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Summary 

Drought is a silent and pervasive disaster that impacts a large area and propagates slowly. 

Unlike for other natural disasters such as floods, tornados etc., impacts of droughts do not 

manifest immediately. This makes it more difficult to monitor drought and mitigate adverse 

effects by early warning. Several drought indices exist to monitor drought. Individually, 

however, they are unable to provide an integral concise information to characterize and indicate 

the occurrence of meteorological, agricultural and hydrological droughts. A combined drought 

index (CDI) using several meteorological, agricultural and hydrological drought indices can 

indicate the occurrence of all drought types, and can provide information that facilitates the 

drought management decision-making process. Moreover, development of a CDI can be an 

impact-based, e.g. by optimizing for monitoring drought-related crop yield reduction. The 

economic growth in many developing countries relies on the agricultural products, hence 

developing crop yield monitoring and prediction methods is vital to enhance the economic 

growth. 

In Ethiopia, drought is a frequently recurring phenomenon. In the past few centuries, more than 

30 major drought episodes have occurred, of which 13 were severe and covered the entire 

country and affected several nations. Some studies show that the frequency of drought 

occurrence in Ethiopia has been increasing over the past decades. Since 1970, severe drought 

has hit Ethiopia on average every 10 years. Agriculture, which contributes more than half of 

the gross domestic product (GDP), is a very drought-sensitive sector in Ethiopia because of its 

dependency on annual rainfall. Rain-fed agricultural is the predominant practice in Ethiopia 

that often depends on the amount and distribution of annual rainfall. The shortfall of the annual 

rainfall is often the primary source for drought to occur and exacerbates the reduction in crop 

yield. In order to mitigate the adverse impacts of drought in Ethiopia, developing a robust 

drought monitoring system is crucial. Yet, this still lacks in Ethiopia and in the Upper Blue 

Nile (UBN) basin in particular. The UBN Basin is less-explored in terms of drought studies 

and there is no basin-specific drought monitoring system, even though the basin contributes 

60% of the total share of water to the main Nile River. Therefore, the main objective of this 

research is to develop an impact-based combined drought index (CDI) and prediction model of 

crop yield anomalies for the UBN Basin. The impact-based CDI is defined as a drought index 

that optimally combines the information embedded in other drought indices for monitoring a 

certain impact of drought (e.g. crop yield).   
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There are three recurrent challenges in the field of drought monitoring that need to be addressed 

to achieve the main objective for the case study of the UBN Basin. First, several meteorological 

stations in the basin are having a relatively short record length (e.g. less than 35 years). Hence 

assessing the effect of the record length on meteorological drought assessment is important to 

decide if these stations can be used for the spatio-temporal analysis of drought in the basin. 

The second challenge is that only few experiments have been published yet that try to develop 

CDIs with optimized indices weights. Most existing CDI methods use expert-based or 

subjective ways of assigning weights or apply a sequential ordering of the indices. There is a 

need for further development and testing new CDIs. The third challenge concerns drought 

monitoring in ungauged and data-scarce catchments. The potential of a CDI using mainly Earth 

Observation data as input needs to be assessed. To address these challenges for the case study 

of the UBN, the following specific objectives were defined:  

 Investigate the effect of data record length on drought assessment in the UBN Basin, to 

validate the use of meteorological stations with short record length in the drought 

analysis. 

 Investigate the spatial and temporal variation of meteorological droughts in the UBN 

Basin.  

 Evaluate and compare the performance of six drought indices (i.e. Standardized 

Precipitation Index (SPI), Standardized Precipitation Evaporation Index (SPEI), 

Evapotranspiration Deficit Index (ETDI), Soil Moisture Deficit Index (SMDI), 

Aggregate Drought Index (ADI), and Standardized Runoff-discharge Index (SRI)) with 

respect to identifying historic drought events in the UBN Basin. 

 Develop an impact-based CDI with weights optimized to monitor crop yield anomalies. 

 Develop a prediction model of crop yield anomalies, based on the impact-based CDI 

and individual drought indices.  

 Assess the potential of an impact-based CDI using Earth Observation data as the main 

input. 

Methodology of this research employed various methods of data analysis, statistics, 

optimisation and modelling, as described in the following steps:  

1. For analysing the impact of record length on drought assessment, the SPI was 

determined (identifying meteorological droughts) for several weather stations available 

in the UBN Basin. The record length in the majority of the stations is relatively short 

(1975-2009). There are only 14 weather stations that have a longer record length (1953 
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– 2009). With these stations (with long record length), two data withholding procedures 

were applied. The first data withholding experiment was that one additional year of data 

was taken out starting from 1953 and then SPI values were calculated. The data 

withdrawing was repeated up to the year 1974 where most of the other stations started 

recording. Then, the SPI values for a particular drought year between 1975 and 2009 

were checked to assess whether or not the values indicate the same drought category. 

For cross-validation of the results of the first experiment, in the second procedure, one 

year of data was withdrawn one by one starting from the middle of the record length 

(from 1970 to 1988).  

2. Spatial and temporal analysis of meteorological droughts in the UBN Basin was done 

using SPI. 

3. Comparisons of a range of individual drought indices, i.e. SPI, SPEI, ETDI, SMDI, 

ADI, and SRI, were carried out using correlation analysis. Their performance was 

evaluated with respect to identifying onset, severity, and duration of the historic drought 

events. The information on historic droughts was obtained from the Emergency Events 

Database (EM-DAT). 

4. Developing CDIs was done through assigning weights to the selected drought indices 

using two objective approaches: Principal Component Analysis (PCA) and an impact-

based random search optimisation. PCA combines the indices through calculating the 

correlation coefficient matrix between each index followed by computing the 

eigenvalues that could be used as the weight in developing the CDI. The impact-based 

random search for the optimal weights employed more than 60,000 iterations to identify 

the combination of weights with maximum correlation with crop yield anomaly. Crop 

yield anomaly data for the UBN Basin were obtained from the Central Statistical 

Agency (CSA) of Ethiopia for the period from 1996 to 2009. The UBN Basin is 

clustered into 16 administrative zones and the annual crop yield data for each zone were 

used. Crop yield is a combined result of weather, policies, and agricultural practices. 

To account only for the effects of the weather variations on crop yield, detrending of 

the crop yield data was carried out. Four common crops in the basin (i.e. teff, maize, 

barley, and sorghum) were considered in this study. The CDIs developed using these 

two techniques were compared.  

5. Crop-yield anomaly prediction models were developed. The models were developed 

using multiple linear regression equations linking the drought indices and yield 

anomalies for the teff, maize, barley, and sorghum crops. In these models, crop yield 
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anomaly was used as a predictand variable (variable being predicted), whereas the 

drought indices including the impact-based CDI and the selected drought indices were 

used as predictor variables. The CDI-based prediction model of crop yield anomalies 

was compared with the model based on the six individual drought indices. 

6. Using the same methods as in steps 3 and 4, an impact-based CDI and crop-yield 

anomaly models were developed using drought indices based on Earth Observation 

data. Indices included precipitation Z-score, Evaporative Drought Index (EDI) and 

Vegetation Condition Index (VCI). The Z-scores were calculated using grid-based 

rainfall data from the Climate Hazards Group Infrared Precipitation with Stations 

(CHIRPS). The EDI calculation used the MODIS ET data as a main input. The VCI 

was derived using Normalized Difference Vegetation Index (NDVI). The CDI was 

developed using only the impact-based random search for the optimal weight approach.  

In the following paragraphs the results of each of these research steps are discussed. 

The analyses of the effect of the record length showed that the record length from 1953 to 1974 

has limited effect on the indicated drought categories in the period 1975-2009 (period recorded 

by most stations). Therefore, all the stations (short and long records) were used for the drought 

analyses of this thesis.  

The spatio-temporal analyses of the SPI values showed that throughout the UBN Basin 

seasonal or annual meteorological drought episodes occurred in the years 1978/79, 1984/85, 

1994/95 and 2003/04. Persistence from seasonal to annual drought, and from one year to the 

next, has been found. The drought-years identified by the SPI analysis for the UBN Basin, are 

also known for their devastating impact in other parts of Ethiopia. 

The performance analysis of SPI, SPEI, ETDI, SMDI, ADI, and SRI, in identifying drought 

onset, severity, and duration of the most severe historic drought years in 1978/79, 1984/85, 

1994/95 and 2003/04, revealed the following:  

 SPEI showed too much fluctuation between drought and normal conditions at shorter 

time scales (SPEI-3 and SPEI-6).  

 As compared to the other indices, the SRI was observed to be less fluctuating between 

dry to wet conditions or vice versa.  

 The comparison in terms of identifying the onset of these four events showed that the 

SPI and SPEI most often indicated the early onsets of droughts, whereas ETDI, SMDI, 
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ADI, and SRI showed late onsets of the droughts with respect to the onset reported by 

EMDAT.  

 The majority of the drought indices indicated the severity and duration of the historic 

drought years (e.g. 2003-2004, 1983-1984).  

 None of the six drought indices could individually identify the onset of the four selected 

historic drought events.  

This confirmed the relevance of the fourth specific objective of this research to develop an 

impact-based CDI with optimised weights for individual drought indices.  

The developed impact-based CDI correlated well with the crop yield anomalies data of the four 

crops considered in this study: Teff, Barley, Maize and Sorghum. The CDI using PCA indicated 

years with negative crop yield anomalies equally well. The maximum correlation coefficient 

was obtained for the Barley crop (0.7) with the impact-based CDI approach.  

The results of the newly developed prediction models for the four crops yield anomalies were 

encouraging. The maximum value of the R2 was obtained for barley crop (R2 = 0.77) and the 

minimum value was for Maize (R2 = 0.24). Overall, the patterns of the predicted and the 

observed yield anomalies are similar, except for variation in the magnitude of the anomaly for 

some of the years. This variation in the magnitude may be attributable to several factors - 

mainly to the crop yield data that is aggregated to zonal average, and the data accuracy of the 

crop yield. Further research would be necessary to develop a more robust crop yield prediction 

model based on more site-specific information. 

Lastly, following the same impact-based approach, a CDI was developed using Earth 

Observation data as the main input (EO-CDI). The data window considered in this case is from 

2001 to 2009, and historic drought events within this time window were assessed. The results 

show that the three drought indices (Z-score, EDI, and VCI) characterize and identify the 

historic drought years and the drought-prone parts of the basin. A two-month lag time between 

the peak rainfall and VCI was observed for the majority (72%) of meteorological stations. 

Relatively large weights were assigned for EDI (0.5) and Z-score (0.4) in the combined drought 

index. The EO-CDI correlated well for all the crops with the maximum correlation coefficient 

of 0.8 obtained with Sorghum.  

Overall, for the first time, an extensive evaluation of existing drought indices was undertaken 

for the Upper Blue Nile basin, through characterizing and assessing the historic drought events. 

This confirmed that also the UBN Basin faced droughts in the past and needs thorough drought 
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research and drought monitoring. The developed impact-based CDIs and multiple linear 

regression models have shown to be effective in indicating historic drought events in the Upper 

Blue Nile. The impact-based CDI could potentially be used in the future development of 

drought monitoring in the UBN Basin and support decision making in order to mitigate adverse 

drought impacts.  

The same approach of developing an impact-based CDI optimised for a (sub-)catchment or 

area, can be applied to other regions of Ethiopia. The approach employed to test the influence 

of record length on the SPI drought category proved its success in validating the use of a large 

number of additional meteorological stations with a shorter record length for spatial drought 

analysis in the UBN Basin. Hence, this approach can be applied to other regions facing 

challenges of insufficient record length.  

The results of the Earth Observation-based CDI showed that Earth Observation information 

can be used as an alternative data source in drought monitoring for the ungauged and data 

scarce regions like UBN Basin. Moreover, developing a grid-based CDI using gridded data 

sets is important to analyse the spatial extent and details of drought, and will be addressed in 

our future studies. The evaluation of the existing drought indices in this study was carried out 

using drought characteristics data (onset date and severity) obtained from a global data source. 

It is recommended to check for availability of measured and local-scale data when adapting the 

same evaluation procedure for other study areas.     
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1. Introduction 

 

 Background 

Drought is one of the world's costliest natural hazards characterized by a significant decrease 

of water availability during a prolonged period of time over a large area. It causes, for example, 

an average of 6-8 billion USD damage costs every year and affects society, economy and 

human lives in the United States (Sheffield and Wood, 2012; Keyantash and Dracup, 2004; 

Wilhite and Buchanan-Smith, 2005; Wilhite et al. 2007). In Ethiopia, drought is a frequently 

recurring phenomenon often accompanied by very serious and diversified impacts on human 

lives and environment (Tagel et al. 2011). Drought in the year 1984/85 caused a million people 

to lose their lives, destroyed crops and livestock, and forced millions of people into 

displacement and destitution (Tagel et al. 2011). More specific figures from recent drought 

episodes in Ethiopia illustrate the magnitude of drought associated impacts. For example, the 

drought of 2003 led to the worst famine since the mid-1980s, which affected 13.5 million 

people (Wagaw et al. 2005) and caused large devastation in terms of lives and economical 

losses. About 20 million people were estimated suffering from food insecurity in East Africa 

in 2009 (Sheffield and Wood, 2012). The year 2009 is also recorded as one of the severe 

drought years in Ethiopia; 6 million people were affected and needed food aid from the 

international emergency services (Sheffield and Wood, 2012). Another severe drought that 

covered major parts of the country occurred recently, in 2015. The estimate showed that more 

than 4.5 million people needed food aid and emergency services 

(http://www.theguardian.com/global-development/2015/aug/25/un-ethiopia-need-food-aid-

after-poor-rains). The historic drought events in Ethiopia were highly linked with the 

occurrence of El Niño weather phenomenon and the 2015 drought was a recent example.  

Thus, drought management has become an important issue in the drought-prone parts of 

Ethiopia in order to reduce the adverse impacts of drought hazards and potential disasters 

through drought prevention and mitigation measures as well as preparedness. The resulting 

drought impacts were devastating in areas where agriculture is the main driver of the economic 

income of the society and rain-fed agriculture is the main dominant practice. The usual steps 

taken by the government and donors to cope with drought impact and resulting disaster is to 

follow impact assessment, response, recovery and reconstruction activities to recuperate the 

region to the pre-disaster state. These actions usually start with assessing the past drought 
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conditions using drought indices. Drought vulnerability and drought-associated risks can be 

reduced by developing a drought event management plan and by developing a robust drought 

monitoring and early warning system. With its dependence on agriculture, for Ethiopia 

development of crop-yield prediction models could further support drought impact mitigation. 

The likelihood of the increase of drought frequency and severity in Ethiopia as a result of the 

changing environment and population growth reinforces the need for the development of 

drought monitoring and forecasting (Ramakrishna and Assefa, 2002, Edossa et al. 2009, Araya 

et al. 2010, Tagel et al. 2011). 

Drought assessment often employs the measure of the shortfall of the hydro-meteorological 

parameters such as rainfall, streamflow, soil moisture etc. from the long-term average value. 

Drought indices are currently used to measure this shortfall and help to derive a numeric value 

which is more meaningful than the raw data in the decision making process. However, defining 

an appropriate drought index is a challenging task. One of the main challenges in developing 

such an index for Ethiopia and other developing countries is a lack of hydro-meteorological 

input data. Although measured data for some of the variables are freely available for use, the 

lack of good spatial representation posed by the sparse location of gauging stations is one of 

the main limitations. For some important variables, it is also inherently difficult to obtain 

measurements, e.g. for actual evapotranspiration and soil moisture. These two variables are 

used to characterize agricultural drought, and yet field measurements are often difficult because 

of the inherent high spatial and temporal variability. However, hydrological models and Earth 

observation are currently used to simulate and quantify these variables (Narasimhan and 

Srinivasan, 2005). Therefore, hydrological modelling and Earth observation are used as an 

alternative source of information and input data in developing the suitable drought index in this 

study. 

The majority of the existing drought indices are region-specific. Their suitability and 

performance have to be evaluated and tested before using them for a drought study in another 

area. Moreover, the drought indices have their own merits and weaknesses, and they are 

specific to drought type. Most often, drought monitoring that uses several drought indices has 

the better capability of properly characterizing the drought condition than using a single index. 

Combining multiple existing drought indices into a comprehensive combined drought index 

for monitoring is more advantageous than developing or using a new single drought index 

(Niemeyer, 2008). Therefore, extensive evaluation of the existing drought indices and 

developing the combined drought index (CDI) through potential use of the existing drought 
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indices is vital for researching the ways to mitigate future drought impacts, e.g. on crop yield 

reduction. 

1.2 Drought monitoring 

Drought monitoring includes the wide application of the drought indices that measure the 

deficit of hydrologic cycle components as compared to the long-term mean (Trambauer et al. 

2014, Barua et al. 2011; Hayes et al. 2004). The long-term mean is considered as a reference 

to measure the deviation of a particular event. Accordingly, meteorological drought is defined 

based on the degree of dryness or deviation from normal or average amount of rainfall for a 

prolonged period (Wilhite, 2000; Hayes et al. 2011). Examples of meteorological drought 

indices are Standardized Precipitation Index (SPI) (McKee et al. 1993), Percent Normal 

Drought Index (PNDI) (Willeke, 1994), Standardized Precipitation and Evaporation Index 

(SPEI) (Vicente-Serrano et al. 2010), the Precipitation Decile Index (PDI) (Gibbs, 1967), and 

the Weighted Anomaly Standardized Precipitation (WASP) (Lyon, 2005).  

The deficit in meteorological parameters, mainly rainfall, can be considered as a precursor for 

the deficit of other hydrological water cycle components (river flow, ground water flow, 

reservoir storage etc.) known as hydrological drought. Some examples of the hydrological 

drought indices are the Surface Water Supply Index (SWSI) (Shafer, 1982), Streamflow 

Drought Index (SDI) (Nalbantis, 2008), Standardized Runoff-Discharge Index (SRI) (Shukla 

and Wood, 2008) etc. The deficit of the readily available water for plant use to satisfy its water 

demand is often defined as agricultural drought. Examples of agricultural drought indices are 

Palmer Drought Severity Index (PDSI) (Alley, 1984), Soil Moisture Deficit Index (SMDI) 

(Narasimhan and Srinivasan, 2005), Evapotranspiration Deficit Index (ETDI) (Narasimhan and 

Srinivasan, 2005), the Crop Moisture Index (CMI) (Palmer, 1968), Reclamation Drought Index 

(RDI) (Weghorst, 1996), etc.  

Drought monitoring is often carried out by using indices based on water balance calculation 

and statistical analysis of the time series of input data. The water balance based drought indices 

require several climatic and physical variables to quantify the water deficit at the plant root 

zone. Examples of such indices are the PDSI, SMDI, ETDI, CMI, SWSI and RDI. The main 

limitations of the water balance based indices are that they require several input variables and 

that their calculation is not trivial. The statistical analysis based drought indices usually use 

one parameter, such as rainfall, and seldom two parameters, such as rainfall and temperature 

to characterize drought. In this category, the most commonly used indices are the SPI, PNDI, 
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SPEI, PDI, and WASP. The limitations of the statistical methods are a lack of full compliance 

with the fundamental requirements of the drought definition, since they consider only one or 

two parameters. They have difficulty in showing the persistence of drought and they require 

long-term continuous input data.  

The calculation procedure of both the water balance and statistical techniques is point-based, 

corresponding to the locations of the meteorological stations. Hence, the spatial interpolation 

from the point-based information sometimes lacks appropriate representation, particularly in 

areas were meteorological stations are sparsely located. The Inverse Distance Weight (IDW), 

Kriging and other interpolation techniques are commonly used to produce the spatial 

interpolation of the stations based data (Shepard, 1968; Bayraktar, 2005). Hence developing 

the combined drought index that makes use of hydro-climatic, model estimates of soil moisture 

and evapotranspiration and the Earth observation derived information is vital to monitor 

drought in a more efficient way (Sepulcre et al. 2012). However, reliability of these techniques 

is still dependent on the availability of a large number of stations, which is perhaps the main 

challenge in developing countries. Earth Observations data and hydrological models have been 

recently used to take the advantage of better spatial representation particularly in data scarce 

regions like the UBN Basin.  

A number of researchers have suggested that instead of developing a new single drought 

indicator, it is worthwhile to combine the existing drought indices into a comprehensive and 

integrative drought index (Niemeyer, 2008; Balint et al. 2013; Vyas et al. 2015; Sepulcre et al. 

2012). Balint et al. (2013) developed a combined drought index for Kenya in the Horn of 

Africa. Three drought indices, i.e. precipitation deficit index (PDI), temperature deficit index 

(TDI) and vegetation deficit index (VDI) were combined to develop the combined drought 

index (CDI). The combination was done through assigning weights for each index subjectively. 

The paper, however, does not show any objective explanation as to how the weights are 

assigned to each index. (In this study, the largest weight (50%) was assigned for rainfall based 

drought index, in this case PDI, and the remaining 50% of the weight was assigned equally for 

the other two indices, TDI and VDI.)  

Vyas et al. (2015) developed an Earth Observation based combined drought index. Earth 

observation (EO) based rainfall and Normalized Differences Vegetation Index (NDVI) data 

were considered to calculate the Standardized Precipitation Index (SPI) and NDVI anomaly 

respectively. The combined drought index was developed based on the relative weight assigned 
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in a qualitative way. An attempt was made to assign the weight between 0.1 to 0.9, by 

optimizing validation with ground truth rainfall based SPI, yield data and other Earth 

Observation based parameters such as land surface temperature, carbon productivity, and 

evapotranspiration. The procedure followed to assign the weight appears to have a higher 

objectivity compared to the Balint et al. (2013) approach. However, this procedure is not 

adaptable for more than two drought indices.  

Sepulcre et al. (2012) proposed a combined drought indicator that combines SPI, the anomalies 

of soil moisture and the anomalies of the fraction of Absorbed Photo synthetically Active 

Radiation (fAPAR). The combined drought index gave a synthetic and synoptic overview of 

the drought situation using three classification schemes such as "watch" when a relevant 

precipitation shortage is observed, "warning" when this precipitation shortage translated into a 

soil moisture deficit and "alert" when these two conditions are accompanied by unfavourable 

vegetation vigour (Sepulcre et al. 2012). The combining approach followed in the Sepulcre et 

al. study depicts a sequential way of drought monitoring.   

An objective approach of developing a CDI was carried out in USA and Australia using the 

principal component analysis (Keyantash and Dracup, 2004; Barua et al. 2009). The PCA based 

aggregate drought index (ADI) was developed to monitor drought in three diverse climatic 

regions in California, USA (Keyantash and Dracup, 2004; Keyantash and Dracup, 2002). The 

result supported the potential use of PCA based ADI to monitor drought. Barua et al. 2009 

compared the PCA based ADI with two other drought indices in the Yarra River Catchment in 

Australia (Barua et al. 2009; Barua and Perera, 2011). It was purported that the ADI, which 

aggregates several hydrologic variables, outperformed other indices on detecting the historical 

drought events. These studies showed the potential of the PCA approach to aggregate 

hydrologic variables that are related to meteorological, agricultural and hydrological drought. 

1.3 Problem statement 

The Upper Blue Nile (UBN) is an important basin in the Nile region in terms of generating and 

supplying the annual discharge that satisfies the water demands of the downstream riparian 

countries (Conway, 2000; Conway, 1997). The basin may generally not be perceived as being 

drought-prone because of the large amount of rainfall it receives annually and its location in 

the highlands of Ethiopia where evaporation losses are minimal. Although not well 

documented, the northeastern part and some pocket areas towards the central part of the basin 

have been reported to be historically associated with drought (Conway, 2000).  
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The emerging climate change and occurrences of drought are threatening natural processes in 

the basin that possibly affect the sustainability of the water resources. There are other factors 

than drought that aggravate the scarcity of the water resources in the basin. The large and rising 

population results in greater competition for the scarcity of the available fresh water resources.  

Thus far, few drought studies have been conducted using the historic time series of hydro-

meteorological variables at a local level (e.g. zones or basins) in Ethiopia (Ramakrishna and 

Assefa, 2002, Edossa et al. 2009, Araya et al. 2010, Tagel et al. 2011). There is a lack of studies 

that aim to evaluate the existing drought indices in the UBN Basin. Moreover, we could not 

find reported studies aiming at developing a CDI for the UBN Basin or, related to the most 

important drought impact for the basin: on modelling reductions in crop yield. 

1.4 Research objectives 

The main objective of this research is to develop an impact-based combined drought index 

(CDI) and prediction model of crop-yield anomalies for the Upper Blue Nile basin. An impact-

based CDI is defined as a drought index that optimally combines the information embedded in 

other drought indices for monitoring a certain impact of drought. 

The following specific objectives were defined:  

 Investigate the effect of data record length on drought assessment to validate the use of 

meteorological stations having a relatively short record length in the drought analysis. 

 Investigate the spatial and temporal variation of meteorological droughts in the UBN 

Basin.  

 Evaluate and compare the performance of six drought indices, i.e. Standardized 

Precipitation Index (SPI), Standardized Precipitation Evaporation Index (SPEI), 

Evapotranspiration Deficit Index (ETDI), Soil Moisture Deficit Index (SMDI), 

Aggregate Drought Index (ADI), and Standardized Runoff-discharge Index (SRI) with 

respect to identifying historic drought events in the UBN Basin. 

 Develop an impact-based Combined Drought Index (CDI) with weights optimized to 

monitor crop yield anomalies. 

 Develop a prediction model of crop yield anomalies, based on the impact-based CDI 

and individual drought indices. 

 Assess the potential of an impact-based CDI using Earth Observation data as the main 

input. 
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1.5 Main steps in research methodology 

Methodology of this research employed various methods of hydroinformatics - data analysis, 

statistics, optimisation and modelling, and included the following steps: 

1. The SPI for several meteorological stations was determined in the UNB Basin, and 

it was analysed whether record length has an impact on drought assessment. The 

record length in the majority of the stations is relatively short (1975-2009). There 

are only 14 weather stations that have a longer record length (1953 – 2009). For these 

latter stations, two data withholding procedures were applied. The first data 

withholding experiment was that one year of data was taken out starting from 1953, 

and then SPI values were calculated. The data withdrawing was repeated up to the 

year 1974 when most of the other stations started recording. Then, the SPI values for 

a particular drought year between 1975 and 2009 were checked whether or not the 

values indicate the same drought category. For cross-validation of the results of the 

first experiment, in the second procedure, the one year of data was withdrawn one 

by one starting from the middle of the record length (from 1970 to 1988).  

2. Spatial and temporal analysis of meteorological droughts in the UBN Basin was done 

using SPI. Since drought is a regional phenomenon, the point-based SPI time series 

values of each meteorological station have been interpolated using the inverse 

distance weighted (IDW) method to assess the spatial extent of drought in the basin. 

In order to identify the area most frequently struck by drought, the frequency of 

occurrences of drought was compared by taking the ratio of the number of drought 

years to the total number of years used in the analysis.  

3. Comparison and performance analyses of a range of individual selected drought 

indices, i.e. SPI, SPEI, ETDI, SMDI, ADI, and SRI, were carried out using 

correlation analysis. For the SPI, SPEI, and SRI indices for five different aggregation 

periods were derived, namely 1-, 3-, 6-, 9-, and 12-months. Thus, we have a total of 

18 indices; five each from the SPI, SPEI, and SRI and one each from the ETDI, 

SMDI, and ADI. Next, Pearson correlation coefficients were derived for paired time 

series values of drought indices. Each drought index is paired with every other 

drought index, resulting in an 18 by 18 correlation coefficient matrix. The percentage 

of drought months was calculated by taking the ratio of the total number of months 

that show drought condition (including mild, moderate, severe, and extreme drought) 

with the total events in the study period. The comparison of the drought indices based 
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on drought characteristics, such as percentage of drought months, maximum 

intensity, and drought duration, was analysed for the selected stations that are 

representing the study area. The performance of the drought indices was evaluated 

with respect to identifying onset, severity, and duration of the historic drought 

events. The information on historic droughts considered in this study was obtained 

from EM-DAT (http://www.emdat.be/database). 

4. CDIs were developed through assigning weights by following an objective approach 

for the selected drought indices, using principle component analysis (PCA) and 

impact-based random search optimisation: PCA combines the indices through 

calculating the correlation coefficient matrix between each index followed by 

computing the eigenvalues that could be used as the weight in developing CDI. 

Random search for the optimal weights employed more than 60,000 iterations to 

identify the combination of finding weights with maximum correlation with crop 

yield anomaly (i.e. for teff, maize, barley, and sorghum). The CDIs developed using 

these two techniques were compared.   

5. Crop-yield anomaly prediction models were developed based on the impact-based 

CDI, and compared with a crop-yield prediction models based on the six individual 

drought indices. Crop yield anomaly data for the UBN Basin was obtained from the 

Central Statistical Agency (CSA) of Ethiopia for the period from 1996 to 2009. The 

crop yield prediction model was developed using multiple linear regression 

equations between the drought indices and each cereal crop (i.e. teff, maize, barley, 

and sorghum). In the linear regression model, the crop yield anomaly was used as a 

predictand variable (variable being predicted) whereas the drought indices including 

both the CDI and the selected drought indices were used as a predictor variable.   

6. Impact-based optimal CDI and crop-yield anomaly prediction models were 

developed using drought indices based on Earth Observation data. Indices include 

precipitation Z-score, EDI and VCI. The Z-scores were calculated using grid-based 

CHIRPS rainfall data. The EDI calculation used the MODIS ET data as a main input. 

The VCI was derived using NDVI. The CDI was developed using the impact-based 

approach, with random search for establishing the optimal weights. The same 

approach was adopted as described above in developing the crop-yield anomaly 

prediction model. 

The research steps and methods followed are summarised in Figure 1.1. 
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Figure 1.1: Flow chart of the research steps. 

1.6 Research significance and innovation 

1.6.1 Research significance 

This research contributes to drought analysis and future drought monitoring in the UBN Basin. 

Contributions to the field of drought monitoring are outlined below: 

• Assessing the effect of the rainfall record length on the drought category is one of the 

significant outcomes of this research. This assessment contributes towards 

understanding the constraints and possibilities of using meteorological records of 

limited duration, which is the case in the study area and other developing countries.  

• Drought assessment using multiple drought indices is seen as a useful contribution in 

terms of characterizing and identifying the occurrence of the meteorological, 

agricultural and hydrological droughts. 

• The regression model that relates the combined drought index and the crop yield 

anomaly is a useful technique towards developing drought preparedness and early 

warning system.    
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1.6.2 Innovation 

The main innovate components of this study are outlined below: 

• Development of the impact-based CDI method.   

• The crop yield prediction regression model linking combined drought index and the 

crop yield anomaly. This model could potentially be used for the early indication of the 

crop yield reduction as a result of drought in the basin. To the best of our knowledge, 

no such models have been developed for the study area before. 

• Assessing the effects of the data length on the SPI drought index. Results of this 

analysis are helpful for the basin and the method can also be used in any other basin 

having the data length problem. 

1.7 Description of the study area 

The UBN Basin is located in the northwestern region of the country between 7o 40’ N and 12o 

51’ N latitudes, and 34o 25’ E and 39o 49’ E longitudes (Figure 1.1).  The basin contributes the 

large share of water to the main Nile (60% of the Nile total flow) and covers a total area of 

176,000 km2 upstream of the Ethiopia-Sudan border (Conway, 2000; Conway, 1997). It 

originates from Lake Tana and travels 6853 km before it empties in to the Mediterranean Sea. 

The topography of the basin signifies two distinct features: the highlands with rugged 

mountainous areas in the central and eastern part of the basin, and the lowlands in the western 

part of the basin. The altitude in the basin ranges from 492 m in the lowlands, up to 4261 m in 

the highlands. Whilst the highlands are the main source of water, the lowlands have expanses 

of flat lands through which the accumulated flow travels from the highlands to the lower 

riparian countries. The estimates of mean annual temperature in UBN Basin vary based on the 

data period considered by the researchers. According to Kim et al. (2008), the mean annual 

temperature (data years 1961-1990) is estimated to be 18.3 oC with seasonal variation of less 

than 2 oC. Tekleab et al. (2013) reported that the mean annual temperature (period 1995 - 2004) 

ranges from 13ºC in southeastern parts to 26°C in the southwestern part near the Ethiopian-

Sudanese border. The annual rainfall ranges from 787 mm to 2200 mm, with the highlands 

having the highest rainfall ranging from 1500 to 2200 mm and the lowlands receiving less than 

1500 mm (Conway, 2000; Kebede et al. 2006; Yilma and Awulachew, 2009). Following the 

seasonality of the rainfall, the flow in the UBN River is also seasonal. High flow generates 

from all the tributary rivers during the main rain season (June to September) and low flow 

during the dry season (October to May). 



11 

 

The land cover in the basin is dominated by dry land crop, pastures, savannah, grassland, 

woodland, water bodies and sparsely vegetated plants (Gebremicael et al. 2013). Volcanic rock 

and Precambrian basement rock are most widely available geological formations in the basin, 

and small areas are covered by sedimentary rock (Conway, 2000). The dominant soil types are 

Leptosols and Alisols (21%), Nitosols (16%), Vertisols (15%), and Cambisols (9%) (Betrie et 

al. 2011). 

 

Figure 1.2: Location and elevation map of the Upper Blue Nile basin. 

1.8 Dissertation structure 

Chapter 2 presents the spatio-temporal assessments of the meteorological drought under the 

influence of varying record length. The effect of the data length on the drought category of the 

SPI drought index is discussed in detail in this chapter. Statistical procedures followed to 

identify the best probability density function (PDF), and to test the homogeneity, and 

consistency of the rainfall data of each meteorological station are presented in this chapter.   

Chapter 3 is devoted to the inter-comparison of the performance of six drought indices to 

assess and characterise historic drought events in the basin. The SWAT hydrological modeling 

of the basin that aimed to simulate the soil moisture and evapotranspiration data, is discussed 

in this chapter.     
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Chapter 4 discusses the procedure followed to develop the combined drought index and the 

prediction models to monitor drought-related crop yield reduction in the basin. The principal 

component analysis (PCA) and impact-based random search of the optimal weights for the 

drought indices that are used to develop the combined drought index are discussed in detail in 

this chapter.  

Chapter 5 presents the potential use of the Earth observation data for developing the combined 

drought index from three EO-based drought indices, i.e. Z-score, Evaporative Drought Index 

(EDI) and the Vegetation Condition Index (VCI), and for developing the linear regression 

model with the crop yield anomalies. The impact-based optimisation approach presented in 

Chapter 4, was used to develop the combined drought index. 

Chapter 6 summarises the findings of this dissertation. It presents the conclusions of the 

research and highlights the recommendations for future research work on the topic. 

 

 



 

 

2. Spatio-temporal assessment of meteorological drought under 

the influence of varying record length1  

 

2.1 Introduction 

This chapter illustrates the spatial and temporal characteristics of historic meteorological 

drought events, and the effects of the data length on the SPI drought category in the Upper Blue 

Nile (UBN) basin. The study first investigates whether climate records with shorter-length 

affect the assessment of drought events in terms of drought categories (e.g. moderate, severe, 

extreme drought), before making use of all available observations to assess the spatial and 

temporal distributions of drought over the UBN Basin. To have long-term monthly rainfall data 

has been a prerequisite for carrying out drought analysis and modelling for many studies. While 

the presumption is widely followed, there has been a lack of studies on the effect of data length, 

which in fact hampers researchers from using records with shorter length, or leaves them in 

uncertainty if their conclusions are valid.  

The Standardized Precipitation Index (SPI) was used to study the effect of the length of records 

and to characterize drought in the UBN Basin. The SPI is a probability index that uses monthly 

rainfall data as input. It has been demonstrated to perform well in comparing droughts across 

different regions (Guttman, 1998). The SPI also gives better spatial standardization than other 

drought indices, such as Palmer Drought Severity Index (PDSI) in analysing extreme drought 

events (Sönmez et al. 2005). The SPI has been widely applied and tested in many watersheds. 

However, very few studies have been conducted in different parts of Ethiopia to analyse 

drought using the SPI. Edossa et al. (2009) reported the temporal and spatial analysis of 

meteorological and hydrological droughts for the Awash basin of Ethiopia, applying the SPI 

for the assessment of meteorological drought using monthly rainfall data from 1963 to 2003. 

The study showed the potential benefits of the SPI for drought assessment and examined the 

lag time between the hydrological and meteorological droughts. Tagel et al. (2011) evaluated 

the spatial and temporal variability of drought using the SPI and the Vegetation Condition 

                                                           
1 Based on: Bayissa, Y.A., Moges, S.A., Xuan, Y., Van Andel, S.J., Maskey, S., Solomatine, 

D.P., Griensven, A.V., and Tadesse, T., 2015. Spatio-temporal assessment of meteorological 

drought under the influence of varying record length: the case of Upper Blue Nile Basin, 

Ethiopia. Hydrological Sciences Journal, v. 60, No. 11, p.1927-1942.  
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Index (VCI) for the Tigray Zone located in the high lands of Ethiopia. The Tigray Zone is 

proximal to the UBN Basin and located in the Northern part of Ethiopia. The study 

demonstrated that the large part of the study area is prone to drought. Further, the results 

showed a time lag between the period of the peak of Vegetation Condition Index (VCI) and 

precipitation values (Tagel et al. 2011). Cancelliere et al. (2007) used stochastic techniques for 

seasonal forecasting of the SPI and showed the importance of the SPI for drought assessment 

and forecasting. Bonaccorso et al. (2003) analysed drought for the island of Sicily using the 

SPI and showed that the entire island is characterized by drought variability with a multi-year 

fluctuation and a tendency towards drier periods from the 19-70s onward.  Generally, many 

studies have been conducted using the SPI in different parts of the world for drought assessment 

and forecasting (Guttman, 1998, Yamoah et al. 2000, Cancelliere et al. 2007, Livada and 

Assimakopoulos, 2007, Patel et al. 2007, Wu et al. 2007, Khan et al. 2008, Li et al. 2008). 

However, testing the effect of data length and incorporating the findings on the spatio-temporal 

assessment of drought using the SPI in Ethiopia has not yet been carried out. The overall 

objective of this study is to analyse and assess the spatio-temporal variation of drought in the 

UBN Basin, Ethiopia, using the SPI. Moreover, this study analyses the effect of the length of 

rainfall time series data used on drought assessment with the aim to validate the use of a large 

number of stations with relatively shorter record length to investigate drought characteristics 

of the UBN Basin.  

2.2 Stations selection and data analysis 

The monthly rainfall recorded by local meteorological stations was the basis upon which the 

SPI and drought categories were calculated. The rainfall records of 45 stations were collected 

on monthly time steps from the National Meteorological Service Agency of Ethiopia. Most of 

these stations are located inside and nearby the UBN Basin (Figure 2.1). However, few of the 

other stations used in this study are located in different watersheds that have distinct agro-

climatic zones. These supplementary stations were used to study the effect of data length on 

the drought category. The years covered by the records of each station range from 1953 to 

2009. While some stations cover the whole period, others start from the 1970s. Regardless of 

the data length, the quality of the rainfall record needs to be assured prior to applying the data 

in any drought study. The double mass curve technique was applied to check the consistency 

and homogeneity of each station. The annual rainfall data for each of the 45 stations was first 

cumulated in chronological order. The pattern of the mean of the cumulative rainfall is then 

used to test individual station records. The cumulative rainfall of each station was plotted 
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against the mean of the cumulative rainfall. A break in the slope of the plot is used as a criterion 

to identify a change in the precipitation regime.  

This criterion was used in this study to select the meteorological stations considered for the 

spatio-temporal assessments of drought. The double mass curve produced for the Debremarkos 

station (Figure 2.2) demonstrates the consistency of the rainfall record. The plot shows the 

consistent record of rainfall data in this station and a break in slope was not observed 

throughout the record length. A similar procedure is applied for the other stations and similar 

results were obtained.  The results of the data quality assessment led to the choice of 37 rainfall 

stations data for further use. There was a maximum of four years of missing data in some of 

the selected stations. No techniques were applied to fill the gaps. Instead, the missing data was 

omitted during the SPI calculation.        

In this study, two distinctive groups of meteorological stations supplied the monthly rainfall 

data. The first group includes 14 meteorological stations with relatively long records (i.e. over 

50 years), located in different parts of the country and different rainfall regions. This group of 

stations was used to test the effect of data length on drought category. The second group 

comprises a total of 29 stations located inside and in a close proximity to the UBN Basin. Out 

of the 29 stations, six stations had longer data length and also were used in the first group. The 

other 23 stations had a shorter record length (i.e. 35 years, from 1975 to 2009). The second 

group of the stations was used to study the spatial and temporal assessment of drought in the 

UBN Basin.  

In the first group, most of the meteorological stations have monthly rainfall data and the data 

recording began in the early 1950's, with two exceptions (Mekelle and Debreziet) where 

recording started in1960. The Debremarkos and Gondar stations are located inside the basin 

whereas the rest of the other stations are located outside the UBN Basin boundary (Figure 2.1).  

The analysis of the spatial and temporal assessment of droughts was made with the second 

group of 29 stations with monthly rainfall data from 1975 to 2009. As shown in Figure 2.1, 

most of these stations are located within the UBN Basin except five stations that are located 

just outside of the basin. Although there are many meteorological data recording stations in the 

basin, getting a long-term record length was one of the main challenges that prompted for the 

necessity of this study. 



16 

 

 

Figure 2.1: The location map of the rainfall stations. Note: the stations represented by 

triangular shape and labeled with their name were used to study the effect of the data length. 

Stations represented by rectangular shape were used to study the spatial variability of 

droughts.   

 

Figure 2.2: The double mass curve produced for the Debremarkos station and used to 

demonstrate the consistency of the rainfall record. 
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2.3 Selection of the Probability Distribution Function (PDF) for the 

Standardized Precipitation Index (SPI)   

The effect of the record length on the drought category and the spatial and temporal assessment 

of droughts were performed using the SPI. This index utilizes the current and historic rainfall 

data to compute its value, which is proportional to the deviation from the long-term average 

rainfall. The computation employs fitting the probability density function to the frequency 

distribution of precipitation summed over the period of interest, in this case from 1970 to 2009 

(Khan et al. 2008, Moreira et al. 2008, Tagel et al. 2011). Distributions were built separately 

for each month and for each location. Each probability density function was then transformed 

into the standardized normal distribution. Thus, the SPI is said to be normalized in location and 

time. The conversion of cumulative probability to the standard normal random variable 

employs fitting the curves for all stations at all-time scales and for each year. This process can 

be cumbersome and the SPI value is more easily computed using an approximation method 

proposed by Abramowitz and Stegun, (1965) as shown in equations 2.7 and 2.8. Once 

standardized, the values of the anomaly of the SPI are categorized based on the McKee et al. 

(1993) classification as shown in Table 2.1.  

Table 2.1: SPI values that show the different categories of drought severity.  

SPI Values  Drought category 

−2.00 and less Extreme drought 

−1.50 to -1.99 Severe drought 

−1.00 to -1.49 Moderate drought 

   0 to -0.99 Near-normal or mild drought 

  Above 0  No drought 

The SPI calculation involves the selection of a probability distribution function (PDF) that fits 

best with the “belg”, the “kiremt”, and annual rainfall seasons of each meteorological station. 

Belg is a short rainfall season (February to April) whereas kiremt is the main rainfall season 

(June – August) in the basin. The commonly used statistical probability distributions such as 

Normal, Gamma, Log-Pearson and Weibull were tested for each station in the study area. We 

present the detailed calculation procedure of the Gamma distribution below and the details 

about the other models can be found in the following literature sources (Abtew et al. 2009; 

Hanson and Vogel, 2008; Sharma and Singh, 2010). Each PDF was then fitted to the belg, 

kiremt and annual rainfall and the goodness of fit of each PDF was evaluated using the 
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Kolmogorov-Smirnov test, Anderson Darling test and Chi-squared test (χ2) (Sharma and 

Singh, 2010). We used the EasyFit software to fit the probability distribution functions to the 

rainfall data for each of the stations. Overall, the gamma distribution fitted the rainfall record 

well in the majority of the stations and hence the gamma distribution has been selected in this 

study to assess the drought. The details about the gamma distribution can be found in Appendix 

A.    

2.4 Methodology of experiments 

The SPI values were computed for two time-scales i.e. three months (SPI-3) and 12 months or 

annual (SPI-12). The SPI-3 was used to assess drought during belg and kiremt seasons, which 

represent the two rainy seasons in Ethiopia and SPI-12 was used to assess the annual drought. 

In assessing the effect of data length on drought category, two data withholding procedures 

were applied.  

The procedure followed in the first data withholding procedure (procedure 1) was that one year 

of data was taken out starting from 1953 and then SPI values were calculated accordingly. The 

data withdrawing started from 1953 and was repeated up to the year 1974 where most of the 

other stations started recording. Then, the SPI values for a particular drought year between 

1975 and 2009 were checked whether or not the values indicate the same drought category. As 

cross-validation of the results of the first experiment, in the second procedure (procedure 2), 

the one year of data was withdrawn one by one starting from the middle of the record length 

(from 1970 to 1988).   

Since drought is a regional phenomenon, the point-based SPI time series values of each 

meteorological station have been interpolated using the inverse distance weighted (IDW) 

method to assess the spatial extent of drought in the basin. The inverse distance weighted 

method gives better representation for interpolation of rainfall distribution over heterogeneous 

topographic terrain (Tagel et al. 2011). In order to identify the areas most frequently struck by 

drought, the frequency of occurrences of drought was computed by taking the ratio of the 

number of drought years to the total number of years used in the analysis. The frequency of 

occurrence of drought was also spatially interpolated using inverse distance weighting.  
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2.5 Results and discussion 

2.5.1 Effect of record length on drought analysis 

Overall, we found that for all stations the SPI values are within the same drought categories 

irrespective of the length of records (Figures 2.3 to 2.6). The results for Debremarkos (Figure 

2.3b), Hossana (Figure 2.4h) and Welaita Sodo (Figure 2.6n) give consistent SPI values (no 

clear trends or abrupt changes). The SPI drought categories computed from record length 

starting from 1953 and record length starting from 1974, therefore, remain the same. The results 

for Addis Ababa (Figure 2.3a), Gondar (Figure 2.3c), and Jimma (Figure 2.3d) demonstrate 

that most of the data series (SPI values) remain in the same drought category. Three exceptional 

SPI values were found falling out of the range of the severe drought category at Gondar (Figure 

2.3c) and Jimma (Figure 2.3d) for data lengths of 45 and 46 years. Compared with the total 

number of drought events considered, the impacts of these exceptions are thought to be 

negligible. An increasing trend within the drought category was observed at Gore (Figure 2.4g) 

for procedure 1 (discussed in section 2.4), but not to the extent that the drought category 

changed.  

In the cross-validation procedure, the second data withdrawing procedure (procedure 2) 

discussed in section 2.4, for meteorological stations located in the UBN Basin as well as in 

other parts of Ethiopia, results showed little sensitivity of the SPI index to the data length. Only 

at the Kebridhar station (Figure 2.5j), increasing trends of SPI values were observed, however 

all the values observed fall in the same drought category.  

These analyses show that the record length from 1953 to 1974 has a limited effect on changing 

the drought category and hence the record length from 1975 to 2009 can be used for drought 

analysis in the UBN.  
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Figure 2.3: Moderate (SPI: -1 to -1.5), severe (SPI: -1.5 to -2) and extreme (SPI: > -2) drought 

for the Addis Ababa, Debremarkos, Gondar and Jimma stations. Note: the number in the 

parenthesis in the legend section indicates the drought year. The Roman number I and II in the 

parenthesis next to the name of each rainfall stations indicate the graphs obtained for data 

withdrawing in procedure 1 and procedure 2 as described in section 2.4.   
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Figure 2.4: Moderate (SPI: -1 to -1.5), severe (SPI: -1.5 to -2) and extreme (SPI: > -2) drought 

for the Debrezeit, Diredawa, Gore and Hossana stations. Note: the number in the parenthesis 

in the legend section indicates the drought year. The Roman numbers I and II in the parenthesis 

next to the name of each rainfall stations indicate the graphs obtained from the data 

withdrawing from the beginning and from the middle respectively.   
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Figure 2.5: Moderate (SPI: -1 to -1.5), severe (SPI: -1.5 to -2) and extreme (SPI: > -2) drought 

for the Kombolcha, Kebridhar, Mekelle and Nazaret stations. Note: the number in the 

parenthesis in the legend section indicates the drought year. The Roman numbers I and II in 

the parenthesis next to the name of each rainfall stations indicate the graphs obtained from the 

data withdrawing from the beginning and from the middle respectively.   
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Figure 2.6: Moderate (SPI: -1 to -1.5), severe (SPI: -1.5 to -2) and extreme (SPI: > -2) drought 

for the Negele and Welaita Sodo stations. Note: the number in the parenthesis in the legend 

section indicates the drought year. The Roman numbers I and II in the parenthesis next to the 

name of each rainfall stations indicate the graphs obtained from the data withdrawing from 

the beginning and from the middle respectively.   
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Debremarkos station; 1970, 1974, 1984 and 1994 in Gondar station. Extreme drought episodes 

-3

-2.5

-2

-1.5

-1

-0.5

45 44 43 42 41 40 39 38 37 37 36 35 34 33 31

S
P

I 
[-

]
Total number of years of data length 

Kiremt (1993) Kiremt (1998) Kiremt (1999) Belg (1977)

Belg (1980) Belg (2000) Annual (1997) Annual (1999)

Annual (2000) Annual (2002)

m. Negele (I)

45 44 43 42 41 40 39 38 37 36 35 34

Total number of years of data length 

Kiremt (1956) Kiremt (1960) Kiremt (1979) Kiremt (1993)

Kiremt (1999) Belg (1955) Belg (1956) Belg (2000)

Annual (1955) Annual (1956) Annual (1959) Annual (1999)

m. Negele (II)

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

43 42 41 40 39 38 37 36 35 34 33 32 31 30 29

S
P

I 
[-

]

Total number of years of data length 

Kiremt (1972) Kiremt (1986) Annual (1982) Annual (1986)

Belg (1980) Belg (1984) Belg (1986) Belg (1997)

Belg (1999) Belg (2000)

n. Welaita Sodo (I) n. Welaita Sodo (II)

41 40 39 38 37 36 35 34 33 32 31 30 29 28

Total number of years of data length 

Kiremt (1972) Kiremt (1986) Belg (1986)

Belg (1997) Belg (1999) Belg (2000)

n. Welaita Sodo (II)



24 

 

were also indicated in the years 1984 and 1998 in Debremarkos station; 1968 and 1983 in 

Gondar station. The drought episodes in the belg season show multi-year persistence at most 

stations, although severity often changed from year to year. The moderate, severe and extreme 

droughts were followed or preceded by mild drought episodes. Although the mild drought 

episodes represented below the long-term mean, its impact is much less and closer to the normal 

condition. For this reason, the mild drought episodes were not presented in the temporal 

assessment of drought in the UBN Basin.  

The occurrences of moderate, severe, or extreme drought episodes in the belg season, in some 

year manifested at the annual time scale as well. However, the impact of the belg drought on 

the annual drought was not one to one, which means that severe drought in the belg season 

might be mild on the annual time scale and vice versa. Moderate drought was the dominant 

drought category in most of the meteorological stations for the belg season. Severe drought 

was the next predominant drought category in most of the stations and it appeared even more 

frequent than moderate drought during the belg season for some stations.    

Kiremt season 

Referring to Figures 2.7a and 2.7b, moderate drought episodes in kiremt season (main rain 

season from July to September) were observed in the years 1963, 1977, 1978, 1984 and 1986 

at the Debremarkos station; 1966, 1971, 1983 and 1987 at the Gondar station. A severe drought 

occurred in the year 1954 and 1992 at the Debremarkos station and 1981, 1982 and 1997 at the 

Gondar station. Extreme drought occurred in the year 1987 and 2005 at the Debremarkos 

station; 2009 at the Gondar station. The minimum SPI value was detected in the year 2009 (-

2.59) at Gondar station. Similar to the belg season, the kiremt season droughts also appeared 

to be persistent with varying severity at most stations. For instance, a persistent 5-year drought 

occurred at the Gondar station during the kiremt season from 1981 to 1985, with the severity 

decreasing from -1.58 to -0.32. The occurrence of kiremt drought is found to be a precursor of 

the drought occurring at the annual time scale in the majority of the stations. However, the 

severity varies, which means moderate, severe, or extreme droughts in the kiremt season might 

be in most cases mild drought at the annual time scale and vice versa. Moderate droughts are 

the most dominant category in the kiremt season.  

The analysis of the two rainy seasons, belg and kiremt, shows that droughts can occur in either 

one or both seasons.     
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Annual droughts 

The drought years in the annual time scale have been identified in Figures 2.7a and 2.7b. 

Moderate annual droughts have been observed in 1973, 1982, 1987 and 1995 at the 

Debremarkos station; 1968, 1983, 1990 and 1992 at the Gondar station. Severe drought was 

observed in 1965, 1978, 1986 and 2005 at the Debremarkos station; 1970 at the Gondar station. 

Extreme drought occurred in 1991 at the Debremarkos station; 1982 and 1991 at the Gondar 

station. Moderate droughts are the most dominant drought category at the annual time-scale.  

Overall the temporal SPI analysis shows that most of the 29 stations measured severe, moderate 

and mild drought episodes in the years 1978/79, 1984/85, 1994/95 and 2003/04. Indeed, these 

years were among the worst drought years in the history of Ethiopia (Edossa et al. 2009, Tagel 

et al. 2011). Several studies confirm that severe droughts have occurred in these years and 

caused substantial damage in terms of life and economical losses and covered the entire country 

(Wagaw et al. 2005, Tagel et al. 2011).  

 

Figure 2.7a: Standardized precipitation index time series values of the Debremarkos station. 
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Figure 2.7b: Standardized precipitation index time series values of the Gondar station. 

Trend analysis of drought occurrence 

A statistical test was conducted to check whether a trend exists or not in the SPI time series of 

the stations using the Mann-Kendall (Yue et al. 2002, Hamed, 2008) method. The result shows 

that a negative slope (trend) was observed in both stations for the three SPI time-scales, 

however, the trend was statistically insignificant at the 95% confidence level. This shows that 

there is no statistical evidence of any positive or negative trend of meteorological drought 

severity and frequency for the study area. Although the trends at all time-scales were 

statistically insignificant, a relatively strong trend of increasing frequency was observed during 

the kiremt season with the average value of the regression coefficient (R) greater than 23%. It 

is, therefore, recommended to regularly re-check if this increasing trend becomes significant at 

a later stage. It is important to note that kiremt is the main rainy season in Ethiopia from which 

agricultural production is highly dependent.  

2.5.3 Areal extent of drought 

The spatial coverage of drought over the UBN Basin was obtained using the Thiessen Polygon 

method. The resulting areal extent was expressed as the percentage of the basin in drought 

conditions. The drought area percentages were calculated for all SPI time-scales, however, only 

the result for kiremt and annual time-scales are presented in Figures 2.8a and 2.8b for further 

discussion.  

The areal extent of annual droughts (Figure 2.8a) shows that more than 40% of the area was 

struck or impacted by mild droughts in 1982, 1987, 1997, 2002, and 2003. The years of 1982 
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and 2003 could be marked as critical as 63% and 56% of the entire study area was struck by 

mild drought. In 1984, 1985, 1986 and 1995, the 12-month SPI values indicated 15% of the 

total area under moderate or more severe droughts.  The year 1995 was considered as a critical 

year as the areas of moderate and severe drought reached up to 26% and 28% respectively.  

This analysis of the spatial extent of droughts in the UBN Basin shows, with over 25% of the 

area having been hit by moderate, severe, or extreme droughts, this indicates that considerable 

parts of the basin are drought-prone. 

 

Figure 2.8a: Areal extents of annual drought severity graph based upon the 12-month SPI for 

September.  

 

Figure 2.8b: Areal extents of Kiremt drought severity graph based upon the 3-month SPI for 

September. 
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2.5.4 Spatio-temporal analysis to assess the spatial variability of drought frequency 

Drought frequency in the UBN Basin of Ethiopia was investigated using the SPI for kiremt, 

belg, and annual time-scales for each meteorological station. The frequency of occurrence of 

each drought category was computed for each station at each time-scale by taking the ratio of 

the number of occurrence of the particular drought of a particular category and time-scale to 

the total number of data years (Edossa et al. 2009). The main objective of this analysis was to 

identify the areas that are most frequently struck by drought. Figure 2.9a shows that the relative 

frequency of mild drought in kiremt time-scale was highest in the southwest, central and the 

north to northeast of the UBN Basin. The annual frequency of mild drought also shows most 

frequent mild droughts occurred over the southwestern part of the UBN Basin. Relatively large 

prevalence of moderate drought occurred in central towards south and northeast part of the 

study area for the kiremt and annual time-scales (Figure 2.9b). The map with the frequency of 

occurrence of the severe droughts at annual time-scale shows that a large part of the study area 

was free from severe droughts. The North and North-west parts, however, do show severe 

droughts during the kiremt time-scale (Figure 2.9c). The frequency of occurrence of extreme 

droughts (Figure 2.9d) further shows that the central and the northern parts of the study area 

are struck more frequently by extreme droughts for the kiremt and annual time-scales.  

From the analysis above it is clear that the maps of drought frequency show differences for the 

time-scales and severity considered. A conclusion on which sub-areas of the basin are more 

prone to droughts is difficult to make. Therefore, the drought frequency was also calculated for 

the mild, moderate, severe, and extreme drought categories together. The resulting drought 

frequency maps for annual and kiremt time-scales are shown in Figure 2.10. For the kiremt 

time-scale (Figure 2.10a) the only clear pattern is that in the eastern parts of the basin drought-

frequencies are lower. For the annual time-scale (Figure 2.10b), high drought frequencies 

(50%) were observed in the south, central and west. It can be concluded that in the UBN Basin 

the central, south, and western parts are the most drought-prone, while the North and East are 

less drought-prone. The conclusion needs, however, to be taken with care, because patterns are 

not very distinct and may be influenced by the limited coverage of rainfall stations in the 

northwest and northeast parts.  
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Figure 2.9a: Frequency of occurrence of mild drought. 

 

Figure 2.9b: Frequency of occurrence of moderate drought. 
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Figure 2.9c: Frequency of occurrence of severe drought. 

 

Figure 2.9d: Frequency of occurrence of extreme drought. 
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Figure 2.10a. Frequency of occurrence of mild,          Figure 2.10b. Frequency of occurrence 

moderate, severe and extreme droughts in                   of mild, moderate, severe and extreme 

kiremt time scale.                                                          droughts in annual time. 

2.6 Conclusion 

The spatial extent and distribution of drought frequency in the UBN Basin was analysed by 

interpolating the station SPI values across the study area.  

The methodology employed to test the influence of record length on the SPI index proved 

successful in validating the use of a large number of additional stations with shorter record 

length for the UBN Basin. The findings of this study may help other researchers and 

practitioners who face similar challenges of insufficient data length by checking the effect of 

data length for their drought studies using the SPI.  

The trend analysis of the SPI index from 1953 to 2009 showed no conclusive evidence that 

meteorological drought in the Upper Blue Nile is increasing or declining. SPI droughts 

occurred throughout the basin. Persistence from seasonal to annual drought, and from one year 

to the next, has been found. The temporal analysis showed that the historical drought years in 

the area (1978/79, 1984/85, 1994/95 and 2003/04) were successfully captured using the SPI 

index. Therefore, the SPI index can be used as an important index to identify the historical 

drought patterns in the UBN Basin, which could help in predicting drought. Further, a study 

needs to be conducted to test the procedure employed in this research for other basins and/or 

the entire country of Ethiopia, emphasizing areas most frequently hit by severe droughts.  
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3. Comparison of the performance of six drought indices in 

assessing and characterising historic drought events2   

 

3.1  Introduction 

This chapter presents the comparison of six drought indices: Standardized Precipitation Index 

(SPI), Standardized Precipitation and Evaporation index (SPEI), Evapotranspiration Deficit 

Index (ETDI), Soil Moisture Deficit Index (SMDI), Aggregate Drought Index (ADI), and 

Standardized Runoff-discharge Index (SRI), and evaluates their performance with respect to 

identifying historic drought events in the Upper Blue Nile (UBN) basin. The indices were 

calculated using monthly time series of observed precipitation, average temperature, river 

discharge, and modelled evapotranspiration and soil moisture from 1970 to 2008. The SPI, 

SPEI and SRI were calculated for aggregate periods of 3-, 6-, 9-, and 12-months.   

Comparative studies of drought indices have been carried out in many other watersheds. For 

example: 

 Zhuo et al. (2016) compared five drought indices for agricultural drought monitoring 

and impact on wheat yield analysis in North China, and indicated that the Temperature 

Vegetation Dryness Index (TVDI) outperformed other drought indices and would be a 

more suitable drought index to monitor wheat yield.  

 Morid et al. (2006) compared the performances of seven drought indices in the Tehran 

Province of Iran and recommended using the EDI and SPI for drought monitoring 

purposes in the basin. The study further indicated that the EDI was more responsive to 

the drought and performed better than the SPI.  

 Okpara and Tarhule, (2015) evaluated and compared the performance of three drought 

indices in the Upper Niger sub-watershed. They reported that the SPI ranked first 

among other meteorological drought indices in the basin.  

                                                           
2 Based on: Bayissa, Y.A., Maskey, S., Tadesse, T., van Andel, S.J., Moges, S,A., van 

Griensven, A., and Solomatine, D.P, 2018. Comparison of the performance of six drought 

indices in characterizing historical drought for the Upper Blue Nile Basin, Ethiopia. 

Geosciences, v. 8, No. 3, p.81. 
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 Barua et al. (2010) evaluated the performance of five drought indices for the Yarra 

River Catchment in Victoria, Australia, using five subjective decision criteria 

(robustness, tractability, sophistication, transparency, and extendibility). They found 

that the Aggregate Drought Index (ADI) was superior and preferable to other indices 

for the study catchment. 

 Similar studies have been conducted in other basins (Naumann et al. 2013; Wang et al. 

2013; Vicente-Serrano et al. 2010; Houcine and Bargaoui, 2012; and Heim, 2002). 

Also Ethiopia has been subject to drought analyses, especially focusing on the areas in the 

northern and eastern parts of the country (Tagel et al. 2011; Viste et al. 2013; Edossa et al. 

2010). Even though a few attempts have been made in assessing and characterizing droughts 

in the Upper Blue Nile (UBN) basin (Bayissa et al. 2015; Viste et al. 2013), a comparison of 

the performance of multiple drought indices for the UBN Basin is still missing. 

3.2 Data 

3.2.1 Historical drought events 

The history of drought in the basin is documented poorly. However, major historical drought 

events within the study period (1970 – 2008) were identified from previous studies and EM-

DAT, the international disaster database (http://www.emdat.be/database) (Bayissa et al. 2015; 

Viste et al. 2013). According to previous studies, years 1973-1974, 1983-1984, 1994-1995, and 

2003-2004 were reported as the major drought years in Ethiopia (Bayissa et al. 2015 (Chapter 

2); Viste et al. 2013). EM-DAT (Table 3.1) includes these drought events as well, but reports 

the 1973 and 1994 events as being part of longer drought periods from 1973 to 1978 and from 

1989 to 1994 respectively. This possibly reflects the occurrence of multiple drought events 

during these years in different parts of the country.  

For evaluating the six drought indices (Section 4.2), the EM-DAT drought periods are taken as 

a reference while keeping in mind their reporting of prolonged droughts. The EM-DAT 

database is compiled from various sources, including UN agencies, non-governmental 

organizations, insurance companies, research institutes, and press agencies. The available 

information for the selected drought events is presented in Table 3.1. The year 1983-1984 

stands out as the drought year with the highest percentage (22%) of the population affected. 

For other drought events, this percentage is 16% or less. The provinces indicated in bold (Table 

3.1) are situated (partly) within the UBN Basin. For example, according to the earlier division 

of provinces (before 1992), Gondar includes the northern part of the basin, whereas Wollo and 

Shoa include eastern, northeast, and southeast parts of the basin respectively. According to the 
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current regional classification, Amhara covers the central, northern, northeastern, and 

northwest parts, and Oromia covers the southern, southeast and southwest parts of the UBN 

Basin. The eastern and some of the central parts of the basin have not been reported in EM-

DAT as being affected by drought. Both the start and end dates of the historic drought events 

are shown in Table 3.1, but the months of the end dates are not indicated. Hence, the evaluation 

of the drought indices in identifying drought events focuses on the onset of the drought events. 

Table 3.1: The start and end date of the historic drought events and the total number of people 

affected during the years 1970-2008.   

Start date End date Location 

Total 

affected  

 

populatio

n (106) 

Total 

number 

of  

Populatio

n in 

Ethiopia 

(106) 

Rati

o 

(%) 

December, 

1973 
1978 

Wollo, North Shoa, Tigray, Kangra 

province 
3 32.57 9 

May, 1983 1984 
Wollo, Gondar, Gore, Tigray, Shoa, 

Harerge, Sidamo 
7.75 35.24 22 

June, 1987 1987 
Ogaden, Tigray, Wollo, Shewa, Gamo 

Gofa, Sidama, Gondar, Bale 
7 48.06 15 

October, 1989 1994 
Northern Ethiopia, Tigray, Wollo, 

Gondar, Harerge 
6.5 48.06 14 

2003 2004 
Tigray, Oromia, Amhara, Somali, 

Afar province 
12.6 76.61 16 

May, 2008 October, 2009 
Oromia, Somali, Amhara, Afar, 

Tigray, SNNPR province 
6.4 87.56 7 

Source: EM-DAT International Disaster Database. Centre for Research on the Epidemiology 

of Disasters-CRED; http://www.emdat.be/database (last access: 17 July 2016); 

http://www.worldometers.info/world-population/ethiopia-population/ 

3.2.2 Actual evapotranspiration (ET) and soil moisture data 

A process-based semi-distributed hydrological model (Soil and Water Assessment Tool, 

SWAT) was developed to simulate the actual evapotranspiration and soil moisture time series 

data (Arnold et al. 2009; Green and van Griensven, 2008). Previous studies have shown the 

capability of SWAT to model the hydrological processes in the UBN Basin (e.g. Mengistu and 

Sorteberg, 2011; Griensven et al. 2012). The SWAT model was calibrated on river discharge 

data from 1970 to 2008 for five hydrological stations (Figure 3.1). The flow data of Abbay at 

the Bahirdar station (Figure 3.1) were used as the boundary condition for modelling the part of 

the catchment downstream of Lake Tana. The monthly calibration results in terms of the 

coefficient of determination (R2) and Nash-Sutcliffe efficiency (NSE) between observed and 

simulated river discharge vary from 0.83 to 0.93 (for R2) and 0.84 to 0.91 (for NSE). The 
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Hargreaves method (Hargreaves and Samani, 1982) was used for potential ET in SWAT. 

Weather data of relative humidity, solar radiation, wind speed, and sunshine hours available 

from 10 stations were used for developing the SWAT database.  

 

Figure 3.1: Upper Blue Nile basin with river network, gauging stations, weather stations, and 

the sub-basin discretisation used by the SWAT model, upstream and downstream of the Lake 

Tana outlet.  

Other input data (Digital Elevation Model (DEM), land use, and soil maps) were collected from 

different sources. The 90m spatial resolution DEM data were obtained from the Shuttle Radar 

Topography Mission (SRTM) (http://www.cgiar-csi.org/data/srtm-90m-digital-elevation-

database-v4-1). Land use classification data at a spatial resolution of 5km by 5km were 

acquired from the Ministry of Agriculture and Rural Development (MARD, 2004) of Ethiopia. 

The basin was classified into 32 land use classes. Cultivated land is the dominant land cover in 

the basin. The soil map and physical and chemical properties at different soil layers were 

obtained from the Ministry of Water, Irrigation and Electricity of Ethiopia.  
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Actual evapotranspiration and soil moisture from the model output were used to calculate the 

Evapotranspiration Deficit Index (ETDI) and Soil Moisture Deficit Index (SMDI), 

respectively.   

3.2.3 Rainfall and temperature data  

Precipitation, and maximum and minimum temperature data from 34 stations with records from 

1970 to 2008 were used. The data were on a daily time step and the location of each station is 

shown in Figure 3.1. The weather stations located inside and in the proximity of the catchment 

boundary were used in this chapter for the hydrological modelling and meteorological drought 

assessment. The rainfall and temperature data were used to calculate the SPI and SPEI indices.   

3.2.4 River discharge data 

The river discharge data measured at five selected gauging stations (Gilgel Abbay, Ribb, 

Gumara, Abbay at Kessie, and Ethiopia-Sudan border) were obtained from the Ministry of 

Water, Irrigation, and Electricity of Ethiopia (Figure 3.1). The data have a daily time step 

(except at the Ethiopia-Sudan border, where only monthly data were available). The river 

discharge data at these selected stations were used to calculate the time series values of SRI.  

3.3 Drought indicators 

The drought indices collectively characterize meteorological, agricultural, and hydrological 

drought types. The SPI and SPEI, which are based on precipitation and temperature data, 

characterize meteorological drought. The ETDI and SMDI, which are based on 

evapotranspiration and soil moisture respectively, characterize agricultural drought. SRI, 

which is based on discharge, characterizes the occurrence of hydrological drought. ADI 

aggregates multiple input data sets that represent meteorological, agricultural and hydrological 

variables. The definitions and calculation methods applied in this dissertation are described 

below. 

3.3.1 Meteorological drought indicators 

Standardized Precipitation Index (SPI): the detailed description of SPI index can be found in 

section 2.3.    

Standardized Precipitation Evaporation Index (SPEI): The SPEI has an advantage over SPI 

because it incorporates the effect of potential evaporation in addition to rainfall (Abramowitz 

and Stegun, 1966; Trambauer et al. 2014; Vicente-Serrano et al. 2010). The calculation 
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procedure of the SPEI is similar to that of the SPI, except that the SPEI accounts for the 

difference between precipitation and potential evaporation. Like the SPI, the SPEI is calculated 

at different time scales (e.g. 1-, 2-, and 3-month), and in this study, a log-logistic distribution 

is applied as it fits observations in the majority of rainfall stations (Bayissa et al. 2015). 

Negative SPEI values indicate dry conditions due to less precipitation and/or higher potential 

evaporation (dry conditions) compared to the historical mean.     

3.3.2 Agricultural drought indicators  

Evapotranspiration Deficit Index (ETDI): The ETDI is based on the anomaly of water stress to 

its long-term average (Narasimhan and Srinivasan, 2005), in which monthly water stress is 

defined using potential and actual evapotranspiration (Equation 3.1).        

                             
PET

AETPET
WS


                                                                                              3.1 

The WS ranges from 1 (no evapotranspiration) to 0 (evapotranspiration occurring at the same 

rate as PET). Next, monthly water stress anomaly (WSA) is calculated as: 
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WSA      if WSi,j  ≤  MWSj                                                                      3.2 
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WSA  if WSi,j > MWSj                                                                       3.3 

where MWSj is the long-term median of water stress of month j, maxMWSj is the long-term 

maximum water stress of month j, minWSj is the long-term minimum water stress of month j, 

and WS is the monthly water stress. The subscripts i and j are used for years and months 

respectively. 

Finally, ETDI is calculated using Equation 3.4. In the original formula developed by 

Narasimhan and Srinivasan, (2005), WSAj was divided by 50 to scale the ETDI between -4 and 

4. As suggested by Trambauer et al. (2014), here, the WSAj values are divided by 100 to scale 

the ETDI between -2 and 2 to compare with SPI, SPEI, and SRI values.  

                         
100

5.0 1

j

jj

WSA
ETDIETDI  

                                                                              3.4 

Soil Moisture Deficit Index (SMDI): The SMDI is calculated in the same way as ETDI, but 

with the available soil water content in the soil profile (Narasimhan and Srinivasan, 2005). 

First, the median, maximum, and minimum values for each month were extracted using soil 
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moisture time series. The median was chosen instead of the mean because it is less affected by 

the outliers. The SMDI values (deficit or excess) for the 39 years (1970-2008) were calculated 

using Equations 5-7. 

     100
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SD  if SWi,j ≤ MSWj                                                               3.5 

   100
max
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, 





jj

jji
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SD  if SWi,j > MSWj                                                                      3.6 

where SDi,j is the soil water deficit (%) ranging from -100 (very dry condition) to +100 (very 

wet condition); SWi,j is monthly soil water available in the soil profile (mm); and MSWj, 

maxSWj, and minSWj are long-term median, maximum, and minimum available soil water in 

the soil profile (mm), respectively.  

Thus, the SMDI in any given month is determined by: 

SMDIj=0.5SMDIj-1+
SDj

100
                                                                                                                  3.7 

SMDI ranges from -2 to +2, with negative values indicating drought. 

3.3.3 Hydrological drought indicator 

Standardized Runoff-discharge Index (SRI): The SRI is based on river discharge and its 

computation procedure is similar to that of SPI. The SRI uses the gamma distribution to fit the 

river discharge data. The SRI and SPI drought categories are similar. River discharge data at 

the five selected gauging stations were used to characterize hydrological drought in the UBN 

Basin.  

3.3.4 Aggregate Drought Index (ADI) 

The ADI (Keyantash and Dracup, 2004) is a multivariate drought index that aggregates the 

three types of drought (meteorological, agricultural, and hydrological) through considering 

rainfall, evapotranspiration, and soil moisture. These three variables are aggregated into a 

single index (ADI) using Principal Components Analysis (PCA). PCA constructs a symmetric 

correlation matrix (p x p, where p is the number of variables) between the original input 

variables. PCA transforms the original p-variables data set to a number of uncorrelated 

(principal) components zj (1 < j ≤ p) (Barua et al. 2010) using Equation 3.8. 
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            XEZ                                                                                                                         3.8 

where Z is the (n x p) matrix of PCs (i.e. uncorrelated components), in which n is the number 

of observations, X is the (n x p) matrix of the observation data, and E is the (p x p) matrix of 

eigenvectors of the correlation matrix. The ADI was calculated for the first PC (PC1) 

normalized by the standard deviation. In the case considered, PC1 described more than 65% of 

the variation in the input data.  

                          kkiki ZADI /,1,,                                                                                                  3.9 

where ADIi,k is the ADI value for month k in year i, Zi,1,k is the first PC for month k in year i, 

and σk is the sample standard deviation of Zi,1,k for all years i and months k. The ADI was 

calculated for each of the station locations and each month. ADI values of -0.96 or lower 

indicate a drought at a different severity level (Table 3.2: ADI drought category classification). 

Table 3.2: ADI drought category classification developed based on percentile ranking 

through constructing cumulative distribution of the time series of ADI. 

above 0.92 Wet 

-0.95 to 0.92 Near normal 

-1.40 to -0.96 Moderate drought 

-1.69 to -1.41 Severe drought 

-1.70 or less Extreme drought 

 

3.4 Methods 

3.4.1 Correlation between drought indices 

First, we derived monthly time series of drought indices that are defined in the previous section. 

The drought indices were calculated at the corresponding locations of each meteorological 

station. The spatial extent of SWAT based evapotranspiration and soil moisture were in 

hydrologic response units (HRUs). The total area of the basin was divided into two major parts: 

upstream and downstream of the Lake outlet. This division has been made to exclude the Lake 

Tana from the modelling processes of the basin due to the lack of appropriate data to 

characterize the lake. The upstream and downstream parts are further divided into 14 and 139 

sub-basins and 104 and 1027 HRUs respectively. The HRUs were defined based on percentage 

combinations of land use, soil and slope. In this study, 10% land use, 20% soil and 10% slope 

threshold combinations were adopted, based on the findings of Setegn et al. (2008). The HRUs 

values of evapotranspiration, and soil moisture at the locations of each meteorological stations 

were extracted and used to calculate ETDI and SMDI drought indices. For all indices, data 
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from 1970 to 2010 are used. For SPI, SPEI, and SRI, indices were derived for five different 

aggregation periods, namely 1-, 3-, 6-, -9, and 12-months. Thus, we have a total of 18 indices; 

five each from SPI, SPEI, and SRI and one each from ETDI, SMDI and ADI. Next, Pearson 

correlation coefficients were derived for paired time series values of drought indices. Each 

drought index is paired with every other drought indices resulting in 18 by 18 correlation 

coefficient matrix.  

3.4.2 Comparison of drought indices based on drought onset, duration, and severity 

The comparison of the drought indices based on the drought characteristics such as percentage 

of drought months, maximum drought intensity, and drought duration was analyzed for the 

selected 16 stations that represent the majority of the study area. The percentage of drought 

months was calculated by taking the percentage of the ratio of the total number of months that 

show drought condition (including mild, moderate, severe, and extreme drought) with the total 

events in the study period. The maximum drought intensity represents the smallest value of the 

drought index within the study period (1970-2010). The average value of the maximum 

intensity of the different aggregate periods (1-, 3-, 6-, 9-, and 12-month) was considered for 

the SPI, SPEI, and SRI and compared with the self-defined single time scale indices (i.e. ETDI, 

SMDI, and ADI). The drought duration is defined as the consecutive months showing drought 

conditions (below normal conditions). Drought duration is also considered as one of the 

evaluation criteria to compare the drought indices for the selected stations. 

Other drought indices comparison criteria (i.e. drought onset, duration, and severity) have been 

used by dividing the UBN basin into upper, middle, and lower parts, representing the areas 

upstream of the river gauging stations Abbay at Bahirdar, Kessie, and Ethiopia-Sudan border 

respectively. The drought indices were calculated using areal averages of the variables, namely 

rainfall, temperature, soil moisture, and actual ET based on the simple arithmetic mean 

technique.  The drought severity, duration, and onset values were extracted for the known 

historic drought year (1973-1978, 1983-1984, 1989-1994, and 2003-2004). The time series 

values of the drought indices for these selected drought events were analysed to calculate the 

drought severity. The consecutive negative values of each drought index were considered to 

quantify the different drought characteristics. For example, mean intensity (M) and maximum 

intensity (Mmax) of drought are the average and maximum values within the consecutive 

negative drought index values respectively. Drought duration (D) represents the time span of 

the consecutive negative index values. Drought severity defined as the product of drought 
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duration (D) and the mean intensity (M) (Mishra and Singh, 2010; Narasimhan and Srinivasan, 

2005; Wilhite, 2000).  The severity interpreted as near normal, moderate, severe and extreme 

drought based on the drought categorical classification of each drought index as described in 

section 3.3. Based on drought severity and duration, each drought index was compared whether 

they characterize and indicate the severity and persistence of drought years in the basin. 

Moreover, the drought onset (starting month) estimated by each index was compared with 

similar data obtained from EM-DAT (section 2.2.1).  

3.5 Results and discussion 

3.5.1 Time series of the drought indices 

The time series (1970-2010) of the drought indices were produced for all the stations 

considered in this study. However, the result obtained at the Gondar and Debremarkos stations 

are shown in Figure 3.2 for further discussion in this section. These two stations are 

representative of the upstream and downstream parts of the study basin. Figure 3.2 depicts the 

performance of the drought indicators for indicating the historic drought events. In general, 

majority of the drought indices indicated the historic drought years (1973-1974, 1983-1984, 

1994-1995, 2003-2004, 2008-2009), except for observing frequent jumps between the drought 

and normal conditions at the lower time scales (1-, and 3-month). The persistence of the historic 

drought years were indicated at the longer time scales (e.g. 6-, 9-, 12-month). The 

meteorological drought indices showed severe drought condition in the year 1991-1992 in the 

majority of the stations. However, the severity of this drought condition was reflected by other 

drought indices. The agricultural drought indices showed a similar pattern with the 

meteorological drought indices of smaller time scales (1-, 3-month). Moreover, the agricultural 

drought indices showed smaller magnitude of the drought severity in some of the stations (e.g. 

Gondar) as compared to other drought indices. The hydrological drought indices indicated the 

persistence of the drought condition even at shorter time scales as compared to the other 

indices. The possible reason is that perhaps the fluctuation of river flows is very gradual as 

compared to the other input variables such as rainfall, evapotranspiration etc. The majority of 

the drought indices indicated the severity of the historic drought condition at different severity 

levels ranging from mild to extreme drought conditions. Thus, each drought index could 

potentially be used to assess some of the historic drought conditions in the UBN Basin.  
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Figure 3.2a: The time series plots of the drought indices for the Gondar station. The plots for 

SPI, SPEI, and SRI at 6-, 9-, and 12-month time scales are shown in the single panel since it is 

easier to visualize the trend. A similar approach was considered for ETDI, SMDI, and ADI. 

SPI-1 

SPI-3 

SPI-6 SPI-9 

SPEI-1 

SRI-1 

SRI-3 

SRI-6 SRI-9 SRI-12 

ETDI SMDI ADI 

SPI-12 

1972  1976  1980  1984  1988  1992  1996  2000  2004  2008  

-6

-4

-2

0

2

4

6

1972  1976  1980  1984  1988  1992  1996  2000  2004  2008  

-6

-4

-2

0

2

4

6

1972  1976  1980  1984  1988  1992  1996  2000  2004  2008  

-6

-4

-2

0

2

4

6

1972  1976  1980  1984  1988  1992  1996  2000  2004  2008  

-6

-4

-2

0

2

4

6

1972  1976  1980  1984  1988  1992  1996  2000  2004  2008  

-6

-4

-2

0

2

4

6

1972  1976  1980  1984  1988  1992  1996  2000  2004  2008  

-6

-4

-2

0

2

4

6

1972  1976  1980  1984  1988  1992  1996  2000  2004  2008  

-6

-4

-2

0

2

4

6

SPEI-6 SPEI-9 SPEI-12 

1972  1976  1980  1984  1988  1992  1996  2000  2004  2008  

-6

-4

-2

0

2

4

6

1972  1976  1980  1984  1988  1992  1996  2000  2004  2008  

-6

-4

-2

0

2

4

6

1972  1976  1980  1984  1988  1992  1996  2000  2004  2008  

-6

-4

-2

0

2

4

6

SPEI-3 

 



44 

 

Figure 3.2b: The time series plots of the drought indices for the Debremarkos station. The plots 

for SPI, SPEI, and SRI at 6-, 9-, and 12-month time scales are shown in the single panel since 

it is easier to visualize the trend. Similar approach was considered for ETDI, SMDI, and ADI. 
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3.5.2 Correlation between drought indices  

The Pearson's correlation coefficient matrix was developed for the six drought indices for each 

meteorological station. The results obtained at the Gondar (Table 3.3a) and Debremarkos 

(Table 3.3b) stations were presented as an example. A correlation matrix of 18 rows by 18 

columns was created to investigate the relationship between the drought indices (Table 3.3). 

SPI-3 showed a relatively high correlation coefficient with a majority of other indices, except 

SPI among itself at other aggregation periods. For example, SPI-6 correlates better with SPI-9 

(0.89) and SPI-12 (0.83) than SPI-3 does with SPI-9 (0.70) and SPI-12 (0.65). However, SPI-

3 correlated better with SPI-1 (0.62) than SPI-6 (0.51), SPI-9 (0.48), and SPI-12 (0.41). Table 

3.3a and 3.3b show that the correlation coefficients between SPI or SPEI, and SRI consistently 

increase as the aggregation period for SPI and SPEI increases. For example, SPI-12 and SPEI-

12 correlated better with the SRI than the SPI and SPEI at shorter aggregation periods. In 

general, SRI consistently correlates better with other indices the longer these indices have been 

aggregated. The highest correlation for SRI was reached when both indices are aggregated over 

12 months (correlation of about 0.4). Compared to correlations between other pairs of indices, 

correlations involving SRI are generally low. SRI is based on river flow, which is a result of 

the catchment processes, with a certain lag time. This might be one of the possible reasons why 

the SRI is not correlated well with other, meteorological station-based, drought indices. Table 

3.3a, and 3.3b, first five columns, show that there is a strong correlation between drought 

indices of the same aggregation period. SMDI and ETDI (agricultural drought indices based 

on monthly data) have a higher correlation with SPI-3 and SPEI-3 (meteorological drought 

indices based on 3-month aggregated data) than with the other indices or aggregate periods. 

This indicates that in the UBN Basin the meteorological drought indices at 3-month aggregate 

period explain best the agricultural drought indices and perhaps the occurrence of an 

agricultural drought. Similar results were obtained for the other meteorological stations (can 

be referred from the supplementary document). 
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Table 3.3a: The Pearson’s correlation coefficient matrix computed between the paired values 

of the drought indices at multiple time scales for the Gondar station. The SRI used in this case 

is being calculated using flow records at the Bahirdar station. 

 

Table 3.3b: The Pearson’s correlation coefficient matrix computed between the paired values 

of the drought indices at multiple time scales for the Debremarkos station. The SRI used in this 

case is being calculated using flow records at the Kessie station. 

 

The statistical significance of the correlation coefficient values of each station was tested using 

t-test distribution. The result of the test is shown in Table 3.4 for each drought index. The result 

shows that for the majority of the drought indices the p-values are less than or equal to 0.01 

(shown in green in Table 3.4), meaning they are statistically significant at 99% or higher 

SPI-1 1.00

SPI-3 0.65 1.00

SPI-6 0.53 0.77 1.00

SPI-9 0.48 0.73 0.77 1.00

SPI-12 0.45 0.68 0.72 0.96 1.00

SPEI-1 0.85 0.55 0.36 0.28 0.26 1.00

SPEI-3 0.49 0.89 0.61 0.48 0.45 0.63 1.00

SPEI-6 0.35 0.59 0.93 0.72 0.65 0.42 0.69 1.00

SPEI-9 0.32 0.53 0.75 0.94 0.83 0.33 0.55 0.79 1.00

SPEI-12 0.30 0.51 0.69 0.83 0.94 0.31 0.52 0.72 0.89 1.00

SRI-1 0.20 0.28 0.33 0.40 0.41 0.16 0.23 0.16 0.21 0.25 1.00

SRI-3 0.22 0.31 0.31 0.44 0.48 0.11 0.26 0.25 0.26 0.30 0.81 1.00

SRI-6 0.20 0.24 0.37 0.49 0.52 0.07 0.19 0.31 0.31 0.33 0.70 0.88 1.00

SRI-9 0.24 0.32 0.43 0.51 0.53 0.08 0.16 0.26 0.33 0.34 0.63 0.80 0.93 1.00

SRI-12 0.21 0.31 0.41 0.52 0.55 0.04 0.15 0.24 0.30 0.36 0.57 0.74 0.87 0.95 1.00

ETDI 0.53 0.67 0.59 0.43 0.45 0.59 0.49 0.34 0.28 0.28 0.23 0.21 0.22 0.28 0.27 1.00

SMDI 0.44 0.65 0.45 0.38 0.29 0.43 0.55 0.37 0.32 0.32 0.25 0.28 0.21 0.18 0.17 0.68 1.00

ADI 0.75 0.59 0.40 0.32 0.30 0.78 0.59 0.39 0.38 0.36 0.33 0.23 0.15 0.12 0.13 0.68 0.63 1.00

SPI-1 1.00

SPI-3 0.55 1.00

SPI-6 0.35 0.65 1.00

SPI-9 0.27 0.48 0.74 1.00

SPI-12 0.20 0.39 0.61 0.81 1.00

SPEI-1 0.87 0.54 0.33 0.26 0.20 1.00

SPEI-3 0.48 0.89 0.59 0.43 0.34 0.59 1.00

SPEI-6 0.30 0.58 0.91 0.66 0.53 0.36 0.66 1.00

SPEI-9 0.24 0.44 0.69 0.92 0.73 0.29 0.49 0.74 1.00

SPEI-12 0.18 0.35 0.56 0.75 0.91 0.22 0.39 0.60 0.81 1.00

SRI-1 0.10 0.18 0.17 0.14 0.16 0.07 0.15 0.15 0.08 0.07 1.00

SRI-3 0.10 0.19 0.23 0.17 0.18 0.05 0.14 0.20 0.12 0.08 0.86 1.00

SRI-6 0.08 0.20 0.28 0.26 0.23 0.05 0.13 0.21 0.20 0.13 0.63 0.83 1.00

SRI-9 0.06 0.19 0.29 0.32 0.30 0.05 0.14 0.22 0.24 0.21 0.49 0.67 0.87 1.00

SRI-12 0.05 0.16 0.27 0.32 0.36 0.03 0.12 0.21 0.23 0.24 0.48 0.56 0.71 0.84 1.00

ETDI 0.27 0.51 0.39 0.25 0.22 0.29 0.49 0.37 0.27 0.26 0.01 0.00 0.03 0.04 0.09 1.00

SMDI 0.24 0.42 0.35 0.30 0.28 0.23 0.37 0.28 0.23 0.22 0.14 0.13 0.12 0.13 0.08 0.38 1.00

ADI 0.07 0.10 0.08 0.06 0.03 0.09 0.06 0.05 0.01 0.03 0.16 0.14 0.09 0.02 0.08 0.04 0.00 1.00
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confident level.  Few other correlation values (e.g. SPEI-1 and SPEI-12 with SRI at different 

aggregation periods, and ADI with all SPEIs) are significant at 90% or higher confidence level 

(i.e. p ≤ 0.1) (shown in yellow in Table 3.4). However, the correlation values of ADI with the 

majority of the other drought indices (e.g. with SPI-6, SRI-9, ETDI, and SMDI) are statistical 

insignificant at 90% confident level (i.e. p > 0.10), and needs further investigation for future 

studies. 

Table 3.4: The summary of the significant test for the selected 16 stations. 

 

3.5.3 Comparison of drought indices based on drought characteristics 

The comparison of the drought indices based on drought characteristics such as percentage of 

drought months, maximum drought intensity, and drought duration was analyzed and used as 

additional comparison criteria for each index. The results obtained at the selected 16 stations 

that are representing the majority of the study area were discussed in this section. The 

percentage of the drought months represents the proportion of the total number of drought 

months (including mild, moderate, severe and extreme droughts) within the study periods 

(1970-2010) of each station. The resulting graph is shown in Figure 3.3 and each spider web 

represents the value of each drought index across the selected stations. In general, the 

percentages of the drought months of the hydrological (SRI), agricultural (ETDI and SMDI) 

and ADI depict relatively larger values as compared to the meteorological drought indices (i.e. 

SPI, and SPEI) in majority of the stations for 1-month, 3-month, 6-month, and 12-month 

temporal scales. However, meteorological indices showed a smaller improvement (increase) of 

the percentage of drought months as the time scale increases in majority of the stations. The 

SPI-1&3 SPI-6 SPI-9&12 SPEI-1 SPEI-3,6&9 SPEI-12 SRI-1&3 SRI-6 SRI-9 SRI-12 ETDI SMDI

SPI-3

SPI-6

SPI-9

SPI-12

SPEI-1

SPEI-3

SPEI-6

SPEI-9

SPEI-12

SRI-1

SRI-3

SRI-6

SRI-9

SRI-12

ETDI

SMDI

ADI

p < 0.01 p < 0.1 p > 0.1
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comparative analysis of the percentage of the drought months was extended separately for each 

drought severity categories such as mild, moderate, severe, and extreme drought. Only the 

result obtained for severe, and extreme drought categories are shown in Figure 3.4. 

Interestingly, a similar result (as above) was observed only for mild and moderate drought 

conditions (not shown). However, an opposite result that shows relatively a larger percentage 

of drought months was observed by meteorological drought indices (Figure 3.4) for severe and 

extreme drought conditions as compared to other drought indices in a majority of the stations. 

This perhaps shows meteorological drought indices are influenced by the variability of the 

amount of rainfall during a drought event. ADI also showed large percentage of the drought 

months, which may indicate the dominance of rainfall in the ADI index compared to the other 

two input variables (evapotranspiration and soil moisture). 
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Figure 3.3. Comparison of SPI, SPEI, and SRI with ETDI, SMDI, and ADI at 1-month (a), 3-

month (b), 6-month (c), 9-month (d), and 12-month (e) time scales based on percentage of 

drought months at the locations of the selected meteorological stations. A line is used to 

connect values of the same variable at distinct locations to increase the visibility of the points 

in this figure. 
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Figure 3.4a. Percentage of severe drought months observed for the drought indices within the 

study period (1970-2010) for the selected meteorological stations. 

 

Figure 3.4b. Percentage of extreme drought months observed for the drought indices within 

the study period (1970-2010) for the selected meteorological stations. 

The maximum duration of drought was also considered as another comparison criteria of 

drought indices for all time scales (Figure 3.5). The number of consecutive drought months 

that shows drought severity values of -1 and less (representing moderate, severe, and extreme) 

were counted for the study period. Evaluating drought indices based on the maximum duration 

of drought helps to evaluate their performance on indicating the persistence of historic drought 

events. In general, the result shows an increase in the maximum drought duration as the time 

scale increases for SPI, SPEI, and SRI in the majority of the stations. This shows persistent 
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drought is indicated at longer time scales (e.g. 12-month) than shorter time scales (e.g. 1-

month). ETDI, SMDI and ADI show less persistent drought in majority of the stations and the 

result corresponds with the persistence indicated by SPI and SPEI at lower time scales (1-, and 

3-month). This shows the comparability of the agricultural drought with the meteorological 

drought indices at lower temporal scales. The comparison of maximum duration of drought of 

SPI, SPEI, and SRI at the same time scales (e.g. 3-month) shows the performance of SRI on 

indicated relatively a large drought duration month than the SPI and SPEI. The time series of 

SRI is derived based on river flow (resulted from the catchment process) so that SRI is less 

affected by the extreme wet event in between a particular historic drought years. Interestingly, 

SPEI also showed relatively larger drought duration months as compared to SPI at the same 

time scale. The possible reason might be the use of additional input variables (e.g. potential 

evaporation, in the case of SPEI) could help to show the persistence of drought. The maximum 

duration of drought indicated by ETDI, SMDI, and ADI is relatively less in the majority of the 

stations. In general, the SPI, SPEI, and SRI at different aggregate periods showed a maximum 

consecutive drought duration (> 12-months) in a majority of the stations that perhaps reinforces 

the idea of comparing drought indices at a higher time scale (> 12-months) in future studies.  

A similar approach/method that was followed in this study was also tested in other watersheds 

to compare drought indices (Jain et al. 2015; Naumann et al. 2014). In general, the results of 

these studies confirmed the capability of the method to identify the drought indices that can 

better characterize the drought condition in a specific location.     
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Figure 3.5. The maximum duration of consecutive drought indicated by SPI (a), SPEI (b), SRI 

(c) and other indices (d) such as ETDI, SMDI and ADI. Five temporal scales (i.e, 1-, 3-, 6-, 9-

, and 12-months) were considered for SPI, SPEI, and SRI. 
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3.5.4 Comparison of drought indices through characterizing the historic 

drought events 

Comparison of the drought indices was carried out at three river gauging stations: Abbay at 

Bahirdar, Kessie, and Ethiopia-Sudan border (their locations are shown in Figure 3.1). These 

stations represent the upper, middle, and lower parts of the UBN Basin, respectively. The time 

series values of the SRI-3 were calculated using the river flow data measured at these three 

gauging stations, whereas the areal average values were considered for the SPI-3, SPEI-3, 

ETDI, SMDI, and ADI. The results obtained for the upper part of the basin are presented for 

further discussion, and the time series of the drought indices for the middle and lower parts of 

the basin are presented in Appendix B. Table 3.5 shows for the historic drought events, the 

characteristics resulting from each of the six indices. Based on the severity of the drought, the 

majority of the drought indices indicated 2003-2004 and 1983-1984 as the most severe drought 

years in the basin, except the SPEI, which showed 1989-1994 as the most severe drought. The 

result further reveals that persistent droughts were observed in 2003-2004 and 1983-1984. 

Based on the mean (M) and maximum (Mmax) intensities, the SRI indicated the severity of 

2003-2004 and 1984-1985 to have been higher than the other drought indices, except the SPEI 

(Mmax =-2.63). The SRI indicated the persistence of the 1983-1984 drought, which extended 

beyond the start and end year as provided by EM-DAT. The SPI ranks 1973-1974 as the most 

severe drought year based on mean intensity (M = -1.21) and maximum intensity (Mmax = -

2.57). However, the drought durations of the SPI and SPEI for the same year are relatively 

small, resulting most likely from the earlier start of the drought in 1972. The onset month of 

each drought year is used as the other comparison criteria, and the result is shown in Table 3.5. 

According to EM-DAT, the 1973-1978 drought started in December 1973 and lasted until 

1978. The ETDI showed the closest onset (November 1973) for this year. The SMDI showed 

a slightly earlier onset (July 1973) of the 1973-1978 drought whereas the SPI and SPEI 

(January 1973) and SRI (March 1973) indicated an early start of this drought. The ADI showed 

the latest onset (July 1976) of this particular drought event. According to EM-DAT, the 1983-

1984 drought started in May 1983, but all indices except the ETDI and ADI showed an early 

start (January 1983) of this drought event. The ETDI and ADI show a late start (December 

1983 and September 1983, respectively) of the 1983-1984 drought. The 1989-1994 drought 

started in October 1989; the SPI and SPEI showed an August 1989 start, the SRI showed a 

December 1989, and the ETDI and SMDI indicated drought earlier than all the other indices. 

The drought start month indicated by ADI is December 1993. While this doesn’t correspond 
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with EM-DAT, it corresponds to the historic drought 1993-1994 reported in other studies (see 

section 2.2.1). Note that it is likely that the 1993-1994 drought has been included in the EM-

DAT database as part of the prolonged drought period from 1989 to 1994. For 2003-2004, there 

is no reference onset from EM-DAT to compare with the six drought indices. However, all the 

indices indicated the onset of the drought in January and February 2003, except the SRI, which 

indicated the onset of drought in July 2003. Overall, the meteorological drought indices (SPI 

and SPEI) indicate the start date four or more months before the reported start month, whereas 

agricultural drought indices indicate the start date three or more months after the reported 

starting date of a historic drought. The aggregate drought index (ADI) most often lagged by 

some months. It can be noted from this result that no single drought index consistently indicates 

the exact onset of the drought. Similar results are obtained for the middle, and lower parts of 

the UBN Basin. 
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Table 3.5: Characteristics of the historic drought events as identified by the six drought indices 

for the Upper Blue Nile basin upstream of Bahirdar. Note that if the index indicated the onset 

to be before January of the reported calendar year of the historic drought, this is presented in 

the table with “before” and if, according to the index, a drought extended beyond December 

of the reported calendar year, this is presented with “after”. The drought duration in these 

cases is based on a start in January and an end in December of the reported drought year.

 

Figure 3.6 compares the time series patterns of the six drought indices for the historic drought 

years 1973-1978, 1983-1984, 1989-1994, and 2003-2004. In the 1973-1978 drought (Figure 

3.6a), the majority of the drought indices showed the occurrence of moderate to severe drought 

condition in several months between 1973 and 1975 (index value < -1.0 and lower ) whereas 

mild drought and wet conditions were observed from 1976 to 1978 except for the ADI, which 

showed severe drought for ten months. Relatively persistent drought was indicated by the SRI 

and ETDI in 1973-1974 whereas other indices show a frequent jump between drought and non-

drought conditions. In this study, persistent drought is defined if consecutive months (> 10 

Drought index SPI-3 SPEI-3 SRI-3 ETDI SMDI ADI

Starting date before/1973 before/1973 03/1973 11/1973 07/1973 07/1976

Ending date 04/1973 04/1973 06/1974 06/1974 05/1974 04/1977

Mean Intensity, M -1.21 -1.23 -0.75 -0.48 -0.42 -0.94

Maximum intensity, Mmax -2.57 -2.33 -1.36 -1.47 -1.19 -2.43

Duration, D  (months) 4 4 16 8 11 10

Severity, S -4.84 -4.91 -11.94 -3.85 -4.57 -9.38

Starting date before/1983 before/1983 before/1983 12/1983 before/1983 09/1983

Ending date 05/1984 07/1983 after/1984 after/1984 after/1984 04/1984

Mean Intensity, M -0.99 -0.86 -1.36 -0.66 -0.53 -0.46

Maximum intensity, Mmax -2.45 -1.95 -2.53 -1.53 -1.78 -1.98

Duration, D  (months) 17 7 24 13 24 8

Severity, S -16.82 -6.02 -32.59 -8.62 -12.79 -3.68

Starting date 06/1989 07/1989 12/1989 04/1990 02/1990 12/1993

Ending date 08/1990 08/1990 12/1990 02/1991 01/1991 after/1994

Mean Intensity, M -0.69 -0.65 -0.70 -0.85 -0.46 -0.57

Maximum intensity, Mmax -2.49 -2.09 -1.38 -1.92 -1.18 -1.57

Duration, D  (months) 15 14 13 9 11 13

Severity, S -10.30 -9.13 -9.06 -7.62 -5.08 -7.38

Starting date before/2003 02/2004 07/2004 before/2003 before/2003 before/2003

Ending date 10/2004 12/2004 12/2004 after/2004 after/2004 12/2003

Mean Intensity, M -0.59 -0.71 -1.61 -0.51 -0.45 -0.92

Maximum intensity, Mmax -1.95 -2.63 -2.13 -1.23 -1.36 -2.27

Duration, D  (months) 22 11 6 24 24 12

Severity, S -12.95 -7.79 -9.64 -12.26 -10.85 -11.09

1973-1978 drought (Onset in December according to EM-DAT)

1983-1984 drought (Onset in May according to EM-DAT)

1989-1994 drought (Onset in October according to EM-DAT)

2003-2004 drought (Onset not defined according to EM-DAT)
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months) showed below average values (zero). The majority of drought indices indicated mild 

to severe drought condition for several months (> 6) in the year 1983/1984 (Figure 3.6b). The 

SRI showed the severity and persistence of the 1983-1984 drought and indicated drought 

conditions throughout 1983/1984. The SPI also showed mild to severe drought conditions for 

several months except for non-drought conditions in mid-1984. The 1989-1994 drought is not 

well defined except for 1990, 1991, and 1994; the majority of the indices showed the 

occurrence of moderate to severe drought condition during these years. Like the 1983/1984 

drought, the majority of the drought indices showed mild to extreme in 2003-2004, although 

the SRI, SPEI and ADI showed non-drought conditions for some months. The SRI showed 

severe to extreme drought conditions whereas the SMDI showed mild to moderate drought 

conditions for several months in 1983-1984. The SPI-3, SPEI-3, ETDI, and ADI showed out 

of drought conditions for the period of 4 to 10 months. However, the SPI-3, SMDI, and ETDI 

indicated the drought conditions in the year 2003-2004, whereas the SRI showed an opposite 

pattern than other indices. In general, the SPI and SPEI showed similar patterns in most cases 

while the ADI showed a frequent jump between drought and non-drought conditions. 

Moreover, ADI showed relatively higher positive and negative values perhaps because of a 

direct consideration of the eigenvector as weights/coefficients in combining the input variables. 

Other approaches, such as the percentage of contribution could be considered for future studies. 

The SRI showed the persistence of the drought and non-drought conditions for several months 

possibly because of less fluctuation of the river flow with time as compared to the rainfall.  
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Figure 3.6: The time series plot of the six drought indices for 1973/1978 (a), 1983/1984 (b), 

1989/1994 (c), and 2003/2004 (d) historic drought years in the UBN Basin. 

3.6 Conclusion   

In this study, we compared six drought indices—SPI and SPEI (meteorological indices), ETDI 

and SMDI (agricultural indices), SRI (hydrological index), and ADI (aggregate index)—to 

investigate how well characteristics of historic drought events in the Upper Blue Nile basin are 

identified by these indicators. Observed data were used for the precipitation, temperature, and 

streamflow inputs. Soil moisture, and actual evapotranspiration data were estimated using the 

SWAT hydrological model.  

In general, meteorological drought indices SPI-3 and SPEI-3 show a higher correlation with 

the agricultural drought indices SMDI and ETDI compared to the hydrological drought index 

(SRI) whereas the hydrological drought index (SRI) correlates better with meteorological 

drought indices at a 12-month aggregate period (SPI-12 and SPEI-12). This indicates that there 

exists some interconnections between drought indices in the sense that one drought index can 

explain more than one specific drought category to a certain degree. Moreover, each index has 

the potential to characterize and explain at least one recorded (historical) drought condition. It 

seems that a combination of more than one drought index, appropriately selected for the 

specific region, is usually required for drought monitoring.   
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When comparing the drought onset dates indicated by the six indices for the historical 

(recorded) droughts, the meteorological drought indices (SPI and SPEI) showed early onsets 

compared to the other drought indices, except for the 2003-2004 drought where SPEI showed 

a late onset. The agricultural (ETDI, SMDI, and ADI) and hydrological (SRI) drought indices 

showed late onsets, particularly the ADI, which lagged by several months for all events except 

2003-2004. When the onset dates indicated by the six drought indices are compared with the 

EM-DAT, meteorological drought indices (SPI-3, and SPEI-3) showed earlier onsets except 

for the 2003-2004 drought where the EM-DAT onset was unavailable. Similarly, the 

agricultural (ETDI and SMDI) and hydrological (SRI-3) drought indices showed earlier onsets 

of drought for two drought events and a late onset for one drought event. In contrast, ADI 

showed late onsets for two drought events and an early onset for 1983-1984. The comparison 

showed that none of the six drought indices could individually identify the onset of the four 

selected historic events. They could identify all events if all six indices (including different 

aggregation periods) were combined. Note that the ADI index tested in this study considers 

only three input variables at a 1-month aggregate period. The years 2003/2004 and 1983/1984 

were indicated as the most severe drought years in the basin. Effective drought monitoring and 

planning is essential to mitigate drought impacts in the basin. For future drought monitoring 

for the Upper Blue Nile basin, developing a method that makes optimal use of multiple drought 

indices is recommended. 

 



 

 

4. Developing a combined drought index and prediction model to 

monitor drought-related crop yield reduction3   

 

4.1 Introduction 

The main objective of this chapter is to develop a combined drought index (CDI) and prediction 

model of crop yield anomalies in the Upper Blue Nile (UBN) Basin. Developing a combined 

drought index is important because it would effectively incorporate the available and useful 

information from individual drought indices (Zargar et al. 2011; Niemeyer, 2008; Sivakumar 

et al. 2011; Heim, 2002). The individual drought indices have a limitation on providing a 

comprehensive characterization of drought events and they are region specific and are applied 

for specific objectives. Several attempts have been made recently to combine several drought 

indices into a single comprehensive aggregate index including the US Drought Monitor 

(USDM) (Svoboda et al. 2002) and the Vegetation Drought Response Index (VegDRI) (Brown 

et al. 2008). These two indices aggregate, or combine, several climatic input variables, mainly 

the Standardized Precipitation Index (SPI), Palmer Drought Severity Index (PDSI), and NDVI-

based indicators: Percent Average Seasonal Greenness (PASG) and Start of the Season 

Anomaly (SOSA). Karamouz et al. (2009) developed a hybrid drought index (HDI) by 

combining SPI, PDSI and surface water supply index (SWSI). These researches have shown 

the usefulness of combining drought indices or several input variables representing several 

aspects of the environment.  

Other researchers have worked on developing CDIs before, but often the combination of 

individual drought indices is based on subjective or expert-based approaches. Balint et al. 

(2013), for example, developed such combined drought index for Kenya in the Horn of Africa. 

A large weight (50%) was assigned for rainfall-based drought index, in this case PDI. The 

remaining 50% of the weight was assigned equally for the other two indices, TDI and VDI. 

Sepulcre et al. (2012) proposed a CDI that combines the SPI, anomalies of soil moisture, and 

anomalies of the fraction of Absorbed Photo synthetically Active Radiation (fAPAR). The 

                                                           
3 Based on: Bayissa, Y.A, Tadesse T., Mark D. Svoboda, Brian D. Wardlow, Calvin Poulsen, 

John Swigart and S.J. van Andel 2018. Developing and evaluating a satellite based combined 

drought index to monitor historic drought: a case study for Ethiopia. Under review in 

GIScience & Remote Sensing.  
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combined drought index gave a synthetic and synoptic overview assuming a general 

progression of drought, according to three classifications, from "watch" when a relevant 

precipitation shortage is observed, to "warning" when this precipitation shortage translated into 

a soil moisture deficit, and finally "alert" when these two conditions are accompanied by 

unfavorable vegetation vigor. One of the limitations of this study was that it assumed uniform 

phenology/plant growing period for the whole of Europe. Vyas et al. (2015) developed an Earth 

Observation-based CDI for which a procedure was followed to assign the weights, which 

appears to have better objectivity compared to the Balint et al. (2013) approach. However, this 

procedure is not adaptable for more than two drought indices.   

In this study, two CDI methods are implemented that combine individual indices following an 

objective procedure. The first method uses a Principal Component Analysis (PCA) (Bordi et 

al. 2006; Keyantash and Dracup, 2004), and the second method uses a random search 

optimisation to maximize the correlation between the resulting CDI and drought impact: in this 

case crop-yield anomalies.  

Both methods use the same input variables. To the best of our knowledge, this second type of 

CDI, defined here as Impact-based CDI, has not been presented in literature before except for 

the work by Balint et al. (2013). Unlike the procedure adopted by Balint et al. (2013), the 

impact-based CDI developed in this study considers several input variables, and uses an 

iterative procedure of assigning the optimal weights. The resulting impact-based CDI is used 

as input to a regression model of crop yield anomalies in the Upper Blue Nile Basin.  

Developing the regression model between the drought indices and the crop yield anomalies is 

the second objective addressed in this study. The regression model postulates the impacts of 

drought on the crop yield, and involves the potential use of the impact-based drought index on 

assessing drought impact on agriculture, mainly on crop yield. Developing such a model is 

important especially in an area where agriculture has the key role in the economy. Four 

commonly grown cereal crops were considered in developing the regression model for the 

sixteen administrative zones across the UBN Basin.     

4.2 Data 

Crop yield data were obtained from the Central Statistical Agency (CSA) of Ethiopia. The data 

are organized in administrative zones as shown in Figure 4.1. The Upper Blue Nile basin is 

classified into sixteen administrative zones excluding Lake Tana. The areas of the zones range 
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from 3453 km2 (North Wello) to 26206 km2 (Metekel).  For each administrative zone, the CSA 

uses standard statistical data collection and analysis to generate the estimate of the crop yield 

(CSA, 2014). The crop yield data that corresponds to each administrative zone are calculated 

by taking the ratio of the crop production (Quintal) to the total cultivable land (hectare) of each 

crop.  

In this study, four cereal crops most commonly cultivated in the study area are considered. 

These cereal crops are Teff, Barley, Sorghum, and Maize. These four cereals are the major 

food crops and principal stable crops in terms of area planted and volume of production (CSA, 

2014; Tadesse et al. 2015). The annual crop yield data that have been collected for each 

administrative zone represents the main rainy season (Meher season) in the basin. The crop 

yield in this season accounts for 90-95% of the annual crop production in the basin 

(FEWSNET, 2003) and thus kiremt growing season is the focus in this chapter. The main crop 

growing season (Meher or kiremt) is from June to October (Diro et al. 2008; Gissila et al. 2004) 

and fifteen years of historic records of the yield data (1996-2008) were considered. However, 

the data for 2001, 2002 and 2005 were missing and not considered in this study. 

 

Figure 4.1: The distribution of administrative zones and meteorological stations used for the 

CDI development. The name labels in the figure refer to the administrative zones. 
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4.3 Methods 

Figure 4.2 shows the summary of the methodology followed in this chapter, aimed at 

developing the combined drought index and the crop yield prediction model. The principal 

component analysis (PCA) and the random search of the optimal weights were used. The 

combined drought index was developed based on several other drought indices (SPI, SPEI, 

SMDI, ETDI, and SRI) as inputs. The details of the methodology followed in this chapter is 

described in detail in the next subsections.   

 

Figure 4.2: Summary flow chart showing the steps followed in this chapter.  

4.3.1 Detrending the crop yield data  

According to FAO, (1999), factors affecting agricultural yields can be categorized into three 

major groups: (i) technology and management trends such as mechanization, crop varieties, 

advance in the water application technology, (ii) intermittent factors such as change in policy 

that affect management decisions, and (iii) climate variability in space and time (Figure 4.3).  

The majority of the drought indices considered in this study are developed using the climate 

data as the main input. The effects of climate on the drought assessment is significant, hence, 

the effects of climate on the crop yield production is more significant than the other factors in 

evaluation of the drought indices. However, it is often difficult to separate the effects of climate 

from other factors. Detrending is often used to remove the trend resulting from factors other 
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than climate by subtracting the estimated trend value from the actual yield data values for each 

given year (FAO, 1999, Tadesse et al. 2015). It is also assumed that removing a trend from the 

data enables researchers to focus the analysis on the yearly variations in the crop yield data 

(Tadesse et al. 2015). Hence, the crop yield data were first detrended before further use to 

correlate with the combined drought index.  

Detrending of the crops yield time series data for the sixteen administrative zones in the study 

area was carried out to eliminate the upward trend assumed to be resulting from factors other 

than climate (in this, we followed Tadesse et al. 2015; Lu et al. 2017). A linear regression 

equation (top right corner of Fig 4.4) that considers the entire crop yield data series was used 

to detrend the annual crop yield data. For detrending, we used the detrend function in Matlab 

(MathWorks, 2009). 

Detrending was carried out for all administrative zones in the study area and for the four cereal 

crops. An example of detrending the Teff crop yield data for North Gonder Zone is shown in 

Figure 4.4.  

 

Figure 4.3: Factors affecting agricultural yields: technology and management trends (heavy 

red line), innovation, policy, extreme factors, and weather (adapted from FAO, 1999). 
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Figure 4.4: An example of the detrended North Gondar zone historic data (the crop yield 

average). The positive values (above the trend line) show more productive years and the 

negative values show lower production as compared to the expected mean. 

4.3.2 Correlation analysis of crop yield with drought index 

The correlation coefficient matrix between the drought indices and detrended crop yield 

anomalies was developed to get insight in the agreement between these two parameters at the 

corresponding locations of each meteorological station. The time series of drought indices (SPI, 

SPEI, ETDI, SMDI, and SRI at 3-month aggregate period) and crop yield anomalies (Sorghum, 

Barley, Maize, and Teff crops) during the crop-growing season were considered for the period 

of 1996 to 2008. For the crop yield data, we used an aggregated value for each administrative 

zone and hence the stations within each administrative zone were used to generate the 

correlation coefficient matrix.  

4.3.3 Qualitative analysis of crop yield and drought index values  

The qualitative approach was adapted to visually compare the existence of consistency between 

drought indices values and the detrended crop yield anomalies. Radar and bar-chart plots were 

produced for the drought indices and the crop yield anomalies respectively.   
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4.3.4 Principal Component Analysis (PCA) based CDI   

The principal component analysis (PCA) is one of the techniques used in this study to develop 

the combined drought index. In the literature (Barua, 2010; Keyantash and Dracup, 2004), the 

PCA analysis is most often based on the input data to generate the correlation coefficients 

matrix. It is later used to develop the directional vector that is used to combine the input 

parameters. In this study, the time series values of the drought indices that include the SPI, 

SPEI, ETDI, SMDI, and SRI were used to develop the combined drought index. The PCA 

combines the indices values through calculating the correlation coefficient matrix between each 

index followed by computing the Eigenvalues and the Eigenvector. The eigenvector, called the 

direction vector, is used to convert the indices values into a single index (the combined drought 

index).   

For example, (n x m) is an observational data matrix (H), where n is the number of observations 

and m is the number of variables. Each variable hj in the jth column of H has a vector of n (n x 

1) observational data, with j = 1, ..., m. Twelve matrices of H were used separately for PCA, 

one for each month. After an iterative process of PCA, the matrix H is replaced by the (n x m) 

matrix of Q, containing the transformed variables  𝑞𝑗 (𝑞𝑗 = 𝜙𝑗(ℎ𝑗). 

Each month’s transformed variable matrix is standardised in such a way that the mean is 

subtracted from each value and the result is divided by the standard deviation. A square (p x p, 

where p is the number of variables), symmetric, correlation matrix R is used to describe the 

relationship between the original data. The correlation was computed among data representing 

the same month. There is a separate R for each month to describe the correlations between 

variables. The eigenvalues and then the eigenvector were derived through PCA that was used 

to establish the relationship between the PCs and original data. 

                             Z = XE                                                                                                     4.1 

where Z is the n × p matrix of the principal components  

           X is the n × p matrix of standardized observational data 

           E is the p × p matrix of eigenvectors 

The CDI is the first principal component (PC1), normalized by its standard deviation (this is 

done to avoid a higher jump in the time series values of CDI posed by the month that possesses 

a higher degree of variability).   
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                            CDIi,k=
Zi,1,k

σ
                                                                                         4.2 

where CDIi,k is the CDI value for month k year i, 𝑍𝑖,1,𝑘 is the first principal component during 

year i, for month k, and 𝜎 is the sample standard deviation of 𝑍𝑖,1,𝑘 over all year i.  

The first PC explains a large fraction of the variance, and all PCs are orthogonal to each other.  

Threshold determination of CDI: The CDI thresholds were based on the SPI drought category 

(Table 4.1). The SPI dryness thresholds are the Gaussian variants of -2, -1.5, -1 and 1 standard 

deviations, which correspond to 2.3th, 6.7th, 16.0th and 84th percentiles in CDI cumulative 

distributions.  

Table 4.1: CDI drought category classification based on the corresponding percentile ranking. 

Standardized values 

Corresponding 

percentiles Drought category 

above 0.92 100 Wet 

-0.95 to 0.92 84 Near normal 

-1.40 to -0.96 16 Moderate drought 

-1.69 to -1.41 6.7 Severe drought 

-1.70 or less 2.3 Extreme drought 

 

4.3.5 Impact-based CDI  

The method followed in this section is aimed to develop the impact-based CDI. The same input 

variables are considered as in the PCA based approach described in section 4.3.4. However, a 

different technique is implemented here to quantify the relative weights of each input variable. 

This weight shows the contributions of each variable in developing CDI. The optimal weight 

of each input variable is quantified through a random search procedure. This procedure uses a 

random combination of weights (ranging from 0.1 to 0.9) and does more than 60,000 iterations 

to identify the combination of weights that gives the maximum correlation coefficient with the 

crop yield anomaly. The combination of weights that gave the highest correlation coefficient 

between the CDI and the crop yield anomaly was finally selected as the best set of weights for 

the CDI. We find that such an optimization approach avoids the inherent challenge of 

subjectivity observed in other CDI research (Svoboda et al. 2002; Balint et al. 2013). The 

presented algorithm was implemented in MATLAB. 

Equation 4.3 shows the general equation used to compute the time series values of CDI. Five 

drought indices (SPI, SPEI, SMDI, ETDI and SRI) were combined and their relative 
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contribution depends on the magnitude of weight. The higher weight assigned for the particular 

input variable shows its higher influence on the CDI.  

CDIi,m= wSPI×SPIi,m-n + wSPEI×SPEIi,m-n+ wSMDI×SMDIi,m-n+ wETDI×ETDIi,m-n+ wSRI×SRIi,m-n       4.3                                                                                                                                                

where wSPI, wSPEI, wSMDI, wETDI, and wSRI are the weights of each index  

4.3.6 Prediction model of crop-yield anomalies 

The combined drought index and the five drought indices values were the basis to develop the 

prediction model with the crop yield anomaly based on linear regression approach. First, the 

multiple linear regression model between the CDI values and the crop yield anomaly was 

developed. Secondly, the prediction model between the five drought indices and the crop yield 

anomalies was also developed. The performance of the two models was compared. 

4.4 Results and discussion 

4.4.1 Correlation analysis of the individual drought indices with crop-yield anomalies  

Correlation analysis was done for each meteorological station location representing the 

administrative zones. Table 4.2 shows the correlation coefficient matrix between the drought 

indices and the detrended crop yield at the station of Debremarkos (East Gojjam). In general, 

the result reveals that there is a good correlation between drought indices and crop yield. All 

crops show a high correlation coefficient with the SPEI index (> 0.4). Unlike Teff and Maize, 

all indices except the SRI performed better for Barley and Sorghum crops. The barley crop 

appears to be highly correlated with the ETDI and SMDI indices. Likewise, the SPEI and SPI 

indices performed relatively well in the majority of the meteorological stations for all crops. It 

can be also observed that the SMDI and ETDI correlated very well with the Sorghum and 

Barley crops in the majority of the meteorological stations with a correlation coefficient 

ranging between 0.6 and 0.8. The Teff crop has a weak correlation with drought indices, 

compared to the other crops (Table 4.2). The possible explanation for the weak correlation of 

Teff could be its drought tolerant characteristics (as compared to the other crops considered in 

this study). The tolerance of the Teff crop to drought is reported by Ketema, (1987). In the 

majority of the stations, the Barley crop correlated better than the others. From this result, it 

can be argued that the type of Barley cultivated in the study area might be drought sensitive. 
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Table 4.2: Correlation coefficients matrix for the drought indices and crop yield anomalies 

(1996-2008). 

  Sorghum Barley Maize Teff 

SPI-3 0.57 0.57 -0.06 0.12 

SPEI-3 0.51 0.60 0.40 0.50 

ETDI 0.53 0.68 0.07 -0.07 

SMDI 0.46 0.66 0.29 -0.05 

SRI-3 0.47 -0.27 0.24 -0.04 

4.4.2 Comparison of drought indices with crop yield anomalies  

In order to visually compare whether there is consistency between all the drought indices and 

detrended crop yield on indicating the historic drought events, the radar and bar chart plots 

were produced for the selected eight stations (their location is shown in Figure 4.1). The radar 

and bar plots produced for the Debremarkos and Gondar stations were presented for further 

discussion (Figures 4.5 and 4.6) and similar plots for the other stations were also annexed 

(Appendix C). The drought indices and the detrended crop yield values were normalized 

between -1 and 1 to compare to each other.  

The visual inspections of the radar and the bar plots showed that one or more than one of the 

drought indices characterized the relationship between drought and crop yield reduction during 

the drought years. The wet and dry years were clearly indicated by most of the drought indices 

and the crop yield anomaly in the majority of the stations. For example, the years 2006, 2007 

and 2008 were marked as the wet years in the basin and hence a narrow spider ring (shows 

positive values of drought indices), and positive crop yield anomaly were observed. Similarly, 

the year 2003 was recorded as one of the drought years in the basin. This year was characterized 

by the wider spider rings and negative crop yield anomaly (Figures 4.5, 4.6 and 4.7). Generally, 

process based drought indices such as the SMDI and ETDI identified the drought 

characteristics that are responsible for yield reduction in the majority of the stations in 

comparison to the SPI and SRI. The SPEI and SPI indices partly reveal and partly conceal the 

existence of reduction of crop yield due to concurring drought in some stations in some 

particular year. For instance, in the West Gojjam zone (Bahirdar station) in the year 2000, the 

observed data indicates there was a reduction of crop yield. While the SPEI indicates the strong 

existence of drought that may reduce yield, the process based SMDI and ETDI concealed this 

information. This indicates that the aggregate use of all indices is helpful to extract maximum 

information pertaining to yield reduction and effective monitoring of drought. 
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Figure 4.5: The radar and bar plots show the minimum drought indices values within the crop 

growing period (June to October) and the anomaly of the crop yield of four crops (bar graph) 

at the Debremarkos station. 
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Figure 4.6: The radar and bar plots show the minimum drought indices values within the crop 

growing period (June to October) and the anomaly of the crop yield of four crops (bar graph) 

at the Gondar station. 

4.4.3 Combined drought index developed using Principal Component Analysis (PCA) 

Principal Component Analysis (PCA) is used as one of the techniques to develop the combined 

drought index in this study. All the drought indices values were first normalized to the scale 

between -1 and 1 in order to maintain consistency in the range of drought category. The PCA 

analysis was carried out using the entire time series of drought indices to develop the time 

series values of the combined drought index (1970-2008). Then the combined drought index 
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values within the cropping period (June to October) are selected to analyse the correlation with 

the crop yield data. 

In general, the albeit values of the weights assigned for each input variable are very close to 

each other. However, the maximum weight was assigned to the SPI (0.50) and the minimum 

was assigned for SRI (0.41). The weights assigned for the other indices are shown in equation 

4.4.  The correlation coefficient matrix between the drought indices and crop yield anomalies 

is shown in Table 4.3. Very close correlation coefficients were obtained for the SPI (0.75), 

ETDI (0.86) and SPEI (0.82) and the minimum coefficient for SRI (0.39) with CDI-1. The 

combined drought index CDI-1 correlated much better with Sorghum (0.68) and Barley (0.65) 

as compared to the other crops (Teff and Maize). 

CDI-1 = 0.501×SPI + 0.44×ETDI + 0.462×SMDI + 0.425×SPEI + 0.403×SRI                            4.4 

Table 4.3: The correlation coefficient matrix of the combined drought index with the other 

indices and the crop anomaly for the second experiment for Debremarkos station. 

  Teff Maize Sorghum Barley CDI-1 

SPI 0.12 -0.06 0.57 0.57 0.75 

SPEI 0.50 0.40 0.51 0.60 0.82 

ETDI -0.07 0.07 0.53 0.68 0.86 

SMDI -0.05 0.29 0.46 0.66 0.79 

SRI -0.04 0.24 0.47 -0.27 0.39 

CDI-1 0.20 0.31 0.68 0.65 1.00 

Figure 4.7 shows the scatter plots between the anomalies of the Barely crop yield with 

individual drought indices and the PCA-based CDI-1. The measure of agreement between the 

drought index and the crop yield anomalies can be assessed as the number of scatter points 

falling in the top-right (both positive) and bottom-left quadrants (both negative). Hence, a 

relatively strong agreement was observed between Barley and the SPEI and SPI, with 80% and 

70% of the scatter points (i.e. 8 and 7 out of 10) falling in both the positive and negative 

quadrants. There is a poor agreement of Barley with SRI, with only 30% of the scatter points 

falling in the both positive and both negative quadrants.  Relative to individual drought indices, 

CDI-1 showed an improvement in terms of showing similar trend with the Barley crop yield 

anomaly except an opposite trend for some of the scatter points (20%). Similar scatter plots 

were produced for other crops (Sorghum, Maize and Teff) and can be referred to in Appendix 

D and Figure 4.8. 
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Figure 4.7: Scatter plots of individual drought indices and CDI-1 versus the Barely crop yield 

anomalies for the Debremarkos station. CDI-1 was computed using the Principal Component 

Analysis (PCA). 

4.4.4 Combined drought index developed using an impact-based optimal CDI relative 

weights 

In this section, the combined drought index was developed by optimizing the relative weights 

for each index to maximize correlation between the CDI and crop yield anomalies. Table 4.4 

shows the resulting weight of each index for the four crops: Teff, Sorghum, Maize, and Barley. 

The result showed that the maximum correlation coefficient was obtained with Barley (0.88). 
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The maximum weight was assigned for ETDI and minimum for SMDI and SRI. The 

coefficients assigned for Sorghum and Barley were the same. Maximum weight was assigned 

for SRI for Maize crop and ETDI for Teff crop.    

Table 4.4: The weights assigned for the drought indices and the corresponding correlation 

coefficient with the crop yield anomalies for the Debremarkos station.  

 

Hence, the values of the combined drought index were obtained using the equations 4.5 and 

4.7. The same equation, because of the same optimal weights found, for Sorghum and Barley 

(Equation 4.5) and separate equations for Maize (Equation 4.6) and Teff (Equation 4.7) were 

considered. The resulting time series values of the combined drought index were shown in 

Tables 4.5a, b and c respectively. The correlation coefficient matrix of the combined drought 

index with other indices and crops is also shown in Table 4.6. The combined drought index 

correlates best with Barley with a coefficient of 0.7.   

CDI-2 = 0.2×SPI + 0.2×SPEI + 0.4×ETDI + 0.1×SMDI + 0.1×SRI                                             4.5 

Equation of the combined drought index validated with Maize crop, 

CDI-3 = 0.1×SPI + 0.3×SPEI + 0.1×ETDI + 0.1×SMDI + 0.4×SRI                                             4.6 

Equation of the combined drought index validated with Teff crop, 

CDI-4 = 0.1×SPI + 0.3×SPEI + 0.4×ETDI + 0.1×SMDI + 0.1×SRI                                             4.7 

 

 

 

 

 

 

 

 

 

SPI SPEI ETDI SMDI SRI

Sorghum 0.74 0.2 0.2 0.4 0.1 0.1

Barley 0.88 0.2 0.2 0.4 0.1 0.1

Maize 0.70 0.1 0.3 0.1 0.1 0.4

Teff 0.66 0.1 0.3 0.4 0.1 0.1

Weights/Coefficients of each drought index
Correlation Coefficients (R)Crops



74 

 

Table 4.5a: The time series values of the combined drought index developed using the weights 

corresponding with the best correlation with the Sorghum and Barley crops for the 

Debremarkos station. 

 

Table 4.5b: The time series values of the combined drought index developed using the weights 

obtained from best correlation with the Maize crop for the Debremarkos station. 

 

Table 4.5c: The time series values of the combined drought index developed using the weights 

obtained for the Teff crop for the Debremarkos station. 

 

SPI SPEI ETDI SMDI SRI Sorghum Barley CDI-2
Weights    

 years 0.2 0.2 0.4 0.1 0.1

1996 -0.04 -0.08 -0.29 -0.13 -0.18 0.01 0.31 -0.17

1997 0.13 0.15 -0.10 -0.02 -0.13 0.54 0.25 0.00

1998 -0.58 -0.48 -0.52 -0.31 0.06 -0.33 -0.15 -0.44

1999 -0.10 -0.08 -0.63 -0.96 0.20 0.09 -0.25 -0.36

2000 -0.16 -0.14 -0.03 0.08 0.14 0.03 -0.02 -0.05

2003 -0.28 -0.36 -0.49 -0.39 -0.43 -0.77 -0.16 -0.41

2004 -0.03 -0.05 -0.28 -0.43 -0.55 -0.47 0.20 -0.23

2006 0.19 0.14 -0.12 0.27 0.18 0.43 0.26 0.06

2007 0.18 0.90 -0.09 0.10 0.20 -0.04 0.12 0.21

2008 -0.13 0.90 -0.19 0.03 -0.27 0.36 0.41 0.05

SPI SPEI ETDI SMDI SRI Maize CDI-3

Weights    
 years 0.1 0.3 0.1 0.1 0.4

1996 -0.04 -0.08 -0.29 -0.13 -0.18 0.50 -0.14

1997 0.13 0.15 -0.10 -0.02 -0.13 -0.26 -0.01

1998 -0.58 -0.48 -0.52 -0.31 0.06 0.57 -0.26

1999 -0.10 -0.08 -0.63 -0.96 0.20 -0.15 -0.11

2000 -0.16 -0.14 -0.03 0.08 0.14 -0.48 0.00

2003 -0.28 -0.36 -0.49 -0.39 -0.43 -0.99 -0.40

2004 -0.03 -0.05 -0.28 -0.43 -0.55 -0.49 -0.31

2006 0.19 0.14 -0.12 0.27 0.18 0.27 0.15

2007 0.18 0.90 -0.09 0.10 0.20 -0.03 0.37

2008 -0.13 0.90 -0.19 0.03 -0.27 0.97 0.13

SPI SPEI ETDI SMDI SRI Teff CDI-4
Weights    

 years 0.1 0.3 0.4 0.1 0.1

1996 -0.04 -0.08 -0.29 -0.13 -0.18 -0.05 -0.17

1997 0.13 0.15 -0.10 -0.02 -0.13 0.15 0.00

1998 -0.58 -0.48 -0.52 -0.31 0.06 0.17 -0.43

1999 -0.10 -0.08 -0.63 -0.96 0.20 0.03 -0.36

2000 -0.16 -0.14 -0.03 0.08 0.14 -0.27 -0.05

2003 -0.28 -0.36 -0.49 -0.39 -0.43 0.00 -0.41

2004 -0.03 -0.05 -0.28 -0.43 -0.55 0.11 -0.23

2006 0.19 0.14 -0.12 0.27 0.18 -0.07 0.06

2007 0.18 0.90 -0.09 0.10 0.20 0.37 0.28

2008 -0.13 0.90 -0.19 0.03 -0.27 0.13 0.15
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Table 4.6: The correlation coefficient matrix of the combined drought index and other indices 

and the four cereal crops for the Debremarkos station. The numbers in the parenthesis show 

the number of CDI’s (e.g. 2 indicates for CDI-2).  

  Sorghum Barley Maize Teff 

SPI 0.57 0.95 -0.06 0.12 

SPEI 0.51 0.60 0.40 0.50 

ETDI 0.46 0.68 0.07 -0.07 

SMDI 0.46 -0.27 0.29 -0.05 

SRI 0.47 0.24 0.24 -0.04 

CDI 0.66 (2) 0.70 (2) 0.40 (3) 0.26 (4) 

 

Figure 4.8 shows the comparative plots of the PCA-based CDI (CDI-1) and impact-based 

optimized CDI’s (CDI-2, CDI-3, and CDI-4) for Barley, Sorghum, Maize, and Teff. In general, 

CDI-2 showed a good match with Barley crop anomalies, except for two points that were falling 

in the lower-right quadrant that shows opposite signal between the CDI and crop yield anomaly. 

There is no significant outliers observed in CDI-2 in the lower left corner. The same proportion 

of scatter points, for CDI-1 and CDI-2 falls in the bottom-right quadrant that shows an opposite 

signal between CDI’s and Barley crop anomalies.   

The comparative plot between CDI-1 and CDI-2 (impact-based) for the Sorghum crop 

anomalies shows proportionality between the values. The plots for Maize and Teff show higher 

coefficient determination (R2) values for the impact-based CDIs (CDI-3 and CDI-4) as 

compared to the PCA-based CDI-1. The PCA-based CDI-1 in general shows a larger spread 

than the impact-based CDIs. This can be explained from the weights (Eigenvalues) adding to 

greater than one (Equation 4.4).  The impact-based CDI was used for further analysis in the 

next section (Section 4.4.5) on linear regression modelling of crop yield anomalies. 
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Figure 4.8: Comparative plots of the PCA based CDI (CDI-1) and impact-based CDI (CDI-2, 

CDI-3, and CDI-4) for the Barley, Sorghum, Maize, and Teff crop yield anomalies for the 

Debremarkos station.  
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4.4.5 Prediction models of crop yield anomalies 

This section presents the result obtained employing the crop yield prediction model based on 

the linear regression approach. Two sets of crop prediction equations were developed to link 

the drought indices (predictors), and the four crops yield anomalies (predictands). These 

equations help to predict the crop yield anomalies for the given prior values of the drought 

indices. The first set of equations was formulated to link the detrended crop yield anomaly and 

the five drought indices (i.e. SPI, SPEI, ETDI, SMDI, and ADI), whereas the second set of 

equations was derived to link the detrended crop yield anomalies with the combined drought 

index (impact-based CDI). These equations were derived for all the administrative zones in the 

basin, however, the results obtained at the selected eight representative administrative zones 

are presented in this thesis.   

The results obtained at the Debremarkos station are presented below for further discussion in 

this section, and the results for the other seven zones can be found in Appendix E. The first set 

of prediction equations at the Debremarkos station, for Teff, Maize, Sorghum, and Barley, is 

presented in equations 4.8 to 4.11, whereas the second set of regression equations is shown in 

4.12 to 4.15.  

These equations were used to predict each crop yield anomaly, and the resulting scatter plots 

between the observed and predicted crop yield anomalies is shown in Figure 4.9. Overall, the 

prediction accuracy of most of the yield anomaly equations is above the coefficient of 

determination (R2) of 0.44 for all zones. The maximum value of R2 was obtained for the Barley 

crop (R2 = 0.77) for the first set of equations, based on linear regression with the individual 

drought indices as input. 

Teff yield anomaly = 0.01×SPI - 0.52×ETDI + 0.07×SMDI + 0.23×SPEI -0.05×SRI - 0.10                    4.8 

Maize yield anomaly = -0.67×SPI - 2.39×ETDI + 1.36×SMDI + 0.78×SPEI + 0.36×SRI - 0.52              4.9 

Sorghum yield anomaly = 0.52×SPI + 0.29×ETDI + 0.07×SMDI + 0.16×SPEI + 0.56×SRI + 0.15  4.10 

Barley yield anomaly = 0.32×SPI - 0.14×ETDI + 0.37×SMDI + 0.13×SPEI - 0.36×SRI + 0.11         4.11  

Sorghum yield anomaly = 1.217×CDI-2 + 0.147                                                                                      4.12 

Barley yield anomaly = 0.705×CDI-2 + 0.191                                                                                          4.13 

Maize yield anomaly = 1.229×CDI-3 + 0.049                                                                                           4.14 

Teff yield anomaly = 0.482×CDI-4 + 0.077                                                                                         4.15 
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Figure 4.9 shows the scatter plot of the observed versus the predicted crop yield anomalies. 

The comparison for Sorghum crop anomalies (Figure 4.8a and a’) shows no large differences 

between Set 1 (based on individual indices) and Set 2 (based on CDI), in terms of the coefficient 

of determination and in terms of the number of scatter points falling in the top right and lower 

left quadrants. Sorghum crop predictions based on Set 1 and Set 2 scored R2 values of 0.54 and 

0.44 respectively, indicating that for Sorghum linear regression based on the individual indices 

works better than based on CDI.  

An improvement by using CDI instead of individual indices has been observed in predicting 

Barley crop yield anomaly, in terms of the number of scatter points falling in the top-right, and 

bottom-left quadrants. Only 10% of the scatter points are out of these two quadrants for the 

CDI-based Barley crop prediction, whereas 20% of the scatter points are out the two quadrants 

for the prediction model based on the five individual drought indices. However, the R2 values 

showed significant decline (0.49) for the CDI-based prediction model, as compared to 

regression based on the five drought indices (0.77).  

Significant improvement of Teff crop prediction has been observed on the CDI-based 

prediction model, in terms of both R2 and the number of scatter points falling in the two 

quadrants. 30% of the scatter points fall out of the two quadrants in CDI-based prediction 

model, whereas 60% in the five drought indices - based prediction model. Moreover, 

significant improvement in the R2 value is observed in the CDI-based prediction (0.57), as 

compared to the linear regression based on five drought indices (0.43) for the Teff crop 

prediction.  

An opposite result can be observed for the Maize crop yield anomaly prediction model. The 

CDI-based model showed a poor performance (R2 = 0.24), compared to the five drought indices 

based prediction model (R2 = 0.32). Moreover, about 60% of the scatter points are falling out 

of the two reference quadrants for CDI based prediction model, versus 40% in the case of five 

drought indices based prediction model.  

Overall, it can be said that the regression model developed for each administrative zone to 

predict crop yield anomalies, is satisfactory and the results highlight the prediction potential of 

the drought indices (Appendix D). The predicted and observed data are consistently showing 

the same trend. However, it should be mentioned that the absolute magnitude of the anomaly 

is not always captured. This variation in magnitude may be attributed to several factors, mainly 
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to the crop yield data that is aggregated to zonal average, and to the accuracy of the model-

based estimation of actual evaporation and soil moisture. 

 

Figure 4.9: Predicted versus observed crop yield anomalies of the Sorghum, Barley, Maize and 

Teff crops for the Debremarkos station. In the left column of plots, the crop prediction model 

was based on the five drought indices whereas the right side plots were based on the CDI.   
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4.5 Conclusions  

In this chapter, two approaches were implemented to develop a Combined Drought Index for 

the Upper Blue Nile Basin. The first approach was based on Principal Component Analysis 

(PCA), and the second on a random search of the optimal weights. The CDI developed in the 

second approach was focused on the impact of drought on crop yield. The impact-based CDI, 

and the individual drought indices it comprises, were used to test to what extent a linear 

regression model could predict crop yield anomalies in the UBN Basin. 

The combined drought index developed using impact-based optimal weights, correlated well 

with the four crop yield anomalies considered in this study: Teff, Barley, Maize and Sorghum. 

The combined drought index developed using PCA could indicate years with negative crop 

yield anomalies equally well. Of the four crops, sorghum correlated best with the combined 

drought index developed using both techniques. The linear regression model developed using 

the combined drought index, or directly from the individual drought indices, showed its 

prediction potential for crop yield anomalies in the Upper Blue Nile basin.  

 

 

 

 

 

 

 



 

 

5. Application of Earth observation data for developing a 

combined drought index and crop yield prediction model4  

   

5.1 Introduction 

In this chapter, different Earth observation (EO) based input data are utilized to assess and 

characterize the historic drought events and to develop the impact-based CDI and crp-yield 

anomaly prediction model for the UBN Basin. The Earth observation based data have relatively 

high spatial resolution, which is an advantage to use in the data scarce regions in most of the 

developing countries. Three Earth observation based drought indices, i.e. Z-score, Evaporative 

Drought Index (EDI) and the Vegetation Condition Index (VCI) were used (Section 5.3). The 

Z-score values were calculated using the Climate Hazards Group Infrared Precipitation with 

Stations (CHIRPS) Earth observation precipitation data. CHIRPS blends EO with station-based 

precipitation data. The EDI (Jiahua et al. 2015) calculation uses the MODIS ET data as the 

main input in conjunction with the potential ET derived using multiple global data sets. The 

potential ET were calculated by using the Hargreaves method (Hargreaves and Samani, 1982; 

Hargreaves and Samani, 1985). The VCI (Kogan and Sullivan, 1993) was used in conjunction 

with the NDVI to assess the vegetation condition in drought situations affecting agriculture. 

The time series of the VCI were calculated based on the NDVI values in the study period. The 

data used are presented in Section 5.2. 

Combining these three drought indices helps in providing more detailed information that can 

facilitate the decision making process and to assess both meteorological and agricultural 

drought with a single index. Linking the combined drought index with the crop yield anomalies 

is important for developing a crop prediction model based on EO data. Thus, the main 

objectives of this chapter are to develop the Earth observation-based combined drought index, 

using the Z-score, EDI, and VCI, and to derive from the resulting EO-CDI a multiple linear 

regression model for identifying crop-yield anomalies.  

                                                           
4 Based on: Bayissa, Y.A., Tadesse, T., Demissie, G.B., and Shiferaw, A, 2017. Evaluation of 

Satellite-Based Rainfall Estimates and Application to Monitor Meteorological Drought for the 

Upper Blue Nile Basin, Ethiopia. Remote Sensing, v. 9, No. 7, p.669. 
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5.2 Data  

5.2.1 Climate Hazards Group Infrared Precipitation with Stations (CHIRPS) rainfall 

The CHIRPS satellite rainfall product is used in this study to represent the meteorological 

components of drought. CHIRPS was developed by the U.S. Geological Survey (USGS) and 

the Climate Hazards Group at the University of California, Santa Barbara (UCSB). It is a 

blended product combining precipitation climatology within 5-day periods, quasi-global 

geostationary thermal infrared (TIR) satellite observations from the Climate Prediction Center 

and the National Climate Forecast System version 2 (CFSv2) (Saha et al. 2011), and in-situ 

precipitation observations (Funk et al. 2014). CHIRPS is used in this study because of its quite 

high accuracy shown for Ethiopia (Bayissa et al. 2017). In addition, CHIRPS has a higher 

spatial resolution (~5km) and covers a longer period (1982-present) than other products. 

CHIRPS data was used to calculate the 3-month Z-score (Source: 

ftp://ftp.chg.ucsb.edu/pub/org/chg/products/CHIRPS-2.0/). 

5.2.2 MODIS actual ET (MOD16) 

The MODIS actual ET product (MOD16) for the Upper Blue Nile Basin is acquired from the 

Nile Basin Initiative (http://nileis.nilebasin.org, accessed on April 12, 2014). The data were 

available at 1-km spatial resolution and at 8-day, monthly and annual temporal time scales. For 

the estimation of ET, the MOD16 algorithm employs the Penman–Monteith ET method 

(Monteith, 1965). This method uses the MODIS products, including 14 land cover types, Leaf 

Area Index/Fraction of Photo synthetically Active Radiation (LAI/FPAR), and white sky-

albedo for the estimation of ET (Schaaf et al. 2002). The improved version uses additional 

Terra MODIS daytime LST, NDVI and Enhanced Vegetation Index (EVI) data to estimate ET 

over the different land-use in the basin (Sims et al. 2008).  

5.2.3 Normalized Difference Vegetation Index (NDVI) 

The NDVI data used to derive the Vegetation Condition Index (VCI) were obtained from the 

SPOT vegetation ten-day composite NDVI images (S10 product) of vgt4africa of the DevCo-

Cast project (http://www.vgt4africa.org) for the study period from 2001 to 2009. The spatial 

resolution of the SPOT NDVI images is 1km by 1km, which covers the Africa continent. The 

qualities of the images were checked through the application in many disciplines such as crop 

and agricultural monitoring and drought early warning (Gebrehiwot et al. 2011). A total of 396 

NDVI images were processed and used for the derivation of VCI.  

http://nileis.nilebasin.org/
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5.2.4 Climate data 

The daily rainfall and temperature data were acquired from the National Meteorological 

Agency (NMA) of Ethiopia. The data were collected for thirty-four meteorological stations and 

the location of the stations is shown in Figure 5.1. Ten out of the thirty-four stations are 

independent stations (not blended in CHIRPS), and these stations were used to validate the 

CHIRPS rainfall estimate. The location of these independent stations is shown in Figure 5.1. 

The rainfall and temperature data were used to calculate the potential ET. The temporal scale 

of the data is on a daily basis for a period from 2001 to 2009. The other input data used to 

calculate the potential ET were extra-terrestrial solar incident radiation values. These data were 

acquired from the ECMWF ERA-interim data portal (ECMWF, 2013). 

 

Figure 5.1: Locations of the independent weather stations (green circles) used for validation 

of the CHIRPS rainfall product. 

5.3 Methods 

The method described in the subsections below aims to address the main objective of this 

chapter - which is developing the Earth observation based combined drought index and 

prediction model.  

5.3.1 Validation of the CHIRPS rainfall estimates   

The commonly used pairwise comparison statistics techniques such as the Pearson correlation 

coefficient (r), Mean Error (ME), Root Mean Square Error (RMSE) and Bias were applied to 

evaluate CHIRPS satellite rainfall estimates.  
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The Pearson correlation coefficient (r) measures the goodness of fit and linear association 

between two variables. It measures how well the satellite rainfall product corresponds to the 

observed rainfall; see Equation 5.1. Its value ranges between 0 to 1 in which one indicates the 

perfect score. 

r = 
∑ (O - O̅)(S -S̅)

√∑ (O - O̅)
2
 √∑ (S - S̅)

2
                                                                                                                                          5.1 

where r is the correlation coefficient, O = gauge rainfall measurement, O̅ = average gauge 

rainfall measurement, S = satellite rainfall estimate, S̅  = average satellite rainfall estimate, and 

n = number of data pairs. 

ME is the mean error (Equation 5.2); a positive value indicates an overestimate of the satellite 

rainfall whereas a negative value indicates an underestimate as compared to the observed 

rainfall. ME value of zero is a perfect score. 

ME = 
1

n
∑ (S - O)                                                                                                                                                             5.2 

where ME is the mean error, O = gauge rainfall measurement, and S = satellite rainfall estimate. 

The RMSE is used to measure the average magnitude of the estimated errors between the 

satellite rainfall and the observed rainfall; see Equation 5.3. A lower RMSE value means greater 

central tendencies and small extreme error. A RMSE value of zero is the perfect score. 

RMSE =√   
1

n
∑ (S - O)

2
                                                                                                                                     5.3  

where RMSE is the root mean square error, O = gauge rainfall measurement, and S = satellite 

rainfall estimate. 

Bias reflects how well the mean of the satellite rainfall corresponds with the mean of the 

observed rainfall; see Equation 5.4. A Bias value closer to one indicates the cumulative satellite 

rainfall estimate is closer to the cumulative observed rainfall. A bias value of one is the perfect 

score. 

Bias = 
∑ S

∑O
                                                                                                                                              5.4 

where O = gauge rainfall measurement, and S = satellite rainfall estimate.   
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5.3.2 Computing rainfall based Z-score 

The Z-score is another form of the standardized precipitation index (SPI) that accounts only 

for the normal probability density functions (PDF). Its calculation procedure was similar with 

that of SPI (Section 2.3) except the Z-score was calculated using the spatial input data and 

normal PDF.  

Z-scorei= 
(RFi− longterm mean RF)

St.Dev
                                                                                                          5.5 

where RFi is the dekadal rainfall at a particular event; 

           long-term mean RF is the long-term average values of each dekade rainfall data; 

           St.Dev is the standard deviation of the dekadal rainfall data. 

The rainfall data for each dekade for the analysis period ranging from 2001 to 2009 went 

through the data quality checks before being used for further analysis. Erroneous values that 

might be encountered because of the cloud contamination were screened and filtered out. The 

long-term mean and standard deviation of the rainfall data of each decade were calculated. 

Eventually, the deviation of rainfall during the particular event from the corresponding long-

term mean value was calculated and normalized by dividing the difference by the standard 

deviation. The equation below summarized the calculation procedures of the Z-score. The Z-

scores were calculated at the 3-month time scale to be comparable with the agricultural indices 

such as EDI and VCI. 

5.3.3 Evaporative Drought Index (EDI) 

The evaporative drought index (EDI) was calculated using the actual and potential ET obtained 

from the Earth Observation. The EDI is calculated using equation 5.6. 

EDI = 1-
AET

PET
                                                                                                                                     5.6 

where AET is the actual evapotranspiration derived from the MODIS product (MOD16) 

PET is the potential evapotranspiration estimated using the Hargreaves's method (Equation 5.7)  

During drought conditions, the water stress in the soil is very high, which eventually reduces 

the amount of actual evapotranspiration. The ratio of AET and PET is smaller when the AET 

value is much smaller than PET. The smaller AET is often associated with the water stress in 

the soil often occurring during drought conditions. The smaller the ratio of AET and PET leads 

to the relatively higher positive values of EDI. Thus, the positive large value of EDI shows the 
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drought condition. For sign convention, the EDI values are multiplied by -1 and hence negative 

EDI values show drought conditions whereas positive EDI values show wet conditions.    

PET = 0.0023Ra(Tmean+17.8)√ (Tmax
− Tmin)                                                                                     5.7 

where PET is the potential evapotranspiration that represents the ideal evaporation without 

being constrained by the limiting factors such as water and other climatic and biophysical 

factors. 

            Ra is the extra-terrestrial solar incident radiation (Wm-2) 

            Tmax and Tmin are daily maximum and minimum air temperature respectively  

            Tmean is the daily mean air temperature, and Tmean = (Tmax - Tmin)/2 

The EDI anomaly index was calculated by measuring the deviation of the EDI at a particular 

year, season, month and dekade from the long-term average values (Equation 5.8).  

∆EDI(i) = EDI(i) −
1

n
∑ EDI(i)n

i=1                                                                                                    5.8 

where i represents the year 

           n is the sample size 

5.3.4 Vegetation Condition Index (VCI) 

The NDVI data used to derive the VCI were obtained from the SPOT vegetation ten-day 

composite NDVI images (S10 product) of vgt4africa of the DevCo-Cast project 

(http://www.vgt4africa.org) for the study period from 2001 to 2009. The spatial resolution of 

the SPOT NDVI images is 1km by 1km, and they cover the Africa continent. The quality of 

the images was checked through the application in many disciplines such as crop and 

agricultural monitoring and drought early warning (Jacobs et al. 2008; Sathyendranath et al. 

2009). In this study, a total of 396 NDVI images were processed and used for the derivation of 

VCI. The VCI maps were produced for the corresponding NDVI images using Equation 5.9. 

VCI = (
NDVI - NDVImin

NDVImax - NDVImin
) ×100                                                                                                           5.9 

where NDVI, NDVImin, and NDVImax are the smoothed 10-day NDVI, its absolute multi-year 

minimum and its multi-year maximum NDVI respectively for each pixel.  

The minimum and maximum NDVI values maps were derived from the map list within the 

study period. The VCI map of the corresponding NDVI image was then produced based on the 

current, minimum and maximum NDVI values. 
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As aforementioned, the rainfall pattern in the study area is uni-modal and occurs in the 

monsoon season (June, July, August, and September). Therefore, the failure of the monsoon 

rainfall obviously causes drought to occur in the study area since rain-fed agriculture is a 

common practice. VCI images during the monsoon season of each year were considered 

separately to produce the average VCI map during the monsoon period of each year. The 

average VCI maps during the monsoon season were then used for drought assessment for each 

year. 

The time series NDVI values at the location of rain gauge stations were extracted to analyze 

their correlation with rainfall, and to determine the time lag between rainfall and NDVI. The 

Pearson correlation was used for the correlation analysis. 

5.3.5 Impact-based combined drought index  

The impact-based optimized CDI approach, developed in chapter 4 section 4.3.5, was also 

tested in this chapter to determine the EO-based combined drought index (EO-CDI). The 

impact-based approach assigns the relative weights (ranging from 0.1 to 0.9) iteratively for the 

three EO-based drought indices (Z-score, EDI, and VCI). We used the random search of 

weights to identify the best (optimal) combination of weights. The combination of weights 

(after 60000 iterations) that resulted in the highest correlation coefficient between the CDI and 

crop yield anomaly was selected to develop the combined drought index for the Upper Blue 

Nile basin. The resulting equation (Equation 5.10) that combines the three drought indices is 

given below. 

EO-CDIn= wZ-score×Z-scoren-2+ wEDI×EDIn + wVCI×VCIn                                                     5.10                                              

where n is the current month, and wZ-score,  wEDI and wVCI are the weights of each index. Z-

score has index n-2, indicating a 2-month lag time (Section 5.4.4) and the time series of the all 

the drought indices were standardized (Z-score). 

5.3.6 Developing the prediction model of crop yield anomalies 

The same linear regression approach that was applied in Chapter 4 is also used in this chapter. 

The combined drought index and the three drought indices values were the basis to develop the 

prediction model for identifying the crop yield anomalies based on least square solutions 

approach. First, the multiple linear regression model between the CDI values and the crop yield 

anomalies was developed. Secondly, the multiple linear regression model between the five 
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drought indices and the crop yield anomalies was also developed. The performance of the two 

models was compared and the prediction model with good performance was selected. 

5.4 Results and discussion 

5.4.1 Validation results of CHIRPS   

Evaluation of CHIRPS was carried out using the ground-based measured rainfall data at 10 

selected independent gauging stations in the basin. The correlation analysis, bias, mean error, 

and root mean square error (RMSE) evaluation criteria were considered both for dekadal and 

monthly time scales for each station. The result shows that there is a good correlation observed 

between the rainfall from CHIRPS and observed rainfall in the majority of the stations. The 

correlation coefficient (r) values ranged between 0.881 (Gerbeguracha) to 0.69 (Assossa) on 

dekadal, and 0.95 (Gerbeguracha) to 0.82 (Bedele) at monthly time scales (Figure 5.2a). The 

bias values ranging between 0.71 to 1.2 were obtained for both dekadal and monthly time 

scales. The majority of the stations showed a bias values close to 1 (Figure 5.2b). This shows 

that there is a good agreement between CHIRPS and the measured rainfall evaluated in terms 

of bias values. The mean error and RMSE at dekadal time scale is lower than at the monthly 

time scale. The scatter plots were also produced by considering the time series data of the 

selected stations for dekadal and monthly time scales – see Figure 5.3. The scatter plots were 

produced by aggregating the rainfall data of all the stations. The result of the coefficient of 

determination (R2) shows the good agreement of CHIRPS with the rainfall data from the 

gauging stations. R2 values of 0.7 and 0.86 were obtained for dekadal and monthly time scales 

respectively. The overall results indicated that CHIRPS monthly rainfall products could 

potentially be used for assessing meteorological drought assessment in data scarce regions of 

the basin.  
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Figure 5.2: The statistical indicators—correlation coefficient (a), Bias (b), mean error (c) and 

root mean square error (d)—for each station at dekadal and monthly time scales. 
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Figure 5.3: Scatter plots comparing the gauge data and CHIRPS rainfall estimates at a dekadal 

and monthly time scales. 

5.4.2 Rainfall deficit index (Z-score) based drought assessment 

The results of the visual illustration of the 3-months Z-score (Figure 5.4) revealed the two 

temporal dry periods associated with the historic droughts (2001-2005 and 2009), and the 
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consecutive wet period (2006-2008). The years 2002, 2003, 2004 and 2009 can be 

characterized as the severe drought years that covered the majority of the basin. The central, 

north and eastern parts of the basin were affected by severe droughts in those years, with the 

average drought intensity ranging from -1.72 to -0.85. The maximum Z-score intensities were 

observed in the year 2009 (-2.55) in the northern, part of the central, and eastern part of the 

basin. Whereas in the central and southern, and southwest part of the basin the maximum 

intensity of the drought was observed in the year 2001 and 2002 (-2.40). The southwest part 

was affected by the droughts that occurred in the year 2001. The years 2006, 2007 and 2008 

were the wet years, except for the eastern part, which was affected by severe drought in the 

year 2008.    

 

Figure 5.4: The average spatial extents of meteorological drought, as indicated by the 3-month 

Z-score (red and yellow) for the years 2001-2009. The green and blue colors show no drought 

condition. 
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The time series plots of the drought intensities at the corresponding locations of the 

meteorological stations were extracted as shown in Figure 5.5. The figures were produced for 

those meteorological stations having high correlation coefficients with each other. The cluster 

of the stations revealed the similarity of rainfall patterns at each station. The drought years of 

2002 and 2009 were clearly indicated at most of the stations, independent of the geographic 

locations. In the year 2009, those stations located in the far southern part showed no drought 

condition (Figure 5.5e). This indicates that the drought in these years were severe and covered 

the majority of the basin. The wet years such as 2006, 2007 and 2008, were also clearly shown 

in the time series plot for the majority of the stations. The longer drought duration of 19 months 

was observed in some of the stations between the years 2001 to 2003. The drought duration of 

the year 2009 was 12 months and it was indicated at the majority of the stations. The maximum 

drought intensity of -2.55 was also observed in the drought year of 2009, in those stations 

located in the central and northern parts of the basin (Figures 5.4a and b). 

 

Figure 5.5: The time series (2001-2009) plot of the Z-score at the corresponding locations of 

the meteorological stations for Kiremt (June-September). Each plot shows the temporal pattern 

of the Z-score for stations showing a similar pattern. The label of the x-axis shows dekadal 

(DD), month (MM), and year (YY). 
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5.4.3 Evaporation Deficit Index (EDI) based drought assessment 

The annual spatial distributions of the EDI anomaly for the UBN Basin are shown in Figure 

5.6. The figures reveal that the EDI has the capability of indicating the drought and wet 

conditions in the basin. In the years 2001 and 2002, the central and Eastern parts of the basin 

were affected by drought with the drought severity ranging between -0.51 to -1.68.  In 2009, 

the majority of the area was affected by the drought. The northwestern, central and northeast 

parts of the basin were stricken by the onset of drought and shortage of water. Water stress was 

also observed in the years 2007 and 2008 in the North-West, Western and Southern parts of 

the basin. 

Figure 5.6: The spatial extents of the EDI anomaly in the Upper Blue Nile basin for the year 

2001 to 2009. 
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The time series plots of the EDI anomaly for the selected stations (Debremarkos, Gondar, and 

Dedissa) are shown in Figure 5.7. The stations are chosen to represent the Northern (Gondar), 

Central (Debremarkos) and Southern (Dedissa) parts of the study area. The result shows that 

some of the historic drought years are indicated by the EDI anomaly. The year 2009 is indicated 

as drought year in all the three stations.    

 

Figure 5.7: The time series (2001-2009) plot of the EDI anomaly for Kiremt season (June-

September) at the Gondar, Denremarkos and Dedissa stations representing different parts of 

the study area. The format of the x-axis shows dekadal (DD), month (MM), and year (YY) 

format. 

5.4.4 Vegetation Condition Index (VCI) based drought assessment 

The patterns of the average rainfall during the monsoon season (left) and VCI (right) are shown 

in Figure 5.8. The monsoon rainfall is associated with the main rainy season, in which rain-fed 

agriculture is the dominant practice and its failure most often causes water stress in the study 

area. Failure of the monsoon rainfall is a precursor for drought to occur. The figure shows a 

decreasing trend of monsoon rainfall from the southwest towards northeast part. The historic 

drought events, according to VCI, reveal that the northeast part is drought prone and most 

frequently struck by drought. The long-term average monsoon (2001-2009) VCI maps were 

processed to analyse the vegetation signals to the rainfall pattern. The pronounced vegetation 

signals were observed in the southwest part that corresponds to the high amount of monsoon 

rainfall. The VCI values for the Northeast part are smaller, which gives clear indication of poor 

vegetation condition that corresponds with the occurrence of drought.        
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(a)                                                                        (b) 

Figure 5.8: Long-term monsoon rainfall (a) and VCI (b) patterns in the Upper Blue Nile basin. 

The spatial and temporal analysis of droughts were investigated using multiple years of 

processed images. The vegetation condition index (VCI) was calculated from the 

corresponding NDVI to identify and characterize the drought prone area. According to Kogan, 

(1993), the VCI values less than 35% indicate extreme drought condition, up to 50% fair to 

normal vegetation condition, and close to 100% good and brightness vegetation condition. The 

VCI maps from the year 2001 to 2009 were used to assess the spatial and temporal extents of 

drought in the study area. Moreover, the VCI maps could help to identify the development of 

drought within the analysis periods. 
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Figure 5.9: The spatial pattern of the Vegetation condition index (VCI) for monsoon season of 

the years from 2001 to 2009 in the Upper Blue Nile basin. 

In general, VCI values less than 35% were observed in the Northeast, eastern and towards the 

center, with different levels of severity (Figure 5.9). The VCI value less than 35% is a good 

indication of the presence of water stress, poor vegetation condition, and drought zone. The 

maps indicate that in the monsoon years 2001, 2002, 2003, 2007, and 2009, more than 15 

percent of the area suffered fair to extremely poor vegetation condition (VCI values less than 

50 percent). The year 2003 was clearly identified as a drought year, because of a large area 

(22.5%) with fair to extreme vegetation condition damage. This shows that VCI is also a good 

indicator to capture the historic drought events.    
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The comparative result showed that the three drought indices, Z-score, EDI, and VCI, identified 

the historic drought events well. The three indices indicated different drought frequency, 

severity and duration for the historic events.   

Lag time analysis of the results obtained from the drought indices 

The time series VCI values at the location of the rain gauge stations were extracted from each 

VCI image. Accordingly, correlation analysis between the average rainfall and average VCI 

within the analysis period (2001-2009) was carried out to identify the lag time between the 

peak rainfall and the lagged peak VCI values of each station. Figure 5.10 shows the graphs of 

sample stations produced using average monthly rainfall and VCI from the year 2001 to 2009. 

The figure shows that the average VCI value reaches to its maximum value during the month 

September in most of the stations. There is also similar temporal pattern between average 

rainfall and VCI with a certain lag time. Similarly, Table 5.1 shows the correlation coefficients 

between rainfall and VCI for each station at different lag time. From the result, it was observed 

that there is two months lag time between the rainfall and the vegetation response (NDVI/VCI) 

in most of the stations. Very few stations showed one and three-month lag time as indicated by 

bold and italic font in Table 5.1. The peaks in actual evapotranspiration were also observed 

after two months of the peaks of rainfall in the majority of the stations (Figure 5.10). The lag 

times found here, were used in the development of the Earth observation based CDI (Section 

5.4.5).  
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Figure 5.10: Monthly average VCI, AET and Rainfall graphs for the selected stations that 

show the time lag between peak rainfall and VCI and AET. 
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Table 5.1: Correlation coefficient between rainfall, VCI, and AET, at different lag times. 

 

5.4.5 Developing the Earth Observation based Combined Drought Index (EO-CDI) 

The Earth observation based combined drought index (EO-CDI) is developed using a random 

search of the optimal weights for each of the three Earth observation based drought indices (Z-

score, EDI and VCI) considered in this study. The results obtained at the Debremarkos station 

are used for further discussion. The same coefficients of the drought indices (Z-score=0.4, 

EDI=0.5and VCI=0.1) were obtained for the four crops. However, two months of lag time 

between rainfall and vegetation condition was observed in Debremarkos and the majority of 

the other stations and hence the equation for the combined drought index (EO-CDI) is shown 

in Equation 5.11. The seasonal time series plot of the combined drought index and the other 

indices reveled the same pattern (Figure 5.11). The combined drought index also shows its 

capability to indicate the historic drought years 2002, 2003, 2005, and 2009. The visual 

inspection of the time series plot further revealed that the wet years (2006, 2007, and 2008) 

were also indicated by the combined drought index and this could show the potential of the 

Earth observation based combined index for drought assessment in the Upper Blue Nile Bain.    

VCI AET VCI AET VCI AET VCI AET

Alem Ketema -0.23 0.31 0.34 0.76 0.92 0.94 0.76 0.48

Ambo 0.34 0.46 0.76 0.82 0.98 0.98 0.76 0.66

Angere Gutin 0.54 0.49 0.85 0.74 0.95 0.84 0.75 0.65

Arjo 0.38 -0.08 0.58 0.16 0.63 0.32 0.51 0.37

Assossa 0.57 0.64 0.88 0.82 0.96 0.65 0.79 0.41

Bahirdar 0.44 0.61 0.85 0.90 0.97 0.89 0.65 0.54

Bedele 0.21 0.43 0.48 0.58 0.62 0.61 0.66 0.42

Chagni 0.70 0.72 0.95 0.90 0.91 0.81 0.62 0.53

Debre Markos 0.28 0.31 0.71 0.70 0.97 0.95 0.85 0.86

DebreBirhan 0.27 0.36 0.79 0.85 0.84 0.71 0.41 0.15

Deddisa 0.68 0.36 0.80 0.57 0.76 0.73 0.52 0.78

DekEstifanos 0.40 0.69 0.86 0.95 0.97 0.86 0.64 0.43

Denbecha 0.28 0.34 0.70 0.66 0.97 0.90 0.89 0.87

Enjibara 0.78 0.73 0.91 0.57 0.79 0.25 0.37 -0.23

Fitche 0.33 0.71 0.86 0.93 0.84 0.61 0.28 -0.06

Ghimbi 0.41 -0.51 0.63 -0.78 0.72 -0.62 0.67 -0.22

GidAyana 0.48 0.18 0.70 0.44 0.77 0.61 0.72 0.67

Gondar 0.02 0.14 0.52 0.51 0.92 0.78 0.88 0.64

Mehal Meda 0.28 0.36 0.83 0.88 0.76 0.76 0.22 0.05

Nedjo 0.33 -0.39 0.68 -0.54 0.84 -0.52 0.81 -0.14

Nekemte 0.11 -0.28 0.33 -0.02 0.56 0.33 0.74 0.62

Shambu -0.13 -0.20 0.35 0.24 0.77 0.65 0.89 0.78

Woreta 0.45 0.61 0.93 0.88 0.59 0.51 0.15 0.04

Yifag 0.51 0.69 0.88 0.96 0.88 0.78 0.50 0.24

Zege 0.32 0.43 0.75 0.83 0.94 0.91 0.78 0.66

Station Name Three months lag Two months lagOne month lagCurrent month

Correlation coefficient at different lag time
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EO-CDIn=0.4×Z-scoren-2+ 0.5×EDIn + 0.1×𝑉𝐶𝐼𝑛                                                              5.11 

where n is the current month   

 

 

Figure 5.11: Seasonal time series plots of drought indices at the Debremarkos station. The 

values of the time series of the drought indices including the VCI were standardized (Z-score).  

The relationship between the EO-CDI and the crop yield anomalies for all the selected stations 

were analyzed. The result obtained at the Debremarkos station (Figure 5.12) is shown in this 

section for further discussion. The relationship between EO-CDI and crop yield anomalies was 

assessed using the coefficient of determination (R2) and the number of points (each representing 

a year between 2001 and 2009) falling in the appropriate quadrant (lower-left and top-right 

quadrants, indicating that both EO-CDI and crop-yield anomaly were negative or positive). 

The resulting plots show that there is an agreement between EO-CDI and crop yield anomalies 

with R2 between 0.29 (Teff) and 0.41 (Sorghum).  The comparison based on the number of 

scatter points falling in the top-right and bottom-left quadrants, shows the best result for Maize, 

with 78% (7 out of 9) of the points in the correct quadrant.  The number of the scatter points 

falling in the top-right and bottom-left quadrant for the other three crops is 6 out of 9 (67%). 

None of the points, regardless of the crop, falls in the upper-left quadrant, indicating that there 

is no negative crop-yield year missed by the EO-CDI. Similar results were observed in the 

other selected stations. This is a better result than presented in Section 4.4.4 for the station-
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based CDI. This shows the potential application and use of the EO-data in developing a drought 

monitoring and early warning framework for the UBN Basin.  

 

Figure 5.12: The scatter plots of the Earth observation based CDI with Barley, Sorghum, Maize 

and Teff crops yield anomalies at the Debremarkos station.   

5.5 Prediction models of crop yield anomalies 

Linear regression equations between the Earth observation based drought index and the four 

crop yield anomalies at the selected eight zones and the corresponding representative stations 

were developed. The result obtained at the Debremarkos station is used for further discussion. 

The resulting regression equations of this station for Teff, Maize, Sorghum and Barley crop 

yield anomalies are shown in equations 5.12 to 5.15. These equations were used to predict each 

crop yield anomaly, and the resulting graph between the observed and predicted values of each 

crop yield anomaly between 2001 and 2009, is shown in Figure 5.13. The prediction accuracy 

of most of the yield anomaly equations is above 0.5 when explained in terms of coefficient of 

correlation. The maximum value of the correlation coefficient was obtained for the Sorghum 

crop (0.64). The mean absolute error (MAE) value for the Sorghum crop is 0.64 (smallest 

among all crops). Lower prediction accuracy is observed for Barley (MAE is 0.84) and Teff 

(0.84). Overall, the model prediction of each crop yield anomaly is not very high but, for such 

a small sample size, can be qualified as satisfactory. Similar results were also observed in the 
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other selected stations. The variation in the magnitude between the observed and predicted crop 

yield anomaly might be attributed to several factors, including the quality and limited length 

of the crop yield data that is aggregated to Zonal average. From the EO data, the remote sensing 

model accuracy for actual evaporation and soil moisture may be an important factor.  

Teff yield anomaly = 0.321 × EO-CDI + 0.06                                                                               5.12 

Maize yield anomaly = 0.359 × EO-CDI + 0.144                                                                         5.13 

Sorghum yield anomaly = 0.56 × EO-CDI + 0.20                                                                       5.14 

Barley yield anomaly = 0.365 × EO-CDI + 0.185                                                                       5.15  

 

Figure 5.13: Predicted vs observed Teff, Maize, Sorghum and Barley crops yield anomaly at 

the Debremarkos station respectively. 

5.6 Conclusions 

In this chapter, the potential of the Earth observation data to assess the historic drought events 

in the UBN Basin, and to develop the combined drought index (EO-CDI) and crop yield 

anomaly prediction models, was assessed. The impact-based CDI optimisation approach 

presented in Chapter 4 was used to develop the EO-CDI.  Three drought indices, Z-score, EDI, 

and VCI, were used to develop the combined drought index and derived crop yield anomaly 

prediction model.  
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The drought indices indicated the historic drought events reasonably well. The spatial and 

temporal patterns and characteristics of the historic drought events were indicated well with 

the Z-score and VCI drought indices. The combined index (EO-CDI) indicated negative or 

positive crop yield anomalies correctly for a majority of the years. The maximum correlation 

coefficient was obtained for Sorghum.  

The years 2009 and 2003/04 were identified as some of the severe drought years in the basin. 

The East and Northeast and Southeast parts are indicated as the drought affected parts of the 

basin. The EO-CDI developed in this chapter showed an improvement in terms of the 

coefficient of determination (R2) and its ability to indicate positive or negative crop-yield 

anomalies. The combined drought index integrates the information embedded in the other 

indices and can be used as a potential index to develop drought monitoring systems in the UBN 

Basin.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

6. Summary, conclusions and recommendations  

6.1 Summary  

The objective of this study was to develop an impact-based combined drought index (CDI) and 

prediction model of crop-yield anomalies for the Upper Blue Nile basin. The impact-based CDI 

is defined in this thesis as a drought index that optimally combines the information embedded 

in other drought indices for monitoring a certain impact of drought (e.g. crop yield).  

First, the influence of record length on the drought category was studied by comparing the 

Standardized Precipitation Index (SPI) results from 14 stations with long record length, when 

taking out incrementally 1-year records from 1953 to 1974. These analyses showed that the 

record length from 1953 to 1974 has limited effect on changing the drought category, and hence 

stations with a shorter record length from 1975 to 2009 could also be used for the drought 

analyses in this is basin. 

A comparison of a range of individual drought indices, i.e. SPI, Standardized Precipitation 

Evaporation Index (SPEI), Evapotranspiration Deficit Index (ETDI), Soil Moisture Deficit 

Index (SMDI), Aggregate Drought Index (ADI), and Standardized Runoff-discharge Index 

(SRI) was carried out using correlation analysis. Their performances were evaluated with 

respect to identifying onset, severity, and duration of historic drought events in the UBN Basin. 

An analysis of the impact of data record length on drought assessment was done first, to select 

the meteorological stations to be included in the analyses. The information on historic drought 

events was obtained from the Emergency Events Database (EM-DAT). 

Developing the impact-based CDI was done through assigning weights to the individual 

drought indices using random search optimisation. The optimisation identified the combination 

of weights with maximum correlation with crop yield anomaly. Crop-yield anomaly data for 

the UBN Basin were obtained from the Central Statistical Agency (CSA) of Ethiopia for the 

period from 1996 to 2009. Four crops common in the basin were considered (i.e. teff, maize, 

barley, and sorghum). The impact-based CDI was compared with a CDI developed with 

Principal Component Analysis.  

Crop-yield anomaly prediction models were developed using multiple linear regression 

equations linking the drought indices and yield anomalies. In these models, crop yield anomaly 

was used as a predictand variable (variable being predicted), whereas the drought indices, 

including both CDI and the selected drought indices, were used as predictor variables.  
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Lastly the same approach for developing an impact-based CDI and crop-yield anomaly models 

was applied using drought indices based on Earth Observation data. EO-based indices included 

the precipitation Z-score, Evaporative Drought Index (EDI) and Vegetation Condition Index 

(VCI). 

6.2  Conclusions 

After analysing and interpreting the results obtained, a number of conclusions can be drawn. 

They are formulated in relation to the specific objectives initially posed. 

 

Investigate the effect of data record length on drought assessment in the UBN Basin, to validate 

the use of meteorological stations with short record length in the drought analysis. 

This specific objective was addressed in Chapter 2. From the results obtained, it can be 

concluded that the influence of record length on SPI drought category was minimal, which 

validates the use of a large number of additional meteorological stations with shorter data 

record lengths for the further drought analyses of the UBN Basin in this thesis.  

 

Investigate the spatial and temporal variation of meteorological droughts in the UBN Basin.  

The spatio-temporal variability of the meteorological droughts, reported in Chapter 2, indicated 

that the North and Northeast parts of the basin were the areas most hit by severe to extreme 

meteorological drought during the historic drought years (1978/79, 1984/85, 1994/95 and 

2003/04). The trend analysis of the SPI index from 1953 to 2009 showed no conclusive 

evidence that the frequency of meteorological drought in the Upper Blue Nile is increasing or 

declining. The temporal analysis showed that the historical drought years in the area were 

successfully captured using SPI index. Therefore, the SPI index can be used as an important 

index to identify droughts in the UBN Basin.  

 

Evaluate and compare the performance of six drought indices, i.e. Standardized Precipitation 

Index (SPI), Standardized Precipitation Evaporation Index (SPEI), Evapotranspiration Deficit 

Index (ETDI), Soil Moisture Deficit Index (SMDI), Aggregate Drought Index (ADI), and 

Standardized Runoff-discharge Index (SRI) with respect to identifying historic drought events 

in the UBN Basin. 

This specific objective was addressed in Chapter 3, and the result obtained led to the general 

conclusion that each index showed its capability to explain at least one drought type to a certain 

degree. However, the SPI and SPEI at the three-month time scale explained better the 
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meteorological and agricultural drought and the same indices at the 12-month time scale 

explained better the hydrological drought conditions in the basin. Moreover, the meteorological 

drought indices (SPI and SPEI) showed the early indication of the drought onset in most of the 

cases. The agricultural (ETDI, SMDI, and ADI) and hydrological (SRI) drought indices 

showed the late onset of the drought; particularly ADI most often lagged with some months. 

The agricultural indices, ETDI, SMDI and ADI, and the runoff-based hydrological drought 

index, SRI, have shown the often hidden aspect of elongated droughts before full recovery. The 

duration of the historic drought events often exceeded 12 months according to at least one of 

the indices. In particular, the SRI indicated long durations, up to 24 months for 1984/1985. 

These longer durations are seen to be likely correct, considering the devastating famine that 

occurred at that time.  

 

Develop an impact-based Combined Drought Index (CDI) with weights optimized to monitor 

crop yield anomalies. 

From the analysis presented in Chapter 4, it can be concluded that the developed impact-based 

CDI correlated well with the crop yield anomalies data of the four crops considered in this 

study: Teff, Barley, Maize and Sorghum. The maximum correlation coefficients were obtained 

for the Barley crop. The CDI using PCA could indicate years with negative crop yield 

anomalies equally well.   

 

Develop a prediction model of crop yield anomalies based on the impact-based CDI and 

individual drought indices. 

The developed regression models of crop yield anomalies generally showed satisfactory 

results, indicating the prediction potential of the impact-based CDI and the drought indices 

(Chapter 4). The best results were obtained for Sorghum. The predicted and observed crop-

yield anomaly data were consistently showing the same trend. However, it should be mentioned 

that the absolute magnitude of anomaly was not always captured, such that the accuracy of the 

models should be further improved.   

 

Assess the potential of an impact-based CDI using Earth Observation data as the main input. 

The Earth Observation-based drought indices were able to indicate well the historic drought 

events that have occurred in the basin (Chapter 5). The spatial and temporal patterns and 

characteristics of the historic drought events were indicated well with the Z-score and VCI 

drought indices. The years 2009 and 2003/04 were identified as some of the severe drought 
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years in the basin, and the East and Northeast and Southeast parts are indicated as the drought 

affected parts of the basin. The developed Earth Observation-based combined drought index 

(EO-CDI), showed its potential to characterize the drought conditions in the basin. The EO-

CDI indicated negative or positive crop yield anomalies correctly for a majority of the years. 

The EO-CDI correlated well with the crop yield anomalies of the four crops. The results 

indicate that the EO-CDI can be considered as a potential index in future drought monitoring 

systems in the basin.  

 

The main objective of developing an impact-based combined drought index (CDI) and 

prediction model of crop-yield anomalies for the Upper Blue Nile basin has been achieved. The 

developed impact-based CDIs and multiple linear regression models have shown to be effective 

tools in indicating historic drought events in the Upper Blue Nile.        

6.3 Recommendations 

Based on the findings of this study, the following major recommendations can be made: 

1. The spatial distributions of the meteorological and hydrological stations are not dense in 

the basin. This influences the accuracy of the spatial representation of the data that 

eventually affects the spatial assessments of drought over the basin. So it is recommended 

to increase the density of the stations, optimally distributed across the basin, for future 

drought management.   

2. In this study, the SWAT hydrological model was calibrated using measured river flow data 

at five gauging stations. However, the simulated evapotranspiration and soil moisture data 

could not be calibrated or validated with in-situ measured ground-truth data. The Earth 

Observation estimates of the evapotranspiration were not validated with ground-truth 

measured data. Hence, it is recommended to install flux towers and soil moisture sensors 

(e.g. SM300, Neutron moisture gauges, and soil resistivity) to measure actual 

evapotranspiration and soil moisture respectively for the future drought studies. Moreover, 

it is recommended to use good quality re-analysis hydro-meteorological data, e.g. GLDAS 

soil moisture, surface energy balance based actual ET (e.g. SEBAL, SEBS) and other ET 

products (e.g. EDDI, ESI) for future studies.   

3. The hydrological model that is used in this study has some degree of uncertainty in the 

model structure and its conceptualization. In general, the model uncertainty would play its 

role to relegate the values of the model estimates of the evapotranspiration and soil moisture 
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and other water balance components. Efforts to minimize the model uncertainties are 

recommended for the future studies.     

4. The method employed to test the influence of record length on drought index results proved 

to be successful in validating the use of a large number of additional stations with a shorter 

record length for spatial drought analysis in the UBN Basin. Hence, we recommend other 

drought researchers and practitioners who face challenges of insufficient record length to 

apply the same method. 

5. The evaluation of the existing drought indices in this study was carried out using drought 

characteristics data (onset date and severity) obtained from a global data source. It is 

recommended to check for availability of measured and local-scale data when adapting the 

same evaluation procedure for other study areas. 

6. The drought indices used in this study explained some aspects of the historic drought events 

such as severity, onset, duration etc. and no single index consistently indicated all the 

historic severe drought years. This triggered the development of a customized CDI for the 

UBN Basin, using all the drought indices tested. For other case studies the result of testing 

multiple drought indices on historic drought events may be different, e.g. only some of the 

indices may manage to explain historic events. It can be therefore, recommended to carry 

out a similar extensive evaluation of existing drought indices when preparing for drought 

monitoring and early warning in a particular study area.  

7. The PCA method for developing CDIs can be further explored, e.g.  by considering the 

percentage contribution instead of directly adopting the Eigenvalues as a weighting factor.  

8. As it was reported, the crop yield data were used to validate the performance of the 

combined drought index and the multiple linear regression model. The crop yield data are 

on the level of Ethiopia's Administrative Zones, which is spatially coarse (3453.4 to 

26206.77km2), and it would be recommended to use at mesoscale (100km2 and less) in 

future drought monitoring work. Moreover, crop yield not only depends on droughts but 

also on other factors, such as the use of fertilizer and pesticides. Hence, considering 

experimental procedures that account not only for the effect of drought on crop production, 

will further increase the level of confidence in the CDI developed.   

9. The EO-CDI also showed its capability to monitor drought in UBN Basin. The availability 

of the EO data in real time can potentially be used to develop a real-time drought monitoring 

system in the future. Moreover, the EO-CDI approach can be used in other locations with 

sparse data networks.  
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10. The temporal scale of the drought assessment in this study was on monthly scale. It would 

be beneficial to test the method developed in this study at a finer temporal resolution 

(dekadal or biweekly). This would help developing an operational drought monitoring 

system and the drought outlook.  

11. The approach of developing an impact-based combined drought index for monitoring crop 

yield anomalies could show the way forward in developing a drought monitoring and early 

warning framework for the Upper Blue Nile basin. Hence, it is recommended to collaborate 

amongst universities, drought monitoring practitioners, and drought and disaster managers 

in the basin as well as government officials, to make the outputs of this research applicable 

in practice.   
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Appendix A: Gamma distribution based SPI calculation. 

The gamma distribution is defined by its frequency or probability density function: 

                                                                                                            2.1 

where α > 0 is the shape parameter, β > 0 is a scale parameter and x > 0 is the amount of 

precipitation.  defines the gamma functions. 

Fitting the distribution to the data requires   being estimated using the approximation 

of Thom for maximum likelihood as stated in Edwards and McKee, (1997) as follows  

                                                                                                                   2.2 

Where, for n observations   

                                                                                                             2.3 

                                                                                                                                             2.4 

 G(x) = Cumulative probability excluding probability of zero precipitation 

G(x)   =                                                                                 2.5 

H(x) = Cumulative Probability including probability of zero precipitation 

                                                                                                          2.6 

q= is the probability of zero precipitation where gamma distribution becomes undefined  

For X=0 and q = p (x=0) (probability of zero precipitation is simply the number of observations 

of zero precipitation divided by the total number of observations). 

To convert cumulative probability to the standard normal random variable Z: 

                             2.7 
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                                 2.8 

where:                                                           2.9 

                                                             2.10 

= 2.515517, = 0.802853, = 0.010328, = 1.432788, = 0.189269,  

3d  = 0.001308 
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Appendix B: Time series of drought indices.  

 

Figure B-1: Time series plot of agricultural drought indices for the area upstream of Abbay at 

Kessie station and downstream of Lake Tana outlet. 

 

Figure B-2: Time series plot of agricultural drought indices for the area upstream of Abbay at 

Ethio-Sudana border and downstream of Kessie station. 
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Figure B-3: Time series plots of the meteorological (SPEI) and hydrological (SRI) drought 

indices at 3 (A), 6 (B) and 12 months (C) time scales for the area upstream of Abbay at Kessie 

station and downstream of Lake Tana outlet.  
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Figure B-4: Time series plots of the meteorological (SPEI) drought index at 3, 6 and 12 months 

time scales for the area upstream of Abbay at Ethio-Sudan border station and downstream of 

Kessie station. 
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Appendix C: Spider web plots of drought indicator results for 

selected stations. 

 

 

 

 

 

Figure C-1: The radar and bar plots show the minimum drought indices values within the crop 

growing period (June to October) and the anomaly of the crop yield of four crops (bar graph) 

at the Bahirdar station. 
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Figure C-2: The radar and bar plots show the minimum drought indices values within the crop 

growing period (June to October) and the anomaly of the crop yield of four crops (bar graph) 

at the Assossa station. 
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Figure C-3: The radar and bar plots show the minimum drought indices values within the crop 

growing period (June to October) and the anomaly of the crop yield of four crops (bar graph) 

at the Debretabor station.  
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Figure C-4: The radar and bar plots show the minimum drought indices values within the crop 

growing period (June to October) and the anomaly of the crop yield of four crops (bar graph) 

at the Debrebirhan station.  
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Figure C-5: The radar and bar plots show the minimum drought indices values within the crop 

growing period (June to October) and the anomaly of the crop yield of four crops (bar graph) 

at the Gidayana station. 
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Figure C-6: The radar and bar plots show the minimum drought indices values within the crop 

growing period (June to October) and the anomaly of the crop yield of four crops (bar graph) 

at the Ambo station. 
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Figure C-7: The radar and bar plots show the minimum drought indices values within the crop 

growing period (June to October) and the anomaly of the crop yield of four crops (bar graph) 

at the Bedele station. 
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Appendix D: Scatter plots of drought indices versus crop yield anomalies. 

 

Figure D-1: Scatter plot of individual drought indices versus the Sorghum crop yield 

anomalies. The CDI-2 was computed using the impact-based approach. 
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Figure D-2: Scatter plot of individual drought indices versus the Maize crop yield anomalies. 

CDI-3 compute using the impact-based approach. 
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Figure D-3: Scatter plot of individual drought indices versus the Teff crop yield anomalies. 

CDI-4 was computed using the impact-based approach. 
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Appendix E: The regression equations developed for the selected eight zones 

and for the four crops.  

 

 

 

 

 

 

 

 

 

 

 

 

Representative 

Stations

Teff  = 0.01*SPI - 0.52*ETDI + 0.07*SMDI + 0.23*SPEI - 0.05*SRI - 0.10    

Maize  = -0.67*SPI - 2.39*ETDI + 1.36*SMDI + 0.78*SPEI + 0.36*SRI - 0.52

Sorghum  = 0.52*SPI + 0.29*ETDI + 0.07*SMDI + 0.16*SPEI + 0.56*SRI + 0.15

Barley  = 0.32*SPI - 0.14*ETDI + 0.37*SMDI + 0.13*SPEI - 0.36*SRI + 0.11

Teff  = 0.27*SPI + 0.285*ETDI - 0.473*SMDI + 0.435*SPEI - 0.083*SRI + 0.479

Maize  = 0.289*SPI + 0.14*ETDI - 0.244*SMDI + 0.0.114*SPEI+0.084*SRI + 0.234

Sorghum  = 0.377*SPI + 0.3144*ETDI - 0.035*SMDI + 0.0.122*SPEI - 0.204*SRI + 0.215

Teff  = 0.416*SPI -0.104*ETDI + 0.933*SMDI + 0.0013SPEI- 0.0784*SRI + 0.033

Maize  = 0.538*SPI -0.36*ETDI + 0.286*SMDI - 0.18SPEI -0.106*SRI + 0.043

Sorghum  = 0.482*SPI -10.19*ETDI + 10.03*SMDI - 0.159*SPEI -0.083*SRI - 0.0556

Barley  = 0.74*SPI -0.82*ETDI + 0.91*SMDI - 0.491*SPEI -0.013*SRI - 0.007

Teff  = 0.006*SPI - 0.828*ETDI + 0.194*SMDI + 0.107*SPEI + 0.399*SRI - 0.059

Maize  = 0.082*SPI - 0.117*ETDI + 0.153*SMDI - 0.023*SPEI + 0.023*SRI - 0.024

Sorghum  = 0.0025*SPI - 0.27*ETDI + 0.082*SMDI - 0.024*SPEI + 0.191*SRI - 0.0283

Teff  = -0.0618*SPI + 0.181*ETDI + 0.201*SMDI - 0.256*SPEI + 0.144*SRI + 0.226

Maize  = -0.375*SPI + 0.123*ETDI + 0.265*SMDI + 0.142*SPEI + 0.143*SRI + 0.307

Sorghum  = -0.33*SPI - 0.00017*ETDI + 0.338*SMDI + 0.693*SPEI - 0.298*SRI + 0.251

Barley  = -0.789*SPI + 0.151*ETDI + 0.242*SMDI + 0.697*SPEI + 0.044*SRI + 0.217

Teff  = 0.313*SPI + 0.512*ETDI - 0.345*SMDI + 0.048*SPEI + 0.21*SRI + 0.324

Maize  = 0.741*SPI + 0.396*ETDI - 0.522*SMDI - 0.228*SPEI + 0.315*SRI - 0.031

Sorghum  = 0.225*SPI + 0.202*ETDI - 0.063*SMDI - 0.096*SPEI + 0.038*SRI + 0.032

Barley  = 0.198*SPI + 0.684*ETDI - 0.231*SMDI + 0.002*SPEI + 0.082*SRI + 0.358

Teff  = 0.266*SPI + 0.209*ETDI + 0.22*SMDI - 0.417*SPEI - 0.078*SRI - 0.069

Maize  = 0.129*SPI + 0.042*ETDI + 0.045*SMDI - 0.132*SPEI + 0.044*SRI + 0.008

Sorghum  = 0.133*SPI - 0.037*ETDI + 0.187*SMDI - 0.158*SPEI + 0.037*SRI - 0.077

Barley  = 0.737*SPI + 0.283*ETDI + 0.155*SMDI - 0.856*SPEI + 0.0041*SRI - 0.088

Maize  = 0.035*SPI + 0.038*ETDI - 0.06*SMDI + 0.0045*SPEI + 0.045*SRI + 0.005

Sorghum  = 0.329*SPI + 0.317*ETDI + 0.504*SMDI - 0.452*SPEI - 0.20*SRI + 0.059

Barley  = 0.0937*SPI + 0.541*ETDI + 0.023*SMDI - 0.181*SPEI + 0.0012*SRI + 0.199

North Shoa Debrebirhan

East Wellega Gidayana

West Shoa Ambo

North Gondar Gondar

Assossa Assossa

South Gondar Debretabor

Zones Name Crops Regression Equations

East Gojjam Debremarkos

West Gojjam Bahirdar
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Samenvatting  

Droogte is een indringende natuurramp die zich langzaam ontwikkelt en een groot gebied treft. 

In tegenstelling tot andere natuurrampen zoals overstromingen en tornado’s, manifesteren de 

gevolgen van droogte zich niet direct. Dit maakt het moeilijker om droogte te monitoren en 

negatieve effecten tegen te gaan door er in een vroeg stadium voor te waarschuwen.  

Er bestaan verschillende indices voor droogtemonitoring. Op zichzelf kan een dergelijke index 

geen geïntegreerd beeld geven van zowel meteorologische, agrarische, als hydrologische 

droogtes. Een gecombineerde index (Combined Drought Index: CDI) waarin deze 

verschillende aspecten worden gecombineerd kan de verschillende typen droogte wel 

identificeren, en zo bruikbare informatie verschaffen ter ondersteuning van beslissingen over 

beheersmaatregelen. Daarnaast kan de ontwikkeling van een CDI zich toespitsen op een 

specifiek gevolg van droogte, bijvoorbeeld door de CDI te optimaliseren voor het monitoren 

van aan droogte gerelateerde vermindering van gewasopbrengst. In veel ontwikkelingslanden 

is de economie in grote mate afhankelijk van de landbouwproductie. Het ontwikkelen van 

methoden voor het monitoren en voorspellen van gewasopbrengst is zodoende voor deze 

landen van groot belang voor het bevorderen van economische groei. 

In Ethiopië is droogte een regelmatig terugkerend verschijnsel. In de afgelopen eeuwen 

kwamen meer dan 30 droogtes voor, waarvan er 13 ernstig waren en het hele land (en 

buurlanden) troffen. Sommige studies laten zien dat de laatste decennia de frequentie waarmee 

droogte voorkomt in Ethiopië is toegenomen. Sinds 1970 is Ethiopië gemiddeld eens in de 10 

jaar getroffen door ernstige droogte. Landbouw, de sector die meer dan 50% van het bruto 

nationaal product levert, is erg gevoelig voor droogte. De meeste landbouw in Ethiopië vindt 

plaats zonder beregening en is daarom voor een groot deel afhankelijk van de hoeveelheid en 

spreiding van jaarlijkse natuurlijke neerslag. Een tekort in jaarlijkse neerslag is vaak de 

voornaamste oorzaak van het optreden van droogte en heeft een afname van gewasopbrengst 

tot gevolg. Voor het verminderen van de negatieve gevolgen van droogte in Ethiopië, is de 

ontwikkeling van een robuust systeem voor droogtemonitoring cruciaal. Een dergelijk systeem 

ontbreekt nog altijd voor Ethiopië en in het bijzonder voor het stroomgebied van de Upper Blue 

Nile (UBN). Voor het UBN gebied is nog relatief weinig droogteonderzoek gedaan en er is 

geen gebiedsspecifiek droogtemonitoringssysteem, terwijl dit deelstroomgebied 60% van de 

totale hoeveelheid water aan de hoofdrivier van de Nijl bijdraagt. Daarom is de 

hoofddoelstelling van dit onderzoek een 'impact-based' gecombineerde droogte-index (impact-

based CDI) en voorspellingsmodel te ontwikkelen voor afwijkende gewasopbrengsten in het 
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UBN stroomgebied. Onder een impact-based CDI wordt hier verstaan een index die de 

informatie in andere indices optimaal combineert voor het monitoren van een bepaald gevolg 

van droogte (in dit geval gewasopbrengst). 

Om de hoofddoelstelling voor de UBN praktijkstudie te bereiken, moeten er drie terugkerende 

uitdagingen in het vakgebied van droogtemonitoring worden aangepakt. Ten eerste hebben 

verschillende meteorologische stations in het gebied een relatief korte meetreeks (minder dan 

35 jaar). Het is daarom belangrijk het effect van de lengte van meetreeksen op beoordeling van 

droogtes te onderzoeken, om te kunnen beslissen of ook de stations met kortere meetreeksen 

gebruikt kunnen worden voor de analyse van temporele en ruimtelijke karakteristieken van 

droogtes in het gebied. De tweede uitdaging is dat er nog maar weinig studies zijn gepubliceerd 

over CDI’s waarbij de gewichten van de individuele indices worden geoptimaliseerd. De 

meeste methodes voor CDI gebruiken 'expert-based' of subjectieve gronden voor het toekennen 

van gewichten, of passen een sequentiële ordening toe van de individuele indices. Er is grond 

voor het verder ontwikkelen en testen van nieuwe CDI’s. De derde uitdaging betreft 

droogtemonitoring in gebieden met weinig of geen meetgegevens. Het potentieel van een CDI 

die voornamelijk gebruik maakt van satellietgegevens moet worden bepaald. Om deze 

uitdagingen aan te pakken voor het UBN gebied waren de volgende deeldoelstellingen 

opgesteld: 

 Onderzoek het effect van observatieperiode op de analyse van droogte in het UBN 

gebied, om het gebruik van meetstations met een relatief korte observatieperiode in het 

onderzoek te valideren of af te keuren 

 Onderzoek de temporele en ruimtelijke variatie van meteorologische droogtes in het 

UBN gebied 

 Evalueer en vergelijk de prestaties van zes individuele droogte-indices (Standardized 

Precipitation Index (SPI), Standardized Precipitation Evaporation Index (SPEI), 

Evapotranspiration Deficit Index (ETDI), Soil Moisture Deficit Index (SMDI), 

Aggregate Drought Index (ADI), en Standardized Runoff-discharge Index (SRI)) voor 

het identificeren van historische droogtes in het UBN gebied  

 Ontwikkel een impact-based CDI met de gewichten van de individuele indices 

geoptimaliseerd voor het monitoren van afwijkende gewasopbrengsten 

 Ontwikkel een voorspellingsmodel voor afwijkende gewasopbrengsten, op basis van 

de impact-based CDI en individuele droogte-indices 
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 Onderzoek het potentieel van een CDI die voornamelijk satellietgegevens als input 

gebruikt. 

De methodologie van dit onderzoek omvatte verschillende data analyse, statistische, 

optimalisatie en modelleringtechnieken, zoals beschreven in de volgende stappen:  

1. Voor het analyseren van het effect van de lengte van observatieperiode op 

droogteanalyse, is de SPI berekend (voor het identificeren van meteorologische 

droogtes) voor beschikbare meteorologische stations in het UBN gebied. De 

observatieperiode van de meeste van deze stations is relatief kort, van 1975 t/m 2009. 

Slechts 14 stations hebben een langere meetreeks, van 1953 t/m 2009. Met de stations 

met een lange meetreeks zijn twee experimenten uitgevoerd met het weglaten van 

gegevens. Bij het eerste experiment werd vanaf 1953 steeds 1 extra jaar aan data 

weggelaten en opnieuw de SPI berekend, tot aan het jaar 1974 (vanaf dat jaar hebben 

de meeste stations gegevens beschikbaar). De resulterende SPI waarden voor droogtes 

in de periode 1975-2009 werden vervolgens met elkaar vergeleken om vast te stellen 

of dezelfde droogtecatagorieën werden aangegeven of niet. Om de gevoeligheid van de 

resultaten op de specifieke observatieperiode te analyseren, zijn bij het tweede 

experiment gegevens achtergehouden uit de periode 1970-1988. 

2. Temporele en ruimtelijke analyse van meteorologische droogtes in het UBN gebied is 

uitgevoerd op basis van SPI 

3. Het vergelijken van een verscheidenheid aan individuele droogte indices (SPI, SPEI, 

ETDI, SMDI, ADI, en SRI) is uitgevoerd op basis van correlatie-analyse. De werking 

van de verschillende indices is beoordeeld op basis van de effectiviteit in het bepalen 

van aanvang, ernst en duur van historische droogtes. De informatie over historische 

droogtes was afkomstig van de Emergency Events Database (EM-DAT).  

4. De CDI’s zijn ontwikkeld door het toekennen van gewichten aan individuele indices 

met twee objectieve methodes: 'Principal Component Analysis (PCA)' en optimalisatie 

met 'impact-based random search'. Bij PCA worden de indices gecombineerd door de 

onderlinge correlatie-coëfficiënt matrix te bepalen en vervolgens de eigenwaarden te 

berekenen als basis voor het gewicht van elke individuele index in de CDI. Voor de 

random search optimalisatie zijn meer dan 60.000 iteraties toegepast om de combinatie 

van gewichten van indices te vinden die de maximale correlatie opleveren van de CDI 

met afwijkende gewasopbrengst (anomalie). Gewasopbrengst gegevens voor het UBN 
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gebied zijn beschikbaar gesteld door het Central Statistical Agency (CSA) van Ethiopië 

voor de periode van 1996 t/m 2009. Het UBN gebied is onderverdeeld in 16 

administratieve zones. De jaarlijkse gewasopbrengst per zone is gebruikt in het 

onderzoek. Gewasopbrengst is het resultaat van een combinatie van weer, beleid, en 

toegepaste landbouwtechnieken. Om alleen het effect van het weer mee te laten wegen, 

is 'detrending' analyse toegepast op de gewasopbrengstgegevens. In het onderzoek zijn 

vier veel in het UBN gebied verbouwde gewassen meegenomen: teff, maïs, gerst en 

sorghum. De resulterende CDI’s van de twee verschillende objectieve methodes zijn 

met elkaar vergeleken. 

5. Voorspellingsmodellen voor anomalieën in gewasopbrengst zijn ontwikkeld op basis 

van meerdere lineaire regressievergelijkingen tussen de droogte-indices en 

gewasopbrengst anomalieën van teff, maïs, gerst en sorghum. In deze modellen is 

gewasopbrengst-anomalie gebruikt als de 'predictand' (te voorspellen variabele), en de 

impact-based CDI en de zes individuele indices zijn gebruikt als 'predictor' 

(voorspellende) variabelen. De resultaten van het model gebaseerd op de CDI, zijn 

vergeleken met het model dat de individuele indices als 'predictors' gebruikt. 

6. Met dezelfde technieken als beschreven in stap 3 en 4, zijn een impact-based CDI en 

modellen voor gewasopbrengst anomalieën ontwikkeld die alleen droogte-indices 

gebruiken die voornamelijk satellietgegevens als input nodig hebben. De gebruikte 

droogte-indices zijn Precipitation Z-score, Evaporative Drought Index (EDI) en 

Vegetation Condition Index (VCI). De Z-scores zijn uitgerekend met raster neerslag 

data van de Climate Hazards Group Infrared Precipitation with Stations (CHIRPS). 

Voor de EDI-berekening zijn de MODIS ET gegevens als voornaamste input gebruikt. 

De VCI is berekend op basis van de Normalized Difference Vegetation Index (NDVI). 

De CDI met deze individuele indices op basis van satellietgegevens is ontwikkeld met 

alleen de impact-based optimalisatie benadering.  

De volgende paragrafen behandelen de resultaten van de bovenstaande onderzoeksstappen. 

De analyses van het effect van lengte van observatieperiode lieten zien dat de gegevens van de 

periode 1953 t/m 1974 weinig invloed hebben op de kwalificatie van droogtes in de periode 

1975-2009 (beschikbaar voor de meeste meteorologische stations in het UBN gebied). Daarom 

zijn voor de droogte-analyses in deze dissertatie beide groepen beschikbare stations gebruikt 

(met korte en lange observatieperiode). 
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De temporele en ruimtelijke analyses van SPI-waarden lieten zien dat in het hele UBN gebied 

meteorologische droogtes van een seizoen of een jaar voorkwamen in de jaren 1978/79, 

1984/85, 1994/95 en 2003/04. Ook is persistentie van seizoen tot jaar, en van jaar tot jaar, van 

sommige droogtes vastgesteld. De jaren met droogte in het UBN gebied zoals geïdentificeerd 

met de SPI-analyse, zijn bekend als jaren van droogte met desastreuze gevolgen in andere 

gebieden in Ethiopië. 

De analyse van de effectiviteit van SPI, SPEI, ETDI, SMDI, ADI, en SRI in het bepalen van 

de aanvang, ernst en duur van de meest extreme historische droogtes, van 1978/79, 1984/85, 

1994/95 en 2003/04, leidde tot de volgende observaties: 

 SPEI liet voor de korte tijdschalen (3 en 6 maanden) te veel fluctuatie zien tussen 

droogte en normale condities 

 SRI liet, in verhouding tot de andere indices, de minste fluctuatie zien tussen droge en 

natte omstandigheden  

 De vergelijking voor wat betreft het bepalen van de aanvang van de vier historische 

droogtes liet zien dat in vergelijking tot de start als aangegeven door EMDAT, SPI en 

SPEI meestal de aanvang eerder inschatten, terwijl ETDI, SMDI, ADI, en SRI een 

latere aanvang aangaven.  

 De meerderheid van de indices gaf de ernst en duur van de historische droogtes weer 

(bijvoorbeedld voor 2003-2004 en 1984-1985) 

 Geen van de zes indices identificeerde op zichzelf de aanvang van alle vier de 

geanalyseerde historische droogtes. 

Dit bevestigde het nut van de vierde deeldoelstelling van dit onderzoek: het ontwikkelen van 

een impact-based CDI met geoptimaliseerde gewichten van de individuele droogte-indices. 

De ontwikkelde impact-based CDI liet een goede correlatie zien met de gewasopbrengst 

anomalieën van de vier gewassen die in deze studie in beschouwing zijn genomen: teff, gerst, 

maïs en sorghum. De CDI ontwikkeld met PCA identificeerde jaren met negatieve 

gewasopbrengst-anomalieën even goed als de impact-based CDI. De maximale correlatie (0.7) 

was verkregen voor gerst met de impact-based CDI. De resultaten met de ontwikkelde 

voorspellingsmodellen voor de opbrengstanomalieën van de vier gewassen zijn bemoedigend. 

De voorspellingsnauwkeurigheid (uitgedrukt in ‘r-squared’ waarden, R2) voor de meeste 

gewasopbrengstanomalieën was 0.24 of meer voor alle administratieve zones. De maximale R2 

waarde werd verkregen voor gerst (R2 = 0.77) en de laagste waarde voor maïs (R2=0.24).  
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Over het algemeen zijn de patronen van voorspelde en waargenomen gewasopbrengst 

anomalieën vergelijkbaar, behalve wat betreft de verschillen in de grootte van anomalieën in 

sommige jaren. De verschillen in grootte kunnen aan verscheidene factoren worden 

toegeschreven, met name aan de aggregatie van de gerapporteerde gewasopbrengst tot 

gemiddelde voor een administratieve zone, en de nauwkeurigheid van de 

gewasopbrengstgegevens. Vervolgonderzoek zal nodig zijn om meer robuuste 

voorspellingsmodellen voor gewasopbrengst-anomalieën te ontwikkelen op basis van meer 

locatie-specifieke informatie. 

Tot slot van dit onderzoek is een CDI ontwikkeld met dezelfde impact-based methode, maar 

dan met satellietgegevens als voornaamste input (EO-CDI). Dit deel van het onderzoek beslaat 

de periode van 2001 t/m 2009, en de opgetreden droogtes in deze periode zijn geanalyseerd. 

De resultaten laten zien dat de drie individuele indices (Z-score, EDI, en VCI) de historische 

droogtejaren en droogtegevoelige delen van het UBN gebied identificeren en karakteriseren. 

Voor de meerderheid van meteorologische stations (72%) werd een verschuiving van 2 

maanden waargenomen tussen maximale neerslag en VCI. Een relatief groot gewicht werd in 

de CDI toegekend aan EDI (0.5) en aan Z-score (0.4). De EO-CDI liet een goede correlatie met 

gewasopbrengst-anomalieën zien voor alle vier de gewassen, met een maximale 

correlatiecoëfficiënt van 0.8 voor sorghum.  

Samenvattend is er voor het eerst een uitgebreide evaluatie van bestaande droogte-indices 

uitgevoerd voor het deelstroomgebied van de Upper Blue Nile, door historische droogtes te 

karakteriseren en analyseren. Dit bevestigt dat ook het UBN gebied in het verleden met droogte 

te kampen heeft gehad en dat daarom uitgebreid droogteonderzoek en droogte monitoring in 

het gebied nodig is. De ontwikkelde impact-based CDI's en 'multiple linear regression' 

modellen hebben laten zien effectief te zijn in het identificeren van historische droogtes in het 

UBN gebied. De impact-based CDI kan mogelijk worden gebruikt bij de toekomstige 

ontwikkeling van een systeem voor droogtemonitoring in het UBN gebied voor 

beslissingsondersteuning ter vermindering van de negatieve gevolgen van droogte. 

Dezelfde benadering van het ontwikkelen van een impact-based CDI, geoptimaliseerd voor een 

bepaald (deelstroom) gebied, kan worden toegepast voor andere regio's in Ethiopië. De analyse 

die is toegepast om het effect van de lengte van meetperiode op SPI droogte-kwalificatie vast 

te stellen, bleek een succesvolle manier om het gebruik te valideren van een groot aantal 

meteorologische stations met kortere meetperiode bij ruimtelijke droogteanalyse in het UBN 
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gebied. Deze benadering kan worden toegepast op andere gebieden waar droogte-onderzoek 

wordt gelimiteerd door ontoereikende meetperioden. 

De resultaten van de EO-CDI laten zien dat satellietgegevens kunnen worden gebruikt als 

alternatieve informatiebron voor droogtemonitoring in gebieden met weinig of geen 

meetstations, zoals het UBN gebied. Daarnaast lenen satellietgegevens zich voor het 

ontwikkelen van een ‘grid-based’ (raster) CDI, hetgeen belangrijk is voor het analyseren van 

ruimtelijke details van droogtes. Dit zal onderwerp zijn van onze toekomstige studies. De 

evaluatie van bestaande droogte-indices is in deze studie uitgevoerd op basis van gegevens van 

historische droogtes (aanvang en ernst) afkomstig van een bron in mondiale schaal. Bij het 

toepassen van dezelfde evaluatieprocedure op andere gebieden verdient het aanbeveling om 

beschikbaarheid na te gaan van gegevens op lokale schaal. 
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