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Abstract

A novel approach was proposed to improve situational awareness using a head-mounted dis-
play when working together with an industrial robot arm. With the introduction of affordable
intrinsically safe industrial robot arms, research into human-robot interaction has increased.
When robot arms and humans are working together, it is not only essential that the robot
arm is aware of humans, but also that the human knows what the robot arm is doing and
intending to do. Situational awareness is value representation for the comprehension of a sit-
uation used to infer what is going on and what is going to happen. The situational awareness
of a human was improved by showing extra virtual information using augmented reality. The
virtual information was shown using a virtual model of the robot arm on a head-mounted dis-
play. Two categories of information to improve situational awareness were found by analysing
the human-robot interaction in orange repacking: state and intention information. From each
category, one information type with a high potential to improve situational was implemented
and explored. Two within-subject experiments were conducted in which the test subjects were
asked to wear a head-mounted display and work in a designed robot working cell. During the
first experiment the test subject were presented with visual cues about the state of the robot
arm and during the second experiment with visual cues about the intended goal of the robot
arm. In each experiment the test subjects were evaluated on the reaction time to the visual
cues. Each experiment was done twice, once with the presence of virtual information and once
without, but both while wearing the head-mounted display. Compared to the case without
virtual information, the results showed a decrease in reaction times to state and intention
information when presented with the virtual information. This decrease in reaction time was
a measure for an increased situational awareness of the human and showed that situational
awareness could be improved by using a head-mounted display to show extra, not observable,
information about the robot arm. This work contributes to help humans work more efficiently
together with industrial robot arms by using a head-mounted display to present information
in a more natural manor.
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Chapter 1

Introduction

1-1 Motivation

When thinking of robot arms for industry, the image is often of big, powerful, fast moving
and dangerous robot arms. Because of these characteristics, safety measures are required to
prevent injuries to humans [1]. The most common of these safety measures is a safety fence, a
barrier between the robot arm and humans. This barrier prevents the robot arm from injuring
people, but inhibits human-robot interaction, because when the safety fence is opened, the
robot needs to stop to prevent hurting humans. Recent robot arms are made intrinsically safe
and do not require the use of a safety fence as a barrier between humans and the robot arm.
These arms have additional safety features such as a maximum dynamic power ≤ 80W , or
a maximum static force ≤ 150N , that enable them to work around humans, without safety
fences and be physically safe [2]. With these intrinsically safe robot arms, human-robot
interaction is a possibility so that robots and humans can work together in the same physical
space on the same project [3, 4]. This human-robot interaction allows production processes to
be designed more efficiently, by playing to the specific strengths of both humans and robots.
Robots are better at doing repetitive and heavy tasks all day long, while humans are able to
adapt very quickly to changing surroundings and are better at doing complex and dexterous
tasks. An industrial sector that has active research on the introduction of intrinsically safe
robot arms is the fruit and vegetables repacking industry. Robot arms are used to do the
easy and repetitive tasks, while the humans do the more complex and dexterous tasks. By
letting humans and robots work together tasks can be done more efficiently, however to be
able to work efficiently together an adequate Situational Awareness (SA) is needed by the
operator [5].

SA is an important factor in human dynamic decision making and task performance [5]. When
working together, robots and humans need to be aware of each other, their state (what is
happening now) and intentions (what is happening next). A lot of research effort is being put
into making robots aware of, and react to humans [6, 7, 8]. Sensors are added to the robot
to detect humans that are in the working space of the robot or verbal communication and
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non-verbal instructions are used to inform the robot [9]. However to have efficient human-
robot interaction it is also important that the human knows what the robot is ’thinking’,
doing and intending to do [10]. This is needed so the human will feel more at ease, safe, less
stressed [5, 11, 12, 13] and also to improve task execution performance [5, 14, 15]. Compared
to the research being done to help robots understand humans, the research done to help
humans understand robots is neglectable.

Seen from a human point of view, a robot arm is a black box, so the ability of the human
to figure out what the robot is doing and intending to do is impaired. The ability to build
an internal representation of the environment is very important to the human to figure out
what is going on and what is going to happen [5]. To compensate the lack of this SA, various
solutions were developed. Improving SA is dependent on the way the environment is able
to provide information and what kind of information is provided. The provided information
also needs to be as compatible as possible with human information processing abilities [5]. In
this context information was defined as various cues to improve observations and make them
clearer. To improve the SA of the human when working with an industrial robot arm it is
important to show the information from the robot to the human co-worker in a clear and
unambiguous way. What the robot is currently doing, the current state, is most obvious to
show, because the robot itself can give a lot of cues, but the intended state, like actions done
in the future or motions, are more difficult to show.

Various solutions are found in literature to show current state and intentions of a robot to the
human. Social robots use speech, facial expressions and body language to communicate their
state and intentions [16, 17]. Natural looking motions of an industrial robot arm are used to
indicate intentions [13] and repeated motions of a mobile robot are used to indicate that the
robot needs help from the human [10, 18, 19]. Visual approaches are also used, for example
a 3D model of a robot arm, shown on monitor, to indicate the intended motion [11, 12] or a
projector on a mobile robot to project the intended path on the ground [14, 15].

For this thesis a novel approach was chosen in the form of a Head-Mounted Display (HMD)
combined with Augmented Reality (AR), this display was used to display state and intention
information from the robot to the human. AR is used to facilitate communication between
humans and robots and shows promise [20]. A HMD is a display worn on the head that
displays visual information directly in front of the wearer’s eyes. Recent advances in HMD
technology have made them suitable for real-time use, because the image resolution and
computation speed of computers have increased. Recent studies showed various advantages
of using HMDs over traditional visualization techniques, such as lights or displays. Using a
HMD, in combination with AR, reduces head-eye movement and attention switching, which
increases eye-on-work time and overall performance [21].

To test if showing state and intentions information from an industrial robot using a HMD
is beneficial for the SA of the human, an experiment was designed. This experiment was
designed as a mock-up of a real world scenario and focusses on the handling and repacking of
oranges. A mock-up scenario was used, instead of an abstract scenario, to improve fidelity for
the test subjects [22]. The robot and human are working together in the same physical space
to accomplish a shared task. The robot arm is working continuously, but requires human
help and intervention to function better. The goal of the robot arm is to substitute human
labor: make the process cheaper and faster. This setup was chosen because of knowledge and
focus of recent proposals from the university, to bring robotics to the Small and Medium-sized
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1-2 Research question 3

Enterprise (SME) sector, in particular to the repacking of fruit and vegetables sector.

1-2 Research question

To test if Situational Awareness (SA) can be improved by using a Head-Mounted Display
(HMD) and Augmented Reality (AR) in an industrial setting, it is necessary to test if it is a
good solution to show information from the robot to the human. The research question is:

Does showing state and intention information of an industrial robot arm, using a head-
mounted display, help the human co-worker to improve situational awareness?

Based on a preliminary analysis of the task interaction (as described in Chapter 3) the fol-
lowing hypothesis were formulated:

• Visualizing the internal state of the robot arm using a head-mounted display reduces
the reaction time of the human co-worker when the robot arm changes internal state.

• Visualizing the intended goal position of the robot arm using a head-mounted display
reduces the reaction time of the human co-worker when reacting to a specific destination
position of the robot arm.

1-3 Thesis organization

To answer the research question the following approach was taken:

1. HMD design: A Head-Mounted Display (HMD) was programmed to allow the showing of
virtual information from an industrial robot arm using Augmented Reality (AR). Section 2-
3 introduces the important factors involved with HMDs and Appendix A gives a detailed
overview of the implementation, both hardware and software.

2. Analysis: The interaction between humans and robots when handling oranges was anal-
ysed. Chapter 3 gives an overview of the important parameters of Human-Robot Interaction
(HRI) and Situational Awareness (SA) when working with a robot arm to handle oranges.
Section 3-1 describes the pilot study that was done to discover the important parameters
of HRI. Section 3-2 gives an overview of the information from the robot that is useful for
humans and Section 2-1-2 describes the metrics used to measure SA.

3. Experiment design: An experimental robot working cell was designed to allow HRI and
the use of a HMD to display virtual information from the robot to the human. Chapter 4
describes the design of the robot working cell (Section 4-1) and the design of the virtual
information shown on the HMD (Section 4-4). Appendix B gives a more detailed overview of
the robotic working cell, both hardware and software.

4. Experiment: An experiment was done to test if the virtual information shown on the
HMD improves SA, Chapter 5 describes the experiment.

5. Evaluation: The experiment was evaluated to identify the important parameters asso-
ciated with visually presenting state and intention information and human-robot interaction
to draw conclusion from the results. Chapter 7 discusses the results of the experiments and
Chapter 8 concludes this thesis.
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Chapter 2

Background

To get a better understanding of the approach, solutions and choices made in this thesis, some
background knowledge and information is needed. This chapter explains important back-
ground information regarding Situational Awareness (SA), Head-Mounted Display (HMD),
Augmented Reality (AR) and prior research done into making humans aware of robots.
Section 2-1 describes the concepts of SA and explains the importance of the concept with
respect to human decision making and describes how to measure it. Section 2-2 gives an
overview of prior research done with respect to SA when working with robots. Section 2-3
describes what AR is, what the important challenges are and how they were solved in this
thesis. A more detailed explanation of the solution with respect to the HMD hardware and
AR software is given in Appendix A.

2-1 Situational awareness

Kobayashi and Yamada used ToM as the basis for their research into Human-Robot Interaction
(HRI) [18]. They argued that ToM is an important factor for humans to be able to work ef-
ficiently together with a robot. ToM is a theory used in psychology and neuroscience and
is the ability to assign mental states (beliefs, intentions, desires, knowledge, etc.) to oneself
and to others [23, 24, 25]. ToM is built by using social interaction, observations of behavior,
actions and emotions and by the use of natural language. Having a ToM allows a person to
attribute thoughts, desires, and intentions to others. With these attributes a person is able
to predict or explain actions of others and to infer their intentions [26].
A lot of concepts of ToM are not applicable to industrial robots, but are more applicable to
social robots [16], because they are specific to social interaction. That is why ToM is not the
proper basis to view state and intention sharing in HRI for industrial settings. A concept
that is a better basis for state and intention sharing in HRI is Situational Awareness (SA),
because it describes HRI from a broader perspective, a situation [27]. Endsley defines SA
as: "the perception of elements in the environment within a volume of time and space, the
comprehension of their meaning, and the projection of their status in the near future" [5]. A
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simpler definition is given by Adam: "knowing what is going on so you can figure out what
to do" [28]. This theory is about building an internal representation of the environment and
use to make decisions.

2-1-1 Situational awareness model

Figure 2-1: Model of Situational Awareness (SA) in human dynamic decision making [5]. At the
heart of the dynamic decision making is the SA of a person. SA is divided into three levels, each
levels corresponds to a more complete internal representation of the environment. Together with
the goals, objective, skill, memory, information processing ability and expectations, a decision is
made. This decision effects the environment and the observations from this environment are fed
back to update the SA. Figure was extracted from Wikipedia [29].

Human decision making is a complex and an active area of research. This section explains the
importance of SA with respect to human decision making by using the SA model as defined
by Endsley (Figure 2-1). In this model all important factors involved with human decision
making are modeled. As can be seen in Figure 2-1 the heart of the model is SA, which has three
levels. From the SA, goals, objectives and expectations, decisions are made. These decisions
effect the environments and the observation of this environment is fed back to make new
decisions about the altered environment. Other important factors effecting decision making
are: skill, prior training, memory and observation and information processing ability. The
three SA levels correspond to a different level of completeness of the internal representation
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of the environmental. The completeness of this representation effects decision making: when
a person has a more complete internal representation of the environment, better decision can
be made.

Level 1 SA: Perception

The first step in gaining SA is to perceive the status, attributes and dynamics of relevant parts
of the environment. Examples are size, location, color and speed of objects. It is important
to have a complete as possible representation of the environment. What kind of attributes
are needed to understand the environment is dependent on the function of the human and on
the task performed.

Level 2 SA: Comprehension

The next step is to use the perceived attributes of level 1 and not only be aware of them, but
try to understand their relationship and significance to the environment and task. The ability
to comprehend the perceived attributes of level 1 is related to the experience of the human.
A less well trained or less knowledgeable human might be able to get to the same level of
perception as a more trained or knowledgeable human, but fails to reach the same level of
comprehension. With a lower comprehension, the build-up of the internal representation of
the situation is impaired.

Level 3 SA: Projection

When good comprehension of the environment is achieved, predictions about the future states
can be made. The ability to predict the future states requires good knowledge about the status
and dynamics (level 1 and 2 SA) of the environment and allows for better decision making.
The better you can predict future state, the better you can adapt your actions to meet your
goal.

2-1-2 Measuring situation awareness of human-robot interaction

This section describes what methods and metrics were used to measure an improvement of
SA. Measuring SA in HRI with an industrial robot arm is not a trivial task and in literature
various methods are proposed. This is because SA is very specific to a situation. To come to a
good method with proper metrics, first an overview of the most common evaluation methods
is given. With this overview a suitable method with proper metrics was chosen to measure
SA in HRI with an industrial robot arm used for handling oranges.
Research into HRI and SA has been growing in the recent years, not only in the design
of robot systems, but also in the evaluation thereof. SA is a very complex field, that is
why various evaluation methods have been developed and used, all with their advantages
and disadvantages. According to Bethel and Murphy [22] and Endsley and Garland [30]
there are four methods to evaluate SA: self-assessment, interview, behavioral measures and
performance measures. These methods are the intersection between the methods proposed
by both research teams, because the methods rely on the same principle.
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Self-assessment: self-assessments are subjective methods and are based on the personal
assessment of the test subject. Examples of self-assessment are: psychometric scales, ques-
tionnaires and surveys. The problem with these methods is that there is a bias, because the
evaluation is done after the experiment, therefore the test subjects have had time to process
what they have done and reason about it.

Interviews: an interview is also subjective method and is normally done by interviewer
asking questions. This method is also prone to a bias, because the interviewer can influence
the answers of the test subjects. The test subjects are can answer questions based on what
the interviewer wants to hear instead of what the test subjects actually experienced.

Behavioral measures: behavioral measures are objective methods and are gathered by
observing the test subjects during the actual interaction with the robot. These methods
depend on the interpretation of the observer to map the behavioral responses of the test
subject to the SA of the test subject.

Performance metrics: performance measures determine how well a person performs a
task, reacts to an event or the amount of errors made. These measures give an objective
measurement that don’t rely on the interpretation of observation, but assume a relation
between SA and performance. An advantage of performance metrics is that they can be
compared between persons.

To answer the research question it is sufficient to only look at performance metrics. Perfor-
mance metrics were chosen, because they are objective and can be compared straightforward
between people. Which performance metrics were used is further discussed in Section 3-3.

2-1-3 Conclusion

As can be seen there is a difference between the usefulness of level 1 SA, level 2 SA and level 3
SA in human decision making. For good decision making and thus good human performance
it is important that the human’s level of SA is as high as possible, but gaining a better
SA requires time and training. By helping the human in gaining a better comprehension and
building of an internal representation of the situation, less time has to be spent trying to learn
a the important parameters and dynamics of the situation. An improved understanding of the
environment results in better and faster decision making. In this thesis specific information
about the state and intention of the robot arm, which help improve comprehension (level 2
SA) and projection (level 3 SA), are shown on a HMD. An improvement in SA was measured
by performance metrics and further discussed in Section 3-3.
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2-2 Prior research done to improve situational awereness

This section gives an overview of the literature and prior research done to improve SA in
human-robot interaction and describes why a visual based method was used in this thesis.
Section 2-2-4 gives a conclusion of the literature discussed in this chapter.

In literature various solutions are presented that improve SA. The provided solutions, in the
form of various cues presented to the human, are used to show what a robot is ’thinking’,
doing and intending to do. This was done to help the human gain better comprehension of
the situation (level 2 SA and level 3 SA). There are three categories of cues defined using
two major senses, seeing and hearing [7]:

Motion cues: motions of the robot were used to indicate state and intention of the robot.
Section 2-2-1 gives an overview of the literature that used motion cues.

Auditory and natural language cues: audio cues from a robot were used to inform a
human about the state and intention of the robot. Section 2-2-2 gives an overview of the
literature that used auditory cues.

Visual cues: state and intention of the robot was also encoded into visual cues. Section 2-2-3
describes the literature that used visual cues.

2-2-1 Motion cues

Zanchettin et al. [13] researched what the effect of natural looking motions of an industrial
robot arm is on the psychophysical response of the human. A two arm setup (Figure 2-2(a))
was used to do an assembly task together with a human. They measured psychophysical
responses in the form of heart rate, Electrocardiography (ECG) signals, Skin Conductance
(SC) and Electromyography (EMG) signals and concluded that more natural looking motions
of the robot arm resulted in less emotional arousal, less robot-induced stress, more ergonomic
interaction and better prediction of intentions.

These natural looking motions are better adapted to human information perception and
processing and allow humans to better infer intentions. When viewed from the eyes of the
SA model, this allows a speed up of level 2 and 3 understanding of the environment.

Kobayashi and Yamada [18, 19, 10] used motions of their mobile robot to express its internal
state and intentions which they called expressing the robot’s mind. They used a back and forth
going repeated motion to indicate that the robot needed help from a human (Figure 2-2(b)),
the robot signalled the human when an obstacle needed to be removed. They compared the
back and forth going motion cue with a light cue (Light-Emitting Diode (LED)) and a sound
cue (buzzer). The conclusion was that a non-verbal cue in the form of motion was used to
allow more variation in the cues and induce less stress by the human.

This research uses back and forth going repeated motion of a mobile robot to make the
intentions of the robot clear to the human. By using the motion cues the human has a better
SA compared to no motion cues, because level 2 and 3 information was given.
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(a) Experimental setup used by Zanchetting
et al.

(b) Experimental setup used by Kobayashi and Yamada.

Figure 2-2: Figure 2-2(a) shows the experimental setup used by Zanchetting et al. [13] in
their experiment to research the psychophysical effects of natural looking motions on the human.
Figure 2-2(b) shows the experimental setup used by Kobayashi and Yamada [18, 19, 10] to research
the effect of motion cues by the robot to indicate that it needs help from the human.

2-2-2 Auditory and natural language cues

Fong et al. used natural language to communicate between humans and robots [31, 32] to
communicate that the robot needed help from the human. They performed an experiment
where an autonomous mobile robot had to make a decision and asked the human for help
(Figure 2-3). This way the human knew what was going on, because the robot informed the
human what decisions it was making.

By informing the human about its decisions, the human doesn’t have to infer from observations
what the robot is doing and going to do and allows the human to gain better SA.

Figure 2-3: Teleoperation experiment done by Fong et al., where the robot had to make a
decision and asked the human for help [31, 32].

Auditory cues are mostly used in social robots in the form of speech. Speech allows the robot
to communicate to the human in a way that is adapted to the information observation and
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processing mechanisms often used by humans.

2-2-3 Visual cues

Matsumaru et al. used a projector and a mobile robot as a basis to implement their system
to help humans gain SA [14, 33, 34, 35, 36]. They named it preliminary announcement and
projected the state and intentions of their mobile robot onto the floor so it can be seen directly
by humans (Figure 2-4). Matsumaru et al. researched the types of information that needed
to be displayed and the way to display this information. In their research they compared the
use of a projector with the use of a blowout, lamp and light ray to indicate the intended path
of which the projector was best. They argued that two types of information were important
to display: the speed and the direction of their mobile robot. The experimental results
gathered from the passing each other experiment (Figure 2-5(a)) concluded that preliminary-
announcement of the state and intention of the robot had a positive effect on the way humans
judged the actions of the robot [15].

By projecting the state and intentions humans can directly observe the what the robot is
intending to do, build a better model of the environment, improve SA and are thus better
judge what the robot is doing and going to do.

(a) Mobile robot with projector to display
intended path used by Matsumaru et al.

(b) Close-up of the projection of the intended path and actions of
the mobile robot.

Figure 2-4: The solution by Matsumaru et al. to inform the intended motion of a mobile robot
to a human [14]. Figure 2-4(a) shows the total mobile robot with projector. Figure 2-4(b) shows
a close-up of the projection on the ground. The projection indicates the intended motion, speed
and actions of their mobile robot.

Wakita et al. used a stationary robot arm to work together with a human [11, 12, 37]. They
researched information sharing between human and robot by enabling the robot to show its
intentions and requests to the human which they called knowledge projection. This knowledge
projection was done by displaying a 3D model of the robot arm on a monitor and projecting
the intended motion on that monitor. They also projected the hand position of the human
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on the workspace using a projector, so that the human knows he was being observed and
recognized. Figure 2-5(b) shows a schematic overview of the knowledge projection during the
cooperation task between human and robot done by Wakita et al.

By showing the intended motion and the observation of the hand the human gets better
insights in the mind of the robot, environment and task. This insight leads to better SA.

(a) Passing each other experiment done by Matsumaru et al. (b) Knowledge projection experiment
done by Wakita et al.

Figure 2-5: Figure 2-5(a) shows the passing each other experiment done by Matsumaru et
al. [15]. The mobile robot projects its intended motion on the ground, this way the human is
better able to judge where the robot is going. Figure 2-5(b) shows the knowledge projection
experiment using a projector the display the intended motion of the robot arm and the position
of the human’s hand [12]

2-2-4 Conclusion

All solutions presented in Section 2-2 are used to improve SA of humans and all yielded
positive results. But to be used in an industrial setting, some of the presented solutions would
not work. When working with an industrial robot in an industrial environment, auditory
cues can be confusing, hard to hear, stressing and attract attention away from the task of
the humans [10]. Also can be confusing to encode the intentions of a robot using audio
cues. Speech is more flexible, but again could be hard to hear and depends on language [18].
Motion cues could be used to display the state of a robot, but the intentions are harder to
encode, because the movement of an industrial robot is too limiting and may interfere with
the execution of the current task. Visual cues don’t have these limitations and provide a good
opportunity to show state and intention from the robot to the human [38], therefore in this
thesis the use of visual cues will be explored further.
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2-3 Head-mounted display

To show the visual cues, a display was needed. In this thesis a Head-Mounted Display (HMD)
was used to visually present the state and intentions of an industrial robot arm. Section 2-3-1
describes Augmented Reality (AR), the technique used to visualize the state and intentions
of the robot on the HMD. Section 2-3-2 describes the choice for a Video See-Through (VST)
HMD and Section 2-3-3 discusses the choice of a marker based head pose tracker to enable
AR.

2-3-1 Augmented reality

AR is a technique that allows virtual information to be shown in the real world and in this
thesis it was used to visually present virtual information from the robot to the human. A lot of
research was done on AR in combination with an industrial environment, for example to show
virtual information in a HMD to help humans perform an assembly task better [21]. AR was
also used in literature to display information in HMD to help humans during the programming
of an industrial robot arm [39]. AR has been used in combination with unmanned aerial
vehicles to improve SA [40]. A HMD in combination with AR has never been used to display
the state and intentions of an industrial robot arm.

Augmented reality is a research area that focuses on enhancing reality by adding virtual
objects to it. Augmented reality is part of the reality-virtuality continuum (Figure 2-6) as
defined by Milgram and Kishino [41]. This model consists of four general areas: real environ-
ment, Augmented Reality (AR), Augmented Virtuality (AV) and virtual environments. AR
and AV combined are defined as Mixed Reality (MR).

Figure 2-6: Reality-Virtuality continuum [42] as defined by Malgram and Kishino [41]. This
model ranges from the real world to a full virtual environment, where Augmented Reality (AR)
and Augmented Virtuality (AV) are a mixture of virtual information and the real world.

In the reality-virtuality continuum, the real environment is the non altered physical world
and the virtual environment is the complete virtualization of the real world or an imaginary
environment. AR is closer to the real world and AV is closer to the virtual world. With AR
virtual objects are added to the real world and with AV real objects are added to the virtual
environment. An AR system is defined by Krevelen and Poelman [43] which is a slightly
altered version of the definition by Azuma et al. [44, 45]. An AR system:

• Combines real and virtual objects in a real environment.
• Registers (aligns) real and virtual objects with each other.
• Runs interactively, in Three Dimensions (3D) and in real time.
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Conclusion

To use AR to visually present virtual information to a human when working with an industrial
robot arm, an AR system had to be designed. When looking at the definition of AR it is
clear that some problems need to be solved before AR can be used:

• How to combine and display the real and virtual objects (Section 2-3-2).
• How to align the real and virtual objects with each other (Section 2-3-3).
• How to run the system and display virtual information in 3D and in real time (Ap-
pendix A-2).

2-3-2 Video see-through head-mounted display

To combine and display real and virtual objects together, a display was needed. In a literature
study, done prior to this thesis, an overview of all displays used for AR was given [46]. The
displays were categorized into Head-Mounted Display (HMD), spatial displays and hand-held
displays. All displays were judged against criteria specific to an industrial setting: hands free
operation, mobility, investment costs, viewability by multiple users, safety, ease of deployment
and the ability to display virtual information. The results of the literature study are shown
in Table 2-1.

HMD Spatial display
Criteria VST OST RSD Screens Projective Holographic Hand-held
Hands free ++ ++ ++ ++ ++ ++ -
Mobility ++ ++ ++ - - - - - - ++

Investment costs + 0 0 0 + - - ++
Multiple users - - - - - - ++ ++ - - 0
Ease of use 0 + ++ ++ ++ ++ +

Safety 0 + + ++ ++ ++ +
Ease of deployment ++ + + 0 0 - +
Virtual information ++ ++ ++ 0 0 - - ++

Table 2-1: Evaluation of Augmented Reality (AR) displays. The category Head-Mounted Display
(HMD) consists of: Video See-Through (VST), Optical See-Through (OST) and Retinal Scanning
Display (RSD). The spatial displays are: projective displays, screen based displays and holographic
displays. The last category is the hand-held displays like a mobile phone or tablet. All displays
were judged based on the criteria specific to an industrial setting and rated on a scale ranging
from ’- -’ (very negative) to ’++’ (very positive), with ’0’ being neutral.

Conclusion

The conclusion was that to combine and display real and virtual objects, an Optical See-
Through (OST) HMD was considered best to use in an industrial setting, but that a Video
See-Through (VST) HMD could be used as an alternative in a research setting, because they
are cheaper and easier to program. Figure 2-7 shows a diagram of how a VST HMD works.
In this thesis a VST HMD was used as a display and is shown in Figure 2-8. Appendix A-1
gives a detailed description of the hardware and software of the HMD.
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Figure 2-7: A diagram of how a Video See-Through (VST) HMD works [44]. Cameras capture
images of the real world. These images are processed by a computer. A tracker determines what
the user is looking at, so the correct virtual information can be rendered on the correct position.
The computer then combines the real and virtual data and displays the image on the screens in
front of the user’s eyes.

(a) Head-mounted display nicknamed Marty. (b) Marty being used.

Figure 2-8: Figure 2-8(a) shows the HMD (nicknames Marty) that was used. Figure 2-8(b)
shows Marty being used.

Master of Science Thesis Niels Tanke



16 Background

2-3-3 Head pose estimation

To show the correct virtual information and overlay it with the real world on the VST HMD
it is necessary to know the position and orientation of the display. To estimate the position
and orientation of the display, it is necessary to track objects in the environment and the
viewpoint of the user. What needs to be rendered is dependent on where the user is standing
and what the user is looking at. A tracker was used to track the positions of objects and
the head in 6 DOF. Tracking in 6 DOF, also called pose estimation, means tracking in 3
positional dimensions (x, y, z) and 3 orientation dimensions (roll, pitch, yaw). This tracking
needed to be done in a robust and accurate way and in real-time.

Various techniques have been developed to track objects and viewpoints in 3D [43, 47, 48, 49].
These techniques rely on various measurable physical phenomena to track objects and are
divided into the following categories:

• Magnetic: uses the magnetic flux generated by coils moving through a magnetic field
to calculate pose.

• Acoustic: uses sound waves to measure pose. The time it takes a specific wave to
travel from the source to the object and back is a measure for the distance of the object.

• Capacitive: relies on the change of capacitive charge between two plates. This phe-
nomenon is used by for example inertial trackers.

• Mechanical: uses a mechanism to track pose. An example of a mechanical tracking
system is a joystick.

• Optical: uses light to calculate pose. A good example of an optical tracker is one that
uses a camera image.

Besides a measurable phenomenon to do the tracking, other requirements for the tracker were
defined by Azuma [50]:

• 6 Degree Of Freedom (DOF): the user should be able to walk around freely and
not be limited by a position or orientation. The tracker needs to do head tracking and
the tracking of objects in 6 DOF.

• Accuracy: the tracker must be able to do the tracking accurately, otherwise the projec-
tion of the virtual objects will be off. According to Azuma the accuracy of the tracker
must be within a small fraction of a degree in orientation and a few millimeters in
position.

• Robustness: the tracker must be robust with respect to for example changing light
conditions.

• Real-time: the tracker must operate in real-time to allow good human-robot interac-
tion with low latency.

All tracking principles have their advantages and disadvantages and are effectively in a exper-
iments and setups. Unfortunately most trackers require the addition of sensors to the HMD
or objects, to track it. To ensure maximal mobility, this added complexity is undesired. Op-
tical tracking doesn’t have those drawbacks and enables the tracking of multiple untethered
objects through computer vision. Optical tracking is becoming more popular because of lower
costs, increased camera quality and more computational power. Optical tracking is divided
into two categories, marker based tracking and natural feature tracking.
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Natural feature tracking

Natural feature tracking is a pure optical tracking method, therefore it doesn’t rely on tethered
objects in the environment. It works by analysing interesting (feature) points in the image,
for example textures or corners, and tracking them through various frames. These methods
work in three steps: feature detection, feature tracking and pose estimation.

Feature detection: feature detection works by analysing images to detect so called feature
point. For every feature an array of information (descriptor) is extracted using image analysis
tools. Examples of features are, color, intensity, derivative, etc. The location and description
of these feature points is stored for every frame.

Feature tracking: to track the feature point between frames, a tracker is needed. The
tracker compares the detected feature points to a database of feature points. When a match
is found, the tracker can map the new feature point to the already detected feature point and
make a 3D map.

Pose estimation: pose estimation is done with the 3D map, the relation between the camera
and the 3D map can be calculated to identify how to render virtual objects.

Marker based tracking

Various marker based tracking solution are used in literature, but by far the most used for AR
is a fiducial marker based tracker. Popular trackers are: ARToolKit [51], ARToolKitPlus [52],
ARTag [53] and AprilTag [54]. Fiducial marker based tracking works by analysing images to
detect special markers (Figure 2-9). These markers are placed in the environment on known
locations, so not only the relation between the marker and camera can be calculated, but also
between the camera and objects in the environment.

(a) Marker used by ARToolKit. (b) Marker used by ARToolKit-
Plus.

Figure 2-9: Various fiducial markers used by ARToolKit [51] and ARToolKitPlus [52]

All trackers offer 6 DOF, accurate and real-time tracking of fiducial markers. ARToolKitPlus
was chosen, because it offers robuster tracking compared to ARToolKit [52] and offers a C++
interface. ARTag offers even more robust tracking but was not freely available and AprilTag
was written in Java, therefore not compatible with the implemented system.

Master of Science Thesis Niels Tanke



18 Background

Conclusion

To align the real and virtual objects a head pose tracker is needed. The quality of natural
feature based trackers are getting better and the advantage is that they do not need tethered
objects in the environment to be able to do the tracking which make them highly flexible
in unknown environments. The disadvantage is that the natural feature tracking algorithms
have to be combined with object recognition techniques to identify objects in the environment.

In this thesis marker based tracking was chosen, because the tools available are mature,
optimized and robust and allow tracking in real-time. Another advantage of marker based
tracking is that object recognition is not needed, because the relation between the markers and
fixed objects in the environment is known. ARToolKitPlus [52] was used and Appendix A-2
describes how the marker based tracking was done.
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Chapter 3

Analysis

The HMD of Section 2-3 was designed to be able to show visual information from the robot
directly in front of the user’s eyes. The HMD was used to improve SA when working with an
industrial robot arm. The research question was:
Does showing state and intention information of an industrial robot arm, using a head-
mounted display, help the human co-worker to improve situational awareness?
From the research question, two subquestions arise:

1. What kind of information about the robot arm is needed to improve Situational Awareness
(SA)?

2. How to measure and quantify an improvement of SA?
Because SA is a broad concept which differs from situation to situation, it is essential to
know the important factors of SA specific to the case where humans and robots are working
together to repack oranges. Section 3-1 describes the pilot study that was done to analyse
Human-Robot Interaction (HRI) in the case of orange repacking. From this analysis the
important types of information were extracted that could lead to a potential improvement of
SA. Section 3-2 gives an overview of what kind of information about the industrial robot arm
was useful to show to the human using a HMD to improve SA. The types of information were
analysed based on the SA level model and the potential for improvement by using a HMD.
To measure and quantify the effect of the information types shown to the human to improve
SA, a measurement method and performance measure was needed. Section 3-3 gives the
hypotheses and an overview of how SA was measured.

3-1 Pilot study

What kind of information from the robot arm and situation that is useful to display using
a HMD is dependent on the situation and task. To analyse what the important parameters
and information types were in the case of repacking oranges, a pilot study was done. In this
study two test subjects were given a HMD and were asked to work together with the robot
arm to repack oranges.
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3-1-1 Purpose

There is no literature available or prior research done to analyse the important parameters
involved with HRI specific to the repacking of oranges. This is because the situations, where
humans and robot arms are working together in the same physical space and on the same task,
are not present in the industry. This pilot study was done to get the important parameters
needed to improve SA of the human and to get an overview of the possibilities and limitations
of the robot arm and human. The following questions were identified prior to the pilot study
and were answered using an analysis of the pilot study:

• Is there an indication that showing the state and intentions of the robot could improve
SA?

• What are characteristics of the HRI?
• Is the human able to do his/her task when working with an industrial robot arm?
• What is the effect of the HMD on the human?
• Is the robot able to do its task?

The answers were used to better design the virtual information displayed in the HMD and
help design the experiment.

3-1-2 Experimental setup

Figure 3-1 shows the experimental setup where oranges were presented in the input box. The
goal of the human was to present the oranges to the robot so that it could pick them up
and put them in output box. A more detailed overview of the experimental setup is given in
Section 4-1.

(a) Pilot study setup. (b) Diagram of pilot study setup.

Figure 3-1: Figure 3-1(a) shows what the pilot study setup looked like from the viewpoint of the
test subjects. Figure 3-1(b) shows a top view diagram of the pilot study setup. The human and
input box are shown in red. The shared working area is shown in blue and the robot with output
boxes are shown in green.
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3-1-3 Tasks of human and robot arm

The test subjects worked together with the robot arm to repack oranges. The procedure of
the test subjects is described in Algorithm 1. They were asked to put oranges on the shared
working area and check them on quality, put a sticker on them and spreading them out. When
the robot arm had filled the output box, the test subjects were asked to switch the box with
an empty one.

Algorithm 1 Pilot study procedure test subjects
repeat

Put oranges on shared working area
Check orange on quality
if orange = bad then

Remove orange
end if
Put sticker on orange
Spread out oranges
if output box = full then

Switch output box with empty box
end if

until Done checking and stickering oranges

The procedure for the robot arm is described in Algorithm 2. The robot was picking up
oranges and putting them in the output box. When 5 oranges were put in the output box,
the robot waited for the test subject to switch the box.

Algorithm 2 Pilot study procedure robot arm
repeat

if Detected oranges > 0 then
Move to orange
Pick up orange
Put orange in output box
if Output box = full then

Wait for box switch
end if

else
Wait for oranges

end if
until forever

3-1-4 Virtual information

During the experiment the test subjects were presented with virtual information shown in
the HMD. All virtual information was encoded using a virtual model of the robot arm
(Section 4-4). To use the HMD during the pilot study, some information was shown to the
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user about the robot. For the purpose of the pilot study it was opted to show a single piece
of information from both the state category and the intention category (Figure 3-2). These
pieces of information were selected arbitrarily. Further analysis of information that can be
shown was conducted at a later stage and is presented in Section 3-2.

State: two states were distinguished in this pilot study. The first state is when the robot
arm was moving. In this state the color of the virtual robot arm is red (Figure 3-2(c)). The
seconds state is when the robot arm was standing still, specifically when the output box was
full. In that case the robot arm was waiting for user intervention and would signal this to the
test subject by changing the color of the virtual robot arm to green.

Intended motion: the motion, in the form of a trajectory, could be useful to the human.
In the pilot study the virtual robot arm indicated the intended motion of the real robot arm
by changing its position (Figure 3-2(b)). The whole trajectory was shown using the virtual
robot arm, before the real robot arm would move. This trajectory was shown by lowering the
interval between waypoints and displaying the virtual robot arm.

(a) No virtual robot arm. (b) Virtual arm shown at a different position.

(c) Red virtual robot arm. (d) Green virtual robot arm.

Figure 3-2: Virtual information shown in the HMD. Figure 3-2(a) shows the view of the ex-
perimental setup when viewed without wearing the HMD, Figure 3-2(b) shows the virtual robot
arm at a different position when viewed with the HMD, Figure 3-2(c) and Figure 3-2(d) show the
virtual robot arm with different colors.

3-1-5 Test procedure

Three test subjects, all male students or faculty staff from Delft University of Technology,
were asked to do the experiment. Each test subject was asked to do the experiment twice,
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once without wearing the HMD and once while wearing the HMD.

The experiment was observed and video taped. The observations done during the experiment
and with the video tapes were used to check the behavior of the test subjects when working
with the robot. Collisions with the robot were checked for and if the test subjects were able
to do their task while wearing the HMD.

After the experiment the test subjects were interviewed. The test subjects were asked how
the experienced the cooperation with the robot arm and how they experienced the HMD and
the virtual information.

3-1-6 Discussion

Showing a state change by changing color of the virtual robot arm is useful, the test subjects
were not hesitating and guessing why the robot is not doing anything, but immediately know
why. An indication was given that showing state changes using virtual information could
improve the SA of the human.

Showing the whole trajectory is not very useful, because there is no need for that information
in this scenario. Although the test subjects did respond positive to information about the
final position of the intended motion. If the test subjects knew the final position and saw
that the robot was going to pick up an orange that was ready to be picked up, they could
continue with their work and not keep an eye on the robot.

While doing the experiment with the HMD, the test subjects commented that that wearing the
HMD was very limiting. The HMD limited the Field of View (FOV), eye-hand coordination
and freedom to move. Because the HMD was tethered to a computer, by a thick cable,
moving 2 meters was possible but not ideal, so changing the output box with an empty
one was challenging. The eye-hand coordination was also impaired, because of lag in the
visualization of the environment. This lag introduces sensory mismatches between what was
seen on the display and what was done with the hands. Also the camera’s auto adjusted to
changing light conditions, which means that sometimes the images were very bright and the
oranges could not be seen clearly.

The robot system was able to pickup and handle oranges, but the operating speed of the
robot arm was too low. The human was able to handle oranges faster than the robot arm
could move them. An increase in operating speed was needed.

3-1-7 Conclusion

From the pilot study could be concluded that indicating state changes and intended goal
could improve SA, but that showing intended trajectory is not beneficial to improve SA.
Furthermore the use of the HMD is possible, but limits the mobility and eye-hand coordination
of the user.
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3-2 Information to improve situational awareness

From the pilot study and an analysis of the HRI, information that would improve SA was
found. Two main categories were found that enable the human to get a better understanding
of the situation and environment: state and intention information. This section gives an
analysis and overview of the state (Section 3-2-1) and intention (Section 3-2-2) information
useful to show using a HMD to improve SA.

3-2-1 State information

Information about the state of the robot arm can improve SA, because it helps the human get
a better understanding of what the robot arm is currently doing. By adding extra indications
of the state, a better understanding of the robot can be achieved. Important indications of
state are: position, velocity, actions done by robot arm and internal state information.

Position

The position of the robot arm is the most trivial observation and is important to reason
about the situation and task execution. Because without knowing where the robot arm is, it
is difficult to take it into account. The position of the robot can be observed directly, because
the physical robot is present in the environment. This means that according to the SA model,
it is a level 1 attribute, no extra comprehension about the environment is needed.
In the orange repacking scenario the robot is working in close proximity to the human. Because
the position is directly observable, improving the observation by adding virtual information
has a low potential for improving SA.

Velocity

Velocity information is needed to reason about the robot arm and predict where the robot
arm will go next. Because velocity has a direct relation to position, it can also be directly
observed. Velocity is therefore a level 1 attribute in the SA model, because no comprehension
about the environment or situation is needed.
Because humans are better in judging position than velocity, adding extra information about
velocity has some potential of being useful, but not a lot.

Action

Robot arms are used in industry to manipulate the environment and are equipped with tools
to do that. For example if the robot arm is equipped with a gripper, it can be used to
manipulate objects. Actions that are being performed by the robot can also directly be
observed and are therefore a level 1 attribute in the SA model. Actions performed by the
robot are important, because they are the way the robot interacts with the environment.
That is why actions performed by the robot are also important to the human. When working
with the robot arm, the human can adjust their own actions depending on the actions of the
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robot arm. These actions can be made clearer by adding virtual information using a HMD,
but the effect would be low. By adding virtual information no new information is given, only
extra information.

In the orange repacking scenario the only action performed by robot arm was the gripping
action. The robot was gripping the orange when it was positioned above it and this can be
clearly seen. Adding extra indication that the robot is gripper has therefore a low potential
for improving SA.

Internal state

Industrial robot arms also have an internal state. Some states are very clear when observed
by the human, for example when the robot arm is moving. Sometimes the robot arm has a
state where it is for example not moving, in those cases it is less clear to the human what
the internal state is. Possibilities are that it is turned off, that there is an error or that
it is waiting for human intervention. Internal state information has a high potential for
improvement, because a human can’t see on the outside of the robot what its current state
is. So by adding information about the internal state of the robot arm, new information is
provided. When the robot arm is not moving, it is important to know why it is not moving,
since based on that knowledge, the human can decide to take appropriate actions. This kind
of information is useful to the human to improve SA and is level 2 information according to
the SA model. Extra information about the internal state shown in a HMD can improve SA
of the human.

When working with a robot arm to repack oranges, two internal states could be identified.

Waiting for user: when the output box is filled with oranges, the robot arm will wait for
the user to replace the box. Adding an extra indication that the robot is waiting for user
intervention is helpful, because the human then doesn’t have to guess why the robot is not
moving, therefore it has a high potential of improving SA.

Waiting for oranges: when the robot arm is not detecting oranges, the robot arm is not
moving. Adding extra information about this state is useful, because then again the human
doesn’t have to infer why the robot is not moving.

3-2-2 Intention information

In the SA model of Endsley (Section 2-1-1) level 3 SA states that an important part of human
decision making is projecting the future. To predict what is going to happen next is difficult
and requires a good internal model of the situation. To build this model it takes time and
experience.

Showing what the robot arm is intending to do before it actually does it could be useful to
help the human reason on level 3 about the situation. From direct observations of the robot
arm, there is no way for the human to know where the robot arm is going to move, that is
why providing this extra information has a high potential for improvement.

Knowing where the robot arm is going consists of four parts: the goal position and the
trajectory of the movement, the intended action and intended internal state.
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Intended goal position

The intended goal position of the robot is important information to the human, because it
can be used to make better decisions. For example if the human knows that the robot is going
to move to a specific area, he can decide to not go there and do other tasks. This information
is about projecting the future, so it is level 3 knowledge. Because it is not directly observable
by the human, it has a high potential for improvement.

The robot arm can go to various positions to handle oranges, it is therefore useful for the
human to know where the robot is going to move.

Intended trajectory

Not only the information about the intended goal, but the whole motion could be important
for humans to reason about the robot. Knowing how it is going to move through space could
be useful to anticipate to the robot. This information is also about projecting the future and
therefore it is also level 3 knowledge.

From the pilot study was known that in the case of repacking oranges, knowing the trajectory
of the intended motion is not useful with the chosen implementation.

Intended action

Information about the intended actions of the robot arm relates to the information about
current action performed by the robot, only projected into the future. By knowing the
intended action of the robot the human could better anticipate to it. The intended actions
can’t be directly observed by the human and therefore it has a high potential for improvement.

In the case of working with a robot arm to repack oranges, only one action is available to the
robot arm. The human already knows what action the robot is going to take then, therefore,
in this implementation, it has a low potential for improving SA.

Intended internal state

Information about the intended state of the robot arm relates to information about the current
internal state of the robot, only projected in the future. Knowing the intended state could
be useful for humans to anticipate. This information is level 3 knowledge, because it needs
to be inferred from other observations.

When working with the robot arm to repack oranges, the difference between current internal
state and intended internal state is the time the information is known beforehand, therefore
the potential to improve SA, in this implementation, is medium.

3-2-3 Conclusion

Table 3-1 gives an overview and summery of the categories and types of information that were
determined to be important to a human to improve SA. The content of the table was gathered
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during the research done on this project and from the pilot study. All information types were
given a SA level corresponding to the SA model. Based on the analysis, all information types
were given an improvement potential, this indicates how much the human would benefit if
that information is available when working with the robot arm.

Category Type SA level Improvement potential
State Position Level 1 Low

Velocity Level 1 Low
Action Level 1 Low

Internal state Level 2 High
Intention Position Level 3 Very high

Trajectory Level 3 Very high
Action Level 3 Very high

Internal state Level 3 Very high

Table 3-1: Overview of information to improve SA. This table was constructed during the re-
search and shows per information type the level in the SA model and its potential for improvement
to the SA of the human. Position, velocity and trajectory are information about the way the robot
moves through the space. The actions are done by the robot, for example gripping. Internal state
represents what the robot is doing, for example waiting for actions by the user.

The state information from the robot with the highest potential to improve human SA is
the internal state. In the category of intention all information types have a high potential
to improve SA. To answer the research question it is sufficient to only test one information
type from each category, therefore only internal state and intended position were chosen to
be implemented and evaluated further.

3-3 Hypotheses

The results of Section 2-1-2 and 3-2 were combined to formulate hypotheses to measure an
improvement of SA. Section 2-1-2 stated that performance metrics were used to evaluate
SA, this section elaborates on that and combines a performance metric with the two chosen
information types to formulate two specific hypotheses.

Performance metrics

In literature various performance metrics are defined and can be divided into three classes:
time based, error based and coverage based [55, 56].
Time based: these metrics are used to measure the speed of task completion or reaction
times.
Error based: these metrics are used to measure mistakes during task execution.
Coverage based: these metrics tell something about how much of the larger goal is com-
pleted.
A time based metric was the chosen metric to measure SA. As a time based metric, the time
the human needed to judge a situation is used. By getting the extra information through the
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HMD about internal state and goal position, the human can judge and reason faster about
the situation, therefore the reaction time of the human were used.

When combining the types of information that are useful to display and the performance
metric, the following hypotheses were formulated:

• Visualizing the internal state of the robot arm using a head-mounted display reduces
the reaction time of the human co-worker when the robot arm changes internal state.

• Visualizing the intended goal position of the robot arm using a head-mounted display
reduces the reaction time of the human co-worker when reacting to a specific destination
position of the robot arm.
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Chapter 4

Design

To test if the hypotheses of Section 3-3 are valid, an experiment was done. This chap-
ter describes the design of the experimental setup that was used to enable Human-Robot
Interaction (HRI), and the design of the virtual information shown on the HMD. Section 4-2
gives a general overview of the layout of the robot working cell and Section 4-3 describes the
workings of the vision system, the robot arm and the gripper. Section 4-4 describes the way
the information of Section 3-2 was encoded into visual cues shown on the HMD.

4-1 Experimental design

The experimental setup was modelled to a real world scenario. Bethel and Murphy [22]
state that a HRI experiment should reflect the application domain as realistically as possible.
The use of a robot arm to help with repacking of fruit and vegetables, in this case oranges,
was chosen. Oranges get delivered from the farms in big crates (about 60 pieces per crate)
and need to be repacked into so-called display boxes (about 20 pieces per box in a single
layer). The boxes are then ready to be displayed in supermarkets and grocery stores. During
repacking the oranges also need to be checked for quality and a sticker needs to be put onto
them. This repacking, quality checking and placing of the sticker is largely done by hand,
but could potentially be automated with the use of a robot arm. The experimental setup,
modelled as a robot working cell, was designed in such a way that the human and robot are
working in the same working area.

4-2 Robot working cell

As stated before, the robot working cell was designed to handle oranges. Oranges were chosen,
because they have a bright orange color and can be detected accurately using a detection
algorithm. The second reason for choosing oranges was that they are small and round, so
that a gripper can pick them up reliably. The robot working cell is shown in Figure 4-1(a)
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and a top view diagram of the robot working cell is shown in Figure 4-1(b). To get a better
understanding of the working of the cell, it can be divided into two parts: a human part and
a robot part (Figure 4-2).

(a) Photo of the experimental setup. (b) Top view diagram of the experimental setup.

Figure 4-1: Experimental setup overview. Figure 4-1(a) shows a picture of the experimental
setup and Figure 4-1(b) shows top view diagram of experimental setup. The core of the setup
was the robot arm, in front of the robot, covered in a blue cloth, is the shared working area. The
oranges were taken from the input box, handled by the human and put on the shared working
area. The robot system detected the oranges, picked them up and placed them in an output box.

Figure 4-2(a) shows a top view diagram of the human part of the robot working cell. The
human interacted with the robot cell on two locations: the input box and the shared working
area. The task of the human was to stands in front of the shared working area, take oranges
from the input box, do quality checks, put a sticker on them and place them on the shared
working area. The second task of the human was to help the robot arm. This was done by
spreading out the oranges that are put on the table, so that the robot arm can detect them
and pick them up. This was done by placed the oranges on a grid (shown by the little white
stickers on the blue table cloth in Figure 4-1(a)). The human also needed to keep an eye out
for the robot, because sometimes the robot needed help from the human.

Figure 4-2(b) shows a top view diagram of the robot part of the robot working cell. The robot
was the core of the setup and interacted with it on two locations: the shared working area
and the output boxes. The robot stood on opposite to the human, on the other side of the
shared working area. The task of the robot was to detect the oranges on the shared working
area, pick the oranges from the table and place them in one of the output boxes. When no
oranges were detected it waited until oranges were detected and when the output box Was
full it waited for the human to switch the box with an empty one. These waiting moments
were the internal states of the robot arm. There are no external displays or other methods
for the human to know what the robot is doing, so the human is relying solely on their own
observations to infer the internal states of the robot arm.
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(a) Human part of the robot working cell. (b) Robot part of the robot working cell.

Figure 4-2: Human and robot part of robot working cell. Figure 4-2(a) shows a diagram of the
human part of the robot working cell. The areas highlighted were the interaction points of the
human: oranges were taken from the input box, handled and placed on the shared working area.
Figure 4-2(b) shows a diagram of the robot part of the robot working cell. The highlighted parts
were interaction points of the robot arm: oranges were taken from the shared working area and
placed in one of the output boxes. Arrows indicate the path the oranges take.

4-2-1 Conclusion

The robot working cell was designed to mimic a real world scenario, repacking of oranges.
The human was working with the robot to repack the oranges, do quality checks and put a
sticker on the oranges. The robot working cell was designed specifically to ensure that the
human and robot are working in the same working space.

4-3 Robotic system implementation

To be able to work with a human, the robot system needed hardware and software to operate.
It needed software to detect the oranges, operate the robot arm and the gripper. Hardware
is needed to pick up the oranges. This section describes how the system was designed as
explained in Section 4-2. Figure 4-3 gives an overview of the main parts of the robot system.

Figure 4-3: Robot system overview. A vision system is used to detect the oranges, which are
then picked up with a gripper mounted on the industrial robot arm.

Section 4-3-1 lists all the materials used to build the robot working cell. Section 4-3-2 describes
how the robot system is combined with the HMD. Section 4-3-3 describes the orange detection
system used to detect the oranges on the shared working area and Section 4-3-4 describes the
hardware and software to control the robot arm.
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4-3-1 Materials

The materials used to design the robot working cell were:

Univeral Robot UR5: the robot arm that was used is a Universal Robots UR5, a 6 DOF
robotic manipulator (Appendix B-1-2).

Lacquey Feth Hand: to manipulate objects in the environment, the UR5 was equipped
with an end-effector (Appendix B-1-3).

Table: the shared working space of the robot and the human was a normal table of about
1.8m by 0.8m. It was put on wooden blocks of 5cm to level it with the robot arm socket.
The table was covered with a dark blue cloth, to make the oranges better detectable.

Logitech C905 webcam: this webcam was used for the orange detection algorithm (Ap-
pendix B-1-1).

Oranges: oranges (± 50 pieces) with a diameter of about 6cm were used to do the experiment.
Bigger oranges could not be used, because the gripper could not pick them up reliably. This
was because the gripping force was to low, therefore the orange would slide out of the gripper.

Head-mounted display: the HMD was used to display the virtual information from the
robot system (Appendix A-1).

Boxes: as input and output boxes, simple moving boxes were used.

Laptop: a HP Elitebook 8540w with a quad-core Intel i7 was used to operate the HMD and
run the AR software.

Desktop computer: a desktop computer was used to operate the robotic system with the
control software.

LAN switch: to connect the two computer and the UR5 a LAN switch (Linksys WRT54g)
was used.

UTP cables: to connect the computer and UR5 to the switch, UTP cables of 10m were
used.

Video camera: to records the experiment a Sony Cyber-shot with tripod was used.

4-3-2 Robot working cell combined with HMD

This robot working cell was combined with the HMD of Section 2-3-2. These were combined
to show information from the robot arm on the display in real-time. Two computers were
used to operate the combined system, one computer was connected to the robotics system
and one computer was connected to the HMD. They communicated with each other using a
LAN-connection. Figure 4-4 shows the connection scheme of the computers. Two computers
were used because of bandwidth issues when connecting three USB cameras to on computer.
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Figure 4-4: Connection scheme of the computers used in the experiment. Computer 1 is used
to operate the HMD and is connected to it using a DisplayPort cable for the screens and two
USB cables for the cameras (Section 4-4). Computer 2 is used to operate the robotic system. It
connects to the UR5 using an UTP cable and is connected to the orange vision camera using an
USB cable.
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4-3-3 Vision system

To be able to detect oranges on the shared working space, a vision system was needed. This
section gives a brief overview of the important hardware, software and capabilities of the
orange detection system. The vision system was specifically designed to detect oranges on the
shared working area. Appendix B-1-1 describes the hardware components and Appendix B-2-2
describes the software in more detail.

Hardware

Figure 4-5 shows the camera used to detect the orange. This camera was mounted 0.9m
above the shared working area in a foam enclosure. This enclosure housed the camera and
made it face downwards. The camera captured images of the table with a frequency of 2Hz.
2Hz was used to save computational researches and because the orange handling speed of the
robot arm is about 1 orange per 4 seconds, so a higher update frequency doesn’t give more
information to the robot.

(a) Logitech C905 con-
sumer grade webcam.

(b) Foam enclosure to mount the camera. (c) Aluminium rod mounted
on a frame above the robotic
system.

Figure 4-5: Camera and mounting frame used to detect oranges. Figure B-2(a) shows the
Logitech C905 consumer grade webcam that was enclosed in foam (Figure B-2(b)) and mounted
using an aluminium rod to a frame (Figure B-2(b)) at 0.9m above the table with oranges.

Software

Figure 4-6 gives an overview of the software to detect oranges.

Image capture: the images from the camera needed to be capture (using OpenCV [57]) on
the computer and stored in an appropriate format to be analysed. The images were captured
at a frequency of 2Hz and stored in Blue-Green-Red (BGR) format. The input image in
Figure 4-7 shows the view of the camera when facing down at the shared working area.

Orange detection: the images captured by the camera were analysed by a Gaussian Mixture
Model algorithm (designed by Floris Gaisser). Figure 4-7 shows the steps of the algorithm.
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Figure 4-6: Schematic overview of the orange detection software. The images taken by the
camera were captured and stored for analysis. A Gaussian Mixture Model algorithm detected the
oranges in the images. For the robot arm to be able to pick up the oranges, the coordinates
needed to be converted from image frame coordinates (pixels) to real world coordinates (meters).

The input image was stored to be analysed. The first step was to extract the hue image.
The hue image was used, because there is a big difference between the hue value for blue
(background) and orange (objects), therefore a clear distinction could be made. A histogram
was made of the hue image, in the histogram two peaks can be detected, one for each hue-
value (blue and orange). The Gaussian Mixture Model algorithm iterates over the histogram
to fit two Gaussian distributions over the peaks. These Gaussian distributions were used to
segment the input image into a binary image, also called a mask. In the mask the background
is represented a pure black and the oranges are pure white. After a binary morphology step
a filled masked was used to fit ellipses to get the coordinates of the oranges.

Figure 4-7: Overview of Gaussian Mixture Model detection algorithm. From the input image
the hue image was extracted. A histogram was calculated from the hue image and two Gaus-
sian distributions were fit over the histogram. Segmentation was done using the two Gaussian
distributions to get a mask. Ellipses were fit over the filled mask to get the coordinates of the
detected oranges.

Coordinate transformation: the detected oranges were defined in image coordinates (u, v)
in pixels, with (0, 0) defined as the upper left corner. For the robot to be able to pick them up,
these coordinates needed to be converted form image coordinates to real world coordinates
(Xc, Yc, Zc) in meters (Equation 4-3). The output of the orange detection algorithm was a
list of oranges with their coordinates in the image frame (u, v) and coordinates in the world
frame (Xc, Yc, Zc).
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Xc = (u− cx)
fx

zc (4-1)

Yc = (v − cy)
fy

zc (4-2)

Zc = 0 (4-3)

In this transformation (cx, cy) was the principle point of the image and fx and fy and the focal
lengths. zc was the height of the camera above the table, which is constant. Figure 4-8 shows
the relation between the two coordinate frames. The coordinates of the detected oranges were
converted (X, Y ) world coordinates using Equation 4-3, but the Z-coordinates was missing.
The Z-coordinate of the oranges was defined as 0, because the shared working area was at the
same height as be base of the robot. So from the robots point of view, all oranges were at a
height of 0.

Figure 4-8: Image and robot coordinate frames. The image coordinate frame (u, v) was the
local coordinate frame of the captured images, with (0, 0) defined as the top left corner of the
image. The world coordinate frame (Xc, Yc, Zc) was defined at the base of the robot arm (0, 0,
0).

4-3-4 Robot arm

With the coordinates of the oranges known, the robot arm was used to pick up the detected
oranges and move them. This section gives an overview of the hardware and software used to
pick and place the detected oranges. Appendix B-1-2 describes the hardware and Appendix B-
2 describes the software is more detail.
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Hardware

Figure 4-9 shows robot arm that was used and how it was used in the experimental setup. It
is a commercial 6 DOF intrinsically safe industrial robot arm, developed by Universal Robots.
An intrinsically safe robot arm, means that it doesn’t have enough power to physically hurt
a person and therefore no fences have to be around it [2]. The joints of the UR5 have voltage
sensors, if the measured voltage exceeds the predicted voltage, the robot will switch off. The
robot arm is 1m high, has a reach of 0.85m and can handle a maximum payload of 5kg. The
specifications of the UR5 are shown in Table 4-1.

(a) Universal Robots UR5 with control unit. (b) Universal Robot UR5 in experimental setup.

Figure 4-9: Figure 4-9(a) shows the UR5 with control unit and Figure 4-9(b) shows the UR5 in
the experimental setup handling oranges.

Parameter Value
Weight [kg] 18.4
Payload [kg] 5
Reach [m] 0.85

Joint ranges [rad] -2π to 2π
Joint speed [rad/s] π

Maximum tool speed [m/s] 1
Repeatability [mm] ± 0.1

DOF [-] 6
Power consumption [W] 200

UR5 connection [-] UTP

Table 4-1: Universal Robots UR5 specifications. This table shows all relevant specifications of
the Universal Robots UR5 industrial robot arm.

Software

To make the robot do what we want, control software is needed. The Universal Robots
UR5 has its own control box but unfortunately the functionality is sufficient. The software
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provides all the components needed to actuate the robot and make it move to any position,
but unfortunately the motion planning and inverse kinematic software is a black box: there is
no way to extract the motion plan before execution. An alternative control software package
was found in Robotic Operating System (ROS) [58]. This package allows the motion plan to
be extracted before the motion plan is executed.
All software was designed on the ROS framework, version Fuerte. ROS is a framework that
focuses on delivering a flexible, versatile and complete set of tools needed to program a robot.
It is widely used in academic community because it makes it rapid development of relative
complex pieces of software possible. Figure 4-10 shows an overview of all ROS components
needed to operate the robotic working cell.

Figure 4-10: Overview of all the ROS software components. The system controller is the main
hub of the robotic system. This node requests the coordinates of the orange from the orange
vision node. With the orange coordinates a motion plan request is send to the arm navigation
stack. This stack is a collection of nodes responsible for calculating a proper trajectory for the
robot arm. The arm navigation stack sends the calculated trajectory to the UR5 driver, which
activates the real robot arm. The system controller also activates the gripper via the gripper
node. The UR5 driver and arm navigation stack both send robot data to the augmented reality
node (Section 4-4).

To operate the robot, the system controller, arm navigation stack and UR5 driver are impor-
tant. The system controller is a piece of software responsible for connecting all software and
hardware components, so basically the core of the robot working cell. The arm navigation
stack is responsible for trajectory planning to allow the robot arm to move to the desired
destination without colliding with the environment. The UR5 driver sends the generated
trajectory to the robot arm for execution and receives real-time state information from the
robot arm. The augmented reality node is further described in Section 4-4.
System controller
The system controller was designed as the core component of the robot working cell, it
coordinated all other software and hardware components to make sure that the system ran
correctly. This node received the coordinates of the oranges (Xc, Yc, Zc) and converted those
to coordinates in the robot coordinate frame (Xr, Yr, Zr). With the coordinates in the robot
coordinate frame, a motion plan was generated to pick up the orange, this was done by the
arm navigation stack. Once a confirmation was given by the arm navigation stack, the gripper
was operated.
Arm navigation stack
The arm navigation stack was provided by ROS. To get it to work properly it had to be
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customized and tweaked, because the arm navigation stack is generic and is designed to
work on every robot arm (with some modifications)(Appendix B-2-5). Figure 4-11 give an
overview of the components involved with enabling the robot to pick up oranges with the arm
navigation stack.

Figure 4-11: Schematic overview of the steps needed to pick the detected oranges. The first step
was to calculate if the detected orange could be picked up, this was done by an inverse kinematic
calculation. If the orange could be picked up, a trajectory was generated and filtered. The last
step was to execute the calculated trajectory.

Inverse kinematics: the detected oranges needed to be reachable by the robot arm. To
check this, an inverse kinematic calculation was done to determine if the orange could be
picked up and in what position the robot arm needed to be. This final position was also
checked for collisions with the environment and for self-collision.

Trajectory generation: when the orange could be reached by the robot arm, a trajectory
was generated by the motion planner. The motion planner calculated a trajectory that did
not violate the environmental constraints and did not have self-collisions.

Trajectory filter: the result of the motion planner was a very sparse motion plan. To be
able to execute the motion plan on the robot, the trajectory needed to be smooth. The
trajectory filter interpolated the trajectory and outputted a smooth motion plan.

Trajectory execution: the filtered motion plan was executed by a driver. This driver
communicated with the UR5 robot arm to execute the motion plan. It also got the real time
position and velocity from the robot arm.

UR5 driver
The driver checked the calculated trajectory again for invalid data and interpolated the data
points again for a smooth execution. It sent the joint angles and velocities to the robot and
received the current joint angles and velocity from the robot at a frequency of 100Hz. The
communication to the robot was done over UTP.

4-3-5 Gripper

The end-effector in the setup was a Fetch Hand from Lacquey. This is a 6 DOF underactuated
robotic hand developed as an affordable alternative to existing industrial robotic hands. It
has three fingers with each two DOF. All 6 DOF are actuated by one motor, this makes
in underactuated. The intelligence of the hand is all in the mechanics, all DOF follow the
way of the least resistance. That means that one DOF feels resistance, the power goes to
the other DOF, this way all finger enclose the object and the gripping force is divided over
the fingers. Figure 4-12 shows the gripper mounted on the Universal Robots UR5 in the
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experimental setup. It is connected to two digital outputs (24V ) of the robot arm, located
on the end-effector. Both digital outputs are connected to a relay, one enables/disables the
gripper and one opens/closes the gripper.

(a) Lacquey Fetch Hand close-up. (b) Lacquey Fetch Hand.

Figure 4-12: Lacquey Fetch Hand mounted on the Universal Robots UR5 in the experimental
setup.

4-3-6 Conclusion

The robot working cell enabled humans and the robot to repack oranges together. A vision
system was used to detect the oranges and send the coordinates to the control software. The
control software operated the robot arm and gripper to pick up oranges without colliding with
the environment. It also provides the needed information to be able to show the current state
and intended motion to the user using a HMD. The position and velocity were received from
the UR5 using the UR5 driver in real-time, the intended goal position and motion plan were
extracted from the motion planner in the arm navigation stack and the current internal state
were extracted from the system controller. These five groups of information (Figure 4-13)
were used to show the state and intentions of the robot arm using a HMD.

Figure 4-13: State and intention data overview. The motion planner in the arm navigation
stack generated a motion plan and outputted the trajectory and goal position. The UR5 driver
made sure the trajectory was executed on the robot arm and received the position and velocity
in real-time from the robot arm. The current internal state, trajectory, goal position, current
position and current velocity were also sent to the virtual robot arm.

Niels Tanke Master of Science Thesis



4-4 Virtual robot arm implementation 41

4-4 Virtual robot arm implementation

With the state and intention information available from the control software, it could be
displayed on the HMD. To display the information two design problems were solved:

• Calculate what the user is looking at, also called head pose estimation.
• Render the state and intention information on the HMD.

Section 4-4-1 describes how the head pose estimation was done by placing markers in the
robot working cell. Section 4-4-2 and 4-4-3 describes how the state and intention information
was rendered on the HMD using a virtual model of the robot arm.

4-4-1 Head pose estimation

To make sure the correct virtual information was shown in the correct place, head pose
estimation was needed. As stated in Section 2-3-3, ARToolKitPlus was used for the head
pose estimation. This is a fiducial marker based tracker and estimates the head pose by
detecting markers in the captured images. The transformation matrix between the cameras
and the markers was used to calculate the 6 DOF head pose. Figure 4-14(a) shows what a
marker look like, it is a square black and white image with known dimensions. The unique
pattern in the middle of the marker is used to identify it.

(a) Fiducial marker. (b) Marker board with multiple
markers to identify a shared central
point P .

(c) Diagram of marker board. x and
y are the distance from the center of
marker C to the shared central point
P .

Figure 4-14: Figure 4-14(a) shows what a marker used by ARToolKitPlus looks like. Figure 4-
14(b) shows how multiple markers can be used to identify a shared central point and Figure 4-14(c)
shows a diagram of how a marker board is defined.

The marker detection algorithm used by ARToolKitPlus provided a good and fast way to
detect markers in an image and was be used to track the head pose of a human. But there
were some limitations and drawbacks to using markers. One limitation was that the camera
had to have a marker in its FOV to detect it. When the marker was outside the FOV or when
it was occluded, no marker could be detected. This was solved by using multiple markers
defined as a marker board (Figure 4-14(b)). A marker board uses a known set of markers in
a predefined position and with a known relation to each other. The advantage of a marker
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board was that only one marker of the whole marker board needed to be detected to know
the position of the whole board. To accurately detect a marker in the image, it needed to be
of a minimal size. To ensure that the marker was detectable when viewed from about 2 m, a
marker size of 0.2 m was used. This means that the marker has a width and a height of 0.2
m. Figure 4-15 shows the marker board in relation to the robot working cell.

(a) Markerboard surrounding the UR5. (b) Diagram of the markerboard.

Figure 4-15: Multiple markers defined to represent the same central point is used to overcome
the shortcomings of using one marker. Figure 4-15(a) shows the marker board surrounding the
robot arm and Figure 4-15(b) is a diagram of the marker board.

The system needed to track the position of the head in 6 DOF to know what the user
was looking at. When a marker is detected, four coplanar and not collinear points of the
marker were used to calculate the transformation matrix between the camera and the marker.
Figure 4-16 shows this relationship.
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In Equation 4-4 Tm is the transformation matrix between marker and camera [51]. This
transformation matrix consists of a 3x3 rotation matrix (V3x3) and a 3x1 translation matrix
(W3x1). These matrices were found with ARToolKitPlus by solving the equations using every
corner point of the marker (xc, yc). The coordinates were also corrected by the camera
calibration parameters (Appendix C).

Conclusion

ARToolKitPlus was used to calculate what the user was looking by calculating a transfor-
mation matrix (Tm). This matrix was the relationship between the marker board coordinate
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Figure 4-16: Relationship between camera and marker coordinate frames [51]. The marker
coordinate frame (Xm, Ym, Zm) needs to estimated by calculating a transformation matrix using
all corner points (xc, yc) in the camera coordinate frame (Xc, Yc, Zc).

frame (Xm, Ym, Zm) and the camera coordinate frame (Xc, Yc, Zc). The marker coordinate
frame was defined using a marker board, which was a combination of different markers to
identify one specific point. A marker board was used to overcome the shortcomings when
using one marker, for example occlusion of the marker. By using a marker board the chance
that one marker was detected by ARToolKitPlus increased and when multiple markers were
detected the accuracy of the transformation matrix also increased.

4-4-2 Virtual robot arm rendering

To help the human gain better SA when working in the robot cell of Section 4-2, extra
information (Chapter 3) was added using a HMD. All types of information from the robot
were visualized with a virtual robot arm. This virtual robot arm was rendered over the real
robot arm using the transformation matrix calculated by the marker tracker. This virtual
robot was used to show the state and intentions of the real robot arm.

A virtual representation of the robot arm was chosen, because of human spatial reasoning.
By spatially relating information to physical objects and locations in the real world it can
help the human improve SA [59, 60]. The virtual arm was a direct copy of the real version
and had the following properties that can be changed to display specific information.

Color: the color of the arm could be changed to tell something about the robot. Matsumaru
uses colors to distinguish between various intended positions of his mobile robot [14], because
color is an important property of human observations. Humans can clearly distinguish be-
tween colors and colors invoke response in humans, for example warm colors (red) are more
arousing then cool colors (blue) [61, 62]. Therefore various colors were used to signal informa-
tion to the human. Figure 4-17(a) to Figure 4-17(d) show various colors of the virtual robot
arm.

Transparency: by changing the transparency the attention of the human could be grabbed.
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A more transparent arm could indicate less important information, but can also be used to
make the arm flash by gradually changing between high and low transparency. Figure 4-17(e)
to Figure 4-17(h) show various transparency levels of the virtual robot arm.

Position: the position of the virtual robot arm could be changed to indicate relations to
the real robot arm. By having a virtual model at a different position than the real robot
arm the human could infer a relation, for example intended goal position. Humans relate
to spatial positions of object and that can help them reason about the environment [59, 60].
Figure 4-17(i) and Figure 4-17(j) show the virtual robot arm at different positions.

(a) No virtual robot arm. (b) Red virtual robot arm. (c) Blue virtual robot arm.

(d) Green virtual robot arm. (e) Full transparency. (f) High transparency.

(g) Low transparency. (h) No transparency. (i) Virtual arm projected over real
robot arm.

(j) Virtual arm projected at a differ-
ent position.

Figure 4-17: Various rendering principles for the virtual robot arm. Figure 4-17(a) to Figure 4-
17(d) show various colors of the virtual robot arm, Figure 4-17(e) to Figure 4-17(h) show various
transparency levels of the virtual robot arm and Figure 4-17(i) and Figure 4-17(j) show the virtual
robot arm at different positions.
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4-4-3 State and intention encoding

In Chapter 3 was shown that various types of information have a high potential for improving
SA when working with an industrial robot arm. To answer the research question only two of
these were chosen to be research further: internal state, intended goal. From the pilot study
was knows that implementation of showing the intended trajectory was not beneficial, but
it was implemented, therefore this section also describes how intended trajectory was shown.
Each of these types was shown in the HMD using a virtual robot arm, so in total three virtual
robot arms were rendered, which could be enabled and disabled individually to show only the
needed virtual robot arm. This section describes the functions of the virtual robot arms and
where they get the data from.

Virtual model for state information

Figure 4-18 shows the inputs of the virtual model which are needed to display internal state
information.

Figure 4-18: Inputs to the virtual model to display internal state information. The real robot
arm, using the UR5 driver, provided the real-time position and velocity. The control node set the
internal state of the virtual robot arm.

In the case of internal state information, the virtual model was rendered directly over the real
robot arm at all times. This way when the virtual model changed color, it looked like the real
robot arm changed color. Because it is rendered directly over the real robot arm, the real
time position of the real arm must be known. These positions were provided by the real robot
arm and were updated in real time at 100Hz. The information about the internal state of
the robot was provided by the control node. This node gave a signal when the real robot arm
changed internal state to trigger a change in the virtual model and was either transparency
or color of the arm.

Virtual model for intended goal information

Figure 4-19 shows the input of the virtual model which are needed to display intended goal
information.

Figure 4-19: Inputs to the virtual model to display intended goal information. The motion
planner provided the joint angles to indicate the final goal position of the robot arm.
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The intended goal information was used to show where the real robot arm was going to next.
This information was provided by the motion planner and was available at the moment the
real arm started moving.

Virtual model for intended trajectory information

Figure 4-20 shows the input of the virtual model which are needed to display intended trajec-
tory information.

Figure 4-20: Inputs to the virtual model to display intended trajectory information. The motion
planner provided the joint angles for the whole intended trajectory of the robot arm.

The intended trajectory information was intended to show the whole future motion of the
robot arm. This information was provided by the motion planner and consisted of a matrix
with joint angles of every point in time. This way the trajectory could be simulated by
rendering the virtual arm every time step. Because the motion planner outputted a sparse
set of positions, they needed to be interpolated to result in a smooth display of the trajectory.
This interpolation was done by linear interpolation to get double the amount of points. The
time needed to display the trajectory can be varied by changing the loop rate of the display
loop and resulted in faster or slower playback of the trajectory.
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Chapter 5

Experiment

With the designed system of Chapter 4 an experiment was done to validate the previously
formulated hypotheses. These were:

• Visualizing the internal state of the robot arm using a head-mounted display reduces
the reaction time of the human co-worker when the robot arm changes internal state.

• Visualizing the intended goal position of the robot arm using a head-mounted display
reduces the reaction time of the human co-worker when reacting to a specific destination
position of the robot arm.

The test subjects were asked to work in the robot working cell to repack oranges and while
wearing a HMD on which virtual information was shown. The experiment was done to test
if the added information is beneficial to the human, in accordance with the hypotheses. Two
within-subject experiments were done, one experiment to test each of the hypotheses. A
within-subject experiment compares measurements done on individual test subjects treated
with two or more test conditions. Because reaction times were chosen to be measured, and
there is a lot variability in reaction ability between people, it is better to do a within-subject
experiment. In the first experiment information about the internal state of the robot was
shown, in the second experiment information about the intentions of the robot was shown.
Each experiment was done once with, and once without virtual information.

Section 5-3 explains the experiment done to test if showing internal state information using a
HMD helps the human improve SA and Section 5-4 explains the experiment to test if showing
intention information helps improve SA.

5-1 Eye-hand coordination limitations

From the pilot study was known that while wearing the HMD eye-hand coordination was
difficult. Because a VST HMD was used, the whole scene had to be digitized. This introduced
lag between the real world and the images shown on the display. The HMD reduced the FOV
of the test subjects from about 178◦ to about 40◦, because of the limited FOV of the cameras
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and displays. The fidelity of the colors, auto correction of brightness levels and the reduced
resolution of the images were also limiting to the test subjects. And finally there was a
mismatch between the position of the eyes and the cameras and resulted in objects being
shown further away than they in reality were. All these factors resulted in an impairment of
eye-hand coordination.

To still be able to pick up oranges and put a sticker onto them, the test subjects were allowed
to look under the HMD. While wearing the display, the screens did not fully cover the FOV of
the test subjects, only the top 60%. This meant that a direct view of the hands was possible,
which enable normal eye-hand coordination while wearing the HMD. When looking under
the HMD during the experiments they had normal eye-hand coordination, while still being
able to seen the virtual robot arm.

5-2 Participants

A total of 10 test subjects were tested (power analysis shown in Section 6-1). All but two
were students or faculty staff of Delft University of technology. Each test subject did the two
experiments, each with and without virtual information shown in the HMD. Test order and
starting conditions were randomized.

Before starting the experiment, the test subjects were asked to calibrate the HMD. Because
the HMD had to be worn by various people and because everybody is different, it had to
be adjusted to the individual test subject. This calibration was done to ensure that the test
subjects had a clear 3D picture without having to focus their eyesand was done before the
experiment by looking at a marker on the table that showed the virtual robot arm. The test
subject could adjust the alignment between the left and right image by pressing the arrow
keys on the keyboard. By pressing the arrow keys the image of the left eye was moved one
pixel at a time. The test subjects could adjust until a good 3D picture was visible.

After calibration, the test subject were asked to read the instructions (Appendix D). The test
subject were asked to stand in front of the shared working area, take on orange from the input
box, put a sticker on it and place it on the grid of the shared working area. Depending on
the experiment, the test subjects had to react to internal state or intended goal information
from the robot.

All test subject had about 5 minutes of training time get familiar with the task and robot
arm.

5-3 Experiment 1: internal state information

As stated in Section 3-2 internal state information has a high potential to improve SA. Two
internal state changes were identified: waiting for user and waiting for oranges. Because the
waiting for user state occurs more often, that was chosen was the internal state change to
react to. This internal state change happened when the robot was waiting for the human to
switch a filled box, therefore the robot arm was not moving and the human needed to judge
what was meant by that.

Niels Tanke Master of Science Thesis



5-3 Experiment 1: internal state information 49

When the internal state change occurred, the test subjects were presented with a color and
transparency change of the virtual robot arm. The transparency was changed to make it
pulsate and thus attract the attention of the human. Figure 5-1 shows what the test subjects
saw when looking at the robot arm through the HMD with and without virtual information.

(a) No virtual robot arm. (b) Green virtual robot arm indicating an internal
state change.

Figure 5-1: Figure 5-1(a) shows what the test subjects saw when looking at the robot through
the HMD without virtual information and Figure 5-1(b) shows the view with virtual information.
The internal state change was shown by changing the color and transparency of the virtual robot
arm.

5-3-1 Procedure

In this experiment, pick and place of oranges, the test subjects and robot arm were working
together to fill the boxes with oranges. The robot arm was picking up the oranges from the
table and placing them in the output box. The test subjects were placing the oranges on the
grid of the shared working area and putting a sticker on them.

When the robot had filled the output box with a random number of oranges (1, 2 or 3 to
eliminate predictability) the box was regarded as full and needed to be switched by the test
subjects. When a box was full the robot waited for user input and thus changed state to
waiting for user. When the test subjects would notice the state change, the box switch was
simulated by pressing the space bar on the keyboard. After the space bar was pressed, the
robot arm would continue handling oranges. Algorithm 3 and 4 describe the procedure for
the test subject and the robot arm.

Algorithm 3 Procedure human worker
repeat

Take orange from input box
Put sticker on orange
Put orange on grid of the shared working space
if output box = full then

Press space bar on the keyboard
end if

until 5 internal state changes
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Algorithm 4 Procedure robot arm
repeat

if Detected oranges > 0 then
Move to orange
Pick up orange
Put orange is output box
if Output box = full then

Wait for user input
end if

else
Wait for oranges

end if
until forever

5-3-2 Measurements

In this experiment the independent variable was the presence of virtual information. Each
test subject did the experiment once with virtual information and once without virtual in-
formation. To keep the test conditions between the experiments as equal as possible, both
experiments are done while wearing the HMD.
During the experiment the time between the moment the robot changed internal state and
the moment the test subject pressed the space bar was measured. This was a measure for
the reaction time to a state change of the robot arm. The experiment was done until 5 state
changes occurred.

5-4 Experiment 2: intended goal information

As stated in Section 3-2 intended goal information has a high potential to improve SA. While
handling oranges the robot arm could move to various positions and depending on the intended
goal position, different actions by the humans could be required.
The intended goal of the robot arm was shown on the HMD by changing the position of the
virtual robot arm (Figure 5-2).

5-4-1 Procedure

In this experiment, modeled as sorting of oranges, the test subjects and robot arm were
working together to sort oranges and fill boxes. The robot was picking up the oranges and
placing them in one of the output boxes. It randomly places an orange in left or right output
box. The test subjects were placing the oranges on the grid of the shared working area and
putting a sticker on them.
When the robot arm would move to the left output box, the test subjects needed to take action.
When the test subject would notice the movement to the left, this action was simulated by
pressing the space bar on a keyboard. Algorithm 5 and 6 describe the procedure for the test
subject and the robot.
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(a) No virtual robot arm. (b) Virtual robot arm shown at a different position in-
dicating intended goal of the robot arm.

Figure 5-2: Figure 5-2(a) show what the test subjects saw when looking at the robot through
the HMD without virtual information and Figure 5-2(b) shows the view with virtual information.
The intended goal of the robot arm was shown by changing the position of the virtual robot arm.

Algorithm 5 Procedure human worker
repeat

Take orange from input box
Put sticker on orange
Put orange on grid of the shared working space
if Robot moves to left goal position then

Press space bar on the keyboard
end if

until 5 positional changes

Algorithm 6 Procedure robot arm
repeat

if Detected oranges > 0 then
Move to orange
Pick up orange
Randomly determine drop position
Put orange in output box

else
Wait for oranges

end if
until forever

5-4-2 Measurements

In this experiment the independent variable was the presence of virtual information. Each
test subject did the experiment once with virtual information and once without virtual in-
formation. To keep the test conditions between the experiments as equal as possible, both
experiments are done while wearing the HMD.

During the experiment the time between the moment the robot arm would start moving to
the left goal and the moment the test subject presses the key was measured. This was a
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measure for the reaction time to an intended goal change of the robot arm. The experiment
was done until 5 oranges were moved to the left output box.

5-5 Evaluation

Besides the reaction times (performance metrics) measured during the experiments, all exper-
iments were recorded using a video camera for analysis. The video data was used to count the
number of oranges handles by the test subjects. The number of oranges handled per minutes
is a measure for the task performance of the human. The verbal remarks of the test subjects
during the experiment were also recorded on the video.
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Chapter 6

Results

This chapter lists the results gathered from the experiments. Section 6-1 explains the statis-
tical method used to analyse the data gathered from the experiment. Section 6-4 explains
the video analysis done. Section 6-2 and 6-3 show the analysed results of the state and goal
experiment.

6-1 Statistical analysis

The experiments were spread out over 2 days. On the first day 3 test subjects were tested and
the results from those experiments were used to determine a sample size using G*Power3 [63].
The calculation of the sample size was based on the significance level (α), statistical power
(P = 1 − β) and effect size. A significance level of 5% and a statistical power of 80% were
chosen [22]. This analysis resulted in a sample size of 8, but a total of 10 test subject were
tested to take measurement errors and equipment failure into account.
Every test subject did two experiments with each two conditions, for which 5 data points
were gathered. The 5 data points were averaged to get one average per test condition and
test subject. Because a within-subject experiment with two conditions was done, a paired
t-test using Matlab 2013b was used to analyse the data. Appendix F-1 shows the Matlab
code used to analyse the data.

6-2 Experiment 1: internal state information

These results of this experiment show an significant difference between the reaction times of
the test subject with and without the presence of virtual information. Table 6-1 shows the
results of the internal state experiment. Figure 6-1 shows a boxplot of the date of Table 6-
1. The value for each subject is the average of 5 measurements. All test subjects show an
improvement in reaction time, which range from almost nothing (0.10 seconds) to a couple
of seconds (2.37 seconds). The average reaction time without internal state information
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is 2.49 seconds and with internal state information it is 1.55 seconds. Also the standard
deviation decreases with state projection. It decreases from 0.75 seconds to 0.44 seconds.
These measurements were significant with a p-value < 0.01.

Reaction times [s]
Subject w/o virtual information w/ virtual information difference [s]

1 3.352 2.336 1.016
2 3.684 1.308 2.376
3 2.240 2.142 0.098
4 2.876 1.312 1.564
5 1.774 1.258 0.516
6 2.328 1.318 1.010
7 1.624 1.136 0.488
8 3.266 2.152 1.114
9 1.836 1.704 0.132
10 1.952 1.554 0.398

Mean 2.493 1.622 0.871
SD 0.745 0.438 0.706

Table 6-1: Reaction time results of the experiment 1: internal state information. 10 test
subjects did the experiment with each two test conditions: with and without the presence of
virtual information. For each condition 5 reaction measurements were gathered and averaged.
The difference in average reaction times is significant with a p-value < 0.01.
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Figure 6-1: Boxplot of the data from Table 6-1. The left boxplot shows the reaction times when
the test subjects were not presented with virtual information and the right boxplot shows the data
when the test subject were presented with virtual information. The difference between the two
means is significant with a p-value < 0.01.

Master of Science Thesis Niels Tanke



56 Results

6-3 Experiment 2: intended goal information

Table 6-2 shows the results of the intended goal experiment. Figure 6-2 shows a boxplot of
the date of Table 6-2. The value for each subject was the average of 5 measurements. All
test subjects show an improvement in reaction time, which range from almost nothing (0.03
seconds) to 0.77 seconds. The average reaction time without goal projection was 1.68 seconds
and with goal projection it was 1.42 seconds. Also the standard deviation decreases with goal
projection decreased from 0.46 seconds to 0.31 seconds. These measurements were significant
with a p-value of 0.013.

Reaction times [s]
Subject w/o virtual information w/ virtual information difference [s]

1 1.104 0.934 0.170
2 1.824 1.222 0.602
3 1.364 1.298 0.066
4 2.840 2.066 0.774
5 1.554 1.148 0.406
6 1.486 1.420 0.066
7 1.568 1.526 0.042
8 1.984 1.612 0.372
9 1.414 1.368 0.046
10 1.608 1.574 0.034

Mean 1.675 1.417 0.258
SD 0.475 0.308 0.267

Table 6-2: Reaction time results of the experiment 2: intended goal information. 10 test
subjects did the experiment with each two test conditions: with and without the presence of
virtual information. For each condition 5 reaction measurements were gathered and averaged.
The difference in average reaction times is significant with a p-value of 0.013.
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Figure 6-2: Boxplot of the data from Table 6-2. The left boxplot shows the reaction times when
the test subjects were not presented with virtual information and the right boxplot shows the data
when the test subject were presented with virtual information. The difference between the two
means was significant with a p-value of 0.013.
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6-4 Video analysis

The recorded videos were used to analyse the orange handling performance of the test subjects
and observe the test subjects while they were doing the experiment.

All test subject were initially reserved during the first minutes when working in the robot
working cell. They showed signs of hesitation while handling oranges, because they were
watching the robot arm. An improvement in orange handling speed was shown after some
time (Figure 6-5). Occasionally a collision between human and robot would occur. The
test subjects that had a collision with the robot arm stopped working for a second and then
continued working. During the experiment the robot arm would sometimes make a strange,
unpredictable and fast movements due to bad motion planning. At those times the test
subject would stop working, do a step back and look at the robot.

6-4-1 Orange handling

Figure 6-3 and 6-4 show the number of oranges handled by the test subjects. No significant
difference with of without internal state projection was measured in the amount of oranges
handled by the test subjects (p = 0.20). Also no significant difference between the amount of
oranges handled with of without goal projection was measured (p = 0.38).
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Figure 6-3: Boxplot of the orange handled per minute [oranges/minute] during the internal state
information experiment. The left boxplot shows the oranges handled per minute without virtual
information and the right boxplot shows the number of oranges handled with virtual information
presence. There was no significant difference between the means (p = 0.20).
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Figure 6-4: Boxplot of the orange handled per minute [oranges/minute] during the goal in-
formation experiment. The left boxplot shows the oranges handled per minute without virtual
information and the right boxplot shows the number of oranges handled with virtual information
presence. There was no significant difference between the means (p = 0.38).
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Figure 6-5: Boxplot of the number of oranges handled per minute [oranges/minute] for the first,
second, third and forth experiment. Because the experiment order was randomized, the data is
grouped into the order of the experiments. This graph shows a learning curve, the more the test
subjects did their task, the better they were able to do it.
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Chapter 7

Discussion

As stated in Chapter 1 the research question was formulated as:

Does showing state and intention information of an industrial robot arm, using a head-
mounted display, help the human co-worker to improve situational awareness?

In this chapter an evaluation of the robot working cell (Section 7-1), Head-Mounted Display
(HMD) (Section 7-2) and experiments (Section 7-3) is given. These evaluations are then
discussed to answers the research question.

7-1 Robot working cell

A robot working cell was designed to be able to test human-robot interaction. A mock-up
of an orange handling line was chosen, which consisted of a Universal Robots UR5 arm that,
in combination with a vision algorithm, could pick up oranges and put them in a box. The
human co-worker would handle the oranges and put them on the shared working area so
that the robot arm could pick them up. The designed robot working cell was a good way
to test human-robot interaction, because it forcing humans and robots to work in the same
working space to accomplish a shared task. This way the strengths of both the robot and the
human could be used to make the task execution more efficient. Humans did the complex
and dexterous tasks and the robot arm the repetitive tasks.

When working with the robot the test subjects were initially reserved. The robot was new
to them and were not really sure what it was going to do. But after working with the
robot for a couple of minutes, they felt more comfortable and dared to be closer to the
robot. The test subjects also didn’t keep a close eye on the robot arm after a while, because
they were building an internal representation of the environment and robot arm, they were
gaining better SA. This internal representation made the robot predictable so that the test
subjects felt more comfortable. Video analysis showed that sometimes the robot would make
a strange, unpredictable and fast movements due to bad motion planning. At those times
the test subject would stop working, do a step back and look at the robot. The robot
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became unpredictable and the test subjects felt uncomfortable. This behavior showed that
predictability is important when working with a robot.
Occasionally a collision between a test subject and robot would occur. The test subjects that
had a collision with the robot arm stopped working for a second and then continued working.
This shows that the robot is intrinsically safe.
To work together with a human, the robot system doesn’t have to be engineered to work
100% reliable, because the human can take over tasks that are too complex or take too long
to implement on the robot. A human can even work together with multiple robot arms. All
robot arms can inform the human when help is required. In the case of the designed orange
repacking setup, the human works faster than the robot arm, so multiple robot arm could be
attended to. This way a strength of robots, continues operations, could be exploited.

7-2 Head-mounted display

When working with a robot, information sharing is important and various solutions were
presented in literature to facilitate this information sharing. This thesis showed that a HMD
with the use of AR can be used to show information from an industrial robot arm to the
human. The combination of a HMD and AR allows for real-time virtual information to be
shown directly in front of the test subject’s eyes. This way the test subjects could keep their
attention focused on their own task and the robot arm, without being distracted by having
to switch attention. Showing information about the robot could potentially be done by more
simple solutions, for example a light or buzzer, but as the robot system and the interaction
becomes more complex, also more complex information needs to be delivered to the human.
In those cases a simple light or buzzer doesn’t have the versatility to encode the increased
information load. By using a HMD more complex information could be shown to the user.
The fiducial marker based tracker used by ARToolKitPlus provided good real-time tracking
capabilities. It was robust, fast, accurate and allowed the virtual robot arm to be displayed
over the real robot arm. A drawback of using markers is that they have to be in the field of
view of the cameras, therefore if the markers were occluded or totally not visible, the tracker
couldn’t calculate the head pose of the user and virtual information couldn’t be displayed.
In the experimental setup this doesn’t pose a big problem, because it was designed in such a
way that the human and robot were always in close proximity to each other. But when using
this tracking in unknown and unstructured environments, this could pose a problem. This
is because prior placement of markers is needed to enable tracking and object recognition.
This could potentially be solved by using natural feature tracking and model based object
recognition.
Unfortunately there were some limitations with using the HMD in this thesis, because a VST
HMD was used a direct view of the world was impaired. Instead the world was viewed via
a pair of displays. Because there is one display of each eye, stereoscopic 3D view was still
possible, but with a limitation. The human has to accommodate to the screen because that
is where the light is coming from, but at the same time converge to the virtual object, that
might be in front of the screen [64] (Figure 7-1).
This mismatch between convergence and accommodation could potentially cause discomfort
in the form of headaches. This means that long term use of a VST HMD is not possible.
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(a) Natural viewing: eyes accommodated and
converged at the same distance.

(b) Stereoscopic 3D viewing: eye accommodated and con-
verged at different distances.

Figure 7-1: The vergence-accommodation conflict in stereoscopic displays. Figure 7-1(a) shows
natural viewing vergence and accommodation are to the same distance. Figure 7-1(b) shows the
steroscopic3D case, vergence and accommodation must be decoupled for the viewer to have clear,
single binocular vision.

Other limitation were that the FOV, resolution and color clarity are worse than when we
view the world directly. So by wearing the HMD a lot of information is lost to the human.
Another limitation is that the cameras are mounted about 5cm in front of the displays, so
objects viewed through the HMD would appear father away than they in reality are. This
combined with the lag introduced by the finite computational power of the computer, limits
eye-hand coordination. Also the HMD is tethered to a computer using sturdy cable, which
limits movement flexibility. These limitations were partially solved by looking under the
HMD, to enable more natural eye-hand coordination (Section 5-1).

7-3 Virtual information and experiments

To research if the use of HMD in combination with AR could improve SA when working with
an industrial robot to repack oranges, an experiment was done. Information to potentially
improve SA was analysed, it was found that both state and intention information could
improve SA of the human. When working with an industrial robot particular information
can’t be directly observed and level 2 and 3 SA information is therefore difficult to infer.
Decent comprehension about the robot arm is needed to project future events. By helping
the human by providing extra information, that were not directly observable, could help the
human gain a better comprehension of the robot arm. From analysis was shown that there
are two main categories of information: state and intention.

In the category state the information types that could potentially improve SA of humans
were: position, speed, action and internal state. Of those only internal state had a high
potential of improving SA, because internal state can’t be directly observed and had to be
inferred by looking at the environment and task. This indirect observation of internal state
requires a good comprehension of the tasks to make sense of the observation. By showing a
virtual model of the real robot arm to indicate a change in internal state, the test subjects
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were able to detect this change faster. The experiment showed that a reduction in reaction
time was measured, this is because of the direct observation of an indirect phenomenon. The
hypothesis

Visualizing the internal state of the robot arm using a head-mounted display reduces the re-
action time of the human co-worker when the robot arm changes internal state.

has to be accepted at a significance level < 0.01.

From the other category, intentions, the extra information that could potentially improve
SA was: intended position, intended trajectory, intended action and intended internal state.
This is again because the information provided can’t be directly observed and requires decent
comprehension about the environment and task. To validate the following hypothesis:

Visualizing the intended goal position of the robot arm using a head-mounted display reduces
the reaction time of the human co-worker when reacting to a specific destination position of
the robot arm.

only intended goal position was chosen to be implemented and tested. This hypothesis had
to be accepted at a significance level of 0.01. The virtual information was shown at the same
time as the movement of the robot begins. The test subjects had to react when they noticed
that the robot would be moving to an alternative direction. This could be directly observed,
because the robot was moving, so showing the intended goal of the robot arm at the same
time as the start of the movement was not really useful to the human. It would be better to
know the intended goal position a couple of seconds beforehand. Further research has to be
done to determine the optimal time between the cue being shown and the actual movement
of the robot. If it is too short the human doesn’t have enough time to react and when it’s too
long, the human would already have forgotten it. The goal position of the robot arm could
be useful to know when it indicates for example which object it is going to pick up.

It was shown that showing information about the internal state and intended goal position
using a virtual model shown in a HMD improves SA of humans when compared to the case
where no virtual information was shown. To generalize the conclusion, further research has
to be done to check if the implemented method behaves differently that when not wearing a
HMD or when other visualization methods are used.

Another potential useful type of information is the trajectory of the intended motion. This
was not implemented in this experiment, because for a pick and place task of the robot it was
not useful. This is because the motion of the robot arm was limited and most of the time the
working area of the robot arm was free of obstacles. In the case of for example programming
an industrial robot knowing the trajectory could be useful. By using a virtual representation
of the robot arm and a HMD a more intuitive interaction between the human, robot arm
and motion plan could be gained. This way the programmer can directly see the motion plan
of the robot arm in the real environment, without using the real robot setup [39]. By not
using the real robot setup, an increased safety and working speed can be achieved [65]. When
working with mobile robots it could also be beneficial to know the trajectory of the robot [15].

When the test subjects were working with the robot arm and presented with the virtual
information, there was no significant difference in the amount of oranges that were handled.
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Conclusion

A human-robot interaction experiment was done to test if showing virtual information about
the state and intentions of an industrial robot arm using a head-mounted display could im-
prove situational awareness. From each category, one information type with a high potential
to improve situational was implemented and explored. It was found that showing information
about the internal state of the robot using a head-mounted display is beneficial to the human
to improve situational awareness, because the information shown can’t be directly observed.
Compared to the case without virtual information, the results showed a decrease in reaction
times to state and intention information when presented with the virtual information. This
decrease in reaction time was a measure for an increased situational awareness of the human
and showed that situational awareness could be improved by using a head-mounted display
to show extra information about the robot arm. The added internal state information was
information about a non directly observable state change, so new information was added. In
the case of showing intended goal information of the robot arm this information was extra,
because the intended goal position could be inferred by looking at the initial movement of the
robot arm. It would therefore be more beneficial to shown the intended goal information a
couple of seconds before the robot arm started moving as to increase the difference between
the two cues. This is because the human needs to be able to make a decision and react to
the information.

8-1 Future work

Real-world robot working cell. The problem with human-robot interaction in an industrial
setting is that there are almost no real world examples. Intrinsically safe robot arms became
wide spread only a couple of years ago, so they aren’t used often. Once more scenarios are
created to let humans and robot work together, a more focussed and specific analysis can
be done to improve this human-robot interaction. Robot can’t only be used to do pick and
place tasks, but can also support humans by lifting heavy objects during assembly or even
work together with a human to assemble simultaneously. In those cases maybe other types
of information have a higher potential to improve situational awareness.
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Improve the Head-Mounted Display (HMD). A lot of the limitation with the HMD can be
solved by switching to a different HMD. Optical See-Through (OST) HMD (Figure 8-1) don’t
have a lot the of drawbacks of VST HMDs, because they offer a direct view of the world. This
makes them a good solution to be used in an industrial setting, because eye-hand coordination
is not impaired and they can be used for a longer period of time. OST HMD are becoming
more affordable and mainstream, for example the Epson BT-100 (Figure 8-1(a)) or even the
Google Glass (Figure 8-1(b)). The Epson doesn’t have cameras mounted on them, the Google
Glass does, but by adding cameras to them, these can be used to facilitate AR. Because the
whole scene doesn’t have to be digitized, a lower bandwidth is needed to analyse the camera
images. This lower bandwidth requirement makes the display wireless and therefore could
greatly improve mobility of the user. Computation could then be done on a hand-held device,
like a mobile phone.

(a) Epson BT-100 OST HMD. (b) Google Glass.

Figure 8-1: Figure 8-1(a) shows the Epson BT-100 OST HMD and Figure 8-1(b) shows the
Google Glass.

Research virtual information display methods. In this thesis all virtual information was en-
coded using a virtual model of the robot arm and shown on a head-mounted display. Further
research has to be done to gain a more complete insight into what method is best to encode
and show information from a robot arm.
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Appendix A

Augmented reality system

A Video See-Through (VST) Head-Mounted Display (HMD) was used as a display to view the
real world and the virtual information. This appendix describes the hardware and software
needed to use AR with a HMD. Appendix A-1 describes the VST HMD hardware and
Appendix A-2 describes the tracking and visualization software.

A-1 Head-mounted display hardware

Figure A-1: Date flow of the HMD hardware. The cameras captured the real world and the
computer processed the captured images to stitch them together and send them to the control
box. The control box split the images to one image per eye, to get a stereoscopic 3D view. That
two images were shown on the HMD so that they could be seen by the user wearing the HMD.

Figure A-1 gives an overview of the date flow of the HMD and consists of the following parts:

Cameras: the cameras mounted on the HMD captured the real world, one camera captured
the image for one eye.

Computer: the computer processed the images captured by the cameras. Appendix A-2
goes into detail about the software used to process the images. The two images from the
cameras were combined into one image to enable stereoscopic 3D view (Appendix A-1).

Control box: the processed images from the computer were handled by the control box.
The control box was connected to the computer using HDMI or DisplayPort and split the
combined images from the computer into two separate images for each eye. The split images
were send, using a proprietary cable, to the HMD.
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Head-mounted display: the HMD showed the two images on the displays, mounted in
front of each eye. Appendix A-1 describes the HMD.

The HMD used was a modified Sony HMZ-T1 (Figure A-2(b)), nicknamed Marty and was
designed by Niels Mulder. The Sony HMZ-T1 (Figure A-2(a)) is a commercial display for
home and personal use. It is worn on the user’s head as an alternative to a television, for
example to watch a movie or play video games. The enclosure of the HMZ-T1 was stripped and
two Logitech C905 webcams were mounted on it. A new enclosure was designed to incorporate
the newly mounted cameras, making it a VST HMD. Table A-1 shows the specification of
Marty.

(a) Original Sony HMZ-T1. (b) Top view of Marty. (c) Front view of Marty.

Figure A-2: Original (Figure A-2(a)) and modified Sony HMZ-T1 nicknames Marty (Figure A-
2(b) and A-2(c)).

Parameter Specification
Number of screens [-] 2

Screen resolution [pixels] 1280x720
Weight [g] 100
FOV [deg] 40

Connector HMD [-] Proprietary
Connector control box [-] HDMI/DisplayPort

Dimensions (l x w x h) [cm] 15cm x 15cm x 6cm
Number of cameras [-] 2

Inter ocular distance [cm] 6.5
Camera resolution [pixels] 1280x720

Camera FPS [fps] 30
Camera connector [-] USB
Length cables [m] 5

Table A-1: Specification of Marty. This table shows all the relevant specification of Marty.

Stereoscopic 3D

When we view the world, it is seen in 3D, because we have two eyes. Two eyes let us view
the world from two slightly different perspectives, which we can transform to a 3D image.
When looking at a monitor we miss this stereoscopic effect and can’t directly see a 3D image.
Because Marty has two screens, one in front of each eye, the system can be designed to enable
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stereoscopic 3D views. This is done in the control box, the HMD was connected to this
control box, which supplies the display with power and visual information. The control box
was connected to a computer via HDMI or DisplayPort. When a video source is supplied in
the side-by-side or top-bottom format (Figure A-3), the control box split the video into one
image for each eye, to enable stereoscopic view. The drawback of this is the loss of resolution.
In this thesis sibe-by-side images were used, which cut the horizontal resolution in half.

Figure A-3: HMDI format for stereoscopic 3D images with a resolution of 1280x720 pixels. The
left part of this figure shows HDMI side-by-side and specifies that the image for the left and right
eye are put side by side. This method reduces the horizontal resolution by half. The right part of
this figure shows HDMI top-bottom and specifies that the images for the left and right eye are
put on top of each other with a spacer in between. This method reduces the vertical resolution
by half.

A-2 Augmented reality software

To use the HMD and show the correct information on it, software is needed. When looking
at Figure A-1 in Appendix A-1 the computer block takes care of all software required for
optical tracking and image processing. This section describes all software components, their
function and implementation, to enable virtual information to be shown on the HMD using
optical based marker tracking.

Figure A-4 gives an overview of the important steps involved with marker based optical
tracking and rendering of virtual objects. The following parts are important:

Image capture: the cameras captured the real world. Because a VST HMD was used, the
whole scene needed to be digitized and displayed on the screens of the HMD. The images from
the camera needed to be captured and stored in a proper format to be analysed. Appendix A-
2-1 describes how the image capture was done.

Marker detection: to be able to track what the user is looking at, markers needed to be
detected in the images. From the captured images the markers in the scene were detected.
Appendix A-2-2 describes the algorithms used to detect the markers in the image.

Marker identification: the detected markers were not only used to calculate what the user
was looking at, but they also represented a specific location in the scene. To be able to use the
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Figure A-4: Data flow of information for marker based optical tracking and virtual model render-
ing. The images from the cameras need to be captured and stored in a useful format. The images
need to be analysed to detect and identify the markers. From these identified markers the trans-
formation matrix between the camera and markers can be calculated. With this transformation
matrix the virtual model can be rendered in the scene.

specific location of the marker, it needed to be identified, because different virtual information
needed to be shown on different locations. Appendix A-2-2 describes the important parts of
marker identification.

Head pose estimation: the most important goal of the marker tracking was to calculate
what the user was looking at. From the detected markers the head pose was be calculated, by
calculating the transformation matrix between the cameras and the markers. The transfor-
mation matrix between the cameras and the markers allow the virtual objects to be rendered
in the correct pose. Appendix A-2-3 describes the algorithms used to calculate the transfor-
mation matrix.

Virtual model rendering: with the calculated transformation matrix, the virtual model
could be rendering with their correct pose. Appendix A-2-5 describes the how the virtual
models were rendered.

Scene rendering: the captured images also needed to be rendered and combined with the
virtual model so that it could be displayed on the HMD properly. Appendix A-2-4 describes
how the scene was rendered and how the images were combined.

A-2-1 Image capture

In order to show the real world on the HMD, the scene needed to be digitized, because
VST was used. The software used to capture images from the cameras was OpenCV [57].
OpenCV is a mature and robust toolkit that is used for a wide variety of tasks, for example
image manipulation, camera calibration, feature detection, object detection or complex matrix
calculations.

OpenCV was used as a wrapper for Video4Linux (V4L) and captured the images at 30
Frames Per Second (FPS) in Blue-Green-Red (BGR) format at a resolution of 1280x720
pixels. Because the images were directly shown on the HMD and viewed by the user, the
resolution and frame rate need to be as high as possible. The maximum resolution of the
HMD is 1280x720 pixels per eye. To save computation power, the images were not captured
at a higher resolution. To be able to see a smooth video feed of the real world, a frame rate
of minimal 60 FPS is considered good enough. Unfortunately the cameras have a maximum
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frame rate of 30 FPS, so 30 FPS was used. The images were stored in a 1280x720x3 matrix,
with the first image the blue image, the second the green image and the third the red image.
Because of the high resolution and high FPS a lot of bandwidth and computational power is
needed to handle the images. Because of the high bandwidth two separate USB2 controllers
were needed or one USB3 controller. This ensures that both cameras can be used at a
resolution of 1280x720 pixels and 30 FPS.
Not only is capturing images at high resolution bandwidth intensive, but also computationally
intensive. A laptop with a quad core Intel i7 was used to capture the images. This CPU is
not fast enough to capture two cameras in one thread, therefore two threads were used to
capture and analyse the images. By using two threads the synchronization between the two
cameras was also improved, because the two images could be captured at the same time, so
that when the HMD was moved there was less lag between the left and right image.

A-2-2 Marker detection and identification

From the captures images, markers needed to be detected. This detection was done by
ARToolKitPlus [52], an optimized an extended version of ARToolKit [51]. The advantage of
ARToolKitPlus over ARToolKit are that it is a complex rewrite and stripped version, making
it leaner and more focussed. ARToolKit is a complete solution to marker based AR and has
software for video capture, marker detection and virtual object rendering. ARToolKitPlus
only has the marker detection part and is completely rewritten in C++. Besides being a
complete rewrite, many optimizations and better algorithms are incorporated. The algorithms
make the detection faster, robuster and more reliable [52, 66].

(a) Fiducial marker used by AR-
ToolKitPlus.

(b) Marker board with multiple
markers to identify a shared central
point P .

(c) Diagram of marker board. x and
y are the distances from the center
of marker C to the shared central
point P .

Figure A-5: Figure A-5(a) shows what a marker used by ARToolKitPlus looks like. Figure A-
5(b) shows how multiple markers can be used to identify a shared central point and Figure A-5(c)
shows a diagram of how a marker board is defined.

The markers (Figure A-5) used in the tracking algorithm were of low complexity, but serve a
concrete purpose. All markers were square with fixed and known dimensions. The boarders
of the markers had a fixed width and were clearly recognizable from the rest of the scene.
The pattern in the center of the marker has an unique combination (4096 different patterns)
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of squares and can be decoded to represent a number ID. This way all detected markers could
be easily distinguished.

Figure A-6: ARToolKitPlus marker detection overview. The captured images were converted to
a binary image. In the binary image, binary morphology was used clean up the image. In the
cleaned image, lines were detected and at the cross sections, corner points were detected. The
pattern inside marker was used to verify the marker and identification it.

Figure A-6 shows the steps used in the marker detection algorithm to detect markers in the
images and consists of the following steps:

Binary threshold: ARToolKitPlus uses binary images to do the detection of markers on.
To convert a BGR-image to a binary image a threshold needed to be determined. This BGR-
image uses 8 bits per channel (0-255) to represent color. A binary image uses a 1 bit channel
to represent either black (0) or white (255). Because the marker consists of a pure black and a
pure white part, it survives after the threshold was applied. This threshold served as a divider
to set the pixels to either black or white. Because of environmental conditions (lighting and
camera quality) a fixed threshold causes problems, therefore an automatic threshold finder
algorithm was used. This algorithm makes an educated guess, based on the histogram of the
image, to come up with an initial threshold value. When no markers were detected in the
image, another educated guess is made to determine the threshold. These steps were repeated
a maximum of 3 times, to improve the chance of finding a marker.

Binary morphology: the newly created binary image is cleaned up by binary morphology.
Binary morphology uses dilation, erosion, opening and closing to get rid of holes in the images.
The result is clean up image.

Line detection: on the cleaned up image, line detection was used to find the edges of the
marker. Because the markers are square and have clearly visible border, the detected lines
represented the borders of the markers.

Corner detection: where the detected lines cross, a corner point could be made. This
corner point corresponded to a corner of the marker.

Marker verification: when 4 corners were identified, a check must be done to ensure that
the area surrounded by the 4 corner points was indeed a marker. Verification was done with
the pattern inside the marker. This pattern corresponds to a unique ID and was checked with
a Cyclic Redundancy Check (CRC) algorithm.

Marker identification: when a marker is verified, the ID was checked against a database
of markers. When a match was found, the ID of the marker was returned.

The marker detection algorithm used by ARToolKitPlus provided a good and fast way to
detect a marker in an image and was be used to track the head pose of a human. But there
were some limitations and drawbacks to using markers. One big limitation was that the
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camera had to have a marker in its FOV to detect it. When the marker is outside the FOV
or when it is occluded, no marker was detected. This was solved by using multiple markers
defined in a marker board (Figure A-5(b)). A marker board uses a known set of markers in
a predefined position and with a known relation to each other. An advantage of a marker
board is that only one marker of the whole marker board needs to be detected to know the
position of the whole board.

(a) Marker board surrounding the UR5. (b) Diagram of the marker board.

Figure A-7: Multiple markers defined to represent the same central point was used to overcome
the shortcomings of using only one marker. Figure A-7(a) shows the marker board surrounding
the robot arm and Figure A-7(b) shows a diagram of the marker board.

To accurately detect a marker in the image, it needed to be of a minimal size. To ensure that
the marker is detectable when viewed from about 2 m, a marker size of 0.2 m was used. This
means that the marker has a width and a height of 0.2 m.

A-2-3 Head pose estimation

The system needed to track the position of the head in 6 DOF to know what the user
was looking at. When a marker is detected, four coplanar and not collinear points of the
marker were used to calculate the transformation matrix between the camera and the marker.
Figure A-8 shows this relationship.
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In Equation A-1 Tm is the transformation matrix between marker and camera [51]. This
transformation matrix consists of a 3x3 rotation matrix (V3x3) and a 3x1 translation matrix
(W3x1). These matrices were found with ARToolKitPlus by solving the Robust Planar Pose
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Figure A-8: Relationship between camera and marker coordinate frames [51]. The marker
coordinate frame (Xm, Ym, Zm) needs to estimated by calculating a transformation matrix using
all corner points (xc, yc) in the camera coordinate frame (Xc, Yc, Zc).

(RPP) [67] equations using every corner point of the marker (xc, yc). The coordinates were
also corrected by the camera calibration parameters (Appendix C).

A-2-4 Scene rendering

Before the virtual model could be correctly rendered using the transformation matrix, the
scene needed to be rendered. The scene is the background image and was directly captured
by the cameras. The images from the cameras were rendered as an OpenGL texture using
FreeGLUT. FreeGLUT is the free version of the OpenGL Utility Toolbox (GLUT) and pro-
vides application window control and allows for user input in the form of keyboard presses
or mouse movement. To enable stereoscopic 3D images, the images from the cameras were
provided to the control box using the HDMI side-by-side format.

A-2-5 Virtual model

After analysing the images, ARToolKitPlus outputs a 4x4 transformation matrix in OpenGL [68]
notation. This transformation matrix was used to render the virtual models with their cor-
rect pose. After the viewpoint is transformed, the local coordinates system of the marker was
known.

The virtual model was designed to resemble the real robot arm. This was done by using
simple cylinders to draw the model. Figure A-9 shows the real and the virtual robot arm side
by side. The virtual model also has the same DOF as the real robot arm.

To enable movement and state changes of the virtual model, various properties of the virtual
model were defined: position, velocity and internal state. Te be able to represent all the
information needed for the experiment, three virtual robot arms were created and each model
served a different purpose by reacting to different information. Each model could be switched
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Figure A-9: The virtual model and the real robot arm. The virtual model has the same dimensions
and is modelled to look like the real robot arm.

on and off to show only the model that was needed. The following sections describe what
information was needed to represent state, goal and trajectory information. Figure A-10
shows where each type of information comes from.

Figure A-10: State and intention data overview. The motion planner in the arm navigation
stack generated a motion plan and outputted the trajectory and goal position. The UR5 driver
made sure the trajectory was executed on the robot arm and received the position and velocity
in real-time from the robot arm. The current internal state, trajectory, goal position, current
position and current velocity were send to the virtual robot arm.

Position

The positions were formatted in a 6x1 vector containing a floating point value (radians) for
every DOF of the robot arm. Because OpenGL works with degrees, the values needed to be
converted.

Color and transparency

Color and transparency of the virtual arm was set by setting the RGBA property of the
arm. The red, blue and green component made up the color and the alpha component was
responsible for setting the transparency.
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Virtual model for state information

Figure A-11 shows the inputs of the virtual model which are needed to display internal state
information.

Figure A-11: Inputs to the virtual model to display internal state information. The real robot
arm, using the UR5 driver, provided the real-time position and velocity. The control node set the
internal state of the virtual robot arm.

In the case of internal state information, the virtual model was rendered directly over the real
robot arm at all times. This way when the virtual model changed color, it looked like the real
robot arm changed color. Because it is rendered directly over the real robot arm, the real
time position of the real arm must be known. These positions were provided by the real robot
arm and were updated in real time at 100Hz. The information about the internal state of
the robot was provided by the control node. This node gave a signal when the real robot arm
changed internal state to trigger a change in the virtual model and was either transparency
or color of the arm.

Virtual model for intended goal information

Figure A-12 shows the input of the virtual model which are needed to display intended goal
information.

Figure A-12: Inputs to the virtual model to display intended goal information. The motion
planner provided the joint angles to indicate the final goal position of the robot arm.

The intended goal information was used to show where the real robot arm was going to next.
This information was provided by the motion planner and was available at the moment the
real arm started moving.

Virtual model for intended trajectory information

Figure A-13 shows the input of the virtual model which are needed to display intended tra-
jectory information.

The intended trajectory information was intended to show the whole future motion of the
robot arm. This information was provided by the motion planner and consisted of a matrix
with joint angles of every point in time. This way the trajectory could be simulated by
rendering the virtual arm every time step. Because the motion planner outputted a sparse
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Figure A-13: Inputs to the virtual model to display intended trajectory information. The motion
planner provided the joint angles for the whole intended trajectory of the robot arm.

set of positions, they needed to be interpolated to result in a smooth display of the trajectory.
This interpolation was done by linear interpolation to get double the amount of points. The
time needed to display the trajectory can be varied by changing the loop rate of the display
loop and resulted in faster or slower playback of the trajectory.

A-2-6 Software architecture

Figure A-14 gives a total overview of the software used to display the virtual information on
the HMD. Vertical columns indicate the threads and arrows indicate exchange of information.

Figure A-14: Total overview of the HMD software. The software used four different threads,
two for capturing and analysing the camera images, one for rendering the virtual models and the
scene and one thread to communicate with various node in ROS.
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Appendix B

Robotic system

This chapter describes the robotic system used to pick up oranges and do the experiments.
Appendix B-1 describes all hardware systems and Appendix B-2 describes all software com-
ponents.

B-1 Robotic hardware

Figure B-1 gives an overview of the hardware components of the robotic system. The hardware
used to handle oranges are: a camera to detect oranges (Appendix B-1-1), an industrial robot
arm (Appendix B-1-2) to move the oranges and an industrial gripper (Appendix B-1-3) to
handle the oranges.

Figure B-1: Overview of the hardware used in the robotic system. A vision system was used to
detect the oranges. The detected oranges were then pickup up with a gripper mounted on the
industrial robot arm.

B-1-1 Orange detection camera

The camera used to detect the oranges was a Logitech C905 (Figure B-2(a)) consumer grade
webcam with a maximum resolution of 2MP that can capture images at a maximum of 30
FPS. This camera was mounted on an aluminium rod (Figure B-2(b)) in a enclosure made
of foam (Figure B-2(b)). This rod was mounted on a frame above the robot system with the
camera parallel to the table at a height of 0.9m looking down at the oranges.
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(a) Logitech C905 con-
sumer grade webcam.

(b) Foam enclosure to mount the camera. (c) Aluminium rod mounted
on a frame above the robotic
system.

Figure B-2: Camera and mounting frame used to detect oranges. Figure B-2(a) shows the
Logitech C905 consumer grade webcam that was enclosed in foam (Figure B-2(b)) and mounted
using an aluminium rod to a frame (Figure B-2(b)) at 0.9m above the table with oranges.

B-1-2 Universal Robots UR5

The robotic arm was used to pick up the detected oranges and place them in a box. The arm
that was used is a Universal Robots UR5 (Figure B-3), which is an intrinsically safe robot
arm. This means that it doesn’t have enough power to physically hurt a person and therefore
doesn’t need to have fences around it to protect humans [2]. The joints of the UR5 have
voltage sensors to measure if the measured voltage exceeds the predicted voltage. When this
happens, the robot will switch itself off. By using an intrinsically safe robot arm, humans can
work in close proximity to it. The specifications of the UR5 are shown in Table B-1.

Parameter Value
Weight [kg] 18.4
Payload [kg] 5
Reach [m] 0.85

Joint ranges [rad] -2π to 2π
Joint speed [rad/s] π

Maximum tool speed [m/s] 1
Repeatability [mm] ± 0.1

DOF [-] 6
Power consumption [W] 200

UR5 connection [-] UTP

Table B-1: Universal Robots UR5 specifications. This table shows all relevant specifications of
the Universal Robots UR5 industrial robot arm.
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(a) Universal Robots UR5 with control unit. (b) Universal Robot UR5 in experimental setup.

Figure B-3: Figure B-3(a) shows the UR5 with control unit and Figure B-3(b) shows the UR5
in the experimental setup handling oranges.

B-1-3 Lacquey Fetch Hand

The end-effector in the setup was a Fetch Hand from Lacquey. This is a 6 DOF underactuated
robotic hand developed as an affordable alternative to existing industrial robotic hands. It
has three fingers with each two DOF. All 6 DOF are actuated by one motor, this makes
in underactuated. The intelligence of the hand is all in the mechanics, all DOF follow the
way of the least resistance. That means that one DOF feels resistance, the power goes to
the other DOF, this way all finger enclose the object and the gripping force is divided over
the fingers. Figure B-4 shows the gripper mounted on the Universal Robots UR5 in the
experimental setup. It is connected to two digital outputs (24V ) of the robot arm, located
on the end-effector. Both digital outputs are connected to a relay, one enables/disables the
gripper and one opens/closes the gripper.

(a) Lacquey Fetch Hand close-up. (b) Lacquey Fetch Hand.

Figure B-4: Lacquey Fetch Hand mounted on the Universal Robots UR5 in the experimental
setup.
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B-2 Robotic software

This section describes all software components of the robotic system. An overview of the
implementation, design choices and capabilities is given.

B-2-1 Robotic Operation System

To make the robot do what we want, control software is needed. The Universal Robots
UR5 has its own control box but unfortunately the functionality is sufficient. The software
provides all the components needed to actuate the robot and make it move to any position,
but unfortunately the motion planning and inverse kinematic software is a black box: there is
no way to extract the motion plan before execution. An alternative control software package
was found in Robotic Operating System (ROS) [58]. This package allows the motion plan to
be extracted before the motion plan is executed.

All software was designed on the ROS framework, version Fuerte. ROS is a framework that
focuses on delivering a flexible, versatile and complete set of tools needed to program a robot.
It is widely used in academic community because it makes it rapid development of relative
complex pieces of software possible. Figure B-5 shows an overview of all ROS components
needed to operate the robotic working cell.

Figure B-5: Overview of all the ROS software components. The system controller is the main
hub of the robotic system. This node requests the coordinates of the orange from the orange
vision node. With the orange coordinates a motion plan request is send to the arm navigation
stack. This stack is a collection of nodes responsible for calculating a proper trajectory for the
robot arm. The arm navigation stack sends the calculated trajectory to the UR5 driver, which
activates the real robot arm. The system controller also activates the gripper via the gripper
node. The UR5 driver and arm navigation stack both send robot data to the augmented reality
node.

The total system consists of the following software components:

Orange vision node: the orange vision node took care of the detection of oranges on the
table. This was done by analysing images using a Gaussian Mixture Modelling algorithm.
The coordinates of the detected oranges were then converted from image coordinates to world
coordinates. Section B-2-2 describes the vision system in more detail.

System controller node: the system controller node was the main hub of the robot working
cell. It was responsible for the coordination and communication between the other nodes.
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Tasks include: requesting list or oranges from the orange vision node, generating a motion
plan to send to the arm navigation stack and keep track of the internal state of the robot
arm.

Gripper node: the gripper node sent commands to the Universal Robots UR5 to actuate
the gripper.

Arm navigation stack: the arm navigation stack is a collection of nodes designed to cal-
culate a collision free trajectory for the robot arm. This stack has the following components:
inverse kinematics, collision checking, motion planning and trajectory filtering. Appendix B-
2-5 describes the arm navigation stack.

UR5 driver: the driver enabled communication between the arm navigation stack and the
physical robot arm.

Augmented reality node: the augmented reality node was responsible for visualizing the
scene with the virtual robot arm to show the state and intentions of the robot arm.

B-2-2 Orange detection

The goal of the vision system was to detect and locate oranges on a table and present the
data to the robot system so that the oranges could be picked up. The vision system consists
of the parts shown in Figure B-6.

Figure B-6: Schematic overview of the orange detection software. The image taken by the
camera were captured and stored for analysis. A Gaussian Mixture Model algorithm detected the
oranges in the images. For the robot arm to be able to pick up the oranges, the coordinates
needed to be converted from image frame coordinates (pixels) to real world coordinates (meters).

Image capture

To detect objects on the table the camera captured images to be analysed. The software
used to capture the images was OpenCV [57]. The images were captured at a resolution of
1600x1200 pixels at 2 FPS. The FOV of the camera and coordinate frames are shown in
Figure B-7.
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(a) Overview of experimental setup. (b) FOV and coordinates frames for orange detec-
tion.

Figure B-7: FOV and coordinate frames of the orange detection. Figure B-7(a) shows the FOV
of the detection camera and Figure B-7(b) shows the image coordinate frames (u, v) and the
robot coordinate frame (X, Y , Z).

Orange detection

To detect the oranges in the captured images, a detection algorithm was used. The detection
algorithm used a Gaussian Mixture Model algorithm on the color images to detect the oranges.
This algorithm was developed by Floris Gaisser and is implemented using OpenCV. The
algorithm follows the steps of Algorithm 7.

Algorithm 7 Gaussian mixture model
repeat

Capture image in BGR format
Convert BGR image to Hue-Saturation-Value (HSV) image
Split HSV into separate H, S and V images
Create histogram of H image
while not exceed iteration limit do

Fit two Gaussians over histogram
end while
Segment H image using the two Gaussians
Find contours in segmented image
Fit ellipses on the contours
Filter ellipses
Sleep until 2 FPS

until forever

The images captured by the camera were analysed by a Gaussian Mixture Model algorithm.
Figure B-8 shows the steps of the algorithm. The input image was stored to be analysed.
The first step was to extract the hue image. The hue image was used, because there is a
big difference between the hue value for blue (background) and orange (objects), therefore a
clear distinction could be made. A histogram was made of the hue image, in the histogram
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two peaks can be detected, one for each hue-value (blue and orange). The Gaussian Mixture
Model algorithm iterates over the histogram to fit two Gaussian distributions over the peaks.
These Gaussian distributions were used to segment the input image into a binary image, also
called a mask. In the mask the background is represented a pure black and the oranges are
pure white. After a binary morphology step a filled masked was used to fit ellipses to get the
coordinates of the oranges.

Figure B-8: Overview of Gaussian Mixture Model detection algorithm. From the input image
the hue image was extracted. A histogram was calculated from the hue image and two Gaus-
sian distributions were fit over the histogram. Segmentation was done using the two Gaussian
distributions to get a mask. Ellipses were fit over the filled mask to get the coordinates of the
detected oranges.

Coordinate Transformation

The detected oranges have coordinates in the image coordinate frame (u, v). These coordi-
nates needed to be transformed to world coordinates (X, Y , Z). See Figure B-7 for coordinate
system definitions. The transformation uses the pin-hole camera model [69, 70].

Xc = (u− cx)
fx

zc (B-1)

Yc = (v − cy)
fy

zc (B-2)

Zc = 0 (B-3)

In this transformation (cx, cy) is the principle point of the image and fx and fy and the focal
lengths. zc is the height of the camera above the table, which is a constant 0.9m.
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B-2-3 System controller node

With the coordinates of the oranges known, the robot needed to be activate to pick them up.
The system controller node was responsible for coordinating which orange to pick up, when
to pick it up and where to put it. Figure B-9 shows an overview of the control node.

Figure B-9: Overview of the control node. The system controller node requested the coordinates
of the oranges, handled the oranges by generation motion plans (executed by the arm navigation
stack), operated the gripper and set the internal state of the robot arm.

Algorithm 8 Control node algorithm
Move robot arm to initial position
Power on gripper
Open gripper
repeat

Get orange coordinates
if Detected orange = 0 then

Set robot internal state to waiting for oranges
end if
Set robot internal state to moving
Move robot arm to (Xr, Yr, (Zr + 0.16))
Move robot arm to (Xr, Yr, Zr)
Close gripper
Move robot arm to (Xr, Yr, (Zr + 0.16))
Move robot arm to drop position
Increment orange counter
if Number of oranges handled = 1, 2 or 3 then

Set robot internal state to waiting for user
end if

until forever

Algorithm 8 shows the algorithm used in the system controller node. The first step was
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to request the coordinates of the oranges from the orange vision node. If no oranges were
detected the internal state of the robot was set to waiting for oranges. From these coordinates
a random orange was chosen to be picked up. The next step in picking up the oranges was to
transform the coordinates of the detected oranges from the camera coordinate frame (Xc, Yc,
Zc) to the robot coordinate frame (Xr, Yr, Zr). The coordinates of the oranges were provided
in meters, so adding the offset (∆X and ∆Y ) between the camera and the base of the robot
arm was enough to transform the coordinates:

Xr = Xc + ∆X (B-4)
Yr = Yc − ∆Y (B-5)
Zr = Zc (B-6)

With the oranges defined in the robot coordinate frame, a motion plan request was generated.
A motion plan request is predefined list of parameters needed by the arm navigation stack to
generate a motion plan. The position of the orange is the goal of the robot and needed to be
defined as an position and orientation of the end-effector. The position (Pr) and orientation
(fr) of the end-effector needed to be defined in the following format:

Pr =
[
Xr Yr Zr

]T
(B-7)

fr =
[
x y z w

]T
(B-8)

ROS requires the orientation to be in quaternions. When picking up the oranges the orienta-
tion of the end-effector was fixed facing down, so that picking the oranges up was easier. Once
the motion plan request was generated, it was send to the arm navigation stack for execution
(Appendix B-2-5). When the arm navigation stack gives a positive response, meaning that
the motion plan is correctly executed, the gripper was operated and the orange was handled
and put in the box. An internal counter counts the number of oranges handled. If the number
equals a preset number, the internal state of the robot changes to waiting for user and the
robot stops until the user tells it to continue. This confirmation comes from the augmented
reality node.

B-2-4 Gripper node

The gripper node operates the gripper mounted as an end-effector on the robot arm (Ap-
pendix B-1-3). It does this by opening a socket connection to the robot arm and executing a
command. The commands were used to open of close the digital ports to which the gripper
is connected.

B-2-5 Arm navigation stack

The oranges needed to be pick up and to be able to do that, a trajectory for the robot arm
needed to be calculated. This is done in ROS using the arm navigation stack. This stack
is a collection of nodes that together calculate a collision free trajectory for the robot arm.
Figure B-10 shows an overview of the arm navigation stack. To get it to work properly it had
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Figure B-10: Overview of the arm navigation stack in ROS. A motion plan request was send to
the move arm node. This node individually calls the inverse kinematics node, the motion planner
and the trajectory filter to calculate is valid motion plan.

to be customized and tweaked, because the arm navigation stack is generic and is designed
to work on every robot arm (with some modifications).

The arm navigation stack consists of the following parts:

Move arm: this node is the central connection point of the arm navigation stack. It receives
the motion plan request and calls the other nodes to calculate the trajectory. The first step
was to check the inverse kinematics node to be sure the goal pose could be reached and that
the robot was not in collision with the environment or itself. For the next step the motion
planner was called which tries to find a trajectory that allowed the robot to move from the
initial position to the goal position without collisions. The motion planner output was a
sparse trajectory, meaning the trajectory was described using a small number of waypoints,
therefore the trajectory needed to be filtered. The trajectory filter node calculated a smooth
and collision free trajectory based on the output of the motion planner by using interpolation.

Inverse kinematics: the inverse kinematics node calculated if the requested pose could be
reached and that it could be reached without collisions. These checks were done based on
a kinematic model of the robot arm and a model representing objects in the environment.
Appendix B-2-5 describes the inverse kinematics in more detail.

Environment server: the environment server was responsive for keeping track of objects in
the environment. These objects were used to check for collisions with the robot. Appendix B-
2-5 explains how the environment server works.

Motion planning: the motion planner was used to find a collision free trajectory that
satisfies the constraints based on the kinematic model and the environment. Appendix B-2-5
explains in more detail the important parts of the motion planner.

Trajectory filtering: the trajectory filter calculated a smooth and collision free trajectory
based on the sparse output of the motion planner. Appendix B-2-5 explains why filtering was
needed and how the filtering was done.
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Inverse kinematics

ROS uses the Unified Robot Description Format (URDF) to encode and extract the kinematics
of the robot arm. URDF is an XML format to describe the physical structure of a robot. The
basic structure of an URDF file consists of links and joint with dimensions and properties
(length, width, position, rotation axis, rotation speed). These links and joints are setup in a
tree structure with parents and children. This way the relation between the links and joints
can be defined. The URDF file is loaded into the ROS parameter server so that is accessible
to various nodes. Figure B-11 shows a visualization of the URDF model of the UR5 using
RVIZ (visualization tool used in ROS).

Figure B-11: ROS visualization of the UR5 URDF model. This figure shows a virtual represen-
tation of the Universal Robots UR5 in RVIZ. All joints and links a shown with their mesh for a
more detailed representation. The gripper is not part of the standard robot arm and was modeled
by a blue cube.

The move arm node translated the motion plan request to a request for the inverse kinematics
node. With the end-effector position (Pr), end-effector orientation (fr) and dimensions of the
robot known, the required angle of the joints were calculated. This was done using an inverse
kinematics algorithm. ROS uses a numerical solver, which can only find good solutions when
the end state is close to the starting state, but allows solutions to be calculated for all available
robots without special prior knowledge about the robot. An alternative to the standard
inverse kinematic algorithm was found to be the IKfast v61 inverse kinematics solver. This is
an analytical solver from the Open Robotics Automation Virtual Environment (OpenRAVE)
motion planning software [71] and was specially designed for the Universal Robots UR5 using
the URDF file. Not only does this solver find more solutions, it is also faster. The solver
needed to be fast, because not only were inverse kinematic calculations used to find the joint
angles of the end position, but also for every point in the trajectory. So this algorithm is
executed hundreds of times during the planning of one motion. The IKfast algorithm finds
inverse kinematic solutions in < 10 ms.

Master of Science Thesis Niels Tanke



92 Robotic system

Environment server

Collision checking was done to check if the robot was not in collision with itself or the envi-
ronment. ROS uses the environment server to simulate the environment with its obstacles.
Every time an inverse kinematic solution was requested, it was checked against the environ-
ment server. Figure B-12 shows a visualisation of the environment server using RVIZ with
the obstacles:

Universal Robots UR5: the robot arm is shown with its mesh. All joints and links are
represented in the environment server to enable self-collision checking and collision checking
with the obstacles in the environment.

Gripper: the gripper was modeled by a cube. This cube represents the dimensions of the
gripper when it is open.

Tables: the table at which the robot is mounted, the shared working area table and the table
with the output box were also put in the environment server. The were modeled as large flat
planes.

Output box: the output box was modeled as a cube with dimensions of the real box.

Figure B-12: ROS visualization of planning environment using RVIZ. The direct environment
was modeled in ROS to be used for collision checking. The URDF model was used for self-collision
checking and also for collisions checking with obstacles in the environment (light blue).

Motion planner

To go from an end-effector pose (Pr and fr) to a trajectory, motion planning was needed.
The motion planner used the end-effector position and orientation, environment constraints
and trajectory constraints to calculate a motion plan. In ROS there are various motion
planners which can be categorized into sample based, search based and stochastic trajectory
optimization motion planner. In ROS the sample based motion planners are found in Open
Motion Planning Library (OMPL) [72]. The OMPL has the following sample based planners:
Rapidly-exploring Random Trees (RRT) [73], Probabilistic Roadmap (PRM) [74, 75, 76],
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Expansive Space Trees (EST) [77] and Kinodynamic Motion Planning by Interior-Exterior
Cell Exploration (KPIECE) [78]. The search based planners are implemented in the Search
Based Planner Library (SBPL). The planners are: ARA* [79] (anytime version of A* [80]),
Anytime D* [81] (anytime version of D* [82]) and R* (randomized version of A*). The
stochastic trajectory optimization motion planners are: Covariant Hamiltonian Optimiza-
tion for Motion Planning (CHOMP) [83] and Stochastic Trajectory Optimization for Motion
Planning (STOMP) [84].

By far the most used motion planners are the KPIECE algorithm from OMPL and the
CHOMP algorithm. KPIECE was the go-to motion planner, but is gradually being replaced
by CHOMP. The advantage of CHOMP is that the generated trajectories are smooth, which
means that filtering is not needed. Also CHOMP allows for orientation constraints during
motion, this enables the gripper to be oriented down during the whole motion. Unfortunately
the version of CHOMP supplied in ROS is not robust enough for continues operation, the
planner is slower than KPIECE and has a lower success rate. That is why, for robustness
reasons, the KPIECE algorithm from the OMPL was used as the motion planner.

Trajectory filter

The motion planner generated a set of waypoints which the robot arm has to follow the
reach the goal. The trajectory filter is the final step in the motion plan generation phase
and validates the generated motion plan. It made sure that the generated motion plan does
not make the robot arm violate the speed or acceleration constraints and not collide with
the environment or itself. It also interpolated the generated motion plan, because the set of
waypoint generated by the motion planner was very sparse and can’t be directly executed on
the robot.

The standard interpolation method in the arm navigation stack uses cubic splines to inter-
polate the trajectory. It was found that when the generated motion plan has only 2 or 3
waypoints (short motions), the interpolation algorithm would take about 3 seconds to calcu-
late a smooth trajectory. When a parabolic interpolation algorithm was used, the calculation
time was reduced to about 0.1 seconds. After filtering the trajectory is smooth and does not
violate the constraints (environmental and dynamic) and can be executed on the robot arm.

B-2-6 UR5 driver

To communicate the calculated trajectory to the robot arm, a driver was needed. The UR5
driver is a node that transforms the generated trajectory into movement of the robot. Fig-
ure B-13 shows an overview of the driver.

The driver checked the calculated trajectory for invalid data points and interpolates the data
points again for smooth execution. It then sent the joint angles and velocities to the robot
and receives the current joint angles and velocities from the robot at a frequency of 100Hz.
The communication to the robot is by UTP.
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Figure B-13: Overview of the UR5 driver. The driver makes sure that the calculated trajectory
is executed on the robot arm. It also receives the current position and velocity from the robot
arm.
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Camera calibration

C-1 Calibration algorithm

To be able to accurately detect objects using this camera, the camera needed to be cali-
brated [85]. The most used camera model is the pinhole camera model and needs the following
parameters to represent the camera:

• Camera matrix
• Distortion matrix

The camera matrix represents the relationship between the real world points (X, Y , Z) and
the points in the image frame (u, v, w). u

v
w

 =

 fx 0 cx

0 fx cy

0 0 1


 X
Y
Z

 = A

 X
Y
Z

 (C-1)

The relation between real world coordinates and image coordinate is defined as a function
of the focal lengths (fx and fy) and the principle point (cx, cy) of the camera. Because
consumer grade cameras have a lot of distortion it needs to be corrected. There are two
types of distortion, radial (fish-eye effect) and tangential (lens not parallel to image plane).
ARtoolKitPlus does not use tangential distortion and is not taken into account. The distortion
matrix is:

D =
[
k1 k2 p1 p2 k3

]
(C-2)

The equations to correct for distortion:

ũ = u
(
1 + k1r

2 + k2r
4 + k3r

6
)

(C-3)

ṽ = v
(
1 + k1r

2 + k2r
4 + k3r

6
)

(C-4)
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96 Camera calibration

The unknown variables measured by the calibration algorithm are: fx, fy, cx, cy, k1, k2, k3,
p1 and p2. The calibration was done using the ROS camera calibration package. To calibrate,
a lot of images were taken of a checker board. The checker board needed to be captured
from a lot of different angles and position to properly calculate the variables. The camera
calibration package showed a GUI that indicated when enough images are captured in x and
y direction, when enough different sizes were captured and when enough different angles were
captured. The calibration results of the cameras are shown in Appendix C-2. Because the
camera was calibration at a resolution of 640x480 pixels and ARToolKitPlus used images with
a resolution of 1600x1200 pixels, the camera matrix needed to be scaled with the ratio of the
two resolutions.

C-2 Calibration results

Section C-2-1 shows the calibration results for the orange vision camera, Section C-2-2 and
Section C-2-3 show the results for the left and right camera of Marty. All camera were
calibration at a resolution of 640x480 pixels using the ROS camera calibration package.

C-2-1 Logitech C905 for the orange vision system

A =

 568.19 0 319.50
0 568.19 239.50
0 0 1

 (C-5)

D =
[

0.009826 −0.022168 0 0 −0.17508
]

(C-6)

C-2-2 Logitech C905 for Marty’s left eye

A =

 539.45 0 311.65
0 542.72 226.05
0 0 1

 (C-7)

D =
[

0.05988 −0.13146 −0.00199 −0.00601 0
]

(C-8)

C-2-3 Logitech C905 for Marty’s right eye

A =

 538.60 0 303.16
0 541.30 228.99
0 0 1

 (C-9)

D =
[

0.06320 −0.14467 −0.00223 −0.00530 0
]

(C-10)
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Appendix D

Instructions for test subjects

You will be conducting an experiment to evaluate the human-robot interaction. During the
experiment you will be recorded on video. After the experiment you will be asked to fill out
a questionnaire.

D-1 Goal

Work together with the robot arm to fill the boxes with oranges.

D-2 Procedure state projection

The experiment will be done twice: once without virtual information in the head-mounted
display and once with virtual information in the head-mounted display. The goal is to fill
boxes oranges and sticker them.

Follow these steps:

• Once the system has started you will pick up the oranges one by one from the box
• Put a sticker on the orange you picked up.
• Put the orange on the grid on the table.
• When there are about four oranges on the table, the robot will detect them and start
handling them.

• Just continue to sticker oranges.
• Continue to sticker the oranges until the robot arm stops moving. This simulates that
the box is full and that an action by you is needed.

• When the box is full (1, 2 or 3 oranges in a box), hit space bar. The robot will then
continue.

• Your task is to fill the grid as fast as possible and to minimize robot stopping time.
• Virtual information shown in the HMD
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98 Instructions for test subjects

– The virtual robot arm will indicate its internal state by projecting directly over
the real robot arm.

– A red arm indicates that the robot arm is moving and not finished.
– A green flashing arm indicates that the robot arm is not moving and finished with

filling the box. It requires action from you.
– A blue arm indicates that no oranges are detected.

D-3 Procedure goal projection

The experiment will be done twice: once without virtual information in the head-mounted
display and once with virtual information in the head-mounted display. The goal is to fill
boxes oranges and sticker them.

Follow these steps:

• Once the system has started you will pick up the oranges one by one from the box
• Put a sticker on the orange you picked up.
• Put the orange on the grid on the table.
• When there are about four oranges on the table the robot will detect them and start
handling them.

• Just continue to sticker oranges.
• The robot arm will move to the left or right once it picks up an orange.
• To simulate quality checks by the robot, it will randomly put an orange in the box on
the left.

• Once you detect that the robot is moving to the left, hit space bar.
• The robot arm always continues moving.
• Your task is to fill the grid as fast as possible and react to the robot when it is moving
to the left as fast as possible.

• Virtual information
– The virtual robot arm will indicate the goal by projecting the goal position of the

robot arm.
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Appendix E

Questionnaires

E-1 Personal Info

Name:
Gender:
Age:
E-mail:
Left or right handed:
Previous experience with augmented reality:
Glasses:

E-2 Data

Date:
Starting time:
Ending time:
Experiment 1 starting condition: Without projection - With projection
Experiment 2 starting condition: Without projection - With projection
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100 Questionnaires

Test Without projection With projection
State

Goal

Table E-1: Measurements.
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Appendix F

Code

F-1 Statistical analysis

The statistical analysis was done using Matlab R2013b.
1 clear all
2 close all
3 clc
4
5 % Paired t-test state projection reaction time
6 state_wo = [ 3 . 3 5 2 ; 3 . 6 8 4 ; 2 . 2 4 0 ; 2 . 8 7 6 ; 1 . 7 7 4 ; 2 . 3 2 8 ; 1 . 6 2 4 ; 3 . 2 6 6 ; 1 . 8 3 6 ; 1 . 9 5 2 ] ;
7 state_w = [ 2 . 3 3 6 ; 1 . 3 0 8 ; 2 . 1 4 2 ; 1 . 3 1 2 ; 1 . 2 5 8 ; 1 . 3 1 8 ; 1 . 1 3 6 ; 2 . 1 5 2 ; 1 . 7 0 4 ; 1 . 5 5 4 ] ;
8 mean_s_wo = mean ( state_wo ) ;
9 mean_s_w = mean ( state_w ) ;

10 diff_state = state_wo − state_w ;
11
12 [ h , p , ci , stats ] = ttest ( state_wo , state_w ) ;
13
14 figure ;
15 G = {’w/o virtual information’ , ’w/ virtual information’ } ;
16 boxplot ( [ state_wo , state_w ] , G ) ;
17 ylabel (’Reaction time [s]’ )
18
19 % Paired t-test goal projection reaction time
20 goal_wo = [ 1 . 1 0 4 ; 1 . 8 2 4 ; 1 . 3 6 4 ; 2 . 8 4 0 ; 1 . 5 5 4 ; 1 . 4 8 6 ; 1 . 5 6 8 ; 1 . 9 8 4 ; 1 . 4 1 4 ; 1 . 6 0 8 ] ;
21 goal_w = [ 0 . 9 3 4 ; 1 . 2 2 2 ; 1 . 2 9 8 ; 2 . 0 6 6 ; 1 . 1 4 8 ; 1 . 4 2 0 ; 1 . 5 2 6 ; 1 . 6 1 2 ; 1 . 3 6 8 ; 1 . 5 7 4 ] ;
22 mean_g_wo = mean ( goal_wo ) ;
23 mean_g_w = mean ( goal_w ) ;
24 diff_goal = goal_wo − goal_w ;
25
26 [ h , p , ci , stats ] = ttest ( goal_wo , goal_w ) ;
27
28 figure ;
29 boxplot ( [ goal_wo , goal_w ] , G ) ;
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30 ylabel (’Reaction time [s]’ )
31
32 % Paired t-test state projection oranges
33 state_o_wo = [ 9 . 8 7 3 ; NaN

; 9 . 1 8 9 ; 9 . 7 6 7 ; 6 . 4 5 6 ; 7 . 6 3 6 ; 1 1 . 8 0 3 ; 1 1 . 0 2 9 ; 7 . 0 5 9 ; 1 1 . 2 1 5 ] ;
34 state_o_w = [ 7 . 1 3 3 ; NaN

; 9 . 9 3 6 ; 1 3 . 8 4 6 ; 8 . 2 7 6 ; 7 . 2 8 6 ; 1 3 . 0 9 1 ; 1 2 . 0 0 0 ; 1 1 . 5 0 0 ; 1 0 . 5 0 0 ] ;
35 mean_state_o_wo = mean ( state_o_wo ) ;
36 mean_state_o_w = mean ( state_o_w ) ;
37 diff_state_o = mean_state_o_wo − mean_state_o_w ;
38
39 [ h , p , ci , stats ] = ttest ( state_o_wo , state_o_w ) ;
40
41 figure ;
42 boxplot ( [ state_o_wo , state_o_w ] , G ) ;
43 ylabel (’Orange handling rate [orange/min]’ )
44
45 % Paired t-test goal projection oranges
46 goal_o_wo = [ 1 3 . 2 6 9 ; NaN

; 1 1 . 2 0 5 ; 7 . 2 4 6 ; 9 . 5 8 0 ; 9 . 3 5 1 ; 1 2 . 7 1 2 ; 1 3 . 1 7 1 ; 7 . 0 2 1 ; 1 0 . 3 4 5 ] ;
47 goal_o_w = [ 1 0 . 9 4 9 ; NaN ; 1 1 . 2 1 5 ; 8 . 1 8 2 ; NaN

; 7 . 2 9 7 ; 1 3 . 0 9 1 ; 1 3 . 4 8 3 ; 7 . 6 5 1 ; 9 . 0 4 8 ] ;
48 mean_goal_o_wo = mean ( goal_o_wo ) ;
49 mean_goal_o_w = mean ( goal_o_w ) ;
50 diff_goal_o = mean_goal_o_wo − mean_goal_o_w ;
51
52 [ h , p , ci , stats ] = ttest ( goal_o_wo , goal_o_w ) ;
53
54 figure ;
55 boxplot ( [ goal_o_wo , goal_o_w ] , G ) ;
56 ylabel (’Orange handling rate [orange/min]’ )
57
58 % Plots learning curve
59 x = [ 1 , 2 , 3 , 4 ] ;
60 one = [ 7 . 1 3 3 ; 9 . 8 7 3 ; 1 0 . 9 4 9 ; 1 3 . 2 6 9 ] ;
61 two = [ 1 1 . 0 2 9 ; 1 2 . 0 0 0 ; 1 3 . 4 8 3 ; 1 3 . 1 7 1 ] ;
62 three = [ 1 1 . 8 0 3 ; 1 3 . 0 9 1 ; 1 3 . 0 9 1 ; 1 2 . 7 1 2 ] ;
63 four = [ 7 . 2 4 6 ; 8 . 1 8 2 ; 9 . 7 6 7 ; 1 3 . 8 4 6 ] ;
64 five = [ 7 . 6 3 6 ; 7 . 2 8 6 ; 7 . 2 9 7 ; 9 . 3 5 1 ] ;
65 six = [ 9 . 1 8 9 ; 9 . 9 3 6 ; 1 1 . 2 0 5 ; 1 1 . 2 1 5 ] ;
66 seven = [ 9 . 0 4 8 ; 1 0 . 3 4 5 ; 1 1 . 2 1 5 ; 1 0 . 5 0 0 ] ;
67 eight = [ 7 . 0 5 9 ; 1 0 . 5 0 0 ; 9 . 0 4 8 ; 1 0 . 3 4 5 ] ;
68 nine = [ 6 . 4 5 6 ; 8 . 2 7 6 ; 9 . 5 8 0 ; 9 . 5 8 0 ] ;
69
70 orange_total = [ one ’ ; two ’ ; three ’ ; four ’ ; five ’ ; six ’ ; seven ’ ; eight ’ ; nine ’ ] ;
71
72 figure ;
73 G_orange = {’1st experiment’ , ’2nd experiment’ , ’3rd experiment’ , ’4th

experiment’ } ;
74 boxplot ( orange_total , G_orange )
75 ylabel (’Orange handling rate [orange/min]’ )
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