TU Delft

Investigating the Impact of ACK Aggregation on TCP Performance using ns-3
Evaluation of Transport and MAC-Layer Aggregation Techniques

Hanna Heinczinger!'
Supervisor(s): Fernando Kuipers', Adrian Zapletal®

'EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements
For the Bachelor of Computer Science and Engineering
June 15, 2025

Name of the student: Hanna Heinczinger
Final project course: CSE3000 Research Project
Thesis committee: Fernando Kuipers, Adrian Zapletal, Asterios Katsifodimos

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract

Modern TCP congestion control algorithms rely
on timely ACK feedback to adjust their parame-
ters. However, some networks deliberately sup-
press ACKs. This study uses the ns-3 simula-
tor to experiment with the impact of suppress-
ing ACKs on the reverse path on four TCP vari-
ants (BBRv3, Cubic, NewReno, Vegas) in both
wired and wireless dumbbell topologies. In wired
experiments, we implement a custom queue that
allows us to test fixed aggregation ratios at the
transport-layer. In wireless scenarios, we utilize
the IEEE 802.11n standard’s MAC-layer aggrega-
tion schemes (A-MSDU, A-MPDU), both individ-
ually and in combination, and also evaluate vary-
ing maximum A-MPDU aggregation sizes. Our re-
sults show that while transport-layer aggregation
can degrade performance and fairness, especially
for BBRv3 and Cubic, MAC-layer aggregation
consistently improves throughput without desta-
bilizing TCP behaviour. NewReno demonstrates
strong resilience across both setups, while Vegas
exhibits highly inconsistent performance. These
findings highlight the importance of aligning aggre-
gation mechanisms with congestion control strate-
gies carefully.

1 Introduction

The Transmission Control Protocol [7] is the main transport
protocol used in the Internet, ensuring reliable and ordered
delivery of data across various network environments. TCP’s
reliability and congestion control mechanisms depend on ac-
knowledgements travelling across the reverse path. When
ACK feedback is suppressed, senders may misinterpret net-
work conditions, confusing increased delays for losses or
missing timely congestion signals. This can lead to subop-
timal congestion window evolution, increased timeouts, and
ultimately throughput degradation or collapse.

With the rise of mobile and wireless networks, deliberate
ACK aggregation has become an important research topic.
In particular, the IEEE 802.11n MAC sublayer supports two
forms of frame aggregation [8], A-MSDU (Aggregated MAC
Service Data Unit) and A-MPDU (Aggregated MAC Proto-
col Data Unit), to increase throughput by reducing per-frame
overhead. These MAC-layer mechanisms affect the timing
and delivery of TCP ACKs, altering the sender’s feedback
loop.

This study systematically analyses the behaviour of four
distinct TCP algorithms under ACK suppression in two dif-
ferent setups. The selection of BBRv3, Cubic, Vegas and
NewReno is deliberate, given the diverse approaches they use
to manage network congestion [18]. In the wired setup, a
custom queue is employed to precisely adjust transport-layer
ACK aggregation rates, allowing us to assess its impact on
TCP performance. In the wireless setup, we compare the ef-
fects of MAC-layer aggregation with various A-MPDU and
A-MSDU configurations.

Our experiments show that while TCP performance de-
grades in transport-layer aggregation in wired settings, most
TCP variants remain relatively robust under moderate aggre-
gation levels. In contrast, A-MSDU and A-MPDU, which
are MAC-layer aggregation mechanisms, significantly im-
prove performance in wireless environments, achieving a
throughput of more than three times higher. We also eval-
uated different maximum A-MPDU sizes to represent more
controlled aggregation levels; however, this operates differ-
ently compared to transport-layer packet aggregation. Across
both scenarios, NewReno exhibits stable and resilient be-
haviour, while Vegas shows highly inconsistent performance.
These results highlight the importance of aligning aggrega-
tion strategies with the design expectations of congestion con-
trol algorithms and the characteristics of the underlying net-
work.

By comparing the transport-layer and MAC-layer aggrega-
tion effects side by side, this work provides a comprehensive
and quantitative assessment of algorithmic resilience when
the TCP feedback loop is intentionally disrupted.

2 Background and Related Work

Over the years, several congestion control algorithms have
been developed to improve TCP performance under diverse
network conditions. Early designs such as Reno and its
improved version, NewReno [10], follow a loss-based ap-
proach, where congestion is inferred from packet loss events.
NewReno enhanced Reno’s recovery behaviour, particularly
during partial losses. In contrast, Vegas [5] uses a delay-based
algorithm that aims to detect and avoid congestion by moni-
toring variations in round-trip delay and adjusting the sending
rate before losses occur.

One commonly used modern algorithm is Cubic [15],
which is now the default in all major operating systems. Cu-
bic remains fundamentally loss-based but modifies the win-
dow growth function to handle high-speed, long-delay paths
better. Another modern variant is BBR [11], introduced by
Google, which builds a model of the network path by esti-
mating bottleneck bandwidth and round-trip time.

TCP congestion control mechanisms are typically evalu-
ated using metrics such as throughput, fairness, and con-
vergence time. Comparative studies have analyzed the be-
haviour of delay-based and loss-based algorithms like Ve-
gas and NewReno [6], while evaluations of Cubic provided
insights into its performance across diverse network scenar-
ios [13]. The behaviour of BBR has also been extensively
studied, including analyses of its first version [11], compar-
isons between BBRv1 and BBRv2 [17], and evaluations of
its latest revisions [19]. Such studies help to establish the
standard testing environments and key metrics for analyzing
congestion control performance.

Howeyver, real-world networks often differ from idealized,
controlled environments. In particular, wireless and asym-
metric networks often disrupt the feedback loop of TCP. A
key phenomenon that occurs is ACK suppression, which is
a reduction in the number or frequency of acknowledgement
packets sent back to the sender. ACK aggregation is a re-
lated mechanism in which multiple ACKs are intentionally

03— L]

Server 1 Client 1

Bottleneck
Router — Router

o Lo

Server 2 Client 2

(a) Wired Setup

Server 1 | Client 1
~
0
AP

Server 2 Client 2

(b) Wireless Setup

Figure 1: Dumbbell topology of wired and wireless simulation.

delayed and then transmitted together as a single burst. Ul-
timately, sending only the last ACK in a series produces the
same effect as ACK aggregation. In Wi-Fi, the logic of ACK
aggregation happens in the MAC-layer scheduling mecha-
nisms. Such changes in receiving ACKs have an effect on the
behaviour of TCP, where ACKs are expected to be returned
promptly for each received segment or after every few seg-
ments. When ACKs are aggregated, the sender may receive
bursty or delayed feedback, potentially leading to conges-
tion window mismanagement, increased queueing, and low
throughput.

The disadvantageous impact of such conditions was recog-
nized early by Balakrishnan et al. [4], who examined TCP’s
performance over asymmetric links and noted the vulnera-
bility of congestion control to ACK-path limitations. More
recently, Grazia et al. [9] studied TCP in IEEE 802.11 Wi-
Fi environments and demonstrated that MAC-layer ACK ag-
gregation can delay feedback enough to cause unnecessary
retransmissions and overinflated congestion windows. Their
findings highlight the importance of cross-layer awareness in
congestion control design.

As mentioned, IEEE 802.11n introduces two essential
MAC-layer aggregation mechanisms [12] [8]. A-MSDU
works by grouping multiple MSDUSs into a single one under
one MAC header. It offers minimal overhead but requires re-
transmitting the entire aggregate if any subframe is corrupted.
A-MPDU bundles multiple MPDUs, with each having its own
MAC header, into a single PHY transmission opportunity,
separated by delimiters. It has a slightly higher header over-
head than A-MSDU, but it is more resilient in lossy channels.
These mechanisms can be combined in two-level aggregation
by embedding A-MSDUs inside A-MPDUs to optimize both
efficiency and resilience. Although studies show that two-
level aggregation often delivers the best throughput and delay
performance [2], its interaction with modern congestion con-
trol algorithms such as BBRv3 and CUBIC has not yet been
systematically evaluated.

DOCSIS is another environment where ACK suppression
is common due to link-level asymmetries and scheduling de-
lays. This can lead to irregular ACK patterns that mislead the
congestion control algorithms. Abrahamsson [1] raised prac-
tical concerns on the IETF AQM mailing list about whether
ACK suppression strategies could be beneficial in lossy up-
links, noting the potential for increased unfairness and misin-

terpretation of loss signals.

In formalizing these issues, Arun et al. [3] applied verifi-
cation techniques to analyze the sensitivity of modern algo-
rithms like BBR to feedback timing. Their work revealed that
small changes in ACK timing, such as those introduced by
suppression or aggregation, can trigger significantly different
congestion responses. This highlights the need to understand
these feedback anomalies across diverse algorithmic designs.

While there is literature about how ACK suppression and
aggregation can degrade TCP performance, particularly in
Wi-Fi and asymmetric links, there is a lack of systematic,
comparative studies that examine how modern congestion
control algorithms respond to these phenomena. Our research
addresses that gap by using ns-3 simulations to emulate pro-
grammable ACK suppression strategies in both wired and
wireless dumbbell topologies.

3 Methodology

This study uses the ns-3 network simulator to investigate
the impact of ACK suppression on the performance of var-
ious TCP congestion control algorithms. The simulations are
structured to compare TCP performance in two distinct net-
work environments: a wired dumbbell topology (Figure 1a)
and a wireless dumbbell topology (Figure 1b), both designed
to include a central bottleneck link where congestion would
typically occur.

In the wired configuration (Figure 1la), we use a conven-
tional dumbbell topology, where two sets of leaf nodes com-
municate through a pair of routers connected by a shared bot-
tleneck link. Each access link, which connects leaf nodes to
the routers, operates at 100 Mbps with a 2 ms delay, while
the bottleneck link itself is limited to 10 Mbps with a higher
latency of 20 ms. This setup enables precise observation of
congestion dynamics and feedback mechanisms.

To study the effects of delayed feedback, a custom ACK
suppression queue is implemented and attached to the router
on the reverse path. This queue intercepts all ACK packets
and applies aggregation by delaying and batching them. The
aggregation strategy buffers ACKs and releases them in bursts
either after a fixed delay of 5 ms or once a specified number of
packets have been accumulated. This custom queue directly
controls the frequency of TCP feedback, allowing us to test
different degrees of transport-layer suppression.

In parallel, wireless experiments are conducted using a
modified dumbbell topology with IEEE 802.11n MAC-layer
behaviour (Figure 1b). The left side of the network con-
nects two sender nodes via point-to-point links to a station
node (STA). The STA transmits data wirelessly to an access
point (AP) using IEEE 802.11n in the 5 GHz band with high
throughput (HT) mode enabled. Once the AP receives the
data, it forwards it through a wired link to the right-side re-
ceivers. The wired links are configured identically to the ac-
cess links in the wired configuration, meaning 100 Mbps with
a 2 ms delay. Both access points and stations are assigned
static positions using a grid layout, and all nodes are config-
ured with the ns-3 Internet stack. IP addresses are assigned
using distinct subnets for each network segment, and global
routing tables are automatically populated to ensure proper
packet forwarding.

MAC-layer aggregation is selectively enabled or disabled
through ns-3 configuration parameters. The testbed configu-
rations include enabling only A-MPDU, only A-MSDU, both
or neither. Furthermore, we experiment with different values
for the maximum aggregation size of A-MPDU.

Although aggregation occurs at different layers, both
topologies explore the same fundamentals of how TCP con-
gestion control algorithms react to suppressed or delayed
feedback caused by packet or frame aggregation.

We record and collect the key performance metrics, such
as throughput, congestion window size, retransmissions, and
fairness. Plots are created of the results using additional
Python scripts.

4 Evaluation

All experiments were conducted in ns-3 using a dumbbell
topology where leaf nodes on the left send data to the receiver
nodes on the right. To evaluate the impact of ACK suppres-
sion, we tested four TCP variants: BBRv3, Cubic, NewReno,
and Vegas. Each simulation ran for 60 seconds of emulated
time, starting from 2 seconds to 62 seconds, to ensure the
topology was fully initialized before measurements began. A
baseline without suppression is conducted for comparison in
both setups, enabling a clear assessment of how each TCP
variant responds to varying degrees of ACK aggregation in
the network.

4.1 Transport-layer Aggregation

In the wired dumbbell setup, the custom ACK aggregation
queue was installed as the root queue on the right router’s
interface facing the bottleneck link. The queue size was con-
figured to have approximately one bandwidth-delay product
(BDP) worth of ACK traffic, ensuring it was large enough
to avoid premature packet drops while remaining sensitive to
congestion. Incoming ACKs were intercepted, and depend-
ing on the set aggregation ratio, they were either dropped or
forwarded.

To support correct behaviour under suppression, a 5-
millisecond timer was added. This timer ensures that an ACK
is eventually forwarded even if the specified ratio has not been
reached yet. Without this mechanism, we observed that many
of the algorithms failed to make progress at higher suppres-
sion ratios. Feedback is too sparse in this case, so a sender

may stall entirely, waiting indefinitely for acknowledgements
that never come.

In each run, a single TCP flow is started, sending 100,000
packets of size 1448 B. Using aggregation ratios of 1:1, 2:1,
4:1, 8:1, and 16:1, this range allows us to quantify how each
congestion control algorithm adapts to progressively sparser
acknowledgement feedback in a controlled, wired environ-
ment.

Throughput

Table 1 shows the average throughput in Mbps achieved by
each TCP variant under different ACK aggregation ratios, and
Figure 2 shows how the throughput changes over time.

Table 1: Average throughput of TCP variants under varying aggre-
gation levels (in Mbps).

Algorithm 1:1 2:1 4:1 8:1 16:1

BBRv3 884 6.67 657 650 6.50
CUBIC 9.00 853 853 850 196
NewReno 9.03 8.55 850 838 7.50
Vegas 1.76 856 852 262 556

For BBRv3, average throughput drops immediately when
aggregation is introduced, but interestingly, it stabilizes af-
terwards and maintains a consistent average of 6.5 Mbps in
higher ratios. This behaviour is consistent with BBR’s model-
driven control logic, which relies less on individual ACKs and
more on measured bottleneck bandwidth and round-trip time.
However, even BBR needs timely feedback to maintain high
throughput, so the initial drop suggests that its bandwidth
probing is disrupted by the reduced feedback frequency.

Figure 2a shows that all aggregation ratios result in a slow
start, but then they all oscillate around a common steady-state
rate of about 9 Mbps. Temporary drops occur, but recovery is
consistent. As aggregation increases, the difference in drops
becomes higher, reflecting possible misestimations of bottle-
neck bandwidth, but BBRv3 quickly converges back due to
its active probing mechanism.

Cubic shows minimal sensitivity to moderate aggregation.
The average throughput remains close to the baseline for ra-
tios up to 8:1, indicating Cubic’s robustness to delayed ACKs.
Only under extreme aggregation does performance degrade
significantly, dropping to 1.96 Mbps. This degradation likely
results from delayed or insufficient feedback, causing longer
retransmission timeouts, which lead to the collapse of the
congestion window.

Similarly to BBRv3, Cubic reaches its optimal through-
put of 9 Mbps quickly across most ratios, showing minimal
variability (Figure 2b). However, at the extreme 16:1 ratio,
throughput collapses to near zero, suggesting retransmission
timeouts or severe window reductions caused by insufficient
ACK feedback.

NewReno’s average throughput gradually decreases; there
is a more noticeable drop from the baseline to 2:1 aggregation
and another more pronounced reduction between 8:1 and 16:1
aggregation ratios.

According to Figure 2c, NewReno starts ramping up
around 5 seconds, with the convergence speed inversely re-

10

T ™I D DS
(R S
- A
5 g

Throughput (Mbps)
Throughput (Mbps)

s s N E

D DD DD
o

N N B

\
\
4

Aggregation

i

o

o

[

qqqqqqqqqqqqqqqq

IS

o

o I
@D DDD
L
(P o AN e

|

Throughput (Mbps)

Throughput (Mbps)
N

N
DD HHD
e

2o RN

o

0 10 20 30 40
Time (s)

o
=)
o
=)
=3

10 20 30 40 50 60
Time (s)

(a) BBRV3 (b) CUBIC

20 30 40
Time (s)

a
=)
o
S

0 10 20 30 40 50 60
Time (s)

(c) NewReno (d) Vegas

Figure 2: Throughput over time across TCP variants at varying aggregation ratios.

m AggregationRatio
[
£,200000
2
£ 150000
©
£
= 100000
c
S
5
$ 50000
(o)}
c
o
© 0

0 10 20 30 40 50 60

Time (s)
(a) BBRvV3

’V\‘ atio
£ 200000 1
3 R=2
= —— R=4
g —— R=8
3 150000 — hee
£
= 100000
c
oS
5
$ 50000
(o)}
c
[e]
© 0

0 10 20 30 40 50 60

Time (s)
(c) NewReno

= 100000 s

Congestion Windo
PREFNY

DD DI DE
o

gifll |1
o

0 10 20 40 50 60

Time (s)

(b) CUBIC

—~ 80000
(%]

%70000
< 60000

g

3 50000
= 40000
=

§ 30000
% 20000
[—
210000 7 f—
(e} —
© 0

AggregationRatio
— R=1

0 10 20 30 40 50 60
Time (s)

(d) Vegas

Figure 3: Evolution of congestion window sizes across TCP variants at varying aggregation ratios.

lated to the aggregation ratio. At higher aggregation levels, it
takes longer to reach 9 Mbps, and in the 16:1 scenario, there
is a pronounced drop of around 10 seconds. However, it re-
covers slowly and approaches the steady rate of 9 Mbps by
the end of the experiment. This illustrates NewReno’s steady
but ACK-paced growth and its resilience in the long run.

Vegas presents a unique pattern. Under no aggregation, it
performs poorly, reaching only about 1.8 Mbps. This reflects
on its conservative, delay-based congestion avoidance in a
high-bandwidth, low-loss wired environment. Moderate ag-
gregation reduces ACK frequency and the perceived queuing
delay, allowing Vegas to send data more aggressively, which
leads to higher bandwidth utilization. Surprisingly, at 16:1,
Vegas reaches 6 Mbps, possibly because the delay signals be-
come so imprecise that Vegas increases its window more than
usual despite potential instability.

Without aggregation, Vegas reaches only a minimal
throughput early on and maintains it throughout the simula-
tion (Figure 2d). At 2:1 and 4:1 ratios, Vegas climbs to higher
throughput levels and keeps them stable. At 8:1, it increases

quickly but then settles at a lower level (2.7 Mbps). The most
aggressive case shows a late surge that eventually reaches 6
Mbps. This delayed rise could be due to Vegas misinterpret-
ing the sparsity of ACKs as reduced congestion, thereby ex-
panding its window more than it normally would.

Overall, NewReno shows the most consistent performance
across all aggregation levels. Cubic and BBRv3 both main-
tain high throughput under moderate aggregation, with Cubic
experiencing less change. Vegas, while conservative, actu-
ally benefits from moderate aggregation, but its behaviour
becomes less predictable as the ACK feedback becomes
sparser. These results highlight the different sensitivities of
loss-based, delay-based, and hybrid congestion control strate-
gies under reduced feedback conditions.

Congestion-Window Changes

To understand how each TCP variant’s sender adjusts its win-
dow when ACKs are suppressed, the time series traces of the
congestion window were collected over the 60s simulation.
Figure 3 shows the congestion window over time for the dif-

35 TCP Variant

30 —e— NewReno
Q Vegas
.g 251 —— CUBIC
g 201 BBRv3
@ /
c 151
o
G 101
o

5,

O,

1 2

4 8 16

Aggregation Ratio

Figure 4: Number of retransmissions across TCP variants at different aggregation ratios.

ferent aggregation ratios, all plotted on the same axes for each
TCP variant.

In the case of BBRv3, we observe significant fluctuations
in the congestion window across all aggregation ratios. These
fluctuations are expected due to BBR’s periodic RTT prob-
ing, which temporarily reduces the congestion window, and
its bandwidth probing, which causes growth phases. For Cu-
bic, the frequency of growth-collapse cycles appears to in-
crease slightly with higher aggregation ratios. NewReno ex-
hibits a more predictable and gradual ”sawtooth” pattern. Af-
ter the initial start and stabilization, the cwnd ramps up and
drops sharply once loss is detected. As aggregation increases,
it takes longer for the cwnd to grow due to the reduced rate
of ACK arrivals. Vegas, being delay-based, shows a drasti-
cally different cwnd behaviour. Without aggregation, Vegas
quickly increases its window but then clamps it, and there is
no further change, which results in a lower throughput. Af-
ter the start-up, the congestion window settles, and there is
barely any change in it for the rest of the simulation.

Retransmissions

Another important indicator of TCP performance under ACK
suppression is the number of retransmissions each sender per-
forms. Figure 4 plots, for each TCP variant, the total count of
retransmitted segments observed over the 60 s wired run as a
function of the aggregation ratio.

Vegas stands out with zero retransmissions across all ag-
gregation levels. This reflects the nature of its delay-based
design, which avoids filling queues and backs off before loss
occurs. Even under extreme suppression, Vegas maintains
enough responsiveness to avoid causing or reacting to loss
events.

NewReno has the second lowest retransmissions. As ag-
gregation increases, the number of duplicate ACKs received
declines, making fast retransmit less likely to trigger. Due to
its conservative growth and fallback mechanisms, NewReno
continues to operate reliably without increasing loss.

Cubic, being more aggressive in probing the available
bandwidth, results in a higher but relatively stable number of
retransmissions. The retransmission count remains roughly
consistent across most aggregation ratios, suggesting that its
probing strategy remains unchanged regardless of ACK sup-
pression. The exception is at 16:1 aggregation, where retrans-

missions drop sharply. This drop is likely due not to fewer
losses but to insufficient ACK feedback to detect and react to
them within the simulation period.

Initially, retransmissions are minimal, as BBRv3 quickly
converges to the estimated bottleneck bandwidth and avoids
unnecessary loss. However, as ACK feedback becomes
sparser with increasing aggregation ratios, BBRv3’s band-
width and RTT estimation become noisy. The algorithm may
mistakenly interpret a lack of feedback as an opportunity to
send more aggressively, which leads to bursts of congestion
and packet loss. Yet, at 16:1, BBRv3’s retransmissions de-
crease, likely for the same reason as Cubic’s.

In summary, retransmission behaviour under ACK sup-
pression reveals important differences in algorithm design.
Vegas, being delay-based, completely avoids loss. NewReno
is robust and conservative, incurring minimal retransmis-
sions. Cubic and BBRv3, while typically high-throughput
performers, both become more vulnerable to excessive send-
ing or misinterpretation of feedback.

Fairness

To evaluate fairness among different TCP congestion control
algorithms, a set of experiments was conducted in which two
concurrent TCP flows compete over the same bottleneck link.
The key focus is on how these flows share available band-
width under varying levels of ACK suppression. Each pair-
wise combination of TCP variants is tested under aggregation
ratios of 1:1, 2:1, 4:1, 8:1, and 16:1.

Intra-Algorithm Fairness
We first evaluate fairness when both flows run the same con-
gestion control algorithm. Ideally, in a fair system, each flow
should obtain approximately 50% of the total throughput.
Table 2 shows that both BBRv3 and CUBIC maintain ex-
cellent fairness at low to moderate aggregation levels. How-
ever, they both drop to 0.5 at an 8:1 aggregation ratio, which
indicates that one flow dominates the bandwidth while the
other starves. Interestingly, Cubic recovers, suggesting that
under very sparse ACK feedback, Cubic’s congestion control
mechanism stabilises in a way that rebalances the flow shares.
BBRv3, on the other hand, does not recover, maintaining poor
fairness at the highest aggregation levels. This may be due to
BBR’s model-based approach being more sensitive to feed-

Table 2: Intra-algorithm fairness: Jain’s Fairness Index between two identical flows under varying aggregation levels.

Algorithm 1:1 2:1 4:1 8:1 16:1

BBRv3 0.999 0978 0.924 0.502 0.500

CUBIC 0.999 0998 0.977 0.500 0.942

NewReno 1.000 0.994 0.500 0.500 0.501

Vegas 1.000 0.627 0.975 0.502 0.503
Algorithms 1:1 2:1 4:1 8:1 16:1 Generally Favoured Variant
BBRv3 vs. CUBIC 0.998 0.936 0.500 0.500 0.501 CUBIC
BBRv3 vs. NewReno 0.997 0.972 0.500 0.500 0.507 NewReno
BBRvV3 vs. Vegas 0.557 0.559 0.500 0.653 0.846 BBRv3
CUBIC vs. NewReno 0.995 0979 0,500 0.500 0.849 NewReno
CUBIC vs. Vegas 0.535 0.516 0505 0.594 0.828 CUBIC
NewReno vs. Vegas 0.545 0.539 0968 0.501 0.503 Vegas

Table 3: Inter-algorithm fairness: Jain’s Fairness Index between two distinct TCP variants under varying aggregation ratios.

back scarcity, causing unfair resource allocation. NewReno
exhibits near-perfect fairness at 1:1 and 2:1 aggregation lev-
els but quickly degrades to 0.5 from 4:1 onward, indicating
persistent unfairness under higher ACK suppression. Vegas
shows the most unpredictable behaviour. While perfectly fair
at 1:1, it drops sharply at 2:1 and fluctuates thereafter. This
irregularity could stem from the delay-based congestion con-
trol reacting inconsistently to ACK suppression, which af-
fects how it shares bandwidth with its identical flows.

Inter-Algorithm Fairness

Next, we examine fairness across different congestion con-
trol algorithms when two flows use different TCP variants.
The same aggregation ratios are applied to assess whether any
algorithm systematically dominates others under transport-
layer aggregation. The “Generally Favoured Variant” column
in Table 3 reflects the overall trend across all tested aggrega-
tion ratios while acknowledging that dominance may shift at
specific levels of aggregation.

At low aggregation ratios (1:1 and 2:1), fairness between
pairs is generally high, indicating balanced resource sharing.
As aggregation increases, differences in algorithm behaviour
emerge. Loss-based variants, such as CUBIC and NewReno,
often secure a larger share of throughput at higher aggrega-
tion levels due to their more aggressive congestion window
growth and burst accommodation. In contrast, delay- and
model-based variants (Vegas, BBRv3) can be less favoured
at these higher aggregation levels, although they occasionally
gain an advantage.

4.2 MAC-Layer Aggregation

In the wireless setup, MAC-layer aggregation was evaluated
by varying the A-MPDU and A-MSDU parameters. The
wireless link consisted of a fixed HT AP and a fixed HT STA,
both operating on a 20-MHz channel and using the 64-QAM
3/4 modulation coding scheme (MCS), resulting in a PHY
data rate of 65 Mbps. To ensure long flows and full utilisa-
tion of the link during the 60-second experiment duration, the
total number of packets was increased to 500,000.

The maximum A-MSDU frame size is 7935 bytes, which
is 256 bytes shorter than the maximum physical layer PSDU
size (8191 bytes) since reserved space is allocated for future
control information [16]. The maximum length of the PSDU
that may be received is 65,535 bytes. At the MAC layer,
frame aggregation reduces protocol overhead by combining
multiple data frames into a single transmission unit.

Throughput

Both schemes were either disabled or set to their maximum
aggregation levels, allowing an investigation of four configu-
rations: (i) no aggregation, (ii) A-MSDU only, (iii) A-MPDU
only, and (iv) both schemes enabled simultaneously.

The average throughput results are presented in Table 4.
Across all TCP algorithms, the baseline throughput without
MAC-layer aggregation remains low and nearly identical due
to substantial protocol overheads at the MAC layer. Enabling
A-MSDU aggregation alone increases throughput three times
compared to the baseline. This gain arises because A-MSDU
aggregates multiple MAC Service Data Units into a single
MAC Protocol Data Unit (MPDU), reducing header and con-
tention overhead.

A-MPDU aggregation proves even more effective, as it op-
erates at the MPDU level after MAC header encapsulation.
Unlike A-MSDU, each subframe within an A-MPDU can
be independently acknowledged and retransmitted, providing
both efficiency and resilience against wireless errors. When
both aggregation schemes are combined (two-level aggrega-
tion), throughput reaches approximately 41 Mbps, close to
the maximum achievable given the PHY data rate and proto-
col overheads.

The delay-based Vegas algorithm follows a similar trend
but consistently achieves lower throughput than the other
variants under all aggregation schemes. Interestingly, Vegas
benefits slightly more from A-MSDU than A-MPDU. This
may stem from Vegas’s sensitivity to RTT variance and its
conservative congestion window adaptation: A-MSDU’s re-
duced per-frame delays may provide a more stable RTT es-
timate, whereas A-MPDU’s burstier transmissions introduce

Algorithm baseline

A-MPDU + A-MSDU A-MPDU A-MSDU

BBRvV3 11.90 41.43 40.24 37.57
CUBIC 11.17 41.19 40.33 37.23
NewReno 11.15 41.32 40.19 37.26
Vegas 11.94 17.34 16.52 16.68

Table 4: Average throughput for each TCP variant under varying aggregation schemes.

45 — AMPDU + AMSDU

45 .
Aw Am m i ao] IR raduiny aol AR AP M it 2 e
— 40 w — [T —~ W ! A — I -
a2 PG f’\\ r/\w‘ a MW A A AV w\/\«»/\,«m«m\r a2 WA AL VY 4221)
835 \ \ n | a35 f 835 a
= ‘ ‘ s = 201 ||
2 = ! 2 I = N
<30 AMSDU = 30 — + 30 V A
5 s=<r —awwn > >18 \ v ;
%25 225 i 225 %15 A W V\VWM/P
g20 320 820] /\\'W\‘ €N
E 15 E [E W
15 15 12] e A
10 VAN N MLV 10 10
0 10 20 30 40 50 60 0 10 20 30 40 50 60 0 10 20 30 40 50 60 0 10 20 30 40 50 60
Time (s) Time (s) Time (s) Time (s)
(a) BBRv3 (b) CUBIC (c) NewReno (d) Vegas

Figure 5: Throughput over time across TCP variants at varying aggregation schemes.

more variability into Vegas’s RTT measurements.

Figure 5 further illustrates these trends. BBRv3 displays
greater throughput fluctuations as expected due to its probing
cycles. In contrast, both Cubic and NewReno, as loss-based
algorithms, exhibit stable throughput once aggregation is en-
abled, regardless of aggregation type. Vegas initially over-
shoots throughput at the start of each flow but eventually sta-
bilizes at lower throughput levels across all aggregation con-
figurations. This initial overshoot is typical of Vegas’s startup
behaviour, where the congestion window briefly grows ag-
gressively before Vegas detects a queuing delay and reduces
its sending rate.

Overall, these results confirm that enabling both A-MSDU
and A-MPDU aggregation yields the highest throughput ef-
ficiency. A-MPDU alone offers nearly equivalent gains
while disabling both schemes results in substantial through-
put degradation. Without aggregation, each frame incurs full
MAC overhead (headers, inter-frame spaces, backoff delays),
which severely limits efficiency at the wireless medium com-
pared to the PHY rate.

Congestion-Window Changes

Figure 6 illustrates the congestion window evolution for each
algorithm under the various aggregation configurations. As
seen previously, BBRv3 exhibits frequent congestion window
adjustments, consistent with its bandwidth and RTT-probing
behaviour. Cubic rapidly stabilizes at a fixed congestion win-
dow size across all aggregation schemes. Interestingly, its
steady-state congestion window is slightly larger when ag-
gregation is enabled, likely due to reduced loss rates and more
efficient data delivery per RTT cycle.

NewReno demonstrates a continuous and linear congestion
window growth throughout the experiments. When either A-
MPDU or A-MSDU is enabled, NewReno’s window growth
becomes steeper than in the baseline, reflecting the benefits
of reduced packet loss and improved transmission efficiency
on its additive-increase behaviour.

Vegas shows a different pattern: with aggregation en-
abled, it initially builds up the congestion window rapidly
but quickly retreats to a lower, stable window size. This
behaviour reflects Vegas’s early detection of queuing delay
induced by aggregated bursts, which triggers its congestion
avoidance mechanism and leads to conservative window size.

Varying A-MPDU

To further investigate A-MPDU’s impact, we varied its ag-
gregation size while keeping A-MSDU disabled. The maxi-
mum A-MPDU size was configured to 4 KB, 8 KB, 16 KB,
32 KB, and 64 KB. These values reflect increasing numbers
of aggregated MPDUs while staying within standard PHY
layer limits. The packet payload size remains fixed at 1448
bytes; therefore, the effective number of aggregated frames
per A-MPDU depends on the A-MPDU limit, MAC header
overhead, and padding requirements [14]. Since A-MPDU
operates after encapsulation, it can aggregate multiple com-
plete MPDUs while preserving independent retransmission
for each subframe, reducing retransmission costs compared
to A-MSDU.

Table 5: Average throughput for each TCP variant under different
maximum aggregation size of A-MPDU.

Algorithm 64KB 32KB 16KB 8KB 4KB
BBRvV3 40.24 40.17 3871 34.53 28.20
CUBIC 40.33 40.33 38.48 3428 2742
NewReno 40.19 40.11 3846 38.46 27.22
Vegas 1652 16.52 1558 1620 17.50

As Table 5 shows, increasing the A-MPDU size steadily
improves throughput for BBRv3, Cubic, and NewReno,
though the gains diminish at higher aggregation sizes due to
saturation of the available PHY bandwidth. NewReno ex-
hibits slightly stronger throughput gains at § KB aggregation

N
&
8
S
S
S

7120000 ||

100000

N

00000{ | M FHLA s
150000 80000
60000
£ 100000

40000

50000
20000

Congestion Window (bytes)
Congestion Window (byte:

o 0

B 50000

I

0000
i
W e L,
30000] | “’Mﬁ(ww&ﬂmr m”mﬂw‘ Sy
20000 mem‘w-;.*»—rﬂ,,ﬁﬁm

Congestion Window (bytes,

10000

0 10 20 30 40 50 60 0 10 20 30 40 50 60
Time (s) Time (s)

(a) BBRV3 (b) CUBIC

Figure 6: Evolution of congestion window sizes

compared to the others, suggesting that even moderate aggre-
gation significantly benefits its loss-recovery behaviour.

Vegas again displays atypical behaviour. Its throughput de-
creases as aggregation increases up to 16 KB, after which it
stabilizes. This may be attributed to Vegas’s heightened sen-
sitivity to aggregation-induced queuing delays, which causes
premature window reductions. The burstiness introduced by
larger A-MPDUs may briefly overload buffers and inflate
RTT estimates, triggering Vegas’s conservative congestion re-
sponse.

In summary, larger A-MPDU aggregation reduces MAC
overhead by amortizing headers, contention backoffs, and
inter-frame gaps across multiple frames, thereby improving
medium utilization. However, the extent of the benefit de-
pends on the congestion control algorithm’s sensitivity to
burstiness and RTT variability introduced by the aggregation
process.

5 Discussion

Our evaluation demonstrates clear distinctions between
transport-layer and MAC-layer aggregation mechanisms in
terms of their compatibility with TCP congestion control and
overall impact on throughput.

Under the wireless conditions, transport-layer aggregation
via application-layer queuing was found to negatively in-
teract with TCP congestion control and 802.11 retransmis-
sion mechanisms, resulting in severe throughput degrada-
tion and retransmissions. In contrast, MAC-layer aggregation
mechanisms, such as A-MPDU and A-MSDU, are specifi-
cally designed to optimise wireless medium access by reduc-
ing protocol overhead while remaining fully compatible with
IEEE 802.11 retransmission and acknowledgement mecha-
nisms. MAC-layer aggregation achieves higher throughput
and better channel utilization without sacrificing packet-level
retransmission granularity or congestion responsiveness.

As expected, two-level aggregation (both A-MSDU and A-
MPDU enabled) offers the best performance across all TCP
variants [16], with throughput gains approaching the theoret-
ical maximum of the 65 Mbps PHY rate.

5.1 TCP Variant Behaviour

BBRv3 and Cubic are sensitive to aggregation at the transport
layer. With increasing aggregation ratios, both exhibit degra-
dation in fairness and high retransmission counts. This can be
attributed to the fact that these algorithms rely on timely feed-
back from either loss or RTT measurements, both of which

0 10 20 40 50 60 [10 20 30 40 50 60

30
Time (s) Time (s)

(c) NewReno (d) Vegas

across TCP variants at varying aggregation schemes.

are distorted when ACK suppression is applied. Nonethe-
less, BBRv3 and Cubic benefit substantially from MAC-layer
aggregation, where timely ACK feedback remains intact and
overhead reduction directly improves throughput.

NewReno, while traditionally seen as more conservative
and legacy, demonstrated surprisingly robust and stable be-
haviour across both transport-layer and MAC-layer aggrega-
tion scenarios. It showed fewer retransmissions, better fair-
ness retention, and a strong response to increasing A-MPDU
sizes, suggesting that its simple congestion control is more
tolerant to moderate levels of aggregation-induced feedback
distortion.

Vegas, on the other hand, consistently showed unpre-
dictable behaviour under both aggregation types. As a delay-
based algorithm, Vegas relies on accurate RTT estimation.
Aggregation, particularly bursty transmission patterns intro-
duced by queuing and MAC-level bundling, introduces RTT
variability that Vegas is not equipped to handle, leading to
either premature window reductions or overly aggressive ex-
pansions. This behaviour confirms earlier findings that delay-
based algorithms often struggle in highly variable or bursty
environments [5].

5.2 Additional overhead of the queue

The custom ACK suppression queue itself introduces only
minimal processing overhead, as each packet requires only
simple parsing to inspect TCP flags. Our simulation results
confirm that enabling the queuing mechanism at an aggrega-
tion ratio of 1:1 yields identical results to the baseline config-
uration, indicating that any overhead from queue processing
does not affect flow performance.

5.3 Future work

As with any simulation-based study, certain limitations ap-
ply. Our wireless topology uses idealized channel conditions
without mobility, interference, or jitter, which may underes-
timate the variability present in real-world WLAN deploy-
ments. Similarly, while the custom queuing implementation
accurately models aggregation effects at the transport layer,
real-world deployments may exhibit additional complexities.

Furthermore, fairness in MAC-layer aggregation scenar-
ios has not been systematically evaluated, representing an
area for future work. Particularly for multi-flow and multi-
user wireless scenarios. Additionally, incorporating Block
ACK [2] mechanisms would more accurately model real-
world IEEE 802.11 behaviour.

6 Responsible Research

The study involves only software simulation in ns-3 ! and
does not handle any private data or interact with human sub-
jects. All code modifications and experiment scripts are well
documented and made publicly available. 2

The experiments are reproducible since all topology con-
figurations and setups are shared in a public repository. Each
simulation can be recreated using the provided code and the
study’s parameters.

During the writing process, a Large Language Model was
used as a support tool to improve the clarity and structure of
the text. The LLM generated no scientific ideas or interpre-
tations. Additionally, Python scripts for the data visualiza-
tion were generated using an LLM but thoroughly reviewed
and validated before being included in the study. The ns-3
simulation models were implemented based on official doc-
umentation and tutorials, with custom extensions explicitly
developed for the purposes of this research.

7 Conclusions

This study systematically evaluated the interaction between
TCP congestion control algorithms and aggregation mech-
anisms at both the transport and MAC layers. Our results
demonstrate that aggregation can have both beneficial and
detrimental effects on TCP performance, depending critically
on where and how it is applied.

Transport-layer aggregation via delayed ACKs presents
significant challenges for many TCP variants, resulting in
throughput degradation, increased retransmissions, and fair-
ness loss, particularly for algorithms that rely heavily on
timely feedback. NewReno, despite its simplicity, showed
robust performance and stability under moderate aggregation
levels, demonstrating its resilience to delayed acknowledge-
ments.

In contrast, MAC-layer aggregation mechanisms (A-
MSDU, A-MPDU) are highly effective in wireless networks,
providing substantial throughput gains by reducing protocol
overhead while preserving compatibility with TCP control
loops and retransmission mechanisms. The combination of
A-MSDU and A-MPDU aggregation consistently delivered
the highest throughput, approaching the theoretical capacity
of the wireless link.

Across both wired and wireless scenarios, our findings
emphasize the importance of aligning aggregation strate-
gies with the congestion control algorithm in use and the
characteristics of the network environment. While MAC-
layer aggregation offers clear benefits for wireless networks,
transport-layer aggregation must be applied cautiously to
avoid destabilizing TCP’s feedback-driven behaviour.

These insights contribute to a deeper understanding of
cross-layer interactions in modern networks and may inform
future protocol designs that coexist with aggregation and con-
gestion control.

"https://www.nsnam.org/
The complete source code, simulation scripts, and plotting tools
are available at: https://github.com/hheinczinger/ack-aggregation.

References

[1] Mikael Abrahamsson. Tcp ack suppression. IETF AQM
mailing list, 2015.

[2] Mustafa Al-Anbagi and Emad Al-Hemiary. Impact
of tcp congestion control algorithms on ieee802.11n
mac frame aggregation. International Journal of Com-
puter Science Engineering and Technology (IJCSET),
Vol 2:1410-1414, 09 2012.

[3] Venkat Arun, Mina Tahmasbi Arashloo, Ahmed Saeed,
Mohammad Alizadeh, and Hari Balakrishnan. Toward
formally verifying congestion control behavior. In SIG-
COMM, 2022.

[4] Hari Balakrishnan, Venkata Padmanabhan, and Randy
Katz. The effects of asymmetry on tcp performance.
Mobile Networks and Applications, 4, 1999.

[5] Lawrence S. Brakmo, Sean W. O’Malley, and Larry L.
Peterson. Tcp vegas: new techniques for congestion de-
tection and avoidance. SIGCOMM Comput. Commun.
Rev., 24(4):24-35, October 1994.

[6] Tanjia Chowdhury and Mohammad Alam. Performance
evaluation of tcp vegas over tcp reno and tcp newreno
over tcp reno. JOIV : International Journal on Infor-
matics Visualization, 3, 08 2019.

[7] Wesley Eddy. Transmission Control Protocol (TCP).
RFC 9293, August 2022.

[8] Boris Ginzburg and Alex Kesselman. Performance anal-
ysis of a-mpdu and a-msdu aggregation in ieee 802.11n.
In 2007 IEEE Sarnoff Symposium, pages 1-5, 2007.

[9] Carlo Augusto Grazia, Natale Patriciello, Toke Hoiland-
Jorgensen, Martin Klapez, and Maurizio Casoni. Ag-
gregating without bloating: Hard times for tcp on wi-fi.
IEEE/ACM Transactions on Networking, 30(5), 2022.

[10] Andrei Gurtov, Tom Henderson, Sally Floyd, and Yoshi-
fumi Nishida. The NewReno Modification to TCP’s
Fast Recovery Algorithm. RFC 6582, April 2012.

[11] Mario Hock, Roland Bless, and Martina Zitterbart. Ex-
perimental evaluation of bbr congestion control. pages
1-10, 10 2017.

[12] Raja Karmakar, Samiran Chattopadhyay, and Sandip
Chakraborty. Impact of ieee 802.11n/ac phy/mac high
throughput enhancements on transport and application
protocols—a survey. [EEE Communications Surveys
Tutorials, 19(4):2050-2091, 2017.

[13] Douglas Leith, Robert Shorten, and G. McCullagh. Ex-
perimental evaluation of cubic-tcp. In PFLDnet, 2007.

[14] Bakeel Maghat, Mohd Baba, Ruhani ab rahman, and
Anwar Saif. Scheduler algorithm for ieee802.11n wire-
less lans. International Journal of Future Computer and
Communication, 3:222-226, 01 2014.

[15] Ayush Mishra, Lakshay Rastogi, Raj Joshi, and Ben
Leong. Keeping an eye on congestion control in the
wild with nebby. In Proceedings of the ACM SIGCOMM
2024 Conference, SIGCOMM ’24, pages 1-15. ACM,
August 2024.

https://www.nsnam.org/
https://github.com/hheinczinger/ack-aggregation

[16]

[17]

[18]

[19]

Dionysios Skordoulis, Qiang Ni, Hsiao-hwa Chen,
Adrian P. Stephens, Changwen Liu, and Abbas Ja-
malipour. Ieee 802.11n mac frame aggregation mecha-
nisms for next-generation high-throughput wlans. /EEE
Wireless Communications, 15(1):40-47, 2008.

Yeong-Jun Song, Geon-Hwan Kim, Imtiaz Mahmud,
Won-Kyeong Seo, and You-Ze Cho. Understanding of
bbrv2: Evaluation and comparison with bbrvl conges-
tion control algorithm. IEEE Access, PP:1-1, 02 2021.

Belma Turkovic, Fernando A. Kuipers, and Steve Uhlig.
Interactions between congestion control algorithms. In
2019 Network Traffic Measurement and Analysis Con-
ference (TMA), pages 161-168, 2019.

Danesh Zeynali, Emilia Weyulu, Seifeddine Fathalli,
Balakrishnan Chandrasekaran, and Anja Feldmann.
Promises and potential of bbrv3. In PAM 2024, 2024.

	Introduction
	Background and Related Work
	Methodology
	Evaluation
	Transport-layer Aggregation
	Throughput
	Congestion-Window Changes
	Retransmissions
	Fairness
	Intra-Algorithm Fairness
	Inter-Algorithm Fairness

	MAC-Layer Aggregation
	Throughput
	Congestion-Window Changes
	Varying A-MPDU

	Discussion
	TCP Variant Behaviour
	Additional overhead of the queue
	Future work

	Responsible Research
	Conclusions

