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Helicopter Gas Turbine Engine Performance Analysis - A
Multivariable Approach

llan Arush?
National Test Pilot School, Mojave, California, 93502. Email: iarush@ntps.edu

Marilena D. Pavel?
Faculty of Aerospace Engineering, Delft University of Technology, Delft, The Netherlands

Helicopter performance relies heavily on the available output power of the engine(s) installed. A simplistic
single-variable analysis approach is often used within the flight-testing community to reduce raw flight-test
data in order to predict the available output power under different atmospheric conditions. This simplistic
analysis approach often results in unrealistic predictions. This paper proposes a novel method for analyzing
flight-test data of a helicopter gas turbine engine. The so-called “Multivariable Polynomial Optimization under
Constraints” (MPOC) method is capable of providing an improved estimation of engine performance and
maximum available power. The MPOC method relies on optimization of a multivariable polynomial model
subjected to equalities and inequalities constraints. The Karush-Khun-Tucker (KKT) optimization method is
used with the engine operation limitations serving as inequalities constraints. The proposed MPOC method is
applied to a set of flight-test data of a Rolls Royce/Allison MTU250-C20 gas turbine engine, installed on a
MBB BO-105M helicopter. It is shown that the MPOC method can predict the engine output power under a
wider range of atmospheric conditions and that the standard deviation of the output power estimation error is

reduced from 13hp in the current single-variable method to only 4.3hp using the MPOC method (over 300%

improvement).
Nomenclature
A =  Matrix containing numerical regressors
a]-i = generic multivariable polynomial coefficient
Ng =  engine compressor speed
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2 Assistant Professor, Control and Simulation, Faculty of Aerospace Engineering, Delft University of Technology,
Kluyverweg, 2629HS Delft, The Netherlands, AIAA Member.



TGT engine temperature (Turbine Gas Temperature)

SHP engine output power (Shaft Horse Power)

Wi

engine fuel-flow

N
CN, 2 —ZL = corrected engine compressor speed
g \/5

CTGT 2 TGTT =  corrected engine temperature (Turbine Gas Temperature)

CSHP & % = corrected engine output power (Shaft Horse Power)
oo

CW; = ﬁ = corrected engine fuel-flow

) = relative static air pressure

0 =  relative static air temperature

E, =  engine output power estimation error vector

ai,bi,ci=  generic single-variable polynomial coefficients

b = column vector to represent experimental CSHP

f = generic multivariable function in x; to be maximized

g = inequality constraints

hk = equality constraints, multivariable function in x;

Ai =  Lagrange multipliers associated with equality constraints
i =  Lagrange multipliers associated with inequality constraints
i,j =  indices

Xi =  variables of a generic multivariable function

I. Introduction
FLIGHT testing is an expensive activity that requires efficient methods for predicting correctly the helicopter

performance. Such methods involve considerations regarding testing techniques and data reduction of the raw flight-
test data. The present paper relates to the helicopter maximum engine power testing methodology. In the current
method the flight-test data are analyzed based on single-variable models. The paper proposes a novel method involving

multivariable polynomials defined for the engine parameters, i.e. Shaft Output Power, Compressor speed, Temperature



and Fuel-Flow. It will be shown that such an approach can result in more realistic predictions. The paper is structured
as follows: after a short introduction, section Il gives the current methodology for flight-test data analysis w.r.t.
maximum engine power. In section Il a novel methodology is defined and demonstrated involving multivariable

regression analysis for maximum engine power. Final conclusions and recommendations complete the paper.

Il.  Single-variable Analysis Method

The useful performance of any helicopter depends on the amount by which the power available exceed the power
required [Ref. 1]. The current method widely used within flight-test community for determining the maximum output
power of the helicopter engine based on flight-test data for consists on recording stabilized engine(s) parameters (such
as temperature, compressor speed, fuel-flow and shaft output power) accompanied by their corresponding atmospheric
conditions prevailed during the test [Ref. 2]. These flight-test data are gathered while flying the helicopter throughout
its certified envelope and collecting engine parameters to their approved operating limitations. Once a substantial data
base is gathered it can be analyzed with the final goal of deriving the maximum shaft output power that the turbine
engine can deliver under various combinations of atmospheric conditions. One should remember that the limiting
factor for the maximum output power could change under different atmospheric conditions (for example, under hot
day conditions the engine maximum output power could be limited by the engine temperature while under relatively
cold day conditions the maximum engine compressor speed could limit the maximum power the engine can deliver.
The flight-test data analysis must “decide” on both what the maximum power is and which its associated limiting
factor is. Usual limiting factors are the engine temperature, the engine compressor speed or the fuel flow to the engine.
An additional limiting factor that often comes into play is maximum transmission torque. This limitation is not an
engine limitation as such (it is more the platform limitation) but it can have a fundamental effect on maximum output
power of the engine. This entire process described is often referred to as “the analysis to define the installed engine
available power”.

Dimensional analysis concepts are intensively used in performance flight-testing. Applying non-dimensional
analysis tools allow the flight-test team to reduce the number of dimensional parameters involved in the physical
problem, and hence to reduce substantially the number of flight-test sorties required, saving time and resources
[Ref. 3]. The first step in analyzing the engine data is therefore not surprisingly related to correcting or non-

dimensionalizing the raw flight-test data. There are mainly four engine parameters, i.e. Shaft Output Power,



Compressor speed, Temperature and Fuel-Flow which are corrected using the corresponding atmospheric conditions
and are converted into, CSHP, CNg, CTGT & CW}s respectively. The mathematical process of non-dimensionalizing

the gas turbine engine parameters is based on the Buckingham P1 Theorem [Ref. 4].

Next step will concentrate on applying common methods of linear regression in order to best fit three separate
single-variable polynomials as given by Eq. (1) to (3). These polynomials give the correlation between the
experimental data; the mathematical relation between the corrected engine power and each of the other corrected

engine parameters. They are usually of 3 order so that they can capture an inflection point representing an important

physical characteristic of the engine.

CSHP = fl(CNg)zboJan:bi (CNg)i .n=3 @
i=1

CSHP = f, (CTGT ) ~ & Jriai (CTGT) -.n=3 )
i=1

CSHP = 1, (CW; ) ~ ¢+ 3% (CW; ) ~.n=3 ®)

i=1

Each single-variable polynomial can then be treated like a ‘finger print’ of the installed engine in the particular
helicopter type and represents the mathematical relationship between the corrected output power and the separate
corrected engine parameter (engine temperature, engine compressor speed or engine fuel-flow).

As example throughout this paper consider the flight-test data gathered for a Rolls Royce/Allison MTU250-C20
gas turbine engine installed as the left engine on a MBB BO-105M helicopter used for training at the National Test
Pilot School in Mojave, California. Applying Eq. (1) to (3) to this set of flight-test data and using least-squares
technique results in Eq. (4) to (6). Figure 1 presents the three non-dimensional engine parameters plots for the example

flight-test data.



The last step in this analysis
method is to evaluate the
maximum available output power
(in physical units) the engine is
capable of delivering under a wide
range of atmospheric conditions.
For an atmospheric condition of
choice, the engine output power is
calculated separately in each path;
the path of compressor speed
limited engine (substituting the
engine compressor speed
limitation in Eq. (1) , the path of

temperature  limited  engine
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Figure 1. Non-Dimensional Single-Variable Engine Performance. Data
represents 34 stabilized engine operation points during flight at various
conditions. The corrected engine output power (CSHP) is separately
presented against each of the engine corrected parameters, corrected engine
temperature, corrected compressor speed and corrected engine fuel flow
(fuel weight flow).

(substituting the engine maximum allowable temperature limitation in Eq. (2)) and the path of fuel flow limited engine

(substituting the engine fuel flow limitation in Eq. (3)). The three calculated values for the engine output power are

then compared, first amongst themselves and then against the maximum transmission torque (transmission limitation).

The maximum available power of the engine will be assessed as the minimum out of all 4 channels [Ref. 5].

CSHP = f, (CN,, ) = ~0.009947(CN,, )* +2.9534(CN,, )” ~273.47(CN, ) + 8153.2 @)
CSHP = f, (CTGT ) =-3.328x10° (CTGT )’ +0.0677(CTGT )* - 43.87(CTGT )+ 9256.7 )
CSHP = 5 (CW, ) = -9.3718x10°° (CW; )3 +0.0020359(CW4 )2 +2.5551(CW/ )-234.32 (6)

The data presented in Fig. 2 were derived by following the described procedure with the example polynomials

(Eq. 4, 5, 6). Figure 2 shows the analyzed data for up to 12,000 ft. of pressure-altitude and for five distinct day

conditions; a standard day (ISA), 10°C and 20°C hotter than standard, 5°C and 10°C colder than standard day



conditions. Figure 2 presents the
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transmission limited from sea level Figure 3. Engine output power estimation errors using single variable
models. Note the relative large estimation errors of up to 30 hp using the

up to 790 ft., 2800 ft. and 3800 ft.  engine temperature variable.
above sea level correspondingly. For higher pressure-altitudes the engine becomes temperature limited. As for a 10°C
and 20°C hotter than standard day, analysis suggests the engine output power is temperature limited from sea level
and above.

The major disadvantage of this analysis method lies in the intrinsic assumption of independency between the rules
of operation in all three engine limiting factors. This disadvantage manifest itself by the unrealistic behavior of the

three lines of ISA, ISA-5°C and ISA-10°C crossing each other above pressure-altitude of 8000 ft as seen in

Fig. 2. It is physically impossible for a temperature limited engine to deliver more power whilst the ambient



temperature is higher. The absolute errors between actual measured engine output power and the corresponding
predicted values using the reduced polynomials (Eqg. 4, 5, 6) are calculated using Eq. 7, 8 & 9 and presented in Fig. 3.
These errors were found to be normally distributed about a practically zero mean. Figure 4 shows the error standard

deviation for each prediction channel
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found for 95% confidence level.  Figure 4. The mean and standard deviation of the single variable
estimation errors. The engine temperature based estimation presented the
Looking at this figure one can see  Worst performance with an error standard deviation of 13hp.

that the output power based on engine temperature (Eq. 4) presents the worst performance; the relevant standard
deviation of this error is 13hp and under 95% confidence level the mean of the estimation could be found anywhere

along a range of £4.6hp. A standard deviation of 13hp is considered a substantial error value for power predictions.

E, ong = {CSHR - f,(CNg;)} i =1,...34 @)
Erl o = {CSHR — ,(CTGT,)} i =1,...34 ()
E, " ={CSHPi —f, (wfi)} ~i=1...34 ©)

Concluding, the current method used for determining the maximum output power of the helicopter engine can
result in large errors and unrealistic predictions. Next chapter will propose a new method to improve flight-test data

analysis.



I11.  Proposed Multivariable Analysis Method

In the following sections a novel analysis method referred to as ‘Multivariable Polynomial Optimization under
Constraints” (MPOC) is proposed. This method requires no change to the way engine performance flight-test sorties
are carried out. Using the elegant method of projection onto subspaces a list of mathematical candidate models will
be derived to best represent the relationship between the engine output power and the engine parameters. The
maximum engine output power will be assessed as an optimization problem under constraints. Since our problem has
both equalities and inequalities constraints, the Karush-Khun-Tucker (KKT) method which deals with both type of
constraints will be utilized.

The proposed method presented in this chapter will be exemplified with the same flight-test data used in the

previous chapter dealing with the current analysis method.

A. Multivariable Linear Regression

A convenient mathematical relationship needs to be found for representing the flight-test data. Polynomials serve
great role in flight-testing due to their simplicity which makes them suitable candidates for best-fit type models.
Different math model search algorithm were developed in the literature of specialty for optimizing regression models

of multivariate experimental data obtained in aviation. For examples see [Ref. 6, 7, 8]

The MPOC method seeks for a multivariable polynomial limited to the third order as in the current method. This
section presents the process of finding a best-fit third order multivariable polynomial to relate between the corrected
shaft output power, the corrected compressor speed, corrected engine temperature and corrected fuel flow to the
engine. For simplification and based on common practice, six basic two-variable polynomials of the third order are
defined using the three independent engine variables. This results in six different combinations as presented in
Table 1. It can be seen from Table 1 that each mathematical term yields six lower order terms resulting in a long list
of 42 regressors. However, many of the lower order terms are merely duplicates and can be dismissed. Filtering out
repeating terms gives an updated list of regressors as presented in Table 2. This table corresponds to a list of 18
candidate regressors to work with for a best fit mathematical expression under the generic expression as given by

Eq. 10.



Table 1: List of 3" order polynomials and their lower order terms

# Mathematical Term List of Lower Order Terms
1 (cN, ) (cTET) CN,; (CN,)’; (CN,)’; CTGT; (CTGT)(CN,); (CTGT)(CN,)’
2 (cNg)’(cwy) CNg3 (CNg)5 (CNg)’s CWy; (CW ) (CNg); (CWy )(CN)’
3 (CTGTY(CN,) CTGT; (CTGT)%; (CTGT)?; CN,; (CN,)(CTGT); (CN, ) (CTGT)?
4 (cT6Ty(Cwy) CTGT; (CTGT)%; (CTGT)?; CWy; (CWy)(CTGT); (CW; ) (CTGT)?
5 (cwy)*(eny) CWy; (CWy)%5 (CWy )5 CNg3 (CN ) (CWp); (CNg) (Cwy)*
6 (cw;)’ (cTGT) CW; (CW;)*; (CW;)*; CTGT; (CTGT)(CW); (CTGT)(Cwy)”
n
CSHP = f (CNg,CTGT,CW, ) ~ o + Z{ai f; (CNg,CTGT,CW, )} ~n=18 (10)

i=1

Table 2: Updated list of regressors for best fit hierarchical math regression model

fi=(cN,)®  fa=(CTGTY® g =(cw;)’  fuo=(CNg)(CTGT)  f. = (cN,)*(cTGT)  fre = (CNg)(CTGT)?

fo=(CNg)"  fs=(CTGTY  fy=(cwp)  Fu=(CN)(CW)) £y = (cNp)*(cWy)  fur = (ENg)(CWp)’

fs = CNy fe = CTGT fo=CW fiz = (CTGTY(CWf)  fis = (CTGTY*(CWf)  f = (CTGT)(CW})Z

With the 18 derived regressors one has an enormous amount of possible models to check. The case can be thought

as a combination of 1,2,3,...,18 functions from a set of 18 regressors, i.e. 262,143 possibilities as per Eq. 11.

18 18 18 1 1 1
N = + +...+ = 181 + 18! +...+ 18! = 262,143 (11)
1 2 18 11171 216! 018!

The number of possible combinations can be reduced by setting a base model which is a linear combination of the
elementary regressors f, to fg (Eq. 13). The polynomial as given by Eq. 13 is addressed in this paper as Model

number 1. This way, the problem has been reduced to finding a model which will be constructed from Model 1



superimposed with any combination of the regressors fio to fig. The number of combinations is now reduces to 512 as

per Eq. 12.

9 9 9 ] ! 1
N'=1+|  |+]| _|[+...+ =1+i+i+...+i:512 (12)
1 2 9 1181 217! 019!

This still represents a lot of combinations but more manageable as number. Within the limited scope of this paper
a performance comparison between 10 different models from the 512 is presented. Model 1 presented as Eq. 13 is
simply being added with the 9 regressors (fio to fig of Table 2), one at a time. This process of providing candidate
multivariable polynomials is presented mathematically as Eq. 14. Equation 15 presents the suggested model number

4 (CSHPwma) as a particular case of the generic formula described by Eq. 14.

CSHPyy = o (CN ) + a3 (CNg ) + b (CNg )+ & (CTGT ) + & (CTGT )’ + o (CTGT ) + 3
vad (CW, ) +ad(Cw ) +ad(CWy )+a  Model number 1

9 K+8
CSHRy = .o f; (CN,, CTGT,CW¢ )+ 3 & f;(CN,,CTGT,CW, ) - { f 21K =1,2,...,10} (14)
i=0 j=10

CSHRy4 = ' (CNg ) +a5 (N ) +atf (CN )+ (CTGT )’ +.a (CTGT )’ + o (CTGT ) +
+a7 (CW, )3 +ag (CW; )2 +atg (CWy )+ (CNg )(CTGT )+ (CNg ) (CWy )+ (15)

+aiy (CTGT)(CW¢ )+

B. Fitting the Suggested Models with Experimental Data
This section presents the method used to fit the 10 proposed multivariable models (Eq. 14, for M=1 to 10) with
actual experimental flight-test data. The method used is based on a linear Algebra concept known as projection onto

subspaces [Ref. 9].

1) Experimental Data Fitting to Model number 1.
The 34 flight-test data points of the example engine considered in this paper are next substituted in Eq. 13. This

gives a linear system of 34 equations with 10 unknowns (the coefficients «} ). This set of equations is compactly

represented as Eq. 16. The matrix A is of size of (34x10) and contains the numerical regressors as columns, o is a



column vector (34x1) containing the unknown coefficients and b is a column vector (34x1) representing the measured

experimental corrected output power of the engine (CSHP).
[A]-d=b (16)

Substituting the regressors of the proposed model number 1 into Eq. 16 gives Eq. 17:

(cNg,)*  (CNg,)* CNg, (cTeT)® (cTGT,)® cTeT, (cwh)®  (Cwh)® cwh 1) | a3 CsHp,
2 2 1

(CNg,)* (CNg,)* CNg, (CTGT,)* (CTGT,)* CTGT, (Cwf,)’ (Cwh,)® Cwf, 1| |@| | csHp,
3 2

(CNg;)* (CNg;)* CNg; (CTGT;)* (CTGT,)® CTGT, (Cwfh)® (Cwfh)” Cwf, 1 0@1; CSHP, 17
x Zz -
. . . . . . . . o :
(ONos)' (Naw)! Oy (CTOTof (CTOT )" CTGT, (Cis)® ()’ Oty 1 | | |
3 2 34

(CNgy )’ (CNgs)® CNgy (CTGTy )’ (CTGTy)? CTGTy (CWhy, ) (CWy)® CWhy, 1) | of

This system of equations is over-determined and does not have an exact solution. However, one can look for the
‘closest’ solution for this system, i.e. the ‘best-fit’ solution. This best-fit solution is denoted as {&}. The matrix
constructed from [ATA]~1AT is the projection matrix which when multiplied by the vector b yields a solution in a
subspace of A (Eq. 18). This solution serves as a best-fit or the closest solution one can determine.

(@) = [AT ATl AT b (18)

Following the above-described procedure one can immediately solve for the 10 coefficients of model number 1,
see Eqg. 19:

{ai}=[AT ATL AT -{CSHP} (19)

For the numerical set of flight-test data exemplified in this paper, model number 1 as given in Eq. 13 is presented

as Eq. 20.

al
1 -0.0105
% 2.8486
@ 25048 (20)
@ | | 2.386x10

{a-l}é a _| —0.046874

U o 30.406

ot | | -8556x10°
ol 0.043963
1 -5.6956
g
. 945.18

Similar procedure was repeated for all other 9 candidate models.



C. Choosing the Right Model for the Task
Consider now the prediction errors of Model number 1 to 10 per an experimental data point as presented in
Fig. 5 and calculated according to Eq. 21. For completeness Fig. 5 also includes data obtained from current analysis

method presented in Figure 3.

Q.
< 30
f O Model 1
Looking at Fig. 5 one can see that, g S R * Mode2
= 20 Model 3
§ ° #  Model 4
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% 10 & Py |3 k ode
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Figure 5. Estimation errors for the 10 proposed multivariable models &
current single variable analysis. The multivariable models performed far
better in estimating the output power of the engine as compared with the
experimental data.

method. However, one model needs
to be chosen. Since a projection from
a limited sample of experimental
flight-test data to the entire population needs to be made, inferential statistics tools will be used. In general, a model
is best replicating the experimental data if both the mean and variance of the estimation errors are zero. Obviously,

this hypothetical perfect model is not to be found, however the following approach looks for the closest one.

E

T i

. = {CSHR, —(CSHRy ), | -i=1...34k =1,...,10 (21)
1) The P-Value Approach. The p-value approach was used to compare between the different 10 proposed
models. The concept behind the p-value is thoroughly discussed in literature [Ref. 10]. The concept involves
stating two contradicting hypothesis and use the experimental data to either support or reject the first
hypothesis (the Null Hypothesis, Ho). In our analysis Ho was set to claim that each of the multivariable models
has an array of estimation errors with a zero mean. The level of significance for this statistical analysis was
set at 1% (99% of confidence level). The p-values returned represent the smallest significant level that lead
to rejecting the Null Hypothesis. In general, low p-values cast doubt on the validity of the Null Hypothesis
and once submerge under the significance level of the test, the Null Hypothesis is rejected. All models except

for model number 10 strongly supported the Null Hypothesis for the 1% significance level set. All first 5

models returned similar P-values, ranging from 0.999 to 1 with model number 2 being the only one to return



a computed P-value of 1. The P-value approach resulted therefore in the elimination of model number 10

from the list.
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Figure 6. Various Models Performance on the Mean-Variance Plane.
Model number 6 start showing a divergence behavior in the mean of
estimation error. Model number 10 was omitted from this figure due to
an outstanding biased mean of estimation error (4hp).

mean and standard-deviation
of the estimation prediction

errors obtained for the first 9 proposed models.

Based on the relative performance of all 10 models involved, model number 2 (Eq. 22 , 23) was chosen as
the one to best represent the engine output power. Model number 2 will be further used to demonstrate the

MPOC method.

CSHPy, ~af (CNg ) + a2 (CNg ) +ad (CNy )+ aZ (CTGT ) + & (CTGT )’ +a (CTGT ) +

(22)
3 2
+af (CWy ) +ag (CW( )" +ad (CW; )+ oy (CTGT)(CNy ) + g
aof -0.0165
of 3.837
ao? -380.69
a? 3.36x107°
a? -0.075 23)
{af}21a2 =1 41800
a?| |-8.35x107°
ol 0.043
ol -5.577
ab 0.1486
ao? 22424




D. Estimation of the Maximum Output Power

Once acquiring a multivariable polynomial to best describe the change in corrected engine output power based
on other engine corrected parameters (compressor speed, temperature and fuel-flow), Model number 2 for the
flight-test data of this paper, one can look for the maximum available output power of the engine under various
atmospheric conditions. The engine output power will be limited by reaching one (or more) of its parameters.
Finding the maximum output power is equivalent with finding an extremum point (maximum output power) under
constraints (engine parameters: compressor speed, temperature or fuel flow). Finding an extremum point of a
multivariable function under constraints is of a totally different nature from the case of extremum of a single
parameter function. The most popular approach for the multivariable case is using Lagrange multipliers but this
approach works with equalities constraints only whereas the problem we have in hand involves both equalities and
inequalities constraints. One possible method for optimization under both equalities and inequalities constraints is
the KKT (Karush-Kuhn-Tucker) method [Ref. 11]. Eq. 24 presents the general Lagrange equations required for
satisfying extremum points of a multivariable function f(x;) subjected to ‘m’ number of inequalities constraints,
g(xi), and ‘I’ number of equalities constraints h(xi). p; represent the Lagrange multipliers associated with the

inequalities constraints and Ak represent the Lagrange multipliers associated with the equalities constraints.

af m agj I ahk R

4 — |+ A —1=0..1=123,...,n

0% J_Z_ll[ﬂ] 5XiJ kz—l[ G

X =[ Xy, Xg oo X | (24)

gj(x)sO.'.(j =1,2,...,m)
h () =0 (k=12,..1)



The function to be maximized is model number 2 (Eq. 22, 23) subjected to several constraints. For this system of
equations to be solvable, at least two equality constraints need to be provided. Those are fulfilled with the engine
internal rule of operation, as explained hereinafter. Applying similar tools of the p-value and comparative
evaluation on the mean-variance plane as described in section C above, a best fit surface was calculated to
constitute the engine

multivariable internal rule of

850

operation. This surface which

800 -
describes the relationship of the > 1.
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values of the engine compressor speed and fuel flow. The circles presented

presented in Fig. 7. Based on this  are the experimental data points, which some are obscured by the best it

. surface.
two constraints were selected.

The first one denoted as h; and presented in its implicit form in Eq. 25 relates between the corrected engine
temperature and the corrected compressor speed. The second is denoted as h, and represents relationship between
the corrected compressor speed and the corrected fuel-flow (Eq. 26). Note that h; and h; constraints are projections

of the multivariable rule of operation onto two planes; the CTGT-CNg plane and the CNg-CW#s plane respectively.

& 0.0117
3 2 a, -2.9739
:CTGT —a,(CNg) —a,(CNg) —a,;(CNg)—a, =0.. =
hy 1( g) 2( 9) 3( g) 4 a, 258,49 (25)
ay —7050

b, 6.492x10°°

b ~0.00433
h, : CNg —b, (CWF )® —b, (CWF )* —b, (CWF )=b, =0.-.| 2 |= 26
) g bl( ) 2( ) bs( ) 4 b, 1.0621 (26)

b, 2.9888

The inequalities constraint for the engine maximum output power are simply the operational limitations imposed
on the engine. For the exemplary engine those are the continuous rating of the engine and are presented as Eq. 27,

28 and 29.
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gl:CNg—ﬁso (27)
g, :CTGT—%ﬁO (28)
g; :CW; _ 450 <0 (29)

N

The partial differential equations based on Eq. 24 and the KKT conditions Eq. 27 to 29 for a maximization problem

result in Eq. 30, 31 and 32.

a(CSHPMZ) 8(h1)
_ 2 2 =0
s(cng) MM aong) (30)
0(CSHRy,)
A7 M2 =0
s(cter) eth (31)
6(CSHPM2) a(hz) 3
— 115 = (32)
o(cwy ) o(Cwf)
Eq. 30, 31 and 32 can be rearranged compactly as presented in Eq. 33.
d(CSHPy,)
d(CNg) 100 o) -1 A
5(CSHR, o(CNo) #o
M =01 0 -1 0 .
= M (33)
d(CTGT) o(hy) )
a(CSHR,,) | |00 1 0 a<CV2v il
o(cwy) f

The set of partial differential (Eqg. 32) describes conditions for candidate engine corrected parameters representing
maximization of the engine output power. This set does not have a unique solution but a solution with 2 degrees
of freedom for the three different cases it represents. The first case (Case 1) is when the compressor speed is at its
maximum value, i.e., the engine output power is limited by the compressor speed. The second case (Case Il) is
when the output power is limited by the engine temperature and the last case (Case Ill) is a fuel-flow limited
engine. Separating Eq. 33 into the three individual cases and applying the KKT conditions on the Lagrange
multipliers associated with the inequalities constraints (j1, L2, p3) eliminates the two degrees of freedom and makes

each one of these cases to have a unique solution.



1) Case | — Compressor Speed Limited Engine.
Applying the KKT conditions for this case impose the following conditions on the Lagrange multipliers

associated with the inequalities constraints (Eq. 34).

{/Ui >0, =0, 15 = 0} (34)

2)

Combining Eq. 34 and Eq. 33 results in the following system of equations (Eq. 35):

Case Il — Temperature Limited Engine.

0(CSHPy2) >0
a(CNg) o(h) » g 105
o(CNg) 4 =
0(CSHPy2) .
9250 z) 1 o ||al- 738 (35)
2(CTGT) o) | Lo cTeT <=
0 2
2(CSHRiyz) o(cwr) cwr < 420
6(CWf) 5\/5

Applying the KKT conditions for this case impose the following conditions on the Lagrange multipliers

associated with the inequalities constraints (Eg. 36).

{14 =0, 11 >0, 11 = 0} (36)
Substituting Eq. 36 into Eq. 33 results in the following set of equations (Eq. 37):
d(CSHPy,) 1, >0
~a(CNg) o(h) 105
J(CNg -1 bt
( ) 6(CNg) 14 CNg < \/5
0(CSHPy,) . 37
ATm2) -1 0 Al 738 (7
o(CTGT) ohy) | L2 CTGT = -
2
oL P2) BT ) R Y.
a(CWf) 5\/5




3) Case lll — Fuel-Flow Limited Engine.
Finally the third case is when the maximum output power of the engine is bounded by reaching the maximum
fuel-flow the pump is capable of delivering to the engine. Applying the KKT conditions for this case impose

the following conditions on the Lagrange multipliers associated with the inequalities constraints (Eg. 38).

{,ul=0,/,12=0,/,13>0} (38)

Combining Eq. 38 with Eq. 33 results in the following set of equations (Eq. 39):

8(CSHRy,) #3 >0
i o(hy) 105
d(CNg 0 - -1 105
G(C(SHP) ) 9(CNg) wm) | NS N
AT M2 o -1 0 A4 | 738 (39)
o(CTGT) oh) | L CTGT <~ =
1 0 2
M 6(CWf ) CWf = io
a(Cwf) NG

The next section demonstrates the specifics of Case 11 using the exemplary flight-test data. Similar methodology
can be applied to find the maximum output power for the other two cases.

The set of equations specified in Eq. 37 has a solution if and only if the rank of the system matrix equals the rank
of the auxiliary matrix. This solution is also unique if both ranks equal three (the three Lagrange multipliers). This

requirement for a unique solution can be stated mathematically as in Eq. 40.

_o) o 9(CSHRug)
0 _68((::]1) -1 ° d(CNg) d(CNg)
(CNo) d(CSHRy, )
rank| 1 -1 0 =rank| 1 -1 m =3 (40)
o(hy)
0 0 _6(CWf) 0 0 ~ d(h,)  9(CSHRy;)
o(Cwf)  a(Cwf)




Instead of searching for a pair of corrected compressor speed and corrected fuel-flow under a limited corrected
temperature (CTGTimit) to satisfy Eq. 37, one can simplify the process by using a “back-door” approach: for each and
every combination of atmospheric conditions a pair of candidate corrected compressor speed and corrected fuel flow
will be suggested provided via the engine internal rule of operation (Eq. 25 and 26). These candidate pairs
complemented with the engine temperature limit will then be evaluated for fulfillment of the KKT conditions required
for maximization of the engine output power. Since the equations specified in Eg. 37 have a unique solution they can
be rearranged as in Eq. 41. The three engine parameters (candidates for maximum output power) can be used in
Eq. 41 to solve for the Lagrange multipliers. The three candidate simultaneous engine parameters will be proved valid
to define a maximum output power of a temperature limited engine if and only if the solution of the system specified

as Eq. 41 is achieved while coinciding with the KKT conditions required for the case.

-1 1 1 d(CSHPRy ) H >0
(oh,/0CNg) ~ (ah,/oCNg)(ah,/aCW, ) ||~ o(CNg) cNg <20
M \/5
-1 1 9(CSHRy, ) _
A |= 0 : S KKT : 738 (41)
P (oh/aCNg) ~ (oh/aCNg) (ah2 jacw,) | | a(cTeT) cTeT ==
0 9(CSHRy, ) W < 450
(eh, /acwf ) o(cwr) NG
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requirements as a function of  The engine is temperature limited at 738°C. Note the fulfillment of all KKT

conditions for output power maximization of the temperature limited engine.
pressure-altitude for an ISA day

conditions. It can be seen that



all the KKT conditions are met. Figure 9 presents the maximum continuous output power of the engine as a function

of pressure-altitude for

12000 \ \
different day conditions. \ \ \\\
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N
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N

output power of the engine
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Figure 9. Estimation of the engine maximum continuous output power between

requirements were omitted sea level to 12,000 ft. under different day conditions. The maximum continuous
power of the engine was estimated to be temperature limited. Note the engine
from Fig. 9 although they maximum continuous power for ambient temperatures of a standard day profile

(ISA) and below is bounded by the helicopter transmission rating.
were all met.

E. Comparison of Maximum Output Power for Current and MPOC method

Finally, the estimated maximum engine output power was compared using both the current and the proposed
MPOC methods. This comparison is presented in Fig. 12. Looking at this figure one can see that both methods
demonstrated similar results for atmospheric conditions close to those prevailed during the actual flight-tests
(ISA+21°C); however,
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Figure 10. Comparison between the proposed and the current methods. It can clearly
estimations for ISA and  be seen that while the current single variable method collapses under the estimation

for maximum continuous output power for standard day conditions and colder, the
colder day conditions. proposed multivariable method still provides a logical estimation.

reasonable and logical



IV. Conclusions

The output power of a helicopter gas turbine engine is a multivariable problem that can be non-dimensionalized
as any other physically meaning problem. Over simplification of the problem as linear combination of single-variable
models does not provide sufficient accuracy and frequently provides unrealistic estimations for maximum output
power under atmospheric conditions different than those prevailed during the test. The novel method presented in this
paper (Multivariable Polynomial Optimization under Constraints, MPOC) is based on multivariable polynomials
which proved substantial better performance in estimating the output power of a BO105 helicopter used as example
in this paper (over 300% of improvement). The P-value concept complemented with a comparative performance on
the mean-variance plane were used successfully as an inferential statistical tool for sorting between various candidate
multivariable models to represent the gas turbine engine output power. Predicting the maximum output power of the
engine can be regarded, mathematically, as an optimization problem of a multivariable function subjected to both
equalities and inequalities constraints. The equalities constraints were based on the experimental data and the
inequalities were provided by the engine operating limitations. While the current method provided unrealistic results
for certain atmospheric conditions, the proposed MPOC method demonstrated adequate prediction performance for a
wider range of atmospheric conditions. Although the current single-variable method is simple to use it should be
utilized only as a first estimation and not as a formal analysis tool in the process of estimating the maximum output
power of a gas turbine engine. The approach presented in this paper will be expanded in the future to include flight-
test data of other types of helicopters and engines. Future research can also include a comparative analysis between a
broader base of candidate multivariable polynomials in order to better understand which type of regressors are

performing better in modeling the output power of a gas turbine engine and the reason for that.
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