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Density-Adaptive and Geometry-Aware Registration

of TLS Point Clouds Based on
Coherent Point Drift

Yufu Zang™, Roderik Lindenbergh, Bisheng Yang™, and Haiyan Guan

Abstract— Probabilistic registration algorithms [e.g., coherent
point drift, (CPD)] provide effective solutions for point cloud
alignment. However, using the original CPD algorithm for auto-
matic registration of terrestrial laser scanner (TLS) point clouds
is highly challenging because of density variations caused by
scanning acquisition geometry. In this letter, we propose a new
global registration method, introducing the use of the CPD frame-
work for TLS point clouds. We first consider the measurement
geometry and the intrinsic characteristics of the scene to simplify
points. In addition to the Euclidean distance, we incorporate
geometric information as well as structural constraints in the
probabilistic model to optimize the so-called matching probability
matrix. Among the structural constraints, we use a spectral graph
to measure the structural similarity between matches at each
iteration. The method is tested on three data sets collected by
different TLS scanners. Experimental results demonstrate that
the proposed method is robust to density variations and can
decrease iterations effectively. The average registration errors
of the three data sets are 0.05, 0.12, and 0.08 m, respectively.
It is also shown that our registration framework is superior to
the state-of-the-art methods in terms of both registration errors
and efficiency. The experiments demonstrate the effectiveness and
efficiency of the proposed probabilistic global registration.

Index Terms— Coherent point drift (CPD), density variations,
global registration, matching probability matrix, structural con-
straints.

I. INTRODUCTION

ERRESTRIAL laser scanner (TLS) technique has been
used in a variety of applications including cultural
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heritage documentation, urban planning, terrain deformation
monitoring, and forest biomass estimation [1], [2]. TLS point
cloud registration which aligns scans from multiple stations
in a common 3-D coordinate system is critical to the above
applications.

Various registration methods have been explored. According
to the strategy of correspondence search, existing registration
methods are categorized into local and global registration
methods [3]. The proposed approach falls into the latter group.

Local registration methods determine point correspondences
locally between adjacent stations. It begins with a proper
initialized alignment and does not account for any neighbor-
hood coherency. The iterative closest point (ICP) algorithm
[4], [5] is probably the most well-known local method, which
seeks the closest points as point correspondence and minimizes
the sum of squared differences in an iterative way. Various
ICP variants have also been proposed by Mavridis ef al. [6]
and Pomerleau et al. [7]. In addition, the normal distribution
transform (NDT), the support vector registration (SVR) algo-
rithm, and the simultaneous localization and mapping (SLAM)
algorithms have also been introduced for local point cloud
registration [8]-[10]. Nevertheless, these approaches still rely
on sufficient initialization or are vulnerable to convergence to
local minima, which limit their applications in practice.

Global registration methods regard all points as candidates
and determine correspondences globally, which is needed in
the case of a large transformation or when a small overlap
exists. Geometric primitive-based methods extract geometric
features (e.g., key points, straight lines, spatial curves, planes,
curved surfaces) first, use local descriptors (e.g., spin image,
shape context (SC), curvature, covariance matrix, Fast Point
Feature Histograms (FPFH)) to describe their geometric char-
acteristics, and determine the corresponding primitives glob-
ally [11], [12]. However, these methods rely on the accurate
extraction of geometric primitives. There is another line of
work focusing on the matching strategy, including random
sample consensus (RANSAC) [13], and the 4-points congruent
sets (4PCSs) algorithm [14].

Motivated by the limitations of existing methods, several
probabilistic registration methods have been explored. The
coherent point drift (CPD) algorithm [15] is one of the most
popular methods because of its generality and accuracy [16],
which considers registration as an estimation problem of
probability density. It fits Gaussian mixed models (GMMs)
centroids to point clouds by maximizing the likelihood of
probability. On this basis, Wang et al. [17] introduced a new
parameter for outlier modeling. Peng et al. [18] used SC to
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Fig. 1. Two alignment results for TLS point clouds with varying density.
(a) Correct alignment result. (b) Alignment by state-of-the-art probability
method.
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Fig. 2. Pipeline of the proposed method.

describe local geometric information, increasing its robust-
ness. In addition, Lawin et al. [19] used hyper-parameters to
weigh points to incorporate the effect of density variation,
which works well for small-scale indoor scenes. However,
some drawbacks still exist. For data with density varia-
tions, the registration easily converges to a local extremum
(as Fig. 1 shows), and the robustness and efficiency should
also be improved. These problems become even more chal-
lenging when working on TLS point clouds, as these always
have density variations because of the scanning acquisition
geometry [20].

Considering the above limitations, we propose a density
adaptive CPD algorithm using geometric information and
structural constraints for TLS point cloud registration. This
algorithm is based on one reasonable assumption that leveling
was performed before scanning, which means that rotations
only occur within the horizontal plane between TLS stations.
This letter has two major contributions.

1) We propose an approximately uniform sampling method
by considering the measurement geometry and the
intrinsic characteristics of scene to reduce the influence
of density variations.

2) In the probability model, we show how to incorporate
the geometric information and structural constraints.
The structural similarity of each iteration optimizes the
matching probability matrix, improving the robustness
and efficiency.

The rest of this letter is organized as follows. Section II
introduces the approximately uniform simplification, a prob-
abilistic registration method considering the geometric con-
straints, and the structural similarity. Section III presents the
experimental results on real data sets. Section IV concludes
this letter.

II. DENSITY ADAPTIVE PROBABILISTIC FRAMEWORK

The pipeline of the proposed registration method is sketched
in Fig. 2. It contains three main components: 1) approxi-
mately uniform sampling of input point clouds; 2) probabilistic
registration method based on geometric constraints; and
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3) improvement by static and dynamic structural information.
The three components are described in detail in the following
sections.

A. Approximately Uniform Simplification

The probabilistic registration method takes the sum of
matching probabilities as its objective value, leading to its sen-
sitivity to point density variations. To mitigate this influence,
we propose to apply a sampling algorithm before probabilistic
registration is performed.

The algorithm consists of an importance score and an
iterative strategy to successively reduce points. The importance
score of each point is calculated by considering its local
intrinsic characteristics and the measurement geometry. First,
we evaluate the score of each point, eliminate the least
important points, and update the score of its neighbors. Finally,
we repeat this procedure until the required number of points
are obtained. The score w; of each point is calculated as

W; = Wg - Wiy

Cur; exp(b - R;) )

1+ exp(fii . iio) ’

~ 1+a- density,’

Here, wy is the weight of the local intrinsic characteristics,
and w,, describes the weight of the measurement geometry.
Cur; is the curvature of point i, density; is the number of
neighbors. R; is the distance between point i and the scanner
center, 71; is the normal vector of point i, and X;, is the
direction from point i to the scanner center. @ and b are weight
coefficients used to balance these two terms (e.g., a = 300.0,
b = 0.02). To improve robustness, we used [21] to select
optimal neighborhood size for each point. In addition, we
applied a weighting method [22] and fitting method [23] to
estimate normals and curvatures, respectively.

According to Formula 1, the scores of points in flat and
densely sampled areas are decreased. Thus, we obtain an
approximately uniform sampling result and reduce density
variations. Besides, during the estimation of normal vectors,
noise can be detected and suppressed as well.

B. Probabilistic Registration With Geometric Constraints

According to the CPD algorithm [15], for two point clouds
X and Y, the points from X are regarded as the centroids
of GMMs, and the points from Y are regarded as the points
generated by the GMMs. A probability is calculated to mea-
sure the similarity between two points. Y will be aligned with
X when the registration probability is maximal. To simplify
calculations, an objective function is formed as follows:

1
E@,o )— Zlog w— (l—w)ZP(m)p(x,Jm)

m=1

)

Here, 0 < w < 1 indicates the fraction of noise or outliers.
N and M are the number of points in X and Y, respectively.
P (m) is the probability of the mth GMM component, p(x,|m)
indicates the probability that point x, belongs to the mth GMM
component. To simplify it further, an upper bound is estimated
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to get a new objective function, written as follows:

2 _L S old
0O, 0% =553 > PM0mlx)

n=1m=1
Mo = TGP+ 227 3)

Here, o2 is the variance of all GMMs, P°1d(m|xn) is the
posterior probability of the mth GMM component calculated
using the previous parameter values. 7(y,,) denotes the trans-
form of y,,, D is the dimensionality of point (D = 3), and
Np is the summation of P°M(m|x,).

In Formula 3, to improve the robustness and efficiency of
matching, we incorporated geometric information and struc-
tural constraints as discussed in Section C to estimate the
posterior probability P°'(m|x,), written as follows:

ologaz.

POld(mlxn) — qxn,Ym
Qro?)P2 1 8+ 370w @
%0 — T (ym) I?

9xp,ym = €Xp | — T 8Xn,Ym

202

Here, qy,,y,, is the matching probability of x,, and y,, gx,, v,
represents the constraints on curvature and direction, written
as follows:

0, if 7iy, - T(iiy,) <0
wl[l—;lxn . T(ﬁym)]

+ w2|cx,1 — Cyp [,

g(xn, ym) = (5)

else.

Here T (1iy,,) represents the normal vector of y,, transformed
by the transformation of the current iteration, cy,, cy,, are the
curvatures of x, and y,, while w;, wy are the weights to
balance the geometric constraints (w1 = 8.0, w, = —5.0
are suggested). After the construction of objective function,
rotation matrix R and translation vector T are obtained by
maximizing Formula 3. Based on the transformation of the
last iteration and the constraint conditions, a new objective
function is constructed. The above steps are iterated until the
transformation becomes stable.

C. Improvement by Static and Dynamic Structures

Local structural information between neighborhood points
is stable and useful to improve correspondences. To quantity
it, for each point, we calculate the mean value and variance
of curvature within a certain radius. We regard the similarity
of this static structure as a prior to update the matching
probability. Specifically, the matching probability of x, and
Vi in Formula 4 is improved by a term s(x,, y;,)

Q(xm ym) = C](Xn, ym) ) S()Cn, ym)
0, if |My—My|>T, or |[Vy—Vu|>Ts
1, otherwise.

s (Xn, ym) = (6)

Here, M and V are the mean value and variance of
curvature, 77 and T are thresholds (77 = 0.07, T, = 0.07
are suggested). Note that in this formulation, we assign the
probability of two points to be zero if they have large structural
difference to improve correspondences.

Based on the matching result of each iteration, we use the
spectral graph method proposed in [24] to describe dynamic
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TABLE I
DESCRIPTION OF DATA SETS

Dataset Beach data Suburb data Benchmark
Scanner Leica P40 Riegl VZ-400 Riegl VZ-400
. 391851 514218 260274
Points Num, T1, T2 336655 508244 267317
Avg. Point Spacing (m) 0.12 0.13 0.26
Overlap Ratio (%) 83.5 61.7 82.9
L. Flat and rare Chaotic forest Disordered
Characteristics geometric area and regular  points of dock
features urban scene cnvironment

structural information. For efficiency, after each iteration, the n
(such as: 500) correspondences with highest matching proba-
bility are taken into consideration. For each scan, we construct
a Laplacian matrix to describe the topology (i.e., directions and
distances) between points. After singular value decomposition
(SVD), the structural information is included in the matrix U.
We select the first k columns of U (e.g., k = 20) to construct
an embedded space U.K. The structure of each point is now
expressed by each row vector of U.K. For each correspondence
(e.g., xn, ym) from n selected correspondences, the matching
probability is improved by the correlation coefficient d (x,,, yi,)
between their row vectors x{xx and yxx as

d('xn7 y’n)
k k k
kD iy Xiyi — D i Xi D iy Vi

VRSt = (St ) st - (St

q(Xn, Ym)

0, if d(xn, ym) <T

= qXn, ym) - dXn, Ym)s d(Xp, Yym) = .
1, otherwise.

@)

T is a threshold (T = 0.5 is suggested). Then the dynamic
structure of each iteration is recorded, avoiding convergence
to a local extremum and decreasing the number of iterations.

III. EXPERIMENTAL RESULTS AND ANALYSES

To evaluate performance, the proposed method was eval-
vated on three sets of TLS point clouds and com-
pared to other state-of-the-art methods, including the
original CPD algorithm [15] and SC-CPD (SC-based
CPD) [18]. Experimental data sets are benchmark data from
kos.informatik.uniosnabrueck.de/3Dscans/ or used control tar-
gets for validation. Table I shows the description of the
data sets.

A. Simplification Results

We conducted the proposed simplification algorithm on the
data sets and kept about 10000 points of each point cloud.
The simplified results are shown in Fig. 3 (here a = 10.0, b =
0.1 are used). The average point spacing and standard devia-
tion of initial and simplified point clouds are also provided to
show the quantitative information of distribution.

Fig. 3 shows that severe density variation exists in the
initial point clouds. The simplified results and quantitative
information demonstrate that the simplified points are more
uniformly distributed, and that density variations have been
reduced effectively. The red ellipses in Fig. 3(a) illustrate that
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(b)

Fig. 3. Initial point clouds (blue) and simplification results (green). (a) Beach
data. (b) Suburb data.

Fig. 4. Registration errors of the three data sets. Different colors represent
different degrees of registration errors. (a) Beach. (b) Suburb. (c) Benchmark.

points near the scanner are simplified more. This is because
the measurement geometry wg is considered, balancing the
matching probabilities of the areas at different distances. The
blue ellipses in Fig. 3(b) show that more points are kept
in feature-rich areas. Because the intrinsic characteristics are
weighted by w,,, the sampled points are more descriptive.
Compared to the existing methods, we incorporate both the
measurement geometry and the intrinsic characteristics of the
scene, making the simplified point clouds more suitable for
probabilistic registration.

B. Evaluation of Registration Results

The registration performance of the three data sets is shown
in Fig. 4 and Table II. The registration errors in Fig. 4 are
evaluated by the distance between closest points in overlapping
areas. The registration errors in Table II are calculated by con-
trol targets or benchmark. Average error and root mean square
error (RMSE) indicate the average distance error and mean
square root between correspondences. “ablation” indicates the
registration errors of the proposed method without geometric

1631

TABLE 11
EVALUATION OF REGISTRATION PERFORMANCE

Avg. error (m) RMSE (m) . 3
Datasets Iterations Runtime
proposed ablation proposed ablation
Beach data 0.053 125 0.034 0.49 36 440s
Suburb data 0.12 34.40 0.087 9.27 41 459s
Benchmark 0.081 0.096 0.048 0.012 27 308s

Fig. 5. Correspondences of different iterations. (a) Iteration 1133 correct
matches. (b) Iteration 10 193 correct matches. (c) Iteration 20 200 correct
matches (blue points indicate the left station, the purple points indicate the
right station, green lines indicate correct matches, while red the mismatches).

constraints (i.e., Formula 5). The experiments are implemented
in C++ on a computer with 16 GB RAM and an Intel Core
i7-4850HQ @2.3 GHz CPU.

Fig. 4 shows that all three data sets are aligned well, and that
registration errors are evenly distributed. Fig. 4(b) shows much
higher errors through. This is because the presence of vege-
tation affects feature estimation and matching probabilities.
From Table II, we can see that the registration errors are con-
trolled efficiently. All registration errors are about 0.1 m, and
the RMSE is controlled within 0.1 m. Compared to the ablation
experiments, the proposed method outperforms the registra-
tion method without geometric constraints, demonstrating its
robustness and effectiveness. These registration results can be
improved further by local registration (e.g., ICP). In addition,
the iterations and runtime show its fast convergence (e.g.,
the number of iterations is about 40). This demonstrates the
efficiency and robustness of the proposed method.

C. Evaluation of Correspondences Determination

To show the matching performance of the proposed method
directly, we select the 200 correspondences of the highest
matching probability for each iteration. Fig. 5 shows the
correspondence determination of the different iterations of the
Suburb data.

As can be seen in Fig. 5, an increasing number of cor-
rect matches are determined within a few iterations. This
is because the geometric and structural constraints reject
outliers efficiently, showing the superiority of matching. As all
correspondences directly contribute to the transformation, this
correspondence determination model used by our method has
succeeded in pinpointing correct matches in a seemingly
unstructural point cloud.
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Fig. 6. Comparison to other methods. (a) Registration errors. (b) Iterations
for convergence. (c) Number of matches at different iterations.

D. Comparison to Other Methods

As the initial point clouds are too big for CPD and SC-CPD,
we use Geomagic Studio 2012 to uniformly down-sample the
point clouds before applying these methods. Fig. 6 shows
the performance of the proposed method compared to other
methods. The suburb data are used in Fig. 6(c).

Fig. 6(a) shows that the proposed method has better accu-
racy compared to the other two methods. Fig. 6(b) shows
that the proposed method requires the fewest iterations for
convergence. This is because the simplification mitigates the
influence of density variations, and the probabilistic model
incorporates efficient geometric constraints and structural
information, improving the performance significantly. Fig. 6(c)
shows that the proposed method has a higher number of correct
matches at different iterations, indicating its improved perfor-
mance in correspondence determination. This demonstrates the
robustness and efficiency of this probabilistic method.

IV. CONCLUSION

In this letter, we propose a global registration method
based on the CPD framework for TLS point clouds. Three
components have been introduced to improve the robustness
and efficiency of the original CPD algorithm. For point cloud
simplification, the measurement geometry and the intrinsic
characteristics of the scene are incorporated together to reduce
the influence of density variation. We incorporated geometric
information as well as structural constraints in the probabilistic
model to improve the robustness of matching. A spectral graph
is used to measure the structure similarity of matching points at
each iteration. Experiments were conducted on three real data
sets, showing the effectiveness and efficiency of the proposed
method. It could also be shown that the proposed method
significantly outperforms the state-of-the-art methods in terms
of alignment accuracy and robustness.

Although the proposed method has achieved promising
results, there is still space for improvement. For example,
the features used are sensitive to vegetation, as incorrect
matches may be introduced. A novel and robust descriptor
for cluttered scenes deserves future research.
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