sent
during key generation is no longer small enough such that
the UDP packets are delivered reliably. The dramatic in-
crease in duration is due to EVA, IPv8’s TFTP protocol for
sending larger amounts of data. This protocol splits the data
into chunks, sends each chunk via UDP, and uses acknowl-
edgments to ensure that each chunk is delivered. EVA does
not send the data immediately and instead schedules trans-
fers in the future, which results in a large spike in duration.
The large variability is due to the EVA protocol failing and
needing to retransmit data and due to the protocol’s sched-
uler. The signing protocol, shown in Figure 14, is much
quicker than key generation, as the messages all fit inside
UDP packets. In practice, signing will scale much better
since only a majority of the organization needs to partici-
pate. Thus, in an organization with 50 members, only 26
need to participate.

The impact of the EVA protocol on the key generation
duration was surprising. To understand precisely what the
cause was, we investigated further. After a thorough review
of EVA, we found the following potential causes:

• Each peer can only send or receive one transfer from
another at a time.2

• Each peer can only be involved in 9 transfers simulta-
neously. This includes sending or receiving.3 This is

2github.com/Tribler/kotlin-ipv8/.../eva/EVAProtocol.kt#L259
3github.com/Tribler/kotlin-ipv8/.../eva/EVAProtocol.kt#L296C17-

L296C61
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Figure 14: Average duration of the signing protocol running
on the IPV8 stack. The variance is not significant.

specified by the maxSimultaneousTransfers variable.4

• Attempting to initiate a new transfer when not possi-
ble due to the above causes will result in the transfer
being queued. Every 5 seconds, the transfer in front
of the queue is attempted. 5 This is specified by the
scheduledSendInterval variable.6

• EVA transfers have a timeout of 20 seconds. This
means that if a transfer failure isn’t handled, then one
of the 9 transfer slots will be occupied for 20 seconds.
7 The timeout is specified by the timeoutInterval vari-
able.8

• Our serialization is inefficient, resulting in a lot of
overhead for large messages.

We improved EVA’s performance with aggressive settings.
We reduced the timeout duration from 20 seconds to 2 sec-
onds and the scheduler interval from 5 seconds to 500 mil-
liseconds. We also improved the message serialization such
that EVA is only required starting from 37 participants in-
stead of 16. We attempted to increase the number of con-
current transfers such that they were executed immediately,
but this caused EVA to sometimes fail.

Figure 15 shows the duration of key generation with our
improvements. Compared to Figure 13, the improvements
have resulted in a much more natural progression in dura-
tion. The mean of the results is much smaller, suggesting
that we have significantly reduced the overhead of EVA.
However, the overhead is still considerable, especially in
the worse case.

To understand the effect of latency on performance, we
did some experiments with different latencies. Shown in
Figure 16 is the added duration of the protocols with 100
and 200 milliseconds. We did experiments with up to 36
nodes to prevent EVA from affecting the results. In theory,
the graphs should be horizontal lines. This is because each
protocol has a constant number of broadcasts, which should

4github.com/Tribler/kotlin-ipv8/.../eva/EVAProtocol.kt#L35
5github.com/Tribler/kotlin-ipv8/.../eva/EVAProtocol.kt#L74
6github.com/Tribler/kotlin-ipv8/.../eva/EVAProtocol.kt#L29
7github.com/Tribler/kotlin-ipv8/.../eva/EVAProtocol.kt#L797
8github.com/Tribler/kotlin-ipv8/.../eva/EVAProtocol.kt#L32

Figure 15: Duration of the key generation running on the
improved IPV8 stack using our EVA and serialization im-
provements. The plot contains the result of 5 runs. The
variance before 37 nodes is not significant.

Figure 16: Average added duration of protocols with 100
and 200 milliseconds delay.

add a constant duration. This is the case for signing but not
key generation. Key generation with 2 participants requires
one less broadcast, which explains the outlier value for 2
participants. The rise at the end is harder to explain. We
are unsure of the cause, but it is likely an issue with our
code. More experiments should be run to see if the trend
continues.

5.2 Android Experiments
We conducted experiments to determine how real using real
devices impacts our system. We used 4 Android devices on
the same network and repeated the experiments 10 times.
We only measured key generation due to the complexity
of signing on Android (see Figure 5). Nevertheless, our
insights should apply to signing as well. The results are
shown in Figure 17.

Except for key generation with 2 devices, the average du-
rations are similar to that of the PC experiment. Interest-
ingly, key generation with 2 devices has a higher duration
than with 3 or 4 devices. Since the app was just opened and
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https://github.com/Tribler/kotlin-ipv8/blob/f983ed48ad2bb8d9802b1a9106ef44ce63998664/ipv8/src/main/java/nl/tudelft/ipv8/messaging/eva/EVAProtocol.kt##L32


Figure 17: Duration of key generation on Android devices.

no previous actions were done, we can attribute the higher
duration to code being initialized lazily. When using more
than 2 devices, the code is already initialized. We expected
all results to be higher than the PC experiments due to the
communication delay, but some outliers were significantly
lower. This is likely caused by the overhead of running 50
nodes on a single PC and minor differences between the PC
and Android versions of the code.

When analyzing our results, we realized that the perfor-
mance depends on the slowest participant. Key generation
and signing have 2 rounds, with the second dependent on
the first. In the worst case, a participant with an extremely
slow network connection could significantly reduce perfor-
mance. Although, this is more of a problem for key gener-
ation with its large messages and since signing can be op-
timized to 1 round with some precomputation. While the
bottleneck seems obvious, we did not realize it because our
PC experiments were so controlled.

6 Discussion and Future work
The results indicate that the performance of our system is
practical for real-world use for the tested parameters; sign-
ing and key generation can be done in under 20 seconds.
However, our results hint at limitations due to the perfor-
mance of key generation. While EVA has significantly af-
fected performance, this can be mitigated through engineer-
ing. More concerning is the scalability of key generation
itself. The data suggests that the amount of data transferred
during key generation scales exponentially, which would
quickly lead to poor performance, especially on mobile de-
vices. Future work could seek to understand how far this
system can scale while still being practical to use.

7 Conclusion
DAOs enable decentralized and transparent collective
wealth, allowing groups of individuals to pool their funds
for economic activity. DAOs rely on complex smart
contracts to function. Despite being the most popular
Blockchain, existing technology cannot support DAOs on

Bitcoin. In this thesis, we designed a system allowing a
group of people to manage their wealth collectively using
Bitcoin. To determine if our system is practical, we imple-
mented it as an Android application. The Android Appli-
cation uses a peer-2-peer network and does not rely on any
central party, allowing the application to be used by any-
one. The Android application uses the FROST threshold-
signature scheme, allowing individuals to jointly control
a Bitcoin account without relying on complex smart con-
tracts. Compared to multi-signature implemented using Bit-
coin script, threshold signatures do not increase the size of
transactions based on the number of participants. Our ex-
periments show that this technique is practical. Both key
generation and signing take less than a minute for less than
50 participants. Increases in latency only add constant du-
rations to the signing and key generation protocols. Our ex-
periments also show that key generation performance can
be improved by a significant amount, as the performance is
limited by IPv8.
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