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Helicopter Gas Turbine Engine Performance Analysis - A 

Multivariable Approach 

Ilan Arush1 

National Test Pilot School, Mojave, California, 93502. Email: iarush@ntps.edu 

Marilena D. Pavel2 

Faculty of Aerospace Engineering, Delft University of Technology, Delft, The Netherlands 

Helicopter performance relies heavily on the available output power of the engine(s) installed. A simplistic 

single-variable analysis approach is often used within the flight-testing community to reduce raw flight-test 

data in order to predict the available output power under different atmospheric conditions. This simplistic 

analysis approach often results in unrealistic predictions. This paper proposes a novel method for analyzing 

flight-test data of a helicopter gas turbine engine. The so-called “Multivariable Polynomial Optimization under 

Constraints” (MPOC) method is capable of providing an improved estimation of engine performance and 

maximum available power. The MPOC method relies on optimization of a multivariable polynomial model 

subjected to equalities and inequalities constraints. The Karush-Khun-Tucker (KKT) optimization method is 

used with the engine operation limitations serving as inequalities constraints.  The proposed MPOC method is 

applied to a set of flight-test data of a Rolls Royce/Allison MTU250-C20 gas turbine engine, installed on a 

MBB BO-105M helicopter. It is shown that the MPOC method can predict the engine output power under a 

wider range of atmospheric conditions and that the standard deviation of the output power estimation error is 

reduced from 13hp in the current single-variable method to only 4.3hp using the MPOC method (over 300% 

improvement).  

Nomenclature 

A = Matrix containing numerical regressors 

𝛼𝑗
𝑖 = generic multivariable polynomial coefficient  

Ng = engine compressor speed 
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TGT = engine temperature (Turbine Gas Temperature) 

SHP = engine output power (Shaft Horse Power) 

Wf = engine fuel-flow  

g

g

N
CN


  = corrected engine compressor speed 

TGT
CTGT


 =  corrected engine temperature (Turbine Gas Temperature) 

SHP
CSHP

 
 = corrected engine output power (Shaft Horse Power) 

f

f

W
CW

 
 = corrected engine fuel-flow  

δ = relative static air pressure 

θ = relative static air temperature 

rE  = engine output power estimation error vector 

ai,bi,ci = generic single-variable polynomial coefficients 

�⃗�  =  column vector to represent experimental CSHP  

f = generic multivariable function in xi to be maximized 

gj = inequality constraints 

hk = equality constraints, multivariable function in xi 

 λi = Lagrange multipliers associated with equality constraints 

µi = Lagrange multipliers associated with inequality constraints 

i,j = indices 

xi = variables of a generic multivariable function 

I. Introduction 

LIGHT testing is an expensive activity that requires efficient methods for predicting correctly the helicopter 

performance. Such methods involve considerations regarding testing techniques and data reduction of the raw flight-

test data. The present paper relates to the helicopter maximum engine power testing methodology. In the current 

method the flight-test data are analyzed based on single-variable models. The paper proposes a novel method involving 

multivariable polynomials defined for the engine parameters, i.e. Shaft Output Power, Compressor speed, Temperature 

F 



and Fuel-Flow. It will be shown that such an approach can result in more realistic predictions. The paper is structured 

as follows: after a short introduction, section II gives the current methodology for flight-test data analysis w.r.t. 

maximum engine power. In section III a novel methodology is defined and demonstrated involving multivariable 

regression analysis for maximum engine power. Final conclusions and recommendations complete the paper.     

II. Single-variable Analysis Method 

The useful performance of any helicopter depends on the amount by which the power available exceed the power 

required [Ref. 1]. The current method widely used within flight-test community for determining the maximum output 

power of the helicopter engine based on flight-test data for consists  on recording stabilized engine(s) parameters (such 

as temperature, compressor speed, fuel-flow and shaft output power) accompanied by their corresponding atmospheric 

conditions prevailed during the test [Ref. 2]. These flight-test data are gathered while flying the helicopter throughout 

its certified envelope and collecting engine parameters to their approved operating limitations. Once a substantial data 

base is gathered it can be analyzed with the final goal of deriving the maximum shaft output power that the turbine 

engine can deliver under various combinations of atmospheric conditions. One should remember  that the limiting 

factor for the maximum output power could change under different atmospheric conditions (for example, under hot 

day conditions the engine maximum output power could be limited by the engine temperature while under relatively 

cold day conditions the maximum engine compressor speed could limit the maximum power the engine can deliver. 

The flight-test data analysis must “decide” on both what the maximum power is and which its associated limiting 

factor is. Usual limiting factors are the engine temperature, the engine compressor speed or the fuel flow to the engine. 

An additional limiting factor that often comes into play is maximum transmission torque. This limitation is not an 

engine limitation as such (it is more the platform limitation) but it can have a fundamental effect on maximum output 

power of the engine. This entire process described is often referred to as “the analysis to define the installed engine 

available power”.  

Dimensional analysis concepts are intensively used in performance flight-testing. Applying non-dimensional 

analysis tools allow the flight-test team to reduce the number of dimensional parameters involved in the physical 

problem, and hence to reduce substantially the number of flight-test sorties required, saving time and resources  

[Ref. 3]. The first step in analyzing the engine data is therefore not surprisingly related to correcting or non-

dimensionalizing the raw flight-test data. There are mainly four engine parameters, i.e. Shaft Output Power, 



Compressor speed, Temperature and Fuel-Flow which are corrected using the corresponding atmospheric conditions 

and are converted into, CSHP, CNg, CTGT & CWf respectively. The mathematical process of non-dimensionalizing 

the gas turbine engine parameters is based on the Buckingham PI Theorem [Ref. 4].  

 

Next step will concentrate on applying common methods of linear regression in order to best fit three separate 

single-variable polynomials as given by Eq. (1) to (3). These polynomials give the correlation between the 

experimental data; the mathematical relation between the corrected engine power and each of the other corrected 

engine parameters. They are usually of 3rd order so that they can capture an inflection point representing an important 

physical characteristic of the engine.    
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Each single-variable polynomial can then be treated like a ‘finger print’ of the installed engine in the particular 

helicopter type and represents the mathematical relationship between the corrected output power and the separate 

corrected engine parameter (engine temperature, engine compressor speed or  engine fuel-flow).  

As example throughout this paper consider the flight-test data gathered for a Rolls Royce/Allison MTU250-C20 

gas turbine engine installed as the left engine on a MBB BO-105M helicopter used for training at the National Test 

Pilot School in Mojave, California. Applying Eq. (1) to (3) to this set of flight-test data and using least-squares 

technique results in Eq. (4) to (6). Figure 1 presents the three non-dimensional engine parameters plots for the example 

flight-test data.  



The last step in this analysis 

method is to evaluate the 

maximum available output power 

(in physical units) the engine is 

capable of delivering under a wide 

range of atmospheric conditions. 

For an atmospheric condition of 

choice, the engine output power is  

calculated separately in each path; 

the path of compressor speed 

limited engine (substituting the 

engine compressor speed 

limitation in Eq. (1) , the path of 

temperature limited engine 

(substituting the engine maximum allowable temperature limitation in Eq. (2)) and the path of fuel flow limited engine 

(substituting the engine  fuel flow limitation in Eq. (3)). The three calculated values for the engine output power are 

then compared, first amongst themselves and then against the maximum transmission torque (transmission limitation). 

The maximum available power of the engine will be assessed as the minimum out of all 4 channels [Ref. 5].   

  

        
3 2

1     0.009947  2.9534   273.47 8153.2g g g gCSHP f CN CN CN CN        (4) 

        
3 25

2    3.328 10 0.0677 43.87 9256.7CSHP f CTGT CTGT CTGT CTGT        (5) 

        
3 26

3     9.3718 10  0.0020359 2.5551   234.32f f f fCSHP f CW CW CW CW         (6) 

 

The data presented in Fig. 2 were derived by following the described procedure with the example polynomials 

(Eq. 4, 5, 6). Figure 2 shows the analyzed data for up to 12,000 ft. of pressure-altitude and for five distinct day 

conditions; a standard day (ISA), 10°C and 20°C hotter than standard, 5°C and 10°C colder than standard day 

 

 
Figure 1.  Non-Dimensional Single-Variable Engine Performance. Data 

represents 34 stabilized engine operation points during flight at various 

conditions. The corrected engine output power (CSHP) is separately 

presented against each of the engine corrected parameters, corrected engine 

temperature, corrected compressor speed and corrected engine fuel flow 

(fuel weight flow).  
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conditions. Figure 2 presents the 

estimated maximum continuous 

output power of the engine based on 

this set of flight-test data.  

 

The continuous power rating of 

this type of engine was set at engine 

temperature of 738°C and 

compressor speed of 105%. For the 

fuel-flow a fictitious limitation (@ 

450 pounds per hour) was used 

(since, for this specific engine and under atmospheric conditions used, this parameter of the engine is never a limiting 

factor). Another limitation 

mentioned above is the transmission 

limitation. This was at 344 hp for the 

continuous rating. It can be easily 

seen from Fig. 2 that for ISA, ISA-5 

and ISA-10 day conditions the 

helicopter maximum power is 

transmission limited from sea level 

up to 790 ft., 2800 ft. and 3800 ft. 

above sea level correspondingly. For higher pressure-altitudes the engine becomes temperature limited. As for a 10°C 

and 20°C hotter than standard day, analysis suggests the engine output power is temperature limited from sea level 

and above.  

The major disadvantage of this analysis method lies in the intrinsic assumption of independency between the rules 

of operation in all three engine limiting factors. This disadvantage manifest itself by the unrealistic behavior of the 

three lines of ISA, ISA-5°C and ISA-10°C crossing each other above pressure-altitude of 8000 ft as seen in 

Fig. 2. It is physically impossible for a temperature limited engine to deliver more power whilst the ambient 

 
 

Figure 2. Estimated maximum continuous power of the example engine. 

Note the engine as installed in the helicopter is transmission limited for 

ISA, ISA-5 and ISA-10 conditions.  
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Figure 3. Engine output power estimation errors using single variable 

models. Note the relative large estimation errors of up to 30 hp using the 

engine temperature variable.   
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temperature is higher.  The absolute errors between actual measured engine output power and the corresponding 

predicted values using the reduced polynomials (Eq. 4, 5, 6) are calculated using Eq. 7, 8 & 9 and presented in Fig. 3.  

These errors were found to be normally distributed about a practically zero mean. Figure 4 shows the error standard 

deviation for each prediction channel 

plotted against its relevant error 

mean. This figure also includes a 

horizontal bar to represent the 95% 

confidence level interval range for 

the mean of the error. This bar shows 

where the mean of the error can be 

found for 95% confidence level. 

Looking at this figure one can see 

that  the output power  based on engine temperature (Eq. 4) presents the worst performance; the relevant standard 

deviation of this error is 13hp and under 95% confidence level the mean of the estimation could be found anywhere 

along a range of ±4.6hp. A standard deviation of 13hp is considered a substantial error value for power predictions.  
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Concluding, the current method used for determining the maximum output power of the helicopter engine can 

result in large errors and unrealistic predictions. Next chapter will propose a new method to improve flight-test data 

analysis. 

  

 
Figure 4. The mean and standard deviation of the single variable 

estimation errors. The engine temperature based estimation presented the 

worst performance with an error standard deviation of 13hp.    
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III. Proposed Multivariable Analysis Method 

In the following sections a novel analysis method referred to as ‘Multivariable Polynomial Optimization under 

Constraints’ (MPOC) is proposed. This method requires no change to the way engine performance flight-test sorties 

are carried out. Using the elegant method of projection onto subspaces a list of mathematical candidate models will 

be derived to best represent the relationship between the engine output power and the engine parameters. The 

maximum engine output power will be assessed as an optimization problem under constraints. Since our problem has 

both equalities and inequalities constraints, the Karush-Khun-Tucker (KKT) method which deals with both type of 

constraints will be utilized. 

The proposed method presented in this chapter will be exemplified with the same flight-test data used in the 

previous chapter dealing with the current analysis method.   

A. Multivariable Linear Regression 

 

A convenient mathematical relationship needs to be found for representing the flight-test data. Polynomials serve 

great role in flight-testing due to their simplicity which makes them suitable candidates for best-fit type models. 

Different math model search algorithm were developed in the literature of specialty for optimizing regression models 

of multivariate experimental data obtained in aviation. For examples see [Ref. 6, 7, 8] 

 

The MPOC method seeks for a multivariable polynomial limited to the third order as in the current method. This 

section presents the process of finding a best-fit third order multivariable polynomial to relate between the corrected 

shaft output power, the corrected compressor speed, corrected engine temperature and corrected fuel flow to the 

engine. For simplification and based on common practice, six basic two-variable polynomials of the third order are 

defined using the three independent engine variables. This results in six different combinations as presented in 

Table 1. It can be seen from Table 1 that each mathematical term yields six lower order terms resulting in a long list 

of 42 regressors. However, many of the lower order terms are merely duplicates and can be dismissed. Filtering out 

repeating terms gives an updated list of regressors as presented in Table 2. This table corresponds to a list of 18 

candidate regressors to work with for a best fit mathematical expression under the generic expression as given by 

Eq. 10.  

 



 

Table 1: List of 3rd order polynomials and their lower order terms 

# Mathematical Term                                  List of Lower Order Terms 

1 (𝐶𝑁𝑔)
3
(𝐶𝑇𝐺𝑇)   𝐶𝑁𝑔; (𝐶𝑁𝑔)

2
; (𝐶𝑁𝑔)

3
; 𝐶𝑇𝐺𝑇; (𝐶𝑇𝐺𝑇)(𝐶𝑁𝑔); (𝐶𝑇𝐺𝑇)(𝐶𝑁𝑔)

2
 

2 (𝐶𝑁𝑔)
3
(𝐶𝑊𝑓) 𝐶𝑁𝑔; (𝐶𝑁𝑔)

2
; (𝐶𝑁𝑔)

3
; 𝐶𝑊𝑓; (𝐶𝑊𝑓)(𝐶𝑁𝑔); (𝐶𝑊𝑓)(𝐶𝑁𝑔)

2
 

3 (𝐶𝑇𝐺𝑇)3(𝐶𝑁𝑔)  
𝐶𝑇𝐺𝑇; (𝐶𝑇𝐺𝑇)2; (𝐶𝑇𝐺𝑇)3; 𝐶𝑁𝑔; (𝐶𝑁𝑔)(𝐶𝑇𝐺𝑇); (𝐶𝑁𝑔)(𝐶𝑇𝐺𝑇)2 

4 (𝐶𝑇𝐺𝑇)3(𝐶𝑊𝑓)  𝐶𝑇𝐺𝑇; (𝐶𝑇𝐺𝑇)2; (𝐶𝑇𝐺𝑇)3; 𝐶𝑊𝑓; (𝐶𝑊𝑓)(𝐶𝑇𝐺𝑇); (𝐶𝑊𝑓)(𝐶𝑇𝐺𝑇)2 

5 (𝐶𝑊𝑓)
3
(𝐶𝑁𝑔) 𝐶𝑊𝑓; (𝐶𝑊𝑓)

2
; (𝐶𝑊𝑓)

3
; 𝐶𝑁𝑔; (𝐶𝑁𝑔)(𝐶𝑊𝑓); (𝐶𝑁𝑔)(𝐶𝑤𝑓)

2
 

6 (𝐶𝑊𝑓)
3
(𝐶𝑇𝐺𝑇) 𝐶𝑊𝑓; (𝐶𝑊𝑓)

2
; (𝐶𝑊𝑓)

3
; 𝐶𝑇𝐺𝑇; (𝐶𝑇𝐺𝑇)(𝐶𝑊𝑓); (𝐶𝑇𝐺𝑇)(𝐶𝑤𝑓)

2
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Table 2: Updated list of regressors for best fit hierarchical math regression model 

𝑓1 = (𝐶𝑁𝑔)
3
 

 

𝑓4 = (𝐶𝑇𝐺𝑇)3 

 

𝑓7 = (𝐶𝑊𝑓)
3
 

 

𝑓10 = (𝐶𝑁𝑔)(𝐶𝑇𝐺𝑇) 𝑓13 = (𝐶𝑁𝑔)
2
(𝐶𝑇𝐺𝑇) 𝑓16 = (𝐶𝑁𝑔)(𝐶𝑇𝐺𝑇)2 

𝑓2 = (𝐶𝑁𝑔)
2
 

 

𝑓5 = (𝐶𝑇𝐺𝑇)2 

 

𝑓8 = (𝐶𝑊𝑓)
2
 

 

𝑓11 = (𝐶𝑁𝑔)(𝐶𝑊𝑓) 𝑓14 = (𝐶𝑁𝑔)
2
(𝐶𝑊𝑓) 𝑓17 = (𝐶𝑁𝑔)(𝐶𝑊𝑓)

2
 

𝑓3 = 𝐶𝑁𝑔 

 

𝑓6 = 𝐶𝑇𝐺𝑇 

 

𝑓9 = 𝐶𝑊𝑓 

 

𝑓12 = (𝐶𝑇𝐺𝑇)(𝐶𝑊𝑓) 𝑓15 = (𝐶𝑇𝐺𝑇)2(𝐶𝑊𝑓) 𝑓18 = (𝐶𝑇𝐺𝑇)(𝐶𝑊𝑓)
2
 

 

 

With the 18 derived regressors one has an enormous amount of possible models to check. The case can be thought 

as a combination of  1,2,3,…,18 functions from a set of 18 regressors, i.e.  262,143 possibilities as per Eq. 11. 

 

 
18 18 18 18! 18! 18!

262,143
1 2 18 1!17! 2!16! 0!18!

N
     

           
     

  (11) 

The number of possible combinations can be reduced by setting a base model which is a linear combination of the 

elementary regressors f1 to f9 (Eq. 13). The polynomial as given by Eq. 13 is addressed in this paper as Model 

 number 1.  This way, the problem has been reduced to finding a model which will be constructed from Model 1 



superimposed with any combination of the regressors f10 to f18. The number of combinations is now reduces to 512 as 

per Eq. 12. 

 
9 9 9 9! 9! 9!

' 1 1 512
1 2 9 1!8! 2!7! 0!9!

N
     

             
     

  (12) 

This still represents a lot of combinations but more manageable as number. Within the limited scope of this paper 

a performance comparison between 10 different models from the 512 is presented. Model 1 presented as Eq. 13 is 

simply being added with the 9 regressors (f10 to f18 ,of Table 2), one at a time. This process of providing candidate 

multivariable polynomials is presented mathematically as Eq. 14.  Equation 15 presents the suggested model number 

4 (CSHPM4) as a particular case of the generic formula described by Eq. 14. 
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B. Fitting the Suggested Models with Experimental Data 

This section presents the method used to fit the 10 proposed multivariable models (Eq. 14, for M=1 to 10) with 

actual experimental flight-test data. The method used is based on a linear Algebra concept known as projection onto 

subspaces [Ref. 9].  

 

1) Experimental Data Fitting to Model number 1. 

The 34 flight-test data points of the example engine considered in this paper are next substituted in Eq. 13. This 

gives a linear system of 34 equations with 10 unknowns (the coefficients 1

n ). This set of equations is compactly 

represented as Eq. 16. The matrix A is of size of (34x10) and contains the numerical regressors as columns, α is a 



column vector (34x1) containing the unknown coefficients  and b is a column vector (34x1)  representing the measured 

experimental corrected output power of the engine (CSHP). 

  A b    (16) 

Substituting the regressors of the proposed model number 1 into Eq. 16 gives Eq. 17: 
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  (17) 

 This system of equations is over-determined and does not have an exact solution. However, one can look for the 

‘closest’ solution for this system, i.e. the ‘best-fit’ solution. This best-fit solution is denoted as {�̂�}. The matrix 

constructed from [𝐴𝑇𝐴]−1𝐴𝑇 is the projection matrix which when multiplied by the vector b yields a solution in a 

subspace of A (Eq. 18). This solution serves as a best-fit or the closest solution one can determine.   

  
1

ˆ T TA A A b


  
 

  (18) 

Following the above-described procedure one can immediately solve for the 10 coefficients of model number 1, 

see Eq. 19: 

    
1

1 T T
i A A A CSHP


  
 

  (19) 

For the numerical set of flight-test data exemplified in this paper, model number 1 as given in Eq. 13 is  presented 

as Eq. 20. 
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  (20) 

Similar procedure was repeated for all other 9 candidate models.  



C. Choosing the Right Model for the Task 

Consider now the prediction errors of Model number 1 to 10 per an experimental data point as presented in  

Fig. 5 and calculated according to Eq. 21. For completeness Fig. 5 also includes data obtained from current analysis 

method presented in Figure 3. 

Looking at Fig. 5 one  can  see that, 

even before any statistical tool are to 

be involved,  each  proposed  

multivariable polynomial proposed 

by the MPOC method are performing 

better  in predicting the engine output 

power as compared to the current 

method. However, one model needs 

to be chosen. Since a projection from 

a limited sample of experimental 

flight-test data to the entire population needs to be made, inferential statistics tools will be used. In general, a model 

is best replicating the experimental data if both the mean and variance of the estimation errors are zero. Obviously, 

this hypothetical perfect model is not to be found, however the following approach looks for the closest one. 

    1, 34,  1, ,10r i MK iMK
E CSHP CSHP i k         (21) 

1) The P-Value Approach. The p-value approach was used to compare between the different 10 proposed 

models. The concept behind the p-value is thoroughly discussed in literature [Ref. 10]. The concept involves 

stating two contradicting hypothesis and use the experimental data to either support or reject the first 

hypothesis (the Null Hypothesis, H0). In our analysis H0 was set to claim that each of the multivariable models 

has an array of estimation errors with a zero mean. The level of significance for this statistical analysis was 

set at 1% (99% of confidence level). The p-values returned represent the smallest significant level that lead 

to rejecting the Null Hypothesis. In general, low p-values cast doubt on the validity of the Null Hypothesis 

and once submerge under the significance level of the test, the Null Hypothesis is rejected. All models except 

for model number 10 strongly supported the Null Hypothesis for the 1% significance level set. All first 5 

models returned similar P-values, ranging from 0.999 to 1 with model number 2 being the only one to return 

 
 

Figure 5. Estimation errors for the 10 proposed multivariable models & 

current single variable analysis. The multivariable models performed far 

better in estimating the output power of the engine as compared with the 

experimental data.   
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a computed P-value of 1. The P-value approach resulted therefore in the elimination of model number 10 

from the list.   

 

2) Mean-Variance Plane. A 

complementary approach to 

the P-value concept was to 

compare the models 

performance on the mean-

variance plane. Figure 6 

presents the paired values of 

mean and standard-deviation 

of the estimation prediction 

errors obtained for the first 9 proposed models.  

 

3) Based on the relative performance of all 10 models involved, model number 2 (Eq. 22 , 23) was chosen as 

the one to best represent the engine output power.  Model number 2 will be further used to demonstrate the 

MPOC method.   
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Figure 6. Various Models Performance on the Mean-Variance Plane. 

Model number 6 start showing a divergence behavior in the mean of 

estimation error. Model number 10 was omitted from this figure due to 

an outstanding biased mean of estimation error (4hp). 
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D. Estimation of the Maximum Output Power 

 Once acquiring a multivariable polynomial to best describe the change in corrected engine output power based 

on other engine corrected parameters (compressor speed, temperature and fuel-flow), Model number 2 for the 

flight-test data of this paper, one can look for the maximum available output power of the engine under various 

atmospheric conditions. The engine output power will be limited by reaching one (or more) of its parameters. 

Finding the maximum output power is equivalent with finding an extremum point (maximum output power) under 

constraints (engine parameters: compressor speed, temperature or fuel flow). Finding an extremum point of a 

multivariable function under constraints is of a totally different nature from the case of extremum of a single 

parameter function. The most popular approach for the multivariable case is using Lagrange multipliers but this 

approach works with equalities constraints only whereas the problem we have in hand involves both equalities and 

inequalities constraints. One possible method for optimization under both equalities and inequalities constraints is 

the KKT (Karush-Kuhn-Tucker) method [Ref. 11]. Eq. 24 presents the general Lagrange equations required for 

satisfying extremum points of a multivariable function f(xi) subjected to ‘m’ number of inequalities constraints, 

g(xi), and ‘l’ number of equalities constraints h(xi). μj represent the Lagrange multipliers associated with the 

inequalities constraints and λk represent the Lagrange multipliers associated with the equalities constraints.  
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The function to be maximized is model number 2 (Eq. 22, 23) subjected to several constraints. For this system of 

equations to be solvable, at least two equality constraints need to be provided. Those are fulfilled with the engine 

internal rule of operation, as explained hereinafter. Applying similar tools of the p-value and comparative 

evaluation on the mean-variance plane as described in section C above, a best fit surface was calculated to 

constitute the engine 

multivariable internal rule of 

operation. This surface which 

describes the relationship of the 

corrected engine temperature 

with both corrected compressor 

speed and corrected fuel-flow, 

complemented by the 

experimental data points is 

presented in Fig. 7. Based on this 

two constraints were selected. 

The first one denoted as h1 and presented in its implicit form in Eq. 25 relates between the corrected engine 

temperature and the corrected compressor speed. The second is denoted as h2 and represents relationship between 

the corrected compressor speed and the corrected fuel-flow (Eq. 26). Note that h1 and h2 constraints are projections 

of the multivariable rule of operation onto two planes; the CTGT-CNg plane and the CNg-CWf plane respectively.  
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The inequalities constraint for the engine maximum output power are simply the operational limitations imposed 

on the engine. For the exemplary engine those are the continuous rating of the engine and are presented as Eq. 27, 

28 and 29. 

 

 
 

Figure 7.  The engine multivariable internal rule of operation. The 

relationship between the corrected engine temperature and the corrected 

values of the engine compressor speed and fuel flow. The circles presented 

are the experimental data points, which some are obscured by the best fit 

surface.  
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The partial differential equations based on Eq. 24 and the KKT conditions Eq. 27 to 29 for a maximization problem 

result in Eq. 30, 31 and 32. 
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Eq. 30, 31 and 32 can be rearranged compactly as presented in Eq. 33. 
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The set of partial differential (Eq. 32) describes conditions for candidate engine corrected parameters representing 

maximization of the engine output power. This set does not have a unique solution but a solution with 2 degrees 

of freedom for the three different cases it represents. The first case (Case I) is when the compressor speed is at its 

maximum value, i.e., the engine output power is limited by the compressor speed. The second case (Case II) is 

when the output power is limited by the engine temperature and the last case (Case III) is a fuel-flow limited 

engine. Separating Eq. 33 into the three individual cases and applying the KKT conditions on the Lagrange 

multipliers associated with the inequalities constraints (μ1, μ2, μ3) eliminates the two degrees of freedom and makes 

each one of these cases to have a unique solution. 



1) Case I – Compressor Speed Limited Engine. 

Applying the KKT conditions for this case impose the following conditions on the Lagrange multipliers 

associated with the inequalities constraints (Eq. 34).  

 

  1 2 30, 0, 0         (34) 

 

 Combining Eq. 34 and Eq. 33 results in the following system of equations (Eq. 35): 
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2) Case II – Temperature Limited Engine. 

Applying the KKT conditions for this case impose the following conditions on the Lagrange multipliers 

associated with the inequalities constraints (Eq. 36).  

  

  1 2 30, 0, 0         (36) 

 

Substituting Eq. 36 into Eq. 33 results in the following set of equations (Eq. 37):  
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3) Case III – Fuel-Flow Limited Engine. 

Finally the third case is when the maximum output power of the engine is bounded by reaching the maximum 

fuel-flow the pump is capable of delivering to the engine.  Applying the KKT conditions for this case impose 

the following conditions on the Lagrange multipliers associated with the inequalities constraints (Eq. 38).    

 

  1 2 30, 0, 0         (38) 

 

Combining Eq. 38 with Eq. 33 results in the following set of equations (Eq. 39):  
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 The next section demonstrates the specifics of Case II using the exemplary flight-test data. Similar methodology 

can be applied to find the maximum output power for the other two cases. 

 The set of equations specified in Eq. 37 has a solution if and only if the rank of the system matrix equals the rank 

of the auxiliary matrix. This solution is also unique if both ranks equal three (the three Lagrange multipliers). This 

requirement for a unique solution can be stated mathematically as in Eq. 40.  
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Instead of searching for a pair of corrected compressor speed and corrected fuel-flow under a limited corrected 

temperature (CTGTlimit) to satisfy Eq. 37, one can simplify the process by using a “back-door” approach: for each and 

every combination of atmospheric conditions a pair of candidate corrected compressor speed and corrected fuel flow 

will be suggested provided via the engine internal rule of operation (Eq. 25 and 26).  These candidate pairs 

complemented with the engine temperature limit will then be evaluated for fulfillment of the KKT conditions required 

for maximization of the engine output power. Since the equations specified in Eq. 37 have a unique solution they can 

be rearranged as in Eq. 41. The three engine parameters (candidates for maximum output power) can be used in 

Eq. 41 to solve for the Lagrange multipliers. The three candidate simultaneous engine parameters will be proved valid 

to define a maximum output power of a temperature limited engine if and only if the solution of the system specified 

as Eq. 41 is achieved while coinciding with the KKT conditions required for the case.  
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This procedure was carried 

out using the engine internal 

rules of operation (Eq. 25 and 

26) for different day conditions 

(ISA, ISA+10°C, ISA+20°C, 

ISA-5°C & ISA-10°C). Figure 8 

presents the maximum output 

power of the exemplary engine 

along with all KKT 

requirements as a function of 

pressure-altitude for an ISA day 

conditions. It can be seen that 

 

 
Figure 8. A simultaneously presentation of all engine parameters for pressure-

altitude between sea level and 12,000 ft. under standard day conditions (ISA). 

The engine is temperature limited at 738°C. Note the fulfillment of all KKT 

conditions for output power maximization of the temperature limited engine.  
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all the KKT conditions are met. Figure 9 presents the maximum continuous output power of the engine as a function 

of pressure-altitude for 

different day conditions. 

The maximum continuous 

output power of the engine 

is temperature limited 

under all atmospheric 

conditions presented in Fig. 

9. Note the KKT 

requirements were omitted 

from Fig. 9 although they 

were all met.  

 

E. Comparison of Maximum Output Power for Current and MPOC method  

 

Finally, the estimated maximum engine output power was compared using both the current and the proposed 

MPOC methods. This comparison is presented in Fig. 12. Looking at this figure one can see that both methods 

demonstrated similar results for atmospheric conditions close to those prevailed during the actual flight-tests 

(ISA+21°C); however, 

while the current single-

variable method 

completely collapsed under 

ISA and colder day 

conditions, the MPOC 

method predicted 

reasonable and logical 

estimations for ISA and 

colder day conditions.  

 
Figure 9. Estimation of the engine maximum continuous output power between 

sea level to 12,000 ft. under different day conditions. The maximum continuous 

power of the engine was estimated to be temperature limited. Note the engine 

maximum continuous power for ambient temperatures of a standard day profile 

(ISA) and below is bounded by the helicopter transmission rating.  
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Figure 10. Comparison between the proposed and the current methods. It can clearly 

be seen that while the current single variable method collapses under the estimation 

for maximum continuous output power for standard day conditions and colder, the 

proposed multivariable method still provides a logical estimation.  
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IV. Conclusions 

The output power of a helicopter gas turbine engine is a multivariable problem that can be non-dimensionalized 

as any other physically meaning problem. Over simplification of the problem as linear combination of single-variable 

models does not provide sufficient accuracy and frequently provides unrealistic estimations for maximum output 

power under atmospheric conditions different than those prevailed during the test. The novel method presented in this 

paper (Multivariable Polynomial Optimization under Constraints, MPOC) is based on multivariable polynomials 

which proved substantial better performance in estimating the output power of a BO105 helicopter used as example 

in this paper (over 300% of improvement). The P-value concept complemented with a comparative performance on 

the mean-variance plane were used successfully as an inferential statistical tool for sorting between various candidate 

multivariable models to represent the gas turbine engine output power. Predicting the maximum output power of the 

engine can be regarded, mathematically, as an optimization problem of a multivariable function subjected to both 

equalities and inequalities constraints. The equalities constraints were based on the experimental data and the 

inequalities were provided by the engine operating limitations. While the current method provided unrealistic results 

for certain atmospheric conditions, the proposed MPOC method demonstrated adequate prediction performance for a 

wider range of atmospheric conditions. Although the current single-variable method is simple to use it should be 

utilized only as a first estimation and not as a formal analysis tool in the process of estimating the maximum output 

power of a gas turbine engine. The approach presented in this paper will be expanded in the future to include flight-

test data of other types of helicopters and engines. Future research can also include a comparative analysis between a 

broader base of candidate multivariable polynomials in order to better understand which type of regressors are 

performing better in modeling the output power of a gas turbine engine and the reason for that.   
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