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Abstract

The development of the high-tech industry has pushed the requirements of motion applica-
tions to extremes regarding precision, speed and robustness. A clear example is given by the
wafer and reticle stages that require rigorous demands like robust nanometer precision and
high-speed motion profiles to ensure product quality and production efficiency. Industrial
workhorse Proportional Integral Derivative (PID) has been widely used for its simple imple-
mentation and good performance. However, PID is insufficient to meet the ever-increasing
demands in the high-tech industry due to its inherent constraints of linear controllers such
as the waterbed effect. To overcome these fundamental limitations, researchers have turned
to nonlinear controllers. Nevertheless, most of the nonlinear controllers are difficult to de-
sign and implement and thus are not widely accepted in the industry. Reset control is a
nonlinear controller that is easy to implement and design since it maintains compatibility
with the PID loop shaping technique using a pseudo-linear analysis tool named describing
function method. However, the reset control as a nonlinear controller also introduces high
order harmonics to the system that can negatively affect system performance by causing un-
wanted dynamics. Hence, describing function analysis as a linear approximation approach
that only considers first harmonics is not accurate enough. Recently, a theory to analyze
high order harmonics of nonlinear system in frequency domain termed higher order sinu-
soidal describing function has been developed, which enables the possibility to perform
more precise analysis on reset systems.

The majority of research on reset control has focused on the phase lag reduction but a
novel reset element proposed in literature termed ”Constant in gain, Lead in phase” (CgLp)
is used to provide broadband phase compensation and has been shown to improve system
performance. However, there is no systematic designing and tuning approach in literature
such that the full advantage of CgLp elements is extracted. This work focuses on the tuning
of the CgLp elements in order to obtain optimal performance. High order harmonics are
also considered in the tuning analysis since they are critical to system performance due to
the effect of unwanted dynamics.

When a group of CgLp elements are designed to provide pre-determined phase compen-
sation at the crossover frequency, it is seen that the optimal tracking precision performance
is always obtained with the case that has the highest frequency of third order harmonic peak
and has almost the smallest magnitude of high order harmonics at low frequencies. More-
over, the second order CgLp controllers are observed to outperform the first order CgLp
controller regarding tracking precision. On the other hand, configurations that have the
lowest magnitude of third order harmonic at high frequency are found to have the best noise
attenuation performance.
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Introduction

The development of the high-tech industry has proposed ever-increasing requirements for
the motion control. A typical representative is the lithography machine that is involved in
the projection of the integrated circuit (IC) on wafers (Figure 1.1). As suggested by Moore‘s
law, the size of transistors on ICs is getting smaller and so the industry has been challenged
to make the die smaller (Figure 1.2). To maintain the quality of the die with ever-decreasing
size, nanometer precision motion is a necessity. Meanwhile, the control strategy with high
bandwidth enables faster motion and thus reduce production time.

Gut: 10 Gut: 103 Gut: 620
Schiecht: 18 Schiecht: 38
Total: 28 Total:

ield: 35.7 % Yield: 04,2 %
Die-GroBe: 40 mm x 40 mm Die-GroRe: 20 mm x 20 mm Die-Groge: 10 mm x 10 mm

Figure 1.1: Lithography machine. Image taken from Figure 1.2: The change of die size on a wafer[1].
ASML.

Proportional Integral Derivative (PID) control is the industrial standard for system con-
trol [2] and has been widely used in industry due to its simplicity and good performance
regarding tracking, precision and robustness. During the designing of PID controllers, the
loop shaping technique is used by engineers to tune the open loop frequency behavior. An
open loop ideally has high gain at low frequencies to ensure good tracking performance
and disturbance rejection and low gain at high frequencies to obtain better noise attenua-
tion, while at the same time maintain sufficient phase at the bandwidth to ensure system
robustness [3]. However, PID control is insufficient to meet the extreme requirements in
the high-tech industry due to the fundamental limitations of linear controllers such as the
waterbed effect and Bode’s phase-gain relation [4]. The waterbed effect states that the de-
crease of sensitivity at one frequency range will inevitably lead to an increase at another.



2 1. Introduction

Due to Bode’s phase-gain relation, less phase lag over a larger range of frequencies around
the bandwidth leads to a more robust system but also results in a worse magnitude shape, af-
fecting the noise rejection at high frequencies and tracking performance at low frequencies.
Therefore, there is trade-off between precision and robustness [5]. Nonlinear controllers
have been used in literature to overcome these inherent constraints. Nevertheless, most
of the nonlinear controllers are difficult to design and implement and thus are not widely
accepted in the industry.

Reset control is a nonlinear controller that is easy to design and implement. A traditional
reset controller resets the state to zero whenever its input crosses the zero point. In 1958,
Clegg [6] proposed the first reset element which resets the state of an integrator to zero. If
we use Describing Function (DF) tool, which considers only the first harmonic of the output
of the controller of a sinusoidal wave input, the gain behavior of Clegg integrator (Cl) is the
same as the linear integrator while it produces 52° less phase lag than the simple integrator.
Besides Clegg Integrator, other reset configurations have been developed to provide more
design freedoms and applications: First Order Reset Element (FORE) [7] and Second Order
Reset Element (SORE) [8]. Moreover, the advantages of reset control have been utilized to
enhance the performance of several systems [9—14].

Although reset control has seen a lot of success over the years, it has mainly been used for
its phase lag reduction advantage and has mainly been used as part of the integrator for this
reason. However, N. Saikumar et. al. [15] proposed a novel reset element termed *Constant-
gain Lead-phase’ (CgLp) which produces broadband phase lead while maintaining constant
gain. This controller is made by combining the GFORE/GSORE with the first/second order
linear lead filter. As a result of the design flexibility of reset elements, various combi-
nations of tuning parameters could be used to provide the same open loop gain behaviour
and equivalent phase compensation at the crossover frequency based on describing function
analysis. However, it was seen that the improvement expected through describing function
analyses was not achieved in some cases [16]. Hence, DF analysis is insufficient to per-
form frequency analyses for reset elements. Recently, Nuij [17] has extended describing
function to higher order sinusoidal input describing functions (HOSIDF) for the analysis of
these higher order harmonics of non-linear systems. With this tool, Heinen [18] developed
HOSIDF for reset controllers and opened the possibility of more accurate analyses on reset
controllers. Because of the design freedom even if the first harmonic matches in gain and
phase compensation at the crossover frequency , the higher order harmonics are disparate.
The motivation of this paper is to develop tuning guidelines of CgLp elements for so-called
mass-like precision positioning systems using both describing functions and HOSIDF anal-
yses.



[iterature Review

This chapter presents the literature review in scientific paper format. Initially, the limitations
of linear controllers are summarized. Then, the basis of reset control is introduced. Finally,
the problem of unwanted dynamics in reset control along with the state of the art of reset
strategies developed to handle this problem are represented and analysed.



A Review on the Application of Reset Control for Precision
Mechatronics

Xiaojun Hou

Abstract— Proportional Integral Derivative (PID) controller
is dominantly used for its ease of implementation and good
performance regarding robustness and precision. However, it
is bounded by its inherent limitation of the linear controller
such as the waterbed effect. Reset controller as a type of
nonlinear controller has shown the advantage of overcoming
the fundamental limitation of linear controllers in literature.
However, higher order harmonics are also introduced resulting
in unwanted dynamics, affecting the overall performance of the
system. This review paper discusses the issues in reset systems
and the state of art of reset strategies to improve precision
performance.

Index Terms— Reset Control, Precision Positioning, Limit
Cycles, Motion Control

I. INTRODUCTION

Tracking, bandwidth and precision are three main motion
control objectives for high-tech precision systems. A clear
example is given by the wafer and reticle stages that require
rigorous demands like robust nanometer precision and high-
speed motion profiles to ensure product quality and pro-
duction efficiency. PID controllers are widely used in the
industry due to its simple implementation and good per-
formance regarding robustness and precision [1]. However,
due to the inherent limitations of the linear controller such
as the waterbed effect and Bode’s phase-gain relationship,
linear PID is insufficient to meet the ever-increasing control
requirements. With waterbed effect [2], improvement of
disturbance rejection at one frequency inevitably leads to
deterioration at another. With Bode’s phase-gain relationship,
additional phase margin around the bandwidth results in
a more robust system but also leads to worse gain slope,
affecting tracking and noise attenuation performance.

These fundamental limitations can be overcome by nonlin-
ear controllers. Reset control is a simple nonlinear technique
which resets the state when defined conditions are satisfied.
Moreover, the frequency performance of the reset control can
be analyzed using a linear approximation approach termed
describing function (DF), which enables compatibility with
linear PID controllers regarding loop shaping.

In 1958, Clegg [3] introduced the first reset controller,
the Clegg Integrator(CI) which resets the state of the in-
tegrator to zero whenever the input crosses zero. Figure
1 shows the time response of reset integrator along with
sinusoidal input. With describing function analysis, CI has
52° less phase lag compared with linear integrator while
maintaining the same magnitude slope at all frequencies.
Moreover, Horowitz et al. [4] introduced the First Order
Reset Element (FORE) to achieve phase lag reduction at
desired frequencies. More design freedoms are obtained in

Second Order Reset Element(SORE) proposed by Hazelgar
et al. [5]. On the other hand, the introduction of after reset
variable leads to the development of Generalized First Order
Reset Element GFORE [6] and Generalized Second Order
Reset Element(GSORE) [7]. Recently, the introduction of
fraction order dynamics [8], [9] to reset control further
improved the design flexibility.

——Clegg
—— Integrator
Sin input

WYYS

o

Magnitude

-0.5

S

Fig. 1. Comparison of normal integrator and Clegg integrator with
sinusoidal input

Reset control compensates the phase margin (PM) loss, or
even increases the PM, reaches higher bandwidth, results in
less overshoot or a faster settling time compared to linear
controllers [10]. This advantage of reset controller has been
used in many applications, from process control [11], [12],
[13] to motion control [14], [16]. Despite the advantage,
the resetting action also introduces higherorder harmonics
that lead to unwanted dynamics such as limit cycles, which
hinder the tracking and steady state performance of precision
systems. In order to address this issue, various reset strategies
have been developed [2], [18], [19]. This paper introduces
the preliminaries of reset control and the problem of higher
order harmonics along with the existent methods to deal with
it.

The structure of the thesis is as follows, the fundamental
limitations of the linear controller are summarized in section
II. Section III gives the basis of a reset controller, describing
functional analysis, stability and different types of reset
elements. In section IV, an example is shown to discuss
the problem of unwanted dynamics and the existing coping
strategies are introduced. Finally, the conclusion is presented
in the last section.



II. LIMITATION OF LINEAR CONTROLLERS
A. Phase-gain Relation

For a stable, minimum phase(no pole/zero in the in
the right hand plane) system with open loop trans-
fer function G(s), a relation between phase/G(jw) and
magnitude|G(jw)| exists:

ZG(jw) = 90°n(jw) €))
where n denotes the slope of magnitude:
. dlog|G(jw)|

- 2

nljw) dlogw @

Less phase lag over a larger range of frequencies around
cross-over frequency leads to a more robust system, but also
smaller slope of magnitude, affecting the noise rejection at
high frequencies and tracking accuracy at low frequencies
as shown in Figure 2. It is evident that a trade-off needs to
be made between robustness and noise attenuation for the
existence of phase-gain relation.

Magnitude(db)

Prl1ase(°l)

200 . . .
10° 10’ 10% 10° 10*
Frequency(Hz)

Fig. 2. Phase-gain relation diagram shows the trade-off between robustness
and noise attenuation. Compared with the system represented by the blue
line, the system represented by the red line has less phase lag at the crossover
frequency, resulting in smaller slope of the magnitude. As a result, the
magnitude at high frequency is magnified, deteriorating the noise attenuation
performance.

B. Relation Between Sensitivity and Complementary Sensi-
tivity Function

In a closed-loop system as shown in Figure 3, the sensitiv-
ity function, defined as the ratio of noise to output, implies
the ability of the system to reject sensor and any additional
noise. It could be described as:

Y(s 1
Se=2&_ 1
N(s) 14 P(s)C(s)
The complementary sensitivity function, defined as the trans-

fer from the reference to the output, describes the ability of
the system to act as a servo system and is given by:

3

CY(s)  P(s)C(s)
T(s) = R(s) 1+ P(s)C(s) @

Where P(s) and C(s) denote the transfer function of the
plant and the controller. The constraint between sensitivity
and complementary sensitivity function in a linear system
can be described as:

S(jw) + T(jw) = 1, Ve s)

Fig. 3.

Feedback loop with disturbance and noise

From (5) it is seen that both functions can not be close to
one at the same frequency. There must be a trade-off between
the properties of tracking performance and noise rejection at
each frequency. If the peak of the complementary sensitivity
function needs to be decreased, the sensitivity function will
increase for that same peak frequency [23].

C. Waterbed Effect

For a linear system with no pole in the right half plane,
the sensitivity function has the following property [2]:

/'°° In|S(jw)|dw =0 (6)
0

This equation states that the integral of the sensitivity func-
tion over the entire frequency range must equal zero. It im-
plies that the decrease of sensitivity function at one frequency
would inevitably lead to an increase at another, which is
called the waterbed effect. Lower peak of sensitivity function
S(jw) leads to a more robust system, which is achieved by an
increase at other frequencies. When the sensitivity increases
at high frequencies, the noise attenuation is sacrificed. If the
sensitivity is increased the low frequencies, the reference
tracking performance will be affected for the existence of
S(jw) and T (jw) relation as shown in (5).

III. RESET CONTROL

Reset control is a strategy that resets the controller states
(or subset of states) to zero when some conditions hold [2].
It is the reset action that overcomes the limitation of linear
controllers. In light of Figure 4, two more inputs are required
than linear controllers which only need error (e(t)) input.
Input ¢(t) specifies the reset instants, which determine the
condition to activate reset action. The after states‘ reset value,
determining the degree of nonlinearity of the system, is set
by a(t).

Reset controllers (XR) as shown in Figure 5 have to
parts: A basic linear part Cy(s) and reset part C,(s). The
integrated reset controller with zero crossing of e(t) = 0 as
reset condition can be described as follows:

#(t) = Ayx(t) + Bre(t) ife(t) #0
z(tt) = Ayz(t) ife(t)=0 ™)
u(t) = Cra(t) + Dre(t)



e(t) ———> u(t)

c(t) —n
a(t) —slu+

Fig. 4. Basic integrator with two additional inputs.Image courtesy [2]

where x (t+) £ limg_,;102(s). A, B, C and D represent
the state matrix of the basic linear system. e(t) is the error
signal input to the system and wu(¢) is the output. z(¢) is
the state vector. First and the third equation denote the basic
linear dynamics. When the reset condition is met, the reset
action is triggered, represented by the second equation, and
the reset matrix A, determines to which degree the state is
reset.

R
r(t) _(t) - For) u(t) ! y(t)

Fig. 5. Feedback loop with reset controller

A. Describing Function

Reset systems are nonlinear and transfer function no
longer exists. A linear approximation method called describ-
ing function analysis is used to study the frequency behavior
of reset control. The describing function method consists
of replacing a nonlinear element within a system by an
"equivalent" linear time-invariant system which is in some
sense the best possible linear approximation of the nonlinear
system [20]. The describing function is input dependent
and sinusoidal excitation in usually chosen as input in the
literature.

In [6], the sinusoidal describing function is given by Guo
et. al. as:

Gpr(jw) = Cy (jwl — A;) ™" B, (I + jOp(w)) + D, (8)

Where the notations are defined as follows:

20?2
Op(w) = ———Aw) [(w) = A7} (w)]
A(w) = W2 + A2
Alw) = I + 34 ©)
An(w) =T+ Ajest
Po(w) = A7 ()4, A@)A )

As mentioned previously, the describing function is a
linear approximation of the nonlinear system, describing only
the first harmonics of the output, and higher order harmonics
are ignored. Since higher order harmonics are critical to
precision positioning systems, it it necessary to take higher
order harmonics into account as well.

An extension to higher order describing functions is real-
ized by introducing the concept of the harmonics generator

[22]. Recently, Heinen [21] derived the analytical expressions
of higher order harmonics for reset controllers:

Cr(jwl — A,)" (I +jOp, (w)) B, + D,

forn=1
G(w,n) =< C.(jwunl — A,)"10p(w)B,
for odd n > 2
0 for even n > 2

(10)
Where n denotes the order of harmonics.

B. Reset elements

Magnitude(db)
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Fig. 6. Describing function of Clegg with various reset values

1) Clegg: An integrator is used as the basic linear system
for Clegg Integrator. For Clegg the parameters of (7) become:

A, =0,B,=1,C, =1,D, = 0,4, =

A reset value of v = 0 leads to 52° less phase lag compared
to a linear integrator. Figure 6 shows the describing function
for changing reset values v € [—1,1], which is known as
Generalized Clegg Integrator(GCI).

2) First Order Reset Element(FORE): Horowitz et al. [4]
introduced the first order reset element(FORE) that resets
the state based on first order low pass filter. The basic linear
filter of FORE can be expressed as follows:

Gls) =

11

=1 an
where w, denotes the crosover frequency of the low pass
filter. The parameters of (7) are as follows:

Ar:_WryBr:WraCrzl’Dr:OvA'y:'y

FORE provides the advantage of filter frequency place-
ment that is not possible to achieve by Clegg and has been
used for narrowband phase compensation in [24]. Figure 7
plots the describing function of Generalized First Order Reset
Element(GFORE).

3) Second Order Reset Element(SORE): Considering the
base linear system as (12), second order reset element,
recently developed by Hazelgar et. al. [5], reset second order
low pass filter or notch filter can be designed.

w2

G(s) = r

_r 12
s2 + 2B,wps + w? a2
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Fig. 7. Describing function of FORE with various reset values

And the parameters of (7) are given as:

0 1 0
Ar = { —w? —2B,w, ' Br = { w? }
C_r=[10],D,=[0]

Unlike Clegg and FORE, in which A, is a scalar, A, in
SORE is a matrix given as:

7m0
= { 0 ]

Compared with FORE, SORE offers an extra degree of
freedom to design reset element with the additional pa-
rameter damping ration f3,.). Figure 8 shows the frequency
response of SORE for various values of 3,. Change of [,
in SORE exerts little influence on the gain behavior while
obtaining sharp phase change

—5,=025
—5,=0.025
,20.0025,

Magnitude(db)

Phase(®)

-60 L
10° 10’ 10% 10° 10*
Frequency(Hz)

Fig. 8. Describing function of SORE with various damping cofficient, A, =
[0 0;0 0], wr=100Hz

C. Stability Analysis

Consider a closed-loop system with reset controller as
shown in Figure 9. The controller ¥ RC') is seperated into
a part X, whose states are reset and a part 3,,,, whose states
are not reset. The following conditions must be satisfied for
ensuring asymptotic stability [17].

Theoreml: Let V : R™ — R be a continuously differ-
entiable, positive-definite, radially unbounded function such

Yre

T(t) e

B 0 O

Fig. 9. Closed loop bock diagram of plant 3, controlled by ¥ rc

that
:< ) ax <0, if e(t)£0 (13)
AV(x):=V (Arx) -V (x) <0, if e(t)=0 (14)
where
AR = dlag (A’w Inm Inp) (15)
_ A, BT'CVLT"D
ACZ a |: _BTLTPCT Anrp (16)

Then the reset system is asymptotically stable.

where 1, is the number of states of ¥, and n, is the
number of states in X, Ay is closed loop state matrix in
which (A, By, C,, D,) are the state space matrices of X,
and (Anrp, Burp, Crrps Dirp) are the state space matrices
of X, and X, in series.

Furthermore, the reset system is said to be quadratically
stable if it satisfies (15) and (16), for some V(x) = x' Px
with P > 0. Following proposition will suffice for proving
quadratic stability:

Theorem2: There exist a constant 3 € R"*! and P, €
R™>"r P> 0 such that the restricted Lyapunov equation

P>0,ALP4+PA, <0 (W)
BfP=cy (18)
has a solution for P, where C, and B, are defined by:

Onn'rpxnr
BO = Onrxnr >CO = [ﬁcnrp On,.xnu,. Py] (19)
In,.
IV. UNWANTED DYNAMICS AND EXISTENT RESET
STRATEGIES

A. Unwanted Dynamics in Reset Systems

Reset controllers can overcome the fundamental limitation
of the linear controller but the resetting action introduces
higher order harmonics which can negatively affect per-
formance.. Moreover, since describing function is a linear
approximation, unwanted dynamics cannot be indicated in
the frequency domain. In the case of a reset integrator, for
instance, the closed loop system does not have the same
steady state properties as a linear integrator has [2]. The
example below illustrates what is referred to aslimit cycles.

Considering a closed loop system shown in Figure 10,
let C(s) be a Proportional-Clegg integrator(PCI) controller,

given by Equation 20 and the plant be P(s) = Tlos



Fig. 10. Feedback closed loop

z(t) = e(t) if e(t) #0
z(tT)=0 ife(t) =0
u(t) = 2at) + kye(t) ky=2,7,=0.1

The state of the controller is reset to zero whenever e(t)
crosses zero. The step response of the system is shown
in Figure 11 compared with the response for the linear
Proportional-Integrator(PI) controller without reset action. A
system with PCI shows less overshoot due to the phase
lag reduction provided by reset action. However, there is
persisting oscillation at the set-point for the PCI system and
thus steady state performance is deteriorated. The occurrence
of this unwanted dynamics is caused by the mismatch of
the after reset value z.(t7) = 0 and the steady state
value of control signal of closed-loop linear system. The
steady state control signal of a unit step reference equals
to the inverse DC gain of the plant without the presence of
disturbance. In this case steady state control uss = 0.5 and
the corresponding after reset value of should be z. (t7) =
0.5 - g—; = 0.025. Constantly resetting this to zero results in
limit cycles .

C:= (20)

B. Reset Strategies

Some reset control strategies in literature have bee devel-
oped to cope with this unwanted dynamics problem. These
methods will be briefly discussed in this section.

15 T T T T T T T T —ai
—pl

Amplitude

0 0.5 1 15 2 25 3 35 4 4.5 5
Time(s)

Fig. 11.  Step response with limit cycles

1) PI+CI: PI+CI controllers [2] contains a parallel com-
bination of linear integrator and Clegg integrator. The con-
figuration is shown in Figure 12. An additional parameter
Dreset € [0,1] is introduced to make a trade-off between
linear and Clegg integrator. By adjusting prcsct, the con-
troller could either be dominated by PI or CI. Due to the
reset action, PI+CI structure has a phase advantage compared
with the linear PI controller. However, since this controller
is a trade-off between linearity and nonlinearity, it does not
use the full advantage of reset control and thus phase lag
reduction is smaller compared with the CI controller.

To illustrate how PI+CI performs, consider a system in
Figure 10 with the plant P(s) = - +10_ = controlled by PI+CI
controller with k;, =2 and 7; = 0.1.

Figure 13 gives the step response of system with different
values of preser. It can be seen that the limit cycles are
removed with preser = 0.5 and the settling time of PI+CI

configuration is lesser than that of a normal PI configuration.

Fig. 12.  PI+CI structure.Image courtesy [2]
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Fig. 13. step response of configurations with various preset

—— PI+CI(P =0.5)
—PCI(P,=1)
\ - - PIP,=0)
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Fig. 14. Control signal of configurations with various preset

2) Reset with band: The reset with band strategy resets
the state to zero once the error enters a defined band Bs . By
is the tuning parameter to determine the width of the reset
band [18]. This approach is expressed by:

@(t) = Arx(t) + Bre(t)
z(tT) = A,z(t)
u(t) = 2o(t) + kpe(t)

if (e(t),€(8)) ¢ B

), €(t)
if (e(t),é(t)) € B (21)

where Bs = (z,9) € (R)?|(x = —0Ay > 0)V(z =0Ay <
0)



This strategy is able to remove limit cycles in some cases
but the system performance is dependent on the reset band,
which makes the controller not robust for a practical system
with model uncertainties and/or disturbance. To illustrate
this, let the system shown in Figure 10 with the plant
P(s) = Hﬁ and controller of (21) with k, = 2,7; = 0.1.

Figure 15 and Figure 16 show the step response and
control signal of the system with reset band of 6 = 0.1 and
6 = 0.2. It can be seen that the limit cycles can be avoided
only when the reset band is carefully selected. When a reset
band of § = 0.1 is used, the limit cycles still exist together
with steady state error. For the case § = 0.2, both limit cycles
and steady state error are removed. But the system acts as a
linear system inside the reset band, which makes the transient
response slower than zero crossing reset strategy. Moreover,
to the best of the author‘s knowledge there does not exist
a systematic approach to determines the reset band in the
literature.

Amplitude
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Fig. 15. Step response of reset band system with different reset band

Amplitude
~

0o 05 1 15 2 25 3 35 4 45 5
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Fig. 16. Control signal of reset band system with different reset band

3) Fixed reset instants: Zheng et al. [15] extended the
reset condition from zero crossing of error signal to fixed
time instant and designed an improved PI reset controller for
a positioning stage. Moreover, the after reset value x, (t;)
is determined at every reset instant by minimizing (22). The
controller equations are given in (23).

Je = €" (tryr) Poe (thpr) + €7 (trr1) Qoé(tk +1)

4 / ()T Prels)ds

Jt,

(22)

where Py, P; and Q) are positive semidefinite tuning matri-
ces and e(t) is the error signal.

&, = Arx,. + Be, t #ty
Ty (t;r) = Ekﬂ?p + FkIT + Gkn t =1
u = Cya, + Dye

(23)

where A,, B,, Fy, Fy, Gy, C, and D, are appropriate
dimensional constant matrices, x, is the reset controller state
vector, x,, are the plant states and r is the reference tracking
signal.

This approach seems to be effective, but it can be re-
strictive in real applications, since the optimization depends
on system matrices and tuning parameters and thus may be
sensitive to model uncertainties. The thought of a constant
reset instant is promising. A controller with a fixed reset
instant might be more robust to noise since the reset action
is not activated in zero crossing instants, which might be due
to noise as well. However, there no procedure exists in the
literature to determine reset instant interval Aty

4) Adaptive after reset variables: The idea of adapting the
after reset value to steer it towards steady state value of the
control signal has been used in [15] and [25]. Based on these
works, Mark [19] proposed a robust adaptive reset controller
which can reject limit cycles in case of model uncertainties
and constant input disturbances. This strategy uses a similar
configuration as the general PI reset controller with fixed
reset instants (HosseinNia et al. [26], expressed by (24).

Zr(t) = e(t), if t #ty
z (t7) = K7 r(t) — me(t), ift=t
»

ur(t) = %x,(t) + kpe(t)

(24)

In this algorithm, the limit cycles are detected by com-
paring the consecutive jump of the control signal. Once the
limit cycle is present, K will be iteratively adapted to make
the control signal converge to the steady state error until the
limit cycle is removed.

V. PHASE COMPENSATION WITH RESET

The majority of the research in reset control was focused
on the integrator and elimination of limit cycles. The main
advantage obtained from reset was in phase lag reduction.
On the other hand, works in [27] employ reset control on
a different part of the PID framework. A PID controller is
described as below:

_ wi) (S S wi
Gpip = Ky (1+ s) (wd +1>/<wt +1> <s+wl>
N—— —_——

Integrator

Tamed derivative Low pass filter

(25)
where w;, wq, wy, wy are the corner frequency of integrator,
lead, lag and low pass filter, respectively. K, is chosen such
that the open loop gain of describing function is unity at the
bandwidth.

With the analysis of describing function, it is shown that
the implementation of reset in tamed derivative and low pass
filter outperform linear PID regarding bandwidth and preci-
sion. Based on work in [27], N. Saikumar et al. [7] proposed



a novel reset element termed "Constant-gain Lead-phase"
(CgLp) which combines generalized reset elements (GFORE
and GSORE) and the corresponding order of lead filter. This
element was used to provide broadband phase compensation
without affecting magnitude performance. Experimental re-
sults showed significant improvement in tracking and steady-
state compared to Clegg Integrator based controllers and PID.
However, it was shown that the improvement is dependent
on the tuning of reset elements and that describing function
of the CgLp-PID system cannot accurately represent closed-
loop performance due to the effect of higher order harmonics
[28]. While the effect of the higher order harmonics on
performance is not as bad as seen in the previous cases
with reset integrator, minor deviations are critical when
dealing with precision positioning. Hence, tuning of CgLp
considering higher order harmonics is necessary to make the
best of reset elements.

VI. CONCLUSIONS

This review paper has presented an overview of reset
control and proven the potential to overcome the fundamental
limitations of linear controllers. Moreover, with the analysis
of describing function, reset controllers can be designed us-
ing the industrial standard loop shaping techniques. However,
higher order harmonics are also introduced due to resetting
action and thus unwanted dynamics like limit cycles are
present in system response. This downside of reset control
hinders the performance of precision systems and strategies
have been proposed to deal with the problem.

PI+CI, reset band, fixed reset instants and adaptive after re-
set variables are examples of methods studied in the literature
to improve the performance of reset elements. Nevertheless,
these strategies have some defects and are dependent on
system characteristics. PI+CI provides a trade-off between
linear and nonlinear control and thus the potential of reset
controllers are not fully used. Although the reset band
approach and fixed reset instants strategies have been shown
to remove limit cycles, the performance depends on the reset
band and reset instants. Unfortunately, there is no systematic
approach in the literature to determine these parameters.
Moreover, they are less robust against system uncertainties,
which is also the problem for adaptive after reset variables
strategy.

While most of the research has focused on the reset
integrator, recent work on implementing reset within other
parts of PID has been shown to provide higher precision
and bandwidth. This strategy uses the nonlinear lead filter
to provide phase compensation without damaging the mag-
nitude performance.

The main issue regarding the study of reset control is that
the describing function analysis cannot accurately represent
system performance since it is a linear approximation and
higher order harmonics are neglected. To obtain a more
precise indication of a reset system performance, a compre-
hensive analysis needs to be developed.
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Objective

3.1. Problem Definition

Reset control as a type of nonlinear controller has been shown the advantage of overcoming
the fundamental limitation of linear controllers in literature. While most of the work on
reset control has been focused on phase lag reduction, [15] proposed a novel reset ’Constant
in gain Lead in phase’ (CgLp) element that can provide broadband phase compensation and
outperform linear PID controllers. However, it was shown that in some cases the improve-
ment expected through describing function is not seen [16]. This is because reset control as
a nonlinear element introduces higher order harmonics that cannot be indicated by describ-
ing function into the system which can negatively affect system performance. To take full
advantage of the CgLp element and make it reliable for the high-tech industry, it is critical
to include the higher order harmonics in design process. Based on this, the research goal of
this thesis is:

To tune the Constant in gain Lead in phase’ element such that the effect of high order
harmonics is minimized and closed loop performance is optimized.

3.2. Research Approach

The research is conducted by the following approach:

+ Use DF to design groups of CgLp elements that provide the specified amount of phase
compensation at the crossover frequency.

« Use HOSIDF tool to analysis the open loop 3"% harmonic frequency behavior for
previously designed CgLp elements and identify features of these 37¢ harmonics.

+ Study the closed loop performance of various configurations in Matlab simulation.

+ Validate the applicability of the developed tuning guidelines on a precision positioning
stage that can be identified as a mass spring damper system.

13



14 3. Objective

3.3. Thesis Outline

Chapter | discusses the challenge of motion control in the field of the high-tech industry
and presents the motivation of this research. In Chapter 2, the states of art for reset con-
trol strategy are given. This chapter presents the formulation of the research objective and
approach to reach the goal. The main work of this thesis, the study of developing tuning
guidelines for CgLp elements is presented in Chapter 4 in scientific paper format. Finally,
Chapter 5 gives the conclusion and recommendation for future research. More details on
this research are given in the Appendices.



Tuning ‘Constant in gain Lead in
phase ° Elements for Mass-like
Systems

This chapter is presented in the conference paper format. The performance of CgLp ele-
ments is investigated using DF and HOSIDF analysis. In this work, CgLp elements are
designed to achieve the same first order harmonic behaviors and thus the performance devi-
ation is dominantly affected by higher order harmonics. Through the analysis on third order
harmonic behavior of various control configurations, tuning guidelines are developed and
validated on a precision position stage.
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Tuning of the ‘Constant in gain Lead in phase’
element for Mass-like Systems

Xiaojun Hou, Ali Ahmadi Dastjerdi, Niranjan Saikumar, S. Hassan HosseinNia

Abstract—Proportional Integral Derivative (PID) controllers
are dominantly used in industry for their ease of implementation
and simple structure. However, in the high-tech industry where
utmost robustness and precision are required, PID controllers
are bounded because of the fundamental limitations of linear
controllers such as the waterbed effect. Thus, nonlinear con-
trollers such as reset elements have been used to meet the new
requirements of the high-tech industry. In literature, the Constant
in gain Lead in phase (CgLp) element is a novel reset element
developed to overcome the inherent limitations of linear PID
controllers. However, a tuning guideline has not been proposed
in the literature so far. In this paper, a recently developed
method named higher-order sinusoidal input describing function
(HOSIDF) is used to obtain greater insight into the frequency
domain behaviour of this reset element and comparative analysis
using tracking performance metrics is carried out for so-called
mass-like systems controlled by CgLp. Based on these analyses,
tuning guidelines for CgLp are developed and validated on
a positioning stage. The results show the effectiveness of the
developed simple tuning to be used by the high-tech industry.

Index Terms—Reset Control, Motion Control, Describing
Function, HOSIDF, CgLp

I. INTRODUCTION

HE development of the high-tech industry has pushed the

requirements of motion applications to extremes regard-
ing precision, robustness and speed. Especially, for lithography
machines, which are involved in manufacturing integrated
circuits, the improvement in motion speed and precision has
become more challenging nowadays. Proportional Integral
Derivative (PID) has been widely used in industry for its ease
of implementation and simple structure. However, the ever-
increasing control requirements cannot be satisfied by these
linear controllers due to fundamental limitations such as the
waterbed effect [1]. To overcome the limitations of linear
controllers, researchers have turned to nonlinear controllers
such as reset control.

A traditional reset controller resets the state to zero when-
ever its input crosses the zero point. In 1958, Clegg [2]
proposed the first reset element which resets the state of
an integrator to zero. If we use Describing Function (DF)
tool, which considers only the first harmonic of the output
of the controller for a sinusoidal wave input, the gain slope
of Clegg Integrator (CI) is the same as the linear integrator
while it produces 52° less phase lag than the linear integrator.
Besides CI, other reset configurations have been developed to
provide more design freedom and applicability: Generalized
First Order Reset Element (GFORE) [3] and Generalized
Second Order Reset Element (GSORE) [4]. Apart from zero
error crossing condition, other conditions like reset band [5]

and fixed reset instants [6] have also been studied. Moreover,
there are several techniques which are proposed to soften
nonlinearities of reset controllers such as Partial Reset [5] and
PI+CI [7] approaches. The advantages of reset control have
been utilized to enhance the performance of heat exchangers
[8], liquid level control systems [9] and precision positioning
systems [10]-[14].

Although reset control has seen a lot of success over
the years, it has mainly been used for its phase lag re-
duction advantage and has mainly been used as part of
the integrator for this reason. However, N. Saikumar et. al.
[15] proposed a novel reset element termed ’Constant-gain
Lead-phase’ (CgLp) which produces broadband phase lead
while maintaining constant gain. This controller is made by
combining the GFORE/GSORE with the first/second order
linear lead filter. As a result of the design flexibility of reset
elements, various combinations of tuning parameters could
be used to provide the same open loop gain behaviour and
equivalent phase compensation at the crossover frequency
based on describing function analysis. However, it was seen
that the improvement expected through describing function
analyses was not achieved in some cases [16]. Hence, DF
analysis is insufficient to perform frequency analyses for
reset elements. Recently, Nuij [17] has extended describing
function to higher order sinusoidal input describing functions
(HOSIDF) for the analysis of these higher order harmonics
of non-linear systems. With this tool, Heinen [18] developed
HOSIDF for reset controllers and opened the possibility of
more accurate analyses on reset controllers. Because of the
design freedom even if the first harmonic matches in gain and
phase compensation at the crossover frequency , the higher
order harmonics are disparate. The motivation of this paper is
to develop tuning guidelines of CgLp elements for so-called
mass-like precision positioning systems using both describing
functions and HOSIDF analyses.

The structure of the paper is as follows. Section II gives
preliminaries on reset controllers. In section III, the tuning
method is derived based on the analyses of DF and HOSIDF
using the simulation results as basis for time domain perfor-
mance. Then, section IV presents the experiment verification.
Finally, conclusions and remarks for further study are provided
in section V.



II. PRELIMINARIES

A. Definition of reset control

A reset controller can be generally defined by the differen-
tial inclusions as follows:

X(t) =A,x(t) + Bye(t)
x(17) =Apx(t)
u(t) = Cyx(t) + Dre(t)

if e(r) £0

Y= ife(r)=0 )

Ay, B, C, and D, are the state matrices of the base linear
system. e(t) and u(z) are the error input and control output,
respectively, and the reset action is triggered when the error
crosses zero. Moreover, the resetting matrix A, determines
states’ value after reset action by which the nonlinearity of
reset systems can be tuned by varying Ay.

B. Describing function (DF) and higher order sinusoidal input
describing function (HOSIDF)

Since reset systems are nonlinear, transfer functions no
longer exist. A linear approximation method called describing
function (DF) analysis is popularly used in literature to study
the frequency behaviour of reset controllers. The sinusoidal
input DF of reset systems defined by (1) is given as [5]:

Gpr(j®) =C,(jol —A,) ' B, (I+ j®p(w))+D, (2)

where the notations are defined as follows:

Op (@) = _%A(w) [C(@) - A ()]

)
)
A(@) =1+t )
)
)

To include high order harmonics and obtain a more reliable
frequency description of reset system, HOSIDF is obtained in
[4], [18] as :

for odd n > 2
for even n > 2

“

T(i 7 A\l
G(w,n) = { C; (jonl AVO) JjOp(®)B,

where 7 is the order of harmonics.

Based on the above equations, harmonics of the FORE with
a corner frequency of @, and its linear base are depicted
as in Figure 1. Based on the first harmonics, it can be seen
that the reduction of phase lag is obtained without significant
change of magnitude but with a small shift of corner frequency.
Moreover, it is worthy to note that the behaviour of 5t and
higher harmonics are similar to that of 3 harmonic and the
only difference is that the magnitude decreases with increasing
order. On this account, we use only the 3" harmonic to
analyze the effect of the higher order harmonics on closed loop
performance. Note, the magnitude of higher order harmonics
reach the peaks at a frequency around @, which is denoted by
@p
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Fig. 1: Frequency behaviour of reset low pass filter, its linear
base and high order harmonics.

C. New error sensitivity for reset systems

In linear systems, the sensitivity function from reference
signal (r(z)) to error (e(t)) can be calculated by (5). This
transfer function indicates the ability of the system to precisely
follow the reference signal.

S(s) =< :

P TG0 ©

G(s) and C(s) are the transfer function of the plant and
controller, respectively.

For nonlinear controllers, C(s) can be substituted with DF
of the controller to analyze tracking performance. However,
it is not accurate enough to predict the precision tracking
performance of the controller since high order harmonics are
neglected. To obtain a better indicator for reset systems, con-
sidering a sinusoidal reference r = rgsin(wt), a new sensitivity
function (Sy) is defined as:

max(le(r)])  max(|r(r) - y(1)])

Vo : Se(o) = 6)

ol [0

where y(r) is the system output, s indicates the settling.

D. Cglp

In [15], CgLp is introduced as a phase compensator by
combining GFORE or GSORE with corresponding order of
lead filters. The first order CgLp is defined as follows:

1 o1

(O]

Cegrpi(s) =

where y is a parameter that tunes after reset value and
determines the matrix Ay. @, and @, are the starting and
taming frequencies of linear lead filter. w,¢ = @,/ is the
corner frequency of the reset element and o is the correction
factor accounting for the shift of corner frequency to ensure
constant gain of CgLp elements. The values of o determined
by v are summarized in Table I [15]:



TABLE I: Correction factor « of first order CgLp.

Y oa Y o
09 1.0 -0.1 1.60

0.8 101 -02 181

0.7 102 -03 209

0.6 104 -04 247

05 107 -05 301

04 1.1l  -0.6 3.85

03 116 -07 526

02 123 -08 8.19

0.1 132 -09 1671
0 1.44

Similarly, the second order CgLp can be defined as below:
2
1 (&) +2sk+1
2
()2 (&+1)

where ®,¢q = ®,/@; and B,q = P,/ 0% are the corner frequency
and damping ratio of the reset element, respectively. ¢ and
o (Table II) are correction factors considering the shift of
corner frequency and adjustment of damping ratio to guarantee
constant gain of second order CgLp elements (Only B, = 1
is investigated in this paper).

®)

CCngZ (S) =
o T 1

TABLE II: Correction factors & and o of second order CgLp.

v o, o Y o,
09 099,103 -0.1 1.52,1.63
08 098,105 -02 192,191
0.7 096, 1.07 -03 243,210
06 094,107 -04 3.11,221
05 092, 1.06 -05 423,249
04 090, 1.03 -0.6 589,276
03 089,100 -0.7 8.66,3.01
02 093, 1.02 -08 14.11,32
0.1 103 L.14 -0.9 30.09, 3.28
0 1.23, 1.36

Figure 2 shows DF and HOSIDF behaviour of first order
CgLp confgurations that are used to provide the same amount
of phase compensation at pre-determined frequency @,. In this
thesis, we will analyze the 37 harmonic of the reset part in
the CgLp elemtent instead of the entire CgLp implementation
since it is this reset part that introduces higher order harmonics
and the 3" harmonics behaviour is more straightforward.
From the perspective of the frequency behaviour, the phase
compensation provided by the CgLp element starts from @;q
and reaches the maximum level which is determined by y at
higher frequencies. Hence, the phase compensation provided
by CgLp elements at . of a system can be defined as
6(w,7), which is a function of ®, and y. By tuning o, and 7,
equivalent phase compensation 6 can be obtained and constant
gain is maintained according to DF analysis. From the figure
of HOSIDF behaviour, it is seen that the 3" harmonics are
quite different even though first harmonic is very similar. It is
observed that the peaks magnitude of 3"¢ harmonic increase
when lowering y and the sequence of magnitude for various
configurations is distinctive at low and high frequencies due to
the tuning of @,. To summarize, CgLp elements can be flexibly
tuned by varying y and @, to achieve required amount of phase

Magnitude (db)
1

5

Phase (°)

 Magnitude (db)

Frequéncy (Hz)

(b)

Fig. 2: (a): DF of first order CgLp configurations with various
@, and 7y that provode 6 degrees phase compensation at @ ;
(b): 3" order HOSIDF of the reset part in CgLp elements.

compensation. Moreover, the behaviour of 3" harmonic is also
determined by tuning parameters.

E. Motivation of Cglp tuning

CgLp has proved the advantage of overcoming the fun-
damental constraints of linear controllers. However, it was
seen that in some cases, the improvement expected through
describing function analysis was not seen [16]. This is because
performance prediction is based on DF analysis and does
not take HOSIDF into account. Hence, it is of importance
to understand how higher order harmonics affect the system
performance. When CgLp elements are designed to provide the
same amount of 6 at the crossover frequency, we will assume
that the discrepancy in system performance is caused by higher
order harmonics since the first harmonic is equivalent based
on the DF analysis. The motivation of this paper is to tune the
CgLp element such that we minimize the effect of higher order
harmonics and enhance the tracking performance of CgLp. The
main parameters used in this paper are summarized in Table
IIL.

III. TUNING GUIDELINES
This section presents the process of developing CgLp tuning
guidelines in simulation. Once the CgLp elements are designed
to provide the same amount of 6, it is assumed that the
case with optimal tracking performance is affected the least
by higher order harmonics. In this paper, the tracking is
evaluated based on new error sensitivity (Ss). Then, the



TABLE III: Some parameters used in this paper.

Parameters ~ Meaning Units
b4 Variable to tune after reset value \
o0, 0 Coefficients to ensure constant gain in CgLp \
Variable to tune @, of CgLp

[o% Corner frequency of lead filter in CgLp Hz
[ Corner frequency of FORE / SORE in CgLp Hz
(oM Frequency at which 3"d harmonic reach peak Hz
(0% Crossover frequency where 6 phase is provided Hz
¢} Phase compensation achieved at crossover frequency — °

M, Peak Magnitude of 3" harmonic db

relation between open loop 3" harmonic behaviour and closed
loop tracking performance is established, which leads to the
tuning guidelines.

A. Designing of controllers

Due to the design flexibility of CgLp configurations, several
groups of first and second order CgLp elements can be de-
signed to produce 0 (20°,30°,40°, 50°) phase compensation
at @, by varying y and ®,. Crossover frequency of the system
. is set as 100Hz. The value of y is chosen from -0.9 to
0.9 with an increment of 0.1. And @, = @./b where b is
used to obtain the corner frequency of CgLp elements and
is determined by 7y and 6. All in all, the parameters for all
configurations can be summarized in Table IV and V. Since
the required amount of phase compensation cannot be obtained
for all values of y, some cells are left blank.

B. Closed loop precision performance

This subsection presents the closed loop performance of a
system controlled by CgLp configurations designed in previous
subsection. Without loss of generality and for simplicity, a
mass system P(s) = ﬁ is controlled by first and second order
CgLp. The closed loop block diagram of first order CgLp is
shown in Figure 3.

Fig. 3: Block diagram of the closed loop system with mass
plant controlled by a first order CgLp compensator.

The performance of the system is evaluated based on
tracking precision using the new error sensitivity S mentioned
in section II-C. We compare the S behaviour of various con-
figurations over frequencies smaller than 40Hz since tracking

signals are generally composed of low frequency components
in comparison to the crossover frequency. Then, the best
configuration is selected upon Si. For instance, as shown in
Figure 4, among configurations that provide 30° phase lead,
CgLpl-8 and CgLp2-4 have optimal precision performance
for first and second order CgLp, respectively. Similarly, the
optimal configurations for 20°, 40° and 50° compensation
can be obtained and all of the cases which provide optimal
time domain performance within their group are highlighted
in Table IV and V.

To understand how the open loop higher order harmonics
affect the closed loop tracking performance, we characterize
the 3" harmonic by the peak magnitude (M) that determines
the level of nonlinearity and the frequency where the peak
happens (w,) that affects the distribution of 3" 4 harmonic over
frequency domain (shown in Figure 2b). Values of M, and ®,
are listed in Table IV and V. By comparison, it is found out
that the scenarios that produce optimal tracking performance
always have the largest value of @, within the group. More-
over, the optimal configurations from a tracking perspective,
have almost the lowest magnitude of third harmonics at low
frequency among the group. This relation between open loop
37 harmonic behaviour and closed loop performance provides
a clue for the tuning of CgLp elements.

To investigate the noise attenuation performance of these
CgLp elements. The reference signal is set as 0 and white noise
with a maximum magnitude of 0.5um is added to the feedback
branch of the system shown in Figure 3. The configurations
that have the best noise rejection are underlined in Table
IV and V. It is found that these best cases correspond to
configurations that have the lowest 3" harmonic at frequencies
larger than ..

Furthermore, although the aforementioned results are ob-
tained based on investigation for a mass system, results of
mass spring damper systems with a low resonance frequency
and a high damping coefficient are expected to show the same
conclusion. This is because CgLp controllers are usually used
in combination of proportional integral (PI) controllers which
shapes the open loop behaviour of a mass spring damper
system that has a low resonance frequency into a mass-like
system. And a high damping ratio ensures that the third
harmonic is never higher than the first harmonic.

IV. VALIDATION

This section presents the experiments performed to inves-
tigate the performance of CgLp compensators on a precision
positioning stage and to validate the previously obtained rela-
tion about open loop behaviour and closed loop performance
on a mass spring damper system that has a small resonance
frequency and a large damping ratio.

The precision positioning stage is shown in Figure 5. Three
actuators are angularly spaced to actuate 3 masses (indicated
by B1 B2 and B3) which are constrained by parallel flexures.
These masses are connected to the central mass D through
leaf flexures. Only actuator Al is utilized to control the
position of BI, so we have a SISO system. Mercury M2000
encoder is used the measure the position of mass B1 with a



TABLE IV: Parameters for first order CgLp configurations (@, = @./b,Hz).

20° 30° 40° 50°
y b ,(Hz) M,(db) b ©,(Hz) M,(db) b 0y(Hz) My(db) b ©,(Hz) M, (db)
CgLpl-1 0.3 641 1637 -22.63
CgLpl-2 0.2 3.40 29.74 -21.40
CgLpl-3 0.1 249 3871 -20.31 6.80 14.18 -20.31
CgLpl-4 0 202 4478 -19.32 397 2284 -19.32 2582 351 -19.32
CgLpl-5 -0.1  1.73  48.63 -18.41 292 2872 -18.41 7.19 11.68 -18.41
CgLpl-6 -0.2  1.51  50.79 -17.56 235 3257 -17.56 4.45 17.20 -17.56 2378 322 -17.56
CgLpl-7 -0.3 [ 1.34 5151 -16.77 1.98 3478 -16.77 3.31 20.79 -16.77 8.21 8.38 -16.77
CgLpl-8 -04  1.19  51.00 -16.02 171 3555 -16.02 2.66 22.85 -16.02 5.17 11.77 -16.02
CgLpl-9 -0.5  1.07 4925 -15.30 1.50  34.96 -15.30 2.23 23.54 -15.30 3.84 13.69 -15.30
CgLpl-10  -0.6 095 4590 -14.60 133 3298 -14.60 1.92 22.81 -14.6 3.07 14.23 -14.62
CgLpl-11  -0.7 0.85 4094 -13.91 1.18  29.49 -13.91 1.68 20.74 -13.91 2.57 13.53 -13.91
CglLpl-12  -0.8 0.75 33.72 -13.22 1.05 24.16 -13.22 1.48 17.12 -13.22 221 11.48 -13.22
CgLpl-13  -09 0.66 23.03 -12.47 094 16.26 -12.47 1.33 11.53 -12.47 1.94 8.59 -12.47
TABLE V: Parameters for second order CgLp configurations (@, = @ /b).
20° 30° 40° 50°
y b o,(Hz) My(db) b ©,(Hz) M,(db) b 0y(Hz) My(db) b ©p(Hz) M, (db)
Celp2-1 05 144 4824 2274
CgLp2-2 0.4 097 73.77 -21.14 1.61 4448 -21.14
CglLp2-3 0.3 0.83  87.98 -19.77 1.16  62.73 -19.77 139 4265 -19.77 353 21.61 -19.77
CgLp2-4 0.2 0.75  94.17 -18.59 1.00  70.04 -18.59 135 5226 -18.59 1.87 6543 -18.58
CgLp2-5 0.1 0.68  94.18 -17.54 092 69.50 -17.54 123 5231 -17.54 1.63  66.07 -17.53
CgLp2-6 0 0.59 92.14 -16.59 0.82  66.45 -16.59 1.36 49.25 -16.59 1.46  66.77 -16.60
CgLp2-7 -0.1 049 9047 -15.73 0.69 64.75 -15.73 094 4735 -15.73 126 67.54 -15.73
CgLp2-8 -0.2 040 89.06 -14.95 055 64.58 -14.95 0.75  47.18 -14.95 1.03  68.37 -15.00
CgLp2-9 -03 033 8548 -14.22 045  63.67 -14.22 0.60 47.21 -14.22 0.83  34.65 -14.21
CgLp2-10  -04 028 79.93 -13.54 037  60.94 -13.54 049 4592 -13.54 0.67 3517 -13.54
CgLp2-11  -05 022 75.69 -12.90 029 58.15 -12.90 039 43.86 -12.90 0.53 3577 -12.90
CgLp2-12  -0.6 0.18 69.84 -12.30 023  53.65 -12.30 031 4032 -12.30 043 3647 -12.30
Cglp2-13  -0.7 0.14 6124 -11.73 0.19  46.44 -11.73 025 3451 -11.73 035 2484 -11.73
CgLp2-14 -0.8 0.11 48.04 -11.18 0.15 3534 -11.18 021 2579 -11.18 030 19.13 -11.18
CgLp2-15 -09 0.10 2747 -10.66 0.14  19.42 -10.66 0.14  14.00 -10.66 0.27  10.00 -10.67
* -10 CgLp1-4 ' 12 [ ! CgLp2-2
—CgLp1-6 —CgLp2-4
10F 42 CgLp1-8 10 -14 CglLp2-6
—CgLp1-10] 16 —CgLp2-8
5 —CglLpi-12 —CgLp2-10|

S (db)

Frequency(Hz)

(a) First Order CgLp

Frequency(Hz)

(b) Second Order CgLp

Fig. 4: New error sensitivity Ss of the mass system controlled by CgLp elements to achieve 30° phase compensation at
crossover frequency.



resolution of 100nm. Controllers are implemented on FPGA
NI CompactRIO.

Figure 6 shows the frequency response of the stage. The
system can be approximated as a single mass spring damper
system with estimated transfer function as follows.

B 9602.5
T s244.26765+7627.3

Peq (S) ©

Fig. 5: Picture of precision positioning stage actuated voice
coil actuators with encoder placed under mass of interest B1.
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Fig. 6: Frequency response and estimated transfer function of
the system

In order to validate the proposed relation, two control
configurations (10) and (11) are implemented on the precision
positioning stage.

; 1 o+l
Gi(s) =K, (1-"—%) (/;/kl'y) <g+l> (10)
N——— \ @y (2]

Integrator

CgLpy

TABLE VI: RMS and maximum steady state error for noise
attenuation with system controlled by: a)First Order CgLp
compensator, b)Second Order CgLp compensator

(a)

b4 20° 30° 40°
max(e(t)) RMS max(e(t)) RMS max(e(t)) RMS
0.3 10 3.35
0.2 10 3.66
0.1 23 7.67 8 2.40
0 20 7.24 13 4.35 6 2.04
-0.1 45 19.98 26 10.60 8 2.64
-0.2 31 14.50 29 1244 12 3.32
-03 55 29.34 35 17.00 29 13.38
-04 74 32.84 53 2841 34 14.09
-0.5 150 43.93 63 29.12 58 30.15
-0.6 338 143.62 65 31.67 59 30.29
(b)
b4 20° 30° 40°
max(e(t)) MS max(e(t)) RMS max(e(t)) RMS
0.5 11 3.31
0.4 14 4.09 10 2.86
0.3 15 4.41 11 3.87 7 2.48
0.2 19 5.44 16 3.78 14 5.21
0.1 19 7.55 16 3.84 13 4.41
0 26 10.03 14 4.35 15 4.84
-0.1 20 4.93 19 6.24 15 4.56
-02 19 5.39 19 6.19 14 5.40
-03 26 6.74 15 4.50 17 6.38
-04 29 9.77 20 7.74 24 7.45
and
2
s Br
o 1 (&) +2sB 41
Ga(s) =K, 1+ — & &
Ny (i + 1)
Integrator (T O +1 o
CeLps

an
The CgLp configurations of controllers (10) and (11) are
tuned based on Table IV and V to produce 20°, 30°, and
40° degree phase at the crossover frequency. The crossover
frequency of all designed controllers is set to 100Hz. Also,
o; and oyare tuned as @./10 and 5@, respectively. All in all,
we have six groups of control configurations and within each
group the phase margin, the corner frequency and the type
of CgLp element are the same. Moreover, the controllers are
implemented with a sampling frequency of 20kHz.

The sinusoidal tracking experiments are carried out to
validate proposed relation obtained by new error sensitivity Ss
analysis in the previous section. Since it is time-consuming to
obtain the behaviour of S; over the entire frequency range,
the maximum steady state errors of several sinusoidal input
with frequencies of SHz, 10Hz, and 20Hz were used for per-
formance analysis. Figure 7 and Figure 8 show the maximum
steady state error of reference tracking and corresponding @,
for each control configuration of first and second order CgLp.
It is seen from the figures that the lowest value of maximum
steady state error is obtained when the @, is the maximum.
This is consistent with the analysis in the previous section.
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Fig. 7: Maximum steady state error of the system with
various sinusoidal reference controlled by first order CgLp
configurations.

In the experiments of noise rejection, zero reference is
used and additional white noise with a maximum magnitude
of 0.5um is applied to the feedback branch of the system
as shown in Figure 3. Table VI shows the results for first
and second order CgLp elements. It can be seen that the

80

=
S

w_ (H2)
Y @ 2
B ] 2

@
s

N
3
Maximum steady error (100nm)

10

a5 L L L L
-0.3 -0.1 M 0.1 0.3 0.5

(a) 20° Phase Compensation
T T T 80

Maximum steady error (100nm)

L
0
s

(b) 30° Phase Compensation

20 P

—5Hz
10Hz

—20Hz

I~
3

80

@
3

@
]

u, (H)

3
3

©
Maximuam steady error (100nm)

)
S

20

-E;.S -0.1 5 0.1 03
(c) 40° Phase Compensation

Fig. 8: Maximum steady state error of the system with
various sinusoidal reference controlled by seoncd order CgLp
configurations.

configurations with optimal noise attenuation performance
within the group are consistent with cases indicated in Table I
and V. Moreover, it is noteworthy that the optimal cases of first
order CgLp outperform that of second order Cglp regarding
noise attenuation.
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Furthermore, the performance of a smooth trajectory (Figure
9) which is the combination of several sinusoidal waves with
different frequencies is also investigated. TableVII shows the
Root Mean Square (RMS) and maximum steady state error for
each scenario. It is observed from the tables that the optimal
performances regarding RMS and maximum steady state error
are still obtained with reset values that produce a maximum
@,. Moreover, it is interesting to notice that in most cases the
optimal second order CgLp configuration outperforms that of
first order CgLp. Based on the analyses in the previous section,
this behaviour can also be explained by the fact that the @,
of second order CgLp are larger than that of first order CgLp.

Based on these analyses, the tuning method can be summa-
rized as:

(i) Use describing function to design a group of CgLp
elements that provide the required phase lead as com-
pensation at crossover frequency.

(ii) Check the frequency @, at which the 3" harmonic
peak happens for each configuration using HOSIDF and
choose the CgLp configuration that has the largest value
of ).

V. CONCLUSIONS

This paper has proposed a tuning guideline for Constant-
gain Lead-Phase (CgLp) configurations for so-called mass-like
systems. Several groups of CgLp controllers are designed to
achieve the same amount of phase compensation and their
open loop high order harmonics behaviour are investigated
through high order sinusoidal describing function analysis
(HOSIDF). Then, the closed loop precision performances for a
mass system are evaluated by a new error sensitivity function
which considers all orders of harmonics. It is found that the op-
timal tracking precision performances are obtained with cases
that have the largest frequency of 3" harmonic peak (wp) and
have almost the smallest magnitude of high order harmonics at
low frequencies. On the other hand, configurations that result
in the lowest magnitude of 3’¢ harmonic at higher frequencies
have the best noise attenuation performance. Although the
guideline is developed through investigation on a mass system,

TABLE VII: RMS and maximum steady state error for trajec-
tory tracking with system controlled by: a)First Order CgLp
compensator, b)Second Order CgLp compensator

(a)

b4 20° 30° 40°
max(e(t)) RMS max(e(t)) RMS  max(e(t)) RMS
0.3 12 4.63
0.2 9 2.85
0.1 6 1.95 13 517
0 7 2.14 8 2.92 31 12.51
-0.1 7 1.74 7 2.41 15 5.72
02 7 2.11 7 2.54 12 4.29
-03 7 1.96 7 2.55 9 3.01
-04 22 9.95 7 2.23 10 3.26
-0.5 30 13.07 10 3.24 9 2.79
-0.6 39 1550 27 8.14 12 4.19
(b)
b4 20° 30° 40°
max(e(t)) RMS max(e(t)) RMS max(e(t)) RMS
0.5 8 2.89
04 4 1.32 5 1.72
0.3 3 1.19 4 1.36 6 2.14
0.2 3 1.18 4 1.25 6 2.12
0.1 4 1.21 5 1.63 5 1.98
0 5 1.44 5 1.48 10 3.70
0.1 7 1.92 6 1.70 11 3.67
-02 27 1345 8 2.08 7 2.20
-03 40 18.03 17 571 8 2.30
-04 119 69.22 38 13.13 15 4.80

it is also applicable for mass spring damper systems with
low resonance frequency and high damping coefficient which
behave like mass systems when applying proportional integral
controller. Results are also validated by the experiment results
of a mass spring damper precision position stage.

Overall, a straightforward tuning guideline of CgLp config-
urations considering both first and higher order harmonics is
presented in this paper. This guideline improves the precision
performance of CgLp controllers and can be widely applied in
the high-tech industry. Although this thesis provides guidelines
to minimize the effect of higher order harmonics, the exact
relation between open loop higher order harmonics behaviour
and closed loop performance is not known yet. Establishing a
mathematical relation between open and closed loop frequency
response could be part of future work.

REFERENCES

[1] A. A. Dastjerdi, B. M. Vinagre, Y. Chen, and S. H. HosseinNia, “Linear
fractional order controllers; a survey in the frequency domain,” Annual
Reviews in Control, 2019.

[2] J. Clegg, “A nonlinear integrator for servomechanisms,” Transactions of
the American Institute of Electrical Engineers, Part II: Applications and
Industry, vol. 77, no. 1, pp. 41-42, 1958.

[3] 1. Horowitz and P. Rosenbaum, “Non-linear design for cost of feedback
reduction in systems with large parameter uncertainty,” International
Journal of Control, vol. 21, no. 6, pp. 977-1001, 1975.

[4] L. Hazeleger, M. Heertjes, and H. Nijmeijer, “Second-order reset ele-
ments for stage control design,” in 2016 American Control Conference
(ACC), pp. 2643-2648, IEEE, 2016.

[5] Y. Guo, Y. Wang, and L. Xie, “Frequency-domain properties of reset
systems with application in hard-disk-drive systems,” IEEE Transactions
on Control Systems Technology, vol. 17, no. 6, pp. 14461453, 2009.



(6]

[71
[8]

91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

J. Zheng, Y. Guo, M. Fu, Y. Wang, and L. Xie, “Improved reset
control design for a pzt positioning stage,” in 2007 IEEE International
Conference on Control Applications, pp. 1272-1277, 1EEE, 2007.

A. Bafios and A. Barreiro, Reset control systems. Springer Science &
Business Media, 2011.

A. Vidal and A. Bafios, “Reset compensation for temperature control:
Experimental application on heat exchangers,” Chemical Engineering
Journal, vol. 159, no. 1-3, pp. 170-181, 2010.

M. A. Davé and A. Baiios, “Reset control of a liquid level process,”
in 2013 IEEE 18th Conference on Emerging Technologies & Factory
Automation (ETFA), pp. 1-4, IEEE, 2013.

L. Chen, N. Saikumar, and S. H. HosseinNia, “Development of robust
fractional-order reset control,” IEEE Transactions on Control Systems
Technology, 2019.

S. H. HosseinNia, I. Tejado, and B. M. Vinagre, “Fractional-order reset
control: Application to a servomotor,” Mechatronics, vol. 23, no. 7,
pp. 781-788, 2013.

N. Saikumar, R. K. Sinha, and S. H. HosseinNia, “Resetting disturbance
observers with application in compensation of bounded nonlinearities
like hysteresis in piezo-actuators,” Control Engineering Practice, vol. 82,
pp. 36-49, 2019.

L. Chen, N. Saikumar, S. Baldi, and S. H. HosseinNia, “Beyond the
waterbed effect: Development of fractional order crone control with
non-linear reset,” in 2018 Annual American Control Conference (ACC),
pp. 545-552, IEEE, 2018.

A. Palanikumar, N. Saikumar, and S. H. HosseinNia, “No more differen-
tiator in pid: Development of nonlinear lead for precision mechatronics,”
in 2018 European Control Conference (ECC), pp. 991-996, IEEE, 2018.
N. Saikumar, R. Sinha, and S. H. Hoseinnia, “constant in gain lead
in phaseelement-application in precision motion control,” IEEE/ASME
Transactions on Mechatronics, 2019.

Y.Salman, “Tuning a Novel Reset Element through Describing Function
and HOSIDF Analysis.” http://resolver.tudelft.nl/uuid:2236e1{6-4dc5-
4f7f-96da-fc83ead69445, 2018.

P. Nuij, O. Bosgra, and M. Steinbuch, “Higher-order sinusoidal input de-
scribing functions for the analysis of non-linear systems with harmonic
responses,” Mechanical Systems and Signal Processing, vol. 20, no. 8,
pp. 1883-1904, 2006.

K. Heinen, “Frequency analysis of reset systems containing a Clegg inte-
grator: An introduction to higher order sinusoidal input describing func-
tions.”  https://repository.tudelft.nl/islandora/object/uunid:ccc37af2-fcbe-
46ec-9297-afdc5c1eadb52collection=education, 2018.



Conclusion

The objective of this thesis is:
To tune the ’Constant in gain Lead in phase’ element such that the effect of high order
harmonics is minimized and closed loop performance is optimized.

Based on this goal, the effect of control parameters on the phase compensation and
higher order harmonics behaviors are investigated. By designing several groups of CgLp
elements for a mass system that achieve equivalent amount of phase compensation at the
crossover frequency and comparing their tracking performance, a relation between open
loop 3" harmonic behavior and closed response is established. And the relation is ex-
tended to mass-behaving systems that have large damping ratio and small resonance fre-
quency. Then, a precision positioning stage implemented with CgLp+PI controllers is used
to validate the relation. And the results show that:

» From the perspective of sinusoidal and trajectory tracking, the configuration that has
the largest value of 3"¢ harmonic peak frequency and almost the smallest magnitude
of 37% harmonic at low frequencies has the optimal performance, which is the case
for both first and second order CgLp elements.

» From the perspective of noise attenuation, the configuration with the smallest mag-
nitude of 37¢ harmonic at frequencies larger than the crossover frequency has the
optimal performance.

Based on these, a tuning guideline using describing function and HOSIDF is given.

Following are the recommendations for further studies:

+ This thesis mainly studies mass-behaving systems with low resonance frequency and
large damping ratio. An investigation on mass spring damper system with a high
resonance frequency and/or small damping ratio is also necessary.

 Although this thesis provides guidelines to minimize the effect of higher order har-
monics, the exact relation between open loop higher order harmonics behaviors and
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5. Conclusion

closed loop performance is not known yet. Establishing a mathematical relation be-
tween open and closed loop frequency response could be part of future work.

* While this work looks at which CgLp element is best for a given amount of phase
compensation, it is still unknown what is optimal amount of phase compensation to
be provided with CgLp and what amount should be provided by linear lead.



Coefficients

This appendix gives the processs to obtain coefficient b in Chapter 4 such that the required
phase compensation () is achieved at crossover frequency (w.). Consider a CgLp com-
pensator that consists of reset part C,-(s) and linear part C;(s), as shown by Figure A.1.

Cglp
g —
—p| G(s) > C(s) ——»
1

Figure A.1: CgLp compensator

To achieve 8 degrees phase compensation at w.(Hz), the crossover frequency of the
reset element (w,-(Hz)) can be obtained by the optimization equation as follows:

min |8 — 2(C (v, @) Cu(y, wr))] (A.1)
Subject to:
160 — 2(Cr (v, 0r) (v, ) < 1
-1<y<1
where:
for first order CgLp: ‘
Gy o) = ] v G o) = (Z)_Cr] +1,wq =0/

D) 7
or for second order CgLp:
1

Gy, wp) = 14

wcj\2 @
(_w ) c] ora +1

27



28 A. Coefficients

Wy
Then,b = w./w,

N2
Gy o) = (wd) + chjf)_:‘i' s Wrq = Wp/ay and Bry = B/,



Simulation Results

This chapter presents the 37¢ harmonic behaviours of various CgLp configurations which
is discussed in Section III of the paper in Chapter 4.
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Figure B.1: Firsrt Order CgLp: 20°compensation
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30 B. Simulation Results
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System Overview

This chapter discusses the experimental setup that is used in this thesis. At first, the ex-
perimental setup is described. Then, the identification results for the whole system are
presented.

C.1. Experiment Setup

The plant is a 3 degree of freedoms precision stage that consists of 3 angularly placed Lorentz
actuator (A4, 4,, A3), 3 small mass (By, By, B3), 3 encoders (C;, C3, C3) and a large central
mass (D), as shown in Figure C.1. The central mass was supported and constrained by lead
springs connected with actuators. In this thesis, only actuator (4,) is used to control the
position of corresponding small mass (B;). Thus, the system is considered as single input a
single output system.

The continuous controllers, after being discretized by Matlab, are implemented in the
National Instrument environment which consists of Labview 2018 for software and NI Com-
pactRIO for the hardware. Labview real-time control is used to read out the position mea-
surement from the encoder and send an electrical signal to the actuator. The process is as
follows. Firstly, the digital to the analogue module of the CompactRIO (NI9263) sends a
control signal to the actuator through the amplifier. Then, the position information of the
plant retrieved by the encoder is sent to the digital input module. Moreover, the encoder has
a resolution of 100nm. The schematic diagram of the setup is shown in Figure C.2.

C.2. Identification

In order to obtain the transfer function from the actuator signal to x displacement of the
plant, the system identification experiment is carried out by inputting chirp signal to setup.
The chirp signal composes of sinusoidal waves with increasing frequency by 2% every 0.1
second from 1 to 1000 Hz. The input and out signal in time range is shown in Figure C.3.
The response is logged for every 50us and the data is used to obtain the frequency response
of the system using t festimate function by MATLAB. The open loop frequency response

35
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Figure C.1: The 3-DOF precision positioning stage
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Figure C.2: Schematic overview of the experimental setup
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Figure C.3: Time response (output) of the plant from chirp signal(input)

of the system is shown in Figure C.4. From the result, the system can be considered as a
single mass spring damper system and the estimated transfer function is obtained as follows:

9602.5
52 +4.26765 + 7627.3

Post(S) = (C.1)
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Matlab Code and Simulink Model

In this appendix, the MATLAB and SIMULINK codes used in this thesis are given.

D.1. identification.m
This code is used to identify the transfer function from the data obtained from experiment.

1 data=load('system identification.lvin');%load data obtained in the ..
expriment

Ts=0.5e -4
ip=da(:,1
op=da (:,2

; Y%sampling time
); %acquire ip data

) ;%acquire op data

% identification analysis

[T, f]l=tfestimate (ip,op,[],[],[],1/Ts);
[C, f]=mscohere (ip ,op,[],[] ,[],1/Ts);

u %plot ip and op

2 figure;

13 time=1:size (ip);

14 time=time.*Ts;

15 subplot(211)

16 plot(time,ip)

17 ylabel('ip ")

18 subplot (212)

19 plot (time,op)

20 xlabel('Time(s)");ylabel('op')
2 xlim ([0 max(time)]);

23 %plot frequency response and coherenec
2 figure;

s subplot (311)

26 semilogx (f,20%log10 (abs(T)))

27 ylabel ('Magnitude(db) ")

39
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29
30
31
32
33
34
35
36

subplot (312)
semilogx (f,rad2deg(unwrap(angle(T))))
ylabel ( 'Phase(degree) ')

subplot (313)

semilogx (f,C)

xlabel ('Frequency (Hz)
xlim ([1 5e2])

);ylabel ('Coherence')

D.2. hodf.m

This code is adapted from Kars Heinet‘s thesis. It is used to calculate the Higher Order
Sinusoidal Describing Functions (HOSIDFs) of reset elements.

32

function [G] = hodf(sys,Ar,n, freqgs)

%calculate high order describing function of FORE and SORE

Ysys: state space matrix of linear base dynamics

Y%Ar: gamma

Yn:the order of describing function(only odd number)

%freqs: the frequencies the describing function is calculated for
JA,B,C,D: state space matrix

if (mod(n,2)==0)

return;

end

A=sys.a;

B=sys.b;

C=sys.c;

D=sys.d;

G=zeros (1,numel(freqs));

for i=1l:numel(fregs)
w=freqs (i);
lambda=wiwxeye (size (A) )+A”™2;
lambdainv=inv (lambda) ;
Delta=eye(size (A) )+ expm(A*pi/w);
Delta_r=eye(size (A))+ Arxexpm (Axpi/w);
gamma_r=inv (Delta_r)*ArxDeltaxlambdainv;
theta_ D=(-2xw*w/ pi)*Delta*(gamma_r-lambdainv);

if (n==1)
G(1)=Cxinv (j*wxeye(size(A))-A)x*(eye(size(A))+ jxtheta D)=«BD;
else
G(1)=Cxinv (j*wsnxeye(size (A))-A)*j*theta Dx*B;
end
end
if  (n==1)
G=G1D;

end
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D.3. secondCglLp coefficient.m

This code is used to obtain the coefficient ; and a, in 2™¢ CgLp elements.

Y%acqurire the coeffiecients for second order Cglp such that the gain ...
is constant

Y%wra=100Hz and beta=1 are used as benchmark for second order lead ...
filter

% al=alpha_1 considers the shift of cutoff frequency a2=alpha_2 ...
consider the adjustment for the damping ration.

gamma=[0.9:-0.1:-0.9];

wra=100%2*pi; % benchmark of crossover frequency
beta=1; % benchmark of damping ration

%the state matrix of 2nd order lead filter

A=[0 1;-(wra"2) -2xbetaxwra];

B=[0;wra"2];

C=[1 0];

D=0;

sys=ss (A,B,C,D);

w=logspace (1,7,600);

Ib = [0 0];% lower bound of coefficients

ub = [ ];

a0=[10 10];% initial coeffiecients

for n=1:1:numel(gamma)

gamma (n)

A_gamma=[gamma(n) 0;0  gamma(n)|;
alpha=Q(a)max(abs(20%logl0 (abs(hodf(sys,A gamma,1l,w).
*(((j*rw/wra/a(1l)).72)+(2xj*xwrbetaxa(2)/wra/a(1l))+1)))));
la, fval]=fmincon (alpha,a0,[] ,[],[],[] ,1b,ub)

end

D.4. cornerfrequency_coefficient.m

This code is used to obtain the coefficient b that is used to calculate the corner frequency w,
of CgLp elements such that the required phase compensation is achieved at the crossover

frequency.

1

2 Y%wr=wc/b ,wc is the crossover frequency that needs phase compensation.
3 %This is an inverse method to obtain wr

4 %It is noticeable that not all the reset configurations can provide the
s %required phase compensation and the cases where fval output >1

6 % should be abandoned

;

s clear all;

9 close all;

10 clc;

n PM=40; % required phase compensation, degree

wr=100%2xpi; % corner frequency of CglLp
gamma=[0.9:-0.1:-0.9];

resetelement=1; % 1 for first order Cglp;2 for second order CglLp
if resetelement==1 % first order CglLp mode
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17 a=[ |; % insert $alpha$

18 for n=1:1:numel(gamma)

19 gamma(n)

20 wra=wr/a(n);

21 sym=ss (-wra,wra,1,0);

2 Del=@(w) abs (PM-rad2deg (angle (hodf (sym,gamma(n) ,1,w)
» (ki (w0)+1))))) 5

2 Ib = [0];

25 ub = [ ];

2 [w, fval]=fmincon (Del,wr,[] ,[] ,[],[] ,1b,ub)

27 b(n)=w/wr;

2 end

29

0 else if resetelement==2 % second order CgLp mode

31 beta=1;

2 a=[ |; % insert alpha_q and alpha_ w
33

# 1b = [0];

5 ub = [];

36 for n=1:1:numel(gamma)

37 wra=wr/al(n,1);

38 A=[0 1;-(wra™2) -2xbetaxwra];

39 B=[0;wra"2];

40 C=[1 0];

41 D=0;

2 sys=ss (A,B,C,D);

4 A gamma—=[gamma(n) 0;0 gamma(n)];

44 Del=Q@(w) abs (PM-rad2deg (angle (hodf(sys ,A gamma,1 ,w)
45 o (((jrw/wr) . T2)+(2xjxwrbetaxa(n,2) /wr))+1))));

46 [w, fval]=fmincon(Del,wr,[] ,[] ,[],[],1b,ub)

47 b(n)=w/wr; % cases where fval>1 should be abandoned
48 end

49 end

s0  end

D.5. setup_sensitivity.m

This code is used to run the real-time simulation of the system and plot the new error sensi-
tivity functions.

1 clear all;

2 close all;

3 clc;

4+ PM=; % required phase compensation, degree
5 we=; % target frequency ,rad/s

¢ m=1.0414e-04;

7 ¢=4.4443e-04;

s k=0.7943; % setup prameters

9 T_sample=2e-4; % sampling rate

10 resetelement=1; % 1 for first order CgLp;2 for second order CgLp
11 freq=logspace (0,3,100)

2 os=tf('s');

14 if resetelement==1 % first order CgLp mode
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; % insert the crossover frequency coefficients
% obtained from cornerfrequency__coefficient.m

=[]; % insert $alpha$
(]

gamma=[]; % inset the feasible range of gamma

for

for

n=1:1:numel (gamma) ;
wr=wc/b(n); %
wra=wr/a(n) ; % corner frequency of GFORE in CgLp

sys=ss (-wra,wra,1,0);
sysl=tf ([wra],[1, wra]);
Gd=c2d (sysl,T_sample, 'tustin');

[A_r,B r,C r,D r]=ssdata(Gd); % discretized reset control ...

parameters
A_gamma=gamma(n) ;
G=hodf(sys ,gamma(n) ,1,wc); % DF of FORE at wc
Gwe=1/(m#* (wex i) 2+c*(wexi)4k); %gain of the plant at wec
GdO=(wc* i /wr+1); % gain of lead filter at wc
Gl=1/(wcxj /(5*wec)+1); % gain of low pass filter at wc

Kp=1/abs (Gd0+GxGwcxGl) ;
L=Kp=*(s/wr+1)/(s/(5*%wc)+1); % cotinuous linear controller

Ld=c2d (L, T_sample, 'tustin');

[numLd,denLd]=tfdata (Ld, 'v'); % discretized linear control ..

parameters
k=1:1:numel(freq)
freq k=freq(k);

T c=20; % calculation period
T _S=15; % steady state time

sim( 'setup_simulation');
load ('error');

er (n, k)=mag2db(max(abs(error (2,:))));

end

end

else

for

figure (1)
semilogx (freq,er(n,:));
hold on

if resetelement=2 % second order CgLp mode
a=[;
b=[];
gamma=|];

n=1:1:numel (gamma) ;

wr=wc./b(n);

wra=wr/(a(n,1)); % corner frequency of GSORE at CgLp
beta=1;

beta_r=a(n,2)xbeta;

A gamma=[gamma(n) 0;0 gamma(n)];

A=[0 1 ; -wra"2 -2xbetaxwra];

B=[0;wra"2];

C=[1 0];




44 D. Matlab Code and Simulink Model

70 D=[0];

71 sys=ss (A,B,C,D);

7 sysl=tf ([1],[1/wra”2 2xbeta/wra 1]);

73 Gd=c2d (sysl,T_sample, 'tustin');

7 [A_r,B_r,C_r,D_r]=ssdata(Gd); % discretized reset control parameters
7s

76 G=hodf(sys ,A_gamma,1,wc) ; % DF of sore at wc
77 Gwe=1/(m# (we* i) 24c*(wexi)+k)

78 GdO=((wc*i/wr) 2+2xbeta_rswcxi/wr+1); % gain of lead filter at wc
2 Gl=1/(wexj /(5xwe)+1)"2;

80

81 Kp=1. /abs (Gd0+GxGwcxGl) ;

82

83 D=((s/wr) 2+4+2xbeta_rx*s/wr+1)*xKp/(s/(5xwc)+1)"2;
84 Dd=c2d (D, T_sample, 'tustin');

85 [numLd, denLd]=tfdata (Dd, 'v"');

86

g7 for k=1:1:numel(freq)

88 k

89 freq_k=freq(k);

9 T _¢c=20; % calculation period

91 T s=15; % steay state time

92 sim ( 'setup__simulation');

93 load ('error');

04 er (n,k)=mag2db(max(abs(error (2,:))));

95 end

9% figure (1)

97 semilogx (freq ,er(n,:));

0

99 end

100 end

D.6. Simulink for Real-time Simulation

Reset Element

control output

Non-reset part
Sine Reference P

: Q

DAC read integrator

White Noise

Figure D.1: Simulink schematic for real-time simulation named setup_simulation.slx
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