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𝐹𝑏𝑘 = 1.71 kN

𝐹𝑏𝑘 = 3.47 kN

Fig. 1. Given a 3D model under certain loading (a), our method decomposes the model into curved layers (b) that optimizes the anisotropic strength of the 3D
printed object while incorporating the manufacturing constraints. Compatible curved layers of supporting structures are also constructed for fabricating
models with large overhang. Toolpaths are optimized to supervise the fabrication of curved layers on a dual-material multi-axis 3D printer (c) using fused
deposition of filaments. (d) Compared to the planar layer-based 3D printing with optimized printing direction, the objects fabricated by our method can
withstand up to 203% loads in the physical tensile tests.

The anisotropy of mechanical strength on a 3D printed model can be con-
trolled in a multi-axis 3D printing system as materials can be accumulated
along dynamically varied directions. In this paper, we present a new com-
putational framework to generate specially designed layers and toolpaths
of multi-axis 3D printing for strengthening a model by aligning filaments
along the directions with large stresses. The major challenge comes from
how to effectively decompose a solid into a sequence of strength-aware and
collision-free working surfaces. We formulate it as a problem to compute an
optimized governing field together with a selected orientation of fabrication
setup. Iso-surfaces of the governing field are extracted as working surface
layers for filament alignment. Supporting structures in curved layers are
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constructed by extrapolating the governing field to enable the fabrication of
overhangs. Compared with planar-layer based Fused Deposition Modeling
(FDM) technology, models fabricated by our method can withstand up to
6.35× loads in experimental tests.

CCS Concepts: • Computing methodologies→ Shape modeling;Mesh
geometry models.

Additional Key Words and Phrases: reinforcement, anisotropic strength,
multi-axis motion, 3D printing
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1 INTRODUCTION
3D printing is a process of joining materials to make objects directly
from 3D digital models, which has motivated a lot of innovations
in many areas. Filament-based Fuse Deposition Modeling (FDM) is
the most widely adopted 3D printing process as it can fabricate
more types of materials than other 3D printing technologies. In the
current practice of 3D printing, materials are usually accumulated
layer upon layer in planes along a fixed direction. This reduces the
complexity of a system in both software and hardware as well as
the cost of equipment. When applying this simplification to FDM,
the weak adhesion between neighboring planar-layers of filaments
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always leads to an easy-to-delaminate problem. The anisotropy
of mechanical property – strong along the axial directions of fila-
ments but weak in other directions – can be observed on all models
fabricated by FDM (ref. [Ahn et al. 2002]).

Threemethods are usually conducted in industry to strengthen 3D
printed parts [Gibson et al. 2009]: 1) changing the designed geometry
[Stava et al. 2012; Zhou et al. 2013], 2) optimizing the processing
setup (e.g., printing orientation [Umetani and Schmidt 2013], infill
percentage and structure [Lu et al. 2014; Wang et al. 2013; Zhang
et al. 2015]), and 3) applying chemical or thermal post-treatment.
Most existing approaches in the literature of computational design
and fabrication are developed along the first two threads, and have
not considered the anisotropy of mechanical properties introduced
by the process of FDM. The method of finding an optimized printing
orientation [Umetani and Schmidt 2013] cannot be generalized to
models with complex shape, which may have stress extremities
along different directions in different regions (e.g., the Topo-opt
model shown in Fig.1). In this paper, we propose a computational
framework that is able to strengthen 3D printed models by specially
designed layers and toolpaths taking advantage of the anisotropy.

1.1 Our Method
The challenge of how to decompose a solid into a sequence of
strength-aware and collision-free working surfaces is tackled by
computing an optimized governing field together with a selected
orientation of fabrication setup. The working surface layers for
multi-axis 3D printing are determined as iso-surfaces extracted
from the governing field. A field extrapolation based method is
developed to generate curved layers for fabricating the supporting
structures in regions with large overhang. After that, a field-based
method is developed to generate toolpaths on each curved layer. In
summary, we make the following contributions:

• We introduce a field-based optimization framework to gen-
erate curved layers so that the anisotropy of fused filaments
can be well controlled in multi-axis 3D printing to reinforce
the mechanical strength of 3D printed models.

• When optimizing the field for layer decomposition, we enable
the collision-free printing by 1) selecting a ‘best’ setup orien-
tation and 2) updating the field in the regions with collision.

• We extrapolate the optimized field to generate curved layers
of supporting structures for enabling the fabrication of large
overhang in multi-axis 3D printing.

• We propose a field-based scheme to generate optimized tool-
paths on curved layers for aligning filaments along designed
directions.

• We physically fabricate prototypes by a FDM 3D printer with
5-axis motion, and we conduct tensile / compression experi-
ments to verify the enhanced mechanical strength on these
prototypes.

All steps of our framework are computed in a domain of tetrahedral
mesh, which is naturally inherited from the Finite Element Analysis
(FEA) for computing the stress distribution of a given model under
certain loading.

1.2 Related Work
1.2.1 Structural analysis and optimization for 3D printing. To im-
prove the mechanical strength of 3D printed objects, many ap-
proaches have been developed in the literature to optimize both
shape and topology of 3D models. For example, a lightweight struc-
tural analysis solver was developed in [Stava et al. 2012] to detect
the areas with high structural stress, which were later repaired by
hollowing, thickening and strut insertion. Langlois et al. [2016]
presented a stochastic structural analysis method to predict all ob-
served failure cases for a model subject to real-world loading condi-
tions. Special structures [Cui et al. 2020; Lu et al. 2014; Wang et al.
2013; Zhang et al. 2015] and infills [Wu et al. 2018] are computed
through numerical iterations to find optimized material distribution
for strengthening stiffness while reducing the weight of a part.
In most of these approaches, FEA is employed in the loop of op-

timization to change the shape and topology of a model. Zhou et
al. [2013] addressed the robustness issue to optimize a model in
the worst-case considering not well-defined loads. Similarly, Schu-
macher et al. [2018] also presented a structural optimization ap-
proach to deal with the worst-case weakness in tension. Asymmet-
ric strength of material under tension and compression has been
considered in their approach. None of these approaches consider
the anisotropy of mechanical properties introduced by the process
of FDM 3D printing, not to mention the method to control such
anisotropy for reinforcing 3D printed models as what is proposed
in this paper. In our approach, we mainly focus on the scenarios
with well-defined loads.

The anisotropy of mechanical property has been employed in
some preliminary study to reinforce models. The orthotropic infill
and microstructure are studied and modeled to better enhance the
behavior of homogenization-based topology optimization [Groen
and Sigmund 2018; Groen et al. 2019]. A fast cross-sectional struc-
ture analysis is employed to find an optimal 3D printing direction
[Umetani and Schmidt 2013]. Ulu et al. [2015] presented another
solution to find a best orientation by maximizing the safety fac-
tor defined by FEA. However, the reinforcement is limited by the
conventional material deposition in planar layers.

1.2.2 Curved layer slicing and multi-axis printing. In contrast to the
traditional 3D printer where the orientation of the nozzle is fixed
and only planar motion is applied, systems using multi-axis motion
have caught a lot of attention in recent years (e.g., [Keating and
Oxman 2013; Pan et al. 2014; Peng et al. 2016]). Relatively simple
printing tasks with small components were demonstrated on these
hardware systems. Multi-axis toolpaths aligned with stress tensor
are also used in [Yerazunis et al. 2016] for reinforcing fabricated
models with simple shape.
To further explore the functionality in multi-axis 3D printing,

advanced algorithms of toolpath generation have been invented.
In literature, the first attempt at using non-planar layers in 3D
printing was made a decade ago in an approach called the Curved
Layer Fused Deposition Modelling (CLFDM) [Chakraborty et al. 2008],
which provides the function of FDM fabrication using a toolpath
with dynamically changed z-values within individual layers. Effort
has been made to realize such 3-axis motion on a delta style parallel
robot [Allen and Trask 2015; Llewellyn-Jones et al. 2016]. A model
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can be fabricated by producing a double-curved skin layer on top of
a sandwich structure with static-z printed layers so that the stair-
case effect can be removed to improve the surface quality. Recently,
Etienne et al. [2019] presented a method to generate curved layers
to minimize the staircase effect by computing an optimized deforma-
tion for the given model represented by a tetrahedral mesh. By the
inverse map of the deformation, cross-sections obtained from 2D
slicing are converted into the curved layers for 3D printing. In con-
trast, we generate curved working surface directly in the tetrahedral
mesh as iso-surface.
In order to fully utilize the six degree-of-freedom (DOF) intro-

duced by multi-axis motion, an algorithm was proposed by Wu et
al. [2016] to compute collision-free toolpaths to extrude materials
for a wire-frame model (i.e., edges of a triangular mesh). A naive
ordering of edges can lead to a configuration that certain edges
cannot be approached. To tackle this challenge, a global planning is
conducted on a directed graph. Another relevant research of 6-DOF
in wire-frame 3D printing was proposed by Huang et al. [2016],
which considers stability constraints in the manufacturing process
together with collision-free constraints. Both approaches have in-
cluded the time-consuming step of collision-detection in the loop of
planning. As a result, only web-like models with very small number
of primitives can be considered (e.g., less than 1k struts). Differently,
Dai et al. [2018] developed a convex-front governed approach that
can always ensure collision-free working surfaces for material ac-
cumulation. The printing model was represented by voxels and the
curved layers were first extracted from grids formed by the centers
of voxels, and then trimmed by the input model using Boolean oper-
ation. The robustness of their algorithm and the surface quality of
extracted layers are significantly influenced by the artifacts caused
by the voxel representation. In the method of Xu et al. [2019], the
artifacts on the boundary of curved layers were voided by directly
extracting iso-lines of a growing field computed on the mesh surface.
Nevertheless, none of these multi-axis 3D printing approaches have
considered the mechanical anisotropy introduced by using different
toolpaths of filament alignment.

1.2.3 Toolpath generation. Generating collision-free toolpaths for
multi-axis 3D printing is strongly relevant to the accessibility prob-
lem in multi-axis Computer Numerical Control (CNC) machining,
which has been studied for more than two decades. The visibil-
ity map is employed in [Elber 2014] to study the accessibility of
multi-axis milling. Recent work further improves the performance
of 5-axis milling by computing a gouge-free toolpath while also
optimizing the dynamic behavior of machines [Kim et al. 2015]. The
computation of accessibility is complicated and time-consuming.
The problem of collision-avoidance is resolved in this paper by find-
ing a good orientation of fabrication setup and locally updating the
governing field for layer generation.
Researchers have started to consider the influence of toolpaths

on the mechanical strength of 3D printed models. An implicit func-
tion based toolpath generation algorithm for 3D printing has been
developed in [Steuben et al. 2016]. Their toolpaths are governed by
stress-fields on 2D slices for fabrication. However, the toolpaths are
not directly optimized according to structural analysis. Hornus et
al. [2020] introduced a method to reduce the lack-of-filament region
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Fig. 2. Anisotropic mechanical behavior can be clearly observed on 3D
printed specimens with filaments aligned along different directions. We can
observe the enhancement of the breaking force with 176% (in tensile tests)
and 27% (in compression tests) when aligning filaments along the direction
of loading. All material samples were tested using same setup and loading
condition as show in the right.

in each planar layer by locally adjusting the width of tool-paths.
Principal stress lines are employed for generating toolpaths that
can strengthen 3D printed structures [Tam and Mueller 2017]. Nev-
ertheless, the computation in these approaches is still limited on a
two-manifold (i.e., a planar cross-section or a surface). Differently,
our work proposed in this paper focuses on generating specially
designed toolpaths inside a three-manifold (i.e., a larger searching
space in a volume).

The toolpaths for aligning filaments in each curved layer have sig-
nificant influence on the quality of 3D printed objects. With the help
of boundary distance-field, Zhao et al. [2016] presented a method
to generate connected toolpaths as contour-parallel Fermat spirals
which can reduce the amount of discontinuity. The concept is later
extended to compute milling toolpaths for 3D surfaces [Zhao et al.
2018]. However, the anisotropic strength of filament has not been
considered yet. Moreover, the material filling rate of Fermat spiral
is low near the medial-axis regions. This will lead to a relatively
weak mechanical strength [Fernandez-Vicente et al. 2016]. While
generating stress-oriented toolpaths in critical regions, we employ
a field-based hybrid strategy to generate directional-parallel and
contour-parallel [Jin et al. 2013] toolpaths for ensuring good fill-
ing rate in other regions. In the community of CNC machining,
vector-fields have been employed to generate toolpaths for different
objectives (e.g., energy-efficiency [Pavanaskar et al. 2015]).

2 ANISOTROPIC STRENGTH
In this section, we study the anisotropic property of 3D printed mod-
els and present the strategy of filament alignment for controlling
the anisotropic strength.
The anisotropy of mechanical strength on models fabricated by

FDM has been studied by experiments in prior work [Ahn et al.
2002; Tam and Mueller 2017]. The fractographic analysis using
scanning electron microscope (SEM) images [Riddick et al. 2016] has
shown that the weak adhesion between neighboring layers and
also the incompletely filled area between filaments [Xie et al. 2020]
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(a) (b) (c) (d) (e)
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Fig. 3. An overview of our computational framework for generating curved layers and toolpaths with controlled anisotropic strength: (a) a Bunny-head model
H is represented by a tetrahedral mesh T, (b) principal stresses with values are visualized by colors, (c) a vector-field V(x) is optimized according to the
principle of reinforcement and the fabrication constraints, (d) a scalar-field𝐺 (x) is obtained by enforcing ∇𝐺 (x) to follow V(x) , (e) preliminary curved layers
are generated by extracting the iso-surfaces from𝐺 (x) , (f) an orientation of fabrication is determined by considering the accessibility of printer head and
regions with large overhangs are detected by a sampling based method, (g) a vector-field V̄(x) is extrapolating V(x) for supporting structure, (h) final curved
layers are extracted from the governing fields for 3D printing, and (i) toolpaths are generated for curved layers according to the principal stresses.

are the major reasons for tensile failure. This anisotropy in yield
strength is also demonstrated in our experiment with tensile and
compression tests on different specimens printed along different
directions (see Fig. 2). When the filaments are aligned along the
direction of tensile load (the sample (a)), the breaking force is 176%
higher than the case under transverse load (the sample (c)) and
51.6% higher than the in-layer tearing (the sample (b)) in tensile
tests. Meanwhile, the breaking force under compression along the
axial direction of filaments is about 27.6% higher than applying
transverse compression.

We apply the following principle of reinforcement to design multi-
axis toolpaths for reinforcing 3D printed models in FDM: Aligning
the axial direction of filaments along the maximal principal stresses
in local regions can provide overall strength improvement of a part
under given loads. In this paper, we follow this principle to slice
every input model into curved layers and further generate the tool-
paths on every layer. The whole computational pipeline can finally
provide a process for depositing filaments along the directions of
principal stresses. In practice, we release the requirement a bit by
only applying the principle in selected critical regions to ensure the
manufacturability.

3 OVERVIEW
To tackle the challenge of generating strength-aware and manu-
facturable working surfaces inside a given model H , we propose
a field-based computational pipeline conducted on the tetrahedral
mesh representation T of the solid which consists of two parts: 1)

field optimization for generating strength-aware layers (Fig. 3(a)-(e))
and 2) computation for enabling fabrication (Fig. 3(f)-(i)).

3.1 Field-Optimization for Slicing
Themain idea for the slicing algorithm of our reinforced FDM frame-
work is to compute an optimized scalar-field 𝐺 (x) inside H accord-
ing to the stress analysis, where both the distribution of stresses
and the scalar-field 𝐺 (x) are stored on the tetrahedral mesh T (see
Fig.3(a) and (b)). After optimization, the iso-surfaces {𝑆𝑖 }𝑖=1, · · · ,𝑛
with 𝑆𝑖 = {x | 𝐺 (x) = 𝑑𝑖 } will be extracted from 𝐺 (x) to serve
as working surfaces for toolpath generation. Each surface is repre-
sented as a triangular mesh (Fig. 3(e)). Objective of strengthening
is derived to enforce the orientation of working surfaces by opti-
mizing the gradient ∇𝐺 (x) of 𝐺 (x) according to the principle of
reinforcement (Section 2). Moreover, objectives for fabrication are
also derived by controlling ∇𝐺 (x) – see the details presented in
Section 4.1.
Directly optimizing the objective functions defined on ∇𝐺 (𝑥)

will lead to a problem with many local minima, the computation
of which is very slow and hard to converge. We propose to first
compute an optimized vector-field V(x) with reference to the ob-
jectives defined on ∇𝐺 (x) (see Fig. 3(c) and Section 4.2). The field
𝐺 (x) for curved layer slicing is later determined by minimizing the
difference between ∇𝐺 (x) and V(x) (Section 4.3). To generate com-
patible vector-fields that lead to manufacturable working surfaces,
constraints derived from the principle of reinforcement are only
applied to the highly stress regions.
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3.2 Fabrication Enabling
Although the smoothness of local surface has been considered when
generating the governing field 𝐺 (x), the global accessibility of the
printer head is not guaranteed. Given a set of curved layers, the
accessibility is strongly coupled with the orientation of a model’s
setup in 3D printing as the bottom part is restricted by the build
platform of hardware (see Fig. 3(f)). We define a conservative met-
ric that is able to efficiently evaluate the accessibility of all layers
along different setup orientations, and search one with optimal
accessibility (Section 5.1.1). For models where layers remain inac-
cessible (not too many according to our experimental tests), the
working surfaces at collided regions will be ‘flattened’ by adjusting
the vector-field progressively (Section 5.1.2). This may sacrifice the
anisotropic strength in relevant regions; however, we argue that the
manufacturability has higher priority.
Additionally, the fabrication of regions with large overhangs is

another difficulty to overcome in our framework. After detecting
the regions which need support by a sampling based method, we
compute a tetrahedral mesh T̄ as an envelope of these sampled
regions (see the blue regions in Fig. 3(f)). The constraint T̄ ∩T = M
is imposed for mesh generation, whereM indicates the boundary
surface of T . With the help of this compatibility, we extrapolate the
vector-field V(x) in T̄ as V̄(x) (Fig. 3(g)) to result in a scalar-field
𝐺 (x) for generating the curved layers of supporting structures (see
Fig. 3(h) and Section 5.2). By employing the strategy of thickness-
controlled slicing (Section 5.3), toolpaths optimized according to the
principle of reinforcement can then be generated on curved layers
(see Fig. 3(i) and Section 5.4).

4 FIELD-BASED SLICING
In this section, we introduce the method to generate curved layers
for multi-axis 3D printing by following an optimized scalar-field
𝐺 (x). After defining the objective functions for optimization, a
vector-field V(x) is introduced as an intermediate to compute the
desired gradient of𝐺 (x). In consequence, the governing field 𝐺 (x)
can be efficiently determined from V(x) by solving a least-squares
problem. Curved layers for FDM fabrication are obtained by extract-
ing the iso-surfaces of 𝐺 (x).

4.1 Objectives of Optimization
Goals and constraints for optimizing the governing field 𝐺 (x) are
analyzed here to derive objective functions for optimization.

4.1.1 Anisotropic strength. Given user-specified loads on the model
H , we use commercial FEA software (e.g. Abaqus) to compute the
stress distribution and output the 3 × 3 stress tensor 𝜎 (𝑒) for ev-
ery tetrahedral element 𝑒 ∈ T at the centers x𝑒 . Consistently, all
constraints related to stresses are also imposed at the centers of
tetrahedra in our formulation. Notice that the slopes of the material
curves shown in Fig. 2 are similar to each other, which indicates
similar stiffness of 3D printed models along different printing di-
rections although the experiment shows strong anisotropy in yield
strength. Therefore, linear-FEA with isotropic material property

(Young’s modules as 2, 346.5𝑀𝑃𝑎, Poisson’s ratio as 0.371) is applied
at this stage to compute the stress distribution.
Eigenvalue decomposition is then applied to each stress tensor

to determine three principal stresses [𝜎1, 𝜎2, 𝜎3] sorted by their
absolute values as |𝜎1 | > |𝜎2 | > |𝜎3 |. The eigenvector associated
with the maximal principal stress 𝜎1 is defined as the maximal
stress direction 𝜏max. Similarly, the eigenvector associated with
the minimal principal stress 𝜎3 is defined as the 𝜏min. 𝜏max (𝑒) and
𝜏min (𝑒) are stored in every tetrahedron 𝑒 ∈ T to supervise the field
optimization for layer decomposition and toolpath generation.
In order to borrow the anisotropy of yield strength in FDM, we

aim at generating toolpaths to follow the critical orientation 𝜏max.
In our pipeline, curved layers are obtained by extracting the iso-
surfaces {𝑆𝑖 } of the scalar-field 𝐺 (x). Ideally, we need to make the
curved layer tangential to the critical orientation 𝜏max. As a result,
toolpaths on each curved layer can be generated to follow the critical
orientations. This requirement can also be formulated as letting
the surface normal of each layer, which is in fact the gradient of
𝐺 (x), be perpendicular to 𝜏max and be parallel to 𝜏min. Considering
𝜏min⊥𝜏max, we only need to impose the objective of letting ∇𝐺 (x)
be parallel to 𝜏min as it also ensures ∇𝐺 (x)⊥𝜏max. This also imposes
the directions of first two principal stresses being tangential to the
surface-layers for further optimization in toolpath generation.

By selecting some critical regions (the method of selection will be
discussed below), the elements in critical regions are represented as
a set T ∗ ⊂ T . The requirements of 𝜏max and 𝜏min in these regions
can be achieved by minimizing the following objective function

𝐸𝑠 =
∑
𝑒∈T∗

𝑉𝑒 ∥∇𝐺 (x𝑒 ) × 𝜏min (𝑒)∥2, (1)

where x𝑒 is the center of a tetrahedral element, the volume of ele-
ment 𝑒 is employed as the weight 𝑉𝑒 , and the field values of every
nodes are considered as variables to be optimized.𝐺 (x) inside each
element is defined as a piecewise linear function interpolating the
node values.

4.1.2 Layer thickness. As working surfaces are generated by ex-
tracting iso-surfaces of𝐺 (x), the distance between two neighboring
working surfaces 𝑆𝑖 and 𝑆𝑖+1 varies from place to place. According
to the limitation of currently available hardware, the thickness of
each layer that can be 3D printed has a limited range [𝑡min, 𝑡max].
This should be controlled when optimizing 𝐺 (x). For two points p
and q that are both inside T , it indicates to deposit material at p
earlier than at q when𝐺 (p) < 𝐺 (q). The gradient of𝐺 (x) indicates
the speed of ‘growing’ materials. When the norm of ∇𝐺 (x𝑒 ) is opti-
mized to be nearly a constant, we can control the layer thickness to
be as uniform as possible.

The control of layer thickness is therefore achieved byminimizing
the following objective function

𝐸𝑡 =
∑
𝑒∈T

𝑉𝑒 (∥∇𝐺 (x𝑒 )∥ − 𝑐)2, (2)

where 𝑐 is a target thickness of each layer – e.g., 𝑐 = (𝑡min + 𝑡max)/2.

1Material property from technical data sheet of PLA filament
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Fig. 4. The orientations of vectors in the segmented critical regions (displayed in different colors) have significant influence on the compatibility of V(x)
(as indicated ∇𝐺 (x)), where incompatibility will result in iso-surfaces not able to be printed – see the blue surface. The greedy algorithm for alternating
orientations of vectors in the segmented critical regions can effectively improve V(x) ’s compatibility – therefore the quality of𝐺 (x) ’s iso-surfaces. Progressive
results with their corresponding values of 𝐸𝜃 (Eq. (6)) are also given.

4.1.3 Harmonic of gradients. Highly curved or even closed iso-
surfaces of 𝐺 (x) will be formed in the regions with large variation
in gradients. Caused by the potential collision between the printer
head and the already fabricated layers, the curved layers generated
from iso-surfaces in these regions are not printable (see the blue iso-
surface shown in Fig. 4). Therefore, the objective function below is
proposed to impose harmonic variation on gradients in neighboring
tetrahedra.

𝐸ℎ =
∑

(𝑒𝑎,𝑒𝑏 ) ∈N
𝐴𝑎,𝑏 ∥∇𝐺 (x𝑒𝑎 ) − ∇𝐺 (x𝑒𝑏 )∥2, (3)

where N denotes the pairs of neighboring tetrahedra, and the area
of face shared by 𝑒𝑎 and 𝑒𝑏 is used as the weight 𝐴𝑎,𝑏 .

4.1.4 Ambiguity. The objective function of anisotropic strength
Eq. (1) is not well defined as there are two possible directions for
∇𝐺 (x𝑒 ) as ±𝜏min. This leads to a lot of local minima in the space
of solution. Adding the harmonic energy Eq. (3) can somewhat but
not completely resolve this problem. Moreover, the direction of
principal stresses determined by eigenvalue decomposition is less
robust in regions with relatively isotropic stress tensor – i.e., 𝜏min
is given ambiguously.

4.1.5 Critical Regions. Enforcing the direction of filament align-
ment everywhere inside the solidH can easily result in a governing
field 𝐺 (x) hard to meet the requirements of layer thickness and
harmonic on its gradient. Therefore, two factors are considered
when selecting the critical regions – i.e., a tetrahedron will be added
into T ∗ only when: 1) |𝜎1 | > 𝑘1 |𝜎𝑚𝑎𝑥 | and 2) |𝜎2 | > 𝑘2 |𝜎3 |. 𝑘1
and 𝑘2 are two parameters that can be tuned by users, where 𝑘1 is
employed to control the percentage of regions to be reinforced and
𝑘2 is used to ensure the certainty of 𝜎𝑚𝑖𝑛 generated in eigenvector
decomposition (i.e., regions with |𝜎2 | ≈ |𝜎3 | are avoided). In our
framework, 𝑘1 = 0.1 and 𝑘2 = 3.0 are chosen by experiment.

4.2 Vector-Field Based Optimization
To determine an optimal solution by considering all the factors as
discussed above, an intuitive solution is to minimize the weighted
objectives as 𝑤𝑠𝐸𝑠 + 𝑤𝑡𝐸𝑡 + 𝑤ℎ𝐸ℎ . As a non-linear optimization
problem, it’s hard to be effectively solved. Meanwhile, how to choose
the weight for each item is tricky. To overcome the difficulty in
optimization, we introduce a vector-field V(x) as an intermediate
to approximate ∇𝐺 (x). V(x) is represented in a discrete form by
storing one vector for each element 𝑒 ∈ T .

The major difficulty for computing a vector field with minimized
𝐸𝑠 and 𝐸ℎ comes from the 𝜏𝑚𝑖𝑛 ambiguity and the smoothness
requirement of the field to be determined. To handle similar field
optimization problem, Arora et al. [2019] imposed a non-linear
optimization based method. The ambiguity of frame alignment is
translated to ‘truncated’ frame-tensors matching with the objectives,
which are optimized together with the Lapacian smoothness term.
This method is effective but if directly applied to our vector field
alignment problem, it may converge to local minimum as the design
space is more flexible. Recently, a field optimization solution was
introduced in [Gil-Ureta et al. 2020] to ensure a convex energy that
can be sufficiently optimized. However, their formulation is mainly
for thin-layer structures.

When we are able to give the deterministic value of every vector
v𝑒 in the critical region, vectors in free regions can be determined by
minimizing the harmonic energy similar to Eq. (3). To avoid solving
the optimization problem with too many variables, we conduct a
strategy to first segment the vectors in T ∗ into sub-regions {T ∗

𝑗
}

and then assign a consistent orientation of 𝜏min to every element in
the same sub-region. That can be formulated as

arg min
v𝑒

𝐸𝑤 =
∑

(𝑒𝑎,𝑒𝑏 ) ∈N
𝐴𝑎,𝑏 ∥v𝑒𝑎 − v𝑒𝑏 ∥2, (4)

𝑠 .𝑡 . v𝑒 = 𝜌 𝑗𝜏min (𝑒) (∀𝑒 ∈ T ∗
𝑗 , 𝑗 = 1, 2, ...𝑚) . (5)

The least-squares solution of 𝜕𝐸𝑤/𝜕v𝑒 = 0 (∀𝑒 ∈ T \ T ∗) can
be efficiently determined by imposing the boundary conditions
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in Eq. (5). However, we are still facing the difficulty of ambiguity
as discussed above – i.e., v𝑒 (∀𝑒 ∈ T ∗) could have two options as
𝜌 𝑗 = ±1. An algorithmic scheme is developed below to determine the
sign of 𝜏min while considering the compatibility of all neighboring
vectors in the field.

The segmentation is conducted by applying a flooding algorithm.
Two neighboring elements 𝑒𝑎 and 𝑒𝑏 are considered as belonging to
the same sub-region if

|𝜏min (𝑒𝑎) · 𝜏min (𝑒𝑏 ) | > 𝛼 ,
where 𝛼 is the variable used to control the number of sub-regions
and the performance of segmentation. Choosing a smaller 𝛼 could
incorrectly group elements with large directional variation of 𝜏min
into the same cluster, and a larger value may result in too many
sub-regions. 𝛼 = 0.75 was selected according to the results of exper-
iments. When adding a new element into an already flooded region,
we reverse the orientation of its 𝜏min if it is not consistent with other
elements in the region. Suppose𝑚 sub-regions {T ∗

𝑗
}𝑗=1, · · · ,𝑚 can

be formed (e.g., as displayed in different colors in Fig. 4). Now all
elements in a sub-region can have multiple 𝜏min with consistent
orientation. However, incompatibility of vectors similar to vortex
flow in fluid mechanics (see the zoom-views of Fig. 4) can still be
found. We need to optimize the orientation compatibility between
sub-regions {T ∗

𝑗
}.

θ

fFirst of all, we need a function
𝑓 (v̂𝑎, v̂𝑏 ) that is monotonic to 𝜃

and will only be activated when 𝜃
is nearly 𝜋/2 (i.e., v̂𝑎 and v̂𝑏 tend
to be incompatible). In the right
figure, we compare different pos-
sible options: 𝑓 = 1

4 ∥v̂𝑎 − v̂𝑏 ∥𝑝
(black curve) and 𝑓 = 1

2𝑝 (1 − v̂𝑎 · v̂𝑏 )𝑝 with 𝑝 = 2 (red solid) and
𝑝 = 4 (red dash). According to the analysis, we define the objective
for optimizing the compatibility between neighboring vectors as

𝐸𝜃 =
∑

(𝑒𝑎,𝑒𝑏 ) ∈N
𝐴𝑎,𝑏 (∥v𝑒𝑎 ∥∥v𝑒𝑏 ∥ − v𝑒𝑎 · v𝑒𝑏 )4 . (6)

A greedy algorithm is employed to update the values of {𝜌 𝑗 }
by repeatedly reversing the sign of 𝜌 𝑗 in the region that gives the
largest decrease of Δ𝐸𝜃 (𝜌 𝑗 ) = 𝐸𝜃 (𝜌 𝑗 ) −𝐸𝜃 (−𝜌 𝑗 ). The compatibility
of the vector-field can be significantly improved by optimizing the
orientation of 𝜏min (see Fig. 4 for an illustration).

4.3 Governing Field and Slicing
After determining the optimized vector-field V(x), we can compute
the governing field by solving the following minimization problem
to determine the field values {𝑔𝑖 } on all nodes as

{𝑔𝑖 } = arg min
∑
𝑒∈T

𝑤𝑒 ∥∇𝐺 (x𝑒 ) − v̂𝑒 ∥2, (7)

where v̂𝑒 = 𝑐v𝑒/∥v𝑒 ∥ is used to impose the objective of layer thick-
ness. When conducting a linear interpolation function to present
the field function 𝐺 (x) inside every element, the gradient ∇𝐺 (x𝑒 )
is in the form of a linear combination of field values on the four
nodes of an element 𝑒 . Therefore, Eq. (7) is in a least-squares form
and can be solved efficiently.

Fig. 5. (Top) An illustration of how to evaluate the convex-shadow-volume
of a working surface S𝑖 . (Bottom) Different values of the convex-shadow-
volume Υ for the Bunny head model in different setup orientations.

Given an iso-value 𝑑 , the iso-surface𝐺 (x) = 𝑑 can be extracted as
a triangular mesh from the tetrahedra mesh T . This is an application
of the marching tetrahedra algorithm [Treece et al. 1999]. After
finding the minimal and the maximal values of 𝐺 (x) on all vertices
as 𝑔min and 𝑔max, we incrementally determine the iso-values 𝑑𝑖 for
all curved layers 𝑆𝑖 according to the requirements of layer thickness.
More details will be discussed later in the following section.
In our framework, we minimize the objectives for stress align-

ment, thickness control, and harmonic requirement by solving two
least-squares optimization problems. This strategy can efficiently
find a good balance of multiple objectives. When determining the
scalar field 𝐺 (x) by solving Eq. 7, the values of 𝐸𝑠 and 𝐸ℎ may be
slightly increased which is caused by the difference between ∇𝐺 (x)
and V(x). However, this step can significantly minimize the value
of 𝐸𝑡 to guarantee the nearly uniform thickness of layers.

5 FABRICATION ENABLING
After being able to generate the set of curved layers {S𝑖 }, algo-
rithms are developed in our framework to enable the fabrication
of each curved layer by using a multi-axis FDM 3D printer. The
problems to be solved include the accessibility optimization, the
support generation, the layer thickness control and the toolpath
generation.

5.1 Accessibility Optimization
For every curved layer S𝑖 , we need to ensure its accessibility –
i.e., can be touched by a printer head while not colliding with the
platform R and any other already printed layers S𝑘 (∀𝑘 < 𝑖). This
is achieved by applying the following two schemes.

5.1.1 Find best setup orientation. The setup orientation of a model
has significant influence to the accessibility of its working surfaces
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(i.e., layers in 3D printing), which has been proved by the prior
research in 5-axis machining [Hu et al. 2013; Radzevich and Good-
man 2002]. Among all possible setup orientations of a model H
placed on top of the 3D printer’s platform R, an orientation that
maximizes the summed accessible area of all its working surfaces
is to be determined. Although the location ofH above R can also
affect its accessibility, it is less sensitive than changing orientations.
Only orientation is considered in our approach, and the position
ofH is fixed to let its center above the center of R and the whole
model slightly higher than the platform R.
It is very time-consuming and therefore impractical to directly

compute the area of accessible regions according to a given orien-
tation of fabrication setup. Inspired by the concept of advancing
convex-front to ensure accessibility in material deposition [Dai et al.
2018], we define an easy-to-compute convex-shadow-volume as an
indirect metric for quickly evaluating the accessibility. When con-
servatively considering the shape of a printer head as flat-end, every
working surface S𝑖 should be located on the boundary of convex
hull C𝑖 of R and S𝑗 (∀𝑗 ≤ 𝑖). A triangle 𝑓 ∈ S𝑖 falls into the shadow
region behind the convex-front of material accumulation if it is
inside C𝑖 . The deeper 𝑓 falls into the shadow, the harder it is to be
touched in a collision-free way. This can be evaluated by the ap-
proximated shadow volume as 1

3𝐴(𝑓 )
∑

𝑣∈𝑓 𝐷 (𝑣, C𝑖 ) with 𝐷 (𝑣, C𝑖 )
returning the distance between a vertex 𝑣 to the convex-hull C𝑖 (see
the illustration in Fig. 5). Therefore, the convex-shadow-volume
for a working surface is defined as the sum of all triangles’ shadow
volumes. The total convex-shadow-volume for all working surfaces
{S𝑖 }𝑖=1, · · · ,𝑛 is

Υ =
1
3

𝑛∑
𝑖=1

∑
𝑓 ∈S𝑖

∑
𝑣∈𝑓

𝐴(𝑓 )𝐷 (𝑣, C𝑖 ), (8)

which is employed for searching the best setup orientation.
We randomly sample points on the Gaussian sphere to serve as

candidates of setup orientations, and the one giving the smallest Υ
is selected. After rotating a model to this ‘best’ orientation, we need
to check if the node with the minimal value of𝐺 (x) is closer to the
platform than the node with the maximal value 𝑔max. When this is
not the case, we adjust the orientation of fields by reversing all the
vectors in the vector field V(x) and assigning 𝐺 (x) = 𝑔max −𝐺 (x).
Finally, the accessibility of each working surface S𝑖 can be verified
by placing the 3D model of the printer head to the sample points
on S𝑖 for detecting the collision. Surface normal of every sample
point is used as the orientation of the printer head. To accelerate
the collision detection, a convex bounding volume of the printer
head is employed in our implementation.

5.1.2 Field relaxation for accessibility. When using a specially de-
signed printer head, the bounding volume can have a cone shape
with a very small apex angle (see Fig. 6). This is very helpful to allow
the printer head to go into deep shadow regions without collision –
i.e., a better accessibility comparing to the general 3D printer head
with nearly a flat end-shape. After selecting the best setup orienta-
tion and using this printer head, accessibility of all working surfaces
is already enabled on many models with complex shapes (e.g., the
Topo-opt model in Fig. 1, the Bunny head model in Fig. 3, and the
Yoga model in Fig. 4). However, this is not guaranteed – especially

Fig. 6. An illustration for collision detection and the bounding volume of a
specially designed printer head with small apex angle.

Fig. 7. Field relaxation is applied to the𝐶2-model for improving its accessi-
bility: the stress distribution under loading (bottom-left), the curved layers
generated by our algorithm (bottom-right), and the progressive results of
relaxation (top row).

when dealing with models having sharp change of principal stresses.
As shown in Fig. 7, the symmetric stress field distribution of the
𝐶2-model makes it difficult to fabricate some of the complex curved
layers even after selecting the best setup orientation. On the other
hand, the relative size of a model w.r.t. the 3D printer head will also
influence the accessibility. To deal with these cases, we slightly sac-
rifice the anisotropic strength of a model to ensure the accessibility
by using progressive field relaxation.

All the tetrahedra adjacent to the points resulting in collision are
first determined and stored in a set T𝑐𝑜𝑙 . Then, a smooth weighting
field 𝜔 (·) is computed on all tetrahedra as

min
(𝑒𝑎,𝑒𝑏 ) ∈N

(𝜔𝑒𝑎 − 𝜔𝑒𝑏 )2, (9)

𝑠 .𝑡 . 𝜔𝑒 = 𝜂 (∀𝑒 ∈ T𝑐𝑜𝑙 ), 𝜔𝑒 = 0 (∀𝑒 ∈ T𝑎𝑤𝑎𝑦).

T𝑎𝑤𝑎𝑦 defines the set of tetrahedra in T that are 𝑛-rings away from
T𝑐𝑜𝑙 (e.g., 𝑛 = 5 is used according to experiment). Considering flat
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(a)

(b)

(c)

Fig. 8. An illustration of support generation: (a) a set of sample points X
for indicating the region of support and the tetrahedral mesh T̄ generated
in the convex-hull C̄ = C(X ∪ H) , (b) a new vector-field V̄(x) and the
corresponding scalar-field𝐺 (x) computed in T̄ by extrapolating V(x) , and
(c) extracting iso-surfaces of 𝐺 (x) as {S̄𝑘 } and trimming them by the
𝛼-shape of X.

layers parallel to the platform are always printable, we relax the
vector-field V(x) by

v𝑒 = 𝜔𝑒v𝑒 + (1 − 𝜔𝑒 )ẑ (10)

with ẑ = (0, 0,−1). After each relaxation, we conduct the method
presented in Section 4.3 to generate the updated 𝐺 (x) and the new
curved layers. The relaxation is repeatedly applied to the vector
field V(x) until all working surfaces become fully accessible.

Note that, this field-relaxation method can always generate print-
able layers at the end of iteration as it converges to the fully planar
layers. The speed of relaxation is controlled by the factor 𝜂. Using a
large value will ‘flatten’ the curved layers very quickly. 𝜂 = 0.7 is
experimentally selected in our tests.

5.2 Support Generation for Overhang
We now tackle the other problem of fabrication – regions with large
overhang. Although the multi-axis motion has been used to print
3D models in a support-free way [Dai et al. 2018], incorporating the
sequence of material deposition determined by their approach in
our framework will tremendously change the alignment direction

of toolpaths. As a consequence, the anisotropic strength cannot be
well controlled any more. Therefore, we adopt the method to add
supporting structures by using water-soluble materials.
Methods of adding supporting structures for planar 3D printing

[Dumas et al. 2014; Vanek et al. 2014] cannot be applied here as it
is hard to make the planar layers of support be compatible with
the curved layers of H . We seek the help of extrapolating 𝐺 (x)
in regions that need additional support to generate curved layers
for supporting structures. There are three steps in our algorithm
presented in the following subsections.

5.2.1 Detection. Assuming the printer head is kept orthogonal to a
working surface S𝑖 during material deposition, we can detect the
overhang regions by ray-intersecting. Specifically, starting from any
point p ∈ S𝑖 , we shot a ray along the opposite direction of surface
normal at p. When this ray intersects the platform R or any layer
S𝑘 (𝑘<𝑖−1) printed earlier than the previous one S𝑖−1, supporting
structures are needed. After sampling the intersected rays with
distance 𝑐 – i.e., the desired layer thickness, we can obtain a set of
samples X that indicate the region needs support (see Fig. 8(a)).

5.2.2 Meshing and extrapolation. We compute the convex hull C̄ =

C(X ∪ H) to generate a tetrahedral mesh T̄ in C̄ as an envelope
of the sampled region X and H . The constraint T̄ ∩ T = M is
imposed for mesh generation so that the nodes and faces from T̄
and T are compatible with the boundary surface meshM ofH (see
Fig. 8(b) for an illustration).

We then extrapolate the vector field V(x) and thereafter the gov-
erning field 𝐺 (x) in the newly generated tetrahedral mesh T̄ . We
first determine the vector v𝑒 for each 𝑒 ∈ T̄ by solving the problem
arg minv𝑒 𝐸𝑤 with 𝐸𝑤 defined in Eq. (4) while imposing the bound-
ary condition: v𝑒𝑎 = v𝑒𝑏 when 𝑒𝑎 ∈ T̄ , 𝑒𝑏 ∈ T and (𝑒𝑎, 𝑒𝑏 ) ∈ N .
Meanwhile, vectors in the elements intersected with (or next to)
the platform R are enforced to be ẑ = (0, 0,−1) so that there is no
collision between the printer head and R when printing the first
layer. Similarly, the governing field𝐺 (x) can be obtained by solving
Eq. (7) while fixing the field values on all nodes of T (see Fig. 8(b)).

5.2.3 Slicing and trimming. When the same iso-values 𝑑𝑖 is em-
ployed in 𝐺 (x), the curved layer 𝑆𝑖 that is compatible with 𝑆𝑖 ∈ H
can be extracted in the tetrahedral mesh T̄ . The overhang on 𝑆𝑖+1
(if there is any) will be fully supported by 𝑆𝑖 and 𝑆𝑖 together. In
our implementation, we compute the 𝛼-shape of all points in X
[Edelsbrunner and Mücke 1994] and use the polygonal mesh of
the 𝛼-shape to further trim all {𝑆𝑖 } (see Fig.8(c)). As a result, the
unnecessary regions are removed and the fabrication time can be
further reduced.

5.3 Layer Thickness Control
The hardware of extruder in printer head allows to dynamically
control the rate of filament extrusion, which enables the flexibility of
fabricating layers with non-uniform thickness [Etienne et al. 2019].
However, there is still a limited range of layer thickness that can be
stably realized as [𝑡min, 𝑡max]. When generating curved layers by
extracting iso-surfaces from 𝐺 (·) and 𝐺 (·), we need to control the
layer thickness. This is implemented by first applying the extrac-
tion step that satisfies the required minimal distance 𝑡min between
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Fig. 9. The thickness variation of layers generated on the Yogamodel before
vs. after applying the (partial) refinement.

neighboring iso-surfaces and then conducting the refinement step
to insert partial layers among those layers with distance larger than
𝑡max.

Given 𝑔min and 𝑔max as the minimal and the maximal field values
in 𝐺 (·), we incrementally determine the iso-values {𝑑𝑖 } for surface
extraction to ensure the requirement on 𝑡min.

(1) Define the first layer ofH as𝐺 (x) = 𝑑1 with 𝑑1 = 𝑔min + 𝑐/2.
(2) For every 𝑑𝑖+1, we initially define it as 𝑑𝑖+1 = 𝑑𝑖 + 𝑐 . The

minimal distance 𝐷min from the current layer of iso-surface
to the previous layer is checked, and the value of 𝑑𝑖+1 is
adjusted until 𝐷min ≥ 𝑡min.

(3) The above step is repeatedly applied until 𝑑𝑖 > 𝑔max, and
the last layer is added as 𝑑𝑛 = 𝑔max − 𝜖 with 𝜖 = 10−5 being
used to avoid numerical degeneration. Note that, the layers of
support are extracted in 𝐺 (x) by using the same set of {𝑑𝑖 }.

(4) For the supporting structure defined in 𝐺 (x) with field value
less than𝑔min, we can determine the layers in a similarmethod
by descending iso-values starting from 𝑔min −𝑐/2 until reach-
ing the minimal value of 𝐺 (x).

With the help of the magnitude control of ∇𝐺 (·) imposed in Eq. (7),
this algorithm can generate curved layers with a very small range of
thickness variation. See the histogram of the Yoga model shown in
Fig. 9 as an example, the variation of layer thickness falls in a very
narrow region. However, the above layer extraction algorithm does
not control the maximal distance between neighboring layers, which
is solved by inserting additional layers at the necessary regions.
When the distance between two layers 𝐺 (𝑥) = 𝑑𝑖 and 𝑑𝑖+1 is

larger than 𝑡max in some regions, the corresponding tetrahedra in
these regions are stored in a set T𝑟𝑒 𝑓 . An additional (partial) layer
can be inserted by extracting a new iso-surface𝐺 (x) = 1

2 (𝑑𝑖 +𝑑𝑖+1)
as a triangular mesh surface in the tetrahedra of T𝑟𝑒 𝑓 . Triangles
with distance to 𝐺 (𝑥) = 𝑑𝑖 or 𝑑𝑖+1 less than 𝑡min are removed from
this new mesh surface. If the distance between this new surface
to 𝐺 (𝑥) = 𝑑𝑖 and 𝑑𝑖+1 is still larger than 𝑡max, another round of
refinement is needed. In practice, the thickness requirement on
hardware has 𝑡max > 2𝑡min, which prevents forming the endless
loop of layer refinement.

5.4 Toolpath Generation
The outcome of our computational framework is the toolpaths for
every curved layer S𝑖 , where each toolpath is represented by a

Fig. 10. A hybrid strategy is employed to generate toolpaths on each curved
layer. (Top) From left to right, the projected vectors in the critical region,
the optimized vector field w( ·) , and the scalar field 𝑃 ( ·) with its iso-curves
as directional-parallel toolpaths. (Bottom) From left to right, the boundary
distance field 𝐵 ( ·) with its iso-curves as contour-parallel toolpaths, the
directional-parallel toolpaths trimmed by 𝐵 ( ·) , and the finally connected
toolpaths.

set of consecutive waypoints {(c𝑘 , n𝑘 , ℎ𝑘 )}. c𝑘 and n𝑘 indicate the
position as a contact point and the orientation of printer head in
the coordinate system of parts, and ℎ𝑘 defines the rate of material
extrusion at c𝑘 . A hybrid strategy of directional-parallel and contour-
parallel toolpaths is applied in our approach.

For each curved layerS𝑖 represented by a triangular mesh surface,
stress-oriented toolpaths are generated in the critical regions (i.e.,
S𝑖∩T ∗) together with directional-parallel toolpaths in other regions
by using the iso-curves of a scalar field 𝑃 (·). The field values of 𝑃 (·)
stored on the triangular nodes can be obtained by the methodology
similar to the generation of 𝐺 (·) in Section 4. Specifically, we first
compute a vector-field W(·) to indicate the gradient of 𝑃 (·), where
a vector w𝑓 is defined on every triangle 𝑓 ∈ S𝑖 . Again, this is
formulated as an optimization problem

arg min
w𝑓

∑
(𝑓𝑎,𝑓𝑏 ) ∈NS𝑖

𝐿𝑎,𝑏 ∥w𝑓𝑎 −w𝑓𝑏 ∥
2, (11)

𝑠 .𝑡 . w𝑓 = v̂𝑓 (∀𝑓 ∈ S𝑖 ∩ T ∗), (12)

where NS𝑖
is the set of neighboring triangles on S𝑖 , and 𝐿𝑎,𝑏 is the

length of an edge shared by 𝑓𝑎 and 𝑓𝑏 . v̂𝑓 is obtained by normalizing
±𝜏max (𝑒) × n̂𝑓 (∀𝑓 ∈ 𝑒), where n̂𝑓 is the normal of 𝑓 and the sign is
determined by the segmentation-based optimization as presented
in Section 4.2. For those layers with S𝑖 ∩T ∗ = ∅, the face 𝑓 farthest
to the boundary of S𝑖 is employed in Eq. (12) to serve as anchor.
After that, we determine 𝑃 (·) as piecewise linear functions of node
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values {𝑝 𝑗 } by solving

{𝑝 𝑗 } = arg min
∑
𝑓 ∈S𝑖

𝐴(𝑓 )∥∇𝑃 (x𝑓 ) − ŵ𝑓 ∥2, (13)

where x𝑓 is the center of a triangular face 𝑓 , and ŵ𝑓 = 𝑐𝑤w𝑓 /∥w𝑓 ∥
is used to impose the demand on uniform width 𝑐𝑤 between neigh-
boring toolpaths. The stress-oriented and directional-parallel tool-
paths can then be extracted on the triangular mesh of S𝑖 as iso-
curves, where the iso-values is incrementally changed by 𝑐𝑤 from
curve to curve. An illustration for these steps of toolpath generation
is given in the top row of Fig. 10.
The contour-parallel toolpaths are generated with the help of

a boundary distance field 𝐵(·) computed on the mesh surface of
S𝑖 . Given 𝑛𝑐 as a user specified number of contours, iso-contours
𝐵(x) = (𝑘 + 0.5)𝑐𝑤 are extracted with 𝑘 = 1, · · · , 𝑛𝑐 for contour-
parallel toolpaths. For the directional-parallel toolpaths generated
from 𝑃 (·), the portions with boundary distance less than 𝑛𝑐𝑐𝑤 are
trimmed off (see the middle of bottom row in Fig. 10).

Lastly, the directional-parallel and the contour-parallel toolpaths
are connected by the following method:

(1) For every endpoint q on each directional-parallel toolpath, we
search and connect it to an endpoint p of the other directional-
parallel toolpath if ∥pq∥ < 3

2𝑐𝑤 . This step is repeated until
no more endpoint from directional-parallel toolpaths can be
further connected.

(2) For every remaining endpoint q, if there is a contour-parallel
toolpath within the distance of 3

2𝑐𝑤 , we break the contour-
parallel toolpath at the closest point of q and connect q to
this closest point.

An example result of this algorithm can be found in Fig. 10. Af-
ter connecting the fragments of iso-curves into long toolpaths, we
uniformly re-sample each toolpath to generate the positions of way-
points {c𝑘 }. The surface normal at c𝑘 is employed as the orientation
n𝑘 . The feedrate ℎ𝑘 is determined by the distance between c𝑘 to the
other curved surface layers (i.e., S𝑖−1 and S𝑖+1).

6 RESULTS AND DISCUSSION

6.1 Hardware
The physical fabrication of models presented in this paper is con-
ducted on a multi-axis FDM 3D printer, the motion system of which
is modified from a 5-axis CNC machine. As shown in Fig. 1, two ro-
tational axes can be conducted on the printer’s platform in addition
to the 𝑥,𝑦, 𝑧-axial motions given on the printer head. Moreover, the
machine is equipped with two printer heads where the second one is
used for printing water-soluble materials for supporting structures
(see Fig. 14 for objects before and after removing the supporting
structures).
The orientation of the printer head is kept along the 𝑧-axis to

ensure the quality of material adhesion with the help of gravity. The
waypoints on toolpaths generated by our approach are given in the
coordinate system of parts. The corresponding motion in the con-
figuration space needs to be determined by inverse kinematics (IK).
Unlike the 6-DOF motion system employed in robot-assisted 3D
printing, there is no redundancy in kinematics. As a consequence,
singularity may not be avoided on some waypoints. Moreover, the

Fig. 11. Bridge example: computational result of curved layers for following
the distribution of principal stresses.

solution determined by IK in the configuration space may have large
variation on one rotational motor between two neighboring way-
points with small normal variation. Local perturbation is applied to
the normals of waypoints to overcome the problem when necessary.
For the cases that cannot be resolved by local perturbation, we make
a break of toolpath at the corresponding point.

Nozzles used in the printer heads of our system have the diameter
𝐷 = 1.0mm. The eSUN 1.75mm PLA+ and Raise3D 1.75mm PVA
filaments are employed to print models and supports respectively.
According to [Etienne et al. 2019] and also our experimental tests, the
variation of layer-thickness that can be effectively realized on this
hardware setup falls in the range of [0.2𝐷, 0.8𝐷] – i.e., 𝑡min = 0.2mm
and 𝑡max = 0.8mm are employed in our computation.

6.2 Computational Results
We implemented our computational framework in C++. Source
code and datasets of this work are available to the public2. All the
computational experiments are obtained on a desktop PC with an
Intel (R) Core TM i7-9700K CPU (6 cores @ 3.6GHz) + 32GB RAM,
running Windows 10. The numerical library Eigen [Guennebaud
et al. 2019] is employed as the solver of linear equations, and the
PQP library [Gottschalk et al. 1996] is used for computing the point-
to-surface distances. High-quality isotropic tetrahedral meshes are
generated using a particle-based method [Zhong et al. 2019, 2018]
for both the initial model and the region of supporting structures.

We tested our approach on a variety of models. The first example
is the Topo-opt model in Fig. 1, discretized in 70.5k tets. The second
and third models are Bunny head (60.3k tets) and Yoga (52.4k tets),
shown in Figs. 3 and 4 respectively. We also tested on models with
relatively regular shape but widely used in mechanical engineering:
the 𝐶2-model (46.5k tets) shown in Fig. 7 and the Bridge model
(100.4k tets) shown in Fig. 11. All these models have large overhang
regions after determining a setup orientation with optimal acces-
sibility; therefore, curved layers for supporting structures are also

2https://github.com/GuoxinFang/ReinforcedFDM
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Table 1. Computational statistics of our computational pipeline of reinforced FDM with multi-axis motion.

Solid Time (sec.) of Field-Opt. Slicing Time (sec.) of Fabrication Enabling Support Total
Model Fig. #tets Field v(·) Field 𝐺 (·) Layers Re-Ort. Relax.† Support‡ Slice★ Toolpath #tets (sec.)

Topo-opt 1 70, 505 44.6 5.3 4.1 69.5 - 58.2 301.1 134.0 178.022 616.8
Bunny head 3 60, 375 10.4 1.1 3.1 41.9 - 55.4 270.2 87.6 162, 843 469.7

Yoga 4 52, 446 28.4 3.6 3.5 124.2 - 84.5 523.2 100.9 142, 183 868.3
𝐶2-model 7 46, 547 18.6 2.4 5.8 71.1 21.3 78.6 218.2 37.5 152, 799 453.5
Bridge 11 100, 420 67.2 5.2 9.1 40.2 - 189.3 420.3 211.0 394, 834 942.3

† The relaxation of vector-field is only applied to a model when necessary. The reported time includes the steps of vector-field update,
governing field generation, layer extraction, and collision detection, which are applied in iterations.
‡ The time of support generation includes the sampling-based detection, the generation of a new tetrahedral mesh, and the computation of
vector-field and scalar-field in the new volume mesh.
★ The time of slicing reported here includes the time of iso-surface extraction, adaptive refinement, the computation of 𝛼-shape, and the
trimming of curved layers for supporting structures.

Fig. 12. The histogram of distance variation between curved layers on
example models shown in this paper.

generated by our computational framework, which are shown in
the corresponding figures and Fig. 12.

Computational statistics on these models are given in Table 1. It
can be found that the computation of all examples can be finished
in around 8-16 minutes. The major bottleneck of our computation is
the step of slicing – around half of the total computing time is spent
in this step. Our further study shows that the reconstruction of 𝛼-
shape and trimming takes about 87−93% of the slicing time. Besides,
the step of toolpath generation is also relatively time-consuming
as the governing fields need to be computed for all layers and the
IK need to be solved for all waypoints, the amount of which is very
large (e.g., around 730k waypoints in total for the Topo-opt model).

In order to ensure the good quality of fabrication, the variation of
layer thickness should be controlled. We visualize the distributions
of layer thicknesses for all the examples in Fig. 12. Specifically, we

Fig. 13. The histogram of distance variation between toolpaths on example
models shown in this paper.

evaluate the minimal distances from all waypoints to the other
layers represented as triangular meshes and plot the distribution of
distances as a histogram. It is found that the variation of distances is
relatively small after controlling the magnitude of ∇𝐺 (·) in Eq. (7)
and using the adaptive slicing algorithm. All the thicknesses fall in
the range of [𝑡min, 𝑡max].

Besides, the variation of distances between neighboring toolpaths
should also be controlled. For each waypoint c𝑘 on a curved layer,
we compute the distance from c𝑘 to all toolpaths on the same layer
except the portion directly connecting to c𝑘 . The distances computed
on all waypoints are displayed as a distribution in Fig. 13 for every
model. Again, by controlling the magnitude of ∇𝑃 (·) in Eq. (13), the
variation of distances between toolpaths generated by our approach
is very small as more than 97.9% falling in the range of 1 ± 0.5𝐷
where the nozzle diameter of the printer head is used as the standard
width 𝐷 .

6.3 Physical Experiments and FEA Verification
Physical models have been fabricated by using the toolpaths gener-
ated by our framework on amulti-axis FDM 3D printer. The statistics
of model fabrication are given in Table 2. For a given model, the
fabrication time and the number of layers are reported for both the
conventional planar-layer based FDM and the multi-axis FDM using
curved layers. The fabrication time of planar-layer based FDM is
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Table 2. Statistics of physical fabrication.

Conventional FDM Multi-Axis FDM
Planar Layer # Fab. Curv. Layer # Fab.

Model Solid Supt. Time† Solid Supt. Time†
Topo-opt 140 104 11.8 h 100 137 33 h
Bunny 131 77 7.1 h 100 89 14.5 h
Yoga 178 145 8.3 h 130 78 13.8 h

𝐶2-model 139 76 6.3 h 120 84 10.0 h
† The reported time (unit: hours) of fabrication includes the time
for printing solid, the time for printing support and also the time
for switching between two printer heads.

Fig. 14. Physical fabrication results (before and after removing the support-
ing structures) for Bunny head, Topo-opt,𝐶2-model and Yoga.

also evaluated on the same machine by using 2.5D toolpaths. In gen-
eral, the numbers of planar-layers and curved layers are comparable
for the same model when using the same target layer thickness.
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Force 𝐹𝑏𝑘 at Failure Point (Unit: kN)
Planar Layers Optimized

Model Natural Ort. Optimized Ort. Curved Layers
Bunny head 0.24 1.07 1.52
Topo-opt 0.79 1.71 3.47
𝐶2-model 0.86 1.21 2.09

Yoga 0.98 1.47 2.28

Fig. 15. Comparison of tensile / compression tests conducted on Bunny
head, Topo-opt, Yoga, and𝐶2-model. The breaking force 𝐹𝑏𝑘 in each test is
captured at the peak of the strain-force curve. For planar-layer based 3D
printing, models are fabricated with the natural orientation and also the
orientation optimized by the method of [Ulu et al. 2015].

Fig. 16. Behavior verification of the optimized directions for filament align-
ment by using FEA software, Abaqus. The anisototric material property is
specified at the element-level as shown in the left – different Young’s moduli
are assigned long different directions (i.e., 3𝑌 , 2𝑌 and 𝑌 respectively with
𝑌 = 782𝑀𝑃𝑎).

However, the fabrication time of multi-axis FDM is longer. This is
mainly caused by the complicated motion involved in multi-axis
FDM. The results of fabrication are given in Fig. 14.

Tensile tests are conducted to verify the reinforcement of models
fabricated by our method on a Tinius Olsen H5KS machine with
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specially designed fixture made by stainless steel. The comparisons
are given on three models – the Topo-opt, the Bunny head, the
Yoga and the 𝐶2-model. As shown in Fig. 15, the breaking force of
models fabricated by our method becomes 450% (Topo-opt), 635%
(Bunny head), 132% (Yoga) and 243% (𝐶2-model) comparing to the
models fabricated by planar-layer based FDM using the natural
orientation. Moreover, the comparison is also given to the Topo-
opt model and the Bunny head model by printing with optimized
orientation in planar-layer based FDM [Ulu et al. 2015]. It is found
that the breaking force can still be enhanced by 103% (Topo-opt),
42% (Bunny head), 55% (Yoga) and 73% (𝐶2-model), respectively –
see also the strain-force curves and the statistics shown in Fig. 15.
On the other hand, FEA simulation with anisotropic material

property is also conducted to evaluate the behavior of filament
orientation computed by our method. Anisotropic behavior of dif-
ferent orientations of filaments is modeled at the element-level. For
each tetrahedron, we assign the strongest modulus direction paral-
lel to the filament orientation and the weakest modulus along the
normal direction of a layer. The simulation results are identical to
the physical test of overall strength enhancement can be observed
(see Fig. 16). The FEA simulation (by using Abaqus software) for
the bunny head model shows an overall reduction by 32.8% and
12.5% on maximal and average principal stresses after applying
the anisotropic material orientation obtained from our optimized
toolpaths for filament deposition. The simulation conducted on the
Topo-opt model also verifies the performance of our method – with
46.1% and 20.3% reduction on the maximal and the average principal
stresses respectively.

6.4 Limitation
The major limitation of our current approach is that the speed of
fabrication is slower than the conventional planar-layer based FDM
process. High-speed and stable rotation motions are difficult to be
realized on motors employed in our hardware, the cost of which
is only about 3 − 4 times of a high-end conventional FDM printer.
Large momentum caused by the high-speed rotational motion of the
printing platform and the printed object requires the system to use
motors with large payload, which usually is hard to provide precise
motions. Therefore, we have to sacrifice the speed to gain better
precision. Meanwhile, more significant artifacts of staircase can be
observed on models printed by our method than that in planar-layer
based FDM. Although the main goal of our work is to strengthen
the mechanical property, it also possible to switch to the objective
function presented in [Etienne et al. 2019] to optimize the outer
surface quality by curved printing.

Our ray-based method to determine the overhang regions needs
supporting structures, which may generate rays having no intersec-
tion with any prior layers or the platform. When this occurs, we
apply some local perturbation to adjust a ray’s orientation until it
can intersect with the platform. This is another limitation of our
approach. It is worthy to investigate a better method for the support
generation similar to [Dumas et al. 2014].
In our current formulation, only static loads are considered in

FEA to generate the guidance of filament alignment. Nevertheless,
even when applying fixed loads, the stress distribution could change

after an object has already started to deform. Moreover, the loads
applied to an object could change from time to time. It is important
to incorporate the worst-case analysis (e.g., [Schumacher et al. 2018;
Zhou et al. 2013]) in our future work.

7 CONCLUSION
As a benefit of multi-axis 3D printing, we are allowed to design the
paths of filament alignment inside an object so that the anisotropic
strength of filaments can be controlled to reinforce the 3D printed ob-
ject’s strength under loads. A computational pipeline is introduced
in this paper for generating curved layers and toolpaths according
to the distribution of principal stresses.

We introduced field-based methodology to compute curved layers
and toolpaths by extracting the iso-surfaces and iso-curves from
the governing scalar-fields, which are optimized according to both
the demand of mechanical strength and the constraints of manufac-
turing. To ease the computation of optimization, we first determine
an optimized vector-field as an indication of the governing field’s
gradients. The final scalar-fields are computed from the normalized
vector-fields. By this strategy, we convert the nonlinear optimization
problem into a few linear optimization problems that can be solved
efficiently and effectively. By extrapolating the governing field into
the regions which need support, curved layers for supporting struc-
tures are generated. Moreover, algorithms are also developed to
ensure the accessibility and control the variation of layer-thickness.
Physical experiments have been conducted to verify the reinforced
mechanical strength on objects fabricated according to the toolpaths
generated by our framework.

The results of our experimental tests are very encouraging. Mod-
els fabricated by our method can withstand loads in 1.42 − 6.35×
when comparing to the models fabricated by plane-based FDM.
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