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Radar-guided Monocular Depth Estimation and
Point Cloud Fusion for 3D Road User Detection

Srimannarayana Baratam1

Abstract—Multi-class road user detection using the next-
generation, 3+1D (range, azimuth, elevation, and Doppler) radars
has been shown feasible, thanks to the increased density of
their point clouds and the inclusion of elevation information.
However, object detection networks using LiDAR (64-layer) point
clouds still dominate the performance metrics. In this work, we
explore the potential of fusing a 3+1D radar point cloud and
a monocular image to further close this performance gap in
3D object detection. We propose a generic and modular fusion
architecture to extract both spatial and semantic cues from a
RGB image to complement the radar point cloud. In a two stage
approach, we first generate a 3D point cloud representation of
the input monocular image appended with semantic information
through our proposed RAID (RAdar guided Instance-aware
Depth) network, which takes monocular depth map and panoptic
masks predicted from any pre-trained state-of-the-art networks,
and a radar depth map as input. We then append the resulting
point cloud to the 3+1D radar point cloud in a straightforward
fusion scheme and train a point cloud based object detection
network.

Results on the View-of-Delft dataset [1] show that our fusion
approach significantly outperforms multiple state of the art
radar-camera fusion methods (proposed fusion vs. best baseline:
53.6 mAP vs. 50.8 mAP), and yields comparable performance to
a network trained on LiDAR input when evaluated in the safety
critical driving corridor (80.5 mAP vs. 81.6 mAP).

I. INTRODUCTION
Detection of the most common road users - pedestrians, cy-

clists and cars - is critical for autonomous driving. LiDAR has
dominated camera and radar sensors for 3D object detection in
research to date, but its commercial adoption is limited from
the perspective of price and integration within stock vehicles.

The performance gap of radar or camera based networks
compared to those using LiDAR input is mostly due to
insufficient information: while monocular camera images are
rich in semantics and texture, they lack depth information [2],
[3]. On the other hand, point clouds from conventional 2+1D
(range, azimuth, 1D refers to Doppler) radars provide excellent
range measurements but are often claimed too sparse for object
classification [4], [5] and precise 3D bounding box regression
[1].

The complementary properties of camera and radar sensors
are often recognized in the literature [6], [7], [8]. Although it
would be a highly cost effective [9] sensor setup, the fusion of
radar and camera sensors for the task of 3D multi-class object
detection still falls behind in performance when compared to
networks relying on high-end LiDARs [10]. This is partly due
to the aforementioned information gap and partly because the
lack of elevation information in radar point cloud further acts
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Fig. 1: High-level overview of our proposed two-stage fusion
approach for 3+1D radar point clouds and monocular images.
We first generate a point cloud representation of the image
using radar depth cues via our novel “RAID” network in
Stage-1. In the next stage, we append it to the list of radar
points, and pass the resulting fused point cloud as input to
a 3D point cloud object detection network. An instance of
a cyclist is highlighted with orange boxes both in the inputs
(camera image, radar point cloud) and in the output (painted
point cloud) of RAID. In the RAID point cloud image, cyclist,
car and pedestrian are painted in green, yellow and blue here
for the purpose of illustration.

as a bottleneck in learning the association between radar points
and camera pixels [7], [11].

Next generation, 3+1D automotive radars may help to
overcome these limitations. Unlike 2+1D radars, they have
three spatial dimensions: range, azimuth, elevation along with
Doppler as a fourth dimension, and also tend to provide a
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denser point cloud. With the additional elevation information
and increased density, these radars may be better suited for
fusion with monocular camera images for multi-class 3D
object detection.

Recently, [1] introduced a multi-modal dataset called the
“View-of-Delft” (VoD) featuring a 3+1D radar, a 64-layer
LiDAR and a high definition stereo-camera. Prior to this work,
“Astyx” [12] was the only dataset (∼ 550 frames) using a
3+1D radar sensor. Limited literature on fusion between 3+1D
radar point cloud and camera can thus be attributed also to the
lack of datasets featuring such radar point clouds.

Research on fusion of 3D point clouds and camera im-
ages has been largely focused around LiDAR-camera fusion,
where the camera image is either used to extract semantic
information [13], [14] and/or proposals [15], while relying
heavily on LiDAR for 3D geometric/spatial cues. However,
this approach cannot be directly extended to 3+1D automotive
radars because the density of radar point clouds is lower than
LiDAR point clouds. Also radar does not capture sufficient
object delineation even after accumulating multiple scans.
Availability of the radar points on static instances is further
limited compared to dynamic instances since they cannot be
resolved along the Doppler dimension.

Recent works [16], [17] on LiDAR-camera fusion argue that
detection performance is degraded for distant objects with few
LiDAR points even though these instances are clearly seen
and detected in the camera image (e.g., via semantic masks).
Thus, they propose to lift image pixels into 3D space to extract
spatial cues along with semantic cues, even though their
downstream detection pipelines are different. We recognize the
similarity of this problem statement to our task and propose
to move in a similar direction i.e., to fuse monocular image
with the radar point cloud by re-projecting the pixels into 3D
space using depth.

We therefore address the task of road user detection us-
ing a 3+1D radar and a monocular camera in a two-stage
approach. First, in a novel, modular and task-aware method
called “RAID” (RAdar guided Instance-aware Depth), the
representation of monocular images is changed into painted
point clouds using radar depth cues. In this stage, we exploit
state-of-the-art monocular depth estimation and panoptic seg-
mentation networks pre-trained on existing large uni-modal
datasets in a modular way to predict dense depth required to
re-project pixels into 3D space. In the next stage, the obtained
painted point cloud is concatenated with radar point cloud for
the downstream multi-class 3D object detection task. More
specifically, the fused point cloud is passed as input to a state-
of-the-art object detector (PointPillars [18]) for 3D bounding
box inference. In contrast to the “end-to-end” object detection
network paradigm [19] (i.e., training a single deep neural
network from scratch with point clouds and/or images as input
and detections as output), where large, fully annotated multi-
sensor datasets are needed, our proposed method exploits both
uni-modal research and datasets to alleviate this concern.

II. RELATED WORK

A. Monocular camera

There are two main paradigms in the literature on 3D
object detection with a monocular camera - one approach is
to first solve for dense (i.e. for all pixels in the image) depth
[20], [21], [22] either by using off-the-shelf monocular depth
estimation networks like [23], [24], [25] or by proposing a
new approach to deal with depth [20], [26], [27]. Alternatively,
researchers also use geometric priors as in [28], [29] to rather
resolve depth at the object instance level. In [2], [3], the
authors demonstrate that object depth estimation is the limiting
factor for monocular 3D object detection performance; they
replace predictions with ground truth values for depth, orien-
tation, offset, etc and observe that an accurate depth can bring
significant performance improvement. Monocular camera only
3D object detection methods are still inferior in benchmarking
performance compared to LiDAR based networks.

Estimation of depth per-pixel is often formulated as a
regression problem in continuous space [30], [31], [32], [33].
In more recent approaches however, researchers choose to
formulate the prediction of depth map as a classification or or-
dinal regression problem [24], [34], [35] instead of a classical
regression problem. In other words, depth is discretized into
bins (i.e., set of intervals along the depth dimension) rather
than treating it a continuous variable. [34] argues that ground
truth depth value cannot be exactly regressed with image input
and a bin/range based prediction relaxes this constraint. [24]
further argues that regression methods are slow in convergence
and incur high computational cost.

Researchers also used additional instance information to
improve image reconstruction loss [36], or to train separate
branches to estimate the depth of foreground and background
pixels separately [26] in the literature. Alternatively, some
methods [37] [38], [39], [40] also jointly perform monocular
depth estimation and semantic segmentation to achieve state-
of-the-art results in the respective tasks. Nevertheless, none of
the found methods used instance segmentation masks as input
to the depth prediction network during inference.

B. Radar-camera fusion

While fusion of radar and mono-camera has been performed
for 3D perception tasks such as 3D object detection [6] and
depth estimation [11], [41], [42], most radar-camera fusion
research so far involved a 2+1D radar that lacks elevation
information and provides a sparse radar point cloud output.
Therefore, radar-camera fusion networks addressing object
localization [43], [44] and detection tasks [7], [45], [46] are
mostly limited to 2D space - either in bird’s-eye-view or image
plane. To improve the density of radar signal when projected to
image plane, researchers even extrapolated radar targets into
vertical pillars [7] or circles [11]. While these extrapolation
methods are non-complex in implementation, they are prone
to propagating noise due to strong underlying assumptions,
e.g, if a radar point corresponds to reflection on a pedestrian
in the foreground, extrapolating it in a vertical pillar would
propagate this depth cue to a background object like a pole or
a wall. While works like [11] propose a more advanced way
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to tackle the lack of elevation information, it still remains a
bottleneck in effectively propagating depth.

Unlike depth completion using LiDAR and monocular cam-
era where sufficient depth cues are provided from LiDAR
alone to predict dense depth [47], the task is non-trivial to
perform in the context of radar point cloud due to sparsity
and noise. In radar-camera based depth estimation research,
pre-processing of the radar point cloud is usually aimed at
three challenges: handling radar points occluded by foreground
objects, removing noisy/outlier points, and finally, improv-
ing point cloud density. For example, [11] first learns an
association between radar points and camera pixels using
LiDAR depth as supervision signal which implicitly filters
the occluded radar points. On the other hand, [41], [42] use
an iterative depth prediction approach. First, a “raw” dense
depth is estimated to filter the radar point cloud which is then
used to further “refine” the depth prediction in the subsequent
stage. However, there is no discussion on “trails” that occur in
radar point cloud accumulated over multiple scans for dynamic
objects (refer to Appendix section A). Further, these works use
2+1D radar point cloud and also lack research on the feasibility
of the predicted depth maps for downstream perception tasks
like 3D object detection.

Next generation automotive radars provide elevation in-
formation and denser point clouds. [48] is the only 3+1D
radar-camera fusion attempt in literature so far where the
authors directly adopt the AVOD network from LiDAR-camera
fusion domain for 3D object detection. Also, the authors
experimented on a single class (car) detection alone and did
not use Doppler information which can help improve the
object detection performance as shown in [1].

C. LiDAR-camera fusion
In the context of fusion between LiDAR and camera sensors

for 3D object detection, multiple paradigms have emerged
producing state-of-the-art results in 3D object detection.

Researchers, in early attempts, gave a “regular/grid-like”
representation to LiDAR point cloud by projecting it directly
onto the horizontal/ground plane to generate “bird’s-eye-view
(BEV) image” [49], [50] and/or image plane to generate a
“sparse depth image/perspective-view image” [51], [52] of the
environment. This allowed them to apply 2D image processing
backbones to extract features from LiDAR point cloud along
with deep features from the input RGB image using another
image backbone network in a parallel stream. In [51], [52],
proposals are generated from BEV stream to perform RoI
(Region of Interest) pooling of the generated features for
downstream fusion. [49] follows an iterative approach where
the network uses an anchor grid to crop and fuse these multi-
view features to generate proposals. These proposals are again
used to aggregate features for final prediction of objects.
Alternatively, [50] uses “continuous fusion layers” to pass on
deep features from camera stream to LiDAR stream in a uni-
directional way. With the exception of [52] where dense depth
completion is also performed to learn pixel-wise feature fusion
between the two streams, these view-based feature aggregation
methods generally extract semantic features and shape cues
from input image, while relying on LiDAR for 3D information.

In an intuitive approach, some methods use 2D detections
inferred from the monocular image to “extract” the corre-
sponding LiDAR point subset by either projecting the point
cloud onto the image plane [53] or extend the 2D bounding
box into the 3D space forming a frustum [15], [54], [55]. In
a sequential approach, the extracted point cloud is then used
to regress a 3D bounding box. If an object is not detected
in 2D image domain, no query is passed to the downstream
point cloud network to detect an object in 3D. Further, this
approach assumes availability of 3D targets/points within the
extended frustum.

A more recent paradigm in LiDAR-camera fusion is
to “paint” the LiDAR points with image based semantic
features/masks. The association between 2D semantic fea-
tures/masks and 3D LiDAR point cloud is usually done by
projecting the points onto the image plane. [13], [14], [56]
use an off-the-shelf image segmentation network to generate
semantic masks and append the class information to the cor-
responding LiDAR points along the feature dimension. Alter-
natively, [57], [58] argue that painting the LiDAR points with
semantic features is better than just appending class scores,
i.e., instead of adding a class encoding to the point, they
append a vector of features. Methods following this painting
approach currently lead the NuScenes [10] 3D object detection
benchmark. However, this approach assumes availability of
sufficient points to “pick” the semantic cues from the image.

Lifting image pixels (i.e., re-projecting) into 3D space as
seen in [16], [17], [59] is often done when the LiDAR points
are sparse either at a scene level [59] or at instance level
[16], [17] irrespective of the downstream perception task. In
[16], [17], authors also append semantic information to the re-
projected pixels, thereby propagating both spatial and semantic
cues from the camera image to 3D space. Among all the
LiDAR-camera fusion paradigms, object detection with highly
sparse point cloud and monocular image is addressed only in
this approach.

Except for the networks that lift monocular images into
3D space i.e., re-project pixels into 3D, all other approaches
typically exploit only semantic features from the image, while
relying significantly on LiDAR for geometric/spatial cues.
However, in the quest to fuse 3+1D Radar with camera image,
this may not be effective as a 3+1D radar point cloud is
significantly sparser, and unlike LiDAR, the radar targets
are not uniformly spread throughout the image plane when
projected. Furthermore, for stationary instances of classes like
standing/sitting pedestrians, radar points may not be always
available.

Our main contributions are as follows:
1) We introduce a novel, modular, and multi-level fusion

architecture for 3+1D radar and monocular camera-
based 3D object detection. It creates a point-cloud rep-
resentation of the camera image via radar-guided depth
estimation to address a downstream object detection task
for the first time in research.

2) To demonstrate the capability of our proposed fusion
approach, we perform extensive experiments on the
View-of-Delft dataset. Results show that our method out-
performs the state-of-the-art approach for radar-camera
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fusion and yield comparable performance to detections
from state-of-the-art LiDAR and LiDAR-camera fusion
networks in the driving corridor (Our Method vs. LiDAR
vs. LiDAR-camera fusion: 80.5 mAP vs. 81.6 mAP vs.
85.3 mAP).

III. METHODOLOGY

A. Overview

Synchronized, calibrated, and annotated datasets featuring
specific sensor combinations of interest are highly limited in
dataset size and label types (bounding boxes, dense depth,
semantic masks, etc.) compared to uni-modal datasets. End-
to-end network paradigms for sensor fusion often suffer from
this bottleneck. We argue that a modular approach can help
alleviate this problem and therefore we present a two-stage
solution to fuse a radar point cloud and a monocular image
for 3D object detection as illustrated in Figure 2. In Stage-
1 (subsection III-B), we generate a sparse depth map from a
3+1D radar point cloud, a monocular depth map, and panoptic
masks from a single-frame RGB image. We propose a cross-
sensor supervised depth refinement network to take these
inputs and predict a metric depth map , then lift the image
pixels into a semantic painted point cloud. In the subsequent
Stage-2 (subsection III-C), this point cloud is fused again
with the radar point cloud in a simple yet effective approach.
Any state-of-the-art point cloud-based 3D object detection
network can be trained on the fused point cloud, supervised
by annotated labels.

B. Stage-1: RAID

Ground-truth signal: A high-end LiDAR sensor is capa-
ble of returning highly accurate 3D points representing the
surroundings with a density sufficient enough to act as a
supervising signal for dense depth estimation. In a “cross-
modal” supervision scheme, we use the 3D LiDAR points
projected onto the image plane as ground truth for our net-
work. This, therefore, avoids the need for manual annotation
since it is both expensive and laborious. However, due to the
commonly observed setup of LiDAR atop the roof of an ego-
vehicle, “conflict of depth” arises within instance masks from
the camera perspective as shown in Appendix Figure 9. It
results in a noisy supervision signal if not addressed. Hence,
we apply two filtering techniques to mitigate this problem so
that LiDAR points only visible from the camera perspective
provide ground truth signals. First, a 2D kernel filter looks for
depth conflicts in z-order by sliding through the depth map
generated from LiDAR and ensures that only fore-most points
are retained. Subsequently, for points falling on each instance
mask (of interested class), DBSCAN filtering is implemented
in 3D space to remove the background points. Specifically,
background points that are visible to the LiDAR but not to
the camera, as the object occludes them, are removed. See
Appendix section B for further details.

Input radar point cloud pre-processing: A sparse image
with depth, compensated Doppler and RCS values as channels
is generated by projecting radar point cloud accumulated over
five scans after ego-motion compensation onto the image

plane. However, due to phenomenon like object trails in
accumulation of scans and multi-path propagation, radar point
clouds cannot be projected onto the image plane directly for
providing depth cues. In order to ensure that only reliable radar
depth cues are passed as an input signal and also improve
the density of radar point cloud, we propose a sequential
combination of pre-processing steps for the accumulated point
cloud. Specifically, “target propagation” to deal with the object
“trails”, ”spatial-temporal filtering” to remove noisy targets in
a voting based method, and finally “sensor aware re-sampling”
and “vertical sampling” to improve the density of radar point
cloud.

Detailed explanation of these steps are provided in Ap-
pendix section A. Since the radar point cloud is accumulated
over multiple scans, conflict of depth arises here too as each
scan presents a view from different spatial locations (assuming
that the ego-vehicle is moving in between the scans). Hence,
kernel and DBSCAN filters are also applied to the radar sparse
depth map.

Input image pre-processing: Unlike depth completion using
LiDAR point clouds, where depth cues are more uniformly
available, radar point clouds are comparatively sparse without
any consistent pattern when projected onto the image plane.
Further, most depth estimation and/or completion approaches
treat foreground and background pixels with equal importance
without any specific attention to the downstream task. For
road user detection, however, pixels corresponding to the
foreground instances, especially of classes of interest such as
cars, pedestrians and cyclists, are of significance. To address
these problems, we choose to exploit state-of-the-art monocu-
lar depth estimation [60] and panoptic segmentation networks
[61] pre-trained on the KITTI-Depth [62] and Cityscapes [63]
datasets, respectively. We would like to emphasize that the
choice of networks here is not constrained with our approach,
and other leading network(s) may also be used. First, to
extract depth cues from image, we perform monocular depth
estimation by using [60] to obtain a dense depth map. Using
the pre-processed radar point cloud, the monocular depth map
is then scaled to metric space through median scaling as done
in [64]. In parallel, we generate semantic and instance masks
with [61] to bring attention to foreground pixels in two ways
- as input channels to the depth refinement network and in the
loss function (see Stage-1 in Figure 2).

To summarize, the input to the depth refinement network
consists of a monocular depth map (one channel - depth),
panoptic masks in image representation (two channels - se-
mantic and panoptic masks) and a radar depth map (three
channels - depth, compensated Doppler and RCS) concate-
nated along the channel dimension to make it a six channel
input.

Depth refinement network: The depth refinement network
comprises of a lightweight 2D image processing semantic
backbone [65] to learn deep features suitable for the per-
pixel depth inference task, and an ordinal regression layer
[24] to consume these feature maps and transform the depth
regression at each pixel into a classification problem. We also
discretize the depth space into K number of ordinal bins
following the SID (Spacing-Increasing Discretization) scheme
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Fig. 2: Our proposed fusion architecture is modular and comprises of two stages. In Stage-1, also called RAID, we transform
the representation of an input RGB image into a semantic painted point cloud in a novel approach with the help of radar depth
cues. In contrast to the existing radar-camera fusion methods, we first extract raw monocular depth map and panoptic masks
from the camera image using pre-trained networks, and concatenate them with a sparse radar depth map generated through
our novel 3+1D radar pre-processing pipeline. A depth refinement network comprising of a lightweight 2D semantic backbone
and an ordinal regression layer takes this input and learns to predict a refined depth map, supervised by the LiDAR depth
map. We propose a combination of scene level and instance level loss function to bring attention to the foreground objects.
Using camera intrinsic parameters and this refined depth map, pixels are then lifted to 3D space and appended with semantic
class as a point feature. In Stage-2, the generated point cloud is further concatenated with the 3+1D radar point cloud after
bringing in dimensional consistency. The resulting fused point cloud can then be passed to any point cloud based 3D object
detection network using bounding box annotations as supervisory signal.

in [24], for both loss calculation and inference. The output
from ordinal regression layer is then used to decode the depth
at each pixel.

To facilitate the supervision through a sparse ground truth
signal (LiDAR) and also bring attention to the instances
of target classes, we define a hybrid loss function LRAID

comprising of a scene level loss LS and an instance level
loss LI . For ease of comprehension and continuity, we follow
the same notations from [24]. Given a six channel multi-modal
input image I of size (W×H×6), let χ = φ(I,Φ) denote the
output feature maps of size (W×H×C) from the 2D semantic
backbone, where Φ represents its learnable parameters. Then,
Y = ψ(χ,Θ) of dimension (W ×H×2K) denotes the output
of ordinal regression layer, where Θ is the set of layer weights
to be learned. Let d̂(w,h) be the metric depth decoded at pixel
location (w, h) from the predicted discrete ordinal label l̂(w,h),
and l(w,h) be the ordinal supervision label encoded via SID
from the corresponding ground truth depth d(w,h). Then we
define the loss to be optimized for our RAID network as,

LRAID = LS + LI (1)

where LS is the loss calculated over the whole image for every
pixel where sparse LiDAR supervision is available, and LI is
the loss calculated only where panoptic segmentation network
detected classes of interests along with a ground truth signal.
Both losses are defined below.

LS = − 1

N

N−1∑
i=0

Ψ(wi, hi, χ,Θ), (2)

N represents the number of pixels in the depth map where
a groundtruth signal (i.e., LiDAR points projected onto
the image plane) is available for depth supervision and

Ψ(wi, hi, χ,Θ) is the pixel level ordinal loss introduced in
[24].

Our Instance Loss LI aims to “direct” the network’s atten-
tion towards our main interest: road users. It is first calculated
for each instance as a combination of the pixel level ordinal
loss above, and a 3D reconstruction loss (see below). Then,
the total instance loss for the scene (or batch) is a weighted
average of this loss for each occurring instance. We emphasize
that the instances and semantic classes are purely obtained
through inference by a pre-trained panoptic network.

LI =

∑Q−1
q=0 w (cq) · Iq∑Q−1

q=0 w (cq)
;

Iq = − 1

M

M−1∑
j=0

(
Ψ(wj , hj , χ,Θ) +∆(wj , hj , dj , d̂j)

) (3)

where Q denotes the number of instances in the frame that
belong to specific classes of interest, Iq represents the instance
level loss for an instance q ∈ {q0, q1, ....qQ−1} and cq is its
semantic class. A class dependent weighted average of Iq over
all instances is proposed to overcome skewed distribution of
classes in the dataset if any. The class weights w(cq) are hyper-
parameters that can be tuned based on the class statistics from
training data. M represents the number of pixels within an
instance q where the ground truth signal is available. Iq is then
defined as the sum of mean of the two pixel level losses i.e.,
Ψ(wj , hj , χ,Θ) and ∆(wj , hj , dj , d̂j). ∆ is the reconstruction
loss at a pixel location (w, h), defined as the euclidean distance
between two re-projections of the pixel to 3D metric space -
one obtained through predicted depth d̂j and the other via
ground truth depth dj :

∆(wj , hj , dj , d̂j) = ||T (wj , hj , dj)− T (wj , hj , d̂j)||2. (4)
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T is the mapping of the pixel from image space to 3D metric
space which is a straightforward task given the camera intrinsic
parameters. To avoid redundancy, the expressions for Ψ, l̂, d̂
are not further elaborated here. For further details, we refer
the reader to Appendix, section C.

Point cloud generation and semantic painting: To generate
a point cloud from the refined depth map (i.e. the output of
Stage-1), we sample the pixels in two steps. First, a mask
mimicking a 64-layer LiDAR ’s scanning pattern projected
onto the image plane is used to sample pixels from the dense
depth map. Then a random sampling scheme is used to select
a class-specific, pre-defined number of pixels for each instance
to boost their representation. To be specific, the latter strategy
is aimed at overcoming the bottleneck of decreasing resolution
with range in LiDAR-like scanning. Therefore, we retain as
much information as possible for farther objects for down-
stream detection task. The selected pixels can then be lifted
to 3D metric space in any desired frame of reference using
camera intrinsic and extrinsic parameters, thus, creating a point
cloud representation of the environment. We further choose to
append the semantic class information in a one-hot encoding to
the generated point cloud, i.e., point-painting, similar to [13].
At the end of Stage-1, we have a semantic painted point cloud
generated using a refined depth output from our RAID network
comprising of six features per point [x, y, z, s1, s2, s3]: three
spatial coordinates and one-hot encoding of the semantic class.

C. Stage-2: Point cloud fusion and 3D object detection

Usage of 3+1D radar point cloud in Stage-1 is limited to
image plane and only aimed at propagating depth cues for
the refinement of depth map. As experimentally demonstrated
in [1], Doppler and RCS features of radar can contribute
significantly to the object detection task. Hence, as these
features were not exploited in Stage-1, we choose to fuse the
full-feature 3+1D radar point cloud again with the output from
Stage-1 in a simple yet effective approach to provide more
discriminatory features. In a recent work, [19] concatenated
lists of point clouds from LiDAR, 2+1D radar and a stereo
camera based point cloud representation of image for object
detection. We choose to move in a similar direction in our
method, i.e., we concatenate the radar point cloud with the list
of point cloud generated in Stage-1 after ensuring dimensional
consistency. This makes the overall fusion architecture a multi-
level sensor fusion paradigm. For this second fusion step, the
accumulated radar sweeps over 5 frames after ego-motion
compensation is used albeit without any pre-processing to
retain as much raw sensor information as possible, unlike
Stage-1 where only reliable and consistent depth cues are
expected from radar. Each radar target contains seven features
[x, y, z, rcs, vr, vrc, t], where vr and vrc relative and absolute
(i.e., ego-motion compensated) radial velocity. t indicates
the scan from which the target originates from. Target from
the current (most recent) scan has t = 0 while a point
from the second most recent has t = −1. The two lists
of point clouds are first transformed to the same frame of
reference. Then dimensions of these point clouds are adjusted
to bring in consistency and enable concatenation of the lists.

Each point in the concatenated list contains 11 channels
- [x, y, z, rcs, vr, vrc, t, s1, s2, s3,m] where m indicates the
“source sensor” of the point with a binary flag, and any
unavailable feature of the respective point clouds are as-
signed a value of zero. For example, a radar target will
have [x, y, z, rcs, vr, vrc, t, s1 = 0, s2 = 0, s3 = 0,m = 0]
as features while the RAID point cloud is expanded as
[x, y, z, rcs = 0, vr = 0, vrc = 0, t = 0, s1, s2, s3,m = 1].

3D Object Detection: With a fused point cloud representa-
tion of 3+1D radar data and monocular image, it is possible to
use any point cloud based 3D object detection network for the
task. Similar to our previous work [1] we use PointPillars for
generating 3D bounding boxes given the stacked point cloud
described in the previous subsection as input. It is to be noted
that the ground truth labels are only used at this stage for
training the object detection network, and that any point cloud
based network can be chosen here.

IV. EXPERIMENTS
A. Dataset and network models

Our recent work, the View-of-Delft (VoD) dataset [1], is
the only public dataset of reasonable size to date (∼8700
annotated frames) that includes a 3+1D radar along with a
high-end 64-layer LiDAR and stereo camera data. A well
balanced distribution among specific classes of interest cq i.e.,
cars (∼27k), pedestrians (∼26k) and cyclists (∼11k) even
makes it ideal for the experimental setup of this research.
To further demonstrate the capabilities and benefits of our
modular approach, and to avoid over-fitting on the VoD
dataset, we use another dataset of (∼29k) un-annotated frames
recorded with the same sensor suite presented in [1] to train
the RAID network in a fully cross-sensor supervision scheme.
To generate monocular depth maps and panoptic masks, we
use the official code release of HR-Depth [60] pre-trained
on KITTI Depth Completion dataset [62] and Efficient-PS
[61] pre-trained on Cityscapes dataset [63]. No fine tuning
is performed for these networks on VoD dataset prior to our
experiments.

For the 2D backbone of depth refinement network in
Stage-1, we choose PyTorch implementation of MobileNet-V3
backbone with a Lite R-ASPP (reduced design of the Atrous
Spatial Pyramid Pooling) segmentation head [65]. During
training, we initialize this backbone with weights pre-trained
on [66]. To ensure a fair comparison, we use the same 3D
object detection network - PointPillars [18] in our experiments
trained using various point clouds (from radar, LiDAR, image
and sensor fusion). All networks are trained for 80 epochs,
with a voxel grid resolution of [0.16 × 0.16 × hspan] where
hspan represents the vertical span of the point cloud which
varies for point clouds containing radar targets due to presence
of targets below ground. Further, for radar only point cloud, the
maximum number of points per pillar is limited to 10 which
is otherwise 32 for all other networks. Due to the presence of
Doppler signal, augmentation methods for training with fused
point clouds containing radar targets are limited to flipping
the data along ′X ′ axis and random scaling between the range
[0.95, 1.05]. On the other hand, for point clouds - either uni-
modal or fused - that do not use radar points, we also perform
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RGB Image

Semantic Mask

Instance Mask

RAID Point Cloud (Blue) Object Detection in Stage-2

LiDAR Ground Truth

Radar Depth Map

Raw Monocular Depth Map

Fig. 3: Visualization of the inputs, supervision signal, and the output of Stage-1 (RAID), and the final 3D object detections of
Stage-2 for a sample test frame. Top three rows: As indicated by the overlay text, RGB image input, its inferred monocular
depth, semantic and instance masks from pre-trained networks, the radar depth map after pre-processing and the LiDAR
depth map as ground truth signal for depth refinement. Bottom row, left: Point cloud generated from RAID, Stage-1 (blue),
overlaid on LiDAR point cloud (red). For visualization purposes, we only show the re-projected pixels of the RAID point cloud
corresponding to the road users. Green boxes highlight a challenging pedestrian instance in the scene - both occluded and
static, basically invisible in the monocular depth map. Bottom right: PointPillars [18] using the fused point cloud in Stage-2
is able to successfully detect road users in the scene including the marked hard instance.

Fig. 4: Detection performance of our proposed method on two busy scenes in the test set. 3D Bounding boxes in red and green
show successful detections of cyclists and pedestrians respectively. Yellow boxes indicate where instances are not detected
(False Negative), while the cyan box on the right highlights a false detection (False Positive).
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Method Input to Detection Network Entire annotated area In Driving Corridor

Car Pedestrian Cyclist mAP mAOS Car Pedestrian Cyclist mAP mAOS
AVOD [49] Radar BEV-image; RGB-image 35.7 1.8 9.5 15.7 15.9 58.1 3.0 6.9 22.7 23.2
PP - RAID (painted) Painted PCL from RAID 20.1 7.6 10.0 12.5 27.1 53.7 12.3 24.3 30.1 47.4
PP - mono fusion Painted PCL from mono + radar targets 49.0 47.6 56.0 50.8 43.1 81.2 60.7 75.9 72.6 70.0
PP - radar (painted) Painted radar targets 45.8 47.7 55.9 49.8 40.1 80.7 67.8 83.0 77.2 69.1
PP - RAID fusion Painted PCL from RAID + radar targets 51.8 50.4 56.9 53.0 48.6 89.6 68.6 83.3 80.5 77.7

PP - mono (painted) Painted PCL from mono 15.5 5.3 11.3 10.7 23.6 38.3 7.0 18.6 21.3 41.7
PP - radar (5 scans) Radar targets 41.1 41.0 54.5 45.6 38.3 77.7 59.3 76.4 71.1 64.1
PP - RAID fusion Painted PCL from RAID + radar targets 51.8 50.4 56.9 53.0 48.6 89.6 68.6 83.3 80.5 77.7
PP - LiDAR LiDAR point cloud 75.6 55.1 55.4 62.1 49.4 90.8 71.4 82.5 81.6 70.3
PP - LiDAR (painted) Painted LiDAR point cloud 77.2 62.2 57.6 65.7 51.1 90.9 79.2 85.6 85.3 70.6

TABLE I: Results for both 3D object detection experiments in the entire annotated area and within the “Driving Corridor”
only. Top: Comparison of various approaches for fusion between radar point cloud and monocular camera. Bottom: Proposed
fusion method compared with the performance of other sensors. All class-specific columns represent AP calculated with a 3D
IoU of 0.5 for car and 0.25 for pedestrian/cyclist. Numbers highlighted in bold indicate the best performance in the section
within the column. In bottom section, underlined numbers are within 5 mAP/mAOS points of the best performer (in boldface).
“Painted” refers to appending semantic class to point features in one-hot-encoding and “PCL” is abbreviation for point cloud.
The prefix “PP” indicates that the method is trained with PointPillars [18].

global “rotation” about the vertical axis. All networks are
trained in a multi-class fashion for the detection task using
OpenPCDet [67].

B. Evaluation metric

In view of the main goal for this research, i.e., road user
detection in urban scenarios, we consider 3D object detection
performance as the evaluation metric. To be specific, we
use two performance measures - Average Precision (AP) and
Average Orientation Similarity (AOS) following the KITTI
benchmark [68]. AP is calculated based on the intersection
over union (IoU) in 3D space between the predicted and
ground truth bounding boxes. We consider a 50% overlap
for car, and 25% overlap for pedestrian and cyclist classes
as in [68]. However, we also present detection performance
over multiple overlap thresholds for a more comprehensive
evaluation in main comparisons. Mean AP (mAP) and mean
AOS (mAOS) are calculated by averaging class-wise results.
We also report results for two regions: the entire annotated
region and 2) a safety-critical “Driving Corridor” following
the approach in [1].

Evaluation of detection performance for our proposed
method is carried out in two stages. We first look at how
the proposed fusion of 3+1D radar and monocular camera
compares to applicable state-of-the-art methods for fusing a
point cloud and RGB image for detection task in our scenario.
Then, we also compare how our proposed fusion approach
compares to performance of networks that take uni-modal
input from camera, radar or LiDAR, and also a state-of-the-art
LiDAR-camera fusion method.

C. RAID fusion vs radar-camera fusion baselines

In this subsection, we compare our proposed two-stage
RAID fusion described in section III with three radar-camera
fusion baselines. First, we re-implement the approach of Astyx
[48], the only research to our knowledge to fuse a 3+1D radar
and mono-camera. It is a straightforward implementation of
AVOD network [49] where LiDAR input is replaced with
3D point cloud from radar. While the authors of [48] only

presented work on single-class (car) detection, we trained
AVOD on all the three classes of interest since we have
sufficient class representation.

Second, we implement semantic painting of radar targets
PP−radar(painted) similar to the “point painting” paradigm
in LiDAR-camera fusion domain. Methods following this
approach [13] to fuse LiDAR and camera consistently lead
the 3D object detection benchmarks like KITTI [68] and
NuScenes [10].

In addition to the full RAID fusion PP − RAID fusion,
we also evaluate both stages of our proposal in a stand-
alone approach. To be specific, first, we evaluate the detection
performance on the point cloud output from RAID depth
after semantic painting PP − RAID (painted), i.e. Stage-1
alone. Second, to evaluate stage-2 individually, a point cloud
generated from monocular depth is painted with semantic class
and stacked with radar point cloud (PP −mono fusion) to
validate our hypothesis that both spatial and semantic cues are
crucial for radar-camera fusion in 3D object detection.

See Table I for overview and the performance of each of
these methods for the entire annotated area and within the
”Driving Corridor” region. Our proposed method clearly sur-
passes all the above mentioned radar-camera fusion baselines.

D. RAID fusion vs sensor baselines

To demonstrate the redundant capability of our proposed
sensor fusion as a perception module, we compare its per-
formance with that of point clouds generated from different
sensors. More specifically, we trained and compared sev-
eral PointPillar models for several sensor data combinations.
PP − radar (5 scans) takes 5 scans of accumulated radar
data. PP −LiDAR is trained with LiDAR point cloud only,
while PP −Mono (painted) is trained with semantic painted
point cloud generated from the raw monocular depth. Finally,
we also train a network PP − LiDAR (painted) where the
LiDAR points features are appended with semantic classes
similar to [13]. Table I gives an overview of these methods
and shows that uni-modal performance of monocular camera
and radar is lower than LiDAR: PP − mono(painted) vs.
PP − radar(5scans) vs. PP − LiDAR (10.7 vs. 45.6 vs.
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Fig. 5: Detection performance per class evaluated at multiple 3D IoU thresholds.

62.1) mAP in entire annotated area. However, our radar-
camera fusion demonstrates comparable performance with the
LiDAR baselines in the driving corridor in general (PP −
LiDAR(painted) vs. PP−LiDAR vs. PP−RAIDfusion:
85.3 vs. 81.6 vs. 80.5), and for the cyclist class in entire
annotated area (mAP: 57.6 vs. 55.4 vs. 56.9).

V. DISCUSSION

From the perspective of fusing the two modalities - radar
and monocular camera, the first set of experiments provide
a comparative evaluation for RAID fusion. From the results
in Table I, our proposed 2-stage multi-level fusion approach
outperforms all the baselines in the entire annotated area: the
state of the art radar-camera fusion baseline AVOD, the state-
of-the-art LiDAR-camera fusion paradigm “point painting” on
radar point clouds PP − radar (painted), and the straight-
forward late fusion PP − mono fusion. AVOD network
is able to provide detections on cars, but its performance
on VRUs is poor. In fact, AVOD is outperformed even by
the PointPillar network trained on radar point cloud alone
PP − radar. The BEV (bird’s eye view) input feature maps
in AVOD are generated by projecting slices of the point cloud
(sliced by a set of planes parallel to the input ground plane)
onto the horizontal plane of the camera coordinate frame.
This approach relies heavily on the quality of input ground
plane estimation and also the assumption that horizontal plane
of camera is somewhat parallel to the actual ground plane.
We generated ground planes for VoD dataset as explained in
Appendix section E by LiDAR point cloud, semantic masks
and RANSAC algorithm to provide a reasonable input to
AVOD network. However, the camera coordinate frame of our
sensor setup has a pitch angle of more than 7 degrees which
might have impacted the network’s ability. Furthermore, Astyx
implementation of AVOD does not use Doppler information at
all, which was repeatedly shown to be a strong classification
feature in literature [1] [4]. It is also not trivial to directly
extend methods that use BEV representation as input to

effectively encode Doppler information, unlike methods using
point-representation (e.g. PointPillars).

The performance gain of PP −RAID fusion over PP −
radar (painted) shows the benefits of providing a point cloud
representation to image via RAID - a superior representation
with both semantic and spatial cues. Painted radar target
representation on the other hand is limited by the sparse-
ness of the point cloud and also the accuracy of azimuth
and elevation. A 3D radar target projected onto the image
for sampling semantic class may not “fall” on the reflected
object due to measurement inaccuracies and ambiguities. Such
misalignment could result in a radar target being painted with
incorrect semantics, which in turn feeds incorrect information
into the downstream pipeline.

While PP −RAID (painted) performs better than PP −
mono (painted), the detection performance is still inferior
to models trained on radar and LiDAR point clouds. This
suggests that it is not enough just to exploit radar’s ranging
capabilities via a refined depth map - Doppler and RCS futures
are also needed. On the other hand, a standalone Stage-2
implementation i.e., PP − mono fusion does use a point
cloud representation from monocular depth map with semantic
painting, but this is generated without any learning from radar
depth cues. The significant gain of PP −RAIDfusion over
PP −mono fusion shows that the RAID depth refinement
helped propagate object depth cues from radar to produce
a better point cloud, and that such depth refinement is also
beneficial for the object detection task.

We also compared object detection performance on point
clouds generated with different sensors. As expected, the
performance of networks using radar or camera data only (i.e.,
PP − radar (5 frames), PP −mono (painted)) was poor
compared to those trained on high-end LiDAR data with 64
layers, confirming the need for fusion. Our proposed method
significantly outperformed both single modality approaches,
demonstrating that it was able to utilize complementary infor-
mation from the two sensors.

Comparing PP −RAIDfusion and PP −LiDAR shows
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that the proposed multi-level fusion of radar and camera
performs comparably to the detections from a 64-layer LiDAR
point cloud especially in the Driving Corridor. In the entire an-
notated region, performance is still comparable for pedestrians
and even slightly outperforms it for cyclists. However, LiDAR
still significantly surpasses our fusion in the detection of cars.

As expected, fusion of LiDAR and camera data via painting
PP − LiDAR (painted) has the highest performance in
most metrics. However, our fusion method even showcases
comparable performance to this LiDAR-camera combination
for certain classes and regions, e.g., cyclists both in the
whole annotated area and in the Driving Corridor, and cars
in the driving corridor, see underlined values in Table I. Our
fusion of radar and camera demonstrated comparable detection
performance with LiDAR-camera fusion in driving corridor.
This indicates the capability of radar-camera fusion as a
redundant sensor setup for object detection in urban scenarios,
i.e., it could substitute a single LiDAR sensor or LiDAR-
camera fusion in case of sensor failure or adverse conditions.

An extensive evaluation on multiple 3D IoU thresholds
presented in Figure 5 shows that the proposed fusion approach
brings consistent improvement not only for the selected IoU
thresholds (25% for pedestrians and cyclists, 50% for cars),
but also for multiple overlap thresholds from 10% to 90%, for
all classes and for both evaluated regions (i.e., entire annotated
area and driving corridor).

Furthermore, our approach outperformed both the LiDAR
networks in orientation estimation performance by a large
margin in driving corridor. As explained in [1], additional
radial velocity information of radar provides strong orientation
cues that are not available with LiDAR. Further coupled with
strong spatial cues from image based point cloud generated
via RAID, the fused point cloud is rich with orientation
cues, as seen e.g. for cars in the driving corridor, where the
proposed fusion significantly improved compared to the radar
only detection performance.

The overall better performance of the two networks using
LiDAR can be attributed to the much higher point density
of the specific type of 64-layer LiDAR sensor used (average
number of points in the annotated area: LiDAR: 21344, radar:
216 for a single scan, or ∼ 1000 points for five). Furthermore,
the high viewpoint of the LiDAR sensor, on the roof of the
car, incurs less occlusion while scanning and thereby benefits
object detection performance. This could be a possible reason
for significantly higher performance of LiDAR based networks
on cars in the entire annotated area. The combination of radar
and camera sensors comes, however, with clear advantages in
terms of cost and ease of integration in stock vehicles.

The modularity of the proposed pipeline provides several
starting points for improvement. For example, it allows exper-
imentation with different or better (pre-)trained networks at all
levels: monocular depth estimation and panoptic segmentation
networks for improved input signals, 2D backbones for the
depth refinement network, and 3D object detection networks
to process point cloud information. Thus, we can use both
upcoming state of the art research and large datasets even if
they do not feature radar data. In addition, we would like to
emphasize that the RAID - depth refinement network is cross-

modal supervised, hence it does not require any kind of manual
annotation, making it possible to quickly acquire and use large
amounts of training data.

Besides exploiting the modularity, RAID network perfor-
mance can be improved further by looking into possibility of
class specific losses. For example, by introducing class-specific
spatial constraints for the sizes of classes from different
classes, we could improve depth consistency within instance
masks. Also, the probabilistic output from the ordinal regres-
sion layer could be better utilized to estimate the uncertainty
of the predicted depth of a pixel and passed on for subsequent
processing steps as a feature of the lifted pixels. Alternatively,
we can also “sample” depth at different depth bins estimated
at different confidence thresholds per pixel.

Furthermore, re-introducing RGB image as additional chan-
nel input to the RAID network may help in the depth refine-
ment process as the network can learn features in addition to
depth and semantics. The increased input channels may also
require a larger backbone network. However, thanks to our
modular approach, this is a straightforward swap.

Moreover, the semantic painted point cloud generated via
RAID can be used for other perception tasks, such as free-
space estimation and ground plane estimation. It can be easily
implemented by replacing the object detection network in
Stage-2 with the appropriate task head.

While modular network design provides flexibility and
agility, it also brings the concern of domain gap. However, we
can use self-supervision and cross-modal supervision schemes
wherever applicable to alleviate this problem. For example,
monocular depth estimation network can be fine-tuned or
trained using video or stereo image pair or LiDAR data as
groundtruth signal to provide a better input to the RAID
network.

As mentioned earlier, the LiDAR sensor in the dataset has a
better viewpoint, which can benefit object detection, especially
at longer distances. This can be experimentally tested by
removing LiDAR points that are occluded when projected
to camera image plane. This would essentially simulate the
same LiDAR sensor not being on top of the vehicle, but at
the position of the camera sensor. The two filtering methods
introduced for dealing with conflicting depth cues in image
plane can be directly used for this task.

VI. CONCLUSIONS
In this paper we introduced a modular, generic, and multi-

level fusion of 3+1D radars and monocular camera for the
purpose of road user detection in urban scenarios. The method
consists of two stages. In Stage-1, a novel “depth-refinement
network” called RAID takes monocular depth map, panoptic
masks from pre-trained networks along with radar depth map
to generate a refined depth output and lift pixels to 3D metric
space. We used state-of-the-art methods for the sub-tasks in
our proposed fusion architecture while also exploiting large
uni-modal and non-annotated datasets. The resulting point
cloud is then painted with semantic information and fed as an
input to stage 2, where it is fused again with the 3+1D point
cloud by concatenating the two lists of point cloud. elaborate
about the pointpillar network training
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In extensive experiments on the View-of-Delft dataset, we
have demonstrated that the proposed approach significantly
outperforms the radar-camera fusion based 3D detection meth-
ods (proposed method vs. best baseline: 53.6 mAP vs. 50.8
mAP). Furthermore, it yielded comparable performance to
LiDAR and state-of-the-art LiDAR-camera fusion based de-
tectors, especially when evaluated in the safety critical Driving
Corridor (80.5 mAP vs. 81.6 mAP).

The modular setup of the pipeline makes it flexible to incor-
porate upcoming state of the art methods for the camera based
inputs, and also allows to further train/fine-tune Stage-1 in
a self-supervised/cross-sensor supervised scheme without any
need for manual annotations. The proposed fusion approach
can thus help alleviate the problem of limited multi-modal
datasets from the perspective of size and annotations. The
architecture is generic and can also accommodate LiDAR point
cloud in stage 2 as input for researchers interested in different
combination of sensors for the downstream detection task.

Also, class specific loss functions and pixel sampling may
help improve the performance on harder classes like pedestri-
ans.

Furthermore, the output of Stage-1, i.e., the semantic painted
point cloud from RAID has the potential for further use cases
like free road estimation, ground plane estimation, etc.

Lastly, the point cloud representation of monocular image
and 3+1D radar provides the opportunity for extensive research
into different point cloud fusion paradigms in Stage-2. Instead
of the proposed early fusion between the 3+1D radar point
cloud and RAID generated point cloud, feature level fusion of
BEV maps or sparse voxel features is research worthy.
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APPENDIX A
PRE-PROCESSING OF THE RADAR POINT CLOUD

LiDAR point clouds (even the ones of lower tier sensors,
such as a 16-layer Velodyne) provide a relatively noise free,
accurate scan of the environment with a consistent pattern.
This makes them highly suitable for depth completion tasks
by fusion with mono-camera camera input. Compared to
LiDAR, a 3+1D radar point cloud is noisy as it suffers from
interference and multi-path propagation. Operating in the mm-
wavelength spectrum leads to specular reflection which in turn
results in a small fraction of signal to reach the receiving
antenna. This means that the availability of points depends
on the radar cross section (RCS) and shape properties of the
object. Due to this and the “lack” of a scanning pattern, the
points returned in each scan are sparse with heterogeneous
distribution. Often researchers accumulate multiple previous
sweeps to improve the density and scene information. How-
ever, we observed that after performing ego-motion compen-
sation of the past frames, a “trail” like phenomenon (refer to
Figure 6a) can be observed in the point cloud due to the motion
of corresponding objects in-between the scans, which can lead
to “outdated” depth cues and thus, faulty depth estimation. In
the following, we present a pipeline of pre-processing steps
that are aimed to attain a reliable and dense point cloud from
radar with the intention to provide consistent depth cues for
RAID network by addressing both the challenge of sparsity
and the challenge of moving objects.

Specifically, we first perform “Target Propagation” to com-
pensate for the (radial) motion of the object between con-
sequent radar scans. This is followed by ”Spatial-Temporal
Filtering” to deal with noise and inconsistent targets. To further
improve the density of the point cloud, we then do “Sensor-
aware up-sampling”. Finally, for dynamic targets (above a
certain Doppler threshold) we also carry out ”Vertical sam-
pling” with the intuition that these targets correspond to road
users and thereby selectively increasing point cloud density at
instance level. We emphasize that the listed steps are followed
in the order stated and should not be shuffled.

Target Propagation: Let vrc be the compensated radial
velocity of a target h from scan N − a, where N is the
current scan’s time id, and a indicates the preceding count.
Given the radar point’s position vector p̃h in radar coordinate
frame and a scanning rate f , the target h can be propagated
to its “corrected/predicted” position p̃′h in a straightforward
approach:

p̃′h = −p̃h +

(
vrc

p̃h
| ph |

(
a

f

))
. (5)

Refer to Figure 6 for visualization of radar targets before
and after target propagation for cyclists. It is to be noted that
this approach only compensates for the motion of object in
radial direction, and the lateral shift is still relevant. However,
moving cars and cyclists mostly travel in the longitudinal
direction of the ego-vehicle and hence compensation along
radial direction alleviates the concern significantly for these
classes. It may not be as effective for pedestrian class due to
their stochastic moving patterns.

(a) Without target propagation (b) With target propagation

Fig. 6: Visualization of objects’ trails (a) due to their motion
between accumulated scans and after correction with target
propagation (b). Blue boxes marks the ground truth annotation
for three cyclists in the scene, while green ones are the same
boxes “enlarged” by 0.2 meters along each dimension. Differ-
ent colors of the targets indicate different source scans. Grey
points represent the LiDAR point cloud. After compensation,
most targets fit the ground truth boxes.

Spatial-Temporal Filtering: In Pointillism [69], authors fil-
ter the raw radar point cloud by checking for spatial coherence
in output from two spatially separated radars, and for temporal
coherence by “tracking” the individual targets across scans
using Kalman filter. However, our sensor setup consists of a
single frontal radar. Yet, inspired by their underlying intuition,
we propose a simple vote based approach to filter targets based
on spatial and temporal consistency.

First, we fit a k-dimensional tree (with a radius r) on
the input radar point cloud to enable a neighbor search. For
each radar target, we count the number of neighbor targets
irrespective of the source frame to get the “spatial” vote and
the number of unique scans that these neighboring targets
originate from represent the ”temporal” vote. For a target to
qualify the filter, the sum of both the votes should be above
a certain threshold M. r and M are hyper-parameters and
for the experimental results presented in this work, values
of 0.5 meters and 3 are chosen respectively. For a visual
representation, see Figure 7b

Sensor-aware Up-sampling: While the range accuracy of
radar is excellent (0.02 meters), the angular accuracy for
azimuth and elevation is limited, especially at the edges of
field of view. The ZF radar fitted in our ego-vehicle reports
(in center of FoV) an elevation accuracy of 0.3 degree for
elevation and 0.15 degree for azimuth. For every radar target
that passed the spatial-temporal filter, we sample 3 new points
from a 2D (azimuth, elevation) Gaussian distribution with
the mean and standard deviation as the azimuth/elevation
angle and accuracy respectively. See Figure 7c for a visual
representation of this step.

Vertical Expansion of Radar Targets: To deal with the
sparse nature of radar output and the lack of elevation in-
formation, researchers have projected radar targets to the
camera frame as vertical pillars [7] or as circles [11] for
fusion of 2+1D radar with monocular image. However, such
methods may act as noise by providing conflicting depth cues
between foreground and background objects. Thanks to the
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(a) Raw radar point cloud accumulated over 5 scans. (b) After target propagation and spatial-temporal filtering.

(c) After sensor-aware up-sampling (d) After vertical sampling i.e., fully pre-processed radar targets

Fig. 7: Radar point cloud visualization at various stages of pre-processing. Points in cyan represent LiDAR points to comprehend
the scene context. Radar targets are colored based on the compensated Doppler value. Note that the cyclists and pedestrians
are moving while the car is parked (all the instances are highlighted in dotted ellipses).

elevation information in the 3+1D radar, the core idea can be
implemented without causing such signal noise.

To be specific, for each dynamic target, a fixed number
(hyper-parameter) of points are sampled along the Z-axis of
the radar co-ordinate frame between the ground and the target
itself. The ground plane is assumed to be 0.5 meters below the
X-Y plane of the radar co-ordinate system based on our ego-
vehicle setup. This step is done to inject further depth cues
for moving objects and assumes that there are no “floating”
objects, i.e., an elevated radar target’s depth information is
relevant for pixels below it (and above the ground plane).

Figure 7d shows the radar point cloud at the end of the four
pre-processing pipelines discussed above.

APPENDIX B
HANDLING CONFLICTING DEPTH CUES

In our proposed RAID network, we use LiDAR point cloud
as the supervising signal by projecting it onto the image plane.
However, due to the positioning of this sensor on the roof
of our ego-vehicle, it generates conflicting depth cues when
seen from camera view, i.e., some points of the background
are projected onto foreground objects in the camera view. To
illustrate this phenomenon, refer to Figure 8. Even the radar
depth maps as input channels suffer from this phenomenon
if not addressed, because accumulation of frames occurs at
different ego-vehicle positions (when in motion) and thus
previously visible, farther points could be occluded when
viewed from an other, subsequent position.

(a) Raw LiDAR point cloud projected onto the image plane

(b) Points removed by the kernel and then DBSCAN cluster filter

Fig. 8: LiDAR points propagating conflicting depth cues due
to perspective-view difference between camera and LiDAR
scans.

In order to tackle this problem, we first run a “kernel” based
filter of size J × J (J is a hyper-parameter) which iterates
throughout the depth images and looks for a conflict in the Z-
order among the pixels within the kernel with a LiDAR/radar
projection. The conflict is a simple outlier detection based on
depth value stored in these pixels. If a conflict arises over
any kernel patch of the image, it is resolved by nullifying
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the pixel(s) reporting a “farther” depth compared to their
neighbors in the kernel.

While the kernel filter does detect and resolve some con-
flicts, due to small kernel size, the filtering is only done
considering a “local” neighborhood. However, at an instance
level, the concern still persists. Further, the instance level
losses in RAID network depend on inferred panoptic masks
(from a pre-trained network) to obtain pixels corresponding
to each instance. As shown in Figure 9 for both radar and
LiDAR point clouds, both noisy masks and perspective-view
projection result in poor supervision signal from LiDAR. In
other words, for a given inferred instance mask, it is highly
likely that the corresponding ground truthLiDAR scan contains
points that belong to background scene. Since the instance
level loss penalizes performance for all pixels where ground
truth is available in an instance, the network is penalized
even when regressing the instance depth correctly due to these
background LiDAR points on the instances.

To alleviate this concern, we extract “sub-”point clouds
falling on each instance of target class and run a DBSCAN
clustering algorithm to filter the outliers. Thanks to the se-
mantic mask information, we can set class specific clustering
parameters, i.e., radial threshold of 0.4, 0.6 and 0.7 meters
for pedestrians, cyclists and cars with a minimum of three
neighbors needed to retain a point/target. Figure 9 shows the
output of this filtering step. The result of this clustering is at
least one cluster of points per instance mask, of which we
keep only the largest, since we assume that it belongs to the
road user.

APPENDIX C
RAID: LOSS FUNCTION

In continuation of section III-B, the mathematical expres-
sions for Ψ(wi, hi, χ,Θ) - per pixel ordinal loss, l̂ - predicted
discrete ordinal label and d̂ - the decoded depth from l̂ are
provided here; all introduced first in DORN [24].
Ψ is defined as a negative log-likelihood estimation func-

tion:
K−1∑
k=0

Zk
(w,h) log

(
Pk
(w,h)

)
+
(
1− Zk

(w,h)

)(
1− log

(
Pk
(w,h)

))
,

(6)
where Zk

(w,h) is defined as a binary flag indicating that the
ground truth depth at pixel (w, h) falls beyond the ordinal bin
k, while Pk

(w,h) represents the inferred probability of the same:

Zk
(w,h) =

(
l(w,h) > k | d(w,h)

)
, (7)

Pk
(w,h) = P

(
l̂(w,h) > k | χ,Θ

)
. (8)

While generating Zk
(w,h) from ground truth depth map is

straightforward, Pk
(w,h) is calculated from the output of ordinal

regression layer in the following way:

Pk
(w,h) =

ey(w,h,2k+1)

ey(w,h,2k) + ey(w,h,2k+1)
. (9)

Note that this loss in the original DORN publication is
written in a different way by removing Zk

(w,h) and splitting the

summation into two parts. We formulate the loss here in a more
generic way for better comprehension. Defining the ground
truth and prediction probabilities this way enforces an “ordinal
relation” in the negative log-likelihood function, which, in its
native implementation, would have been a classification task
without any correlation among the distance bins/classes.

During inference, the ordinal depth label l̂ is generated by
counting the bins up to which the network is confident above
the threshold 0.5 that the depth of the pixel is beyond a given
bin:

l̂(w,h) =

K−1∑
k=0

η
(
Pk
(w,h) >= 0.5

)
. (10)

The metric depth can then be decoded from the SID inter-
vals (t) by the average of the bin boundaries in the following
way:

d̂(w,h) =
tl̂(w,h)

+ tl̂(w,h)+1

2
− ξ, (11)

where ξ is an offset introduced to the bins’ start and end values
while generating the intervals.

APPENDIX D
RAID: QUALITATIVE RESULTS

RAID effectively addresses the often mentioned [70][59] lo-
cal misalignment problem in point clouds generated from im-
age pixels. Earlier works on giving point cloud representation
to images such as Mono3D-PL [70] and Pseudo-LiDAR++
[59] approached this problem using bounding box consistency
and deterministic depth propagation from sparse LiDAR point
cloud respectively. In contrast, our method extract depth cues
from the radar point cloud in a deep learning approach. As
seen in Figure 10, pixels lifted through RAID consistently
overlap with the LiDAR point cloud. Images in the first row
correspond to two car instances, bottom left shows a cyclist
in BEV, and finally bottom right shows two pedestrians 40
meters away in front of the ego-vehicle. Note that while the
monocular depth failed to infer useful (i.e., nearby) depth for
any of the pixels for these pedestrians, RAID succeeded in
lifting these instances to 3D space.

APPENDIX E
GROUND-PLANE ESTIMATION FOR AVOD

AVOD is the chosen point-cloud and monocular camera
fusion network for 3+1D radar-camera fusion by Astyx [48],
which, to the best of our knowledge, is the only attempt in
literature. To implement this network on the VoD dataset,
ground planes are expected as an input in addition to the sensor
data. To address this need, we used a simple and effective
approach.

Using the inferred semantic masks, LiDAR points corre-
sponding to the semantic class “road” are extracted. Subse-
quently, a RANSAC algorithm is used to fit a plane to the
extracted LiDAR points, see Figure 11. Qualitative evaluation
on multiple frames demonstrated the efficacy of this method.
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(a) LiDAR points in a scene corresponding to specific
instances of interest. Yellow points represent the retained
clusters after DBSCAN while those in black are outliers.
For two car instances on the left, points highlighted in
dotted green ellipses indicate the retained points after
filtering while ellipses in red indicate the occluded points
in image view that are now filtered out.

(b) Results of DBSCAN cluster filter on radar point
cloud in another scene. Red indicates filtered LiDAR
points, yellow and black indicate retained and outlier
radar targets respectively. For the two pedestrian in-
stances on the right, ellipses in green indicate the retained
points after the DBSCAN filtering and the points in
red ellipses correspond to the background scene that
are removed which otherwise would have propagated
conflicting depth cues to these instances when projected
onto image plane.

Fig. 9: DBSCAN cluster based filtering for LiDAR and radar point clouds to tackle conflicting depth cues when projecting
the points onto image plane.

Method Input to Detection Network Entire annotated area In Driving Corridor

Car Pedestrian Cyclist mAP mAOS Car Pedestrian Cyclist mAP mAOS
PP - RAID fusion w/o radar preprocessing Painted PL from RAID + radar targets 51.1 49.6 56.8 52.5 45.7 89.8 67.4 76.7 78.0 74.9
PP - RAID fusion Painted PL from RAID + radar targets 51.8 50.4 56.9 53.0 48.6 89.6 68.6 83.3 80.5 77.7

TABLE II: Comparison of detection performance between a PointPillar network trained on RAID fusion point cloud with
and without radar point cloud pre-processing in Stage-1. Detection performance on cyclists in the driving corridor improved
significantly (by more than 7 mAP) and orientation estimation of all the three classes improved by more than 2 mAOS in
driving corridor, and in the entire annotated region.

APPENDIX F
FURTHER ABLATION EXPERIMENTS

In a further ablation study, the role of the radar pre-
processing pipeline discussed in section A. We trained a
network on RAID fusion point cloud where no such pre-
processing of the 3+1D radar point cloud is done before
passed as input to the RAID network. Table II shows that
the pre-processing pipeline indeed helps the overall detection
performance, especially for cyclists in the driving corridor.
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Fig. 10: Localization provided by point cloud from RAID
(blue) vs. point cloud generated from monocular depth (cyan)
vs. LiDAR point cloud (red) for two cars (top row), a cyclist
(bottom left), and two pedestrians (bottom right) visualized in
arbitrary view points. RAID matches the ground truth LiDAR
point clouds significantly better than the monocular depth
based point cloud.

Fig. 11: Ground plane estimation using a LiDAR point cloud
and a semantic mask. The orthogonal axes represent the
position and orientation of camera fitted on the ego-vehicle.
The visualized point cloud is “extracted” by keeping only the
LiDAR points that fall on pixels with the semantic class“road”
when projected onto image plane. The red plane represents the
RANSAC-fitted ground plane using the extracted set of points.
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