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We propose a numerical algorithm that computes the eigenvalues of the Korteweg–de 

Vries equation (KdV) from sampled input data with vanishing boundary conditions. It can 

be used as part of the Non-linear Fourier Transform (NFT) for the KdV equation. The al- 

gorithm that we propose makes use of Sturm Liouville (SL) oscillation theory to guaranty 

that all eigenvalues are found. In comparison to similar available algorithms, we show that 

our algorithm is more robust to numerical errors and thus more reliable. Furthermore we 

show that our root finding algorithm, which is based on the Newton–Raphson (NR) al- 

gorithm, typically saves computation time compared to the conventional approaches that 

rely heavily on bisection. 
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1. Introduction 

The KdV is a non-linear Partial Differential Equation (PDE). It can serve al a model for a wide variety of nearly hyperbolic,

weakly non-linear processes, such as surface waves in shallow water [1–5] , internal waves in stratified fluids [6] , acoustic

waves in metals [7] , electrical waves in transmission lines [8] , traffic flow [9] and pressure waves in fluids [10–12] . See also

[13] for a survey of some (more) applications of the KdV. The normalized form of the KdV which we consider is 

∂ 

∂t 
q ( x, t ) + 6 q ( x, t ) 

∂ 

∂x 
q ( x, t ) + 

∂ 3 

∂x 3 
q ( x, t ) = 0 . (1) 

Equation (1) can be mapped to the various physical forms of the KdV with dimensional variables and coefficients by means

of affine transformations of q , x and t [14, §1.2] . For simplicity, we can think of x and t as position and time respectively. 

The KdV is the prototypical example of a Lax-integrable PDE. By that, we mean that its initial value problem can be

solved with a technique that is called scattering transform or Non-linear Fourier Transform (NFT). It parallels the use of the

ordinary Fourier transform for linear PDEs: The temporal evolution of q (x, t) is hard to compute, but one can transform it

back and forth to a so-called spectrum, of which the evolution is simple to compute [15, Sect. 1.4] , [16] . The price to pay

is the calculation of the direct and inverse NFT. At first, the NFT was an analytical method that allowed mathematicians to

compute exact solutions of the KdV and other Lax-integrable PDEs [16–19] . Later, algorithms were developed to use the NFT
Abbreviations: FLOP, FLoating point OPeration; KdV, Korteweg–de Vries equation; NFT, Non-linear Fourier Transform; PDE, Partial Differential Equation; 

NR, Newton–Raphson; FFT, Fast Fourier Transform; SL, Sturm–Liouville; ODE, Ordinary Differential Equation. 
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in numerical computations, when only a sampled input signal is available [20–28] . This enabled the use of the NFT as an

analysis tool that reveals the physical structure of measured data from non-linear systems [2,6,29–35] . However, the early 

numerical methods were slow: Their computation times scaled quadratically in the number of samples. This motivated the 

development of fast numerical NFTs [36–38] . These scale almost linearly in the number of samples. Many recent publications 

present various improvements on aspects of the numerical NFT in computation time and accuracy, e.g. [39–50] . 

Before we can zoom in on the specific topic of this paper, we have to outline the mathematical problem that defines the

NFT for the KdV, and introduce some terminology. The KdV-NFT spectrum of a signal q (x, t) can be obtained at any fixed

time t = t 0 from the one-dimensional Schrödinger equation 

1 , 2 (
∂ 2 

∂x 2 
+ q ( x, t 0 ) 

)
f ( x, κ, t 0 ) = κ2 f ( x, κ, t 0 ) . (2) 

The input signal q (x, t 0 ) is also called potential , because of its role in the Schrödinger Eq. (2) in the context of quantum

mechanics. We call any signal f (x, κ, t 0 ) that satisfies (2) a trajectory of the potential q (x, t 0 ) . Here, we are concerned with

real-valued potentials q (x, t) that evolve according to the KdV (1) and furthermore satisfy the vanishing boundary condition ∫ ∞ 

−∞ 

| q ( x, t 0 ) | ( 1 + | x | ) dx < ∞ and lim | x | →∞ 

q ( x, t 0 ) = 0 . (3) 

The KdV-NFT spectrum of such a potential consists of two parts: A continuous spectrum and a discrete spectrum . The contin-

uous spectrum describes a wave continuum called radiation. The discrete spectrum describes a countable number of wave 

components called solitons. It consists of eigenvalues and norming constants , one of each for every soliton. The eigenval-

ues are the values κ = K n > 0 for which there exists a trajectory f (x, κ, t 0 ) with finite energy 3 such that the Schrödinger

Eq. (2) is satisfied. This trajectory f (x, K n , t 0 ) is the corresponding eigenfunction . Each eigenfunction is unique up to a scalar

factor. The norming constants can be obtained from the eigenfunctions, as discussed e.g. in [40] . In this paper we address

the computation of the eigenvalues. 

In the literature two approaches can be found for the computation of the eigenvalues [51, §2.1] , [28 , §iv ]: 

The first approach is to use a finite dimensional approximation of (2) that turns its eigenproblem into a (large) matrix

eigenproblem. Collocation methods (e.g. [26] ) and rational approximations (e.g. [36] ) belong to the first class. The compu- 

tational complexity of these methods is at best O(D 

2 ) , where D is the number of degrees of freedom of the discretization.

The accuracy of these methods quickly deteriorates for faster oscillating trajectories [51, Chap. 2] . 4 

The second approach is known as the shooting approach. That is, one reduces the boundary value problem first to an

initial value problem by keeping just one boundary condition. A free parameter, κ in our case, is introduced to make the

initial value problem well-defined. Then one verifies with an initial value solver if the remainder of the boundary conditions 

is also satisfied. This procedure is iterated in a root finder that tries different values of the parameter until the boundary

value problem is solved. Shooting methods can be implemented with a computational complexity of only O( DNP ) , where D

is the number of samples, N is the number of eigenvalues and P is average required number of iterations per eigenvalue. 

Basic implementations of the shooting approach cannot guarantee global convergence, so they may not find every eigen- 

value. However, global convergence can be guaranteed by combining a shooting method with Sturm–Liouville (SL) oscillation 

theory. (This theory applies because the Schrödinger Eq. (2) is a specific example of a SL equation.) In short: According to

the SL theory, the number of zero-crossings of the trajectory f (x, κ, t 0 ) at a fixed value κ as x runs from −∞ to + ∞ , reveals

the number of eigenvalues that is greater than κ . To make use of this information, we need to track the zero-crossings of

the trajectory. From the Schrödinger equation Prüfer [52] derived a non-linear Ordinary Differential Equation (ODE) for the 

phase of the trajectory: the Prüfer equation. The number of zero-crossings follows trivially from the phase. The shooting 

method that relies on the integration of the Prüfer equation has become known as the Prüfer method [53,54] . However,

the Prüfer equation is a stiff system which is hard to integrate [51, §2.1] . Alternatively, one can integrate the Schrödinger

equation itself, which is simpler, and meanwhile count the number of zero-crossings [24,55,56] . In this paper we propose

an algorithm that also uses this method for the computation of the eigenvalues. 

The challenge within this method is to count the zero-crossings of the trajectory in a numerically robust way. Any missed

or doubly counted zero-crossing can cause a significantly wrong result. Even causes for a miscount that may seem patho- 

logical at first sight, are surprisingly likely to occur in practice, because the root counting procedure is repeated D (samples)

times N (eigenvalues) times P (iterations) times, and because the eigenfunctions that we search are themselves corner cases 

of the computation. Osborne [24] proposed to compute the number of zero-crossings by counting sign changes of the trajec- 

tory from sample to sample. However, Christov [57] observed numerical instabilities when applying Osborne’s algorithm on 

certain simulation data. Pruess [55, §4] and Ixaru [56, §5.2] proposed a more rigorous counter, to cover the possibility that

there is more than one zero-crossing between two consecutive samples. However, their approach may lead to a miscount if 
1 The reason for this is that the Schrödinger Eq. (2) is one half of a Lax-pair that constitutes the KdV equation [16–19] . 
2 In most related literature one uses the parameter ζ ≡ j κ , where j := 

√ −1 . Nevertheless, we use κ in this paper since it simplifies the exposition and 

keeps all computations in the real domain. 
3 The energy of f (x ) is defined as 

∫ ∞ 
−∞ | f (x ) | 2 d x . 

4 If (2) and (3) are observed, f ( x, K n , t 0 ) oscillates faster as K n is closer to zero. 

2 
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Table 1 

Characteristics of two SL based algorithms to compute the eigenvalues of the Schrödinger 

equation found in the literature, and the proposed algorithm. Matslise 2.0 allows the spec- 

ification of boundary conditions at ±∞ , but replaces ±∞ internally by finite value before 

the computation. 

Osborne [24] Matslise 2.0 [58] Proposed 

Input Samples Function Samples 

Boundary at ±∞ No Only as input Yes 

Order O(ε 2 ) O(ε 18 ) O(ε 4 ) 

Root finder Bisection Bisection to bracket, NR if possible, bisection 

refinement with NR for a new starting point 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a zero-crossing occurs close to the boundary between two integration steps. In Section 3.2 we will clarify this vulnerability

and explain how the proposed algorithm mends it. 

Another aspect on which we improve on algorithms that are known in the literature, is the root finder. The use of SL

theory provides upper and lower bounds on the eigenvalues. This information is most easily incorporated into a bracketing 

root finder, such as bisection. (A bracket consists of an upper and lower bound of a certain root.) Unfortunately, bisection

has only linear convergence. Some algorithms speed up the convergence by using a two-stage approach: First, bisection is 

applied to obtain a (sufficiently tight) bracket for each root, which contains no other roots. Second, a root finder with a

faster convergence is applied to refine the localization of the eigenvalue. The second stage could for example use regula falsi

[57] or NR [24,56,58] . These algorithms are thus still limited to linear convergence in the first stage. Algorithms that apply 

an open root finder such as NR in the second stage then face the problem of finding an initial guess for which the iterations

do not jump out of the just computed bracket. The algorithm that we propose in this paper uses a different approach. Since

we typically need to compute all of the eigenvalues for the NFT, there is no need to isolate the eigenvalues upfront and

to specify which one to localize next. Instead, we let the NR procedure converge to any eigenvalue. Thereafter, we select

a new starting point and let NR converge to another eigenvalue. Meanwhile, we update the brackets of all the eigenvalues

on every iteration of the NR procedure, based on SL theory. If the next NR iteration is not within the bracket of any of the

eigenvalues, we switch to a new starting point within one of the brackets. This ensures that every iteration increases our

knowledge about the location of at least one of the eigenvalues. 

We briefly mention some other relevant aspects that distinguish different root finding algorithms. These aspects are 

summarized in Table 1 for the proposed algorithm and for the two algorithms which we use as benchmark algorithms. 

• For practical applications of the KdV-NFT we need an algorithm that takes a sampled input signal. Some algorithms that 

were developed for other purposes, such as Matslise [58] require a functional description of the input signal instead. In

our benchmark comparison we will work around this issue by fitting a Fourier series to the data. 
• Some algorithms were developed for finding eigenvalues of the Schrödinger equation on a finite interval. The KdV-NFT for 

potentials that satisfy the vanishing boundary condition (3) requires boundary conditions at infinity. Not all algorithms 

support this. Matslise [58] allows the specification of boundary conditions at ±∞ , but replaces ±∞ internally by a finite

value before the computation. That means that not only the potential is truncated, but also the trajectories. In the NFT

literature it is common practice to exploit the fact that trajectories of the Schrödinger equation can be written as the

sum of two exponentials outside the support of the truncated potential. Therefore, no truncation of the trajectories is 

required. We also apply this in the proposed algorithm. We adapt this aspect of Osborne’s algorithm [24] accordingly for

the benchmark comparison in this paper. 
• There exist many integrators that can be used to integrate the Schrödinger equation. If the potential is (piecewise) suffi- 

ciently smooth, integrators of higher order are more accurate, but computationally more expensive per integration step. 

Matslise [58] uses an 18th order integrator, but severely reduces the number of integration steps to trade a part of the

accuracy gain for computational cost. We propose to use a specific fourth order integrator (see Section 3.4 ), because it

allows for an accurate computation of the zero-crossings of the trajectory (see (14) ). 

The rest of this paper is organized as follows. In Section 2 we mention a few important aspects of the eigenvalues of

the KdV and introduce two variables that play a fundamental role in the proposed algorithm to find the eigenvalues. These

variables are the scattering parameter a ( κ) and the accounting function s ( −∞ , ∞ , κ) . In Section 3 we show how to compute 

these parameters numerically at a given value of κ . In Section 4 we propose a root finder that finds the eigenvalues by

sampling these parameters, with a lower computational cost than bisection. In Section 5 we evaluate the proposed algorithm 

by comparing it with other methods on six different example signals. The paper is concluded in Section 6 . 

2. Preliminaries 

Recall that the problem we aim to solve in this paper is the following. Given a uniformly sampled potential q ( x, t 0 ) that

satisfies (3) , find all the eigenvalues. We will search for the eigenvalues with the shooting method. That is, choose a value κ ,

determine if κ is an eigenvalue of q ( x, t 0 ) and repeat until all the eigenvalues are localized. In this section we will explain

two strategies to determine if κ is an eigenvalue: The basic method and the one that makes use of SL oscillation theory.
3 
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We will also mention the numerical advantages and disadvantages of both strategies. In Section 3 we will explain how to

perform the numerical computations for these strategies. In Section 4 we will integrate these strategies in one algorithm 

that combines the advantages of both. 

2.1. Notation 

Matrices have an upper case symbol in bold weight (e.g. A ), vectors have a lower case symbol in bold weight (e.g. φ),

scalars have a normal weight (e.g. x ). Constants have an upright style (e.g. π ), real or imaginary variables have a slanted style

(e.g. x ), booleans are printed in a typewriter font (e.g. f ). We will use super scripts l and u for respectively the lower and

upper boundary value of an interval. O ( ) is used as the Landau ‘big-O’ order symbol. The symbol ‘ := ’ denotes a definition.

The symbol ‘ ← ’ means that the left hand side gets the value of the right hand side (at that point in an algorithm). The

symbol ‘ ∧ ’ denotes the logical and operation. The notation ‘ | x | ’ means the absolute value of x . The notation ‘ 	 x 
 ’ means

rounding x towards the nearest integer,‘ � x 
 ’ means rounding x towards the nearest greater or equal integer, ‘ 	 x � ’ means

rounding x towards the nearest lesser or equal integer. We will make extensive use of the Iverson bracket for piecewise

expressions: � b � := 1 if b is true , 0 otherwise. By convention, x � false � = 0 , even if x is infinite or undefined. Single square

brackets [ ] are used for the composition of vectors and matrices. Finally, both exp and e A stand for the natural scalar or

matrix exponential function: exp ( A ) ≡ e A := 

∑ ∞ 

i =0 A 

i / (i !) . 

2.2. Eigenvalues of the Korteweg–de Vries equation 

As mentioned in Section 1 , the eigenvalues of the KdV equation are obtained from the Schrödinger Eq. (2) . It can be

shown that if q ( x, t ) is real and evolves according to the KdV (1) , then the eigenvalues are constant and isolated (with

multiplicity one) [15,59] , and that all eigenvalues 5 satisfy 0 < K 

2 
n < sup x q (x, t) (for all t) [60, p. 732] . We will index the

eigenvalues such that 0 < K 1 < K 2 < · · · < K N < 

√ 

sup x q (x, t) , where N � 0 is the number of eigenvalues. Since the eigen-

values are constant, we can simplify the notation by dropping the dependence on the arbitrary fixed time t = t 0 of other

variables. 

2.3. Scattering parameter a ( κ) 

Given any potential q ( x ) that satisfies the vanishing boundary condition (3) , it is readily verified that as | x | → ∞ all

trajectories of the Schrödinger Eq. (2) can be parametrized as a linear combination of exp (±κx ) . We can thus define special

trajectories that vanish as x → ±∞ respectively. These trajectories are known as Jost solutions and satisfy the boundary 

conditions 

lim x →−∞ 

φ( x, κ) exp ( −κx ) = 1 (4) 

lim x → + ∞ 

ψ ( x, κ) exp ( + κx ) = 1 . (5) 

Since the eigenfunctions have finite energy, they must vanish both as x → −∞ and as x → ∞ . Therefore every eigenfunction

must satisfy both (4) and (5) up to an arbitrary constant factor: φ( x, K n ) ∝ f ( x, K n ) ∝ ψ ( x, K n ) . We can use this insight to

find the eigenvalues according to the shooting method. That is, we solve (2) for the boundary condition (4) at several values

of κ . Then we check if φ( x, κ) satisfies 5 up to a scalar factor. To simplify this check, one defines the scattering parameter

a ( κ) as follows. 

a ( κ) := W [ ψ, φ] / (2 κ) , where W [ ψ, φ] := ψ ( x, κ) 
∂ φ( x, κ) 

∂ x 
− φ( x, κ) 

∂ ψ ( x, κ) 

∂ x 
. (6) 

The Wronskian W [ ψ, φ] , also known as the mismatch function [51, Eq. 2.14] , vanishes if and only if the trajectories φ( x, κ)
and ψ ( x, κ) are proportional. Hence, the eigenvalues K n are the values κ for which a ( κ) = 0 . Usually one searches for the

eigenvalues with a root finder that also makes use of the gradient a ′ ( κ) := 

∂ 
∂κ

a ( κ) , for example NR. Initially, both a lower

and an upper bound on the eigenvalues are known, see Section 2.2 . These bounds can be used to guess suitable starting

values for the root finder. 

It is unreliable to compute the eigenvalues from samples of a ( κ) and a ′ ( κ) only, because it remains unknown how many 

eigenvalues there are. Suppose we have two adjacent, non-zero samples a ( κ1 ) and a ( κ2 ) , we can only infer the parity of

the number of eigenvalues between κ1 and κ2 : The parity is odd if a ( κ1 ) a ( κ2 ) < 0 and even if a ( κ1 ) a ( κ2 ) > 0 . In the odd

case there must be at least one eigenvalue between these samples, which is useful information. However, in the even case

the number of eigenvalues between these samples could be zero as well as any other even number. No matter how many

samples are taken, there is always a possibility that one or more pairs of eigenvalues are missed. In practice, we would have

to evaluate a (κ) on a very fine κ-grid and hope that odd means one and even means zero. In that manner we can never be

sure that we have localized all the eigenvalues. Additional information needs to be collected to ensure that no eigenvalues 

are missed. An attractive source of additional information is the accounting function, which we discuss next. 
5 By (3) sup x q ( x, t ) ≥ 0 . If sup x q ( x, t ) = 0 , there are no eigenvalues, so the discrete spectrum is an empty set. 

4 
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2.4. Accounting function 

Since the Schrödinger Eq. (2) is an example of an SL equation, SL oscillation theory applies. From that theory, it is

known that the number of solutions of φ( x, κ0 ) = 0 for fixed κ0 and finite real x is equal to the number of eigenvalues

that is greater than κ0 [61, Thms. 2.6.2 & 10.12.1.(4)] . We call these solutions zero-crossings for short. 6 Let us define the

accounting function s 
(
x l , x u , κ

)
as the number of zero-crossings of φ( x, κ) in the open interval x ∈ (x l , x u ) at a fixed value κ .

Then s ( −∞ , ∞ , κ) is equal to the number of eigenvalues that is greater than κ . Since all eigenvalues are positive, the total

number of eigenvalues is thus given by N = s ( −∞ , ∞ , 0 ) . Since all the eigenvalues are smaller than 

√ 

sup x q (x ) , we know a

priori that s ( −∞ , ∞ , κ) = 0 for κ ≥
√ 

sup x q (x ) . When κ is increased from zero to 
√ 

sup x q (x ) , the value of the accounting 

function s ( −∞ , ∞ , κ) is decremented by one whenever κ equals an eigenvalue. We can thus localize the eigenvalues by 

searching for the steps in s ( −∞ , ∞ , κ) . The value s ( −∞ , ∞ , κ) for κ just above or just below each localized eigenvalue K n ,

reveals the index n of that eigenvalue. 

The advantage compared to searching for zero-crossings of a ( κ) is the following. Recall that if we have two adjacent, 

non-zero samples a ( κ1 ) and a ( κ2 ) , we can only infer whether the number of eigenvalues between κ1 and κ2 is odd (if 

a ( κ1 ) a ( κ2 ) < 0 ) or even (if a ( κ1 ) a ( κ2 ) > 0 ). On the other hand, if we know s ( −∞ , ∞ , κ1 ) and s ( −∞ , ∞ , κ2 ) , their difference

reveals not just the parity of the number of eigenvalues between κ1 and κ2 , but the number itself. There is no risk of missing

any closely spaced eigenvalues if the κ-grid is too coarse. 

Of course, the accounting function is only useful if we can reliably evaluate it in a numerical computation. To that end

we have to detect the zero-crossings of φ( x, κ0 ) , where κ0 is fixed. That may seem like a similar problem as detecting the

roots of a ( κ) : If we would evaluate φ( x, κ0 ) on an x -grid and count the sign changes, we might miss pairs of zero-crossings

between two adjacent samples. However, the Schrödinger equation allows us to reliably detect even multiple zero-crossings 

of φ( x, κ0 ) between samples. Since φ( x, κ0 ) is a trajectory of the Schrödinger Eq. (2) , the ‘speed’ at which it oscillates

(the slope of the Prüfer phase) is controlled by the potential q ( x ) . If the potential is well-behaved between samples, the

oscillation is also well-behaved. For the proposed algorithm we will choose a reconstruction from the given samples, for 

which the Schrödinger equation has a piecewise analytic solution. This solution allows us to compute the number of zero- 

crossings piece by piece. We will discuss this further in Section 3 . 

The downside of using the accounting function is that it does not have a gradient to help finding the eigenvalues. There-

fore in Section 4 we will apply a NR root finder on the scattering parameter a ( κ) and its gradient a ′ ( κ) , and evaluate the

accounting function in parallel in order to bracket each eigenvalue. 

3. Integration of the Schrödinger equation 

In this section we discuss the numerical computation of the scattering parameter a ( κ) and the accounting function 

s ( −∞ , ∞ , κ) from the potential q ( x ) . In Section 4 we will incorporate these computations in an algorithm that finds the 

eigenvalues of the KdV equation efficiently and accurately. 

3.1. The sampled and reconstructed potential 

We assume that we do not know the true potential q ( x ) , but only a finite number of samples on a uniform x -grid. We

will define a reconstruction of the potential, for which we can integrate the Schrödinger equation while keeping track of 

the number of zero-crossings. We denote the number of samples by D and the step size by ε. That is, if x 1 is the first grid

point, then all the grid points are given by x d = x 1 + (d − 1) ε, where d ∈ { 1 , 2 , . . . , D } and the known potential samples are

q d := q (x d ) . For notational convenience, we define around each grid point an interval (x l 
d 
, x u 

d 
) := (x d − ε 

2 , x d + 

ε 
2 ) . Indeed, for

d < D it follows that x l 
d+1 

= x u 
d 

. 

We will compute a ( κ) and s ( −∞ , ∞ , κ) first for the simplest reconstruction of the potential from the samples q d . That 

is, we use a piecewise constant reconstruction, ˆ q ( x ) , by the midpoint rule. The known potential samples give no information

about q ( x ) for x / ∈ (x l 1 , x 
u 
D 
) . Therefore we set in the reconstruction ˆ q ( x ) = 0 for x / ∈ (x l 1 , x 

u 
D 
) . Hence, ˆ q ( x ) := 

∑ D 
d=1 q d � x 

l 
d 

< x <

x u 
d 
� . (Please refer to Section 2.1 for the meaning of the Iverson bracket � � .) The eigenvalues of ˆ q ( x ) approximate those of

q ( x ) up to an error term O 

(
ε 2 
)
. After demonstrating the computation for ˆ q ( x ) , we discuss in Section 3.4 how to upgrade

the method such that the error term reduces to O 

(
ε 4 
)

for sufficiently smooth potentials. 
6 All zeros are crossings, because if φ( x 0 , κ0 ) = 0 and ∂ 
∂x 

φ( x, κ0 ) 
∣∣

x = x 0 
= 0 at the same fixed position x 0 , then (2) implies φ( x, κ0 ) = 0 ∀ x , which violates 

4 . Hence φ( x 0 , κ0 ) = 0 ⇒ 

∂ 
∂x 

φx, κ0 

∣∣
x = x 0 

� = 0 , so φ( x, κ0 ) must change sign at x = x 0 . 

5 
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3.2. Numerical computation of the scattering parameter a ( κ) and the accounting function 

In numerical computations, it is convenient to replace (6) by an algebraic expression. We do that by defining vector 

valued trajectories as f C (x, κ) := [ f (x, κ) ∂ 
∂x 

f (x, κ) ] 
� 
. Then (6) is equivalent to 

a ( κ) ≡ ψ 

� 
C ( x, κ) 

[
0 κ−1 

−κ−1 0 

]
φC ( x, κ) / 2 . (7) 

Both (6) and (7) hold for all x . Therefore, a ( κ) can be computed at any matching point x for which both φC (x, κ) and ψ C (x, κ) 

are known. For simplicity, we will evaluate (7) at x = x u 
D 

in the analysis that follows. 7 Therefore we need to propagate

φ( x, κ) as defined in (4) from −∞ to x u 
D 

. We do that by exactly solving the Schrödinger Eq. (2) in every constant piece of

the reconstruction of the potential defined in Section 3.1 . Likewise, we propagate ψ(x, κ) as defined in (5) back from ∞ to

x u 
D 

. 

Furthermore, we evaluate the accounting function. We will do that by summing the zero-crossings of φ(x, κ) in every

piecewise constant interval of the reconstructed potential. That is, 

s ( −∞ , ∞ , κ) = s 
(
−∞ , x l 1 , κ

)
+ 

( 

D ∑ 

d=1 

s 
(
x l d , x 

u 
d , κ

)) 

+ s ( x u D , ∞ , κ) . (8) 

When we evaluate the accounting function (8) numerically, we must treat the number zero carefully. Firstly, to determine 

the sign of φ( x, κ) near one of its zero-crossings, we must use the same intermediate value φ
(
x u 

d 
, κ

)
for the computation 

of s 
(
x l 

d 
, x u 

d 
, κ

)
as for the computation of φ

(
x u 

d+1 
, κ

)
and further. Otherwise the sign of φ

(
x u 

d 
, κ

)
may differ between the 

two computation paths. We will come back to this in Eq. (14) and the discussion thereafter. Secondly, we must be careful

to obtain a correct result in case any intermediate value φ
(
x u 

d 
, κ

)
equals exactly 0. We found that the simplest treatment 

is to consider zero as a positive number . That means that we count the crossings at 0 −, between zero and the smallest

representable negative number. Since 0 − has no representation in finite precision, these crossings can numerically never 

lie exactly on an x grid point. This allowed us to write (8) as a summation of zero crossings in open rather than closed

intervals. 

We have to be careful with the case lim x →∞ 

φ( x, κ) = 0 . Even if φ( x, κ) approaches zero from below as x → ∞ , we

must not count this as a zero crossing. This might sound obvious at this point, but later, namely in (16) , it will lead to

one strict inequality ‘ > 0 ’, whereas we need ‘ ≥ 0 ’ everywhere else, in accordance with the treatment of zero as a pos-

itive number. This exception is essential for the working of the algorithm when a ( K n ) is numerically equal to zero for

any eigenvalue. It can be verified that lim x →∞ 

φ( x, κ) = 0 indicates that κ is an eigenvalue and that the eigenfunctions of 

K N , K N−2 ,... approach zero from above as x → ∞ , whereas those of K N−1 , K N−3 ,... approach from below. By never counting

lim x →∞ 

φ( x, κ) = 0 as a zero-crossing, we obtain a consistent behaviour of the accounting function at its steps. Namely, 

s (−∞ , ∞ , K n ) := lim κ↓ K n s (−∞ , ∞ , κ) ≡ lim κ↑ K n s (−∞ , ∞ , κ) − 1 , where ↓ denotes the limit from above and ↑ denotes the

limit from below. 

3.2.1. The lower tail: x ∈ (−∞ , x l 
1 
) 

In the interval x ∈ (−∞ , x l 
1 
) we know that φ( x, κ) satisfies the Schrödinger Eq. (2) and the boundary condition (4) . The

reconstructed potential ˆ q ( x ) is zero in this interval. It is readily verified that the solution in this interval is φ(x, κ) ≡ exp (κx ) .

The solution has thus no zero-crossings in this interval, that is, s 
(
−∞ , x l 

1 
, κ

)
= 0 . At the boundary of the next interval we

find 

φC 

(
x l 1 , κ

)
= 

[
1 κ

]� 
exp 

(
κx l 1 

)
. (9) 

3.2.2. The support: x ∈ (x l 
1 
, x u 

D 
) 

The computations in this interval are similar to those for the periodic boundary condition algorithm of [24] , but improve

on it by a more robust computation of the accounting function. This interval consists of D adjacent subintervals (x l 
d 
, x u 

d 
) . In

each of these subintervals the potential is constant. Therefore the Schrödinger Eq. (2) in the dth subinterval simplifies to
∂ 2 

∂x 2 
φ( x, κ) = κ2 − q d . The vector-valued Jost solution thus satisfies 

∂ 

∂x 
φC ( x, κ) = A C ( q d , κ) φC ( x, κ) , where A C ( q d , κ) := 

[
0 1 

κ2 − q d 0 

]
. (10) 

By solving (10) subject to the boundary condition at x = x l 
d 
, we find at x = x u 

d 
= x l 

d+1 
that 

φC 

(
x u d , κ

)
= H C 

(
x l d , x 

u 
d , κ

)
φC 

(
x l d , κ

)
, where the change of state matrix H C 

(
x l d , x 

u 
d , κ

)
equals (11) 
7 If the numerical representation of the trajectories causes an overflow during the computation, a different choice of x is a possible workaround. However, 

one could also solve it by rescaling the trajectory by a suitable non-zero scalar factor c, i.e. f C ( x, κ) ← c f C ( x, κ) , and look for the roots of c a ( κ) ), and/or, 

if κ � = 0 , by choosing a more suitable basis for the representation of the trajectories. Cf. [41, §3] . 

6 
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e ε A C ( q d ,κ) = 

[
cos ( γ ε ) ε sinc ( γ ε ) 

−γ sin ( γ ε ) cos ( γ ε ) 

]
, where γ := 

√ 

q d − κ2 and sinc ( γ ε ) := 

sin (γ ε) 
γ ε � γ ε � = 0 � + � γ ε = 0 � . (12) 

We remark that γ is either real or imaginary, but H C 

(
x l 

d 
, x u 

d 
, κ

)
is always real. 

To count the number of zero-crossings of φ( x, κ) in the dth subinterval, it is not sufficient in general to look only at the

signs of φ
(
x u 

d 
, κ

)
and φ

(
x l 

d 
, κ

)
as in [24] . The simplest way to see this, is by looking at the structure of the closed form

solution of φ( x, κ) in the dth subinterval. That is, 

φ( x, κ) = 

{ 

c 1 exp (−x 
√ 

κ2 − q d ) + c 2 exp (x 
√ 

κ2 − q d ) q d − κ2 < 0 , 

c 1 + c 2 x q d − κ2 = 0 , 

c 1 sin (c 2 + x 
√ 

q d − κ2 ) q d − κ2 > 0 ; 

(13) 

where c 1 and c 2 are real constants. If q d − κ2 ≤ 0 (the non-oscillatory case) we see from (13) that the number of zero-

crossings in the dth interval is either zero or one. Under that condition the number of zero-crossings can be determined

reliably by comparing the signs of φ
(
x l 

d 
, κ

)
and φ

(
x u 

d 
, κ

)
. However, the oscillatory case q d − κ2 > 0 requires a more careful

computation, because there could be more than one zero-crossing in the dth interval. In the oscillatory case we need to look

at the propagation of the phase of the sine in (13) across the dth interval, and compute the number of zero-crossings accord-

ingly. If 0 < ε 2 (q d − κ2 ) < π2 , the number of zero-crossings is still at most one. Hence, both ways of counting s (x l 
d 
, x u 

d 
, κ)

are valid in this domain. Sign comparison is computationally cheaper, but switching between the two computations exactly 

at ε 2 (q d − κ2 ) = π2 is numerically not robust. Therefore we choose to switch at ε 2 (q d − κ2 ) = 3 2 . Hence, we count the

number of zero-crossings in the interval (x l 
d 
, x u 

d 
) as 

s 
(
x l d , x 

u 
d , κ

)
= 

{ ∣∣� φ(x u 
d 
, κ

)
≥ 0 � − � φ

(
x l 

d 
, κ

)
≥ 0 � 

∣∣ ( εγ ) 
2 

< 9 , 

� φ
(
x u 

d 
, κ

)
≥ 0 � − � φ

(
x l 

d 
, κ

)
≥ 0 � + 2 

⌊(
εγ − θ

(
x u 

d 

)
+ θ

(
x l 

d 

))
/ ( 2 π) 

⌉
( εγ ) 

2 ≥ 9 

(14) 

where γ = 

√ 

q d − κ2 , θ ( x ) := atan2 
(
γ φ( x, κ) , ∂ 

∂x 
φ( x, κ) 

)
, and ‘ 	 
 ’ means ‘round to the nearest integer’. The four-quadrant 

arctangent is defined for (y, z) � = (0 , 0) by 

atan2 ( y, z ) := 

{
atan 

(
y 
z 

)
+ π� z < 0 � ( � y ≥ 0 � − � y < 0 � ) z � = 0 , 
π
2 ( � y ≥ 0 � − � y < 0 � ) z = 0 ∧ y � = 0 , 

(15) 

The values that are needed to evaluate (14) are thus q d , κ , φC (x l 
d 
, κ) and φC (x u 

d 
, κ) as computed with (11) . Note that it

is important to follow the definitions above carefully when either φ
(
x l 

d 
, κ

)
= 0 , or φ

(
x u 

d 
, κ

)
= 0 . That is, zero counts as a

positive number. 

Let us highlight the merit of (14) in comparison to the literature. When we use the accounting function s ( −∞ , ∞ , κ)
in the search for eigenvalues, we sample it at different values of κ . The accounting function is a non-increasing staircase

function of κ . This fact is implicitly exploited while bracketing the eigenvalues. Therefore, if a numerical evaluation of the 

accounting function is off by only ±1 , the perception of the accounting function will be very different. The error will often

remain unnoticed because the implicit assumption of a non-increasing staircase prevents the algorithm from taking suitable 

samples for that. Hence, it is essential to count every zero-crossing exactly once. As mentioned before, Osborne [24] relies on

the cheap sign check in the upper line of (14) , for every value of (εγ ) 2 . This may lead to a miscount if π2 ≤ (εγ ) 2 < (2 π) 2 

and will surely lead to a miscount if (εγ ) 2 ≥ (2 π) 2 . Pruess [55, §4] , Ixaru [56, §5.2] , and Ledoux [62, §4.2] distinguish

between the non-oscillatory case (εγ ) 2 ≤ 0 where the cheap sign check suffices, and the oscillatory case (εγ ) 2 > 0 where

they all use a more expensive computation. However, the step size ε of a sampled input signal is usually small compared

to the fastest oscillation in any of the trajectories in practice, in order to have a sufficiently accurate representation of that

signal. Therefore, most of the oscillatory case samples will be in the interval 0 < (εγ ) 2 < 9 , for which we can safely use the

cheap sign check. Our computation is thus more efficient in this respect. 

Furthermore, the oscillatory case computation that is used by [55, §4] is not robust when a zero-crossing occurs close 

to x u 
d 

. The problem is that the sign of φ
(
x u 

d 
, κ

)
is implicitly computed twice: First from φ

(
x l 

d 
, κ

)
and εγ to count the zeros

in the dth subinterval and second with (11) to obtain the initial condition for the next subinterval, φ
(
x l 

d+1 
, κ

)
. If there is

a zero-crossing near x u 
d 

, then due to numerical inaccuracies one computation may end up just above zero while the other

ends up just below zero. The consequence is then that this zero-crossing is counted either twice or not at all. We instead

compute φ
(
x u 

d 
, κ

)
= φ

(
x l 

d+1 
, κ

)
once, with (11) . As indicated in the bottom case of (14) , we only use εγ to count the number

of full oscillations (with two zero-crossings each) that remains after accounting for the initial phase angle θ (x l 
d 
) and final

phase angle θ (x u 
d 
) . This ensures that with our computation a zero-crossing near x u 

d 
= x l 

d+1 
is always counted either in the dth or

in the (d + 1) th subinterval. 

The computation for the oscillatory case that is used by [56, §5.2] and [62, §4.2] also makes use of φ
(
x u 

d 
, κ

)
, but it

has another vulnerability. Their idea is to use φ
(
x u 

d 
, κ

)
to add a small correction to the phase propagation εγ . How-

ever the way their equations handle the branch cuts of the (single variable) arctangent function is not numerically ro- 

bust. These branch cuts occur in their case (but in our notation) when 

∂ 
∂x 

φ
(
x l 

d 
, κ

)
= 0 and when 

∂ 
∂x 

φ
(
x u 

d 
, κ

)
= 0 . The
7 
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compensation for these branch cuts takes place when ϑ(x u 
d 
) − (εγ + ϑ(x l 

d 
)) − π	 1 π (εγ + ϑ(x l 

d 
)) � = ±π

2 , where ϑ(x ) :=
atan (γ φ(x, κ) / ( ∂ 

∂x 
φ(x, κ))) . Since this requires different comparisons between floating point numbers, rounding errors will 

very likely cause glitches near the branch cuts. Equation (14) instead uses φ
(
x u 

d 
, κ

)
in essence to compute a ‘signed parity’ 

of the number of zero-crossings and then adds as the third term a ‘correction’ for the number of full cycles based on εγ
minus a correction for the angles θ

(
x u 

d 

)
∈ (−π, π ] and θ

(
x l 

d 

)
∈ (−π, π ] . 8 The merit is that our branch cut compensation

always checks, up to multiplication by γ , the sign of the same floating point number that causes the branch cut. 9 Hence,

if φ
(
x l 

d 
, κ

)
is perturbed near zero, then θ

(
x l 

d 

)
and � φ(x l 

d 
, κ) ≥ 0 � in (14) are guaranteed to flip simultaneously. Likewise, if

φ
(
x u 

d 
, κ

)
is perturbed near zero, then θ (x u 

d 
) and � φ(x u 

d 
, κ) ≥ 0 � are guaranteed to flip simultaneously. This ensures that with

our computation, no glitches occur near the branch cuts of the four-quadrant arctangent. 

3.2.3. The higher tail: x ∈ (x u 
D 
, ∞ ) 

In the interval (x u 
D 
, ∞ ) the reconstructed potential is zero. We first solve the Schrödinger Eq. (2) for the boundary con-

dition φC (x u 
D 
, κ) in order to find the number of zero-crossings. Since q (x ) = 0 ≤ κ2 , we see from (13) that the number of

zero-crossings in this interval is either zero or one. This number can be computed by comparing the sign of φ
(
x u 

D 
, κ

)
to the

sign of lim x →∞ 

φ( x, κ) as follows. 

s (x u D , ∞ , κ) = � [ 1 0 ] φC ( x 
u 
D , κ) < 0 ∧ [ κ 1 ] φC ( x 

u 
D , κ) > 0 � + � [ 1 0 ] φC ( x 

u 
D , κ) ≥ 0 ∧ [ κ 1 ] φC ( x 

u 
D , κ) < 0 � (16) 

As discussed earlier in this section, the condition [ κ 1 ] φC (x u 
D 
, κ) > 0 is the only exception we must make to counting zero

as a positive number, to obtain a consistent behaviour of the accounting function at the eigenvalues. 

Next, we need to compute ψ C (x u 
D 
, κ) , so that we can compute a (κ) from (7) at x = x u 

D 
. We thus solve the Schrödinger

Eq. (2) with a potential of zero for the boundary condition (5) . It is readily verified that the solution in this interval is

ψ(x, κ) ≡ exp (−κx ) . Hence we obtain at x = x u 
D 

ψ C ( x 
u 
D , κ) = 

[
1 −κ

]� 
exp ( −κx u D ) . (17) 

3.3. Numerical computation of the gradient of the scattering parameter a (κ) 

In order to find the roots of a (κ) , we will make use of the gradient a ′ (κ) := 

d 
dκ

a (κ) . If we take the derivative of (7) with

respect to κ , we find [
a ( κ) 
a ′ ( κ) 

]
≡ 1 

2 

[
ψ 

� 
C ( x, κ) 

[
0 0 

]
∂ 
∂κ

ψ 

� 
C ( x, κ) ψ 

� 
C ( x, κ) 

]⎡ ⎢ ⎣ 

0 κ−1 0 0 

−κ−1 0 0 0 

0 −κ−2 0 κ−1 

κ−2 0 −κ−1 0 

⎤ ⎥ ⎦ 

[
φC ( x, κ) 

∂ 
∂κ

φC ( x, κ) 

]
, (18) 

where we have used the convenient formulation of the scalar derivative of matrix products found in [23] . For the computa- 

tion of a ′ ( κ) we need to extend the equations in Section 3.2 as follows. The derivatives with respect to κ of (9) and (17) are

respectively 

∂ 

∂κ
φC 

(
x l 1 , κ

)
= 

[
1 κ

]� 
x l 1 exp 

(
κx l 1 

)
; ∂ 

∂κ
ψ C ( x 

u 
D , κ) = 

[
−1 κ

]� 
x u D exp ( −κx u D ) . (19) 

Then 

∂ 
∂κ

φC (x, κ) needs to be propagated from x = x l 
1 

to x = x u 
D 

. Following [23,32] we augment (10) to 

∂ 
∂x 

[
φC ( x, κ) 

∂ 
∂κ

φC ( x, κ) 

]
= ̃

 A C ( q d , κ) 

[
φC ( x, κ) 

∂ 
∂κ

φC ( x, κ) 

]
, where ̃  A C () := 

⎡ ⎣ 

A C () 

[
0 0 

0 0 

]
∂ 
∂κ

A C () A C () 

⎤ ⎦ = 

⎡ ⎢ ⎣ 

0 1 0 0 

κ2 − q d 0 0 0 

0 0 0 1 

2 κ 0 κ2 − q d 0 

⎤ ⎥ ⎦ 

. 

(20) 

Then 

[
φC 

(
x u 

d 
, κ

)
∂ 
∂κ

φC 

(
x u 

d 
, κ

)] = ̃

 H C ( x 
l 
d 
, x u 

d 
, κ) 

[
φC 

(
x l 

d 
, κ

)
∂ 
∂κ

φC 

(
x l 

d 
, κ

)] (cf. (11)), (21) 

where the augmented change of state matrix ˜ H C (x l 
d 
, x u 

d 
, κ) := exp (ε ̃  A C ( q d , κ) ) equals ⎡ ⎣ 

H C 

(
x l 

d 
, x u 

d 
, κ

) [
0 0 

0 0 

]
∂ 
∂κ

H C 

(
x l 

d 
, x u 

d 
, κ

)
H C 

(
x l 

d 
, x u 

d 
, κ

)
⎤ ⎦ = 

⎡ ⎢ ⎣ 

cos ( γ ε ) ε sinc ( γ ε ) 0 0 

−γ sin ( γ ε ) cos ( γ ε ) 0 0 

κε 2 sinc ( γ ε ) κε γ −2 ( sinc ( γ ε ) − cos ( γ ε ) ) cos ( γ ε ) ε sinc ( γ ε ) 
κε( sinc ( γ ε ) + cos ( γ ε ) ) κε 2 sinc ( γ ε ) −γ sin ( γ ε ) cos ( γ ε ) 

⎤ ⎥ ⎦ 

. 

(22) 
8 That is, the number between the rounding brackets 	
 in (14) should be an integer already, up to numerical error. 
9 Numerical multiplication by γ will not change the sign, since γ > 3 /ε � 0 , unless the data is poorly normalized. 

8 
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Table 2 

Count of the amount of FLOPs that is required per x -sample to compute a (κ) at one sample κ , and the extra amount for computing 

also the gradient a ′ ( κ) . The underlined expressions should be interpreted as a single variable with a known quantity. Initially, only the 

potential sample q d , the spatial step size ε, and the spectral parameter κ are known. The upper part of the table regards the computation 

of H C 

(
x l 

d 
, x u 

d 
, κ

)
according to (12) , and the multiplication in (11) . This appears to take 35 FLOPs. The lower part of the table regards the 

extra operations for the computation of ˜ H C 

(
x l 

d 
, x u 

d 
, κ

)
according to (22) , and the multiplication in (21) . Once the values of the upper part 

of the table are known, this appears to take 24 additional FLOPs. Hence, the whole computation of a ( κ) , s ( −∞ , ∞ , κ) and a ′ ( κ) takes 

59 FLOPs per x -sample, per κ sample. The overhead, that does not depend on the number of samples, is ignored. The number of FLOPs 

that are required for each basic operation, are obtained from [63, p. 5] . In practice FLOP counts vary between different im plementations, 

programming languages, compilers and hardware architectures. Therefore, these results should be treated as rough estimates. 

Calculation Operation(s) FLOPs 

γ 2 ← q d − κ · κ 1 × and 1 ± 2 

γ ← 

√ 

γ 2 1 
√ 

4 

γ ε ← γ · ε 1 × 1 

cos ( γ ε ) ← cos 
(
γ ε 

)
1 cos 8 

sin ( γ ε ) ← sin 
(
γ ε 

)
1 sin 8 

ε sinc ( γ ε ) ← sin ( γ ε ) / γ 1 ÷ 4 

−γ sin ( γ ε ) ← −γ · sin ( γ ε ) 1 × and 1 ± 2 

Right-multiply a 2 × 2 matrix by a vector 4 × and 2 ± 6 

Total FLOPs per κ-sample per x -sample to compute a ( κ) : 35 

κε ← κ · ε 1 × 1 

κε 2 sinc ( γ ε ) ← κε · ε sinc ( γ ε ) 1 × 1 

κε sinc ( γ ε ) ← κ · ε sinc ( γ ε ) 1 × 1 

κε cos (γ ε) ← κε · cos (γ ε) 1 × 1 

κε ( sinc (γ ε ) + cos (γ ε)) ← κε sinc (γ ε) + κε cos (γ ε) 1 ± 1 

κε γ −2 ( sinc (γ ε ) − cos (γ ε)) ← 

(
κε sinc ( γ ε ) − κε cos ( γ ε ) 

)
/ γ 2 1 ± and 1 ÷ 5 

Right-multiply a 2 × 4 matrix by a vector 8 × and 6 ± 14 

Extra FLOPs per κ-sample per x -sample to compute also the gradient a ’ (κ) : 24 

 

 

 

 

 

 

 

 

 

 

 

 

A root finder that makes use of the gradient usually requires fewer iterations, but each iteration is computationally 

costlier. In order to determine if it pays off in this case to use the gradient, we need to determine if the first outweighs the

latter. In Table 2 we have therefore counted the number of FLoating point OPerations (FLOPs) to compute respectively the 

two by two matrix H C (x l 
d 
, x u 

d 
, κ) and the matrix vector multiplication in (11) , or the four by four matrix ̃  H C 

(
x l 

d 
, x u 

d 
, κ

)
and the

matrix vector multiplication in (21) . Since the number of repetitions of this part of the computation scales proportionally to

the (usually large) number of samples D , this part dominates the computational cost of evaluating (7) or (18) respectively.

For the basic operations in Table 2 we assumed the number of FLOPs that was estimated in [63, p. 5] . In practice FLOP

counts vary between different implementations, programming languages, compilers and hardware architectures. Therefore, 

these results should be treated as rough estimates. The results in Table 2 show that an evaluation of a (κ) alone takes

roughly 35 D FLOPs plus overhead. The computation of a ′ ( κ) at the same value of κ takes roughly 24 D FLOPs extra. Hence,

we estimate that every iteration of a gradient based root finder is roughly 70% more expensive than an iteration of a gradient

free root finder. 

3.4. Upgrade to fourth order accuracy 

In Section 3.2 we approximated the scattering parameter a ( κ) of a potential q (x ) . Thereto we used an exact computation

(in infinite precision) for the reconstructed potential ˆ q (x ) , defined in Section 3.1 . This piecewise constant reconstruction 

enabled the relatively simple computation in (11) and (12) . With respect to the true potential q (x ) , (11) implements the

exponential midpoint rule, which is also known as CF 
[2] 
1 

. 10 The exponential midpoint rule provides an approximation of 

order two in the step size [64, p. 244] . Consequently, we obtain from (7) a (κ) + O(ε 3 ) . The same considerations and error

order apply to the computation of the gradient a ′ ( κ) according to (18) in Section 3.3 . 

If the potential is sufficiently smooth, a more accurate reconstruction of a ( κ) and a ′ ( κ) can be obtained by using a 

higher order integrator. In particular, we will use the fourth order integrator CF 
[4] 
2 

[64, Eq. 12] : 

H C 

(
x l d , x 

u 
d , κ

)
:= e A C ( ̌q 2 d ,κ) ε/ 2 e A C ( ̌q 2 d−1 ,κ) ε/ 2 , where 

[
q̌ 2 d−1 

q̌ 2 d 

]
:= 

1 

2 

√ 

3 

[√ 

3 + 2 

√ 

3 − 2 √ 

3 − 2 

√ 

3 + 2 

][
q 
(
x m 

d 
− ε/ 

(
2 

√ 

3 

))
q 
(
x m 

d 
+ ε/ 

(
2 

√ 

3 

))]. (23) 

To obtain the non-equispaced samples of q (x ) that are required in (23) , we use band limited interpolation, as proposed

in [42] . Since this particular non-equispaced grid consists of two equispaced grids, the interpolation requires only three 11 

FFT computations, with a complexity of O ( D log D ) , and is thus computationally cheap. 
10 CF stands for commutator-free quasi-Magnus exponential integrators. The superscript number denotes the order of accuracy in the step size ε. The 

subscript denotes the number of matrix exponentials per step. 

9 
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We see that the computation of H C ( x 
l 
d 
, x u 

d 
, κ) in (23) has the same structure as the one in (12) , for two adjacent steps of

step size ε/ 2 . That is, the approximation of a ( κ) and a ′ ( κ) that we obtain from the CF 
[4] 
2 

integrator are (in infinite precision)

the exact results for the preprocessed potential 

q̌ ( x ) := 

D ∑ 

d=1 

(
q̌ 2 d−1 � x 

l 
d < x < x d � + q̌ 2 d � x d < x < x u d � 

)
= 

2 D ∑ 

d=1 

q̌ d � ̌x 
l 
d < x < x̌ u d � , (24) 

where x̌ l 
d 

:= x l 1 + (d − 1) ε/ 2 and x̌ u 
d 

:= x̌ l 
d 

+ ε/ 2 . 

Since we can interpret the approximations by the CF 
[4] 
2 

integrator as the exact results for a real piecewise constant 

potential, the computations of the accounting function in Section 3.2 still apply. We only have to use the preprocessed

potential samples q̌ d ( x ) , half the step size ε, and double the number of samples D . 

It is natural to ask if this approach can be extended to integrators of orders above four. Unfortunately, higher order

CF integrators require complex coefficients or negative step sizes [64,65] . Therefore these break the aforementioned inter- 

pretability on which our approach relies. Integrators that assume a piecewise polynomial approximation of the potential 

lead to more complicated piecewise expressions for the trajectory than (13) . Thus in (14) the phase propagation changes

from εγ to ε γ + O 

(
ε 2 
)
, cf. [62] . If these higher order terms amount to π or more, then (14) will no longer count the cor-

rect number of zero crossings. Especially when some of the accuracy gain of such a higher order integrator is traded against

a larger step size ε, these higher order terms might become significant. Dealing with this effect in a numerically robust way

will need further investigation. 

4. Algorithm to compute the eigenvalues 

In this section we present the algorithm that we propose for computing the eigenvalues of the KdV. We have seen in

Section 2 that the spectral parameter a ( κ) and the accounting function s (−∞ , ∞ , κ) both contain the full information on

the eigenvalues K n . Numerically, we can only compute these functions for one sample of κ at a time. Therefore we need

a strategy to choose these samples and a system to accumulate the information that we obtain at each new sample. We

start with the latter in Section 4.1 . In Section 4.2, 4.3 we proceed with respectively an existing and the proposed strategy to

choose the samples κ . The existing strategy, bisection, both serves as a benchmark algorithm in Section 5 and as a stepping

stone towards the exposition of the proposed algorithm. 

4.1. Bounds on the eigenvalues 

Our aim is to find the eigenvalues K n from a numerical algorithm. More precisely, we first want to determine the number

of eigenvalues N. Thereto we compute N ← s ( −∞ , ∞ , 0 ) . Next, we want to find each eigenvalue K n with n ∈ { 1 , 2 , . . . , N} up

some user-selectable tolerance �, with respect to the eigenvalues of the discretized potential. That is, we want to find 

N lower bounds K 

l 
n and N upper bounds K 

u 
n , such that ˆ K n ∈ (K 

l 
n , K 

u 
n ) and K 

u 
n − K 

l 
n ≤ � for all n ∈ { 1 , 2 , . . . , N} . The interval

(K 

l 
n , K 

u 
n ) is called a bracket (of the n th eigenvalue). Furthermore, we store the value of the scattering parameter a ( κ) at

all bounds. In the end we will use those residuals to select for each eigenvalue a best guess between the lower and upper

bound, based on a minimal residual criterion. The bounds together with the residuals form our current knowledge about the 

eigenvalues. The initial bounds are the same for all eigenvalues: K 

l 
n ← 0 and K 

u 
n ← 

√ 

max (0 , max d q̌ d ) . (See Section 2.2 and

24 .) If max d q̌ d ≤ 0 , so all samples are non-positive, it follows immediately that the discrete spectrum is an empty set. In

that case there is no need to do any other computations than this simple check. 

To increase our knowledge about the eigenvalues we proceed as follows. We select a value for κ and then evaluate the

scattering parameter α ← a ( κ) and the accounting function ς ← s ( −∞ , ∞ , κ) . In Fig. 1 we show how we use these results

to update our knowledge about the eigenvalues. Since the accounting function signifies the number of greater eigenvalues, 

its value ς tells us that K n < κ for n ∈ { 1 , 2 , . . . , N − ς} . Therefore, κ is an upper bound on this subset of the eigenvalues. If

this upper bound is tighter than the previously known upper bound, we overwrite it. Similarly κ is a lower bound on K n for

n ∈ { N − ς + 1 , . . . , N − 1 , N} . If this bound is tighter than the previously known lower bound, we overwrite it. 

If α = 0 , we know that κ is an eigenvalue. In that case φ( x, κ) → 0 as x → ∞ , but as emphasized in Section 3.2 , we do

not count this limit as a zero-crossing. Therefore φ(x, K N−ς ) has ς zero-crossings. Thus, if α = 0 we infer that κ = K N−ς . We

store this conclusion by setting K 

l 
N−ς ← κ and K 

u 
N−ς ← κ . 12 The special case K 

l 
n = K 

u 
n should thus be considered as a closed

rather than an open interval. 

In order to shrink a particular interval (K 

l 
n , K 

u 
n ) , the sample κ must lie in this interval. Hence, if κ does not lie between

the currently known bounds of any eigenvalue, the computations α ← a ( κ) and ς ← s ( −∞ , ∞ , κ) will not result in any 
11 If it is permissible to shift the truncation window from x ∈ [ x l 1 , x u D ] to x ∈ [ x l 1 ± ε 
/

(2 
√ 

3 ) , x u D ± ε 
/

(2 
√ 

3 )] , the number of required Fast Fourier Transform 

(FFT) operations can be reduced to two, by using (instead of two shifted grids) the original grid on which the samples are known together with one grid 

that is shifted by ∓ε 
/√ 

3 . 
12 In the flowchart in Fig. 1 , K u N−ς is already set to κ before reaching the conditional α = 0 . Therefore technically only the lower bound K l N−ς still has to 

be overwritten in the lower right block. The current representation is chosen for conceptual clarity. 

10 
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Fig. 1. Flow chart of the update of the brackets (K l n , K 
u 
n ) and the respective residuals a l n and a u n at the interval boundaries. This flow chart is the specification 

of the lower left block in Fig. 2 and block 6 in Fig. 3 . This update algorithm makes use of the total number of eigenvalues N, the current sample κ , the 

spectral parameter at this sample ς = s ( −∞ , ∞ , κ) , and the residual at this sample α = a ( κ) . Every bracket is checked either in the upper loop for a 

tightening of the upper bound, or in the lower loop for a tightening of the lower bound. The exceptional case α = 0 indicates that κ is an eigenvalue. This 

gets a special treatment, in the lower right block. 

Fig. 2. Top level flow chart of the bisection benchmark algorithm. 

Fig. 3. Top level flow chart of the proposed algorithm. 

11 
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progress regarding our knowledge about the eigenvalues. We say that κ is proper if and only if κ ∈ 

⋃ N 
n =1 (K 

l 
n , K 

u 
n ) . We use

the properness of κ as a conditional in the proposed algorithm to prevent such idle iterations. 

4.2. Bisection 

Osborne [24] proposed to search for the eigenvalues by means of bisection. An implementation of that is shown in Fig. 2 .

In addition to the variables that are explained in Section 4.1 , we keep track of a boolean array { b n } that stores if the n th

eigenvalue is localized. It is thus updated as b n ← (K 

u 
n − K 

l 
n ≤ �) , for n ∈ { 1 , 2 , . . . , N} . As long as there are eigenvalues left

to localize, we set κ by bisecting one of their intervals. After computing α ← a ( κ) and ς ← s ( −∞ , ∞ , κ) , we update the

bounds of all the eigenvalues as described in Section 4.1 and Fig. 1 . Then we update { b n } and repeat. Finally, we select as

best guess for each eigenvalue the bound with the lowest residual. That is, ˆ K n := K 

l 
n � | a l n | < | a u n | � + K 

u 
n � | a l n | ≥ | a u n | � . 

4.3. Proposed algorithm 

Bisection is a simple technique, but it has only linear convergence. Christov [57] proposed to use an Illinois type regula

falsi root-finder instead, to speed up the convergence. However, this technique requires initial brackets that contain exactly 

one eigenvalue, for which he resorted to a grid search. Root finding based on a ( κ) and a ′ ( κ) with the NR technique enjoys

a quadratic convergence. However, an open root-finder like NR is more difficult to combine with SL oscillation theory than a

bracketing root-finder like bisection. First, one has to find initial guesses within the basins of attraction of every eigenvalue 

rather than an initial bracket. Second, one can only establish convergence to the n th eigenvalue if the corresponding unit

step of the accounting function is sampled both below and above the eigenvalue at a distance smaller than the tolerance �.

A possible strategy is to apply a two-step procedure: First use bisection to find a reasonably tight bracket for each eigenvalue

and refine thereafter with a NR procedure [56,58,66] . However, this combines the disadvantages of both techniques: The 

slow convergence of bisection and the difficulty of keeping NR iterations within a bracket. 

We instead propose a hybrid algorithm that combines quadratic convergence (for most iterations) with the guarantee 

that all eigenvalues are localized. In short, we follow the NR procedure, unless its update results in an improper value κ .

(See Section 4.1 for the definition of improper.) Only in that case and at the start we apply one bisection step to obtain a

new initial value for the NR procedure. The algorithm stops when each eigenvalue is localized. Hence we do not select a

priori the order in which we search for the eigenvalues. Thus we avoid the difficulty of finding an initial guess in the basin

of attraction of that eigenvalue. Instead we allow the NR procedure to converge to any eigenvalue. If it happens to have

started within the basin of attraction of an eigenvalue that is already localized, it will update to an improper value of κ ,

typically already in the first iteration. Then we use a bisection step instead. 

A flowchart of the proposed algorithm is shown in Fig. 3 . The blocks 1 up to and including 11 form the basis of the

algorithm. Let us describe these blocks first. Thereafter we will explain the purpose and working of blocks 12 up to and

including 17. 1: The input of the proposed algorithm is the array of samples q̌ d that results from (23) . Furthermore, the

tolerance on the eigenvalues, �, must be provided. One should keep in mind that this is the maximum deviation of the

returned eigenvalues with respect to the eigenvalues of the discretized potential. The error that is caused by the sampling 

and reconstruction of the potential cannot be reduced by choosing � smaller and smaller. 2: The initialization is the same as

for the bisection algorithm. See Section 4.1 and 4.2 . 3: While there are eigenvalues left to localize, continue searching. 4: We

select any unlocalized eigenvalue and bisect its currently known bracket. It makes little difference which of the remaining 

brackets we choose to bisect. We choose the lowest m for which b m 

= false . 5: At the current value κ we evaluate α ←
a ( κ) , α′ ← a ′ ( κ) , and the accounting function ς ← s ( −∞ , ∞ , κ) . This is the most computationally expensive step, so we will

count every time the algorithm enters this block as one iteration. 6: We update the brackets of all eigenvalues as described

in Section 4.1 and Fig. 1 . 7–8: If κ is not a stationary point, we can compute the NR update of κ . That is, κ ← κ − α/α′ .
If the update succeeds, the NR descend continues from the updated value κ . However, if κ would become improper after

this update (see Section 4.1 ), we break the NR cycle before the actual update. 9–10: We consider an eigenvalue as localized

if K 

u 
n − K 

l 
n ≤ �. If that condition is met for any eigenvalue n whereas b n is still false , we set b n to true and return. Please

note that this is not necessarily the eigenvalue m that was selected in block 4, and that in rare cases we may find more than

one eigenvalue at once. 11: When all eigenvalues are localized up to an interval of length � at most, we stop searching. For

each eigenvalue n ∈ { 1 , 2 , . . . , N} we return the bound with the smallest residual as the best guess. That is, ˆ K n := K 

l 
n � | a l n | <| a u n | � + K 

u 
n � | a l n | ≥ | a u n | � . 

If we would only use the part of the algorithm that is described in blocks 1 up to and including 11, we would already be

able to localize all eigenvalues reliably. However it has a flaw that makes it fall back to linear convergence. This is because

the NR algorithm tends to converge to a root monotonically: either from above or from below. Let us consider the spectral

parameter a ( κ) around a root K n . More precisely, we look at a neighbourhood of K n where a ( κ) is either convex or concave.

In the convex case, every tangent line to a ( κ) in this neighbourhood crosses zero at κ > K n . This crossing represents the

NR update. That means that once κ enters this neighbourhood, all following updates satisfy κ > K n . Thus, ignoring finite

precision effects, the algorithm converges monotonically to K n from above. Upon termination, we will thus have found a 

tight upper bound of that root. However, since we require that the bracket (K 

l 
n , K 

u 
n ) is smaller than � before we consider an

eigenvalue localized, we also need a sufficiently tight lower bound. Unfortunately, this lower bound can only be found with 

bisection, since every nearby lower NR iteration would immediately jump over the already known upper bound. Mutadis 
12 
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mutandis , the same happens if a ( κ) is concave in a neighbourhood of K n . Therefore, the algorithm as a whole falls back on

linear convergence. 13 

The blocks 12 up to and including 17 in Fig. 3 are added to avoid this. The principle is that if the NR descend terminates

on a tight upper bound, we decrement κ by � to enforce a tight enough lower bound. Vice versa, we increment κ by �

in case of a tight lower bound. In detail: 12: When the NR cycle terminated without localizing an eigenvalue, there are two

possibilities. Firstly, we might not have started within the basin of attraction of any eigenvalue that was left to localize. In

that case we need to return, to find a new starting point by bisection. Secondly, due to numerical effects, the NR update

will always become improper near a root of a ( κ) . When that happens, we have localized one tight bound of that root. In

that case we want to enforce the opposite bound, as explained before. To distinguish between these two cases, we look at

the magnitude of the NR update that would have taken place. 13–17: If the value of κ became a lower bound for one or

more eigenvalues (in block 6), we expect at this point that this bound is tight for at least one of these eigenvalues. In order

to guarantee that this eigenvalue is localized, we try to put an upper bound at κ + �. We expect κ + � to be proper in

this case, but we test it nevertheless (in block 15), to guard against unforeseen behaviour. Similarly, if he value of κ became

an upper bound for one or more eigenvalues, we expect at this point that this bound is tight for at least one of these

eigenvalues. In order to guarantee that this eigenvalue is localized, we try to put a lower bound at κ − �. We do not give

any special treatment to the rare case in which κ is both a lower bound of one eigenvalue and an upper bound of another. 

5. Examples 

In this section we will demonstrate the proposed algorithm. We select six different vanishing potentials and compute 

their eigenvalues with the proposed algorithm and with three benchmark algorithms. We first compare the accuracy that 

the algorithms achieve as a function of the tolerance �. Next, we compare in detail the accuracy and computational cost at

an ideal fixed value �. 

5.1. Benchmark algorithms 

We compare the proposed algorithm to two versions of the bisection algorithm that was described in Section 4.2 and

Fig. 2 . The difference between the two versions lies in the reconstruction of the potential. By using the reconstruction

in Section 3.1 we obtain the second order version. We will refer to this benchmark algorithm as Alg. B2. By using the

reconstruction in (23) and (24) we obtain the fourth order version. We refer to this benchmark algorithm as Alg. B4. Both

Algs. B2 and B4 use the proposed root counter that is described in Section 3.2 . We will also test one of the examples with

Alg. B2s. That algorithms is equal to Alg. B2, except that it uses the root counter that was proposed by Osborne [24] . This

particular example shows the problem with that root counter. We remark that we cannot use the complete algorithm from 

Osborne [24] as a benchmark, since we must at least adapt it to data with vanishing instead of periodic boundary conditions.

Furthermore, we compare the proposed algorithm to Matslise 2.0 [58] . 14 We refer to this eighteenth order benchmark 

algorithm as Alg. MS18. This algorithm needs an analytic expression of the input signal q (x ) , whereas our algorithm requires

samples. Therefore we use band limited interpolation. That is, we pass an expression of the form 

q MS (x ) := −
(
α0 + 

∑ 	 D/ 2 � 
d=1 

αd cos ( 2 πd 
εD 

(x − x 1 )) + 

∑ � D/ 2 
−1 

d=1 
βd sin ( 2 πd 

εD 
(x − x 1 )) 

)
� x > x l 1 �� x < x u D � , (25) 

for which we calculate the coefficients αd and βd with the FFT of the sampled input signal. The minus sign is required

due to the different parametrisation of the Schrödinger equation. Matslise does not make use of the step size ε of the data,

but automatically chooses a mesh. Matslise only allows us to specify a tolerance for the squares of the eigenvalues, not

for the eigenvalues themselves. We use the same tolerance � as for the other algorithms, but point out that it has to be

interpreted differently for Matslise. We also pass to Matslise the jump points x = x l 
1 

and x = x u 
D 

. We obtain the eigenvalues

as K n = 

√ 

−E n , where E n are the squared eigenvalues that are returned by Matslise. 

5.2. Example potentials 

We will compute the eigenvalues of the six potentials that are shown in Fig. 4 . The exact description of these potentials

is as follows. We define q 1 (x ) := 99 sech 

2 (2 x ) . This is a non-reflectionless 15 potential with five eigenvalues: K 1 = 1 , K 2 = 3 ,

K 3 = 5 , K 4 = 7 , and K 5 = 9 [59, §2.5] . We define q 2 (x ) := 24 . 99 sech 

2 (x/ 5) . This is a non-reflectionless potential with 25

eigenvalues: K n = 0 . 2 n − 0 . 1 for n ∈ { 1 , 2 , . . . , 25 } [59, §2.5] . The reflectionless potential q 3 (x ) shows a typical far-field pat-

tern with six separated solitons. We selected its eigenvalues as K n := 

√ 

n , where n ∈ { 1 , 2 , . . . , 6 } . The norming constants are

set to b(K n ) := (−1 . 0 × 10 12 ) 
n 
. The required samples of this potential are computed numerically with the Crum transform 
13 Thanks to finite precision effects, the NR descend sometimes finds a sufficiently small interval anyway. That happens if one of the final updates 

numerically jumps over the root. However, we want to enforce quadratic convergence in the majority of the cases. 
14 We considered Matslise 3.0/Pyslise [67] as well, but this package is currently still under development [68] . In particular, we found that boundary 

conditions at infinity are not yet supported. 
15 A reflectionless potential is a potential of which the continuous KdV-NFT spectrum is zero, such that the signal only consists of the (possibly interacting) 

solitions that are represented by the eigenvalues. 

13 
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Fig. 4. Potentials of which the eigenvalues are calculated to demonstrate the proposed algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

algorithm of [41] . The reflectionless potential q 4 (x ) forms a wave train with nearly equal eigenvalues. The eigenvalues are

selected as K n := 1 + (n − 5)10 −4 , where n ∈ { 1 , 2 , . . . , 9 } . The norming constants are set to b(K n ) := −(−1) n . The required

samples of this potential are computed numerically with the same Crum transform algorithm [41] . Potential q 5 (x ) is a reflec-

tionless potential with thirty eigenvalues. The eigenvalues are selected as { K n } := { 2 − cos (i ) | i ∈ { 1 , 2 , . . . , 30 }} . We sort this

set of eigenvalues such that K 1 < K 2 < · · · < K 30 , Then, the norming constants are set to b(K n ) := (−1) n 10 6 sin (n ) , where n is

the index after sorting. The required samples of this potential are once again computed numerically with the Crum transform 

algorithm from Prins and Wahls [41] . Potential q 6 (x ) is a rectangular potential that is defined as q 6 (x ) := 10 � −10 ≤ x ≤ 10 � .

It is non-reflectionless and it has 21 eigenvalues. There exists no closed form expression to compute these eigenvalues. 

However, they can be approximated to any desired finite precision with e.g. [41, Eq. 49] . 

For numerical processing, all potentials are truncated to the respective intervals shown in Fig. 4 . Potentials q 1 (x ) till q 5 (x )

are sampled on a uniform grid of 10 4 samples on this interval, such that for example x l 1 = −10 and x u 
D 

= 10 for potential

q 1 (x ) . Potential q 6 (x ) is sampled with only two samples, at x = −5 and x = 5 respectively. 

5.3. Error measures 

Since we know the true eigenvalues of each of the example potentials, we can calculate the error of the computed eigen-

values. In some cases the numerical algorithms return a different number of eigenvalues than the true number of eigenval- 

ues. We will always compare every true eigenvalue to the computed eigenvalue with the same number of zero-crossings 

of the eigenfunction. Thus, the greatest true eigenvalue is compared to the greatest computed eigenvalue etcetera. If the 

number of computed eigenvalues ˆ N is larger than the true number of eigenvalues N, we compute a separate error measure

that compares the spurious ˆ N − N smallest eigenvalues to zero. The thought behind this is that an artificial eigenvalue of 

(nearly) zero corresponds to a part of the spectrum with (nearly) zero mass, momentum, and energy. We thus define 

RMS 
n ≤N 

{
ˆ K 

n + ̂ N −N 
− K n 

}
:= 

√ 

1 

N 

N ∑ 

n =1 

(
ˆ K 

n + ̂ N −N 
− K n 

)2 
, RMS 

n>N 

{
ˆ K 

n + ̂ N −N 

}
:= 

√ √ √ √ 

1 

ˆ N − N 

ˆ N −N ∑ 

n =1 

ˆ K 

2 
n , if ˆ N > N. 

In addition, we can indicate the error by the residual of the spectral parameter a ( κ) at the computed eigenvalues. This

error measure does not account for discretization errors. The main benefit is that it can even be calculated if the true

eigenvalues are not known, which is in practice typically the case. Again, we calculate this error for the N largest eigenvalues

and the spurious ˆ N − N smallest eigenvalues separately: 

RMS 
n ≤N 

{
a 
(

ˆ K n 

)}
:= 

√ 

1 

N 

N ∑ 

n =1 

(
a 
(

ˆ K 

n + ̂ N −N 

))2 
, RMS 

n>N 

{
a 
(

ˆ K n 

)}
:= 

√ √ √ √ 

1 

ˆ N − N 

ˆ N −N ∑ 

n =1 

(
a 
(

ˆ K n 

))2 
, if ˆ N > N. 

Unfortunately, the Matslise benchmark algorithm (MS18) does not provide information on the residual. 

5.4. The effect of the tolerance 

Both the proposed algorithm and the benchmark algorithms contain a tolerance parameter � to select the desired accu- 

racy. However, they respond very differently to the setting of �. This can be seen in Fig. 5 . In that figure we compare for

the potential q 1 (x ) the proposed algorithm to the benchmark algorithms for different settings of �. 

The top right panel of Fig. 5 shows the achieved error RMS n ≤N 

{
ˆ K 

n + ̂ N −N 
− K n 

}
as a function of the tolerance �. The similar

graphs for the example potentials q 2 (x ) till q 6 (x ) are shown in Fig. 6 . We see that for high values of the tolerance � the

bisection based benchmark algorithms (Algs. B2 and B4) achieve an error RMS n ≤N 

{
ˆ K 

n + ̂ N −N 
− K n 

}
just below the tolerance 

�. When the tolerance is reduced, both of these algorithms hit an error floor when the error due to the reconstruction of

the potential becomes the dominant source of error. These error floors depend on the potential as well as on the sampling

interval and truncation. The fourth order error floor of benchmark Alg. B4 is in most cases lower than the second order error
14 
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Fig. 5. The plots show a comparison between the proposed algorithm and the three benchmark algorithms for the example potential q 1 (x ) . The top right 

panel shows the achieved accuracy as a function of the chosen tolerance �. The bottom right panel shows the number of iterations that is required, as 

a function of the chosen tolerance �. The left panel shows the resulting trade-off curve. For Alg. MS18 no information is available on the number of 

iterations. 

Fig. 6. The plots show the achieved accuracy as a function of the chosen tolerance � for the example potentials q 2 (x ) till q 6 (x ) when using the proposed 

algorithm and the three benchmark algorithms respectively. The diagonal grey lines show RMS 
n ≤N 

{
ˆ K 

n + ̂ N −N 
−K n 

}
= � and the vertical grey lines show the value 

� that is listed in Table 3 . 

 

 

 

 

 

 

 

 

 

 

 

 

floor of benchmark Alg. B2. 16 The proposed algorithm, Alg. NR4, achieves the fourth order error floor for a much wider range

of settings of the tolerance �. The reason is that if the NR descend is successful, it terminates at either a tight upper or

lower bound. The opposite bound is enforced to ensure that the bound is tight enough, but in practice it is the termination

point of the NR descend that determines the returned estimates ˆ K n . If the allowable tolerance is very high, the error of the

proposed algorithm may be closer to the tolerance. In those cases one or more NR descends jumped out of the range of

proper values κ , upon which the algorithm checks if the bracket is below the tolerance. (See block 9 in Fig. 3 .) If a high

tolerance is allowed, that may already be the case, even if the NR descend did not converge. On the other hand, if we select

an extremely low tolerance, machine precision effects can show up. Among these examples this effect is only visible for the

potential q 1 (x ) , in Fig. 5 for � = 10 −16 and � = 10 −17 . In these cases the tolerance is so small that after the termination of

the NR descend, the update to enforce an opposite bound (blocks 17 and 18 in Fig. 3 ) is too small to find an opposite bound

immediately. It is thus advisable not to choose � lower than 10 −15 in double precision computations. 

The invariant behaviour of the proposed algorithm, Alg. NR4, with respect to a wide range of tolerances � is a practical

advantage: We do not have to think much about an appropriate setting of �, since we obtain the maximum accuracy in the
16 For example potential q 6 (x ) the second and fourth order error floor are equal, because a rectangular potential is a truncated constant. For example 

potential q 4 (x ) the error floor is equal for all algorithms. We suspect that the computation of the samples of q 4 (x ) is the dominant source of error in that 

example, due to the close separation of the eigenvalues. 

15 



P.J. Prins and S. Wahls Applied Mathematics and Computation 433 (2022) 127361 

Table 3 

Results of finding the eigenvalues of potentials q 1 (x ) , . . . , q 6 (x ) (see Fig. 4 ) with four versions of an automatic eigen- 

value finder: Algs. NR4 (proposed), B2, B4 and MS18. Additionally, the results of a fifth algorithm, Alg. B2s, are shown 

for the potential q 6 (x ) . Algorithm B2s uses a simple sign check root counter instead of (14) and is otherwise equal to 

Alg. B2. Table cells of which the value cannot be computed (because the computed number of eigenvalues ˆ N leads to 

an invalid expression) are left blank. The symbol ∗ means that the data are missing that are needed to compute the 

value in that cell. 

Example Alg. ˆ N Iter. RMS 
n ≤N 

{ ̂ K 
n + ̂ N −N 

− K n } RMS 
n ≤N 

{ a ( ̂ K 
n + ̂ N −N 

) } RMS 
n>N 

{ ̂ K n } RMS 
n>N 

{ a ( ̂ K n ) } 

q 1 (x ) 

N = 5 

� = 10 −12 

NR4 N 47 1 . 09 × 10 −11 2 . 47 × 10 −16 

B4 N 212 1 . 09 × 10 −11 3 . 89 × 10 −14 

B2 N 212 6 . 70 × 10 −6 4 . 43 × 10 −14 

MS18 N ∗ 2 . 26 × 10 −6 ∗
q 2 (x ) 

N = 25 

� = 10 −11 

NR4 N 202 3 . 32 × 10 −11 2 . 54 × 10 −19 

B4 N 881 3 . 38 × 10 −11 1 . 33 × 10 −12 

B2 N 881 2 . 68 × 10 −6 1 . 05 × 10 −12 

MS18 N +3 ∗ 6 . 19 × 10 −1 ∗ 3 . 68 × 10 −1 ∗
q 3 (x ) 

N = 6 

� = 10 −11 

NR4 N 52 1 . 09 × 10 −11 9 . 89 × 10 −21 

B4 N 219 9 . 69 × 10 −12 2 . 26 × 10 −15 

B2 N +1 256 7 . 47 × 10 −6 3 . 62 × 10 −16 3 . 05 × 10 −5 5 . 50 × 10 −8 

MS18 N ∗ 7 . 93 × 10 −10 ∗
q 4 (x ) 

N = 9 

� = 10 −5 

NR4 N +1 188 4 . 93 × 10 −6 1 . 06 × 10 −46 6 . 45 × 10 −5 3 . 82 × 10 −2 

B4 N +1 77 6 . 90 × 10 −6 1 . 05 × 10 −36 6 . 47 × 10 −5 4 . 21 × 10 −2 

B2 N +1 77 5 . 77 × 10 −6 1 . 99 × 10 −36 1 . 03 × 10 −4 6 . 63 × 10 −3 

MS18 N ∗ 2 . 57 × 10 −5 ∗
q 5 (x ) 

N = 30 

� = 10 −8 

NR4 N 230 6 . 01 × 10 −8 1 . 49 × 10 −36 

B4 N 707 6 . 42 × 10 −8 1 . 30 × 10 −28 

B2 N +1 733 8 . 79 × 10 −5 6 . 14 × 10 −29 5 . 35 × 10 −4 6 . 85 × 10 −6 

MS18 N ∗ 1 . 02 × 10 −7 ∗
q 6 (x ) 

N = 21 

� = 10 −15 

NR4 N 258 2 . 13 × 10 −15 1 . 70 × 10 −23 

B4 N 1002 2 . 07 × 10 −15 1 . 73 × 10 −18 

B2 N 1002 2 . 07 × 10 −15 2 . 17 × 10 −18 

B2s N −20 52 

MS18 N ∗ 2 . 44 × 10 −5 ∗

 

 

 

 

 

 

 

 

 

 

 

 

same number of iterations for any reasonable setting. For computations in double precision arithmetic, we would simply 

select a default value of � = 10 −15 . 

Algorithm MS18 does not make use of the samples that the other algorithms use. Instead it selects its own mesh based

on the variation of the potential and the user input tolerance [58, §2.3] . Please recall that Matslise’s tolerance is a tolerance

on the squares of the eigenvalues, and therefore RMS n ≤N 

{
ˆ K 

n + ̂ N −N 
− K n 

}
< � does not have to hold. Nevertheless, we would 

expect that as the tolerance � is tightened, the result keeps getting more accurate (at the cost of computation time) until

the truncation of the potential becomes the dominant source of error. Since the other algorithms suffer likewise from this 

truncation error, the error floor of the fourth order algorithms (Algs. B4 and NR4) should be achievable for the eighteenth

order Matslise algorithm as well. Nevertheless, we see in Figs. 5 and 6 that the error floor of Alg. MS18 can be much higher

than the fourth order error floor. Furthermore, we see for some of the examples that the error curve is not a monoton-

ically non-decreasing function of the tolerance, but shows local maxima instead. We also noticed that these error curves 

can change significantly if the computation is repeated with a different version of Matlab, or if the potential is obtained

from a slightly different number of samples before band limited interpolation. According to the current developers, Matslise 

3.0/Pyslise uses a more conservative error estimate and a finer mesh than its predecessor [67] . Therefore we surmise that

the next version, if it allows boundary conditions at infinity, will return stabler and more accurate results. 

In the bottom right panel of Fig. 5 , we see the effect of the tolerance on the number of iterations. For the bisection

based algorithms, Algs. B2 and B4, the number of iterations increases proportional to log (1 / �) and is the same for both

versions. The proposed algorithm, Alg. NR4, needs roughly the same number of iterations for every user-selected tolerance 

�. 17 Unfortunately we do not have access to the number of iterations (and computational cost per iteration) of Alg. MS18. 

The left panel of Fig. 5 shows the trade-off curve between accuracy and number of iterations that results from the other

two panels. We will discuss it in the next subsection. 

5.5. Comparison of error and computational cost 

The left panel of Fig. 5 shows the trade-off curve between accuracy and number of iterations that results from the 

other two panels. We see that the proposed algorithm, Alg. NR4, achieves the best achievable accuracy of the fourth order
17 If the error is not at the fourth order error floor for high �, such as in Fig. 6 , the algorithm terminates earlier. Hence in that case the number of 

iterations also drops. 

16 
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benchmark algorithm, Alg. B4, but at a much lower number of iterations. Even if we take into account that the iterations of

the proposed algorithm are 70% more expensive (see Section 3.3 ), the proposed algorithm remains computationally cheaper. 

Hereafter, we want to compare the proposed algorithm to the benchmark algorithms in more detail, considering com- 

putational cost and several kinds of error. For a fair comparison it would be preferable to fix the error and compare the

computational cost, or to fix the computational cost and compare the errors. That is unfortunately not possible. We can 

only fix the tolerance. We set it close to the optimal value for the benchmark algorithm B4. That is, close to the maximum

value � for which the error RMS n { ̂  K 

n + ̂ N −N 
− K n } is at the error floor. For example in Fig. 5 we see that this is � = 10 −12 

for potential q 1 (x ) . The values for the other potentials can be read likewise from Fig. 6 . A consequence of this choice is

that the eigenvalue errors of Algs. NR4 and B4 will be both on the fourth order error floor, so approximately the same. We

will furthermore have to keep in mind that Alg. B2 would be capable of achieving the same error as in this test at less

computational cost, by selecting a higher tolerance. The same likely holds for Alg. MS18, but we cannot verify that since we

have no information on its computational cost for these examples. 

In Table 3 we show the results at this tolerance for the proposed algorithm, Alg. NR4, as well as for the three benchmark

algorithms, Algs. B2, B4 and MS18. Besides the eigenvalue error that we have already seen in Figs. 5 and 6 , it also shows

the residual error, the errors which correspond to spurious eigenvalues where applicable and the iteration counts. Algorithm 

B2s is equal to Alg. B2, except for the root counter. It uses instead of (14) always the simple sign check, as in the upper

case of (14) . Algorithm B2s is thus as close as possible to the algorithm that was proposed in [24] , except for the necessary

adaptation to vanishing boundary conditions. We will discuss the results from this algorithm in Section 5.6 . 

5.5.1. Computational cost 

Although we optimized the tolerance for the B4 algorithm, Table 3 shows that the proposed algorithm requires only 

about a fourth of the number of iterations of the bisection based algorithms for most example potentials. Even when we

take into account that iterations of the proposed algorithm are approximately 70% more expensive than those of B4 (see 

Section 3.3 ) and those of Alg. B2 are 50% cheaper than those of B4, the proposed algorithm remains computationally cheap-

est. Indeed, Alg. B2 would have achieved approximately the same error at a lower number of computations if a higher

tolerance were selected. However, the optimal choice for the tolerance is in practice unknown. 

The proposed algorithm is typically computationally cheaper than bisection, but Table 3 shows one exception, namely 

potential q 4 (x ) . The eigenvalues of q 4 (x ) are clustered together and while searching for the first eigenvalue, the bisection

algorithms find a tight bracket for the whole cluster. Therefore the other eight eigenvalues can be localized in few extra

iterations. Algorithm NR4 on the other hand converges first with a long series of NR iterations from below to the smallest

eigenvalue. For the remainder of the cluster this only gives a reasonably tight lower bound. It finds the upper bound of the

cluster with another long series of NR iterations that converges to the highest eigenvalue. Both of these series appear to be

atypical cases in which the NR algorithm converges rather slowly. 

5.5.2. Spurious eigenvalues 

When an algorithm returns more eigenvalues than there should be, we refer to the surplus of eigenvalues as spurious 

eigenvalues . More precisely, we consider the ˆ N − N smallest eigenvalues, where ˆ N is the numerically calculated number of 

eigenvalues, as spurious. Those are the eigenvalues for which the highest numbers of zero-crossings are detected. 

Regarding potential q 4 (x ) we see in Table 3 that all algorithms except for Alg. MS18 return one spurious eigenvalue.

Algorithm B2 furthermore returns one spurious eigenvalue for the potentials q 3 (x ) and q 5 (x ) . In all cases this eigenvalue

is close to zero: The eigenvalue is typically one order of magnitude larger than the error in the true eigenvalues. This is

typical for reflectionless potentials. The reason is that the scattering parameter a (κ) of the reconstructed potential indeed 

has an extra root compared to the true potential. However, this is not problematic in practice, since a near-zero eigenvalue

represents in the KdV-NFT spectrum a component of near-zero ‘mass’, ‘momentum’ and ‘energy’. More precisely, these are 

proportional to respectively the first, third and fifth power of the eigenvalue [69, §3.1] , [70, §3] . Therefore, if we would

compute the inverse KdV-NFT of a spectrum, the presence of a very small spurious eigenvalue will have little influence on

the resulting potential. 

For potential q 2 (x ) we see in Table 3 that Alg. MS18 returns three spurious eigenvalues, while the other algorithms find

the correct number of eigenvalues. The spurious and non-spurious eigenvalue errors of Alg. MS18 are also very high in this

case. This is because Alg. MS18 finds the true eigenvalues to reasonable precision, plus some spurious eigenvalues between 

the true eigenvalues. The index of some of the smallest true eigenvalues is shifted by these spurious eigenvalues. This would

be expected behaviour for a root finder that does not use SL oscillation theory. However, this theory makes it possible to

index every single eigenvalue without knowing the others, by counting the number of zero-crossings of its eigenfunction 

[58] . Therefore, this behaviour is remarkable for a root finder that is based on SL theory. 

5.5.3. Residual errors 

We have no information on the residual error of Alg. MS18, so we can compare the proposed algorithm, Alg. NR4, only to

the bisection based benchmark Algorithms B2 and B4. When we look at the residual errors of the non-spurious eigenvalues 

RMS n ≤N 

{
a ( ̂  K 

n + ̂ N −N 
) 
}

, we see that the proposed algorithm, Alg. NR4, achieves in all cases a significantly lower error than the 

bisection Algorithms B2 and B4. Nevertheless, the eigenvalue error RMS n ≤N 

{
ˆ K 

n + ̂ N −N 
−K n 

}
of the proposed algorithm is similar 

to the eigenvalue error of Alg. B4. This shows that the proposed algorithm gets significantly closer to the eigenvalues of the
17 
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reconstructed potential (see (24) ), but not closer to the eigenvalues of the true potential. Hence, the error of the proposed

search algorithm is negligible compared to the discretization error itself. 

5.6. Numerical robustness 

The potential q 6 (x ) is included to demonstrate two aspects of the numerical robustness of the computation of the ac-

counting function that was presented in Section 3.2 . 

Firstly, the potential q 6 (x ) demonstrates that the simple sign check (the case (εγ ) 2 < 9 in (14) alone, cf. [24] ), is not

sufficient. We included in this example Alg. B2s, which is equal to Alg. B2, except that Alg. B2s uses the simple sign check

as a root counter, instead of (14) as a whole. Since there are only two samples plus the higher tail in this case, Alg. B2s

can count maximally three sign changes in total, whereas the correct accounting function should range to N = 21 . As we

see in Table 3 , it detects only one zero crossing at κ = 0 , so that only ˆ N = 1 eigenvalue is returned. (That one numerically

computed eigenvalue differs 2 . 66 ×10 −16 from the highest eigenvalue in this spectrum.) It needs no explanation that the

inverse KdV-NFT will be significantly different from the original potential if 20 of the 21 eigenvalues are missing from its

discrete spectrum. Indeed, the potential q 6 (x ) is deliberately constructed as an extreme case, but still it illustrates why the

case (εγ ) 2 ≥ 9 in (14) is needed. 

Secondly, the potential q 6 (x ) demonstrates the robustness of counting zero-crossings of the trajectory φ( x ) near a bound- 

ary x = x u 
d 

. Because of the even symmetry of q 6 (x ) , 10 out of its 21 eigenfunctions are odd symmetric and thus have a

zero-crossing at x = 0 . For Algs. NR4, B2 and B4 that is at the boundary between two piecewise constant sections of the

reconstructed potential. (Since Matslise chooses its own grid, we cannot effectively present Alg. MS18 with this challenge.) 

With the low number of samples we put this zero-crossing also numerically as close as possible to x = 0 and maximise the

risk of counting this zero-crossing as two or not at all. We see from the results in Table 3 that Algs. NR4, B2 and B4 each

find all eigenvalues, so we conclude that the computation indeed appears robust against this source of error. 

The results of q 6 (x ) furthermore show that the eigenvalue error does not improve when using a fourth order algorithm

(Algs. NR4 and B4) rather than a second order algorithm (Alg. B2). This was to be expected, since in this particular case

both approximations result in the exact true potential. 

6. Conclusion 

We presented a numerical algorithm for the computation of eigenvalues of the Non-linear Fourier Transform (NFT) spec- 

trum with respect to the Korteweg–de Vries equation (KdV) from sampled data with vanishing boundaries. The proposed 

algorithm uses a shooting approach with a Newton–Raphson (NR) based root-finder. Nevertheless, because we make use of 

Sturm–Liouville (SL) oscillation theory, we can guarantee that our algorithm finds all the eigenvalues. This theory is in the 

literature usually combined with a bisection-based root-finder, because a bracketing root-finder is the natural choice for the 

type of information that SL oscillation theory provides. However, NR typically converges faster. Therefore we designed an 

algorithm that combines SL oscillation theory with an NR-based root-finder. We demonstrated that our algorithm indeed 

typically saves computation time compared to a bisection based root-finder. Furthermore, we showed that for sampled data 

with vanishing boundaries, our algorithm is more robust to numerical rounding errors than comparable algorithms that are 

currently available. Hence our algorithm is more reliable. 
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